cours/kangourou 2024-07-15 problèmes du jour.md
Oscar Plaisant 62f0313af1 update
2024-09-20 21:31:23 +02:00

11 KiB

excalidraw-plugin, tags, excalidraw-open-md
excalidraw-plugin tags excalidraw-open-md
parsed
excalidraw
true

[!question] Question Find numbers from 0 to 100, but only using 4 times the digit "4" (and any operator)

Trouver les nombres de 100, mais seulement en utilisant 4 fois le chiffre 4 (et des opérateurs)

Ideas / Idées

You can always use up a 4 using : "$\sqrt{ \sqrt{ x^{4} } } = x$" (does nothing). This allows formulas with only 3 or 2 times the 4. On peut toujours utiliser un 4 avec : "$\sqrt{ \sqrt{ x^{4} } } = x$" (ne fait rien). Cela permet des formules avec seulement 2 ou 3 fois le 4.

Solutions

n = 0

  • 4 - 4 + 4 - 4
  • 44 - 44

n=1

n = 41

  • 41 = 44 - \sqrt{ 4 } - (\lim\limits_{ n \to \infty } \sqrt[n]{4})

n = 71

  • 71 = (\Gamma(4) + \Gamma(\sqrt{ 4 })) \cdot (\Gamma(\sqrt{ 4 }) \cdot \Gamma(\sqrt{ 4 }))
  • 71 = (4! + (\sqrt{ 4 })!) \cdot ((\sqrt{ 4 })! \cdot (\sqrt{ 4 })!)

General solution / Solution générale

1

\displaystyle\int _{-4}^{4} \dfrac{\underbrace{(x \times x)+(x \times x)+\cdots + (x \times x)}_{6n \text{ times } x}}{4^{4}} \, dx = n

2

\displaystyle\sqrt{ 4 } \cdot\frac{\ln \left( \frac{\overbrace{\sqrt{ \sqrt{ \sqrt{ \sqrt{ \cdots 4 } } } }}^{n \text{ times }} }{\ln(4)} \right)}{\ln(4)}

[!definition] Logarithm / Logarithme \log_{n}(n^{x}) = x

[!definition] Natural logarithm / Logarithme naturel \ln(x) = \log_{e}(x) So : / Alors : \ln(e^{x}) = x

3

0 = 4 - 4 1 = (\sqrt{ 4 })! 2 = \sqrt{ 4 } 3 = \dfrac{4!}{\sqrt{ 4 }} 4 =

[!definition] Factorial / Factorielle n! = 1 \times 2 \times 3 \times \cdots \times n

[!definition] Double factorial / Double factorielle n!! = 1 \cancel{\times 2} \times 3 \cancel{\times 4} \times \cdots \times n if n is odd / si n est impair n!! = \cancel{1 \times} 2 \times \cancel{3 \times} 4\times \cdots \times n if n is even / si n est pair

[!definition] Concatenation New operator / Nouvel opérateur : 4 \cdot 4 = 44 71 \cdot 92 = 7192

2

\displaystyle\log_{\log_{4}(\sqrt{ 4 })} \left( \log_{4} \left( \underbrace{\sqrt{ \sqrt{ \sqrt{ \sqrt{ \dots \sqrt{ 4 } } } } }}_{n \text{ times}} \right) \right) = n

Why ? / Pourquoi ?

\log_{4}(\sqrt{ 4 }) = \frac{1}{2}

\log_{4}(4) = 1 \log_{4}(4^{2}) = 2 \vdots \log_{4}(4^{p}) = p

\log_{4}(\sqrt{ 4 }) = \log_{4}\left( 4^{\frac{1}{2}} \right) = \frac{1}{2} \log_{4}(\sqrt{ \sqrt{ 4 } }) = \log_{4}\left( 4^{\frac{1}{4}} \right) = \frac{1}{4} \log_{4}(\sqrt{ \sqrt{ \sqrt{ 4 } } }) = \log_{4}\left( 4^{\frac{1}{8}} \right) = \frac{1}{8} \log_{4}(\sqrt{ \sqrt{ \sqrt{ \sqrt{ 4 } } } }) = \log_{4}\left( 4^{\frac{1}{16}} \right) = \frac{1}{16} \vdots \displaystyle\log_{4}\left( \underbrace{\sqrt{ \sqrt{ \sqrt{ \dots \sqrt{ 4 } } } }}_{n \text{ times}} \right) = \log_{4} \left( 4^{\frac{1}{2^{n}}} \right) = \frac{1}{2^{n}}

