cours/mesure image.md
Oscar Plaisant 602a41e7f8 update
2024-12-25 22:30:24 +01:00

173 lines
12 KiB
Markdown

---
excalidraw-plugin: parsed
tags:
- excalidraw
excalidraw-open-md: true
---
up:: [[mesure positive d'une application|mesure]]
#s/maths/intégration
> [!definition] [[mesure image]]
> Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]]
> Soit $(F, \mathcal{B})$ un [[espace mesurable]]
> Soit $f: E \to F$ mesurable de $(E, \mathcal{A})$ dans $(F, \mathcal{B})$
> Notons $\nu$ l'application de $\mathcal{B}$ dans $\overline{\mathbb{R}}_{+}$ définie :
> $\begin{align} \nu: \mathcal{B} &\to \overline{\mathbb{R}}_{+}\\ B &\mapsto \mu(f^{-1}(B)) \end{align}$
> $\nu$ est une [[mesure positive d'une application|mesure]] appelée **mesure image de $\mu$ par $f$**
^definition
`$= "![[" + dv.current().file.name + ".svg|700]]" `
# Propriétés
> [!proposition] La mesure image est bien une mesure
> Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]]
> Soit $(F, \mathcal{B})$ un [[espace mesurable]]
> Soit $f: E \to F$ mesurable de $(E, \mathcal{A})$ dans $(F, \mathcal{B})$
> $\begin{align} \nu: \mathcal{B} &\to \overline{\mathbb{R}}_{+}\\ B &\mapsto \mu(f^{-1}(B)) \end{align}$
> $\nu$ est une mesure sur $(F, \mathcal{B})$, que l'on appelle **mesure image de $\mu$ par $f$**
> > [!démonstration]- Démonstration
> > 1. Soit $(B_{n})_{n\in\mathbb{N}}$ une suite d'éléments 2 à 2 disjoints de $\mathcal{B}$
> > $\displaystyle\nu\left( \bigcup _{n=0}^{+\infty} B_{n} \right) = \mu\left( f^{-1}\left( \bigcup _{n=0}^{+\infty}B_{n} \right) \right) = \mu\left( \bigcup _{n=0}^{+\infty} \underbrace{f^{-1}(B_{n})}_{A_{n}} \right)$
> > $\forall n \in \mathbb{N}, \quad A_{n} \in \mathcal{A}$
> > Si $n \neq p$ alors $f^{-1}(B_{n}) \cap f^{-1}(B_{p}) = \emptyset$
> > Si $x \in f^{-1}(B_{n}) \cap f^{-1}(B_{p})$, alors $f(x) \in B_{n}$ et $f(x) \in B_{p}$
> > or, $B_{n} \cap B_{p} = \emptyset$
> > ainsi, $\displaystyle\nu\left( \bigcup _{n=0}^{+\infty}B_{n} \right) = \sum\limits_{n=0}^{+\infty} \mu(f^{-1}(B_{n})) = \sum\limits_{n=0}^{+\infty}\nu(B_{n})$
> > Et donc $\nu$ est bien une mesure sur $\mathcal{B}$
# Exemples
> [!example] Exemple 1
> Sur l'[[espace mesuré]] $([0; 1], \mathcal{B}([0; 1]), \lambda _{[0; 1]})$
> Soit la tribu $\mathcal{B} = \{ \emptyset, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}$
> Soit $0 \leq a < b \leq 1$ on a $\lambda _{[0; 1]}(]\![ a, b ]\![) = b - a$
> Soit $p \in [0; 1]$
> Soit l'application :
> $\begin{align} \mathbb{1}_{[0, p]} : [0; 1] &\to \{ 0; 1 \}\\ x &\mapsto \begin{cases} 0 \text{ si } x \in [0; p]\\ 1 \text{ sinon} \end{cases} \end{align}$
> ([[fonction indicatrice]] de $[0; p]$)
> On cherche la mesure image de $\lambda _{[0; p]}$ par $\mathbb{1}_{[0; p]}$
> C'est une mesure sur $\mathcal{B}$. Notons la $\nu$.
