
APL THINKING: EXAMPLES

Murray Eisenberg
Mathematics h Statistics Dept.
University of Massachusetts
Amherst, MA 01003 IJSA
(413) 545 - 2859

Abstract

In an effort to understand ‘APL thinking”,
we examine a few selected examples of using
APL to solve specific problems, namely:
compute the median of a numerical vector;
simulate the Replicate function; string
search: carry forward work-to-be-done in
excess of capacity: rotate concentric
rectangular rings in a matrix: find column
indices of pivots in an echelon matrix.

These examples are drawn from our teaching
experience as well as from APL literature.
We are particularly interested in studyinq
thinking processes underlying alternative
solutions to such problems -- i.e., our
goal is to ‘get inside the head” of the APL
programmer, Analyses include rWXnStrUCtin9
thoughts, comparing alternative approaches,
and, in general, scrutinizing supposed
characteristics of APL thinking.

Introduction

Is there such a thing as “APL thinking”? If
so, what is it? When a programmer claims to
solve a problem in an ‘APL way’, We must
ask what is meant by that. And, when
someone implies that the APL way is better,
or that APL is a better language for
thinking about problems, we must ask how
APL helps (or hinders) problem-solving.
Specifically, just what is unique of
special or different about thinking with
APL? Such questions motivate us to study
how APL affects cognitive processes. This
should enable us to teach APL more effec-
tively and to promulgate its advantages.

In an effort to understand “APL thinking”,
we began by focussing on views within the

Permission lo copy wilhoul fee all or par1 ol’ Ihis malcrial is granlcd
provided that the copies arc IIOI made OI- distributed I’or dirccl
commercial advankrge, thc ACM copyrighl notice and the tilk ot
the publication and ils date appear, and nokc’ is given thal copying
is by permission ol’ the Asocialion t’or C’omputing Machinery. ‘1’0
copy olhcrwisc, or IO republish, rcquirrh ii I’cc and/or spc<l‘ic

permission.

0 1987 ACM O-89791 -2268/87/0005/0433 7S4

Howard A. Peelle
School of Education
[Jniversity of Massachusetts
Amherst, MA 01003 IJSA
(413) 545 - 0135

APL community: we have scanned the APL
literature for definitions of or references
to APL thinkino: surveved ooinions on APL
thinking (in A&., Quote&ad,‘nec. 1985, and
by questionnaire at APL86 1 : interviewed
students, instructors, and professional
programmers: and analyzed APL learning bugs
and APL teaching bugs [1,21. Additionally,
we have gathered opinions in response to
our talks on the subject at the NY/SIGAPL
“APL as a Tool of Thought’ conference
(April 1986) and at the New England APL
IJser’s Group meeting (May 1986) and have
conducted a panel discussion at APL86.

We are still at an early stage of studying
APL thinking. So far, we have fpund that
there is a wide variety of interpretations
extant. To some eeople, “APL thinking”
suggests one-liners (expressions or defined
functions). To others it means array
(parallel) processing, thereby avoiding
branching, iteration, and recursion:
combining cases: working with large chunks:
or doing data-driven computing. Some
believe it lies in the notation -- syntax
and the symbols themselves -- or in concise
APL expressions, or in rich and powerful
primitives. some relate it to modularizing
code (epitomized by direct definition), or
a “qlass box” program, or the propensity to
generalize. A few attest that it involves
use of identities and proofs in formal
reasoning. It might also suggest tricky,
contorted programming techniques. Further,
it might even involve imagery, metaphors,
and visualization of mental representations
and transformations. Perhaps these are all
aspects of APL thinking.

We have also recognized a number of related
issues and challenges, including: the
matter of style, (e.g., use of idioms); how
to arrange studies (which seem to be low
priority in business and academia);
different APLs (e.g., APL2): distinguishing
between problem-solving and formula
translation; identifying problems which
make APL look good or bad; finding reliable
methods to get inside someone’s head and
reveal his or her thoughts; considering
what the programmer knows beforehand; how
to analyze protocols effectively; and

433

whether APL thinkinq differs among
cultures. Nevertheless, we are perserverinq
to focus on underlying cognitive processes.

