cours/démonstration simplification de la congruence.md
Oscar Plaisant 602a41e7f8 update
2024-12-25 22:30:24 +01:00

854 B

up:: congruence title:: "démonstrations sur les simplifications possibles avec la congruence" #t/démonstration


Simplification totale

ka \equiv kb [kn] \iff a \equiv b[n]


\begin{align}
ka \equiv kb [kn] &\iff kn \mid ka - kb  \\
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
&\iff \exists i \in \mathbb{Z}, a - b = in  \\
&\iff n|a-b  \\
&\iff a \equiv b [n]
\end{align}

Simplification partielle (sans le modulo)

ka \equiv kb [n] \iff a \equiv b [n] si \text{pgcd}(k, n) = 1

On suppose que \mathrm{pgcd}(k, n) = 1 Alors :


\begin{align}
ka \equiv kb [n] &\iff n \mid ka - kb  \\
% &\iff \exists i\in\mathbb{Z}, ka - kb = in  \\
&\iff n \mid k(a-b)  \\
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun}  \\ \\
&\iff a \equiv b [n]
\end{align}