From 54378ef6b2acb2c865964a3518a4a9d7884efba1 Mon Sep 17 00:00:00 2001 From: oskar Date: Mon, 2 Jun 2025 19:39:55 +0200 Subject: [PATCH] MacBookPro.lan 2025-6-2:19:39:55 --- application continue.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/application continue.md b/application continue.md index ab9c7526..41ad8ea0 100644 --- a/application continue.md +++ b/application continue.md @@ -14,7 +14,7 @@ tags: "#s/maths/analyse" > Soit $f: X \to Y$ une [[application]] > Soit $a \in X$ > On dit que $f$ est **continue en $a$** si : -> $\exists \varepsilon>0,\quad \exists \eta>0,\quad \forall x \in X,\quad d_{x}(x, a) < \eta \implies d_{y}(f(x), f(a)) < \varepsilon$ +> $\forall \varepsilon>0,\quad \exists \eta>0,\quad \forall x \in X,\quad d_{x}(x, a) < \eta \implies d_{y}(f(x), f(a)) < \varepsilon$ ^definition - i On note $\mathcal{C}(E, F)$ l'[[ensemble des fonctions continues]] de $E \to F$