Accordingly, here we are studying solutions
to selected problems which purportedly
involve APL thinking. Rather than our
supposing what APL thinking is in general,
these examples will have to speak for
themselves. The examples are drawn from our
experience teaching as well as from APL
literature; they are necessarily small in
scope but are intended to be provocative.
We are deliberately exposing thinking
processes -- au naturel.

Examples

1. The Median Problem

The problem is to write an AFL expression
or define a function to compute the median
of a vector of numbers. The median is, by
defin.ition, the middle value of the vector
when arranged in ascending (or descending)
order: if there is an even number of
numbers, however, the median is the average
of the two middle values.

At the onset, we note that this is not
really a ‘problem’ in the strict sense,
since the algorithm is included in the
problem statement itself. Nonetheless, in
the process of creating alternative
expressions in APL, there are opportunities
for varied ways of thinking.

A straightforward, case-by-case approach
directly translates the problem statement
into APL code:

Q Z+MEDIAN X;N
Cl1 Z+XC 4x1
[21 N+o. 5xpX
c31 -+(0=2(pX)/EVGN
II41 ODD: .z+z[rNl
:51 -’ c
C6 1 EVEN: 2+-O. S~Z[Nl+ZCNtIl

Q

BY contrast, the followinq “solution”,
which has become an old chestnut in the APL
community, is not so obvious:

0.sXtixcc4x)cIr-0.5 0.5xltpxJl

(from [31, p. 328)

APL novices often consider this as an
example of “bizarre” thinking. They tend to
make remarks such as “I wouldn’t have
thought of doing it that way”, or even,
“I’ll never be able to think like that!”

The question is: What thinking was involved
in doing it this way? (Would the creator
please identify himself or herself?) In the
absence of any known explanation of how the
above expression was originally conceived,
we can only speculate that it was based on
a deliberate attempt to combine two cases

graduate student, who explained that it ,‘was
an example of ‘APL thinking” because it
solved the problem in an unusual way --

434

into a single expression -- ‘the APL way”
-- which entailed forming arithmetically a
vector index of two middle values and, for
the sake of efficiency , indexing the
permutation vector directly.

Incidentally, as we compa c e these
solutions, we should note that we are not
considering which expression best conveys
the concept of median nor which is most
efficient in space and time,

Other variations, perhaps designed for
greater clarity, include the following.

One which breaks the code into steps:

Q Z+MEDIAN X;N
ClJ X+XC PX 1
c21 N+O. 5xltpX
C31 Z+O. 5xXI: LN3tXCfNl

V

(from 141, p.125)

One which uses subfunctions SORT, MEAN, and
ROUND :

V MIDDLE+MEDI AN DATA
El3 DATA+SURT DATA
c27 MIDDLE+MEAN DATACROUh’D (0 ftpDATA)+21

Q
V UP+SORT DATA

Cl3 UP+DATA[ADATA
V
V CENTER+MEAN DATA

Cl3 CENTER+(tlDATA)ipDATA
Q
V OFFtROUND N

Cl1 OPF+l.NtO. 5
V

(from 151, p.274)

Both amalgamate the even and odd cases by
duplicating the middle value in the odd
case and then averaging the two values.

A different approach isolates the middle
value(s) by dropping the unneeded fr.ont and
back of the sorted vector;

Q ANS+MEDIAN DATA;A
CIJ DATA+DATAC ADATA
c23 A+L-0.5ttpDATAls2
c31 DATAeASt -A)SDATA
c41 ANS’-(t /DATA) ;(pDATA)

Q

(by a student)

Yet another approach involves reproducing
the entire vector:

MEAN (SORT DATA,DATA)CO ltpDATA1

This was of feted spontaneously by a

that is, it went outside the scope of
thinking one would normally do. He also
realized that his solution was “excessive”,
that is, inefficient in space and indulging
in powerful primitive functions. We ask: To
what extent does ‘the unusual’ and ‘the
excessive’ typify APL thinking?

