37 lines
		
	
	
		
			854 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			854 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
up:: [[congruence]] 
 | 
						|
title:: "démonstrations sur les simplifications possibles avec la congruence"
 | 
						|
#t/démonstration 
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
# Simplification totale
 | 
						|
 | 
						|
> $ka \equiv kb [kn] \iff a \equiv b[n]$
 | 
						|
 | 
						|
$$
 | 
						|
\begin{align}
 | 
						|
ka \equiv kb [kn] &\iff kn \mid ka - kb  \\
 | 
						|
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
 | 
						|
&\iff \exists i \in \mathbb{Z}, a - b = in  \\
 | 
						|
&\iff n|a-b  \\
 | 
						|
&\iff a \equiv b [n]
 | 
						|
\end{align}
 | 
						|
$$
 | 
						|
# Simplification partielle (sans le modulo)
 | 
						|
 | 
						|
> $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$
 | 
						|
 | 
						|
On suppose que $\mathrm{pgcd}(k, n) = 1$
 | 
						|
Alors :
 | 
						|
$$
 | 
						|
\begin{align}
 | 
						|
ka \equiv kb [n] &\iff n \mid ka - kb  \\
 | 
						|
% &\iff \exists i\in\mathbb{Z}, ka - kb = in  \\
 | 
						|
&\iff n \mid k(a-b)  \\
 | 
						|
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun}  \\ \\
 | 
						|
&\iff a \equiv b [n]
 | 
						|
\end{align}
 | 
						|
$$
 | 
						|
 | 
						|
 |