12 KiB
excalidraw-plugin, tags, excalidraw-open-md
excalidraw-plugin | tags | excalidraw-open-md | |
---|---|---|---|
parsed |
|
true |
up:: mesure positive d'une application #s/maths/intégration
[!definition] mesure image Soit
(E, \mathcal{A}, \mu)
un espace mesuré Soit(F, \mathcal{B})
un espace mesurable Soitf: E \to F
mesurable de(E, \mathcal{A})
dans(F, \mathcal{B})
Notons\nu
l'application de\mathcal{B}
dans\overline{\mathbb{R}}_{+}
définie :\begin{align} \nu: \mathcal{B} &\to \overline{\mathbb{R}}_{+}\\ B &\mapsto \mu(f^{-1}(B)) \end{align}
\nu
est une mesure positive d'une application appelée mesure image de\mu
par $f$ ^definition
$= "![[" + dv.current().file.name + ".svg|700]]"
Propriétés
[!proposition] La mesure image est bien une mesure Soit
(E, \mathcal{A}, \mu)
un espace mesuré Soit(F, \mathcal{B})
un espace mesurable Soitf: E \to F
mesurable de(E, \mathcal{A})
dans(F, \mathcal{B})
\begin{align} \nu: \mathcal{B} &\to \overline{\mathbb{R}}_{+}\\ B &\mapsto \mu(f^{-1}(B)) \end{align}
\nu
est une mesure sur(F, \mathcal{B})
, que l'on appelle mesure image de\mu
par $f$[!démonstration]- Démonstration
- Soit
(B_{n})_{n\in\mathbb{N}}
une suite d'éléments 2 à 2 disjoints de\mathcal{B}
\displaystyle\nu\left( \bigcup _{n=0}^{+\infty} B_{n} \right) = \mu\left( f^{-1}\left( \bigcup _{n=0}^{+\infty}B_{n} \right) \right) = \mu\left( \bigcup _{n=0}^{+\infty} \underbrace{f^{-1}(B_{n})}_{A_{n}} \right)
\forall n \in \mathbb{N}, \quad A_{n} \in \mathcal{A}
Sin \neq p
alorsf^{-1}(B_{n}) \cap f^{-1}(B_{p}) = \emptyset
Six \in f^{-1}(B_{n}) \cap f^{-1}(B_{p})
, alorsf(x) \in B_{n}
etf(x) \in B_{p}
or,B_{n} \cap B_{p} = \emptyset
ainsi,\displaystyle\nu\left( \bigcup _{n=0}^{+\infty}B_{n} \right) = \sum\limits_{n=0}^{+\infty} \mu(f^{-1}(B_{n})) = \sum\limits_{n=0}^{+\infty}\nu(B_{n})
Et donc\nu
est bien une mesure sur\mathcal{B}
Exemples
[!example] Exemple 1 Sur l'espace mesuré
([0; 1], \mathcal{B}([0; 1]), \lambda _{[0; 1]})
Soit la tribu\mathcal{B} = \{ \emptyset, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}
