©
° Programmation Systeme
‘O. @) ® ® (N) o0 00O e 0000 oo
. Communication Interprocessus sous BSD
. les sockets
eQ o o eo0o o000 e 0000 o0 ® ® @ ..‘

Université Francois Rabelais de Tours
Faculté des Sciences et Techniques
Antenne Universitalre de Blois

Licence Sciences et Technologies

Mention : Informatique
2" Année

Mohamed TAGHELIT
taghelit@univ-tours.fr

Communication Interprocessus sous BSD

les sockets

Q

Caracteristiques des Sockets (Type, Domaine)

Fichiers d'entéte et structures associées

Fichiers d'administration liés au réseau et routines associees
Création/Nommage d'une Socket

Communication locale (modes non connecté et connecté)
Communication distante (modes non connecté et connecte)

Multiplexage des Entrées/Sorties

° Caractéristiques des Sockets

000 (XN XN O X) XX o coee
o
0 A une Socket est associé un TYPE (Qualité de transmission) :
= SOCK_DGRAM = SOCK_RDM
= SOCK_STREAM * SOCK_SEQPACKET

- SOCK_RAW

0 A une Socket est associé un DOMAINE (Type d'adressage) :
= AF UNIX = AF IPX
- AF INET * AF APPLETALK

O Associations possibles entre TYPE et DOMAINE
- SOCK DGRAM + AF UNIX
= SOCK DGRAM + AF INET
= SOCK_STREAM + AF UNIX
= SOCK_STREAM + AF INET
= SOCK RAW + AF INET

Fichiers d'Entéte et Structures

®
. ./
.‘. ..."‘.‘. .'A.ss.o.cg-??§.‘ 0O @0 0000000000000
O Les fichiers suivants (contenus dans le répertoire /usr/include) sont necessaires
® pour toute utilisation des Sockets
® = sys/types.h
O
o
®
®
o)
: = sys/socket.h
o

sys/un.h

o Fichiers d'Entéte et Structures
o Associliées
.‘. ..."‘.‘. L N) 0000000 0O @O 000000 005000 0 o
¢ = netinet/in.h
®
O
@
®
o
[]
o
[)
[)
[)
o
[]
[)
[)
[]
[]
: —) struct sockaddr_in
: 2 2 4 8 octets

Fichiers d'Entéte et Structures

Associées
.“.‘. (N O0000000 N EEEEEEEEEEEEEE

netdb.h

@ Fichiers d’'Administration (Réseau) et
Routines Associées

‘. "‘. " " O o0 o000 () o0 oo oo
@
= /J/etc/hosts
10.153.3.1 papin sO /* Exemple d'entrée */

struct hostent *gethostent (void);
struct hostent *gethostbyname (const char *name);
struct hostent *gethostbyaddr (const char *addr, int len, int type);

= /etc/networks

iup-net 10.153.3.0 /* Exemple d'entrée */
o struct netent *getnetent (void)
® struct netent *getnetbyname (const char *name);
® struct netent *getnetbyaddr (long net, int type);
[
= /Jetc/protocols
ip 0 IP # Protocole internet /* Exemple d'entrée */
¢ tcp 6 TCP # Protocole de contrdle de transmission
struct protoent *getprotoent (void)
struct protoent *getprotobyname (const char *name);
: struct protoent *getprotobynumber (int proto);
. = /Jetc/services
smtp 25/tcp mail /* Exemple d'entrée */
° struct servent *getservent (void)

struct servent *getservbyname (const char *name, const char *proto);
. struct servent *getservbyport (int port, const char *proto);

Autres Routines Concernant 1la
Mﬁpieglation des Adresses

int bcmp (const void *sl, const void *s2, int n);

void bcopy (const void *src, void *dest, int n);

void bzero (void *s, int n);

unsigned long int htonl (unsigned long int hostlong) ;
Convertit une valeur de 32 bits de 1’ordre de la machine dans 1’ordre du réseau.
unsigned short int htons (unsigned short int hostshort) ;
unsigned long int ntohl (unsigned long int netlong) ;

Convertit une valeur de 32 bits de 1’ordre du réseau dans 1I’ordre de la machine.
unsigned short int ntohs (unsigned short int netshort) ;

Exemple

Impression d’un numéro de port sur n’importe quelle machine, quel que soit le
codage des donnees :

printf ("“Numéro de port %d”, ntohs(sp->s port));

¢ Création d’une Socket

0 Un processus peut créer a tout moment un point de communication socket

#include<sys/types.h>

#include<sys/socket.h> [TWmdiEsmka]
int socket(int domain, int type, int protocol) ;
™ ™
| Domaine de la socket | | Protocole utilisé |

a Valeur de retour :

@ = entier positif (descripteur) en cas de succes,
¢ = -1encas d’erreur (et errno est modifiée en conséquence).
O
O

0 Choix du protocole :
° = Siprotocol = 0 — le systéeme choisit le protocole adéquat

= sinON, struct protoent *pp;

([
° pp = getprotobyname (“tcp”) ;
: s = socket (AF INET, SOCK STREAM, pp->p proto);

0 A ce niveau, aucun processus d’une autre filiation ne peut atteindre la socket, il faut
lui donner un nom.

° Nommage d’une Socket

‘ (N o000 () R X ® o
O Pour étre accessible, une socket doit étre nommée

#include<sys/types.h>
#include<sys/socket.h> 1
int bind(int sockfd, const struct sockaddr *addr,

_ T socklen t addrlen);
| Descripteur de la socket (retourné par socket () | - 2

 Taille du nom de la socket

| Nom de la socket |

O
e O Unnom estun pointeur sur une structure de type sockaddr_ un OU sockaddr_in,
: = nom dans le domaine Unix — pathname,
= nom dans le domaine Internet —» n° de port + @IP = TSAP.
o
O le nommage de la socket pour I’expéditeur (mode symétrique) ou pour le client
(mode asymétrique) n’est pas obligatoire,
o
[J
* 0 Valeurde retour:

= (0 en cas de succes,
= -1 encas d’erreur (et errno est modifiée en conséquence).

