modify documentation

This commit is contained in:
Oscar Plaisant 2024-06-27 17:23:19 +02:00
parent 0835eff420
commit ff0f646d04

View File

@ -1,3 +1,7 @@
"""
This Module defines functions to compute the kendall tau distance between two
rankings, and the kemeny-young rank aggregation method.
"""
import numpy as np
from numba import jit, njit
from itertools import permutations
@ -18,7 +22,6 @@ Number = int|float
def kendall_tau_dist(ranking_a: list[int], ranking_b: list[int]) -> Number:
"""The kendall τ distance between two rankings / permutations.
It is the number of inversions that don't have the same sign within all pairs of an inversion of ranking_a and an inversion of ranking_b.
@ -42,9 +45,9 @@ def __tau(A: list[int], B: list[int]) -> int:
def rank_aggregation(rankings: list[list[int]]) -> tuple[int, tuple[int, ...]]:
"""Brute-force kemeny-young rank aggregation.
"""Return the order elected by the kemeny-young method.
Args:
ranks: A list of the ranks (2D numpy array).
ranks: A list of the ranks (2D numpy array) to elect from.
Returns:
int, list: The minimal sum of distances to ranks, the rank of minimal distance.
"""
@ -67,6 +70,9 @@ def rank_aggregation(rankings: list[list[int]]) -> tuple[int, tuple[int, ...]]:
return min_dist, best_ranking
#################################### TESTS #####################################
if __name__ == '__main__':
ranks = np.array([[0, 1, 2, 3, 4],
[0, 1, 3, 2, 4],