
Communication Interprocessus sous BSD

les sockets

Université François Rabelais de Tours
Faculté des Sciences et Techniques

Antenne Universitaire de Blois

Licence Sciences et Technologies

Mention : Informatique

2ème Année

Mohamed TAGHELIT

taghelit@univ-tours.fr

Programmation Système

1

Communication Interprocessus sous BSD
les sockets

 Caractéristiques des Sockets (Type, Domaine)

 Fichiers d'entête et structures associées

 Fichiers d'administration liés au réseau et routines associées

 Création/Nommage d'une Socket

 Communication locale (modes non connecté et connecté)

 Communication distante (modes non connecté et connecté)

 Multiplexage des Entrées/Sorties

 À une Socket est associé un TYPE (Qualité de transmission) :

 SOCK_DGRAM ▪ SOCK_RDM

 SOCK_STREAM ▪ SOCK_SEQPACKET

 SOCK_RAW …

 À une Socket est associé un DOMAINE (Type d'adressage) :

 AF_UNIX ▪ AF_IPX …

 AF_INET ▪ AF_APPLETALK …

 Associations possibles entre TYPE et DOMAINE

 SOCK_DGRAM + AF_UNIX

 SOCK_DGRAM + AF_INET

 SOCK_STREAM + AF_UNIX

 SOCK_STREAM + AF_INET

 SOCK_RAW + AF_INET

 …
2

Caractéristiques des Sockets

3

Fichiers d'Entête et Structures

Associées

 Les fichiers suivants (contenus dans le répertoire /usr/include) sont nécessaires

pour toute utilisation des Sockets

 sys/types.h

 sys/socket.h

 sys/un.h

…

typedef unsigned short u_short;

typedef unsigned long u_long;

…

struct sockaddr {

u_short sa_family; /* address family : AF_XXX value */

char sa_data[14]; /* up to 14 bytes of protocol-specific address */

};

struct sockaddr_un {

short sun_family; /* AF_UNIX */

char sun_path[108];

};

 netinet/in.h

struct sockaddr_in

{

short sin_family; /* AF_INET */

u_short sin_port; /* 16-bit port number */

struct in_addr sin_addr; /* 32-bit netid/hostid */

char sin_zero[8]; /* unused */

};

4

Fichiers d'Entête et Structures
Associées

struct in_addr

{

u_long s_addr; /* 32-bit netid/hostid */

}

2 2 4 8 octets

struct sockaddr_in

 netdb.h

struct hostent {

char *h_name; /* Nom officiel de l'hote. */

char **h_aliases; /* Liste d'alias. */

int h_addrtype; /* Type d'adresse de l'hote. */

int h_length; /* Longueur de l'adresse. */

char **h_addr_list; /* Liste d'adresses. */ };

5

Fichiers d'Entête et Structures
Associées

struct servent {

char *s_name; /* Nom officiel du service */

char **s_aliases; /* Liste d'alias */

int s_port; /* Numero de port */

char *s_proto; /* Protocole utilise */ };

struct netent {

char *n_name; /* Nom officiel du reseau */

char **n_aliases; /* Liste d'alias */

int n_addrtype; /* Type d'adresse reseau */

unsigned long int n_net; /* Adresse du reseau */ };

struct protoent {

char *p_name; /* Nom officiel du protocole */

char **p_aliases; /* Liste d'alias */

int p_proto; /* Numero du protocole */ };

 /etc/hosts

10.153.3.1 papin s0 /* Exemple d'entrée */

 /etc/networks

iup-net 10.153.3.0 /* Exemple d'entrée */

 /etc/protocols

ip 0 IP # Protocole internet /* Exemple d'entrée */

tcp 6 TCP # Protocole de contrôle de transmission

 /etc/services

smtp 25/tcp mail /* Exemple d'entrée */

struct hostent *gethostent(void);

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

6

Fichiers d’Administration (Réseau) et
Routines Associées

struct netent *getnetent(void)

struct netent *getnetbyname(const char *name);

struct netent *getnetbyaddr(long net, int type);

struct protoent *getprotoent(void)

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

struct servent *getservent(void)

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyport(int port, const char *proto);

 int bcmp (const void *s1, const void *s2, int n);

 void bcopy (const void *src, void *dest, int n);

 void bzero (void *s, int n);

 unsigned long int htonl(unsigned long int hostlong);

Convertit une valeur de 32 bits de l’ordre de la machine dans l’ordre du réseau.

 unsigned short int htons(unsigned short int hostshort);

 unsigned long int ntohl(unsigned long int netlong);

Convertit une valeur de 32 bits de l’ordre du réseau dans l’ordre de la machine.

 unsigned short int ntohs(unsigned short int netshort);

 Exemple

Impression d’un numéro de port sur n’importe quelle machine, quel que soit le

codage des données :

printf(“Numéro de port %d”, ntohs(sp->s_port));

7

Autres Routines Concernant la
Manipulation des Adresses

 Un processus peut créer à tout moment un point de communication socket

#include<sys/types.h>

#include<sys/socket.h>

int socket(int domain, int type, int protocol);

 Valeur de retour :

 entier positif (descripteur) en cas de succès,

 -1 en cas d’erreur (et errno est modifiée en conséquence).

