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Abstract 

In an effort to understand ‘APL thinking”, 
we examine a few selected examples of using 
APL to solve specific problems, namely: 
compute the median of a numerical vector; 
simulate the Replicate function; string 
search: carry forward work-to-be-done in 
excess of capacity: rotate concentric 
rectangular rings in a matrix: find column 
indices of pivots in an echelon matrix. 

These examples are drawn from our teaching 
experience as well as from APL literature. 
We are particularly interested in studyinq 
thinking processes underlying alternative 
solutions to such problems -- i.e., our 
goal is to ‘get inside the head” of the APL 
programmer, Analyses include rWXnStrUCtin9 
thoughts, comparing alternative approaches, 
and, in general, scrutinizing supposed 
characteristics of APL thinking. 

Introduction 

Is there such a thing as “APL thinking”? If 
so, what is it? When a programmer claims to 
solve a problem in an ‘APL way’, We must 
ask what is meant by that. And, when 
someone implies that the APL way is better, 
or that APL is a better language for 
thinking about problems, we must ask how 
APL helps (or hinders) problem-solving. 
Specifically, just what is unique of 
special or different about thinking with 
APL? Such questions motivate us to study 
how APL affects cognitive processes. This 
should enable us to teach APL more effec- 
tively and to promulgate its advantages. 

In an effort to understand “APL thinking”, 
we began by focussing on views within the 
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APL community: we have scanned the APL 
literature for definitions of or references 
to APL thinkino: surveved ooinions on APL 
thinking (in A&., Quote&ad,‘nec. 1985, and 
by questionnaire at APL86 1 : interviewed 
students, instructors, and professional 
programmers: and analyzed APL learning bugs 
and APL teaching bugs [1,21. Additionally, 
we have gathered opinions in response to 
our talks on the subject at the NY/SIGAPL 
“APL as a Tool of Thought’ conference 
(April 1986) and at the New England APL 
IJser’s Group meeting (May 1986) and have 
conducted a panel discussion at APL86. 

We are still at an early stage of studying 
APL thinking. So far, we have fpund that 
there is a wide variety of interpretations 
extant. To some eeople, “APL thinking” 
suggests one-liners (expressions or defined 
functions). To others it means array 
(parallel) processing, thereby avoiding 
branching, iteration, and recursion: 
combining cases: working with large chunks: 
or doing data-driven computing. Some 
believe it lies in the notation -- syntax 
and the symbols themselves -- or in concise 
APL expressions, or in rich and powerful 
primitives. some relate it to modularizing 
code (epitomized by direct definition), or 
a “qlass box” program, or the propensity to 
generalize. A few attest that it involves 
use of identities and proofs in formal 
reasoning. It might also suggest tricky, 
contorted programming techniques. Further, 
it might even involve imagery, metaphors, 
and visualization of mental representations 
and transformations. Perhaps these are all 
aspects of APL thinking. 

We have also recognized a number of related 
issues and challenges, including: the 
matter of style, (e.g., use of idioms); how 
to arrange studies (which seem to be low 
priority in business and academia); 
different APLs (e.g., APL2): distinguishing 
between problem-solving and formula 
translation; identifying problems which 
make APL look good or bad; finding reliable 
methods to get inside someone’s head and 
reveal his or her thoughts; considering 
what the programmer knows beforehand; how 
to analyze protocols effectively; and 
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whether APL thinkinq differs among 
cultures. Nevertheless, we are perserverinq 
to focus on underlying cognitive processes. 

Accordingly, here we are studying solutions 
to selected problems which purportedly 
involve APL thinking. Rather than our 
supposing what APL thinking is in general, 
these examples will have to speak for 
themselves. The examples are drawn from our 
experience teaching as well as from APL 
literature; they are necessarily small in 
scope but are intended to be provocative. 
We are deliberately exposing thinking 
processes -- au naturel. 