¢ Communication en Mode Non Connecté

O En mode non connecté (symétrique), la socket doit étre de type SOCK_DGRAM
0 Emission de données

#%nclude<sys/types " Descripteur de la socket locale] [Tampon et taille du message & transmettre |
#include<sys/socket-n> J J

int sendto(int sockfd, const void *buf, size t len, int flags,
const struct sockaddr *dest addr, socklen t addrlen);

T T

[Adresse (nom) de la socket cible] [Taille de I'adresse (nom) de la socket cible |

= Valeur de retour :
* |le nombre de caracteres émis en cas de succes,
« -1encas d’erreur (et errno est modifiée en conséquence).

® 0O Réception de données
| Descripteur de la socket locale] { Tampon et taille du message a recevoir | [(Options]

J J J
: int recvfrom(int sockfd, void *buf, size t len, int flags,
° struct sockaddr *src_addr, socklen t *addrlen);
° ™ ™
. [Adresse (nom) de la socket émettrice | [Taille de I'adresse (nom) la socket émettrice |

= Valeur de retour :
» le nombre de caractéres recus en cas de succes,
* -1 encas d’erreur (et errno est modifiee en consequence).

10

O Communication en Mode Non Connecté
® "Canevas"
.“ .‘.‘.““ o0 00000 O0O 0O @0 000000 00060 00 o
o
o Client
@ Serveur
socket ()
o
Py socket () bind ()
o
: bind ()
: reqlléte
Py recvfrom()
®
°
o
(]
(]
[]
: sendto() =-_/ r-eEOPSe =
~ 7
) T -
. possible si la socket du
o Client a été nommeée
. (domaine AF UNTIXx)

@00
O Programme serv_unix.c (Processus recepteur)

void interrupt (int signo) {

Communication en Mode Non Connecté
Dans 1e Domaine AF UNIX

unlink ("serv sock"); exit (0);

et supprime le nom de la socket locale

void main () {

int ret; int sd; char msg[128];

struct sockaddr un locale, source, cible;
int fromlen = sizeof (source) ;

\
| 2_|s'exécute sur réception du signal SIGINT,
l
/

\ €—{ capte le signal SIGINT |

J

#include
#include
#include
#include
#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<sys/un.h>
<stdio.h>
<errno.h>
<signal.h>
<string.h>
<stdlib.h>

if ((sd = socket (AF UNIX, SOCK DGRAM, 0)) !=
printf ("socket = %d\t", sd);
else ("Erreur socket");

printf ("bind = %d\n", ret);

&—{ crée la socket locale |

if ((ret = bind(sd, (const struct sockaddr *)&locale,

[nomme la socket locale |

B~

else perror ("Erreur bind");

sizeof (locale))) != -1)

{’if((ret=recvfrom(sd, msg, sizeof (msg), 0, (struct sockaddr *n&sourceﬁ-&fromlen)) 1= -1) {}
: msg[ret] = '\0'; fprintf (stdout, "\trecvfrom = %d; msg = $%s ﬁ___fet msg) ; } :
_____ | else_perror ("Erreur recvirom"); ;
ClbIé:%:@@ﬂiZﬁ:::L}}}}}}::::::::::::::::::::::__\
, (const struct sockaddr *)&01bleﬂ31zeof(01ble))) 1= -1)
fprintf (stdout, "\t\tsendto = %d; msg = %s\n", ret, msg);

O Communication en Mode Non Connecté

Dans le Domaine AF UNIX
‘.. . . o 000/ o @0 o0 o0 o o

O Programme cli unix.c (processus emetteur) PP T,
#include <sys/socket.h>
volid main () { #include <sys/un.h>
int ret; int sd; char msg[128]; #include <stdio.h>
struct sockaddr un source, cible; int fromlen = sizeof (source) ; #include <errno.h>
- #include <string.h>
| cible.sun_family = AF_UNIX; "(_[initialise la structure]
i strcpy(cible.sun path, "serv sock"); : cible
("if ((sd = socket (AF UNIX, SOCK DGRAM, 0)) != -1) |
: printf ("socket = %d\n", sd); :
: else perror ("Erreur socket"); [cmelaaxketbcﬂe] !

‘ I;££I;t£ Z ,‘,é;}%;é‘r‘ ;n_e_s_s_a_g_e_ T ‘,,‘)‘f ‘S‘c‘ér‘lg z " ;;,‘,‘ - r_n_s;_zy_) o invite l'utilisateur a introduire un message
(S e A e A s (texte) qui sera stocké dans msg

| 1f ((ret=sendto(sd,msg,strlen(msg),0, (const struct sockaddr*)&cible,sizeof (cible))) != -1)
; fprintf (stdout, "\tsendto = %d; msg = %$s\n", ret, msqg);
. else perror ("Erreur sendto"); [emwyondunw&mge]
. S e N T T e e e e e e e e e e e
“if ((ret=recvfrom(sd,msg,sizeof (msg),0, (struct sockaddr *)sgsource,&fromlen)) != -1)|
| msg[ret] = '"\0'; fprintf (stdout, "\t\trecvfrom = %d; msg = %$s\n", ret, msqg); }
. else perror ("Erreur recvfrom"); [réception d'un message (réponse)]
@ } } T See—-————-——-—-——-—-—---= g
° . i)
e 0O Exécutiondecli unix.c O Execution de serv_unix.c
L [student]$./cli unix .
r_%QQE@E_f_§ ___________________ [student]$./§erv_un1x
., " Entrer message_:_bonjour ___| -
. . sendto_=_7; msg = bonjour ______________|_ 1 recvfrom = ; msg = bonjour _,
e BETCLE BENEiEes Invalile argument = |
° ~C ~C