\displaystyle\log_{\frac{1}{2}} \left( \frac{1}{2 \times n} \right) = n

$= "![[" + dv.current().file.name + ".svg|700]]"

%%

Excalidraw Data

Text Elements

Velocity Vitesse ^H0Z9Cp37

Acceleration ^y4qpuUdL

Position ^UY2ok27f

derivative dérivée ^dW5ZQscu

derivative dérivée ^S24o7Dxr

integral intégrale ^dpD4ekhS

integral intégrale ^7kTHCP9V

Drawing

N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebTiAVho6IIR9BA4oZm4AbXAwUDAiiBJuCAAJAAYALQBOAGE4AGYAdmSiyFhEMqgsKHbizG5nJoAWWu0EhIAOSpbaloA2BabF

6f5imG5W7Ura0crpg+mWgEYzytGNyAoSdW4WuLPa2p5xnkWWhJbp0+upBCEZTSbgJSr/azKYLccH5ARQUhsADWCHqbHwbFIZQAxKcEHi8QNIJpcNgkcpEUIOMQ0RisRIEdZmHBcIFMkSIAAzQj4fAAZVg0Ikgg8HOYCORCAA6ndJNw+HCIOLESiBTAhegRaV/pTgRxwtk0H9FWwWdg1FsjZVYR0IBThHAAJLEQ2oHIAXX+nPI6Wd3A4Ql5/0I1Kw

ZVwPA5lOp+uYroDQcVYQQxG4p1q0x4FwSPHWisYLHYXDQi2NtoLrE4ADlOGJ5ZcEqNVp8FbbCMwACKpXqptCcghhf6aYTUgCiwXSmVdeQ6BThxVKEmIACsOMoAIotACaTUqvlqUAAqvUeFuAFIAFTPRiJxS64nQrMRVHnAF9rnPZ5BF+gPkZR+U2AAGJVs4yj0DACT1PgWTOGeixUB+nTwA+EBPmwL6zu+86FLOJS9ug5QdvgABCADiix8tUVbLh

QUBAYsMBCJg9Sjjw5S3sh3QSOhmEdNhs64W2BEQBQW6kBQACyjrTEiUqnFWTSkMoADyiwAII8KOcCjpx0AoeGpDPhAb5wp6ipCHAxC4D2aaPKclTLC0ozzLM/xEBwSL+oG+DuWwZIptw/b4IOiq9Jg/QSAAakE/kWgAOhwUVqAaSA6pQF59GUMUYuasCJclvRxmliqcpwUB8oQRgPjwNrFGVmRAbg+g8paqBlnefTqUQyjFugwScv0/wFlA5gEN1

QJ9dApocnomS4CGTB+mgCa+SapBAiGBCZRF2WxXlMAFSlxUcrgQhQGwABK4RVQ+CJCAg7mLeUgLApF7XxAk+QCZ+C4iTAowAI5wEIh7EAAMhy949Fl/xDGgIw/PEPCvLUiwzE0aMJE0/xtbVizaKMCSnIstW1N8RynAkiz/LcxD3EapzTNorQZhmcynLmtSOf8kivSCaA8AkEJrhqdXwiqqLopiOIEviJW2iSZL2lSNLS/S6CMhwzKshkQ2lTy/K

