23 lines
		
	
	
		
			902 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			23 lines
		
	
	
		
			902 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| up::[[structure algébrique]]
 | |
| author:: [[Arthur Cayley]]
 | |
| description::"table d'une opération (résultat de l'application sur toutes les valeurs possible)"
 | |
| #s/maths/algèbre
 | |
| 
 | |
| Soit $E$ un ensemble non vide, et $*$ une [[loi de composition interne|LCI]] sur $E$.
 | |
| On représente la loi par une _table de Cayley_.
 | |
| 
 | |
| # Propriété
 | |
| Si la table est symétrique par rapport à sa diagonale, cad. si sa [[transposée]] est égale à elle-même, alors la loi est [[commutativité|commutative]].
 | |
| 
 | |
| # Exemple
 | |
| Dans $\mathbb Z/_{5\mathbb Z}$, la loi étant $\dot{\times}$ :
 | |
| $$\begin{array}{c|ccccc}
 | |
| \dot\times & \dot0 & \dot1 & \dot2 & \dot3 & \dot4\\
 | |
| \hline
 | |
| \dot0 & \dot0 & \dot0 & \dot0 & \dot0 & \dot0 \\
 | |
| \dot1 & \dot0 & \dot1 & \dot2 & \dot3 & \dot4 \\
 | |
| \dot2 & \dot0 & \dot2 & \dot4 & \dot1 & \dot3 \\
 | |
| \dot3 & \dot0 & \dot3 & \dot1 & \dot4 & \dot2 \\
 | |
| \dot4 & \dot0 & \dot4 & \dot3 & \dot2 & \dot1 \\
 | |
| \end{array}$$
 |