678 B
678 B
up, tags
up | tags |
---|---|
dérivation | #s/maths/analyse |
[!proposition]+ Soit
x_0 \in E
un point Soientf, g \in \mathcal{D}^{1}(E, F)
deux fonctions dérivables avecf(x_0)= g(x_0) = 0
\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} = \dfrac{f'(x_0)}{g'(x_0)}
- ! Il faut que
f(x_0) = 0
etg(x_0) = 0
^theoreme
[!démonstration] Démonstration $$\begin{aligned} \lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} &= \dfrac{f'(x)}{g'(x)}\[3ex] &= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x)}{x-x_0}}{\dfrac{g(x)}{x-x_0}}\[3ex] &= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x) - f(x_0)}{x-x_0}}{\dfrac{g(x)-g(x_0)}{x-x_0}}\ \end{aligned}$$ ^demonstration