CqhWqpv8yqSjK9NyoL5sSqqxtlKbUbCHqBppv8pqkhaabWv8KtOi6uTmba3rNQgy2oKtwahvDj5NC7quxvGPnmwggVGjmTTfIsjlXPmTCVn1VPiwwhdFjWHB1mgozTNMCTcw3rYLp23YZ6gwWhYrI7EOOaR69OOHzt+Il/gBwGgeBkHQbB8GIcP+ncY+RkYSZWEfkJf1lGJEnSbJ8mKcpamadpulIYvqG8Wv/Fmf8lnWbZRr2Y5CzTK8exPZ53mJ

rauUogRndHphSyhIdS2AxDBHIKNTgUYMogPQGAiBTAbJFg5A1Cqt16xenKk1Fq+A2odU6F1HqU0Br63LEwUa7gJq9R6DNf4c0oiLVIJHaO61NocG2vAiAiDUhQNQRCc6V0brVW4PdIBv9nr83eqcT630NhCXwmUQ8W4eDIizJyKGBkGSw0VHHEYRNCbpgOD8fYLRVh5ltG1ZwpwSaTHOG8A4rRMxvxpoqOmDNUBfG0IsTG3MfirFqKcA4bjbR8yB

ALXgwtFSQjFnbSWtIZYSFxPLQkQ5STkmjGrOkPRyDaxZGych9VDZqg1EqdE2okz22lLKeU8TJSlJNhUs2ipdSSGTh7E0ZofZWlLgHZ004Q71R9BHAibC2yx3DKMROMZ3YrVTkmdOBEmafEuEsNyBdCwwKtDjTZRdK7Vy8aMXO5NVil3bF2YIj8O4DgkcUYcqs+6TiyLkIeX4lFLlXBubcu59xHhPOeK8N5z7Qx4ivPiRQfpFE3iPMoRFSIUSojRO

iDEmIsTYhxEF2jl7GVMh0IZkB742Xbg4hyTk3joxaJ/Ly8yf7FD/u3QB/xwrvQgAABTYKwaBXB0oUB2qyjlXKBGlXKpVURgtS7oNwa1TptoWU0NIQgQaHIRpjXwAquhcBZrlQWvqFhYyFm2kxBwrhu0JCCrUMK20Z0LrXVYOK1A4jP4IBehEmRcjIUKMVD+CAK41ybh3HuIQB5jynkvNeLRS80Lgo5Po3MBN65NjBDwU4TRs6k1xsMaYTRtDzHso

sdGtQmjBOprTWpNdZENzBHsM45wFjRLCdItM5x4gnCZqsdML8lgiyhA+UuFsUSJI1hAFJcsORK0yT3IduSmQFL1mgkpjthTNLFNUq2njm4SwaUuzUK6dSu3aXM9qntumwF9n0ykgdBlehGaww1C5Jk8SSPupOR7N4X3lHCKFSolmggzA40YJNhrl22VE/OFCtkcAOQ+dM1MmhHGtOc1uVzGW3KHD3J5A9XmCQXqCzWuj3k+uIFKBI1R1zMGwEIa+

kLb4WSssS5Zz8nL1xJrsyRX9aVrV/v5f+QU0OKjgGwEMLy0Azg6GJjo4siiVHnASsAEmigHG0OcXOUxbFjFaI2JCucfHLGOfB0sTNbGLFkx+BTYAbFGLfo2Bu2aG5oyQrYlorazjZtLNzJyJnZzulo7/UIUA0T6BajIFMHLhPfy48UcUrIoAkRDI4Nc3B32pGeZHCAKi1FIg0beLk/khCumcJUZTVbqbBNzmMcYLQfgfjtLgLVaBnOPGtFmZxxNR

gHB4F+/4GRiBxepCGZQSX5wYAnHrNLVQ6iNFaDlsqlHXRFY5kTJouZHJrA+MttjtplB1e2D4y4TnObOSptmpoXWqkxfUuCvmuADV0sgD1y7z5rsiSvvI/IiiiMkbIxRqjzLsXQAI4MYYWY4hrB+MTRYoweBZhaJUBtmxhhNmUzDnMrlU1jDLdbB4BN9iY0bMcqr5j2u8ybTXUusS+31MHerWWqSFb3IySrak06GR5J1oUhdvJGlOz3VUyW66ba8C