Soit0 \leq a < b \leq 1
on a\lambda _{[0; 1]}(]\![ a, b ]\![) = b - a
Soitp \in [0; 1]
Soit l'application :\begin{align} \mathbb{1}_{[0, p]} : [0; 1] &\to \{ 0; 1 \}\\ x &\mapsto \begin{cases} 0 \text{ si } x \in [0; p]\\ 1 \text{ sinon} \end{cases} \end{align}
(fonction indicatrice de[0; p]
) On cherche la mesure image de\lambda _{[0; p]}
par\mathbb{1}_{[0; p]}
C'est une mesure sur\mathcal{B}
. Notons la\nu
.\nu(\{ 1 \}) = \lambda _{[0; 1]}((\mathbb{1}_{[0; p]})^{-1}(\{ 1 \})) = \lambda _{[0; p]}([0; p]) = p
Pour toutx \in [0; 1]
\mathbb{1}_{[0; p]} = 1 \iff x \in [0; p]
, donc :\nu(\{ 0 \}) = \lambda _{[0; 1]}((\mathbb{1}_{[0; 1]})^{-1}(\{ 0 \})) = \lambda _{[0; 1]}(]p; 1]) = 1-p
\nu(\{ 0; 1 \}) = \nu(\{ 0 \} \cup \{ 1 \}) = p+1 - p = 1
Donc,\nu
est la mesure de Bernoulli de paramètrep
:\nu = p\delta_1+(1-p)\delta_0
[!example] Exemple 2 Soit
\nu = \frac{1}{6}d_0 + \frac{1}{3}d_1 + \frac{1}{2}d_2
Soitf: [0; 1] \to \{ 0, 1, 2 \}
telle que\nu
soit l'image de\lambda _{[0; 1]}
parf
!mesure image 2024-09-18 15.26.58.excalidraw
[!example] Exemple 3
(E, \mathcal{A}, \mu) = ([0; 1], \mathcal{B}([0; 1]), \lambda _{[0; 1]})
\begin{align} f : ]0; 1[ &\to \mathbb{R}^{+} \\ x &\mapsto -\ln(x) \end{align}
Alors, soit\nu
la mesure image de\mu
parf
: $$\begin{align} \nu(]-\infty, t]) &= \lambda _{[0; 1]} ({ x \in ]0; 1] \mid -\ln(x) \leq t }) \ &= \lambda _{[0; 1]} ({ x \in ]0; 1] : x \geq e^{ -t } }) \ &= \lambda _{[0; 1]} ([e^{ -t }; +\infty[ \cap ]0; 1]) \ &= \lambda _{[0; 1]} ([e^{ -t }; +\infty[) \ &= \begin{cases} 0 \text{ si } t < 0 \ 1-e^{ -t } \text{ si } t \geq 0 \end{cases} \end{align}$$ !mesure image 2024-11-20 15.35.39.excalidraw
%%
Excalidraw Data
Text Elements
Embedded Files
834f4f03db2630a85af1da27414acaf4a96e2d6b: (E, \mathcal{A}, \mu)
2a25a46d8b55d25eb04e97f32205978c7cfc4a56: (F, \mathcal{B})
93dd76f01859baaa41c85298a66215822c042d56: f
6ebd9d18c3e73ee6fa41fa7fe0561392117d6789: A = f^{-1}(B)
811c6101906f566736a7299004cd26f5fd73c338: B = f(A)
c788d57471a52a30e34e72a1c31c096d236baaca: \begin{align}\nu(B) &= \mu(f^{-1}(B)) \\&= \mu(A) \end{align}
