1.3 KiB
1.3 KiB
up, tags, aliases
| up | tags | aliases | |||
|---|---|---|---|---|---|
|
|
|
[!definition] Soit un ensemble
Aet deux lois+et\times(A, +, \times)est un anneau ssi :
(A, +)est un groupe abélien
+est associativité, commutativité- il existe un élément neutre
0_{A}pour+- tous les éléments sont éléments inversibles par
+(A, \times)est un monoïde
\timesest associativité- il y a un élément neutre
1_{A}pour\times\timesest distributivité par rapport à+(à droite et à gauche)
\forall (x; a; b) \in A, \quad x \times (a + b) = (x \times a) + (x \times b)^definition
title: "Sous-notes"
type: tree
collapse: false
show-attributes: [field]
field-groups: [downs]
depth: [0, 0]
Propriétés
[!proposition]+
0est un élément absorbant Soit(A, +, \times)un anneau Soit0_{A}l'élement neutre pour+0_{A}est absorbant, c'est-à-dire que :\forall a \in A,\quad a0_{A} = 0_{A}[!démonstration]- Démonstration
a0_{A} = a(0_{A} + 0_{A}) = a0_{A} + a 0_{A}d'où suite quea 0_{A} = 0_{A}