pwgbny7RQvrdnGWVxQvYHXPf7S9Azg43vDneu7JRH2PkWDM4gHTONpxJXMcxrRc7Acg9wA4Zv9m1hg0sFGSxiabpKMhhA1ymWKgeWOUbU4It33o9c0lXaC1vFLh5GlUd72QAZQA/jcruHECYIQegKDGCJWIAAS42vQdP9PIDkD5fHxPyfRqp+pJnpPOe0GiswUaUJ9UcHNRlUaZlxDJplDEJkJgKrKFqo1RIFqxBiDQgYTq5haW/XfMDX80NgKI2

ew2v4U1rKE9Z5TwgNP5fs+57QkIu1NfHWkAes611b00werAD9D7o9Fj/kAiBMCEEoIwWYHBBCkbL4xrhsDk4uaxgkypl8JzG1pmmgEEizAWoBrYrVEcNMBmu4uWl4jmqWMWoBimi5L4rASTm6s2gtrDucNaAsI5KYj2nEnzpKCzugKOvLOOozlkhQdAGznOuyF6IuuqE0uLmQSiALnUpwSLjuuUhwbaG0nrsel0t7Ger0grg6ErqJgSlyLerdpFt

+JrmhG0C+rMlLmgO+nhp1vxAbgRCmnjiYqsFbqgoLMWqYdWDbtwAsEEmsI7sGC7m7rHvchht7iJm6G8nhHhgDrtOfD6nyG8GwC0B2JgFiHikUHIUSgHkxrYbVJUJtlHiGOHuMvSjxqhiFHcpAIJsJoPLOOZlJmADJt5mZsPIBizO1j8Akd8EtnXPDh0GCD4sEg5HMMctDpDkcKZvOOZiMHEB8G5ocN8LuC8FSsPLYrgZUPgTWkQW/LJr5vSv5oFs

Fj2GFuyPrudqQLFvFgNkNnhClmNiJBNg0M0GocNrNvlsMAti1qgcTNjLXGmsbjVttvVqgKMPEI8MtrDmmp8F8J0XoYqD1n1gloNlocNvsZkGlgDMDKDBDDNnlgVkVruGmstk2KsLuGVjzMNs8aCLsCXJjOYi8ELJcKMGdraNFpsY9hhM9r7gCdSJSRQNSWCrip6u9t6iJIEaMMEaEViH9lGiyrGsDjMD4qsAcETBmPBlViAe1Akbmr8PsGsHDnsL

VPUaJAgUsNoLjuTO1j8UTuBsUOEqfmTiQZTrwfQVQWkh7rQVOjTqzrOrrMwQbFzvwc7MLtwbbLwaLruoIcUMIUeoQhALLj0tKRetIUHLISrr6IoTHAnnHGhNMDriIakQIL+hKruG/JUCHpYX1PBlmdBmmEWusiTJDo4Zcq7hkV3K4Y8u4SnOrtESSrEVVm8PsNSjSdxgFDHpkS3maugCvknmvhvlnpXryvymUL2cXknuvmXoOdvugmKjBnXpAFKo

3vgtLkQhFH3ugB3r0DyZslQuNCQmUAPkPtvowrqktNfrfhPA/tPM/q/vPEagvltPgCOUuEXv2VORXtvjasIvandIflkRAB5C6qTh9ELG9tCmyXCsRORJRNRLRPRIxMxKxOxO/oZMZF/gjGmm8eMNaDMEzFMHDtnFKcWoTGMNmksPZIBqWJjp4o2PECTOMN8FTOMLjnqZAAaZErYgkO8WjLXNjL4lDokWhKLCaWSdUmaXLBaYrFaarPQVrOzvOiwU

