11 KiB
excalidraw-plugin, tags, excalidraw-open-md
excalidraw-plugin | tags | excalidraw-open-md | |
---|---|---|---|
parsed |
|
true |
[!question] Question Find numbers from 0 to 100, but only using 4 times the digit "4" (and any operator)
Trouver les nombres de 100, mais seulement en utilisant 4 fois le chiffre 4 (et des opérateurs)
Ideas / Idées
You can always use up a 4 using : "$\sqrt{ \sqrt{ x^{4} } } = x$" (does nothing). This allows formulas with only 3 or 2 times the 4. On peut toujours utiliser un 4 avec : "$\sqrt{ \sqrt{ x^{4} } } = x$" (ne fait rien). Cela permet des formules avec seulement 2 ou 3 fois le 4.
Solutions
n = 0
4 - 4 + 4 - 4
44 - 44
n=1
n = 41
41 = 44 - \sqrt{ 4 } - (\lim\limits_{ n \to \infty } \sqrt[n]{4})
n = 71
71 = (\Gamma(4) + \Gamma(\sqrt{ 4 })) \cdot (\Gamma(\sqrt{ 4 }) \cdot \Gamma(\sqrt{ 4 }))
71 = (4! + (\sqrt{ 4 })!) \cdot ((\sqrt{ 4 })! \cdot (\sqrt{ 4 })!)
General solution / Solution générale
1
\displaystyle\int _{-4}^{4} \dfrac{\underbrace{(x \times x)+(x \times x)+\cdots + (x \times x)}_{6n \text{ times } x}}{4^{4}} \, dx = n
2
\displaystyle\sqrt{ 4 } \cdot\frac{\ln \left( \frac{\overbrace{\sqrt{ \sqrt{ \sqrt{ \sqrt{ \cdots 4 } } } }}^{n \text{ times }} }{\ln(4)} \right)}{\ln(4)}
[!definition] Logarithm / Logarithme
\log_{n}(n^{x}) = x
[!definition] Natural logarithm / Logarithme naturel
\ln(x) = \log_{e}(x)
So : / Alors :\ln(e^{x}) = x
3
0 = 4 - 4
1 = (\sqrt{ 4 })!
2 = \sqrt{ 4 }
3 = \dfrac{4!}{\sqrt{ 4 }}
4 =
[!definition] Factorial / Factorielle
n! = 1 \times 2 \times 3 \times \cdots \times n
[!definition] Double factorial / Double factorielle
n!! = 1 \cancel{\times 2} \times 3 \cancel{\times 4} \times \cdots \times n
ifn
is odd / sin
est impairn!! = \cancel{1 \times} 2 \times \cancel{3 \times} 4\times \cdots \times n
ifn
is even / sin
est pair
[!definition] Concatenation New operator / Nouvel opérateur :
4 \cdot 4 = 44
71 \cdot 92 = 7192
2
\displaystyle\log_{\log_{4}(\sqrt{ 4 })} \left( \log_{4} \left( \underbrace{\sqrt{ \sqrt{ \sqrt{ \sqrt{ \dots \sqrt{ 4 } } } } }}_{n \text{ times}} \right) \right) = n
Why ? / Pourquoi ?
