eduroam-prg-og-1-28-168.net.univ-paris-diderot.fr 2026-1-19:10:44:48
This commit is contained in:
@@ -7,363 +7,56 @@ tags: [excalidraw]
|
||||
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠==
|
||||
|
||||
|
||||
# Text Elements
|
||||
^znrya2TG
|
||||
# Excalidraw Data
|
||||
|
||||
[[CV]] ^JkHFV6ax
|
||||
## Text Elements
|
||||
## Element Links
|
||||
JkHFV6ax: [[CV]]
|
||||
|
||||
[[maths.excalidraw]] ^zdEPov1u
|
||||
zdEPov1u: [[maths.excalidraw]]
|
||||
|
||||
[[actions.excalidraw]] ^N0FOziXb
|
||||
N0FOziXb: [[actions.excalidraw]]
|
||||
|
||||
[[workflow.excalidraw]] ^0CSoeQRs
|
||||
0CSoeQRs: [[workflow.excalidraw]]
|
||||
|
||||
|
||||
# Embedded files
|
||||
## Embedded Files
|
||||
4ccd589d6d20a5015283c6cda9c0ec2642ce867d: [[Pasted Image 20220820003257_636.png]]
|
||||
|
||||
bdba18d00da0b2f0f1381a38ce2d9a2838f0a8f9: [[Pasted Image 20220820010829_253.png]]
|
||||
|
||||
214bc5343c0339561e5439bc89f2427ba5b302e1: [[Pasted Image 20220823214736_945.png]]
|
||||
|
||||
d8b8ceb36491fa5f3241bf2218bccac26485ac5a: [[logo_obsidian.png]]
|
||||
|
||||
%%
|
||||
# Drawing
|
||||
```json
|
||||
{
|
||||
"type": "excalidraw",
|
||||
"version": 2,
|
||||
"source": "https://excalidraw.com",
|
||||
"elements": [
|
||||
{
|
||||
"type": "image",
|
||||
"version": 95,
|
||||
"versionNonce": 1966641020,
|
||||
"isDeleted": false,
|
||||
"id": "JkHFV6ax",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 1,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"angle": 0,
|
||||
"x": -23.445037841796868,
|
||||
"y": 41.17491149902344,
|
||||
"strokeColor": "transparent",
|
||||
"backgroundColor": "transparent",
|
||||
"width": 204.00000000000003,
|
||||
"height": 75,
|
||||
"seed": 655699652,
|
||||
"groupIds": [],
|
||||
"roundness": {
|
||||
"type": 2
|
||||
},
|
||||
"boundElements": [],
|
||||
"updated": 1660950512379,
|
||||
"link": "[[CV]]",
|
||||
"locked": false,
|
||||
"status": "pending",
|
||||
"fileId": "4ccd589d6d20a5015283c6cda9c0ec2642ce867d",
|
||||
"scale": [
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"version": 16,
|
||||
"versionNonce": 66532932,
|
||||
"isDeleted": false,
|
||||
"id": "znrya2TG",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 1,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"angle": 0,
|
||||
"x": 134.00839233398438,
|
||||
"y": 21.558883666992188,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"width": 11,
|
||||
"height": 25,
|
||||
"seed": 2114091900,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"boundElements": [],
|
||||
"updated": 1660950512380,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"fontSize": 20,
|
||||
"fontFamily": 1,
|
||||
"text": "",
|
||||
"rawText": "",
|
||||
"baseline": 18,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": ""