A similar approach is embodied in the
following program:

V MI DDLE+MEDI AN DATA
Cl1 DATA+SORT DATA
E21 MIDDLE+

MEAN .(DATA.CO.S10DATA)E;T(pDATA)~21
V

(151, P. 275)

This way of collecting two cases into one
might also seem excessive and tricky in
that it creates a higher-dimensional array.
When is it worth trying to think of this
kind of solution? And why?

These latter two approaches set up the data
so an APL primitive function -- here Index
-- can do the key job directly. Is this the
essence of “APL thinking”?

The question still remains: What did the
people who originated these solutions think
of when they were devising the algorithms?

2. The Replicate Problem

Most implementations of APL include the
Replicate extension of the standard
Compress primitive function, as in:

2 7 0 1 4 / ‘ABCDE’
AABBBBBBBDEEEE

A few implementations do not include
Replicate: even the IS0 APL Standard does
not include it: in any case, simulating it
is an interesting programming problem.

Here’s one approach to simulating Replicate
for vector arguments: Let V be the vector
of elements to be replicated (the right
argument 1 and let N be the vector of
corresponding numbers of copies (the left
argument). First, remove from V elements
with 0s in N (and notice that this takes
care of scalar arguments as well):

N+(B+N>O)/N
V+B/V

The number of elements in the desired
result is +/N. so, form a vector B of that
length:

B+(+/N)pO

The strategy here is to make R a vector of
indices into V needed to produce the
result. In the example above, these would
be 1 1 2 2 2 2 2 2 2 3 4 4 4 4 (recall that
V was compressed to four elements earlier).

Now mark where each block of repeated
indices should begin:

BCl,lt-ltt\Nl+l

In the example, this produces the vector
10100000011000. Actually, in
order to protect against having nothing
left to select, modify the above to:

B[(pN)tl,lt-l+t\Nl+l

Pinally, Plus-Scan B to produce indices
into V, as in the defined function below:

v Z+N REPLICATE V;B;I
Cl3 N+(B+N>O)lN
c21 V+B/V
c31 B+(-ltI+t\N)pO
C41 BC(p~)fl,lt-lSfl+l
C53 Z+VC+\BI

V

(Of course, a more direct definition is:
Z+vC+\-1~(~+/N)~t\Nl for V+(N>O)IV .)

This is characteristic of a common APL
programming technique: use a bit pattern to
mark where blocks start, then produce the
required indices.

Another approach is illustrated in the
following function, which is based on Jill
Wade’s solution in [3 1, p. 124:

V Z+N REPLICATE V
Cl1
c21 NV::;
Cal Z+VC(,N~.~~llN)/,(~pN)~.~(T/N)pl3

V

Looking again at the example, the indices
we want could be represented in a “ragged’
array (which begs for enhanced APL):

11
2222222

R NO INDICES FOR VC31
4
5 5 5 5

To obtain these indices, form a matrix of
the possible indices repeated in columns,

(ipN)o. xl rlN)Pl
1111111
2222222
3333333
4444444
ss55555

A horizontal bar chart indicatinq how many
copies of each index,

No.Lxr/N
1100000
1111111
0000000
1000000
1111000

435

. . .
_, ...i’ ..a

.__

and, finally, Ravel those two matrices and
Compress.

Already, this solution is noteworthy in the
way it goes outside the domain of the
original problem -- that is, it involves
forming two-dimensional arrays in order to
solve a one-dimensional array problem.

Wade’e actual solution (see 131) is general
in that it replicates an array of arbitrary
rank along any dimension. It is intriguing
to know whether her solution was derived
from a version for rank-one, such as the
above, or was developed in full generality
from the start.