 Choix du protocole :

 si protocol = 0 le système choisit le protocole adéquat

 sinon,

 À ce niveau, aucun processus d’une autre filiation ne peut atteindre la socket, il faut

lui donner un nom.

8

Création d’une Socket

struct protoent *pp;

…

pp = getprotobyname(“tcp”);

s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

Domaine de la socket

Type de la socket

Protocole utilisé

 Pour être accessible, une socket doit être nommée

#include<sys/types.h>

#include<sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

 Un nom est un pointeur sur une structure de type sockaddr_un ou sockaddr_in,

 nom dans le domaine Unix  pathname,

 nom dans le domaine Internet  n° de port + @IP = TSAP.

 le nommage de la socket pour l’expéditeur (mode symétrique) ou pour le client

(mode asymétrique) n’est pas obligatoire,

 Valeur de retour :

 0 en cas de succès,

 -1 en cas d’erreur (et errno est modifiée en conséquence).

9

Nommage d’une Socket

Descripteur de la socket (retourné par socket()

Nom de la socket

Taille du nom de la socket

 En mode non connecté (symétrique), la socket doit être de type SOCK_DGRAM

 Émission de données

#include<sys/types.h>

#include<sys/socket.h>

int sendto(int sockfd, const void *buf, size_t len, int flags,

const struct sockaddr *dest_addr, socklen_t addrlen);

 Valeur de retour :

• le nombre de caractères émis en cas de succès,

• -1 en cas d’erreur (et errno est modifiée en conséquence).

 Réception de données

int recvfrom(int sockfd, void *buf, size_t len, int flags,

struct sockaddr *src_addr, socklen_t *addrlen);

 Valeur de retour :

• le nombre de caractères reçus en cas de succès,

• -1 en cas d’erreur (et errno est modifiée en conséquence).
10

Communication en Mode Non Connecté

Descripteur de la socket locale Tampon et taille du message à transmettre

Adresse (nom) de la socket cible Taille de l'adresse (nom) de la socket cible

Options

Descripteur de la socket locale Tampon et taille du message à recevoir Options

Adresse (nom) de la socket émettrice Taille de l'adresse (nom) la socket émettrice

11

bind()

bind()

socket()

recvfrom()

sendto()

recvfrom()

socket()

sendto()

Client

Serveur

traitement

Communication en Mode Non Connecté
"Canevas"

traitement

possible si la socket du

Client a été nommée

(domaine AF_UNIX)

 Programme serv_unix.c (processus récepteur)

void interrupt(int signo) {

unlink("serv_sock"); exit(0);

}

void main() {

int ret; int sd; char msg[128];

struct sockaddr_un locale, source, cible;

int fromlen = sizeof(source);

signal(SIGINT, interrupt);

locale.sun_family = AF_UNIX;

strcpy(locale.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) != -1)

printf("socket = %d\t", sd);

else ("Erreur socket");

if ((ret = bind(sd, (const struct sockaddr *)&locale, sizeof(locale))) != -1)

printf("bind = %d\n", ret);

else perror("Erreur bind");

for(;;) {

if((ret=recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *)&source, &fromlen)) != -1){

msg[ret] = '\0'; fprintf(stdout, "\trecvfrom = %d; msg = %s\n", ret, msg); }

else perror("Erreur recvfrom");

cible = source;

if((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr *)&cible,sizeof(cible))) != -1)

fprintf(stdout, "\t\tsendto = %d; msg = %s\n", ret, msg);

else perror("Erreur sendto");

}

}
12

Communication en Mode Non Connecté
Dans le Domaine AF_UNIX

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

s'exécute sur réception du signal SIGINT,

et supprime le nom de la socket locale

capte le signal SIGINT

initialise la structure locale

crée la socket locale

nomme la socket locale

réception d'un message
émission d'une réponse (message reçu)

 Programme cli_unix.c (processus émetteur)

void main() {

int ret; int sd; char msg[128];

struct sockaddr_un source, cible; int fromlen = sizeof(source);

cible.sun_family = AF_UNIX;

strcpy(cible.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) != -1)

printf("socket = %d\n", sd);

else perror("Erreur socket");

for(;;) {

printf("Entrer message : "); scanf("%s", msg);

if((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr*)&cible,sizeof(cible))) != -1)

fprintf(stdout, "\tsendto = %d; msg = %s\n", ret, msg);

else perror("Erreur sendto");

if ((ret=recvfrom(sd,msg,sizeof(msg),0,(struct sockaddr *)&source,&fromlen)) != -1){

msg[ret] = '\0'; fprintf(stdout, "\t\trecvfrom = %d; msg = %s\n", ret, msg); }

else perror("Erreur recvfrom");

} }

Communication en Mode Non Connecté
Dans le Domaine AF_UNIX

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

initialise la structure
cible

crée la socket locale

réception d'un message (réponse)

