17 lines
500 B
Markdown
17 lines
500 B
Markdown
up::[[dérivation]]
|
|
#maths/analyse
|
|
|
|
----
|
|
Pour calculer des [[dérivation|dérivées]].
|
|
$$\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} = \dfrac{f'(x_0)}{g'(x_0)}$$
|
|
⚠️ Il faut que $f(x_0) = 0$ et $f(x_0) = 0$
|
|
|
|
|
|
$$\begin{aligned}
|
|
\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} &= \dfrac{f'(x)}{g'(x)}\\[3ex]
|
|
&= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x)}{x-x_0}}{\dfrac{g(x)}{x-x_0}}\\[3ex]
|
|
&= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x) - f(x_0)}{x-x_0}}{\dfrac{g(x)-g(x_0)}{x-x_0}}\\
|
|
\end{aligned}$$
|
|
|
|
|