3. The String Search Problem

The problem is to locate all occurrences of
a substring in a given string,

A first attempt at an array-oriented
solution embodies in a matrix
representation the straightforward,
essentially iterative approach (sliding the
substring along one character at a time and
testing for matches):

Q R+T STRINGSEARCH lu'
Cl3 R+(hj(-l+~pW)~Wo.=T)/~pT

Q

(from 131 p. 205)

But, alas, this expression gives a false
match for a special end condition, e.g.:

I LOOK FOR APL WRAP' STRINGSEARCH *APL'
10 16

Use of the Rotate primitive ought to cue a
potential problem with wrap-around. One
might have expected that APL would have
helped in handling the special case here --
as it often does generalize automatically
to empty arrays, scalars or l-element
arrays. At least, one might have hoped that
APL would have provided a better way to
integrate the special case than an ad hoc
patch:

or, alternatively:

(-lCAf(-lt~pW)~(~~.=T).O)/~P~

(from 161, p. 19)

Another approach incorporates a preliminary
search:

:c~r=lt~)l~pr+~l-pW)cT

tT[To.+- ltLpwJA.=w)II

(from [71, p. 7)

Another handles scalar and null arguments:

V POSITIONS+STRING MATCH SUBSTRING
Cl3 SUBSTRINC+,SVBSTRINC
c2.l POSITIONS+A/Cll

(-l+~pSVBSTRINC)~SVBSTRINC~.=,STRING
C3J POSITIONS+

(l-pSVBSTRING)+POSITIONShO<pSTRING
EQI POSITIONS+POSITIO*NS/~pPOSTTIONS

V

(181, e.146)

Concern for efficiency might motivate the
following revision:

V P+STRINC MATCH SVB;LSVB;LAST
L-13 LAST+Or(p,STRTNG)tl-LSVB+p,SVB
C21 P+((LSVB>O)~((LASTtSTRTNC)=ltSVB)~

((-LAST)tSTRINC)=-lfSVBJ/lLAST
c31 P+((,STRINC)CPo.t(~OrLSVB-2)lh.=

l+-l+SVB)IP
V

(18 I, p.156)

Now the question is: how close is this to
the way one would (like to) think about
this problem?

4. The Work Problem

This was posed as a contest problem in 191.
You are given a vector of work needing to
be done (DEMAND) in successive time periods
together with a second vector of capacity
(SUPPLY) to perform that work in those time
periods. Work not performed in one time
period is carried forward to the next one;
capacity not used, however, is lost
forever. The problem is to compute the work
done in all successive periods.

A looping solution is straight-forward:

Q RESVLT+SVPPLY WORK DEMAND;CARRY;I;
PERTODS;NEWDEMAND

Cl3 RESVLT+(PERIODS+pSVPPLY)pCARRY+IcO
c21 LOOP: +(PERIODSd+Itl)/O
c31 RESVLTCI3+SVPPLYU3LNEWDEMAND+

DEMANDCIltCARRY
c41 CARRY+OTNEWDEMAND-RESVLTCII
c51 +LOOP

V

The crux is that the work done at any time
period is the smaller of supply and demand
plus the unsatisfied demand from before.

There is an obvious recursive version of
this solution:

Q RESlJLT+SVPPLY WORK DEMAND
Cl1 RESULT+tO
c21 +(oEpsuPPLY)/o
c31 RESULT+(ltDEMAND).ltSVPPLY
c41 RESVLT+(L /RESVLT),(lCSVPPLY) WORK

(l+DEMAND)+(-ltpDEMAND)tOl.-/RESULT
V

436

Another recursive approach incorporates
some parallel processing:

V RESULTGUPPLY WORK DEMAND; CARRY
Cl1 RESULT+SUPPLYLDEMAND
C21 -+(h/O=CARRY+SRIFT OFDEMAND-SUPPLY)/0
Cal RESlJLT+SUPPLY WORK RESULT+CARRY

V
V R+ SRIFT V

Cl1 R+O,-l+V
V

The published statement of the problem gave
the following recurrence relation:

RESULT’CI 1+

But this is a different (and more
complicated) way of stating the problem. It
uses “complete recursion”, expressing the
RESULT at any time I in terms of - all
previous times.