> $\nu(\{ 1 \}) = \lambda _{[0; 1]}((\mathbb{1}_{[0; p]})^{-1}(\{ 1 \})) = \lambda _{[0; p]}([0; p]) = p$
> Pour tout $x \in [0; 1]$
> $\mathbb{1}_{[0; p]} = 1 \iff x \in [0; p]$, donc :
> $\nu(\{ 0 \}) = \lambda _{[0; 1]}((\mathbb{1}_{[0; 1]})^{-1}(\{ 0 \})) = \lambda _{[0; 1]}(]p; 1]) = 1-p$
> $\nu(\{ 0; 1 \}) = \nu(\{ 0 \} \cup \{ 1 \}) = p+1 - p = 1$
> Donc, $\nu$ est la [[mesure de Bernoulli]] de paramètre $p$ :
> $\nu = p\delta_1+(1-p)\delta_0$
>
> [!example] Exemple 2
> Soit $\nu = \frac{1}{6}d_0 + \frac{1}{3}d_1 + \frac{1}{2}d_2$
> Soit $f: [0; 1] \to \{ 0, 1, 2 \}$ telle que $\nu$ soit l'image de $\lambda _{[0; 1]}$ par $f$
> ![[mesure image 2024-09-18 15.26.58.excalidraw|500]]
> [!example] Exemple 3
> $(E, \mathcal{A}, \mu) = ([0; 1], \mathcal{B}([0; 1]), \lambda _{[0; 1]})$
> $\begin{align} f : ]0; 1[ &\to \mathbb{R}^{+} \\ x &\mapsto -\ln(x) \end{align}$
> Alors, soit $\nu$ la mesure image de $\mu$ par $f$ :
> $$\begin{align}
> \nu(]-\infty, t]) &= \lambda _{[0; 1]} (\{ x \in ]0; 1] \mid -\ln(x) \leq t \}) \\
> &= \lambda _{[0; 1]} (\{ x \in ]0; 1] : x \geq e^{ -t } \}) \\
> &= \lambda _{[0; 1]} ([e^{ -t }; +\infty[ \cap ]0; 1]) \\
> &= \lambda _{[0; 1]} ([e^{ -t }; +\infty[) \\
> &= \begin{cases} 0 \text{ si } t < 0 \\ 1-e^{ -t } \text{ si } t \geq 0 \end{cases}
> \end{align}$$
> ![[mesure image 2024-11-20 15.35.39.excalidraw]]
>
%%
# Excalidraw Data
## Text Elements
## Embedded Files
834f4f03db2630a85af1da27414acaf4a96e2d6b: $$(E, \mathcal{A}, \mu)$$
2a25a46d8b55d25eb04e97f32205978c7cfc4a56: $$(F, \mathcal{B})$$
93dd76f01859baaa41c85298a66215822c042d56: $$f$$
6ebd9d18c3e73ee6fa41fa7fe0561392117d6789: $$A = f^{-1}(B)$$
811c6101906f566736a7299004cd26f5fd73c338: $$B = f(A)$$
c788d57471a52a30e34e72a1c31c096d236baaca: $$\begin{align}\nu(B) &= \mu(f^{-1}(B)) \\&= \mu(A) \end{align}$$
e28573ea7722cca49ea84581133c4a77451f8cea: $$\mu(A)$$
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBWbQBGGjoghH0EDihmbgBtcDBQMBLoeHF0IKI5JH5SxhZ2LjR4gDZ4usgG1k4AOU4xbiSADhGkgE4AFnGAdlbOiEIOYixu