[student]-S- [student]$ 13

O Communication en Mode Non Connecté

Dans le Domaine AF UNIX
" " " " ‘. o 0006 — o R X ® o0 0 o

O Programme cli2 unix.c (processus emetteur modifie — nommage socket locale)

void main () {
int ret; int sd; char msg[l1l28];
struct sockaddr un ﬁocaleﬂ source, cible; int fromlen = sizeof (source):;
r locale.sun family = AF UNIX; : initialise la structure #include <sys/types.h>
\ strcpy(locale.sun_path, "cli_sock");) locale #include <sys/socket.h>
__________________________ #include <sys/un.h>
cible.sun family = AF UNIX; #include <stdio.h>
strcpy (cible.sun path, "serv sock"); #include <errno.h>
® - - #include <string.h>
if ((sd = socket (AF UNIX, SOCK DGRAM, 0)) != -1)
® printf ("socket = %d\t", sd); [nommage de la socket locale]
® else perror ("Erreur socket"); \L
@ L e LY e e e e e e e e -
{ if ((ret = bind(sd, (const struct sockaddr *)&locale, sizeof (locale))) != -1) 1
| printf ("bind = %d\n", ret) !
1 " g 1] I
Y Celse perror (TBrreur bind™); L o o e /
for (;;) {
printf ("Entrer message : "); scanf ("%s", msqg);
® if ((ret=sendto(sd,msg,strlen (msg),0, (const struct sockaddr*)&cible,sizeof (cible))) != -1)
° fprintf (stdout, "\tsendto = %d; msg = %s\n", ret, msqg);
[else perror ("Erreur sendto");
®
if ((ret=recvfrom(sd,msg,sizeof (msqg),0, (struct sockaddr *)&source,&fromlen)) != -1) {

msg[ret] = '"\0'; fprintf(stdout, "\t\trecvfrom = %d; msg = %s\n", ret, msqg); }
else perror ("Erreur recvfrom");

14

O Communication en Mode Non Connecté

Dans le Domaine AF UNIX
‘.. . . o 000/ o @0 o0 o0 @0 0 o

O Exécution de c1i2 unix.c 0 Execution de serv_unix.c
[student]$ gcc cli2 unix.c -o cli2 unix [student]$ gcc serv_unix.c -o serv_unix
[student]$./cli2 unix [student]$./serv_unix
socket = 3 bind = 0 socket = 3 bind = 0

{ Entrer message : bonjour)

: sendto = 7; msg = bonjour recvfrom = 7; msg = bonjour |

| .

bommmomooo recvfrom = Ji.misg = honjour........-..--}_Aendto = 7: msg = bonjour

/ Entrer message :Cau revoir recvfrom = 2; msg = au \

| — —

! sendto = 2; msg @ sendto = 2; msg = au. !
L recvfrom = 2; msg au recvfrom = 6; msg = revoir |
P @@ sendto = 6; msg = sendto = 6; msg = revoir ':
o [ECEEEEEE recvirom = 6; msqg = revolr __ oo .
o Entrer message : ~C < interruption de c1i2_unix

[student] ./cli2 unix <€— relance de c1li2 unix
! Erreur bind: Address already in use
1
\

_socket = 3 Entrer message : *°C serv_unix toujours en cours d'exécution

o [student]$ rm cli sock & suppression du nom de la socket locale et en attente de réception de message

/bin/rm : supprimer socket « cli sock » ? vy

[student]$./cli2 unix & relance de c1i2 unix

socket = 3 bind = 0 -
e Entrer message : merci T TTTTTTTTT recvfrom = 5; msg = merci ;
°, sendto = 5; msg = merci sendto = 5; msg = merci .
° . ___ recvfrom = 5; msqg = merci_______________l____ o _______ S
L Entrer message : ~C ~C

[student] [student]
[]

O Communication en Mode Non Connecté

Dans 1e Domaine AF INET
... . . o 000/ o @0 o0 o0 @0 0 o

O Programme serv_inet.c (Processus recepteur)

wodd mesba) . > récupére dans name le
int ret; int sd; char msg[128]; char name[128]; nom de la machine locale
struct sockaddr in locale, source, cible; struct hostent *hp; récupere la structure hostent
int fromlen = Sizeof(source); de Ia machlne Iocale
|_if (gethostname (name, sizeof (name)) != 0) perror("Erreur de gethostname"); |
1f((hp_= gethostbyname (name)) == NULL) perror ("Erreur gethostbyname"); ___) (
T T T T T T T E T EFEF T EE T T E T T ST ST T EEEEEEEEEEEEEE - N
I a
o : bzero ((char *) &locale, sizeof (locale)); : #include <sys/types.h>
PY : bcopy (hp->h_addr, (char *) &locale.sin_addr, hp->h length); | #include <sys/socket.h>
® | locale.sin family = hp->h addrtype; ™,ifalise la structure locale) #include <stdio.h>
sAleeale. gin _pere = hteng (20000 - - S=-cccc-ccccc-cccc-o-==2 ’ #include <errno.h>
(] #include <netdb.h>
("if ((sd = socket (AF_INET, SOCK DGRAM, 0)) !'= -1) ‘\I #include <netinet/in.h>
: printf("socket _ %d\t", Sd); I k I I : #include <str1ng.h>
® '\ else perror ("Erreur socket"); [cree la socket locale 1:
{ if ((ret = bind(sd, (const struct sockaddr *) &locale, sizeof (locale))) != -1) \:
: printf ("bind = %d\n", ret); :
\ else perror ("Erreur bind"); [nomme la socket Iocale] K
o T e TEEEEE ST
o 0T ()
[) |' if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) != -1) ‘,
° : msg[ret] = '\0'; fprintf (stdout, "\trecvfrom = %d; msg = %$s\n", [réception d'un message] ;
' else perror ("Erreur recvfrom™); e P
Cible = SOUrCe;
° |{ if ((ret=sendto(sd,msg,strlen(msg),0, (const struct sockaddr *)&cible,sizeof (cible))) != -1) \.
° I fprintf (stdout, "\t\tsendto = %d; msg = %s\n", ret, msqg); :
.‘\ else perror ("Erreur sendto"); [emlssmn d'une réponse (message regu)] :
B e e e e e syt
} 16

