cours/Exercices maths perso 2022-10-08.md
Oscar Plaisant 602a41e7f8 update
2024-12-25 22:30:24 +01:00

14 lines
490 B
Markdown

#t/exercice #s/maths
----
![800](app://local/Users/oscarplaisant/devoirs/cours/attachments/markmind/1664963348304.png?1664963348339)
$\displaystyle I_{4} = \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3}t}{1+\cos ^{2}t} \, dt$
On pose $x = \cos t$, alors $t = \arccos x$
$\cos 0 = 1$ et $\cos \frac{\pi}{2} = 0$, donc les bornes sont inversées, et on doit changer le signe.
$\displaystyle\frac{dt}{dx} = - \frac{1}{\sqrt{ 1-x^{2} }}$ donc $\displaystyle dt = - \frac{dx}{\sqrt{ 1-x^{2} }}$