|
||||
},
|
||||
{
|
||||
"type": "image",
|
||||
"version": 101,
|
||||
"versionNonce": 2108324549,
|
||||
"isDeleted": false,
|
||||
"id": "zdEPov1u",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"angle": 0,
|
||||
"x": -134.7734857487024,
|
||||
"y": -108.50730265337162,
|
||||
"strokeColor": "transparent",
|
||||
"backgroundColor": "#868e96",
|
||||
"width": 111.46957397460938,
|
||||
"height": 111.46957397460938,
|
||||
"seed": 1139324156,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"boundElements": [],
|
||||
"updated": 1661294685338,
|
||||
"link": "[[maths.excalidraw]]",
|
||||
"locked": false,
|
||||
"status": "pending",
|
||||
"fileId": "bdba18d00da0b2f0f1381a38ce2d9a2838f0a8f9",
|
||||
"scale": [
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "image",
|
||||
"version": 531,
|
||||
"versionNonce": 790368043,
|
||||
"isDeleted": false,
|
||||
"id": "N0FOziXb",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"angle": 0,
|
||||
"x": 173.92043371561465,
|
||||
"y": -113.07529515603154,
|
||||
"strokeColor": "transparent",
|
||||
"backgroundColor": "#868e96",
|
||||
"width": 112.92559814453126,
|
||||
"height": 112.92559814453126,
|
||||
"seed": 316193611,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"boundElements": [],
|
||||
"updated": 1661284128292,
|
||||
"link": "[[actions.excalidraw]]",
|
||||
"locked": false,
|
||||
"status": "pending",
|
||||
"fileId": "214bc5343c0339561e5439bc89f2427ba5b302e1",
|
||||
"scale": [
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "image",
|
||||
"version": 465,
|
||||
"versionNonce": 713105048,
|
||||
"isDeleted": false,
|
||||
"id": "0CSoeQRs",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"angle": 0,
|
||||
"x": 26.151524596859417,
|
||||
"y": -117.8727038829474,
|
||||
"strokeColor": "transparent",
|
||||
"backgroundColor": "#868e96",
|
||||
"width": 114.93853759765625,
|
||||
"height": 114.93853759765625,
|
||||
"seed": 2118962021,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"boundElements": [],
|
||||
"updated": 1663061863705,
|
||||
"link": "[[workflow.excalidraw]]",
|
||||
"locked": false,
|
||||
"status": "pending",
|
||||
"fileId": "d8b8ceb36491fa5f3241bf2218bccac26485ac5a",
|
||||
"scale": [
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "onEL5mDy",
|
||||
"type": "text",
|
||||
"x": -31.963726944278278,
|
||||
"y": 127.72532255803802,
|
||||
"width": 18,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#fff",
|
||||
"backgroundColor": "#868e96",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"seed": 1650265113,
|
||||
"version": 4,
|
||||
"versionNonce": 1895383097,
|
||||
"isDeleted": true,
|
||||
"boundElements": null,
|
||||