\log_{4}(\sqrt{ 4 }) = \frac{1}{2}
\log_{4}(4) = 1
\log_{4}(4^{2}) = 2
\vdots
\log_{4}(4^{p}) = p
\log_{4}(\sqrt{ 4 }) = \log_{4}\left( 4^{\frac{1}{2}} \right) = \frac{1}{2}
\log_{4}(\sqrt{ \sqrt{ 4 } }) = \log_{4}\left( 4^{\frac{1}{4}} \right) = \frac{1}{4}
\log_{4}(\sqrt{ \sqrt{ \sqrt{ 4 } } }) = \log_{4}\left( 4^{\frac{1}{8}} \right) = \frac{1}{8}
\log_{4}(\sqrt{ \sqrt{ \sqrt{ \sqrt{ 4 } } } }) = \log_{4}\left( 4^{\frac{1}{16}} \right) = \frac{1}{16}
\vdots
\displaystyle\log_{4}\left( \underbrace{\sqrt{ \sqrt{ \sqrt{ \dots \sqrt{ 4 } } } }}_{n \text{ times}} \right) = \log_{4} \left( 4^{\frac{1}{2^{n}}} \right) = \frac{1}{2^{n}}
\displaystyle\log_{\frac{1}{2}} \left( \frac{1}{2 \times n} \right) = n
$= "![[" + dv.current().file.name + ".svg|700]]"
%%
Excalidraw Data
Text Elements
Velocity Vitesse ^H0Z9Cp37
Acceleration ^y4qpuUdL
Position ^UY2ok27f
derivative dérivée ^dW5ZQscu
derivative dérivée ^S24o7Dxr
integral intégrale ^dpD4ekhS
integral intégrale ^7kTHCP9V
Drawing
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebTiAVho6IIR9BA4oZm4AbXAwUDAiiBJuCAAJAAYALQBOAGE4AGYAdmSiyFhEMqgsKHbizG5nJoAWWu0EhIAOSpbaloA2BabF
6f5imG5W7Ura0crpg+mWgEYzytGNyAoSdW4WuLPa2p5xnkWWhJbp0+upBCEZTSbgJSr/azKYLccH5ARQUhsADWCHqbHwbFIZQAxKcEHi8QNIJpcNgkcpEUIOMQ0RisRIEdZmHBcIFMkSIAAzQj4fAAZVg0Ikgg8HOYCORCAA6ndJNw+HCIOLESiBTAhegRaV/pTgRxwtk0H9FWwWdg1FsjZVYR0IBThHAAJLEQ2oHIAXX+nPI6Wd3A4Ql5/0I1Kw
ZVwPA5lOp+uYroDQcVYQQxG4p1q0x4FwSPHWisYLHYXDQi2NtoLrE4ADlOGJ5ZcEqNVp8FbbCMwACKpXqptCcghhf6aYTUgCiwXSmVdeQ6BThxVKEmIACsOMoAIotACaTUqvlqUAAqvUeFuAFIAFTPRiJxS64nQrMRVHnAF9rnPZ5BF+gPkZR+U2AAGJVs4yj0DACT1PgWTOGeixUB+nTwA+EBPmwL6zu+86FLOJS9ug5QdvgABCADiix8tUVbLh
QUBAYsMBCJg9Sjjw5S3sh3QSOhmEdNhs64W2BEQBQW6kBQACyjrTEiUqnFWTSkMoADyiwAII8KOcCjpx0AoeGpDPhAb5wp6ipCHAxC4D2aaPKclTLC0ozzLM/xEBwSL+oG+DuWwZIptw/b4IOiq9Jg/QSAAakE/kWgAOhwUVqAaSA6pQF59GUMUYuasCJclvRxmliqcpwUB8oQRgPjwNrFGVmRAbg+g8paqBlnefTqUQyjFugwScv0/wFlA5gEN1