émission du message

invite l'utilisateur à introduire un message

(texte) qui sera stocké dans msg

 Exécution de serv_unix.c

[student]$./serv_unix

socket = 3 bind = 0

recvfrom = 7; msg = bonjour

Erreur sendto: Invalid argument

^C

[student]$

 Exécution de cli_unix.c
[student]$./cli_unix

socket = 3

Entrer message : bonjour

sendto = 7; msg = bonjour

^C

[student]$
13

 Programme cli2_unix.c (processus émetteur modifié – nommage socket locale)

void main() {

int ret; int sd; char msg[128];

struct sockaddr_un locale, source, cible; int fromlen = sizeof(source);

locale.sun_family = AF_UNIX;

strcpy(locale.sun_path, "cli_sock");

cible.sun_family = AF_UNIX;

strcpy(cible.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) != -1)

printf("socket = %d\t", sd);

else perror("Erreur socket");

if ((ret = bind(sd, (const struct sockaddr *)&locale, sizeof(locale))) != -1)

printf("bind = %d\n", ret);

else perror("Erreur bind");

for (;;) {

printf("Entrer message : "); scanf("%s", msg);

if ((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr*)&cible,sizeof(cible))) != -1)

fprintf(stdout, "\tsendto = %d; msg = %s\n", ret, msg);

else perror("Erreur sendto");

if ((ret=recvfrom(sd,msg,sizeof(msg),0,(struct sockaddr *)&source,&fromlen)) != -1) {

msg[ret] = '\0'; fprintf(stdout, "\t\trecvfrom = %d; msg = %s\n", ret, msg); }

else perror("Erreur recvfrom");

}

}

Communication en Mode Non Connecté
Dans le Domaine AF_UNIX

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

initialise la structure
locale

nommage de la socket locale

14

Communication en Mode Non Connecté
Dans le Domaine AF_UNIX

 Exécution de serv_unix.c

[student]$ gcc serv_unix.c -o serv_unix

[student]$./serv_unix

socket = 3 bind = 0

recvfrom = 7; msg = bonjour

sendto = 7; msg = bonjour

recvfrom = 2; msg = au

sendto = 2; msg = au

recvfrom = 6; msg = revoir

sendto = 6; msg = revoir

15

recvfrom = 5; msg = merci

sendto = 5; msg = merci

^C

[student]

 Exécution de cli2_unix.c

[student]$ gcc cli2_unix.c -o cli2_unix

[student]$./cli2_unix

socket = 3 bind = 0

Entrer message : bonjour

sendto = 7; msg = bonjour

recvfrom = 7; msg = bonjour

Entrer message : au revoir

sendto = 2; msg = au

recvfrom = 2; msg = au

Entrer message : sendto = 6; msg = revoir

recvfrom = 6; msg = revoir

Entrer message : ^C

[student] ./cli2_unix

Erreur bind: Address already in use

socket = 3 Entrer message : ^C

[student]$ rm cli_sock

/bin/rm : supprimer socket « cli_sock » ? y

[student]$./cli2_unix

socket = 3 bind = 0

Entrer message : merci

sendto = 5; msg = merci

recvfrom = 5; msg = merci

Entrer message : ^C

[student]

interruption de cli2_unix

relance de cli2_unix

serv_unix toujours en cours d'exécution

et en attente de réception de messagesuppression du nom de la socket locale

relance de cli2_unix

 Programme serv_inet.c (processus récepteur)

void main() {

int ret; int sd; char msg[128]; char name[128];

struct sockaddr_in locale, source, cible; struct hostent *hp;

int fromlen = sizeof(source);

if (gethostname(name, sizeof(name)) != 0) perror("Erreur de gethostname");

if ((hp = gethostbyname(name)) == NULL) perror("Erreur gethostbyname");

bzero((char *) &locale, sizeof(locale));

bcopy(hp->h_addr, (char *) &locale.sin_addr, hp->h_length);

locale.sin_family = hp->h_addrtype;

locale.sin_port = htons(2000);

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) != -1)

printf("socket = %d\t", sd);

else perror("Erreur socket");

if ((ret = bind(sd, (const struct sockaddr *) &locale, sizeof(locale))) != -1)

printf("bind = %d\n", ret);

else perror("Erreur bind");

for (;;) {

if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) != -1)

msg[ret] = '\0'; fprintf(stdout, "\trecvfrom = %d; msg = %s\n", ret, msg);

else perror("Erreur recvfrom");

cible = source;

if ((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr *)&cible,sizeof(cible))) != -1)

fprintf(stdout, "\t\tsendto = %d; msg = %s\n", ret, msg);

else perror("Erreur sendto");

}

}
16

Communication en Mode Non Connecté
Dans le Domaine AF_INET

#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <netinet/in.h>

#include <string.h>

initialise la structure locale

crée la socket locale

nomme la socket locale

émission d'une réponse (message reçu)

réception d'un message

récupère dans name le

nom de la machine locale

récupère la structure hostent

de la machine locale

 Programme cli_inet.c (processus émetteur)

void main(int argc, char **argv) {

int ret; int sd; char msg[128];

sockaddr_in source, cible; struct hostent *hp;

int fromlen = sizeof(source);

if ((hp = gethostbyname(argv[1])) == NULL) perror("Erreur gethostbyname");

bzero((char *) &cible, sizeof(cible));

bcopy(hp->h_addr, (char *) &cible.sin_addr, hp->h_length);

cible.sin_family = hp->h_addrtype;

cible.sin_port = htons(2000);