Examples 

1. The Median Problem 

The problem is to write an AFL expression 
or define a function to compute the median 
of a vector of numbers. The median is, by 
defin.ition, the middle value of the vector 
when arranged in ascending (or descending) 
order: if there is an even number of 
numbers, however, the median is the average 
of the two middle values. 

At the onset, we note that this is not 
really a ‘problem’ in the strict sense, 
since the algorithm is included in the 
problem statement itself. Nonetheless, in 
the process of creating alternative 
expressions in APL, there are opportunities 
for varied ways of thinking. 

A straightforward, case-by-case approach 
directly translates the problem statement 
into APL code: 

Q Z+MEDIAN X;N 
Cl1 Z+XC 4x1 
[21 N+o. 5xpX 
c31 -+(0=2(pX)/EVGN 
II41 ODD: .z+z[rNl 
:51 -’ c 
C6 1 EVEN: 2+-O. S~Z[Nl+ZCNtIl 

Q 

BY contrast, the followinq “solution”, 
which has become an old chestnut in the APL 
community, is not so obvious: 

0.sXtixcc4x)cIr-0.5 0.5xltpxJl 

(from [31, p. 328) 

APL novices often consider this as an 
example of “bizarre” thinking. They tend to 
make remarks such as “I wouldn’t have 
thought of doing it that way”, or even, 
“I’ll never be able to think like that!” 

The question is: What thinking was involved 
in doing it this way? (Would the creator 
please identify himself or herself?) In the 
absence of any known explanation of how the 
above expression was originally conceived, 
we can only speculate that it was based on 
a deliberate attempt to combine two cases 

graduate student, who explained that it ,‘was 
an example of ‘APL thinking” because it 
solved the problem in an unusual way -- 
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into a single expression -- ‘the APL way” 
-- which entailed forming arithmetically a 
vector index of two middle values and, for 
the sake of efficiency , indexing the 
permutation vector directly. 

Incidentally, as we compa c e these 
solutions, we should note that we are not 
considering which expression best conveys 
the concept of median nor which is most 
efficient in space and time, 

Other variations, perhaps designed for 
greater clarity, include the following. 

One which breaks the code into steps: 

Q Z+MEDIAN X;N 
ClJ X+XC PX 1 
c21 N+O. 5xltpX 
C31 Z+O. 5xXI: LN3tXCfNl 

V 

(from 141, p.125) 

One which uses subfunctions SORT, MEAN, and 
ROUND : 

V MIDDLE+MEDI AN DATA 
El3 DATA+SURT DATA 
c27 MIDDLE+MEAN DATACROUh’D (0 ftpDATA)+21 

Q 
V UP+SORT DATA 

Cl3 UP+DATA[ ADATA 
V 
V CENTER+MEAN DATA 

Cl3 CENTER+(tlDATA)ipDATA 
Q 
V OFFtROUND N 

Cl1 OPF+l.NtO. 5 
V 

(from 151, p.274) 

Both amalgamate the even and odd cases by 
duplicating the middle value in the odd 
case and then averaging the two values. 

A different approach isolates the middle 
value(s) by dropping the unneeded fr.ont and 
back of the sorted vector; 

Q ANS+MEDIAN DATA;A 
CIJ DATA+DATAC ADATA 
c23 A+L-0.5ttpDATAls2 
c31 DATAeASt -A)SDATA 
c41 ANS’-( t /DATA) ;( pDATA) 

Q 

(by a student) 

Yet another approach involves reproducing 
the entire vector: 

MEAN (SORT DATA,DATA)CO ltpDATA1 

This was of feted spontaneously by a 



that is, it went outside the scope of 
thinking one would normally do. He also 
realized that his solution was “excessive”, 
that is, inefficient in space and indulging 
in powerful primitive functions. We ask: To 
what extent does ‘the unusual’ and ‘the 
excessive’ typify APL thinking? 

A similar approach is embodied in the 
following program: 

V MI DDLE+MEDI AN DATA 
Cl1 DATA+SORT DATA 
E21 MIDDLE+ 

MEAN .(DATA.CO.S10DATA)E;T(pDATA)~21 
V 

(151, P. 275) 

This way of collecting two cases into one 
might also seem excessive and tricky in 
that it creates a higher-dimensional array. 
When is it worth trying to think of this 
kind of solution? And why? 