Instead, let start with one-step
recurrence relatyzns in order to obtain an
‘array-oriented” (non-looping) solution:

RCI l+ScI 1LDCI 1tCcI -11
CCrl+Ol-DCrltCCr-11-R[r1

(where we have abbreviated DEMAND, CARRY,
SUPPLY, and RESULT, respectively, by D, C,
s, and RI.

The thought is to eliminate C from this
pair of relations, thereby to obtain a
formula for R in terms of S and D alone.

The identities

xttrrz) ++ txtrmxtz)
X-(YLZ) ++ (x-ymx-z)

lead to:

CC11 +* 0 i- (DCIItCCI-11) -
(SC11 L (DC1l+CCI-l]))

++ 0 r (DCll*CCI-11-S[11) r
(Dcrltccr-i3-(Dcr1tccr-~l~~

+-, 0 r ((Dcrltccr-il-scrl) r 0)
+e 0 r 0 r mltccr-iI-scrl
++ 0 r (zxrl-scrl) + ccr-13

Abbreviating DC1 I-SCr 1 by EC1 1
(E for excess), we get:

c[rl ++ 0 r EultcCr-iI

Together with the initial condition CCOl++O
the above relation gives, in turn:

ccl3 ++ 0 r i7ciitccol ++ 0 r .EEII
~~23 ++ 0 r ,n2itccil ++ 0 r (~c21 t oral])

++ 0 r EC21 r (ECIltEC21)

Similarly:

~~33 ++ 0 r ~~31 r .(Ec2itSc33) r
(EclltEc2ltEc31)

Now the pattern seems Clear:

cCr3 +a 0 r r/twtE

This simplifies slightly to the following
(recall E ++ D-S):

ccri ++ r/o.t\wltD-s

Together with

(*I

RCII ++ scrimritccr-11 (*‘I

this provides a new solution -- one that
still seems to be iterative. HOWeVer, (**I
can be vectorized as R ++ SLDtO,-l+C . so,
to get a non-iterative solution, it remains
to recast (+), that is, to calculate all
the sums there at once. These are row sums
of the triangular (non-APL) array:

EC11
EC11 EC21
EC11 EC21 EC31
EC11 EC21 EC31 EC’+3
. . .

Then the numbers to be summed can be
obtained by multiplying by the appcopriate
bit-mask, generated by:

V M+LOWERA N
Cl3 M+(tN)o.rtN

P

Now C can be vectocized as:

C f-r ~IO.t\.~(LOWERA PS)X(~PPS)PD-S

At last, a complete non-iterative solution
is at hand;

v RESULT+SUPPL Y WORK DEMAND ; CARRY; N
Cl1 N+p SUPPLY+, SUPPL Y
c21 CARRY+l-IO,t\@(LOWERA NIX

(2pN)pDEMAND-SUPPLY
c31 RESULT+SVPPLYL DEMAND+ 0, 1 t CARRY

V

Not ice the critical role of identities and
formal mathematical manipulations in
arriving at this solution,

All the preceding solutions have in common
the expression of work done as the smaller
of supply and total demand (current plus
carried over). By way of contrast, the
winning contest entry, submitted by David
Hosier and published in 1101 (along with a
formal proof of correctness) is:

SCfPPLY-(l+T)--lCT+I-\O,t\SVPPLY-DEMAND

Hosier’s solution seems to be based on a
different idea : the work done is obtained
by reducing the available supply by its
unused portion. It is not clear what T
represents conceptually, nor what suggested
using Max-Scan.

437

5. The Matrix Rotation Problem

This problem was offered as a prize
competition at APL86. Consider a matrix as
comprised of concentric rectangular rings.
The problem is to write a dyadic function
(MATROT) which rotates each ring a given
number of positions about a central axis
perpendicular to the plane of the matrix. A
positive left argument causes counter-
clockwise rotation. For example:

3 MATROT 4 4~116
4 8 12 16
3 10 6 1S
2 11 7 14
15 9 13

Here we offer a post-hoc account of one
person’s attempt at developing a solution
-- albeit incomplete and revealing various
shortcomings in thinking.

