cours/Exercices maths perso 2022-10-08.md
oscar.plaisant@icloud.com a2ee0fa5ca from github to this gitea
2023-10-23 23:09:51 +02:00

486 B

#exercice #maths


800

\displaystyle I_{4} = \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3}t}{1+\cos ^{2}t} \, dt

On pose x = \cos t, alors t = \arccos x

\cos 0 = 1 et \cos \frac{\pi}{2} = 0, donc les bornes sont inversées, et on doit changer le signe.

\displaystyle\frac{dt}{dx} = - \frac{1}{\sqrt{ 1-x^{2} }} donc \displaystyle dt = - \frac{dx}{\sqrt{ 1-x^{2} }}