O Communication en Mode Non Connecté

Dans 1e Domaine AF INET
... . . o 000/ o @0 o0 o0 o o

O Programme cli_inet.c (processus émetteur)

void main (int argc, char **argv) {

int ret; int sd; char msg[128]; récupére la structure hostent de la machine
distante dont le nom est passé en parameétre
sockaddr in source, cible; struct hostent *hp; de ligne de commande (argv[1]).
int fromlen = sizeof (source); J’
{ if ((hp = gethostbyname (argv[1])) == NULL) perror ("Erreur gethostbyname"); '

bzero ((char *) &cible, sizeof (cible));

{ i
® ! bcopy (hp->h_addr, (char *) &cible.sin_addr, hp->h_length); | #include <sys/types.h>

: cible.sin family = hp->h addrtype; S - | #include <sys/socket.h>
® i_cible.sin port = htons(2000); (initialise la structure cible]/' #include <stdio.h>
o L #include <errno.h>
Py [1f ((sd = socket (AF_INET, SOCK DGRAM, 0)) != -1) | #include <netdb.h>

| printf ("socket = %d\n", sd); [crée la socket locale]: #}ndude <net}net/ln'h>

_else perror ("Erreur socket"); =\ —————— A #include <string.h>
) £ oo A .- < - .

or (i7)) invite I'utilisateur & introduire un message
fprintf (stdout, "Entrer message : "); scanf ("%s", msqg); . p
(texte) qui sera stockeé dans msg
{ if ((ret=sendto (sd,msg,strlen(msg),0, (const struct sockaddr *)s&cible,sizeof (cible))) != -1)
| a
fprintf (stdout, "\tsendto = %d; msg = %s\n", ret, msqg); P

o : S (,, by N gl ity !) [emlssmn du message]
o y_€lse perror ("BErreut sendto®; . @ =
° e e e e e e e e e e — e e —
° |' if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) != -1) {

: msg[ret] = '\0'; fprintf (stdout, "\t\trecvfrom = %d; msg = %s\n", ret, msqg); }

' else perror ("Erreur recvfrom"); _ ____________________________ [réception d'un message (réponse)]_

}

[J

O Executionde cli_inet.c

[student]$ gcc cli inet.c -o cli inet
[student]$./cli inet machine serveur

Communication en Mode Non Connecté

socket =

sendto =

! Entrer message
. [student]]s

sendto =

3

Entrer message
sendto =

T

I Entrer message

5;

Entrer message

6

Dan
O

§.le Domaine AF INET

O Execution de serv_inet.c

revoir

encore

[student]$ gcc serv inet.c -o serv inet
[student]$./serv _inet

—— - -

e

socket = 3 bind = 0
"""""""""" bonjour T
msg = bonjour recvirom = 7; msg =
_=_bonjour ____________| _________sendto = 7; msqg
) T T T T T T T T T T T T T T Trecvirom = 27 msg =
sendto = 2; msg
au recvfrom = 6; msg =
6; msg = sendto = 6; msg
6;_MSg = Xevolr __ __ _ _ oo
"""""""""" merci 7777771 77" "recvfrom = 5; msg = merci
msg = merci sendto = 5; msg
e 11 o e U
"""""""""" Zé""""""""""""'}
__[student]]3 ./cli inet machine serveur ___ J
"""""""""" S N
msg = encore recvfrom = 6; msg =
msg_=_encore sendto = 6; msg

recvfrom = 6;

[student]$

o
® Entrer message
o
)

[student]$

= €encore

18

Etablissement d'Une Connexion

O En mode connecteé (asymeétrique — client/serveur), la socket doit étre de type
SOCK_STREAM

0 Etablissement d'une connexion (coté serveur)
O Attente de demandes de connexions

#include<sys/socket.h> (Tongueur maximale de la file des connexions en attente pour sock£d |

N
int listen(int sog}fd, int backlog) ;

[Descripteur de la socket locale
= Notifie que la socket, reférencée par sock£d, sera utilisee pour accepter (en utilisant
accept ()) les demandes de connexions entrantes. La socket est dite en I'état d'écoute.

= backlog définit la longueur maximale pour la file des demandes de connexions en attente.
= Valeur de retour : 0 en cas de succes et -1 en cas d’erreur.

O Acceptation de demandes de connexions
parametre-résultat qui sera rempli au retour avec l'adresse de I'entité se connectant]
#include<sys/socket.h> J

int accept(int so'%kfd, struct sockaddr *addr, socklen_ t *addr.;t}en);

[Descripteur de la socket locale a I'écoute] [paramétre-résultat initialisé a la taille de addr et renseigné au retour a la taille réelle |
= Extrait la premiere demande de connexion de la file d'attente de la socket sock£d.

= Crée une nouvelle socket et lui alloue un nouveau descripteur qui sera retourné.
= Lanouvelle socket n'est pas en I'état d'écoute et la socket originale n'est pas modifiée.
= Valeur de retour : entier positif ou nul (descripteur) en cas de réussite et -1 en cas d'erreur.

¢ Etablissement d'Une Connexion

0 Etablissement d'une connexion (coté client)
O Demande de connexion

#include<sys/socket .h> | Descripteur de la socket locale] [Adresse (nom) de la socket cible]

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen) ;

o
 Taille de I'adresse (nom) de la socket cible

: = Tente de connecter la socket associée au descripteur sock£d a une autre socket dont
° I'adresse est indiquée par addr.
®
= Valeur de retour :

= (0 en cas de succes,
o S z

= -1 en cas d’erreur (et errno est modifiée en conséquence).
([
[J
([]
]

20

Communication en Mode Non Connecté

O En mode connecté (asymétrique), la socket doit étre de type SOCK _STREAM
0 Emission de données

#include<sys/types.h> } .
. Tampon du message a transmettre -_O tions
#include<sys/socket.h> [P - \1,9] ¢

ssize_ t send(int sockfd, const void *buf, size t len, int flags);

o
| Descripteur de la socket locale | (Taille du message a transmettre)

= Ne peut étre utilisée qu'avec les sockets connectées (le destinataire est connu).
= Equivalent a sendto (sockfd, buf, len, flags, NULL, 0);
= Valeur de retour :

» le nombre de caractéres émis en cas de succes,

» -1encas d’erreur (et errno est modifiée en conséquence).