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) != -1)

printf("socket = %d\n", sd);

else perror("Erreur socket");

for (;;) {

fprintf(stdout, "Entrer message : "); scanf("%s", msg);

if ((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr *)&cible,sizeof(cible))) != -1)

fprintf(stdout, "\tsendto = %d; msg = %s\n", ret, msg);

else perror("Erreur sendto");

if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) != -1){

msg[ret] = '\0'; fprintf(stdout, "\t\trecvfrom = %d; msg = %s\n", ret, msg); }

else perror("Erreur recvfrom");

}

}

17

Communication en Mode Non Connecté
Dans le Domaine AF_INET

#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <netinet/in.h>

#include <string.h>

initialise la structure cible

crée la socket locale

réception d'un message (réponse)

émission du message

récupère la structure hostent de la machine

distante dont le nom est passé en paramètre
de ligne de commande (argv[1]).

invite l'utilisateur à introduire un message

(texte) qui sera stocké dans msg

Communication en Mode Non Connecté
Dans le Domaine AF_INET

 Exécution de serv_inet.c

[student]$ gcc serv_inet.c -o serv_inet

[student]$./serv_inet

socket = 3 bind = 0

recvfrom = 7; msg = bonjour

sendto = 7; msg = bonjour

recvfrom = 2; msg = au

sendto = 2; msg = au

recvfrom = 6; msg = revoir

sendto = 6; msg = revoir

recvfrom = 5; msg = merci

sendto = 5; msg = merci

recvfrom = 6; msg = encore

sendto = 6; msg = encore

^C

[student]$

18

 Exécution de cli_inet.c

[student]$ gcc cli_inet.c -o cli_inet

[student]$./cli_inet machine_serveur

socket = 3

Entrer message : bonjour

sendto = 7; msg = bonjour

recvfrom = 7; msg = bonjour

Entrer message : au revoir

sendto = 2; msg = au

recvfrom = 2; msg = au

Entrer message : sendto = 6; msg = revoir

recvfrom = 6; msg = revoir

Entrer message : merci

sendto = 5; msg = merci

recvfrom = 5; msg = merci

Entrer message : ^C

[student]]$./cli_inet machine_serveur

socket = 3

Entrer message : encore

sendto = 6; msg = encore

recvfrom = 6; msg = encore

Entrer message : ^C

[student]$

 En mode connecté (asymétrique – client/serveur), la socket doit être de type
SOCK_STREAM

 Établissement d'une connexion (côté serveur)

 Attente de demandes de connexions

#include<sys/socket.h>

int listen(int sockfd, int backlog);

 Notifie que la socket, référencée par sockfd, sera utilisée pour accepter (en utilisant

accept()) les demandes de connexions entrantes. La socket est dite en l'état d'écoute.

 backlog définit la longueur maximale pour la file des demandes de connexions en attente.

 Valeur de retour : 0 en cas de succès et -1 en cas d’erreur.

 Acceptation de demandes de connexions

#include<sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

 Extrait la première demande de connexion de la file d'attente de la socket sockfd.

 Crée une nouvelle socket et lui alloue un nouveau descripteur qui sera retourné.

 La nouvelle socket n'est pas en l'état d'écoute et la socket originale n'est pas modifiée.

 Valeur de retour : entier positif ou nul (descripteur) en cas de réussite et -1 en cas d'erreur.19

Établissement d'Une Connexion

Descripteur de la socket locale

longueur maximale de la file des connexions en attente pour sockfd

Descripteur de la socket locale à l'écoute

paramètre-résultat qui sera rempli au retour avec l'adresse de l'entité se connectant

paramètre-résultat initialisé à la taille de addr et renseigné au retour à la taille réelle

 Établissement d'une connexion (côté client)

 Demande de connexion

#include<sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

 Tente de connecter la socket associée au descripteur sockfd à une autre socket dont

l'adresse est indiquée par addr.

 Valeur de retour :

 0 en cas de succès,

 -1 en cas d’erreur (et errno est modifiée en conséquence).

20

Descripteur de la socket locale Adresse (nom) de la socket cible

Taille de l'adresse (nom) de la socket cible

Établissement d'Une Connexion

 En mode connecté (asymétrique), la socket doit être de type SOCK_STREAM

 Émission de données

#include<sys/types.h>

#include<sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

 Ne peut être utilisée qu'avec les sockets connectées (le destinataire est connu).

 Équivalent à sendto(sockfd, buf, len, flags, NULL, 0);

 Valeur de retour :

• le nombre de caractères émis en cas de succès,

• -1 en cas d’erreur (et errno est modifiée en conséquence).