We begin with some overall thoughts about
alternative approaches: “First, I
considered doing it recursively, using a
mask over the inner rings and joining
together the pieces.... But I preferred to
try doing it directly -- that is, all at
once with array processing -- since that
seemed to be the spirit of the competition.
Further, I realized that I could do it with
index mapping, but it would be too tedious
(and inelegant). I also brieflv considered
the generic approach of creating a larger
rank array, doing some transformation on
it, and then selecting the appropriate
part(s), perhaps using Dyadic Transpose.
But then I got the idea of treating the
problem geometrically -- based on how I
visualized the matrix rings actually
rotating.”

Now we follow this “geometric” approach.
‘The idea came from drawing a diagram
showing the movement of vectors:

“This, in turn, suggested sliding
triangular sections of the matrix (like
faults in plate tectonics):”

El 1 ,t
(We note the mental slip into
convenient case of a square matrix.)

the

“Then I refined the diagram to make sure
how to represent the elements discretely in
an APL matrix. And I decided to use a
logical mask to get each of the four
triangular pieces, shift them (with Rotate,
of course! 1, and then add them together.*
(Note the slip into numerical matrices
only. 1

-Incidentally, I knew I was diagramming a
matrix of odd shape but expected that I
could make the function work for the even
case also.

“Then I wrote APL code:

“As I was writing this down, I was thinking
of slight variations to economize on code
(and perhaps speed). I chose to rewrite it
in direct definition form:

ROT: (lewx46T)+(-l4wxT+~4T)+(-le~xT+~4T)+
l~wxT+(No.<N)A4No.SN+lltp~

“While I was doing this, I realized that
the function only causes a rotation of one
position and that I would have to recucse
after all. so, I quickly built a
supra-function:”

MATROT: (a-1) MATROT ROT w : a=0 : w

Next we will see an excursion into enhanced
APL: ‘Then I tried a condensed expression
using Rationalized APL ([llll for
one-position rotation:

ROT: +fwxb'2 ($b’4)314 T

And I even sketched an expression using the
Dual operator, wishing that there were a
function F (and its inverse) for splitting
rings into vectors:”

ROT: a$"Fw

Now, back to earth. ‘Agggh. After a short
pause and a glance back at the original
problem statement, I realized that my
MATROT function didn’t extend to
rectangular matrices. And, I r.eally wanted
to do positive or negative rotation as
well:

“Later, I got a chance to test it on my
computer. In trying some examples, I soon
saw that -- uh oh -- 1 had forgotten the
element in the center of an odd-shaped
matrix. (The even case was OK.) So, r
patched it in (without ruining the even
case), along with some small improvements:

438

V RcN MATROT M
Cl3
c21 ZCOHO
C3J R+Rh@$-RcRo.sRt~ltpM

MATROT (MxRh$fl r41 R+(N-1) +ID l+pM)+
(~$MXQ~IR)t(-leMxe~R)+(-l~Mx~BR)+leMxR

V
V RcID N

Cl1 R+(tN)o .=IN
V

“I couldn’t help but wonder if there were a
better way to include the center in the
original mask Finally, I began to
reconsider the whole approach, because I
needed to deal with rectangular matrices
anyway. Maybe even try to generalize to
arrays? But I had no more time available.”

The reader may wish to compare this
approach -- which involves some spatial
transformations -- with the winning
solution (see 112 1) which generates a
spiral of indices.

6. The Echelon Pivots Problem

This last problem is a “quickie”, one
solution to which involves uncomplicated
use of only a few functions. You are given
an “echelon” matrix, such as:

M
41749013
05662725
00030404
0000006 5
00000000

The first nonzefo element -- the so-called
“pivot” -- in each row of M is located to
the right of the pivot in the row above it;
and any zero rows come at the bottom. (Such
matrices are produced in the course of
solving systems of linear equations or
testing column vectors for linear
independence.) The problem is to locate the
columns containing these pivots.