O Réception de donnees
[Descripteur de la socket Iocale] [Tampon et taille du message a recevoir] [Options]

ssize t recv(int salf:kfd, void *b*lf, size_ t 1él§1, int flél'gs);

= Equivalent a recvfrom(sockfd, buf, len, flags, NULL, 0);
= Valeur de retour :

» le nombre de caracteres recus en cas de succes,

* -1 en cas d’erreur (et errno est modifiee en conséquence).

21

o Communication en Mode Connecté
o "Canevas"
.“ .‘...““ L N) 0000000 0O @O0 ® 00000 006060060 o
o
Serveur
.
Client
® bind (SE)
: e
o
: w
: comeceisc,50 | [
. _ f
[Ofcoscerron
(]

"

g

réponse

Communication en Mode Connecté
Dans 1e Domaine AF UNIX

-

~ B e o R e e #include <stdlib.h>

O Programme serv unix conn.c (Serveur)
. . #include <sys/types.h>

void interrupt (int signo | T 2 : : incl < ket.h>
. Pt gno) 0); 11¢ s'exécute sur réception du signal SIGINT] pneluge <eye/ okt
! |
]

unlink ("serv sock"); exit) #include <sys/un.h>
- et supprime le nom de la socket locale #include <stdio.h>

int ret, sd, newsd; char msg[l128]; #include <errno.h>
#include <signal.h>

struct sockaddr un locale, source; int fromlen = sizeof (source);
signal (SIGINT, interrupt); €&—{ captelesignal SIGINT]

(T - ——

I locale.sun family = AF UNIX; strcpy(locale.sun path, "serv sock"); (—[initialise la structure locale

("% ((sd)= socket (AF_UNIX, SOCK_STREAM, 0)) != -1) printf("socket = %d\t", sd);
, else { ("Erreur socket"); exit(-1); } [crée la socket locale] !
Tif ((ret = 'b'i'n'd"(c':aﬁéE ‘struct sockaddr *) &locale, sizeof (locale))) != -1) °

printf ("bind = %d\n", ret);
else { perror ("Erreur bind"); exit(-1); 1}

[' If (1isten(sd) BJ == -17 | perror ("Erreur listen"); exit(-1); J. ‘.(—[notifie que la socket Iocale]
for(;7) { (—_ boucle infinie sur les connexions _ L __esfe_n_etzitdecoute
(if accept (struct sockaddr *) &source, &fromlen)) == -1) { \I
: perror ("Erreur accept"); exit(-1); acceptation de connexion, sinon |
v) attente de demande 1
___ P4
for (ii) 1 ___8§ —. boucle infinie sur les réceptions/émissions (d'une connexion) _______ _____________________
II if ((ret = rec msg, sizeof(msg), 0)) !'= 0) {
: msg[ret] = '\0'; fprintf (stdout, "\trecv = %d; msg = %$s\n", ret, msg); }
I else { printf ("Connexion coupée !\n"); break; } _[réception d'un message l
.'_'_'S_'t_'r_E_é_E_T_Iﬁ_s'_ti_,'_':"_'E'J_f'{{géé' 17) ;) &= ajout du texte " traitée !" & la fin du message recu (msg)
." T it ((ret = 's'e'n'rﬁéé,' ‘strlen(msg), 0)) = -1) oo o
I fprintf (stdout, "\t\tsend = %d; msg = %s\n", ret, msqg);
: else perror ("Erreur send"); —— - 2 et 7 g1y
.y [émission d'une réponse (message recu + texte " traitée !")]___,
?lose (newsd) ; &= fermeture du descripteur de la socket de communication
}

O Communication en Mode Connecté

Dans 1e Domaine AF UNIX
‘.. . . o 000/ o @0 o0 o0 @0 0 o

® o Programme cli_unix_conn.c(client) #include <sys/types.h>

#include <sys/socket.h>

main () { initialise la structure cible (distante) | iiiiijﬁ zzzzizn$>
int ret; int sd; char msg[128]; struct sockaddr un locale, cible; \lf e <
:’ cible.sun family = AF UNIX; strcpy(cible.sun path, "serv sock"); | #include <errno.h>

e e e e e I e e

:' if (socket (AF UNIX, SOCK STREAM, 0)) != -1) printf ("socket = %d\n", sd);‘I
|

| else ["("Brreur socket"); exit(-1); } [créelasocketlocale] demande la connexion
rlf connect._(const struct sockaddr *) &cible, sizeof (cible)) == -1) {1 de ?gssggllzg';[(l‘,?gﬁelea
1 error ("Erreur connect"); exit (-1); 1 .
___p___L___u_______)__x_l_(__)__} ___________________ - (d|3tante)
for (i) 4 . invite l'utilisateur a introduire un message
o { printf("Entrer message : "); scanf("%s", msg); | (texte) qui sera stocke dans msg
o | 1f ((ret = send.msg, strlen(msg), 0)) !'= -1) ‘,
: fprintf (stdout, "\tsend = %d; msg = %s\n", ret, msqg); -
() : P (,. ' " g ’ ’ 9) [emlssmn du message] !
\ else perror ("Erreur send");)
‘ :::::::::::::::____::
(1f ((ret = rec msg, sizeof (msg), 0)) !'= -1) { ‘I
; msg[ret] = '"\0'; fprintf (stdout, "\t\trecv = %d; msg = %$s\n", ret, msg); } :
1 " mwy . 7 - 1 7
o | NooiE SR e . [réception d'un message (réponse) | ;
O Exécution de serv unix conn.c O Exécutionde cli unix conn.c
[student]$./serv unix conn [student]$./cli unix conn
® socket = 3 ___bhind =_Q __ _ _ _ _ _ ___ _ _ _ o _________k___ socket = 3 e — .
° { Entrer message : cmdl 1
° : recv = 4; msg = cmdl send = 4; msg = cmdl :
oM ..send = 15; msg = cmdl traitée ! . 1 recv = 15; msg = cmdl traitée ! ____.
° ' _Connexion coupée ! _ _______________________________Entrer message :(°C) ____ 2
[student]$./cli unix conn
__ Socket = 3
i i Entrer message cmd?2 1
° | recv = 4; msg = cmd2 send = 4; msg = cmd?2 .
o send = 15; msg = cmd2 traitée ! | 1 recy = 15; msg = cmd2 traitée ! _____ /!
'[_PQQQe_X_l_OP_‘ZO_u_p_e§_'__________________________________EQEr_e_r_Z“§§S_a_g_e__ o2 24