 Réception de données

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

 Équivalent à recvfrom(sockfd, buf, len, flags, NULL, 0);

 Valeur de retour :

• le nombre de caractères reçus en cas de succès,

• -1 en cas d’erreur (et errno est modifiée en conséquence).
21

Communication en Mode Non Connecté

Descripteur de la socket locale

Tampon du message à transmettre Options

Descripteur de la socket locale Tampon et taille du message à recevoir Options

Taille du message à transmettre

Communication en Mode Connecté
"Canevas"

22

recv(SC)

SC = accept(SE)

listen(SE)

bind(SE)

SE = socket()

send(SC)

Serveur

Client

réponse

traitement

connect(SC,SE)

SC = socket()

recv(SC)

send(SC)

 Programme serv_unix_conn.c (serveur)

void interrupt(int signo) {

unlink("serv_sock"); exit(0); }

void main() {

int ret, sd, newsd; char msg[128];

struct sockaddr_un locale, source; int fromlen = sizeof(source);

signal(SIGINT, interrupt);

locale.sun_family = AF_UNIX; strcpy(locale.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) != -1) printf("socket = %d\t", sd);

else { ("Erreur socket"); exit(-1); }

if ((ret = bind(sd, (const struct sockaddr *) &locale, sizeof(locale))) != -1)

printf("bind = %d\n", ret);

else { perror("Erreur bind"); exit(-1); }

if (listen(sd, 5) == -1) { perror("Erreur listen"); exit(-1); }

for(;;) {

if ((newsd = accept(sd, (struct sockaddr *) &source, &fromlen)) == -1) {

perror("Erreur accept"); exit(-1);

}

for (;;) {

if ((ret = recv(newsd, msg, sizeof(msg), 0)) != 0) {

msg[ret] = '\0'; fprintf(stdout, "\trecv = %d; msg = %s\n", ret, msg); }

else { printf("Connexion coupée !\n"); break; }

strcat(msg, " traitée !");

if ((ret = send(newsd, msg, strlen(msg), 0)) != -1)

fprintf(stdout, "\t\tsend = %d; msg = %s\n", ret, msg);
else perror("Erreur send");

}
close(newsd);
}
} 23

Communication en Mode Connecté
Dans le Domaine AF_UNIX

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <signal.h>

s'exécute sur réception du signal SIGINT,

et supprime le nom de la socket locale

capte le signal SIGINT
initialise la structure locale

crée la socket locale

nomme la socket locale

réception d'un message

émission d'une réponse (message reçu + texte " traitée !")

acceptation de connexion, sinon
attente de demande

notifie que la socket locale
est en état d'écoute

ajout du texte " traitée !" à la fin du message reçu (msg)

boucle infinie sur les connexions

boucle infinie sur les réceptions/émissions (d'une connexion)

fermeture du descripteur de la socket de communication

 Exécution de serv_unix_conn.c
[student]$./serv_unix_conn

socket = 3 bind = 0

recv = 4; msg = cmd1

send = 15; msg = cmd1 traitée !

Connexion coupée !

recv = 4; msg = cmd2

send = 15; msg = cmd2 traitée !

Connexion coupée !

 Programme cli_unix_conn.c (client)

main() {

int ret; int sd; char msg[128]; struct sockaddr_un locale, cible;

cible.sun_family = AF_UNIX; strcpy(cible.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) != -1) printf("socket = %d\n", sd);

else { ("Erreur socket"); exit(-1); }

if (connect(sd, (const struct sockaddr *) &cible, sizeof(cible)) == -1) {

perror("Erreur connect"); exit(-1); }

for (;;) {

printf("Entrer message : "); scanf("%s", msg);

if ((ret = send(sd, msg, strlen(msg), 0)) != -1)

fprintf(stdout, "\tsend = %d; msg = %s\n", ret, msg);

else perror("Erreur send");

if ((ret = recv(sd, msg, sizeof(msg), 0)) != -1) {

msg[ret] = '\0'; fprintf(stdout, "\t\trecv = %d; msg = %s\n", ret, msg); }

else error("Erreur recv");

}}

Communication en Mode Connecté
Dans le Domaine AF_UNIX

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

crée la socket locale

réception d'un message (réponse)

émission du message

invite l'utilisateur à introduire un message

(texte) qui sera stocké dans msg

 Exécution de cli_unix_conn.c
[student]$./cli_unix_conn

socket = 3

Entrer message : cmd1

send = 4; msg = cmd1

recv = 15; msg = cmd1 traitée !

Entrer message : ^C

[student]$./cli_unix_conn

socket = 3

Entrer message : cmd2

send = 4; msg = cmd2

recv = 15; msg = cmd2 traitée !