"updated": 1674952434533,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "_",
|
||||
"rawText": "_",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 1,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"baseline": 18,
|
||||
"containerId": null,
|
||||
"originalText": "_"
|
||||
},
|
||||
{
|
||||
"id": "DHgsSZQv",
|
||||
"type": "text",
|
||||
"x": -113.46372694427828,
|
||||
"y": 44.725322558038016,
|
||||
"width": 11,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "#868e96",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"seed": 875374839,
|
||||
"version": 4,
|
||||
"versionNonce": 625352409,
|
||||
"isDeleted": true,
|
||||
"boundElements": null,
|
||||
"updated": 1674952438500,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "",
|
||||
"rawText": "",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 1,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"baseline": 18,
|
||||
"containerId": null,
|
||||
"originalText": ""
|
||||
},
|
||||
{
|
||||
"id": "Sersd2dl",
|
||||
"type": "text",
|
||||
"x": -111.96372694427828,
|
||||
"y": 78.72532255803802,
|
||||
"width": 11,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "#868e96",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"seed": 95222937,
|
||||
"version": 3,
|
||||
"versionNonce": 1072955769,
|
||||
"isDeleted": true,
|
||||
"boundElements": null,
|
||||
"updated": 1674952440616,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "",
|
||||
"rawText": "",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 1,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"baseline": 18,
|
||||
"containerId": null,
|
||||
"originalText": ""
|
||||
},
|
||||
{
|
||||
"id": "WZXN8wIB",
|
||||
"type": "text",
|
||||
"x": -87.96372694427828,
|
||||
"y": 114.22532255803802,
|
||||
"width": 837,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "#868e96",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 4,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 0,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"roundness": null,
|
||||
"seed": 964543415,
|
||||
"version": 24,
|
||||
"versionNonce": 804984921,
|
||||
"isDeleted": true,
|
||||
"boundElements": null,
|
||||
"updated": 1674952499212,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "![[../informatique/python/manim/polynoms/media/videos/numbers_as_polynoms/720p30]",
|
||||
"rawText": "![[../informatique/python/manim/polynoms/media/videos/numbers_as_polynoms/720p30]",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 1,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"baseline": 18,
|
||||
"containerId": null,
|
||||
"originalText": "![[../informatique/python/manim/polynoms/media/videos/numbers_as_polynoms/720p30]"
|
||||
}
|
||||
],
|
||||
"appState": {
|
||||
"theme": "dark",
|