Communication en Mode Connecté

#include
#include
#include
#include

O Programme serv_inet conn.c (Serveur)

void main () {

Dans le Domaine AF INET
00 » O 0o |

<sys/types.h> #include
<sys/socket.h> #include
<stdio.h> #include
<stdlib.h> #include

[] [)
<errno.h>
<netdb.h>

<netinet/in.h>

<string.h>

int ret; int sd, newsd; char msg[l128]; char name[128];

struct sockaddr in locale, source; struct hostent *hp; int fromlen = sizeof (source);

if (gethostname (name, sizeof (name)) != 0) { perror ("Erreur gethostname"); exit(-1); } |
gethostbyname"); exit (-1); } 1

if ((hp = gethostbyname (name)) == NULL) { perror ("Erreur

bzero ((char *)&locale,sizeof (locale)); bcopy(hp->h addr, (char *)é&locale.sin addr,hp->h length);

locale.sin family = hp->h addrtype; locale.sin port = ntohs (2000);

perror ("Erreur bind"); exit(-1); }

i £ (= socket (AF INET, SOCK STREAM, 0)) == -1) { perror ("Erreur socket"); ;
f (bind (const struct sockaddr *) &locale, sizeof (locale)) == -1) {

exit (-1) ;

([if accept
I perror ("Erreur accept"); exit(-1); }

/I initialise la structure locale

(struct sockaddr *) &source, &fromlen)) == -1) {
/[acceptation de connexion, sinon attente de demande

J

msg, sizeof(msg), 0)) !'= 0) {

else { printf ("Connexion coupée !\n"); break; }

msg[ret] = '"\0O"; fprintf (stdout, "\trecv = %d; msg = %$s\n", ret, msqg)

}

o ggh L % € _boucle infinie sur les réceptions/émissions (d'une connexion) - __ _________________________

fprintf (stdout, "\t\tsend = %d; msg = %s\n", ret, msqg);

e

else perror ("Erreur send");

[émission d'une réponse (message recu + texte " traitée !") |

_} __ /

close (newsd) ; = fermeture du descripteur de la socket de communication
}
|-

23

O Communication en Mode Connecté

;o e & o -

Dans le Domaine AF INET
00 CON N X -

. N Programme cli_inet_conn c (Cllent) #include <sys/socket.h> #include <netdb.h>

#include <stdio.h> #include <netinet/in.h>
{ #include <stdlib.h> #include <string.h>

#include <sys/types.h> #include <errno.h>

void main (int argc, char **argv)

int ret; int sd; char msg[128]; struct sockaddr in locale, cible; struct hostent *hp;

if ((hp = gethostbyname (argv[1l])) == NULL) { perror ("Erreur gethostbyname"); exit(-1); }
7 “bzero ((char *) &cible, sizeof (cible)); bcopy (hp->h addr, (char *) &cible.sin addr, hp->h length);
\ _Cible.sin_family = hp->h addrtype; cible.sin port = htons(2000); _ //initialise la structure cible (distante) I

T T 7 5f ((sd)F socket (AF_INET, SOCK STREAM, 0)) == -1) { perror ("Erreur socket"); exit(-1); }
if (connectd (const struct sockaddr *) &cible, sizeof (cible)) == -1) {
perror ("Erreur connect"); exit(-1); }
for (;;) {
printf ("Entrer message : "); scanf ("%s", msqg);
o "if ((ret = ‘s,‘e;a‘n:g g, strlen(msg), 0)) '= -1) o
| g " — o J. — o 1 . . . 5
o , fprintf (stdout, "\tsend = %d; msg 3s\n", ret, msqg); [emlssmn du message]
o \else perror("Erreur send"); oo ___
o |{ if ((ret = rec msg, sizeof(msg), 0)) != -1) {
I msg[ret] = '"\0'; fprintf (stdout, "\t\trecv = %d; msg = %$s\n", ret, msg); }
1
| @lge ewror (Merewe weew g [réception d'un message (réponse)]_
s b}
O Exeécution de serv inet conn.c O Exécutionde cli inet conn.c
[student]3 ./serv inet conn __________________}___ [student]3 ./cli inet conn machine serveur
e f Entrer message : cmdl N
° . recv = 4; msg = cmdl send = 4; msg = cmdl .
° eo_____send_=_15; msg =_cmdl _traitée | __ ___ _____________ recv._=_15_msg =_cmdl_traitée ! _.!
°C:@bbﬁéiiéi:ii@é&]’.::'_'_::'_'_:::’.:::'_'_:::Ebiiéi:ééééa:iél::'_Z'

e e e e e e e e e e e e e R e e e e e e e e e e e TR e e e e R e e e e e e e TR e e e e - -

! Entrer message : cmd?2)i
¢ | recv = 4; msg = cmd2 send = 4; msg = cmd?2 .
° L L

‘co___send = _15; msg = cmd2_traitee ! _______1___________ recv = 15 _msg_ =_cmd2 traitée ! ___.
e | _Connexion coupée ! Entrer _message _ 0

"""""""""""""""""""""""""" stacents o 26

— = ==

— = = =

~

(F

Serveur : Séquentiel vs Concurrent

Serveur
Séquentiel

Réception
/7$> d'une
requéte

|

Traitement
de la
requéte

Serveur
Concurrent

Réception

/7$> d'une

requéte

Il

Déléguer
le Traitement
de la requéte

1 1
N\ 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
] 1] 1
- = = =,
b ’ \ ’
N ’ N ’
N 4 N

Traitement
de la !
requéte i

e ——————

N !