Entrer message : ^C

[student]$
24

demande la connexion
de sa socket locale à

la socket cible
(distante)

initialise la structure cible (distante)

 Programme serv_inet_conn.c (serveur)

void main() {

int ret; int sd, newsd; char msg[128]; char name[128];

struct sockaddr_in locale, source; struct hostent *hp; int fromlen = sizeof(source);

if (gethostname(name, sizeof(name)) != 0) { perror("Erreur gethostname"); exit(-1); }

if ((hp = gethostbyname(name)) == NULL) { perror("Erreur gethostbyname"); exit(-1); }

bzero((char *)&locale,sizeof(locale)); bcopy(hp->h_addr,(char *)&locale.sin_addr,hp->h_length);

locale.sin_family = hp->h_addrtype; locale.sin_port = ntohs(2000);

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { perror("Erreur socket"); exit(-1); }

if (bind(sd, (const struct sockaddr *) &locale, sizeof(locale)) == -1) {

perror("Erreur bind"); exit(-1); }

if (listen(sd, 5) != 0) { perror("Erreur listen"); exit(-1); }

for (;;) {

if ((newsd = accept(sd, (struct sockaddr *) &source, &fromlen)) == -1) {

perror("Erreur accept"); exit(-1); }

for (;;) {

if ((ret = recv(newsd, msg, sizeof(msg), 0)) != 0) {

msg[ret] = '\0'; fprintf(stdout, "\trecv = %d; msg = %s\n", ret, msg); }

else { printf("Connexion coupée !\n"); break; }

strcat(msg, " traitée !");

if ((ret = send(newsd, msg, strlen(msg), MSG_NOSIGNAL)) != -1)

fprintf(stdout, "\t\tsend = %d; msg = %s\n", ret, msg);

else perror("Erreur send");

}

close(newsd);

}

}
25

Communication en Mode Connecté
Dans le Domaine AF_INET

#include <sys/types.h> #include <errno.h>

#include <sys/socket.h> #include <netdb.h>

#include <stdio.h> #include <netinet/in.h>

#include <stdlib.h> #include <string.h>

// initialise la structure locale

// crée et nomme la socket locale

réception d'un message

émission d'une réponse (message reçu + texte " traitée !")

// acceptation de connexion, sinon attente de demande

// met la socket locale en état d'écoute

boucle infinie sur les connexions

boucle infinie sur les réceptions/émissions (d'une connexion)

fermeture du descripteur de la socket de communication

ajout du texte " traitée !" à la fin du message reçu (msg)

 Exécution de serv_inet_conn.c
[student]$./serv_inet_conn

recv = 4; msg = cmd1

send = 15; msg = cmd1 traitée !

Connexion coupée !

recv = 4; msg = cmd2

send = 15; msg = cmd2 traitée !

Connexion coupée !

 Programme cli_inet_conn.c (client)

void main(int argc, char **argv) {

int ret; int sd; char msg[128]; struct sockaddr_in locale, cible; struct hostent *hp;

if ((hp = gethostbyname(argv[1])) == NULL) { perror("Erreur gethostbyname"); exit(-1); }

bzero((char *) &cible, sizeof(cible)); bcopy(hp->h_addr, (char *) &cible.sin_addr, hp->h_length);

cible.sin_family = hp->h_addrtype; cible.sin_port = htons(2000);

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { perror("Erreur socket"); exit(-1); }

if (connect(sd, (const struct sockaddr *) &cible, sizeof(cible)) == -1) {

perror("Erreur connect"); exit(-1); }

for (;;) {

printf("Entrer message : "); scanf("%s", msg);

if ((ret = send(sd, msg, strlen(msg), 0)) != -1)

fprintf(stdout, "\tsend = %d; msg = %s\n", ret, msg);

else perror("Erreur send");

if ((ret = recv(sd, msg, sizeof(msg), 0)) != -1) {

msg[ret] = '\0'; fprintf(stdout, "\t\trecv = %d; msg = %s\n", ret, msg); }

else error("Erreur recv");

}}

Communication en Mode Connecté
Dans le Domaine AF_INET

réception d'un message (réponse)

émission du message

 Exécution de cli_inet_conn.c
[student]$./cli_inet_conn machine_serveur

Entrer message : cmd1

send = 4; msg = cmd1

recv = 15; msg = cmd1 traitée !

Entrer message : ^C

[student]$./cli_inet_conn machine_serveur

Entrer message : cmd2

send = 4; msg = cmd2

recv = 15; msg = cmd2 traitée !

Entrer message : ^C

[student]$ 26

// initialise la structure cible (distante)

#include <sys/types.h> #include <errno.h>

#include <sys/socket.h> #include <netdb.h>

#include <stdio.h> #include <netinet/in.h>

#include <stdlib.h> #include <string.h>

27

Réception
d'une

requête

Serveur

Séquentiel

Traitement
de la
requête

Serveur : Séquentiel vs Concurrent

Réception
d'une

requête

Déléguer
le Traitement
de la requête

Traitement
de la

requête

Serveur

Concurrent

 Programme serv_seq.c (serveur séquentiel)

void interrupt(int signo) {

unlink("serv_sock"); exit(0);

}

void main() {

int ret; int sd; char msg[128]; char pid[16]; char req[16];

struct sockaddr_un locale, source, cible; int fromlen = sizeof(source);

signal(SIGINT, interrupt);

locale.sun_family = AF_UNIX; strcpy(locale.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) != -1) printf("socket = %d\t", sd);

else ("Erreur socket");

if ((ret = bind(sd, (const struct sockaddr *) &locale, sizeof(locale))) != -1)

printf("bind = %d\n", ret);

else perror("Erreur bind");

for (;;) {

if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) == -1)

perror("Erreur recvfrom");

sscanf(msg, "%s%s", pid, req);

printf("Début traitement requête %s de %s\n", req, pid);

sleep(5);

printf("\tFin traitement requête %s de %s\n", req, pid);