CFx41JLIQmYAEXSoBGJuADMCMIWSNYAxAFkb/GVcACUAa1aACU+eGBgABhg+GIuAAojAtqVToR8PgAMqwYJrQQeSECKCkNhvBAAdRI6m4fEK6Mx2IRQIqEBR1wWmL8kg44VyaCSCzYcFw2DUEJZ/3+C2syiRaH5xIgmG4rVa2kmAGZhjx4rKkkkeJMpfEOmKeahnKq4urxv9Jkl4qrhjMeElJgtmBisQgAMJsfBsUhrADESQQ3u9aIgmk5b2UdOW
ztd7okGOszA5gWy/oo+MkQxmMwS8R441a/yV8WG4y12ykCEIymkhMm/20Crm42Gypmk2GctltoQx0lsrVrR4stawwWIeEcAAksRmag8gBdBanciZcfcDhCWG04TLRnMSfFYuwRCE4kAXwWmg3xFBwUy2UnK7XYqEcBBRxOLJm3e7uf+MySrRmCyIDg3mXVd8AAthsGxV9UHOfAwkKE9Cl3SB90pKpCBqf1uiaVN/zFbC+gGCokhmes+UmeIKKuZZ
VgkXAZn9XYDmCF8zguBArmgiAAClPl6OFuNOABHN49llAAFUcKCEAANG5lHGKBCAAGX9aFYXJYV0GpE5bXtbE8WIAk0CJYs7VJBBNMpHT/Tpcst0nVkxXZTluSGPkBQ4IUKlFYsJTQPVRgSI05ilHhWjlEY8OLHVnB4dMkn+cKSIbfNcyzPSLPDN1PR4U5xgQSZJn9QNIOHIQwxdHKo3IDhY1weMoETZNuGbbRs3GU0TV/HNhnaBZJFLcsmrQHNt
Flf5rV/CbZXzU15jFMJOzfcYJtVeUi1KcqxwnfJZzFedcEXaC7zAsVQ2IBzuGQlDykPbZEOLM8KovK8shyfJiSKL6di4gBBISAHE2BmT5RzhAB9fRHVaUQcWUYgAEVQReeg0VKVC1gazEqC+x7thu361mUABNZgZKE7BegK0g3huAAhKADk+GSAC0/oAFXR26Dzo0gcYgPHOm+7ZSmuCRnBWG5ZWUyRTlHQg9hRm4kj2HEACs+tU4WecpbG2Fx0W
j2Jfbi0fZ9ltQEjwqlWU5nVZUAKWYC0FO8DIMt2D4JKfHkLKXnKlhDCwiwpgemaXgioWAiOH6DhBjQI11Sla0bTFJYVn89BcGGRj9kOT32M425hhhSYcX0dW9lZuF8BmXoEHEyY7FlEm1JheFEWsl0aUW/TcRakzModKzkR73TzuEeymSGNkOS5WB3N80pBS05fICzpJlW0VpZiVRKzVm+VB21bhnHlbR4oo9p/nlH8GxPsz++yyN0A9PKCqKkqg
3KyqIzWaMdU4zvWakZFMaA2odS6iqKU/w+qbUgINMsFZRrVjWiaVoM05ptHbJbcK2YCzNmiltOkO1JwzjnAuBAS5XagXXC9K6aAbr+wqDwY8p5zyXgyO9chX1CaLC4pLBA0tZby0VsrVWGstbcxYVjfmBtBZG2Fvw8W6AAbA1BuDKGMM4YI2RqjGRmM+YCyFnwn6AjiZkwplTGmdNGbMzZpzQxd1jEKLxibBY5tcCsTfB+HguZrQKnXhAQCLtUBu
zFK6D20EvYIAQnUP2Rjs7yKoNHMOOETLxGIV0dJhF47EVlP2FUmpTJixolndY9M87MQQD4mCRd07/SBiDMGkNoaw2wPDJGKM0Zzg7qPCQNlh4GUHlbYZlku5j1RPQ6e25Z7OXnm5XkwTV4+QWFnPU6pkjyjlJaZO/xOptlPhAy+wxJqpSmHAya4xxjjJfrlfKhViqnh/hde5NUYzAITAsJMYDuDKkSFvCiiVZg/m7FHMUSDhpDEmDWNUYwTTjH8f
Eb8CCqQdmgt2KU74Rhou2uOchpsoRUJoeEuhk8GEzyYV9WRJl2FimessLh14PpoAoQ+J83jLYkT8QEn8t8nZARAveYsUSoJsTghxPuDUoD0wzksZQ10aXpBZaSnifEBLCVEhJKSsl5KKRUujCApwIJCEnNWXMpFZRVj5KRVaJoAXCwgM8OA8zRbGsIJgY44k2BLBGmS2E9LixZGIHK5YCqlXupVe9NVNxS74HLpXautd66N2bpoVuRqTXYDNdwC1