These latter two approaches set up the data 
so an APL primitive function -- here Index 
-- can do the key job directly. Is this the 
essence of “APL thinking”? 

The question still remains: What did the 
people who originated these solutions think 
of when they were devising the algorithms? 

2. The Replicate Problem 

Most implementations of APL include the 
Replicate extension of the standard 
Compress primitive function, as in: 

2 7 0 1 4 / ‘ABCDE’ 
AABBBBBBBDEEEE 

A few implementations do not include 
Replicate: even the IS0 APL Standard does 
not include it: in any case, simulating it 
is an interesting programming problem. 

Here’s one approach to simulating Replicate 
for vector arguments: Let V be the vector 
of elements to be replicated (the right 
argument 1 and let N be the vector of 
corresponding numbers of copies (the left 
argument). First, remove from V elements 
with 0s in N (and notice that this takes 
care of scalar arguments as well): 

N+( B+N>O)/N 
V+B/V 

The number of elements in the desired 
result is +/N. so, form a vector B of that 
length: 

B+(+/N)pO 

The strategy here is to make R a vector of 
indices into V needed to produce the 
result. In the example above, these would 
be 1 1 2 2 2 2 2 2 2 3 4 4 4 4 (recall that 
V was compressed to four elements earlier). 

Now mark where each block of repeated 
indices should begin: 

BCl,lt-ltt\Nl+l 

In the example, this produces the vector 
10100000011000. Actually, in 
order to protect against having nothing 
left to select, modify the above to: 

B[(pN)tl,lt-l+t\Nl+l 

Pinally, Plus-Scan B to produce indices 
into V, as in the defined function below: 

v Z+N REPLICATE V;B;I 
Cl3 N+(B+N>O)lN 
c21 V+B/V 
c31 B+(-ltI+t\N)pO 
C41 BC(p~)fl,lt-lSfl+l 
C53 Z+VC+\BI 

V 

(Of course, a more direct definition is: 
Z+vC+\-1~(~+/N)~t\Nl for V+(N>O)IV .) 

This is characteristic of a common APL 
programming technique: use a bit pattern to 
mark where blocks start, then produce the 
required indices. 

Another approach is illustrated in the 
following function, which is based on Jill 
Wade’s solution in [3 1, p. 124: 

V Z+N REPLICATE V 
Cl1 
c21 NV::; 
Cal Z+VC( ,N~.~~llN)/,(~pN)~.~(T/N)pl3 

V 

Looking again at the example, the indices 
we want could be represented in a “ragged’ 
array (which begs for enhanced APL): 

11 
2222222 

R NO INDICES FOR VC31 
4 
5 5 5 5 

To obtain these indices, form a matrix of 
the possible indices repeated in columns, 

(ipN)o. xl rlN)Pl 
1111111 
2222222 
3333333 
4444444 
ss55555 

A horizontal bar chart indicatinq how many 
copies of each index, 

No.Lxr/N 
1100000 
1111111 
0000000 
1000000 
1111000 
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and, finally, Ravel those two matrices and 
Compress. 

Already, this solution is noteworthy in the 
way it goes outside the domain of the 
original problem -- that is, it involves 
forming two-dimensional arrays in order to 
solve a one-dimensional array problem. 

Wade’e actual solution (see 131) is general 
in that it replicates an array of arbitrary 
rank along any dimension. It is intriguing 
to know whether her solution was derived 
from a version for rank-one, such as the 
above, or was developed in full generality 
from the start. 