||||
"viewBackgroundColor": "#ffffff",
|
||||
"currentItemStrokeColor": "#000000",
|
||||
"currentItemBackgroundColor": "#868e96",
|
||||
"currentItemFillStyle": "solid",
|
||||
"currentItemStrokeWidth": 4,
|
||||
"currentItemStrokeStyle": "solid",
|
||||
"currentItemRoughness": 0,
|
||||
"currentItemOpacity": 100,
|
||||
"currentItemFontFamily": 1,
|
||||
"currentItemFontSize": 20,
|
||||
"currentItemTextAlign": "left",
|
||||
"currentItemStartArrowhead": null,
|
||||
"currentItemEndArrowhead": "arrow",
|
||||
"scrollX": 254.46372694427828,
|
||||
"scrollY": 201.17311494196198,
|
||||
"zoom": {
|
||||
"value": 2
|
||||
},
|
||||
"currentItemRoundness": "round",
|
||||
"gridSize": null,
|
||||
"colorPalette": {}
|
||||
},
|
||||
"files": {}
|
||||
}
|
||||
## Drawing
|
||||
```compressed-json
|
||||
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBGAE5tAAYaOiCEfQQOKGZuAG1wMFAwMuh4cXRCfWikfnLGFnYuNESANgbIJtZOADlOMW4OgGYAdgAWAFZ2+M7iyEJmABFM
|
||||
|
||||
qARibgAzAjCuiBJuCAApAGsACQAxADV23Ex0ssgtwnx8AGVYYKPJXGwNQKPcrMKCkNinBAAdRI6m48X2ILBEM+MG+EkEHiBkDBfkkHHC+TQ8IWEDYcD+ahgcJSKX21mUaNQtJJDzQzh4I20E2mKXGAA4JvExh0+e0+fsqWhBQlJol4vEJolEikOdyEaDwQgAMJsfBsUhHUHWZjkwK5LEQTR/U7KHEcYg6vUGiRGjgm3BmqAWigwyTcHgpCapGkh0
|
||||
|
||||
Mhkb7SQIQjKaTcMZTBEIDbcdpTGZKtN8Em24RwACSxEJqAKAF19nbiPjmMXSk8Koh/QsAL77TTCe0AUWC2VyxbL+yEcGIuHWmyJYzFfPiUwTPEVY32RA4pyOBQKWuupdLFr12Ah49QO3wexJINHQmLEEQ9sIHGUFpewULRwm2GwxCmfMSxHaxADuBTCkM48HyIzYO0H64Ik2ApAg2A8O0Ew8GIopjJsCLuFURRPGAxK4fECzliSd7EFgRy4Gk+xb
|
||||
|
||||
OQ2QvmgHBCG8kahAAKlgUAADJ3quaDHqe9bYGCcDcIxbzFK2xR1pAsCNhINR1BaPQtNS2b1sp/SDFU8Q8GMIzyiMiQjPM9ZLKswRjtsuwIPshwSEYxCdgACmw9DxEIj6vB8XxVBAGKHOqSJQr63ATIFmoooyfm6gFJI4rG1bFsy9ZkhSsDUsl5T0oymWQKyqDOPEIxBmMekTHys7lWMKphSSkoFfEKR8toQF6SqaYjOMcxqcCGoQo6+qGuQbqmjk
|
||||
|
||||
XpttauZCPaA3OugADEop8ggHTeiFRLyly7SJLOhmTO0KRGeKJJRjGcYbfEW07XpiT7YdIzHfWYQphthkjPOM4meUU0FkWhTEfWlaJaJTH4G2HaOT2Y39gD5RDiOlkTlOM5zguS48WuBS1OozDaG4BAkOQFDbrubD7i9R7WeqF5Xjejj3p5z6HpaxBWvEfLEDSI4pJoPBbCkWxFdOuAPWIPDEIkuCgQ9/O4HyWyJBazBYYUCx4V0eFEbZ9rkRIUuP
|
||||
|
||||
rRCD0agYlgydbEcdxK5WSeNkkkJZIg+JZSSWU0kNr5CnKPUJIaa0qBTO9+x+wMHBDGgAbKnpxV8o95RmWsFP8XbpnM30KSXAA8pYAAamiM95qK+f5GFnn1wXELCUrhciPlHCXFrxXiBLcLlpLktglIZXS945fs+VCpyiQBhMnVjJ9CpphK3CFUVqRzjtn28jOtVPeXs1Dcao3mhN+5TTNuqDRIi1iit7RrZXfobXEw/pok07coHOlfZAp2xl61/a
|
||||
|
||||
LfUz3wq0z6YhJMFN9KzCMrMfC30cS/RhhWCGwMGKg3BtNSGWRob/UHMOUcFMhTI1nFMect10bWwkOuP4UAWi43xh4ImJMlxkwPDbASvUaZHDpneB81FXhG2ZjwBUmhsCB1HrBTqO1ZgICmKPRI/DvxbHnLpK0UxNAjBVAgeISsVZoBwk8CBZRCJPFhosHW+UIAiwNrgOih5TYsWYOxTAXEMZ8SpvbYSTt8ASQaO7WSntajeyUkwXo/sJjtBfgwfx
|
||||
|
||||
LRQ7h1QHyFUcwFSx1sisROh5k62WZikLU7w2AIAAIoACV8icLeJFYuMVS5ryCtCS+oUa4IGKfXUpjdhAJRbmgNuqVO7pSJDSHuDIqht3yohBIUwQLTBFD/QUi46oz3lGMbQfIxi6V5LHHgiQJiTBqRvF0w13SegtFaPelZNkLSWmfC+VdUDyiDEdQOCZbppnaDwRMJ1ozvzhAqL+D0bk/0nDMR5QDDy8PZh0AMvD9g/ULDAuKcCWkm0QSSdsyDuy