QJ9dApocnomS4CGTB+mgCa+SapBAiGBCZRF2WxXlMAFSlxUcrgQhQGwABK4RVQ+CJCAg7mLeUgLApF7XxAk+QCZ+C4iTAowAI5wEIh7EAAMhy949Fl/xDGgIw/PEPCvLUiwzE0aMJE0/xtbVizaKMCSnIstW1N8RynAkiz/LcxD3EapzTNorQZhmcynLmtSOf8kivSCaA8AkEJrhqdXwiqqLopiOIEviJW2iSZL2lSNLS/S6CMhwzKshkQ2lTy/K
CqhWqpv8yqSjK9NyoL5sSqqxtlKbUbCHqBppv8pqkhaabWv8KtOi6uTmba3rNQgy2oKtwahvDj5NC7quxvGPnmwggVGjmTTfIsjlXPmTCVn1VPiwwhdFjWHB1mgozTNMCTcw3rYLp23YZ6gwWhYrI7EOOaR69OOHzt+Il/gBwGgeBkHQbB8GIcP+ncY+RkYSZWEfkJf1lGJEnSbJ8mKcpamadpulIYvqG8Wv/Fmf8lnWbZRr2Y5CzTK8exPZ53mJ
rauUogRndHphSyhIdS2AxDBHIKNTgUYMogPQGAiBTAbJFg5A1Cqt16xenKk1Fq+A2odU6F1HqU0Br63LEwUa7gJq9R6DNf4c0oiLVIJHaO61NocG2vAiAiDUhQNQRCc6V0brVW4PdIBv9nr83eqcT630NhCXwmUQ8W4eDIizJyKGBkGSw0VHHEYRNCbpgOD8fYLRVh5ltG1ZwpwSaTHOG8A4rRMxvxpoqOmDNUBfG0IsTG3MfirFqKcA4bjbR8yB
ALXgwtFSQjFnbSWtIZYSFxPLQkQ5STkmjGrOkPRyDaxZGych9VDZqg1EqdE2okz22lLKeU8TJSlJNhUs2ipdSSGTh7E0ZofZWlLgHZ004Q71R9BHAibC2yx3DKMROMZ3YrVTkmdOBEmafEuEsNyBdCwwKtDjTZRdK7Vy8aMXO5NVil3bF2YIj8O4DgkcUYcqs+6TiyLkIeX4lFLlXBubcu59xHhPOeK8N5z7Qx4ivPiRQfpFE3iPMoRFSIUSojRO
iDEmIsTYhxEF2jl7GVMh0IZkB742Xbg4hyTk3joxaJ/Ly8yf7FD/u3QB/xwrvQgAABTYKwaBXB0oUB2qyjlXKBGlXKpVURgtS7oNwa1TptoWU0NIQgQaHIRpjXwAquhcBZrlQWvqFhYyFm2kxBwrhu0JCCrUMK20Z0LrXVYOK1A4jP4IBehEmRcjIUKMVD+CAK41ybh3HuIQB5jynkvNeLRS80Lgo5Po3MBN65NjBDwU4TRs6k1xsMaYTRtDzHso
sdGtQmjBOprTWpNdZENzBHsM45wFjRLCdItM5x4gnCZqsdML8lgiyhA+UuFsUSJI1hAFJcsORK0yT3IduSmQFL1mgkpjthTNLFNUq2njm4SwaUuzUK6dSu3aXM9qntumwF9n0ykgdBlehGaww1C5Jk8SSPupOR7N4X3lHCKFSolmggzA40YJNhrl22VE/OFCtkcAOQ+dM1MmhHGtOc1uVzGW3KHD3J5A9XmCQXqCzWuj3k+uIFKBI1R1zMGwEIa+
kLb4WSssS5Zz8nL1xJrsyRX9aVrV/v5f+QU0OKjgGwEMLy0Azg6GJjo4siiVHnASsAEmigHG0OcXOUxbFjFaI2JCucfHLGOfB0sTNbGLFkx+BTYAbFGLfo2Bu2aG5oyQrYlorazjZtLNzJyJnZzulo7/UIUA0T6BajIFMHLhPfy48UcUrIoAkRDI4Nc3B32pGeZHCAKi1FIg0beLk/khCumcJUZTVbqbBNzmMcYLQfgfjtLgLVaBnOPGtFmZxxNR
