37 lines
		
	
	
		
			854 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			37 lines
		
	
	
		
			854 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| up:: [[congruence]] 
 | |
| title:: "démonstrations sur les simplifications possibles avec la congruence"
 | |
| #t/démonstration 
 | |
| 
 | |
| ---
 | |
| 
 | |
| # Simplification totale
 | |
| 
 | |
| > $ka \equiv kb [kn] \iff a \equiv b[n]$
 | |
| 
 | |
| $$
 | |
| \begin{align}
 | |
| ka \equiv kb [kn] &\iff kn \mid ka - kb  \\
 | |
| &\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
 | |
| &\iff \exists i \in \mathbb{Z}, a - b = in  \\
 | |
| &\iff n|a-b  \\
 | |
| &\iff a \equiv b [n]
 | |
| \end{align}
 | |
| $$
 | |
| # Simplification partielle (sans le modulo)
 | |
| 
 | |
| > $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$
 | |
| 
 | |
| On suppose que $\mathrm{pgcd}(k, n) = 1$
 | |
| Alors :
 | |
| $$
 | |
| \begin{align}
 | |
| ka \equiv kb [n] &\iff n \mid ka - kb  \\
 | |
| % &\iff \exists i\in\mathbb{Z}, ka - kb = in  \\
 | |
| &\iff n \mid k(a-b)  \\
 | |
| &\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun}  \\ \\
 | |
| &\iff a \equiv b [n]
 | |
| \end{align}
 | |
| $$
 | |
| 
 | |
| 
 |