|
||||
|
||||
oL7Ogkk8MsGHhwbHFG+C0YkmXLxdA64KD6lOFsPUFA8Y4AJp4YmO46Hk2SU4teLCJBsIZoU7hRxiB8k0HyMQSikJyh2FMLY71BSaFkbw3l74/iIXKlMP4ir1EEGwmrHRmt9HazIsY3AEwzEWNcdY2x9jiGU1tvsB2IkEHOzAK7EoJIvGGg4n45onA4Rx26GEzSYcqiIWMp1HSCTzIIERqgUEQgU7x2ZkYDgpAYBS1YgAcQLnUiQvx/giB9uUzUlT
|
||||
|
||||
zk6L8uXNN6AG6wNxPAi5+x2ldy6W3bKfT+5wmKsGMCw9OqGQFA9aeEdLrpljmBYJ21h7s09YWoKRyIDzTDFReFk1DmHzmtAbZ29xokh9FUrpkYXnnV4E8p6yYAWXMOkkbpOYoEQtRYDaFNYjXwohki3seRL1w0wWGrF048EEMmfWAlt6f30KTsy8oWxOBQHeIQIwfq24gdyJccxrx6oFvWHYo4jdKAmtQxNMIy5tKjuQ1AAAgkQZQ/sIDBC2Ku9S
|
||||
|
||||
TByHuCIzGUjUBHaWtA7gO8TBjZWJJPqGMd4CAYYkBaXAQhGO5PCBBqoEao2QBw+cbdH8LnaD+SRIxFE1HUUNhxuF9Zfg2Mtg481YQJLgABiYuAcBPhYO4HWaAUZsjco9KuBoDBCAIAoAAITnRDCd80ti+b80CCA2ARCenzOsfQnxx0LqOFOsMAWgukBC2FjzByvNRePic1aTn4uJayJcLyxboqYiy8FsaoWsgRdzetVAq9IDZdK2Firtci71KK8U
|
||||
|
||||
QLJXchlf0Lkppzcb2tOKwl+rWRM4dxrRc095Q6udbC5cUDcH9AIbhINnL+g5u5HA5B/0mV2tDZm1kE1dGSNHHI5R2rHWoBdYs6QQjCW2AUCjLgSxWnzt7cu2Fzs9oCN3YeyEZmHowRUBW8N/Q33AesUqEcSscWLtdcuIbHrjJOPAgdm8HO/oJFbXGIhVZyExh8lAk55WYI3gAE1tuXUHpc1ZSRQFxwgEYNgBgrO+wIJGpsLtgf7e69eq80OnO2hI
|
||||
|
||||
JtqoyPICC+IJ8BA1qA4C9ICQAAsmwMin3cCaGCEyi1bXxdHPdm53UzN5rviN9gC0onlBMQ9NF8R1upgQHcW1vQTonKqpkFUYA9rduekawgUb5DODFlFxAGi5iECiZ1nLhmaB3Y5FV+r7gknLVEGlwnkkHAQ/x9IJGqtwmcMZ6zySWopAISkD6OntAKf6yF+LyrtXFNJP2/KHYAAVvBPI7w09wEV8rtPteNdMJMdgchjBWJM/wCz+sTr0SZEHypS1
|
||||
|
||||
l5GP6Ah3JWFzF8UAb71JoPYJwvT79/7FJ+LQiEZn8P0friG+QEcMwWP2pQMcXlzkDyjjbbgFdkHrhtZmwgGbEAA=
|
||||
```
|
||||
%%
|
||||
2
Open.excalidraw.svg
Normal file
2
Open.excalidraw.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 230 KiB |
@@ -17,27 +17,18 @@ share_updated: 2026-01-12T23:01:48+01:00
|
||||
> [!info] introduction à la notation mathématique ensembliste
|
||||
> - :( j'ai pas pris de notes
|
||||
|
||||
> [!info]+ entiers de von Newmann
|
||||
> ![[entiers de von Neumann]]
|
||||
- [[entiers de von Neumann]]
|
||||
|
||||
# Topologie
|
||||
|
||||
- def **espace métrique** $(E, d)$ : ensemble $E$ muni d'une distance $d$
|
||||
- I Dans la suite de mes notes, j'utilise le terme plus précis d'espace préhilbertien, qui peut être assimilé
|
||||
|
||||
> [!info]+ distance
|
||||
> ![[distance]]
|
||||
|
||||
> [!info]+ boule ouverte
|
||||
> ![[boule ouverte]]
|
||||
|
||||
> [!info]+ boule fermée
|
||||
> ![[boule fermée]]
|
||||
|
||||
> [!info]+ voisinage
|
||||
> - ! [[voisinage]] défini comme le fait de contenir une boule ouverte (de même centre que...)
|
||||
>
|
||||
> Mais voici mes notes :
|
||||
> ![[voisinage]]
|
||||
- [[distance]]
|
||||
- [[voisinage]]
|
||||
- ! [[voisinage]] défini comme le fait de contenir une boule ouverte (de même centre que...)
