16 lines
855 B
Markdown
16 lines
855 B
Markdown
---
|
|
alias: [ "critère de Bertrand" ]
|
|
---
|
|
up:: [[intégration généralisée]]
|
|
title:: "$\displaystyle\int_{0}^{m<e} \frac{1}{t^{\alpha}|\ln(t)|^{\beta}} \, dx$ et $\displaystyle\int_{m>e}^{+\infty} \frac{1}{t^{\alpha}(\ln(t))^{\beta}} \, dt$"
|
|
description:: "$\displaystyle\int_{0}^{m<e} \frac{1}{t^{\alpha}|\ln(t)|^{\beta}} \, dx \text{ CV} \iff\begin{cases} \alpha<1\\ \text{ou}\\ \alpha=1 \text{ et } \beta>1 \end{cases}$", "$\displaystyle\int_{m>e}^{+\infty} \frac{1}{t^{\alpha}(\ln(t))^{\beta}} \, dt \text{ CV} \iff\begin{cases} \alpha > 1\\ \text{ou}\\ \alpha = 1 \text{ et } \beta > 1 \end{cases}$"
|
|
#s/maths/analyse
|
|
|
|
---
|
|
|
|
|
|
![[intégrales de Bertrand 2022-11-23 16.18.37.excalidraw|100%]]
|
|
|
|
|
|
$\displaystyle\int_{0}^{m<e} \frac{1}{t^{\alpha}|\ln(t)|^{\beta}} \, dx$ et $\displaystyle\int_{m>e}^{+\infty} \frac{1}{t^{\alpha}(\ln(t))^{\beta}} \, dt$
|