up:: [[congruence]] title:: "démonstrations sur les simplifications possibles avec la congruence" #t/démonstration --- # Simplification totale > $ka \equiv kb [kn] \iff a \equiv b[n]$ $$ \begin{align} ka \equiv kb [kn] &\iff kn \mid ka - kb \\ &\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\ &\iff \exists i \in \mathbb{Z}, a - b = in \\ &\iff n|a-b \\ &\iff a \equiv b [n] \end{align} $$ # Simplification partielle (sans le modulo) > $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$ On suppose que $\mathrm{pgcd}(k, n) = 1$ Alors : $$ \begin{align} ka \equiv kb [n] &\iff n \mid ka - kb \\ % &\iff \exists i\in\mathbb{Z}, ka - kb = in \\ &\iff n \mid k(a-b) \\ &\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun} \\ \\ &\iff a \equiv b [n] \end{align} $$