e28573ea7722cca49ea84581133c4a77451f8cea: \mu(A)
Drawing
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBWbQBGGjoghH0EDihmbgBtcDBQMBLoeHF0IKI5JH5SxhZ2LjR4gDZ4usgG1k4AOU4xbiSADhGkgE4AFnGAdlbOiEIOYixu
CFx41JLIQmYAEXSoBGJuADMCMIWSNYAxAFkb/GVcACUAa1aACU+eGBgABhg+GIuAAojAtqVToR8PgAMqwYJrQQeSECKCkNhvBAAdRI6m4fEK6Mx2IRQIqEBR1wWmL8kg44VyaCSCzYcFw2DUEJZ/3+C2syiRaH5xIgmG4rVa2kmAGZhjx4rKkkkeJMpfEOmKeahnKq4urxv9Jkl4qrhjMeElJgtmBisQgAMJsfBsUhrADESQQ3u9aIgmk5b2UdOW
ztd7okGOszA5gWy/oo+MkQxmMwS8R441a/yV8WG4y12ykCEIymkhMm/20Crm42Gypmk2GctltoQx0lsrVrR4stawwWIeEcAAksRmag8gBdBanciZcfcDhCWG04TLRnMSfFYuwRCE4kAXwWmg3xFBwUy2UnK7XYqEcBBRxOLJm3e7uf+MySrRmCyIDg3mXVd8AAthsGxV9UHOfAwkKE9Cl3SB90pKpCBqf1uiaVN/zFbC+gGCokhmes+UmeIKKuZZ
VgkXAZn9XYDmCF8zguBArmgiAAClPl6OFuNOABHN49llAAFUcKCEAANG5lHGKBCAAGX9aFYXJYV0GpE5bXtbE8WIAk0CJYs7VJBBNMpHT/Tpcst0nVkxXZTluSGPkBQ4IUKlFYsJTQPVRgSI05ilHhWjlEY8OLHVnB4dMkn+cKSIbfNcyzPSLPDN1PR4U5xgQSZJn9QNIOHIQwxdHKo3IDhY1weMoETZNuGbbRs3GU0TV/HNhnaBZJFLcsmrQHNt
Flf5rV/CbZXzU15jFMJOzfcYJtVeUi1KcqxwnfJZzFedcEXaC7zAsVQ2IBzuGQlDykPbZEOLM8KovK8shyfJiSKL6di4gBBISAHE2BmT5RzhAB9fRHVaUQcWUYgAEVQReeg0VKVC1gazEqC+x7thu361mUABNZgZKE7BegK0g3huAAhKADk+GSAC0/oAFXR26Dzo0gcYgPHOm+7ZSmuCRnBWG5ZWUyRTlHQg9hRm4kj2HEACs+tU4WecpbG2Fx0W
j2Jfbi0fZ9ltQEjwqlWU5nVZUAKWYC0FO8DIMt2D4JKfHkLKXnKlhDCwiwpgemaXgioWAiOH6DhBjQI11Sla0bTFJYVn89BcGGRj9kOT32M425hhhSYcX0dW9lZuF8BmXoEHEyY7FlEm1JheFEWsl0aUW/TcRakzModKzkR73TzuEeymSGNkOS5WB3N80pBS05fICzpJlW0VpZiVRKzVm+VB21bhnHlbR4oo9p/nlH8GxPsz++yyN0A9PKCqKkqg
3KyqIzWaMdU4zvWakZFMaA2odS6iqKU/w+qbUgINMsFZRrVjWiaVoM05ptHbJbcK2YCzNmiltOkO1JwzjnAuBAS5XagXXC9K6aAbr+wqDwY8p5zyXgyO9chX1CaLC4pLBA0tZby0VsrVWGstbcxYVjfmBtBZG2Fvw8W6AAbA1BuDKGMM4YI2RqjGRmM+YCyFnwn6AjiZkwplTGmdNGbMzZpzQxd1jEKLxibBY5tcCsTfB+HguZrQKnXhAQCLtUBu
zFK6D20EvYIAQnUP2Rjs7yKoNHMOOETLxGIV0dJhF47EVlP2FUmpTJixolndY9M87MQQD4mCRd07/SBiDMGkNoaw2wPDJGKM0Zzg7qPCQNlh4GUHlbYZlku5j1RPQ6e25Z7OXnm5XkwTV4+QWFnPU6pkjyjlJaZO/xOptlPhAy+wxJqpSmHAya4xxjjJfrlfKhViqnh/hde5NUYzAITAsJMYDuDKkSFvCiiVZg/m7FHMUSDhpDEmDWNUYwTTjH8f
