Université de Tours 2020-2021

L2S3 UE 3-1 Algèbre

Feuille d'exercices nº 5

Exercice 1

Soif f l'endomorphisme de $E = \mathbb{R}^2$ dont la matrice représentative dans la base canonique

$$\mathcal{B}_0 = (e_1, e_2) \text{ de } \mathbb{R}^2 \text{ est} : A_0 = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}.$$

1. Par deux méthodes, trouver sa matrice représentative dans les bases suivantes de E:

$$\mathcal{B}_1 = (e_2, e_1)$$
; $\mathcal{B}_2 = (-2e_1, e_2)$; $\mathcal{B}_3 = (e_1 - e_2, e_1 + e_2)$; $\mathcal{B}_4 = (e_2, e_1 - e_2)$.

2. Calculer A_0^n pour tout $n \in \mathbb{N}$.

Exercice 2

Soif f l'endomorphisme de $E=\mathbb{R}^3$ dont la matrice représentative dans la base canonique

$$\mathcal{B}_0 = (e_1, e_2, e_3) \text{ de } \mathbb{R}^3 \text{ est} : A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 0 \end{pmatrix}.$$

- 1. Déterminer : $f(e_1)$, $f(e_2)$, $f(e_3)$, puis f(u) pour tout $u = (x, y, z) \in E$.
- 2. Soient $u_1 = e_1 + e_2$, $u_2 = 2e_1 + 3e_2 2e_3$, $u_3 = 2e_1 + 3e_2 + e_3$.

Montrer que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .

3. Déterminer, par deux méthodes, la matrice B représentative de f dans la base \mathcal{B}_1 .

Exercice 3

Soif f l'endomorphisme de $E = \mathbb{R}^3$ défini pour tout $(x, y, z) \in E$ par :

$$f(x, y, z) = (x, -x - y - z, x + 2y + 2z).$$

1. Donner sa matrice représentative dans la base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$ de E.

Calculer A^2 , reconnaître puis caractériser f.

2. Construire une base \mathcal{B} dans laquelle f est représenté par $\mathrm{Diag}(1,1,0)$;

dans cette même base, quelle est la matrice représentant $g = 2f - id_E$?

Exercice 4

Soit $M = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{R})$, on appelle trace de M et on note Tr(M) la somme de ses

termes diagonaux :
$$Tr(M) = \sum_{i=1}^{n} a_{i,i}$$
.

1. Montrer que l'application $\operatorname{Tr}:\mathcal{M}_n(\mathbb{R})\longrightarrow\mathbb{R},\,M\mapsto\operatorname{Tr} M$ est linéaire.

Est-elle injective? surjective?

2. Montrer que l'ensemble des matrices de trace nulle est un sous espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

Quelle est sa dimension?

3. Prouver que : $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{Tr}({}^tA) = \operatorname{Tr}(A)$ et $\operatorname{Tr}(A.B) = \operatorname{Tr}(B.A)$; en déduire qu'il n'existe aucun couple (A, B) de $(\mathcal{M}_n(\mathbb{R}))^2$ tel que : $AB - BA = I_n$.

4. Soit f un endomorphisme de \mathbb{R}^n , A sa matrice dans une base B de \mathbb{R}^n et A' sa matrice dans une base B' de \mathbb{R}^n . Montrer que Tr $A = \operatorname{Tr} A'$.

1

Exercice 5

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base canonique de \mathbb{R}^3 est :

$$M = \frac{1}{2} \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & 2 \\ -1 & 1 & -2 \end{pmatrix}.$$

1. Déterminer Ker f et Im f. Montrer que $\mathbb{R}^3 = \text{Ker } f \oplus \text{Im } f$.

On appelle g la projection sur Im f parallèlement à Ker f .

- 2. Montrer qu'il existe un réel a que l'on déterminera tel que f = ag;
- en déduire que : $\forall n \in \mathbb{N}^*, f^n = a^n g$.

Exercice 6

Soit f l'endomorphisme de \mathbb{R}^3 défini par : $f(e_1) = (5, -1, 2), f(e_2) = (-1, 5, 2), f(e_3) = (2, 2, 2)$ où $\mathcal{B} = (e_1, e_2, e_3)$ est sa base canonique.

- 1. Déterminer la matrice A de f relativement à la base canonique \mathcal{B} de \mathbb{R}^3 .
- 2. Soient $v_1 = (1, 1, -2), v_2 = (1, 1, 1)$ et $v_3 = (2, 0, 1)$.

Montrer que $\mathcal{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .

3. Donner la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' .

Calculer la matrice A' de f relativement à la base \mathcal{B}' puis $(A')^n$, $n \in \mathbb{N}$.

Donner l'expression de A^n à l'aide de P, P^{-1} et $(A')^n$.

- 4. Déterminer la dimension et une base de Ker $f = G_1$.
- 5. Déterminer la dimension et une base de Im $f = G_2$.
- 6. Les sous-espaces vectoriels G_1 et G_2 sont-ils supplémentaires dans \mathbb{R}^3 ?

Exercice 7

Soit f l'endomorphisme de \mathbb{R}^3 défini par : $f(e_1) = e_2 + e_3$, $f(e_2) = e_1 + e_3$, $f(e_3) = e_1 + e_2$ où $\mathcal{B}_0 = (e_1, e_2, e_3)$ est sa base canonique.

- 1. Déterminer f(u) pour tout u = (x, y, z) de E et donner la matrice représentative dans \mathcal{B}_0 .
- 2. Prouver(de plusieurs manières) que f est un automorphisme de E.
- 3. Déterminer les images par f des s-ev de E suivants :

$$F = \{(x, y, z) \in E \mid x + y + z = 0\} \text{ et } G = \{(x, y, z) \in E \mid x = y = z\}.$$

4. Prouver que F et G sont supplémentaires dans E et donner les matrices B et C représentant respectivement la projection p sur F parallèlement à G et la symétrie s sur G parallèlement à F.