19 lines
		
	
	
		
			984 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			19 lines
		
	
	
		
			984 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| #s/maths/algèbre
 | |
| 
 | |
| ---
 | |
| 
 | |
| Soit le système :
 | |
| $(S) :\left\{ \begin{gathered}ax+by = c\\ a'x + b'y = c' \end{gathered}\right.$
 | |
| 
 | |
| $$\begin{align*}
 | |
| (S) & \iff \begin{pmatrix} a&b\\a'&b' \end{pmatrix} \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} c \\ c'\end{pmatrix}\\
 | |
| &\iff \begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}a&b\\a'&b'\end{pmatrix}^{-1}\begin{pmatrix}c\\c'\end{pmatrix}\\
 | |
| &\iff \begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{\left|\small \begin{matrix}a&b\\a'&b'\end{matrix} \right|} \begin{pmatrix}cb' - c'b\\c'a-ca'\end{pmatrix}\\
 | |
| &\iff \left\{\begin{gathered}
 | |
| x = \frac{1}{\left|\small \begin{matrix}a &b\\a'&b'\end{matrix}\right|} \left| \begin{matrix}c & b\\ c' & b'\end{matrix} \right| \\
 | |
| y = \frac{1}{\left|\small \begin{matrix}a &b\\a'&b'\end{matrix}\right|} \left| \begin{matrix}a&c\\a'&c'\end{matrix} \right| 
 | |
|  \end{gathered}\right.
 | |
| &\end{align*}$$
 | |
| 
 | |
| Donc, si $\begin{pmatrix} a&b\\a'&b' \end{pmatrix}^{-1}$ existe, il y a une unique solution au système $(S)$
 |