|
||||
- [[boule ouverte]]
|
||||
- [[espace métrique]]
|
||||
- [[espace topologique]], [[structure de topologie|topologie]]
|
||||
|
||||
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
---
|
||||
up:
|
||||
- "[[structure de topologie|espace topologique]]"
|
||||
- "[[espace topologique]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
aliases:
|
||||
---
|
||||
|
||||
> [!definition] Définition
|
||||
> Un [[structure de topologie|espace topologique]] $X$ est **compact** si il est [[espace séparé|séparé]] et respecte la [[propriété de Borel-Lebesgue]].
|
||||
> Un [[espace topologique]] $X$ est **compact** si il est [[espace séparé|séparé]] et respecte la [[propriété de Borel-Lebesgue]].
|
||||
^definition
|
||||
|
||||
# Propriétés
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
up:: [[base de données]]
|
||||
#s/informatique
|
||||
---
|
||||
up: "[[base de données]]"
|
||||
tags:
|
||||
- "#s/informatique"
|
||||
---
|
||||
|
||||
> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")`
|
||||
> ```breadcrumbs
|
||||
> title: false
|
||||
> type: tree
|
||||
> dir: down
|
||||
> depth: -3
|
||||
> ```
|
||||
```breadcrumbs
|
||||
title: "Sous-notes"
|
||||
type: tree
|
||||
collapse: false
|
||||
show-attributes: [field]
|
||||
field-groups: [downs]
|
||||
depth: [0, 3]
|
||||
```
|
||||
|
||||
@@ -8,7 +8,7 @@ aliases:
|
||||
---
|
||||
|
||||
> [!definition] [[convergence d'un filtre]]
|
||||
> Soit $X$ un [[structure de topologie|espace topologique]] (ou un [[espace métrique]] ou une partie de $\mathbb{R}^{n}$)
|
||||
> Soit $X$ un [[espace topologique]] (ou un [[espace métrique]] ou une partie de $\mathbb{R}^{n}$)
|
||||
> Un filtre $\mathscr{F}$ sur $X$ **converge vers $a \in X$** si $\mathscr{F} \supset \mathcal{V}_{a}$ ([[voisinage]] de $a$)
|
||||
^definition
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
---
|
||||
up:
|
||||
tags:
|
||||
- s/maths
|
||||
aliases:
|
||||
- irrationnalité de √2
|
||||
- démonstration irrationnalité de √2
|
||||
|
||||
@@ -7,7 +7,7 @@ up:: [[espace métrique]]
|
||||
|
||||
> [!definition] [[espace métrique compact]]
|
||||
> Un [[espace métrique]] $(X, d)$ est **compact** si toute suite $(x_{n})_{n \in \mathbb{N}}$ d'éléments de $X$ admet une [[suite extraite]] qui converge dans $X$.