3. The String Search Problem 

The problem is to locate all occurrences of 
a substring in a given string, 

A first attempt at an array-oriented 
solution embodies in a matrix 
representation the straightforward, 
essentially iterative approach (sliding the 
substring along one character at a time and 
testing for matches): 

Q R+T STRINGSEARCH lu' 
Cl3 R+(hj(-l+~pW)~Wo.=T)/~pT 

Q 

(from 131 p. 205) 

But, alas, this expression gives a false 
match for a special end condition, e.g.: 

I LOOK FOR APL WRAP' STRINGSEARCH *APL' 
10 16 

Use of the Rotate primitive ought to cue a 
potential problem with wrap-around. One 
might have expected that APL would have 
helped in handling the special case here -- 
as it often does generalize automatically 
to empty arrays, scalars or l-element 
arrays. At least, one might have hoped that 
APL would have provided a better way to 
integrate the special case than an ad hoc 
patch: 

or, alternatively: 

(-lCAf(-lt~pW)~(~~.=T).O)/~P~ 

(from 161, p. 19) 

Another approach incorporates a preliminary 
search: 

:c~r=lt~)l~pr+~l-pW)cT 

tT[To.+- ltLpwJA.=w)II 

(from [71, p. 7) 

Another handles scalar and null arguments: 

V POSITIONS+STRING MATCH SUBSTRING 
Cl3 SUBSTRINC+,SVBSTRINC 
c2.l POSITIONS+A/Cll 

(-l+~pSVBSTRINC)~SVBSTRINC~.=,STRING 
C3J POSITIONS+ 

(l-pSVBSTRING)+POSITIONShO<pSTRING 
EQI POSITIONS+POSITIO*NS/~pPOSTTIONS 

V 

(181, e.146) 

Concern for efficiency might motivate the 
following revision: 

V P+STRINC MATCH SVB;LSVB;LAST 
L-13 LAST+Or(p,STRTNG)tl-LSVB+p,SVB 
C21 P+((LSVB>O)~((LASTtSTRTNC)=ltSVB)~ 

((-LAST)tSTRINC)=-lfSVBJ/lLAST 
c31 P+((,STRINC)CPo.t(~OrLSVB-2)lh.= 

l+-l+SVB)IP 
V 

( 18 I, p.156) 

Now the question is: how close is this to 
the way one would (like to) think about 
this problem? 

4. The Work Problem 

This was posed as a contest problem in 191. 
You are given a vector of work needing to 
be done (DEMAND) in successive time periods 
together with a second vector of capacity 
(SUPPLY) to perform that work in those time 
periods. Work not performed in one time 
period is carried forward to the next one; 
capacity not used, however, is lost 
forever. The problem is to compute the work 
done in all successive periods. 

A looping solution is straight-forward: 

Q RESVLT+SVPPLY WORK DEMAND;CARRY;I; 
PERTODS;NEWDEMAND 

Cl3 RESVLT+(PERIODS+pSVPPLY)pCARRY+IcO 
c21 LOOP: +(PERIODSd+Itl)/O 
c31 RESVLTCI3+SVPPLYU3LNEWDEMAND+ 

DEMANDCIltCARRY 
c41 CARRY+OTNEWDEMAND-RESVLTCII 
c51 +LOOP 

V 

The crux is that the work done at any time 
period is the smaller of supply and demand 
plus the unsatisfied demand from before. 

There is an obvious recursive version of 
this solution: 

Q RESlJLT+SVPPLY WORK DEMAND 
Cl1 RESULT+tO 
c21 +(oEpsuPPLY)/o 
c31 RESULT+(ltDEMAND).ltSVPPLY 
c41 RESVLT+( L /RESVLT),(lCSVPPLY) WORK 

(l+DEMAND)+(-ltpDEMAND)tOl.-/RESULT 
V 
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Another recursive approach incorporates 
some parallel processing: 

V RESULTGUPPLY WORK DEMAND; CARRY 
Cl1 RESULT+SUPPLYLDEMAND 
C21 -+(h/O=CARRY+SRIFT OFDEMAND-SUPPLY)/0 
Cal RESlJLT+SUPPLY WORK RESULT+CARRY 

V 
V R+ SRIFT V 

Cl1 R+O,-l+V 
V 

The published statement of the problem gave 
the following recurrence relation: 

RESULT’CI 1+ 

But this is a different (and more 
complicated) way of stating the problem. It 
uses “complete recursion”, expressing the 
RESULT at any time I in terms of - all 
previous times. 