2

° Exemple de Serveur Séquentiel

000 @ @ ® (N o600 [L I) oo oo
Q Programme serv_seq. c (serveur séquentiel) #include <sys/types.h>

#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>
#include <errno.h>

void interrupt (int signo) {
unlink ("serv sock"); exit (0);

} #include <signal.h>
. . #include <string.h>
void main() { #include <stdlib.h>
int ret; int sd; char msg[128]; char pid[l6]; char req[l6]; #include <unistd.h>
struct sockaddr un locale, source, cible; int fromlen = sizeof (source);

signal (SIGINT, interrupt):;

®
o locale.sun family = AF UNIX; strcpy(locale.sun path, "serv sock");
@
PY if ((sd = socket (AF UNIX, SOCK DGRAM, 0)) != -1) printf("socket = %d\t", sd);

else ("Erreur socket");

if ((ret = bind(sd, (const struct sockaddr *) &locale, sizeof (locale))) != -1)
o printf ("bind = %d\n", ret);

else perror ("Erreur bind");

for (;7) {
° if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) &source, &fromlen)) == -1)
° perror ("Erreur recvfrom") ;
L s h . . 2 p A
o { sscanf (msg, "%s%s", pid, req); |&— litdepuismsg le pid du processus émetteur et le numeéro de sa requéte
N e e e e e e e e o o o o e e e e e e e e e e e - - - -

printf ("Début traitement requéte %s de %s\n", req, pid);
° sleep (5);
° printf ("\tFin traitement requéte %s de %s\n", req, pid);

28

° Exemple de Serveur Séquentiel

O Programme client.c (Serveur séquentiel) #include <sys/types.h>
#include <sys/socket.h>
void main () { #include <sys/un.h>

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>

int ret; int i; int sd; char msg[128];

struct sockaddr un source, cible; int fromlen = sizeof (source);

cible.sun family = AF UNIX; strcpy(cible.sun path, "serv sock");

if ((sd = socket (AF _UNIX, SOCK DGRAM, 0)) != -1) printf("socket = %d\n", sd);
else perror ("Erreur socket");
® for (1 =0; i <2; i++) {
o | sprintf (msg, "%d\t%d", getpid(), : . &— Ecrit dans msg le pid du processus et le numéro de sa requéte
N e B e e et e e e B e et B e e e e e e e e Rt e B e e e e
o
PS if ((ret=sendto(sd,msg,strlen(msg),0, (const struct sockaddr *)&cible,sizeof (cible))) == -1)

perror ("Erreur sendto");

exécution séquentielle

([
O Execution de client.c O Execution de serv _seq.c
[student]$ gcc client.c -o client [student]$ gcc serv_seqg.Cc -0 Sserv_seg
[student]$./clients [student]$./serv_seq
() [2] 12190 socket = 3 bind = 0
e socket = 3 Début” traiteément _r_e_qﬁ_eT:é
Y [student]S$S ./clients : Fin traitement requete
PY [3] 12191 ! Début traitement requéte 1 de 12190 ;
[2] Exit 7 ./client ‘. _Fin traitement requéte 1 de 12190)
socket = 3 " pébut fraitement requéted0 de 121015
° [student]$ ' Fin traitement requete |
° [3]+ Exit 7 ./client IDebut traitement requéte 1 de 12191 :
)

[student]$ \\ Fin traitement requéte 1 de 12191

° Exemple de Serveur Concurrent

". ‘l’ O O ® ® (N) o) o000 ® o o0
. #include <sys/types.h> #include <signal.h>
O Programme serv conc.c (Serveur concurrent) pinclude <sys/socket.h> finclude <string.h>
q 0 i . - . " " . include sys/un. lnclucde S 10.
void interrupt (int signo) { unlink("serv sock"); exit (0);} #include <stdio.h> #include <unistd.h>
void main () { #include <errno.h>

int ret; int sd; char msg[128]; char pid[16]; char req[l6];
struct sockaddr un locale, source, cible; int fromlen = sizeof (source);
signal (SIGINT, interrupt):;
locale.sun family = AF UNIX; strcpy(locale.sun path, "serv sock");
if ((sd = socket (AF UNIX,SOCK DGRAM, 0)) == -1) perror ("Erreur socket");
if ((ret=bind(sd, (const struct sockaddr *)&locale,sizeof (locale))) == -1) perror ("Erreur bind");

for (;;) {

PY if ((ret = recvfrom(sd, msg, sizeof(msg), 0, (struct sockaddr *) é&source, &fromlen)) == -1)
perror ("Erreur recvfrom") ;
® else { if (fork() == 0) {
o sscanf (msg, "%$s%s", pid, req);
PS (" printf ("Début traitement requéte s de %s par %d\n", req, pid, getpid());
| sleep(5); &— simule le temps de traitement de la requéte !
o SECEIEE (N SRRl SEEnE SEeeEe o8 G B8 wel welal, meey paely GEEpnal) gl
}

® 1

O Execution de client.c O Execution de serv conc.c

[student]$./clients& [student]$ gcc serv_conc.c -0 serv_conc
{ [2] 12347 [student]$./serv_conc
® socket = 3 Début traitement requéte 0 de
[[student]$./clientsg Début traitement requéte 1 de
® [3] 12350 Début traitement requéte 0 de

[2] Exit 7 ./client Début traitement requéte 1 de

socket = 3 Fin traitement requéte 0 de 12347 par 12348
° [student]s$ Fin traitement requéte 1 de 12347 par 12349
° [3]+ Exit 7 ./client Fin traitement requéte 0 de 12350 par 12351

[student]$ Fin traitement requéte 1 de 12350 par 12352

[

student]$ exécution concurrentielle 30

Fin de Communication

0 Un processus peut a tout moment terminer toute ou une partie d'une connexion

Descripteur de la socket locale
#include<sys/socket.h>[JP]

int shutdown (int sockfd, int hgy);

how permet de définir la fin de connexion selon les valeurs suivantes :

SHUT RD (0) : [lutilisateur ne veut plus lire de données (réception desactivee),
SHUT WR (1) : [lutilisateur ne veut plus écrire de données (émission désactivee),
SHUT RDWR (2) : l'utilisateur ne veut plus lire ni ecrire de données (emission et réception désactivées).

