
TP 1. Plots

September 14, 2021

1 Rappel
Pour faire des calculs efficacement et afficher des graphiques, on importera toujours les modules
numpy et matplotlib via les commandes :

[]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#Cette dernière commande demande l’incrustation des graphes dans le notebook.

2 Tableaux de nombres avec numpy
La bibliothèque numpy fournit une structure de tableau de nombres ndarray (comme à priori les
listes) mais la syntaxe d’utilisation est plus simple et les calculs plus efficaces.

2.1 Exécuter et observer l’effet des commandes suivantes.
[]: x = [1, 2, 3, 4]

y = [-2, 4, -6, 8]

print(type(x), x, y)

xx = np.array(x)
yy = np.array(y)

print(type(xx), xx, yy)

[]: s = [a + b for a, b in zip(x, y)]
print(type(s), s)

[]: ss = xx + yy
print(type(ss), ss)

[]: p = [a*b for a, b in zip(x, y)]
print(type(p), p)

1

[]: pp = xx*yy
print(type(pp), pp)

[]: c = [a**2 for a in x]
print(type(c), c)

[]: cc = xx**2
print(type(cc), cc)

[]: b = [a < b for a, b in zip(x, y)]
print(type(b), b)

[]: bb = xx < yy
print(type(bb), bb)

2.2 Alors ? Que constatez vous ?
2.3 Consulter la documentation des fonctions
• np.ones

• np.zeros

• np.linspace

• np.arange

et créer les tableaux suivants x, y et z suivants :

• x sera de taille 100 et ne contiendra que des 1 ;

• y sera de taille 100 et contiendra les nombres de 1 à 100 ;

• z contiendra 200 nombres en 0 et 1, espacés régulièrement.

2.4 Remarque
La structure s’appelle ndarray car il s’agit en fait d’un tableau multi-dimensionnel, d’où le paramètre
size de certaines commandes de création. Voyez plutôt :

[]: np.random.random(size=(2,3,4))

[]: np.ones(shape=(5,5))

[]: x = np.linspace(0, 1, 9)
print(x.shape, x)

[]: x.shape = 3 ,3
print(x.shape, x)

2

2.5 Little tip
Si on a deux listes de nombres que l’on veut additionner (ou autres opérations) on commencera par
les convertir en tableau numpy.

[]: liste_a = [1, 2, 3, 4, 5]
liste_b = [1, 4, 2, 3, 5]
a, b = np.array(liste_a), np.array(liste_b)
resultat = a+b

[]: resultat

3 Premiers graphes
3.1 Exécuter les commandes suivantes.

[]: x = np.linspace(0.0, 5.0, 20)
print(x)

[]: y = np.sin(x)
print(y)

[]: plt.plot(x, y)

On retiendra que l’on passe abcisses puis ordonnées. Comment lisser le graphe ci-dessus ?

Afficher (sur l’intervalle de votre choix) le graphe des fonctions suivantes :

f(x) = cos(x) sin(x); g(x) = 5e−x/7; h(x) = 2x(1− x).

3.2 Exécuter les commandes suivantes :
[]: plt.plot((0, 1), (0,2))

[]: plt.plot([0,1], [0,1])

Qu’en déduisez-vous sur la nature des arguments à passer dans la fonction plot ?

3.3 Quelques options
Il existe tout un tas de commandes pour enjoliver ses graphes.

[]: x = np.linspace(-np.pi, np.pi, 200)
y = np.sin(2.0*x) - 2.0*np.cos(3.0*x)

plt.figure(figsize = (8, 5))
#pour gérer la taille de la figure (longueur, largeur)

3

plt.plot(x, y, color= "red" , ls = "--" , lw = 2)
ls pour line style, style du trait
lw pour line width, épaisseur du trait

[]: t = np.linspace(-np.pi, np.pi,50)
x = 2.0*np.cos(t)
y = np.sin(t)

plt.plot(x, y, color= "blue", linestyle = "-", linewidth = 2, marker = "o")

[]: t = np.linspace(0.0, 1.5, 100)
x = np.sqrt(t)
y = t**2
z = t**3

plt.figure(figsize = (8, 6))

plt.plot(t, x, linewidth = 2.0, label = r"$y=\sqrt{x}$")

plt.plot(t, t, linewidth = 2.0, label = r"$y=x$")

plt.plot(t, y, linewidth = 2.0, label = r"$y=x^2$")

plt.plot(t, z, linewidth = 2.0, label = r"$y=x^3$")

plt.legend(loc= "best", fontsize = 15)
#pour activer l'affichage des légendes, fontsize pour la taille du titre

plt.title("Graphe des premières puissances", fontsize = 15)
#titre, fontsize pour la taille du titre

[]: x, y = np.random.random(size = (2, 100))

plt.scatter(x, y)

plt.xlim([0.0, 1.0])
#limites des abscisses
plt.ylim([0.0, 1.0])
#limites des ordonnées

3.4 Exercices
En s’inspirant des exemples précédents, tracer les graphes suivants :

1. sur la même figure, y = x en rouge pointillé et y = 4x(1− x) en bleu continu large ;

2. la courbe paramétrée : x = cos(t), y = 2sin(2t) en trait large, avec les points d’interpolation
apparents ;

4

3. la courbe paramétrée

x = sin(t)
(

ecos(t) − 2 cos(4t)− sin5

(

t

12

))

; y = cos(t)
(

ecos(t) − 2 cos(4t)− sin5

(

t

12

))

4. sur la même figure, en rouge, la courbe paramétrée

x =

√
2

2
+ 0.05 cos(t); y =

√
2

2
+ 0.05 sin(t)

et en bleu, les 100 premiers points de la suite (xn, yn) où

xn =

√
2

2
+

cos(n/4)
n+ 1

; yn =

√
2

2
+

sin(n/4)
n+ 1

.

Limites des abscisses [0.5, 1]; limites des ordonnées [0.5, 1]; taille de la figure (7, 7);

5. les 200 premiers points Pn = (xn, yn) où

xn+1 = 1.0− 1.4x2
n
+ yn; yn+1 = 0.3xn

avec des valeurs initiales prises au hasard entre 0 et 1.

On pourra consulter cette gallerie pour plus d’exemples.

5

https://matplotlib.org/2.0.2/gallery.html

	Rappel
	Tableaux de nombres avec numpy
	Exécuter et observer l'effet des commandes suivantes.
	Alors ? Que constatez vous ?
	Consulter la documentation des fonctions
	Remarque
	Little tip

	Premiers graphes
	Exécuter les commandes suivantes.
	Exécuter les commandes suivantes :
	Quelques options
	Exercices