|
||||
> - i on peut remplacer l'existence d'une sous-suite convergente par la [[propriété de Borel-Lebesgue]] (ce qui permet de généraliser aux [[structure de topologie|espaces topologiques]])
|
||||
> - i on peut remplacer l'existence d'une sous-suite convergente par la [[propriété de Borel-Lebesgue]] (ce qui permet de généraliser aux [[espace topologique|espaces topologiques]])
|
||||
^definition
|
||||
|
||||
> [!definition] Autres définitions
|
||||
|
||||
@@ -11,7 +11,7 @@ aliases:
|
||||
|
||||
|
||||
> [!definition] Définition
|
||||
> un [[structure de topologie|espace topologique]] $X$ est **séparé** si
|
||||
> un [[espace topologique]] $X$ est **séparé** si
|
||||
^definition
|
||||
|
||||
> [!idea] Intuition
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
---
|
||||
up:
|
||||
- "[[structure de topologie|espace topologique]]"
|
||||
- "[[espace topologique]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
aliases:
|
||||
---
|
||||
> [!definition] Définition
|
||||
> un [[structure de topologie|espace topologique]] $X$ est dit **compact** si il respecte la [[propriété de Borel-Lebesgue]] :
|
||||
> un [[espace topologique]] $X$ est dit **compact** si il respecte la [[propriété de Borel-Lebesgue]] :
|
||||
> ![[propriété de Borel-Lebesgue#^BL]]
|
||||
>
|
||||
^definition
|
||||
|
||||
@@ -37,7 +37,7 @@ aliases:
|
||||
# Propriétés
|
||||
|
||||
> [!proposition]+ Théorème
|
||||
> $\mathscr{S}_{n}$ est un [[structure de topologie|espace topologique]] [[espace topologique compact|compact]] et [[espace topologique totalement discontinu|totalement discontinu]]
|
||||
> $\mathscr{S}_{n}$ est un [[espace topologique]] [[espace topologique compact|compact]] et [[espace topologique totalement discontinu|totalement discontinu]]
|
||||
>
|
||||
> > [!démonstration]- Démonstration
|
||||
> >
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
---
|
||||
up:
|
||||
- "[[structure de topologie|espace topologique]]"
|
||||
- "[[espace topologique]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
aliases:
|
||||
- totalement discontinu
|
||||
---
|
||||
|
||||
|
||||
> [!definition] Définition
|
||||
> Un [[structure de topologie|espace topologique]] $X$ est **totalement discontinu** si pour tout $t \in X$, la [[composante connexe]] de $t$ est $\{ t \}$ pour tout $t \in \mathscr{S}_{n}$
|
||||
> Un [[espace topologique]] $X$ est **totalement discontinu** si pour tout $t \in X$, la [[composante connexe]] de $t$ est $\{ t \}$ pour tout $t \in \mathscr{S}_{n}$
|
||||
^definition
|
||||
|
||||
# Propriétés
|
||||
|
||||
@@ -1,11 +1,15 @@
|
||||
---
|
||||
up:
|
||||
- "[[structure de topologie|topologie]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
aliases:
|
||||
- espaces topologiques
|
||||
---
|
||||
|
||||
> [!definition] Définition
|
||||
> [!definition] [[espace topologique]]
|
||||
> Un **espace topologique** est un ensemble muni d'une [[structure de topologie|topologie]]
|
||||
> ![[structure de topologie#^definition]]
|
||||
^definition
|
||||
|
||||
# Propriétés
|
||||
|
||||
@@ -42,7 +42,7 @@ depth: [0, 0]
|
||||
![[filtre de fréchet]]
|
||||
## 2 - voisinages
|
||||
|
||||
Soit $X$ un [[structure de topologie|espace topologique]] (par exemple $X \subseteq \mathbb{R}^{n}$ ou bien un [[espace métrique]])
|
||||
Soit $X$ un [[espace topologique]] (par exemple $X \subseteq \mathbb{R}^{n}$ ou bien un [[espace métrique]])
|
||||
$\mathscr{F}_{x} = \{ V \in \mathcal{P}(X) \mid V \text{ est un voisinage de } x \}$ est un filtre non-[[filtre#^filtre-trivial|trivial]]
|
||||
|
||||
- i $V$ est voisinage de $x$ $\iff \begin{cases} \exists \varepsilon > 0,\quad B(x, \varepsilon) \subseteq V \end{cases}$
|
||||
|
||||
@@ -2,11 +2,13 @@ up:: [[langages]]
|
||||
#s/informatique
|
||||
|
||||
|
||||
> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")`
|
||||
> ```breadcrumbs
|
||||
> title: false
|
||||
> type: tree
|
||||
> dir: down
|
||||
> ```
|
||||
```breadcrumbs
|
||||
title: "Sous-notes"
|
||||
type: tree
|
||||
collapse: false
|
||||
show-attributes: [field]
|
||||
field-groups: [downs]
|
||||
depth: [0, 0]
|
||||
```
|
||||
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ type: tree
|
||||
collapse: false
|
||||
show-attributes: [field]
|
||||
field-groups: [downs]
|
||||
depth: [0, 0]
|
||||
depth: [0, 1]
|
||||
```
|
||||
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ tags: "#s/maths/algèbre"
|
||||
> Un ensemble est ouvert si tout point de cet ensemble à son voisinage dans l'ensemble (pour un rayon assez petit)
|
||||
> Autrement dit il ne contient aucun point de son bord (puisque les points du bord n'ont pas leur voisinage dans l'ensemble)
|
||||
|
||||
> [!definition] ensemble réel ouvert
|
||||
> [!definition] ensemble ouvert dans $\mathbb{R}$
|
||||
> Soit $O \subset \mathbb{R}$
|
||||
> $O$ est ouvert si pour tout $x \in O$, il existe $a, b \in \mathbb{R}$ tels que $x \in ]a, b[ \subset O$
|
||||
^definition-reels
|
||||
|
||||
@@ -18,4 +18,3 @@ aliases:
|
||||
> Si $X$ est un espace métrique, on peut démontrer que la [[propriété de Borel-Lebesgue]] équivaut à :
|
||||
> (BW) Toute suite possède une sous-suite convergente.