Eb8CCqQdmgt2KU74Rhou2uOchpsoRUJoeEuhk8GEzyYV9WRJl2FimessLh14PpoAoQ+J83jLYkT8QEn8t8nZARAveYsUSoJsTghxPuDUoD0wzksZQ10aXpBZaSnifEBLCVEhJKSsl5KKRUujCApwIJCEnNWXMpFZRVj5KRVaJoAXCwgM8OA8zRbGsIJgY44k2BLBGmS2E9LixZGIHK5YCqlXupVe9NVNxS74HLpXautd66N2bpoVuRqTXYDNdwC1
OY+wTGGGcyYPBkXWrTu6l1brizQi9cQH1frhX4CDaUfAoQoDOn0PoNQL5G0JloSK0odoZV/RSYNXAJ1yXBuWGOnGE6uIYicN5f0cBfU3k+qLAooswDrxKP8L6RKSjbtFgC7ZwKDlpi3mqStotNlwpNKMRFyLUWHo8WKIIZ4KCF0lfEpCYoknrBSaHRonBCRSjSaB2OREuz1lmJg0pOxylY0dNUguMSGnFlUc6qxlNqZMDsUzBALN2Zcz6RpSZgzx
7+nMg6Qyxkxl9wsgM7S1GZkMipYx4sLkF46kSisrya91ln1NEkdqW9rYTQHFky0CxYpb2SC2IqhS7bqkVNmO5VVX4QHfo8r+LyypvK0wA2q9VGqgIY8qMTiUy0qk6n+e+A0hooKtmJrMZoblqng/KCYuDoKWizCqb8Rziz4t2myo9xqSVTqHZAC6jDUDMKSWwh6HCXrMp4XtTxnK6k8r7Mi00VonKiuds2924q0CxL0jKsNjgvKRuDW9bIareL8U
EiJMSklpJyQUkpbWNLs25oCtWfeBY8x2yiqqW9W1cCupZE6ut3r13+tOq2yAIbasRupVGprUBY3xsTVXGudcG5Nxbm3BbprzUJHlK0VUMxMzAqtBpml1b5sDc9Utptg6W2pciR2rtPaZBfYHQGs6T9R3jpCDF8HpQQ1zoNgukzy6kQLDXX63hW6fp7t3Ye4WJ7thWeSElIr9mr2PzvSqS+hYJhIumHMHz4w33bEi5+g2P7vZgF9gBlxySBaQfDv8
stAumhxwTqgIq74UVqmCRnWi2c9hoZYhzqVWHBFSxlnLBWSsXgqzVprVo/Xa39Mo6x6ZTG6OjOK8O/uLGqRsYpbMxyc9XKL2WZ5FdIphMBVEzKKYbQsxNnVMaRDEA+PDEvjAgsu8LQwIgxb7E7y34fyed/Qz54k/QFM18pqPzRnKjiAqUtsp/dqZmBTxBzn/Wqmp/2eK1pSKJR/LcxaGLuBIpGPB63kAwuEsoUdahMP6Gbk40l3nKWfZpaZbtvvH
KLbQTy5+M0BZfORNKz98rKvqukFlfK+r23GvcOa1xVrmqOs6u6/qvrWart5oSAc+sqdb6jH7AOJ1b2uPG/rf2lboE1sYGWE2330S2VV232zLgriOxTVO3TUzUuxzUnGcGrEmEtAmEKTTHL2LRLwWirVmxrShE+wbWW2bX/3bTtEB17RB1/1iypCiB3wRwoCRw3w/VnSh0nWR1WVXWW0x22AJ33R1gPVFiPTAD4LAALwfT7FL17HLx1j1DiCzDrx/
BQM6m/AmGZxKFZ3wC/RVz/RKESV5xCSWFqHwlyQjh4D6hFzyXF1mnaBzFl2QzolBCV1qS30aTWHwBeCEj+gAGlZQABVUcbiKuDmGSDgXAXoTACgISO4CGduCjCkKZXuJ+CyejcBXgcZO3IZR3DjOZd7bjRZN3K2DyMUTgr3MUTecKU5JFIJSad8H8NFPjcYHePkFUOUTMDaR9TTf+CQD0U4OBbAPkNPYMIzbo9AQBMzEBPPP5FoJov8MtXscwpFI
+FvYsKFFzU0ZIa0P8XsWopFf4fqVvblb8S0RvO2IcUhAlLLA6aLMrClEfXIsHKfV6I/VlKcSLLxXLd8fLL8H8N/NfIVZg0VCCCrepSVbfXfcNYAiJGdUNPfRVQEttAHAwIHPtYghE9ESHedaHW4mEhgpgx4sUdHDdNlL6UQnHQQlnfHbHHWa0GUWafMVaQLCKOUPHUkn6eIWYgLBYgsPsJUFY0WWktohk7sezZTVkrHHdDkneLkstHk5Y2Q6sP8I
