33 lines
925 B
Markdown
33 lines
925 B
Markdown
up::[[fonction arctangente|arctan]]
|
|
title::"$\arctan(\sqrt{ 3 }) = \dfrac{\pi}{3}$", "$\arctan\left( \dfrac{1}{\sqrt{ 3 }} \right) = \dfrac{\pi}{6}$"
|
|
#maths/trigonométrie #démonstration
|
|
|
|
---
|
|
|
|
Démonstration de la valeur de $\arctan(\sqrt{3})$ et de $\arctan\left(\dfrac{1}{\sqrt{3}}\right)$
|
|
On utilise le [[Théorème de Thalès]]
|
|
|
|
# Démonstration : $\arctan\left(\dfrac1{\sqrt3}\right)$
|
|
|
|
![[Démonstration arctan(1sqrt(3)).excalidraw|1200]]
|
|
|
|
$\dfrac{\dfrac{1}{\sqrt{3}}}{\dfrac12} = \dfrac1{\cos(\theta)}$
|
|
Soit : $\theta = \arccos\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac\pi6$
|
|
|
|
|
|
# Démonstration : $\arctan\left(\sqrt3\right)$
|
|
|
|
![[Démonstration arctan(1÷sqrt(3)).excalidraw|1200]]
|
|
|
|
$\dfrac{\sqrt3}{\dfrac{\sqrt3}{2}} = \dfrac{1}{\cos(\theta)}$
|
|
Soit :
|
|
$\theta = \arccos\left(\dfrac12\right) = \dfrac\pi3$
|
|
|
|
|
|
|
|
|
|
# voir
|
|
|
|
- [[fonction tangente]] / [[fonction arctangente]]
|
|
- [[fonction cosinus]] / [[fonction arccosinus]]
|