OY+wTGGGcyYPBkXWrTu6l1brizQi9cQH1frhX4CDaUfAoQoDOn0PoNQL5G0JloSK0odoZV/RSYNXAJ1yXBuWGOnGE6uIYicN5f0cBfU3k+qLAooswDrxKP8L6RKSjbtFgC7ZwKDlpi3mqStotNlwpNKMRFyLUWHo8WKIIZ4KCF0lfEpCYoknrBSaHRonBCRSjSaB2OREuz1lmJg0pOxylY0dNUguMSGnFlUc6qxlNqZMDsUzBALN2Zcz6RpSZgzx
7+nMg6Qyxkxl9wsgM7S1GZkMipYx4sLkF46kSisrya91ln1NEkdqW9rYTQHFky0CxYpb2SC2IqhS7bqkVNmO5VVX4QHfo8r+LyypvK0wA2q9VGqgIY8qMTiUy0qk6n+e+A0hooKtmJrMZoblqng/KCYuDoKWizCqb8Rziz4t2myo9xqSVTqHZAC6jDUDMKSWwh6HCXrMp4XtTxnK6k8r7Mi00VonKiuds2924q0CxL0jKsNjgvKRuDW9bIareL8U
EiJMSklpJyQUkpbWNLs25oCtWfeBY8x2yiqqW9W1cCupZE6ut3r13+tOq2yAIbasRupVGprUBY3xsTVXGudcG5Nxbm3BbprzUJHlK0VUMxMzAqtBpml1b5sDc9Utptg6W2pciR2rtPaZBfYHQGs6T9R3jpCDF8HpQQ1zoNgukzy6kQLDXX63hW6fp7t3Ye4WJ7thWeSElIr9mr2PzvSqS+hYJhIumHMHz4w33bEi5+g2P7vZgF9gBlxySBaQfDv8
stAumhxwTqgIq74UVqmCRnWi2c9hoZYhzqVWHBFSxlnLBWSsXgqzVprVo/Xa39Mo6x6ZTG6OjOK8O/uLGqRsYpbMxyc9XKL2WZ5FdIphMBVEzKKYbQsxNnVMaRDEA+PDEvjAgsu8LQwIgxb7E7y34fyed/Qz54k/QFM18pqPzRnKjiAqUtsp/dqZmBTxBzn/Wqmp/2eK1pSKJR/LcxaGLuBIpGPB63kAwuEsoUdahMP6Gbk40l3nKWfZpaZbtvvH
KLbQTy5+M0BZfORNKz98rKvqukFlfK+r23GvcOa1xVrmqOs6u6/qvrWart5oSAc+sqdb6jH7AOJ1b2uPG/rf2lboE1sYGWE2330S2VV232zLgriOxTVO3TUzUuxzUnGcGrEmEtAmEKTTHL2LRLwWirVmxrShE+wbWW2bX/3bTtEB17RB1/1iypCiB3wRwoCRw3w/VnSh0nWR1WVXWW0x22AJ33R1gPVFiPTAD4LAALwfT7FL17HLx1j1DiCzDrx/
BQM6m/AmGZxKFZ3wC/RVz/RKESV5xCSWFqHwlyQjh4D6hFzyXF1mnaBzFl2QzolBCV1qS30aTWHwBeCEj+gAGlZQABVUcbiKuDmGSDgXAXoTACgISO4CGduCjCkKZXuJ+CyejcBXgcZO3IZR3DjOZd7bjRZN3K2DyMUTgr3MUTecKU5JFIJSad8H8NFPjcYHePkFUOUTMDaR9TTf+CQD0U4OBbAPkNPYMIzbo9AQBMzEBPPP5FoJov8MtXscwpFI
+FvYsKFFzU0ZIa0P8XsWopFf4fqVvblb8S0RvO2IcUhAlLLA6aLMrClEfXIsHKfV6I/VlKcSLLxXLd8fLL8H8N/NfIVZg0VCCCrepSVbfXfcNYAiJGdUNPfRVQEttAHAwIHPtYghE9ESHedaHW4mEhgpgx4sUdHDdNlL6UQnHQQlnfHbHHWa0GUWafMVaQLCKOUPHUkn6eIWYgLBYgsPsJUFY0WWktohk7sezZTVkrHHdDkneLkstHk5Y2Q6sP8I
