up::[[MOC arithmétique]] title::"$\left( \sum\limits_{k=0}^{n}a_{k} \right)^{2} = \sum\limits_{i=1}^{n}\left( \sum\limits_{j=1}^{n} a_{i}\times a_{j} \right)$" #maths/arithmétique --- $\left( \sum\limits_{k=0}^{n}a_{k} \right)^{2} = \sum\limits_{i=1}^{n}\left( \sum\limits_{j=1}^{n} a_{i}\times a_{j} \right)$ # Cas particuliers - $(a+b)^{2}= a^{2}+2ab+b^{2}$ : [[identités remarquables]] - $(a+b+c)^{2}= a^2+b^2+c^2+2ab+2bc+2ac$ - ![[somme des carrés 2022-06-23 14.34.47.excalidraw|300]] - $(a+b+c+d)^{2}= a^{2}+b^{2}+c^{2}+d^{2}+2(ab+ac+ad+bc+bd+cd)$ # Cas général $\left(\sum\limits_{i=0}^{n}a_{i}\right)^{2} = \sum\limits_{i=0}^{n} \left(a_{i}^{2}\right) + 2\sum\limits_{i=1}^{n-1} \left(\sum\limits_{j=i+1}^{n} a_{i}a_{j}\right) = \sum\limits_{i=1}^{n} \left(\sum\limits_{j=1}^{n} a_{i}a_{j}\right)$ description::![[carré d'une somme 2022-09-17 16.14.42.excalidraw|100%]]