To solve it, first see which elements in M
are nonzero:

M*O
11111011
011111~1
00010101
00000011
00000000

Turn off all bits after the first 1 in each
row (of course, it helps to know this
idiom) :

<\M*O
10000000
01000000
00010000
00000010
00000000

Mark the desired columns,

vf<\MtO
11010010

and, finally, select their indices:

(vf <\M*O)Il-l+pM
12 4 7

Another Scan idiom might come to mind
initially, but it leads to a bug for KOWS
of all OS:

l+t/I\\M= 0

The question this example raises is: to
what extent does “APL thinking” consist of
being familiar with very powerful
primitives (including their idiomatic
combinations) and merely selecting them
when needed? That is, does a lot of APL
thinking really consist of not having to
think very much at all?

Conclusion

The examples here have illustrated a
variety of ways of solving problems with
APL, such as:

- combining cases

- creating ‘excessive” arrays
(beyond the domain of the problem)

- setting up arrays in order to apply
appropriate primitives or idioms

- coercing ragged arrays into
rectangular arrays

- forming bit masks

- considering edge conditions
and special cases

- seeking efficiency

- using examples as guides

- transforming spatial representations

In several of the example problems we were
able to capture to some degree the actual
thinking-in-progress toward solutions
(however imperfect). In others, we had no
alternative but to speculate, that is,
invent plausible scenarios for how solvers
were led to their solutions.

BY contrast, unfortunately, much of the
literature on APL proqramming consists of
“textbook” examples: typically, the line of
reasoning leading to the final result is
presented as linear, Polished, and
pristine. Rarely do we see a detailed
account Of how a mortal Droblem-solver

thinks, really replete with all paths taken
-- including blind alleys -- and various
errors encountered.

439

Doubtless, many APL proqrammers are to0
busy going about their work to take time to
describe how they do it. Even if they have
time, they may be unwilling to air their
“dirty laundry” and are unaccustomed to
thinking about their thinking -- or at
least unpracticed in recording their
thoughts.

If we, in the APL community, believe that
APL is a good (or better) tool for solving
problems -- and especially if we
oroselvtize
‘Incumbent

about this -- then it is
upon us to understand why.

Indeed, we need to be able to articulate
just what is ‘APL thinking’.

References

111

[21

[31

[41

I5 1

t6 1

17 I

i8 1

[9 1

‘APL Learning Bugs”, M. Eisenberg and
H.A. Peelle, APL83 Conference Proc.,
APL Quote-Quad, Vol. 13, No. 3,
March, 1983

‘APL Teaching Bugs’, H.A. Peelle and
M. Eisenbers. APL85 Conference Proc.,
APL Quote-Quad, Vol. 15, No. 4,
Hay, 1985

APL: An Interactive Approach (3rd Ed.1
L. Gilman and A.J. Rose, Wiley,
New York, 1984

APL: The Language and Its Usage,
R.P. Polrvka d
Prentice-Hall, EngltEood

Pakin,
g;iffs, NJ,

1975

APL: An Introduction, H.A. Peelle,
Holt, Rinehart and Winston, New York,
1986

*The APL Idiom List”, A.J. Perlis and
s. Rugaber, Yale University, Dept. of
computer Science, Research Report C87,
April, 1977

FinnAPL Idiom Library (2nd Ed.),
Finnish APL Association, Helsinki,
July, 1982

Learning APL: An Array Processing
Language, J.A. Mason, Harper & Row,
New York, 1986

“Contest 13”, I.P. Sharp Newsletter,
vol. 12, No. 4, (Technical Supplement)
July/August, 1984, p. T3

[lo] “Contest 13 Results”, I.P.Sharp Newsl.
vol. 12, No. 6, (Technical Supplement)
November/December, 1984, p. T2

[ll] “Rationalized APL”, R.E. Iverson,
Sharp Research Report #l, I.P. Sharp
Associates, Toronto, January, 1983

L12 I “APL86 Competition: Matrix Rotation”,
vector, vol. 3, No. 2, October, 1986

440

