cours/démonstration simplification de la congruence.md
Oscar Plaisant 602a41e7f8 update
2024-12-25 22:30:24 +01:00

37 lines
854 B
Markdown

up:: [[congruence]]
title:: "démonstrations sur les simplifications possibles avec la congruence"
#t/démonstration
---
# Simplification totale
> $ka \equiv kb [kn] \iff a \equiv b[n]$
$$
\begin{align}
ka \equiv kb [kn] &\iff kn \mid ka - kb \\
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
&\iff \exists i \in \mathbb{Z}, a - b = in \\
&\iff n|a-b \\
&\iff a \equiv b [n]
\end{align}
$$
# Simplification partielle (sans le modulo)
> $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$
On suppose que $\mathrm{pgcd}(k, n) = 1$
Alors :
$$
\begin{align}
ka \equiv kb [n] &\iff n \mid ka - kb \\
% &\iff \exists i\in\mathbb{Z}, ka - kb = in \\
&\iff n \mid k(a-b) \\
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun} \\ \\
&\iff a \equiv b [n]
\end{align}
$$