0PqC0cKeKTBfMdQsAacXQkWDGAwwCYw4sGOIYeUSw6DfJVqKsCTYYNFOXCpXAT4ZwupKrNwiQCgG4OmPYeIEmZwc4fQQGegemXAGSQgIwGSEmBicjTuBIqjc3ZIy3aY9IhPCZWMs3JI0oOyHI53BZV3PjYo4sUo1AYJDZKKOFesNMcKPqMiHA0oHUcw7QcvFA9AwsXeRzFMzPXo/owYgzYYjPYzD5IBBqSYsUX5BjMaFAvqNMQsY0M5TBJzZBavW
FAcNMaXTBZsLJRUPzbgDk1FVFELEhEcS4iLfvY6HEzM88BLaE0oRlZ4llWfM2HLblS0KUTBODCaUPUJc8yAMVVwiHHfIA+EgkmEwC78kJJE7tSgog77YCm3TExHbE9EgA4gPExC2CyAIk14vgskgQ8U3g6kn6Wklch7JKdc20y0eIPC49H6Cc8vBzGc5sfYg87YIii0Ei8Ka1cixUKikQmi5Aui6clFRi+c7HG7UtUYfMIpa0JKYYLUnUyff9PcA
wwgfQaII0+oUwnc4tc0sXVhY0G5YtfY6bRYBw7OUcZ0v8sWf6ZgGYTQDmegSQRGOImMrSKQTkDQQIGjfuVI/A2g5jU3e3eMi8+kBLbvCAHjJZIogTT3Ys73XUVUaUI0Ow2nQpFFNMOTETLZP8eULMRUHk5OLo6qN+PkEq/4IY3+YgTPcYnPCzNIlUOIXsVUa0KYE0PsSaBc6FEyCPAtK0QpCYa0Xk7cmYmPc4o88LN408wfMC+LTja8yAW8jLYki
aufLlBfL4pfK0M0bJQwgE9CkJYEyyjEqAIbdARASExVcjKaiQBsSYU4W62+YgTQDi/4HOeIXAU4JIEEK+a0Tkd6yYXAbMBAHgYgVoTQGjdwCoPg7vMAJIE2XU/QgORYVS5QdSnJKDVqB7HSmDFkFFK5PkbsaiTOLGbiCyjDMEt09AR0FAuEcYTQR0CeY3eI1yyQdykQVGvyxMhjMK2jMkAKrI4sLM0Kl3XjJeD3ITco/5dMRUJsc0CaIy61DKn3I
qbQA5TBPkNUIJO2WskkB0Ts0qnshlV5fs0YrPT5Yc75Uc0ZNMS+dUIqfxP8CiTUCvEsRcwkCPJscwxqiKdckSsyNvFkeUesUax8Y85a2tG4pCmah4uagMThGfK4x8+fVMXlNK38Z2r8pC38smy4aVY6ycCAM6urC6g6GEK69AHgXARUXAdUYgYYTQTUYgRUBATQY0BAWYU4bsZFWYYYbAGYbAU4bAf6tocGggSGr6aG2GlneGnnRGlStSkDQXAO4
JGOXS7gUYWYTqJOQm+XdYbw0miVHOtXNYGYDgcYbif4PYQgO4Zyu3Fm7ADy9mnmgeJM7m23Pmh3AWqebM3yiKwo/jMWtZCWn3KWuwgPZsLMS5bWsPM+SiGsWcxUX8S5UYXMQq7TD0fWsq3siqqq7Pc23PS2pMwpHeEvPsVq2YZsVUDqlzbeJUP8de7MTBYtKBpaaCdofsPFC48a9lcOgfUlGOqO28adG8uOl4h80oD458lO0hkiQVMJGOrOg+1XO
CvOtYQuiNS6tVVaYgYgOYPo3FWm3AQxk0bAW0rMYYXAMKU0BUHgAY0tYgYe20CGzdFi4WSejQ6epS2e5G9mk0tAGQkwqDVekyLMNTaYKB+0rGI3MWfOZXbOpRomCQcSeIGAUEegGSVoNgG+gKu+h+rylIq3DI9+oKuLL+oW3MkW93EowTQBvyM+MtWUdqIqFsFFU0a1VfGKGBsTSiVaNoBsUiS0OBYyp+vW/W8qkYoq02oc8zKYhjW0qh6vZ2lh9
veKb8YOshBO4lXhofO4y6WaoR+akR+8jZyACRtaj8TvcwgPWRsChRyrTDZRk6gukNdRku4INVVoZu4gcYYgEYbAWUBAd8DsVoc4E0c4GYU4BAXMO7EhlUGYEG8vcYEerSKG1xuGhSvQmeykOelGhejJK2GYZe0woJq2fsW0s5c0beh06+q4GJlwuJ4uCQbMLJUcISPYPe6M2+1mzy8ZHyvIm3fytMwKjMkpkKzjMK3+/M6K8W2pnG6UGXAl/R9oB