gHB4F+/4GRiBxepCGZQSX5wYAnHrNLVQ6iNFaDlsqlHXRFY5kTJouZHJrA+MttjtplB1e2D4y4TnObOSptmpoXWqkxfUuCvmuADV0sgD1y7z5rsiSvvI/IiiiMkbIxRqjzLsXQAI4MYYWY4hrB+MTRYoweBZhaJUBtmxhhNmUzDnMrlU1jDLdbB4BN9iY0bMcqr5j2u8ybTXUusS+31MHerWWqSFb3IySrak06GR5J1oUhdvJGlOz3VUyW66ba8C
pwgbny7RQvrdnGWVxQvYHXPf7S9Azg43vDneu7JRH2PkWDM4gHTONpxJXMcxrRc7Acg9wA4Zv9m1hg0sFGSxiabpKMhhA1ymWKgeWOUbU4It33o9c0lXaC1vFLh5GlUd72QAZQA/jcruHECYIQegKDGCJWIAAS42vQdP9PIDkD5fHxPyfRqp+pJnpPOe0GiswUaUJ9UcHNRlUaZlxDJplDEJkJgKrKFqo1RIFqxBiDQgYTq5haW/XfMDX80NgKI2
ew2v4U1rKE9Z5TwgNP5fs+57QkIu1NfHWkAes611b00werAD9D7o9Fj/kAiBMCEEoIwWYHBBCkbL4xrhsDk4uaxgkypl8JzG1pmmgEEizAWoBrYrVEcNMBmu4uWl4jmqWMWoBimi5L4rASTm6s2gtrDucNaAsI5KYj2nEnzpKCzugKOvLOOozlkhQdAGznOuyF6IuuqE0uLmQSiALnUpwSLjuuUhwbaG0nrsel0t7Ger0grg6ErqJgSlyLerdpFt
+JrmhG0C+rMlLmgO+nhp1vxAbgRCmnjiYqsFbqgoLMWqYdWDbtwAsEEmsI7sGC7m7rHvchht7iJm6G8nhHhgDrtOfD6nyG8GwC0B2JgFiHikUHIUSgHkxrYbVJUJtlHiGOHuMvSjxqhiFHcpAIJsJoPLOOZlJmADJt5mZsPIBizO1j8Akd8EtnXPDh0GCD4sEg5HMMctDpDkcKZvOOZiMHEB8G5ocN8LuC8FSsPLYrgZUPgTWkQW/LJr5vSv5oFs
Fj2GFuyPrudqQLFvFgNkNnhClmNiJBNg0M0GocNrNvlsMAti1qgcTNjLXGmsbjVttvVqgKMPEI8MtrDmmp8F8J0XoYqD1n1gloNlocNvsZkGlgDMDKDBDDNnlgVkVruGmstk2KsLuGVjzMNs8aCLsCXJjOYi8ELJcKMGdraNFpsY9hhM9r7gCdSJSRQNSWCrip6u9t6iJIEaMMEaEViH9lGiyrGsDjMD4qsAcETBmPBlViAe1Akbmr8PsGsHDnsL
VPUaJAgUsNoLjuTO1j8UTuBsUOEqfmTiQZTrwfQVQWkh7rQVOjTqzrOrrMwQbFzvwc7MLtwbbLwaLruoIcUMIUeoQhALLj0tKRetIUHLISrr6IoTHAnnHGhNMDriIakQIL+hKruG/JUCHpYX1PBlmdBmmEWusiTJDo4Zcq7hkV3K4Y8u4SnOrtESSrEVVm8PsNSjSdxgFDHpkS3maugCvknmvhvlnpXryvymUL2cXknuvmXoOdvugmKjBnXpAFKo
3vgtLkQhFH3ugB3r0DyZslQuNCQmUAPkPtvowrqktNfrfhPA/tPM/q/vPEagvltPgCOUuEXv2VORXtvjasIvandIflkRAB5C6qTh9ELG9tCmyXCsRORJRNRLRPRIxMxKxOxO/oZMZF/gjGmm8eMNaDMEzFMHDtnFKcWoTGMNmksPZIBqWJjp4o2PECTOMN8FTOMLjnqZAAaZErYgkO8WjLXNjL4lDokWhKLCaWSdUmaXLBaYrFaarPQVrOzvOiwU