= Valeur de retour : 0 en cas de succes et -1 en cas d’erreur (et errno est modifiée en
conséquence).

O Un processus peut a tout moment fermer le descripteur d'une socket

#include<sys/socket.h>
int close(int fildes);

= Libere le descripteur de fichier £ildes de lau_ofile du processus.

= Dans le domaine AF_UNIX, il faut supprimer le fichier crée.

= Valeur de retour : 0 en cas de succes et -1 en cas d’erreur (et errno est modifiée en
conséquence).

31

Multiplexage des Entrées/Sorties
00 L JON ION JON X

0 Un processus peut surveiller plusieurs descripteurs de fichier, en attendant qu'au
moins l'un de ces descripteurs soit "prét" pour une opération d'E/S.

#include<sys/time.h> numéro du plus
grand descripteur

include<sys/types.h>
ys/typ des 3 ensembles +1

#include<unistd.h>

ensemble des ensemble des
descripteurs a surveiller descripteurs a surveiller
pour vérifier si une pour vérifier si une
lecture est possible écriture est possible

int select(int nfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

ensemble des descripteurs a surveiller pour durée limite du temps passé dans select ()
I'occurrence de conditions exceptionnelles avant son retour (si NULL, bloqué indéfiniment)

J

= Ensortie, les 3 ensembles sont modifiés pour indiquer les descripteurs qui ont changeé de statut.
= Valeur de retour : le nombre de descripteurs dans les 3 ensembles retournés, -1 en cas d'erreur

O Manipulation des ensembles de descripteurs

FD_ZERO (fd set *set);

FD CLR(int fd, fd set *set);
FD SET (int fd, fd set *set);
FD ISSET(int fd, fd set *set);

/] efface l'ensemble set (set =)

I/ supprime le descripteur £d de I'ensemble set

I ajoute le descripteur £4 a I'ensemble set

/I vérifie si le descripteur £4 est présent dans
I'ensemble set

32

° Exemple de Multiplexage des E/S

Q Programme serv select.c #include <sys/types.h>
- #include <sys/socket.h>
struct sockaddr un locale[3], source; #include <sys/un.h>

#include <stdio.h>

void interrupt (int signo) { #include <errno.h>

int lf #include <signal.h>
for (i = 0; 1 < 3; i++) unlink(locale[i].sun path); #include <string.h>
exit (0) ; #include <stdlib.h>
} #include <unistd.h>

#include <sys/time.h>

void main (int argc, char **argv) {
int ret, i, j; int sd[3]; char msg[128]; fd set readers; int fromlen = sizeof (source);
signal (SIGINT, interrupt):;

® for (i = 0; i < 3; i++) {
o locale[i] .sun family = AF UNIX;
® sprintf (locale[i].sun path, "%s%d", "serv sock ", 1i);
sd[i] = socket (AF UNIX, SOCK DGRAM, O0);
® bind(sd[i], (const struct sockaddr *) &locale[i], sizeof (locale[il])):
}
° for rL;_;_)_ N initialise I'ensemble
FD ZERO (&readers); for (i = 0; 1 < 3; i++) FD SET(sd[i], &readers) P readers aux3descr|pteurs
""""""""""""""""""""""""""""""""""""""" de sockets locales
_printf ("Avant select()\n"); __________________ § attente de changement de statut
{ret = select(128, sreaders, NULL, NULL, NULL); 1 €— d'aumoins un des descripteurs
o printf ("Aprés select ()\n"); contenus dans readers
o for (1 = 0; 1 <3; 3+40) {_____________
. 'if (FD_ISSET(sd[i], _&_r_e99?5§ll____ &— teste si le descripteur sd[i] est contenu dans readers
msg[recvfrom(sd[i],msg, sizeof (msg),0, (struct sockaddr *)&source, &fromlen)] = '\0';
¢ printf ("\tRéception sur sd[%d] : %$s\n", 1, msqg);
(7IIFD CIRGAIL, greaders) |} €— supprime le descripeur sa(s) de zeadexs
[J } }
¢ (“sleep(10); 1 €= pour permettre l'arrivée de plusieurs messages, sur différents descripteurs, avant le select ()

L 33

Exemple de Multiplexage des E/S

O Programme cli_select.c

void main (int argc,
int 1i;

int ret;

struct sockaddr un cible;

cible.sun family

if ((sd =

socket (AF UNIX,
sprintf (msg,

"%d",

sendto (sd, msg,

char **argv) ({
int sd;

SOCK_DGRAM,
getpid());
strlen (msg), O,

O Exécution de serv_select.c

[student]$ gcc serv select.c -o

serv_select

[student]$./serv select

Avant select ()

- e e = = -

char msg[128];

0)) =

(const struct sockaddr *)

o000 o CI N)
#include <sys/types.h> #include <errno.h>
#include <sys/socket.h> #include <string.h>
#include <sys/un.h> #include <unistd.h>

#include

<stdio.h>

AF UNIX; strcpy(cible.sun path, argv[1l]);
perror ("Erreur socket");

&cible,

sizeof (cible)) ;

O Exécutionde cli_select.c

student]$

[2] 15520
[1] Exit
[student]$
[3] 15521
[2] Exit
[student]$

student]$ gcc cli select.c -o cli select

- e e e e = e e e = e e e e e e e e e e e e e e e e e = e

- e e = e e e e e e e e e e e e e e o e e e = e

- e e = = e e e e e e e e e e e e e e e e e e =

S hiels bt 1o ER s ¢ r

[Réception
Avant select ()
Apr@s select ()

' _Réception

Avant select ()

/

—

student]$
[student]$

sock 0&

sock 1&
./cli select serv sock 0

sock 2&
./cli select serv sock 1

sock 1 | ./cli select serv sock 2
./cli select serv sock 2

sock 2 | ./cli select serv sock 0

I'arriyée du 1€ message a débloqué le select () avant l'arrivée du 2é™ message

34

