MacBook-Pro-de-Oscar.local 2025-9-9:15:11:4
This commit is contained in:
3
.obsidian/community-plugins.json
vendored
3
.obsidian/community-plugins.json
vendored
@@ -39,5 +39,6 @@
|
||||
"pane-relief",
|
||||
"obsidian-spaced-repetition",
|
||||
"obsidian-minimal-settings",
|
||||
"github-sync"
|
||||
"github-sync",
|
||||
"obsidian-completr"
|
||||
]
|
@@ -38,5 +38,5 @@ tags: "#s/maths/logique"
|
||||
> > 2. soit $f : \{ 0, 1 \}^{n} \to \{ 0, 1 \}$
|
||||
> > $A = \{ (a_1, \dots, a_{n}) | f(a_1, \dots, a_{n}) = 1 \}$
|
||||
> > $f(x) = \underbrace{\bigvee_{a \in A} \delta _{a}(x)}_{\substack{\text{vaut 1 ssi}\\ \exists a \in A,\quad \delta _{a}(x) = 1\\ \text{c'est-à-dire }\\ \exists a \in A,\quad x = a}}$
|
||||
> >
|
||||
> > - ! quand $f$ est la fonction nulle, $A$ est vide, et il faut donc que $\bigvee_{a \in\emptyset} a = 0$. C'est bien le cas car $\bigvee_{a \in X\cup Y }a = \bigvee_{a \in X}a \vee \bigvee_{a \in Y}a$ et de cette propriété on tire que $\bigvee_{}$
|
||||
|
||||
|
Reference in New Issue
Block a user