25 lines
741 B
Markdown
25 lines
741 B
Markdown
---
|
|
alias: [ "positive" ]
|
|
---
|
|
up:: [[forme bilinéaire]]
|
|
title:: "$b(x, x) \geq 0$"
|
|
#maths/algèbre
|
|
|
|
---
|
|
|
|
> [!definition] Forme bilinéaire positive
|
|
> Soit $E$ un $\mathbb{R}$-[[espace vectoriel]]
|
|
> Soit $b$ une [[forme bilinéaire]] sur $E^{2} \to \mathbb{R}$
|
|
> $b$ est **positive** ssi : $\boxed{\forall x \in \mathbf{K}, \quad b(x,x) \geq 0}$
|
|
>
|
|
> > [!info] Note
|
|
> > On ne peut pas avoir $b(x, y) \geq 0$ pour tout $(x, y)$, puisque si $b(x, y) \geq 0$, alors $b(-x, y) < 0$.
|
|
> >
|
|
> > Cependant, comme $b(-x, -x) = b(x, x)$, c'est possible pour un seul vecteur.
|
|
>
|
|
> > [!info] Ensemble des scalaires
|
|
> > $E$ doit être sur $\mathbb{R}$ (ou sur un [[corps]] muni d'une [[relation d'ordre totale]]), pour que $\geq$ existe.
|
|
^definition
|
|
|
|
|