}

}
28

Exemple de Serveur Séquentiel

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

lit depuis msg le pid du processus émetteur et le numéro de sa requête

 Programme client.c (serveur séquentiel)

void main() {

int ret; int i; int sd; char msg[128];

struct sockaddr_un source, cible; int fromlen = sizeof(source);

cible.sun_family = AF_UNIX; strcpy(cible.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) != -1) printf("socket = %d\n", sd);

else perror("Erreur socket");

for (i = 0; i < 2; i++) {

sprintf(msg, "%d\t%d", getpid(), i);

if ((ret=sendto(sd,msg,strlen(msg),0,(const struct sockaddr *)&cible,sizeof(cible))) == -1)

perror("Erreur sendto");

}

}

Exemple de Serveur Séquentiel

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <unistd.h>

écrit dans msg le pid du processus et le numéro de sa requête

 Exécution de client.c
[student]$ gcc client.c -o client

[student]$./client&

[2] 12190

socket = 3

[student]$./client&

[3] 12191

[2] Exit 7 ./client

socket = 3

[student]$

[3]+ Exit 7 ./client

[student]$

 Exécution de serv_seq.c
[student]$ gcc serv_seq.c -o serv_seq

[student]$./serv_seq

socket = 3 bind = 0

Début traitement requête 0 de 12190

Fin traitement requête 0 de 12190

Début traitement requête 1 de 12190

Fin traitement requête 1 de 12190

Début traitement requête 0 de 12191

Fin traitement requête 0 de 12191

Début traitement requête 1 de 12191

Fin traitement requête 1 de 12191

29

ex
éc

u
ti

o
n

 s
éq

u
en

ti
el

le

 Exécution de serv_conc.c
[student]$ gcc serv_conc.c -o serv_conc

[student]$./serv_conc

Début traitement requête 0 de 12347 par 12348

Début traitement requête 1 de 12347 par 12349

Début traitement requête 0 de 12350 par 12351

Début traitement requête 1 de 12350 par 12352

Fin traitement requête 0 de 12347 par 12348

Fin traitement requête 1 de 12347 par 12349

Fin traitement requête 0 de 12350 par 12351

Fin traitement requête 1 de 12350 par 12352

 Exécution de client.c
[student]$./client&

[2] 12347

socket = 3

[student]$./client&

[3] 12350

[2] Exit 7 ./client

socket = 3

[student]$

[3]+ Exit 7 ./client

[student]$

[student]$

 Programme serv_conc.c (serveur concurrent)
void interrupt(int signo) { unlink("serv_sock"); exit(0);}

void main() {

int ret; int sd; char msg[128]; char pid[16]; char req[16];

struct sockaddr_un locale, source, cible; int fromlen = sizeof(source);

signal(SIGINT, interrupt);

locale.sun_family = AF_UNIX; strcpy(locale.sun_path, "serv_sock");

if ((sd = socket(AF_UNIX,SOCK_DGRAM, 0)) == -1) perror ("Erreur socket");

if ((ret=bind(sd,(const struct sockaddr *)&locale,sizeof(locale))) == -1) perror("Erreur bind");

for (;;) {

if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) == -1)

perror("Erreur recvfrom");

else { if (fork() == 0) {

sscanf(msg, "%s%s", pid, req);

printf("Début traitement requête %s de %s par %d\n", req, pid, getpid());

sleep(5);

printf("\tFin traitement requête %s de %s par %d\n", req, pid, getpid());

}

}}}

30

Exemple de Serveur Concurrent

simule le temps de traitement de la requête

#include <sys/types.h> #include <signal.h>

#include <sys/socket.h> #include <string.h>

#include <sys/un.h> #include <stdlib.h>

#include <stdio.h> #include <unistd.h>

#include <errno.h>

exécution concurrentielle

 Un processus peut à tout moment terminer toute ou une partie d'une connexion

#include<sys/socket.h>

int shutdown(int sockfd, int how);

 Valeur de retour : 0 en cas de succès et -1 en cas d’erreur (et errno est modifiée en

conséquence).

 Un processus peut à tout moment fermer le descripteur d'une socket

#include<sys/socket.h>

int close(int fildes);

 Libère le descripteur de fichier fildes de la u_ofile du processus.

 Dans le domaine AF_UNIX, il faut supprimer le fichier créé.

 Valeur de retour : 0 en cas de succès et -1 en cas d’erreur (et errno est modifiée en

conséquence).
31

Fin de Communication

Descripteur de la socket locale

how permet de définir la fin de connexion selon les valeurs suivantes :

SHUT_RD (0) : l'utilisateur ne veut plus lire de données (réception désactivée),

SHUT_WR (1) : l'utilisateur ne veut plus écrire de données (émission désactivée),

SHUT_RDWR (2) : l'utilisateur ne veut plus lire ni écrire de données (émission et réception désactivées).

 Un processus peut surveiller plusieurs descripteurs de fichier, en attendant qu'au

moins l'un de ces descripteurs soit "prêt" pour une opération d'E/S.

