31 lines
		
	
	
		
			984 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			31 lines
		
	
	
		
			984 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| alias: [ "intégrale de 1/(x²+a²)" ]
 | |
| ---
 | |
| up:: [[intégration]]
 | |
| title:: "$\displaystyle \int \frac{1}{x^{2}+a^{2}} \, dx = \frac{1}{a}\arctan\left( \frac{x}{a} \right)$"
 | |
| #s/maths/analyse 
 | |
| 
 | |
| ---
 | |
| 
 | |
| 
 | |
| 
 | |
| # Généralisation
 | |
| 
 | |
| ## composée avec une fonction quelconque
 | |
| 
 | |
| $\big(  \arctan(u) \big)' = u' \arctan'(u) = \frac{u'}{1+u^{2}}$ 
 | |
| donc :
 | |
| $\boxed{\displaystyle\int \frac{u'}{1+u^{2}} \, dx = \arctan(u)}$
 | |
| 
 | |
| ## facteur devant le $x$
 | |
| 
 | |
| Plus généralement, on obtient
 | |
| $\displaystyle \int \frac{1}{(kx)^{2} + a^{2}} \, dx = \frac{1}{ka} \arctan\left( \frac{xk}{a} \right)$
 | |
| 
 | |
| > [!definition] démonstration 
 | |
| > $\displaystyle\int \frac{1}{a^{2}+(kx)^{2}} \, dx = \frac{1}{k^{2}}\int \frac{1}{ \frac{a^{2}}{k^{2}} +x^{2}} \, dx = \frac{1}{k^{2}}\times \frac{k}{a} \arctan\left( \frac{xk}{a} \right) = \boxed{\frac{1}{ka} \arctan\left( \frac{xk}{a} \right)}$
 | |
| 
 | |
| > [!example] Exemple
 | |
| > $\displaystyle \int \frac{1}{1+2x^{2}} \, dx = \frac{1}{\sqrt{ 2 }} \arctan\left( \frac{x}{\sqrt{ 2 }} \right)$
 | |
| 
 |