37 lines
854 B
Markdown
37 lines
854 B
Markdown
up:: [[congruence]]
|
|
title:: "démonstrations sur les simplifications possibles avec la congruence"
|
|
#t/démonstration
|
|
|
|
---
|
|
|
|
# Simplification totale
|
|
|
|
> $ka \equiv kb [kn] \iff a \equiv b[n]$
|
|
|
|
$$
|
|
\begin{align}
|
|
ka \equiv kb [kn] &\iff kn \mid ka - kb \\
|
|
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
|
|
&\iff \exists i \in \mathbb{Z}, a - b = in \\
|
|
&\iff n|a-b \\
|
|
&\iff a \equiv b [n]
|
|
\end{align}
|
|
$$
|
|
# Simplification partielle (sans le modulo)
|
|
|
|
> $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$
|
|
|
|
On suppose que $\mathrm{pgcd}(k, n) = 1$
|
|
Alors :
|
|
$$
|
|
\begin{align}
|
|
ka \equiv kb [n] &\iff n \mid ka - kb \\
|
|
% &\iff \exists i\in\mathbb{Z}, ka - kb = in \\
|
|
&\iff n \mid k(a-b) \\
|
|
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun} \\ \\
|
|
&\iff a \equiv b [n]
|
|
\end{align}
|
|
$$
|
|
|
|
|