0PqC0cKeKTBfMdQsAacXQkWDGAwwCYw4sGOIYeUSw6DfJVqKsCTYYNFOXCpXAT4ZwupKrNwiQCgG4OmPYeIEmZwc4fQQGegemXAGSQgIwGSEmBicjTuBIqjc3ZIy3aY9IhPCZWMs3JI0oOyHI53BZV3PjYo4sUo1AYJDZKKOFesNMcKPqMiHA0oHUcw7QcvFA9AwsXeRzFMzPXo/owYgzYYjPYzD5IBBqSYsUX5BjMaFAvqNMQsY0M5TBJzZBavW
FAcNMaXTBZsLJRUPzbgDk1FVFELEhEcS4iLfvY6HEzM88BLaE0oRlZ4llWfM2HLblS0KUTBODCaUPUJc8yAMVVwiHHfIA+EgkmEwC78kJJE7tSgog77YCm3TExHbE9EgA4gPExC2CyAIk14vgskgQ8U3g6kn6Wklch7JKdc20y0eIPC49H6Cc8vBzGc5sfYg87YIii0Ei8Ka1cixUKikQmi5Aui6clFRi+c7HG7UtUYfMIpa0JKYYLUnUyff9PcA
wwgfQaII0+oUwnc4tc0sXVhY0G5YtfY6bRYBw7OUcZ0v8sWf6ZgGYTQDmegSQRGOImMrSKQTkDQQIGjfuVI/A2g5jU3e3eMi8+kBLbvCAHjJZIogTT3Ys73XUVUaUI0Ow2nQpFFNMOTETLZP8eULMRUHk5OLo6qN+PkEq/4IY3+YgTPcYnPCzNIlUOIXsVUa0KYE0PsSaBc6FEyCPAtK0QpCYa0Xk7cmYmPc4o88LN408wfMC+LTja8yAW8jLYki
aufLlBfL4pfK0M0bJQwgE9CkJYEyyjEqAIbdARASExVcjKaiQBsSYU4W62+YgTQDi/4HOeIXAU4JIEEK+a0Tkd6yYXAbMBAHgYgVoTQGjdwCoPg7vMAJIE2XU/QgORYVS5QdSnJKDVqB7HSmDFkFFK5PkbsaiTOLGbiCyjDMEt09AR0FAuEcYTQR0CeY3eI1yyQdykQVGvyxMhjMK2jMkAKrI4sLM0Kl3XjJeD3ITco/5dMRUJsc0CaIy61DKn3I
qbQA5TBPkNUIJO2WskkB0Ts0qnshlV5fs0YrPT5Yc75Uc0ZNMS+dUIqfxP8CiTUCvEsRcwkCPJscwxqiKdckSsyNvFkeUesUax8Y85a2tG4pCmah4uagMThGfK4x8+fVMXlNK38Z2r8pC38smy4aVY6ycCAM6urC6g6GEK69AHgXARUXAdUYgYYTQTUYgRUBATQY0BAWYU4bsZFWYYYbAGYbAU4bAf6tocGggSGr6aG2GlneGnnRGlStSkDQXAO4
JGOXS7gUYWYTqJOQm+XdYbw0miVHOtXNYGYDgcYbif4PYQgO4Zyu3Fm7ADy9mnmgeJM7m23Pmh3AWqebM3yiKwo/jMWtZCWn3KWuwgPZsLMS5bWsPM+SiGsWcxUX8S5UYXMQq7TD0fWsq3siqqq7Pc23PS2pMwpHeEvPsVq2YZsVUDqlzbeJUP8de7MTBYtKBpaaCdofsPFC48a9lcOgfUlGOqO28adG8uOl4h80oD458lO0hkiQVMJGOrOg+1XO
CvOtYQuiNS6tVVaYgYgOYPo3FWm3AQxk0bAW0rMYYXAMKU0BUHgAY0tYgYe20CGzdFi4WSejQ6epS2e5G9mk0tAGQkwqDVekyLMNTaYKB+0rGI3MWfOZXbOpRomCQcSeIGAUEegGSVoNgG+gKu+h+rylIq3DI9+oKuLL+oW3MkW93EowTQBvyM+MtWUdqIqFsFFU0a1VfGKGBsTSiVaNoBsUiS0OBYyp+vW/W8qkYoq02oc8zKYhjW0qh6vZ2lh9
veKb8YOshBO4lXhofO4y6WaoR+akR+8jZyACRtaj8TvcwgPWRsChRyrTDZRk6gukNdRku4INVVoZu4gcYYgEYbAWUBAd8DsVoc4E0c4GYU4BAXMO7EhlUGYEG8vcYEerSKG1xuGhSvQmeykOelGhejJK2GYZe0woJq2fsW0s5c0beh06+q4GJlwuJ4uCQbMLJUcISPYPe6M2+1mzy8ZHyvIm3fytMwKjMkpkKzjMK3+/M6K8W2pnG6UGXAl/R9oB