6WwTzt6VulwQgU7gOnwSpWLpUkIQeiIf6YGRIcGVIZZDIW6HIWHJGa2Q+jGeGLUAmW+sNjoaSVFime1BYm/CmqbnsmYe1Fpv5VYVXA+C2DMNUU7hcm3B2RWcSG4f3D7qJl4XKv9vyf4SJMQHAB2KMAgEiJIHyNRhfvMYSv7vWSml2pmB8S2esW2bxn2C4dkUJklZ4fkcPIUcUfiqUV+M4LXKRZmEzHMHDmCLuAuUUM4FMCzGmhmc5K4pMaTF0W1V

+NxVVlVUsO1vsEErmEhDYlTDxR0fxWMDwKdt5iVYBYsQYMsaFs1e9EmUqFEJsUCTsaCXse4eNjUMcdNjVucfNrsOTMdd8NjJcPXDWpupANiWgNxYWhSoBsmrjidSybaICdsYli9UjW9SJBluoi0Jot9fCTCLsBjNmuTEzL8Btk2GxeDTtg1j4o8KiecKsLmFmNMO5fCBdldiEFGbScQPSYyTiqvOBb9LCkuNlblflYVbyahOlXoojruLmvsC5HUQ

kU4mxRANYkpmjIcBmGsIdoATRYLmsCzC8PsL8LVAdrUFgYaa8eTiJTCMLhJXTjQcrHQTaZrIwfaUUouawWUi6bwW6ULh6c6bzgZX4IepoaIUaqegQn7IqP0mGVZRGaMnZcoQ5TxOpM5eHXdcmAYfXG8CcGsFmfKKrRWBXNYSWGgbATASWTFXxp2R7glc8jWUoRAHWYxhVZ5sWr8DVRHurtHrXXFb4aysJggBSAQIlMJunqPcPq0nAt2Rrr0FPePZ

kJPeQNPaHNXg6kBiKo1MuQQl2VABuRAFuV3mbnueqgef3iQMedqvNGPocdBYinBSioheiihfPias+dwsPYvRwBPVPV+bviIn+UfoqEBSfpxefpfmFP9lfIXTXCjLmWXe1HXPXK1guRrqnY+CRByNFShrFQBT6jvFJDJHJApEpKpBpFpDpJzkbLpV6fpVFmuppcLp6QIQw3noZX6SeuIdHTbb2nbTLZhX1VnEWrVFDpcEblKfERqZjFTNnOYrAUsB

baaa7SOpJdvhOkztkkkm7XaRzvraCDmnsFMM5LXJ8OjNmpbZxQ5CzI8MdQ5MdRmFmMo2SZ5d8ELGCAcCGRZfHR6InWrs3VkiIdodiroYjZWV7olR4QpjCh+jon4QvD6i0EiBeOUPUGyrUFFEVa+Gda3XZO3a/O/C4/SskcnYBekfg3bDFk9ajagMlhjWUFCSDGDJDHjXNpccpr8B8VVu5kTGCIQlTS8dxY7gTvBviRKXDqzRgNSDUyCXU2CQ0xIE

cVNqcXhD9QTZjHXArUMeMJmBmE8dTagBMNZmso2G/M5OYlM/gBdUFmoCsTdWU+SQfRzTdmUw9i8y9p/gJjdXkeJu1UhJ1ZEd1bOBNUY+TDUWYw7pY8PBNc5mCA3NaJDtTBcLUItX8z1TYyjAsHxfZCjLXJYiC+MbY9DsWhmZs843MfioLYoj4dLRBkXPKAS5ACXSFYclTDrY2BYtGWGDxPUDg04eWQQyJMk6k+k5kzQ6w77WJfzsw4HXQ2wy0iHZ