Instead, let start with one-step 
recurrence relatyzns in order to obtain an 
‘array-oriented” (non-looping) solution: 

RCI l+ScI 1LDCI 1tCcI -11 
CCrl+Ol-DCrltCCr-11-R[r1 

(where we have abbreviated DEMAND, CARRY, 
SUPPLY, and RESULT, respectively, by D, C, 
s, and RI. 

The thought is to eliminate C from this 
pair of relations, thereby to obtain a 
formula for R in terms of S and D alone. 

The identities 

xttrrz) ++ txtrmxtz) 
X-(YLZ) ++ (x-ymx-z) 

lead to: 

CC11 +* 0 i- (DCIItCCI-11) - 
(SC11 L (DC1l+CCI-l])) 

++ 0 r (DCll*CCI-11-S[11) r 
(Dcrltccr-i3-(Dcr1tccr-~l~~ 

+-, 0 r ((Dcrltccr-il-scrl) r 0) 
+e 0 r 0 r mltccr-iI-scrl 
++ 0 r (zxrl-scrl) + ccr-13 

Abbreviating DC1 I-SCr 1 by EC1 1 
(E for excess), we get: 

c[rl ++ 0 r EultcCr-iI 

Together with the initial condition CCOl++O 
the above relation gives, in turn: 

ccl3 ++ 0 r i7ciitccol ++ 0 r .EEII 
~~23 ++ 0 r ,n2itccil ++ 0 r (~c21 t oral]) 

++ 0 r EC21 r (ECIltEC21) 

Similarly: 

~~33 ++ 0 r ~~31 r .(Ec2itSc33) r 
(EclltEc2ltEc31) 

Now the pattern seems Clear: 

cCr3 +a 0 r r/twtE 

This simplifies slightly to the following 
(recall E ++ D-S): 

ccri ++ r/o.t\wltD-s 

Together with 

(*I 

RCII ++ scrimritccr-11 (*‘I 

this provides a new solution -- one that 
still seems to be iterative. HOWeVer, (**I 
can be vectorized as R ++ SLDtO,-l+C . so, 
to get a non-iterative solution, it remains 
to recast (+), that is, to calculate all 
the sums there at once. These are row sums 
of the triangular (non-APL) array: 

EC11 
EC11 EC21 
EC11 EC21 EC31 
EC11 EC21 EC31 EC’+3 
. . . 

Then the numbers to be summed can be 
obtained by multiplying by the appcopriate 
bit-mask, generated by: 

V M+LOWERA N 
Cl3 M+(tN)o.rtN 

P 

Now C can be vectocized as: 

C f-r ~IO.t\.~(LOWERA PS)X(~PPS)PD-S 

At last, a complete non-iterative solution 
is at hand; 

v RESULT+SUPPL Y WORK DEMAND ; CARRY; N 
Cl1 N+p SUPPLY+, SUPPL Y 
c21 CARRY+l-IO,t\@(LOWERA NIX 

(2pN)pDEMAND-SUPPLY 
c31 RESULT+SVPPLYL DEMAND+ 0, 1 t CARRY 

V 

Not ice the critical role of identities and 
formal mathematical manipulations in 
arriving at this solution, 

All the preceding solutions have in common 
the expression of work done as the smaller 
of supply and total demand (current plus 
carried over). By way of contrast, the 
winning contest entry, submitted by David 
Hosier and published in 1101 (along with a 
formal proof of correctness) is: 

SCfPPLY-(l+T)--lCT+I-\O,t\SVPPLY-DEMAND 

Hosier’s solution seems to be based on a 
different idea : the work done is obtained 
by reducing the available supply by its 
unused portion. It is not clear what T 
represents conceptually, nor what suggested 
using Max-Scan. 
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5. The Matrix Rotation Problem 

This problem was offered as a prize 
competition at APL86. Consider a matrix as 
comprised of concentric rectangular rings. 
The problem is to write a dyadic function 
(MATROT) which rotates each ring a given 
number of positions about a central axis 
perpendicular to the plane of the matrix. A 
positive left argument causes counter- 
clockwise rotation. For example: 

3 MATROT 4 4~116 
4 8 12 16 
3 10 6 1S 
2 11 7 14 
15 9 13 

Here we offer a post-hoc account of one 
person’s attempt at developing a solution 
-- albeit incomplete and revealing various 
shortcomings in thinking. 

