14 lines
		
	
	
		
			490 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			14 lines
		
	
	
		
			490 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| #t/exercice #s/maths
 | |
| 
 | |
| ----
 | |
| 
 | |
| 
 | |
| $\displaystyle I_{4} = \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3}t}{1+\cos ^{2}t} \, dt$
 | |
| 
 | |
| On pose $x = \cos t$, alors $t = \arccos x$
 | |
| 
 | |
| $\cos 0 = 1$ et $\cos \frac{\pi}{2} = 0$, donc les bornes sont inversées, et on doit changer le signe.
 | |
| 
 | |
| $\displaystyle\frac{dt}{dx} = - \frac{1}{\sqrt{ 1-x^{2} }}$ donc $\displaystyle dt = - \frac{dx}{\sqrt{ 1-x^{2} }}$
 | |
| 
 |