6WwTzt6VulwQgU7gOnwSpWLpUkIQeiIf6YGRIcGVIZZDIW6HIWHJGa2Q+jGeGLUAmW+sNjoaSVFime1BYm/CmqbnsmYe1Fpv5VYVXA+C2DMNUU7hcm3B2RWcSG4f3D7qJl4XKv9vyf4SJMQHAB2KMAgEiJIHyNRhfvMYSv7vWSml2pmB8S2esW2bxn2C4dkUJklZ4fkcPIUcUfiqUV+M4LXKRZmEzHMHDmCLuAuUUM4FMCzGmhmc5K4pMaTF0W1V
+NxVVlVUsO1vsEErmEhDYlTDxR0fxWMDwKdt5iVYBYsQYMsaFs1e9EmUqFEJsUCTsaCXse4eNjUMcdNjVucfNrsOTMdd8NjJcPXDWpupANiWgNxYWhSoBsmrjidSybaICdsYli9UjW9SJBluoi0Jot9fCTCLsBjNmuTEzL8Btk2GxeDTtg1j4o8KiecKsLmFmNMO5fCBdldiEFGbScQPSYyTiqvOBb9LCkuNlblflYVbyahOlXoojruLmvsC5HUQ
kU4mxRANYkpmjIcBmGsIdoATRYLmsCzC8PsL8LVAdrUFgYaa8eTiJTCMLhJXTjQcrHQTaZrIwfaUUouawWUi6bwW6ULh6c6bzgZX4IepoaIUaqegQn7IqP0mGVZRGaMnZcoQ5TxOpM5eHXdcmAYfXG8CcGsFmfKKrRWBXNYSWGgbATASWTFXxp2R7glc8jWUoRAHWYxhVZ5sWr8DVRHurtHrXXFb4aysJggBSAQIlMJunqPcPq0nAt2Rrr0FPePZ
kJPeQNPaHNXg6kBiKo1MuQQl2VABuRAFuV3mbnueqgef3iQMedqvNGPocdBYinBSioheiihfPias+dwsPYvRwBPVPV+bviIn+UfoqEBSfpxefpfmFP9lfIXTXCjLmWXe1HXPXK1guRrqnY+CRByNFShrFQBT6jvFJDJHJApEpKpBpFpDpJzkbLpV6fpVFmuppcLp6QIQw3noZX6SeuIdHTbb2nbTLZhX1VnEWrVFDpcEblKfERqZjFTNnOYrAUsB
baaa7SOpJdvhOkztkkkm7XaRzvraCDmnsFMM5LXJ8OjNmpbZxQ5CzI8MdQ5MdRmFmMo2SZ5d8ELGCAcCGRZfHR6InWrs3VkiIdodiroYjZWV7olR4QpjCh+jon4QvD6i0EiBeOUPUGyrUFFEVa+Gda3XZO3a/O/C4/SskcnYBekfg3bDFk9ajagMlhjWUFCSDGDJDHjXNpccpr8B8VVu5kTGCIQlTS8dxY7gTvBviRKXDqzRgNSDUyCXU2CQ0xIE
cVNqcXhD9QTZjHXArUMeMJmBmE8dTagBMNZmso2G/M5OYlM/gBdUFmoCsTdWU+SQfRzTdmUw9i8y9p/gJjdXkeJu1UhJ1ZEd1bOBNUY+TDUWYw7pY8PBNc5mCA3NaJDtTBcLUItX8z1TYyjAsHxfZCjLXJYiC+MbY9DsWhmZs843MfioLYoj4dLRBkXPKAS5ACXSFYclTDrY2BYtGWGDxPUDg04eWQQyJMk6k+k5kzQ6w77WJfzsw4HXQ2wy0iHZ