URW3UfMGUfYtMWPQPfxFsVBz0DBsZ42iZ6qvB2qyUZ2tY6vZh/21AE45sNZ0O7hzZs8yOy8vZmgha+Ok8laz4lO1Qv4krXa+Rg6+l3Ox5tR+rDRriUYJIbAO7a5fY04NobK1oeiCB8ibARu4F+IU4HR2UP5+UJFsegU1Fqe9FvU3WNYbFnxzSkyWYLGy0xORi61Dk0PCJuiXofeu58mo+iQF4U4ZQOEemoSMjV5lyykHJtmvJzmuqwpwV/m4Kp3H
+goyVgBvNOKpFRTK0OBEFJV0PHUEvcaCKAl5N/xeKezPVnog1rB8Z7TE16Zghrm8w+Z1qYJJZkySaM4sUXvY5qLLZ6at16O/Z2O9LL1sO8Rp8s5741OgNttdfPa250Ew+h5/OiN4uxmsuiAXu4texpsH8DYCuiaBAa1AFiu2N5UAY7MRu/sQMX6ot5xkoCetFrnBJTFqt7x3FsDUaMKle7G3gZUY0U0Y0SlrGAAeS7aQ/iYsQkAADVRPPhlBsASY
9hFcOXsmuXH7vKCmUzMiP7F3v6+XIAJXRaqmYqSyRM5gbtvwFQzQlROjjkJcmiKJmnT2kpG9mHn4BzirRmb2jW73cGH3iwxy0jZoX2WRrXLZ3wZKHWuHItDoXW9qBGwLPXRHf3Tnk7C0jQsU5RrnM6Q3FHqsVGJA0O4jMOgbyL/n6IAtsA8BpgQhmmY3ClB6qvgVTge6Qh6OSSS3x7mPudPG0Ig5MJzSdyIVjSiW+O0wNQC8RO6JxIJPXTe30BsB
9BlBJhRwOZ+3/hPg7h/h8BnASY267hQRJg/Csn529OdaRkkzQ8n7dPimIBBaxXhbIr/7TPpXSgNkEH2pOo5Q5QLQlQW2VW5CGnuwWxfwzRzDUChnPOTavQfR4fDWXocGzbAvShgvcIMwswcw8wxswvI5qxawY9GxmxWwhrbX6m4E6wYuxHIB4uy7+HAOdwaVkt/8UujnvXE7VqMvlRDl8x49A25HgPEPYkPH9TEb0IhuAnF7UBNRCXAm+OmrlQC8
Cb05TL1geAJOMQhApPsMZPWg4AjAeAKBY5iBvCHLvC2ASY4RMBlBlBHQUg1Pzv7un7eXkyEzeanfhWHvSmnvymXuCyV5qn12gHdRJD1W+xDLKJjRKIgf6rmiHslCY3bSY+OyvOdNfQEffOke0/72RygurdNQVacwIplQpyKJmKXbOreB/FxoydrQS8eoyf/FcwjQSqwqf2OfnX6fgOkuD8xfWFWfDnMtO+TnIPuf+qy1ajcuEP8vu3OdjZtT+B1g
4A4AEQuUGtoBBpMg1gQRaZIQGBCAEAKBgz09s/YfTgL/L/9+c1+YY0jh9AEQso0+uye6DbSgb/GpRx7+T++yz/jWAu8+kAD/nfwyA3ATcnvBmkAJECf97+j/GdoSDqBYdoBIAh/m/QgHX9kBzWe/i8B94PFrcSA2/lgIyCicV2Jnd/pgL2z38bgnAKADcCOgwg+MiA4AUQP0DUDsgcIMMnpSYEUCv+GQDmFgCgB/QiAygCOCEgQCnB8G5AwgZQIy
Br96CbBbZlIJgEZBQQrBLEuwRqgo51KBA5QfoAYIcwDCF0ffswGwCYhYQMkVqBNBVrdgpcEUW+PZ2HSmCXQ+ANuGgEbD35QePTTar2APIQAjAbAAwA1i6AEBte90FjoUB0EoCcBlKB4lSBZqkBXUiAkMCQA4FGAuBEQ5IcQARAIA5sMvJIaQBIB3A2AKwVQbgE0DBBQ2JCEgEnj9j0wXQXEUgMoEDAAAKK0P+F4AyMOh7QkbAAEp/QLwBAMoFXAN
Q1gjQloW1WoD8d+QUwyYb0MUThClB70OAdiBIFKROAgjIdH+0yADCaIBQ4An7CyBlCKh3ALXlJ2wDVAThpAbXgsDCLb80ApwtkEICgCGlLh2vXUuFU0DqwEA2AHIHCDCJwAihJQsIuUMsrrAfhhARgBzACH4AghtKbSOkHBFgYFgCBKAAYAMEBxg20SArv9jtB/RwRkI6ESQR9jgBHoHqYIDuGNhHggAA===
```
%%