MacBook-Pro-de-Oscar.local 2025-9-9:15:11:4
This commit is contained in:
		
							
								
								
									
										3
									
								
								.obsidian/community-plugins.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.obsidian/community-plugins.json
									
									
									
									
										vendored
									
									
								
							@@ -39,5 +39,6 @@
 | 
			
		||||
  "pane-relief",
 | 
			
		||||
  "obsidian-spaced-repetition",
 | 
			
		||||
  "obsidian-minimal-settings",
 | 
			
		||||
  "github-sync"
 | 
			
		||||
  "github-sync",
 | 
			
		||||
  "obsidian-completr"
 | 
			
		||||
]
 | 
			
		||||
@@ -38,5 +38,5 @@ tags: "#s/maths/logique"
 | 
			
		||||
> > 2. soit $f : \{ 0, 1 \}^{n} \to \{ 0, 1 \}$
 | 
			
		||||
> >    $A = \{ (a_1, \dots, a_{n}) | f(a_1, \dots, a_{n}) = 1 \}$
 | 
			
		||||
> >    $f(x) = \underbrace{\bigvee_{a \in A} \delta _{a}(x)}_{\substack{\text{vaut 1 ssi}\\ \exists a \in A,\quad \delta _{a}(x) = 1\\ \text{c'est-à-dire }\\ \exists a \in A,\quad x = a}}$
 | 
			
		||||
> >    
 | 
			
		||||
> >    - ! quand $f$ est la fonction nulle, $A$ est vide, et il faut donc que $\bigvee_{a \in\emptyset} a = 0$. C'est bien le cas car $\bigvee_{a \in X\cup Y }a = \bigvee_{a \in X}a \vee \bigvee_{a \in Y}a$ et de cette propriété on tire que $\bigvee_{}$
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user