MacBookPro.lan 2025-6-2:19:39:55
This commit is contained in:
@@ -14,7 +14,7 @@ tags: "#s/maths/analyse"
|
||||
> Soit $f: X \to Y$ une [[application]]
|
||||
> Soit $a \in X$
|
||||
> On dit que $f$ est **continue en $a$** si :
|
||||
> $\exists \varepsilon>0,\quad \exists \eta>0,\quad \forall x \in X,\quad d_{x}(x, a) < \eta \implies d_{y}(f(x), f(a)) < \varepsilon$
|
||||
> $\forall \varepsilon>0,\quad \exists \eta>0,\quad \forall x \in X,\quad d_{x}(x, a) < \eta \implies d_{y}(f(x), f(a)) < \varepsilon$
|
||||
^definition
|
||||
|
||||
- i On note $\mathcal{C}(E, F)$ l'[[ensemble des fonctions continues]] de $E \to F$
|
||||
|
Reference in New Issue
Block a user