URW3UfMGUfYtMWPQPfxFsVBz0DBsZ42iZ6qvB2qyUZ2tY6vZh/21AE45sNZ0O7hzZs8yOy8vZmgha+Ok8laz4lO1Qv4krXa+Rg6+l3Ox5tR+rDRriUYJIbAO7a5fY04NobK1oeiCB8ibARu4F+IU4HR2UP5+UJFsegU1Fqe9FvU3WNYbFnxzSkyWYLGy0xORi61Dk0PCJuiXofeu58mo+iQF4U4ZQOEemoSMjV5lyykHJtmvJzmuqwpwV/m4Kp3H
+goyVgBvNOKpFRTK0OBEFJV0PHUEvcaCKAl5N/xeKezPVnog1rB8Z7TE16Zghrm8w+Z1qYJJZkySaM4sUXvY5qLLZ6at16O/Z2O9LL1sO8Rp8s5741OgNttdfPa250Ew+h5/OiN4uxmsuiAXu4texpsH8DYCuiaBAa1AFiu2N5UAY7MRu/sQMX6ot5xkoCetFrnBJTFqt7x3FsDUaMKle7G3gZUY0U0Y0SlrGAAeS7aQ/iYsQkAADVRPPhlBsASY
9hFcOXsmuXH7vKCmUzMiP7F3v6+XIAJXRaqmYqSyRM5gbtvwFQzQlROjjkJcmiKJmnT2kpG9mHn4BzirRmb2jW73cGH3iwxy0jZoX2WRrXLZ3wZKHWuHItDoXW9qBGwLPXRHf3Tnk7C0jQsU5RrnM6Q3FHqsVGJA0O4jMOgbyL/n6IAtsA8BpgQhmmY3ClB6qvgVTge6Qh6OSSS3x7mPudPG0Ig5MJzSdyIVjSiW+O0wNQC8RO6JxIJPXTe30BsB
9BlBJhRwOZ+3/hPg7h/h8BnASY267hQRJg/Csn529OdaRkkzQ8n7dPimIBBaxXhbIr/7TPpXSgNkEH2pOo5Q5QLQlQW2VW5CGnuwWxfwzRzDUChnPOTavQfR4fDWXocGzbAvShgvcIMwswcw8wxswvI5qxawY9GxmxWwhrbX6m4E6wYuxHIB4uy7+HAOdwaVkt/8UujnvXE7VqMvlRDl8x49A25HgPEPYkPH9TEb0IhuAnF7UBNRCXAm+OmrlQC8
Cb05TL1geAJOMQhApPsMZPWg4AjAeAKBY5iBvCHLvC2ASY4RMBlBlBHQUg1Pzv7un7eXkyEzeanfhWHvSmnvymXuCyV5qn12gHdRJD1W+xDLKJjRKIgf6rmiHslCY3bSY+OyvOdNfQEffOke0/72RygurdNQVacwIplQpyKJmKXbOreB/FxoydrQS8eoyf/FcwjQSqwqf2OfnX6fgOkuD8xfWFWfDnMtO+TnIPuf+qy1ajcuEP8vu3OdjZtT+B1g
4A4AEQuUGtoBBpMg1gQRaZIQGBCAEAKBgz09s/YfTgL/L/9+c1+YY0jh9AEQso0+uye6DbSgb/GpRx7+T++yz/jWAu8+kAD/nfwyA3ATcnvBmkAJECf97+j/GdoSDqBYdoBIAh/m/QgHX9kBzWe/i8B94PFrcSA2/lgIyCicV2Jnd/pgL2z38bgnAKADcCOgwg+MiA4AUQP0DUDsgcIMMnpSYEUCv+GQDmFgCgB/QiAygCOCEgQCnB8G5AwgZQIy
Br96CbBbZlIJgEZBQQrBLEuwRqgo51KBA5QfoAYIcwDCF0ffswGwCYhYQMkVqBNBVrdgpcEUW+PZ2HSmCXQ+ANuGgEbD35QePTTar2APIQAjAbAAwA1i6AEBte90FjoUB0EoCcBlKB4lSBZqkBXUiAkMCQA4FGAuBEQ5IcQARAIA5sMvJIaQBIB3A2AKwVQbgE0DBBQ2JCEgEnj9j0wXQXEUgMoEDAAAKK0P+F4AyMOh7QkbAAEp/QLwBAMoFXAN
Q1gjQloW1WoD8d+QUwyYb0MUThClB70OAdiBIFKROAgjIdH+0yADCaIBQ4An7CyBlCKh3ALXlJ2wDVAThpAbXgsDCLb80ApwtkEICgCGlLh2vXUuFU0DqwEA2AHIHCDCJwAihJQsIuUMsrrAfhhARgBzACH4AghtKbSOkHBFgYFgCBKAAYAMEBxg20SArv9jtB/RwRkI6ESQR9jgBHoHqYIDuGNhHggAA===
%%