#include<sys/time.h>

#include<sys/types.h>

#include<unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

 En sortie, les 3 ensembles sont modifiés pour indiquer les descripteurs qui ont changé de statut.

 Valeur de retour : le nombre de descripteurs dans les 3 ensembles retournés, -1 en cas d'erreur

 Manipulation des ensembles de descripteurs

32

Multiplexage des Entrées/Sorties

ensemble des

descripteurs à surveiller

pour vérifier si une

lecture est possible

numéro du plus

grand descripteur

des 3 ensembles +1

ensemble des

descripteurs à surveiller

pour vérifier si une

écriture est possible

ensemble des descripteurs à surveiller pour

l'occurrence de conditions exceptionnelles

durée limite du temps passé dans select()

avant son retour (si NULL, bloqué indéfiniment)

FD_ZERO(fd_set *set); // efface l'ensemble set (set = )

FD_CLR(int fd, fd_set *set); // supprime le descripteur fd de l'ensemble set

FD_SET(int fd, fd_set *set); // ajoute le descripteur fd à l'ensemble set

FD_ISSET(int fd, fd_set *set); // vérifie si le descripteur fd est présent dans

l'ensemble set

 Programme serv_select.c

struct sockaddr_un locale[3], source;

void interrupt(int signo) {

int i;

for (i = 0; i < 3; i++) unlink(locale[i].sun_path);

exit(0);

}

void main(int argc, char **argv) {

int ret, i, j; int sd[3]; char msg[128]; fd_set readers; int fromlen = sizeof(source);

signal(SIGINT, interrupt);

for (i = 0; i < 3; i++) {

locale[i].sun_family = AF_UNIX;

sprintf(locale[i].sun_path, "%s%d", "serv_sock_", i);

sd[i] = socket(AF_UNIX, SOCK_DGRAM, 0);

bind(sd[i], (const struct sockaddr *) &locale[i], sizeof(locale[i]));

}

for (;;) {

FD_ZERO(&readers); for (i = 0; i < 3; i++) FD_SET(sd[i], &readers);

printf("Avant select()\n");

ret = select(128, &readers, NULL, NULL, NULL);

printf("Après select()\n");

for (i = 0; i < 3; i++) {

if (FD_ISSET(sd[i], &readers)) {

msg[recvfrom(sd[i],msg,sizeof(msg),0,(struct sockaddr *)&source,&fromlen)] = '\0';

printf("\tRéception sur sd[%d] : %s\n", i, msg);

FD_CLR(sd[i], &readers);

}

}

sleep(10);

}

} 33

Exemple de Multiplexage des E/S

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#include <errno.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/time.h>

initialise l'ensemble
readers aux 3 descripteurs

de sockets locales
attente de changement de statut
d'au moins un des descripteurs

contenus dans readers

teste si le descripteur sd[i] est contenu dans readers

supprime le descripteur sd[i] de readers

pour permettre l'arrivée de plusieurs messages, sur différents descripteurs, avant le select()

 Exécution de cli_select.c
[student]$ gcc cli_select.c -o cli_select

[student]$

[student]$./cli_select serv_sock_0&

[1] 15519

[student]$

[student]$

[student]$./cli_select serv_sock_1&

[2] 15520

[1] Exit 5 ./cli_select serv_sock_0

[student]$

[student]$./cli_select serv_sock_2&

[3] 15521

[2] Exit 5 ./cli_select serv_sock_1

[student]$

[student]$./cli_select serv_sock_1 | ./cli_select serv_sock_2

[3]+ Exit 5 ./cli_select serv_sock_2

[student]$

[student]$

[student]$./cli_select serv_sock_2 | ./cli_select serv_sock_0

[student]$

 Exécution de serv_select.c
[student]$ gcc serv_select.c -o

serv_select

[student]$./serv_select

Avant select()

Après select()

Réception sur sd[0] : 15519

Avant select()

Après select()

Réception sur sd[1] : 15520

Avant select()

Après select()

Réception sur sd[2] : 15521

Avant select()

Après select()

Réception sur sd[1] : 15522

Réception sur sd[2] : 15523

Avant select()

Après select()

Réception sur sd[2] : 15524

Avant select()

Après select()

Réception sur sd[0] : 15525

Avant select()

 Programme cli_select.c
void main(int argc, char **argv) {

int ret; int i; int sd; char msg[128];

struct sockaddr_un cible;

cible.sun_family = AF_UNIX; strcpy(cible.sun_path, argv[1]);

if ((sd = socket(AF_UNIX, SOCK_DGRAM, 0)) == -1) perror("Erreur socket");

sprintf(msg, "%d", getpid());

sendto(sd, msg, strlen(msg), 0, (const struct sockaddr *) &cible, sizeof(cible));

}

34

Exemple de Multiplexage des E/S

l'arrivée du 1er message a débloqué le select() avant l'arrivée du 2ème message

#include <sys/types.h> #include <errno.h>

#include <sys/socket.h> #include <string.h>

#include <sys/un.h> #include <unistd.h>

#include <stdio.h>