Lq6MZVHfLjErbWgKXPokthqfix8MsGzKNVKU5oTNjA8ccuTOTOg9pQ7WOuks7daTkrafkh7RyB4gbczH4ibZzJMecOmFY+9JbosobstmCMHqrXHdeqVAoWU0E0endZ7r3NWcrnRg/OVWSgsJ8LYd3XdX3Q1XXevZkHOWmOg0uXgnvcAnPd/avUvVACvQQNvvni+egDW2Pb/cvf/VDK3rQhIMfTuRBmfYfUeWvcUKeXfdvOJMQ/vGQ0fJQ6fByMao
vp/dW53j/X/avQA7akA2Iv+cfiBbImBeEzS/9kEEQHINviy9mcU8yyBlBkg6mlmETLDm8Ny7GbgB2Py6Wdck6pBRIPUDACpI6CPeDI6FAEYEiJdAANJsBniOhspRSSRkRZNKW0M+3B2MMytY7unSvbrytSs+mcPh2qs8PqvWqauoDavDD4WTCnJmIWLiNMtq3UfHLaCKNw7cyXBFpQ5aXiWqPmkaMyXM6qPyVMGe2qnYe8AykOLxpMxQ4OQ5iBv1
g5oyewFycVWKchuMYJEoxplMdRupuhyxu1WEevrh0hNLxhMX7oZVlRPRu2h5NPwFOmMJH+lh5lP5s3KZHUt/voCSDrj1DKCOi9UwBngcAdiAwJAdhnijDLiVBGAkyoUSDehLL54CkIxUyyJHDYzQ5VZ1oUVSNFawGNjA2PtTDUzoMesE2Ib+kcXvQLbWj+kU4CO4fU7OuUHqNO2TqyUifu36OOlofsHsP3VYcbosNB1qUQC+nEfcNy6SGx2K6+PW
XGc93N3xY8uPhnytI9yJmR4/rtw5gZmAbvxwOoAqlXt5lGhZgVdNzV14O7sgPdy2eN1lOOftQNng5+XsYpF7eefu62g5EtUKYFEAtotFAFG7CNcAuQ+TGUtAsCaBBxgiDhCGdRaED6CBjEpsqI/MDI8PcAXXPihLF3PXXhbJWzgNeTEfiU+nBmQ+fCRlCOhJSSSjjKC1CAxbjtIkRRQwCjiVCSBNDqSjj0BJfoApcphpcYWoAjCzBG2PAvsFoBJM
fWITAjWUrYwIYkxBW2hVdatKdat/W+KXCkxHYRVinGkteYfkH8edcOvdfCftcMF6OKUDeSsYfqU1KSe8eSxu+TfTcquzdBktHmVXqo+Lkrd3XrfvtAQZ1N36HY6K+kyvvBV9ToMXdIN7PZyOSlreoCsES/tPeRMvcmelXptt2ZurX/65u/cVP90AWA/RPdH/PtVg/ybN89ULZoy7htGm+zBimt8g8wud9G89+w198Nxw9gByFwA4/I/2do8Y/XO9
DY8Gh49oAF8LFE+XUk/ECrHvQKZSaFaG/d8m9j8NiotUs0ZT/8BoRwBwACjEq7GdB8zpBlA9QggbAMCEAIAUAkRCfaPDpsQnIYASAIGBH0RAhSMDmkAFAJIbejtT/pRiMhjZeg+gP/o6x66O9RObrBARAOQFpAgI3tIboq0gCIDIBKAmAZbFlZjtcBEJcgdUl94MNwBSA2gWkEuhEcA++QJgWQLSAqQ1W83agcwKgBQD9AQEBvBW2lxcC8BIgjev
ORwGCDhB/KQ+mQjAGkCpBD/Ckh8zsqSCWB+gUcHSU0FMlV4n/CjIiF5AAANB4NaFprK0da6Mc4HqSVDYBTB+ALcPKBTS5pU0QSdNPnSrSf8jAbAAwE/2ZYEAHoZ+e3LxVJiNx2sPHQWtoKEEoC2BZnV0FNx7hgCKQJAEtiZztAbQABQQiACRHRAiRsQ9QBoKUKAgx9/g10ZQJj0AGjgOwdQuoeUOvg/Q4hFAlELwO5Rx9OBM/BAGYGEDMAyIOQzI
at0/42UEA10UMBtFqaKIMguATQMEHz57tFQ2Ac9vj3+CcJX+6/JYUanOhAV8esQuwMuAQDYAsgfIThHAEkhsAE8eguYQsLr7gABIXIHkCjy0I5NXwQAA
%%