Lq6MZVHfLjErbWgKXPokthqfix8MsGzKNVKU5oTNjA8ccuTOTOg9pQ7WOuks7daTkrafkh7RyB4gbczH4ibZzJMecOmFY+9JbosobstmCMHqrXHdeqVAoWU0E0endZ7r3NWcrnRg/OVWSgsJ8LYd3XdX3Q1XXevZkHOWmOg0uXgnvcAnPd/avUvVACvQQNvvni+egDW2Pb/cvf/VDK3rQhIMfTuRBmfYfUeWvcUKeXfdvOJMQ/vGQ0fJQ6fByMao

vp/dW53j/X/avQA7akA2Iv+cfiBbImBeEzS/9kEEQHINviy9mcU8yyBlBkg6mlmETLDm8Ny7GbgB2Py6Wdck6pBRIPUDACpI6CPeDI6FAEYEiJdAANJsBniOhspRSSRkRZNKW0M+3B2MMytY7unSvbrytSs+mcPh2qs8PqvWqauoDavDD4WTCnJmIWLiNMtq3UfHLaCKNw7cyXBFpQ5aXiWqPmkaMyXM6qPyVMGe2qnYe8AykOLxpMxQ4OQ5iBv1

g5oyewFycVWKchuMYJEoxplMdRupuhyxu1WEevrh0hNLxhMX7oZVlRPRu2h5NPwFOmMJH+lh5lP5s3KZHUt/voCSDrj1DKCOi9UwBngcAdiAwJAdhnijDLiVBGAkyoUSDehLL54CkIxUyyJHDYzQ5VZ1oUVSNFawGNjA2PtTDUzoMesE2Ib+kcXvQLbWj+kU4CO4fU7OuUHqNO2TqyUifu36OOlofsHsP3VYcbosNB1qUQC+nEfcNy6SGx2K6+PW

XGc93N3xY8uPhnytI9yJmR4/rtw5gZmAbvxwOoAqlXt5lGhZgVdNzV14O7sgPdy2eN1lOOftQNng5+XsYpF7eefu62g5EtUKYFEAtotFAFG7CNcAuQ+TGUtAsCaBBxgiDhCGdRaED6CBjEpsqI/MDI8PcAXXPihLF3PXXhbJWzgNeTEfiU+nBmQ+fCRlCOhJSSSjjKC1CAxbjtIkRRQwCjiVCSBNDqSjj0BJfoApcphpcYWoAjCzBG2PAvsFoBJM

fWITAjWUrYwIYkxBW2hVdatKdat/W+KXCkxHYRVinGkteYfkH8edcOvdfCftcMF6OKUDeSsYfqU1KSe8eSxu+TfTcquzdBktHmVXqo+Lkrd3XrfvtAQZ1N36HY6K+kyvvBV9ToMXdIN7PZyOSlreoCsES/tPeRMvcmelXptt2ZurX/65u/cVP90AWA/RPdH/PtVg/ybN89ULZoy7htGm+zBimt8g8wud9G89+w198Nxw9gByFwA4/I/2do8Y/XO9

DY8Gh49oAF8LFE+XUk/ECrHvQKZSaFaG/d8m9j8NiotUs0ZT/8BoRwBwACjEq7GdB8zpBlA9QggbAMCEAIAUAkRCfaPDpsQnIYASAIGBH0RAhSMDmkAFAJIbejtT/pRiMhjZeg+gP/o6x66O9RObrBARAOQFpAgI3tIboq0gCIDIBKAmAZbFlZjtcBEJcgdUl94MNwBSA2gWkEuhEcA++QJgWQLSAqQ1W83agcwKgBQD9AQEBvBW2lxcC8BIgjev

ORwGCDhB/KQ+mQjAGkCpBD/Ckh8zsqSCWB+gUcHSU0FMlV4n/CjIiF5AAANB4NaFprK0da6Mc4HqSVDYBTB+ALcPKBTS5pU0QSdNPnSrSf8jAbAAwE/2ZYEAHoZ+e3LxVJiNx2sPHQWtoKEEoC2BZnV0FNx7hgCKQJAEtiZztAbQABQQiACRHRAiRsQ9QBoKUKAgx9/g10ZQJj0AGjgOwdQuoeUOvg/Q4hFAlELwO5Rx9OBM/BAGYGEDMAyIOQzI

at0/42UEA10UMBtFqaKIMguATQMEHz57tFQ2Ac9vj3+CcJX+6/JYUanOhAV8esQuwMuAQDYAsgfIThHAEkhsAE8eguYQsLr7gABIXIHkCjy0I5NXwQAA

%%