852 B
852 B
up:: congruence title:: "démonstrations sur les simplifications possibles avec la congruence" #démonstration
Simplification totale
ka \equiv kb [kn] \iff a \equiv b[n]
\begin{align}
ka \equiv kb [kn] &\iff kn \mid ka - kb \\
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
&\iff \exists i \in \mathbb{Z}, a - b = in \\
&\iff n|a-b \\
&\iff a \equiv b [n]
\end{align}
Simplification partielle (sans le modulo)
ka \equiv kb [n] \iff a \equiv b [n]
si\text{pgcd}(k, n) = 1
On suppose que \mathrm{pgcd}(k, n) = 1
Alors :
\begin{align}
ka \equiv kb [n] &\iff n \mid ka - kb \\
% &\iff \exists i\in\mathbb{Z}, ka - kb = in \\
&\iff n \mid k(a-b) \\
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun} \\ \\
&\iff a \equiv b [n]
\end{align}