|
||||
^BW
|
||||
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
---
|
||||
aliases:
|
||||
- topologie
|
||||
- espace topologique
|
||||
- espaces topologiques
|
||||
up:
|
||||
- "[[structure algébrique]]"
|
||||
tags:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
|
||||
> [!definition] Définition
|
||||
> [!definition] [[{{TITLE}}]]
|
||||
>
|
||||
^definition
|
||||
|
||||
|
||||
21
topologie engendrée.md
Normal file
21
topologie engendrée.md
Normal file
@@ -0,0 +1,21 @@
|
||||
---
|
||||
up:
|
||||
- "[[structure de topologie|topologie]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
aliases:
|
||||
---
|
||||
|
||||
> [!definition] [[topologie engendrée]]
|
||||
> Soit $X$ un ensemble et $B$ un ensemble de sous-ensembles de $X$ tel que $X \in B$ et stable par intersection finie.
|
||||
> Alors toutes les unions de membres de $B$ forment une topologie sur $X$, qu'on appelle topologie engendrée par $B$
|
||||
> ---
|
||||
> Soit $X$ un ensemble
|
||||
> Soit $B \subset \mathscr{P}(X)$
|
||||
^definition
|
||||
|
||||
# Propriétés
|
||||
|
||||
# Exemples
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ aliases:
|
||||
>
|
||||
|
||||
> [!proposition]+
|
||||
> Soit $X$ un [[structure de topologie|espace topologique]]
|
||||
> Soit $X$ un [[espace topologique]]
|
||||
> Soit (BL) la [[propriété de Borel-Lebesgue]], on a :
|
||||
> (BL) $\iff$ tout [[ultrafiltre]] sur $X$ converge
|
||||
>
|
||||
|
||||
@@ -2,17 +2,18 @@
|
||||
aliases:
|
||||
- voisinages
|
||||
up:
|
||||
- "[[structure de topologie|topologie]]"
|
||||
- "[[espace topologique]]"
|
||||
tags:
|
||||
- s/maths/topologie
|
||||
---
|
||||
|
||||
> [!definition] Définition
|
||||
> Soit $(E, \mathscr{T})$ un [[structure de topologie]]
|
||||
> [!definition] [[voisinage]]
|
||||
> Soit $(E, \mathscr{T})$ un [[espace topologique]]
|
||||
> Soit $x \in E$ et $V \subset E$
|
||||
> On dit que $V$ est un **voisinage** de $x$ si et seulement si il existe un ouvert $O \in \mathscr{T}$ tel que $x \in O$ et $O \subset V$.
|
||||
> On note $\mathcal{V}(x)$ l'ensemble des voisinages de $x$.
|
||||
^definition
|
||||
|
||||
# Propriétés
|
||||
|
||||
> [!proposition]+
|
||||
|
||||
Reference in New Issue
Block a user