We begin with some overall thoughts about 
alternative approaches: “First, I 
considered doing it recursively, using a 
mask over the inner rings and joining 
together the pieces.... But I preferred to 
try doing it directly -- that is, all at 
once with array processing -- since that 
seemed to be the spirit of the competition. 
Further, I realized that I could do it with 
index mapping, but it would be too tedious 
(and inelegant). I also brieflv considered 
the generic approach of creating a larger 
rank array, doing some transformation on 
it, and then selecting the appropriate 
part(s), perhaps using Dyadic Transpose. 
But then I got the idea of treating the 
problem geometrically -- based on how I 
visualized the matrix rings actually 
rotating.” 

Now we follow this “geometric” approach. 
‘The idea came from drawing a diagram 
showing the movement of vectors: 

“This, in turn, suggested sliding 
triangular sections of the matrix (like 
faults in plate tectonics):” 

El 1 ,t 
(We note the mental slip into 
convenient case of a square matrix.) 

the 

“Then I refined the diagram to make sure 
how to represent the elements discretely in 
an APL matrix. And I decided to use a 
logical mask to get each of the four 
triangular pieces, shift them (with Rotate, 
of course! 1, and then add them together.* 
(Note the slip into numerical matrices 
only. 1 

-Incidentally, I knew I was diagramming a 
matrix of odd shape but expected that I 
could make the function work for the even 
case also. 

“Then I wrote APL code: 

“As I was writing this down, I was thinking 
of slight variations to economize on code 
(and perhaps speed). I chose to rewrite it 
in direct definition form: 

ROT: (lewx46T)+(-l4wxT+~4T)+(-le~xT+~4T)+ 
l~wxT+(No.<N)A4No.SN+lltp~ 

“While I was doing this, I realized that 
the function only causes a rotation of one 
position and that I would have to recucse 
after all. so, I quickly built a 
supra-function:” 

MATROT: (a-1) MATROT ROT w : a=0 : w 

Next we will see an excursion into enhanced 
APL: ‘Then I tried a condensed expression 
using Rationalized APL ( [llll for 
one-position rotation: 

ROT: +fwxb'2 ($b’4)314 T 

And I even sketched an expression using the 
Dual operator, wishing that there were a 
function F (and its inverse) for splitting 
rings into vectors:” 

ROT: a$"Fw 

Now, back to earth. ‘Agggh. After a short 
pause and a glance back at the original 
problem statement, I realized that my 
MATROT function didn’t extend to 
rectangular matrices. And, I r.eally wanted 
to do positive or negative rotation as 
well: 

“Later, I got a chance to test it on my 
computer. In trying some examples, I soon 
saw that -- uh oh -- 1 had forgotten the 
element in the center of an odd-shaped 
matrix. (The even case was OK.) So, r 
patched it in (without ruining the even 
case), along with some small improvements: 
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V RcN MATROT M 
Cl3 
c21 ZCOHO 
C3J R+Rh@$-RcRo.sRt~ltpM 

MATROT (MxRh$fl r41 R+(N-1) +ID l+pM)+ 
(~$MXQ~IR )t(-leMxe~R)+(-l~Mx~BR)+leMxR 

V 
V RcID N 

Cl1 R+(tN)o .=IN 
V 

“I couldn’t help but wonder if there were a 
better way to include the center in the 
original mask . . . . Finally, I began to 
reconsider the whole approach, because I 
needed to deal with rectangular matrices 
anyway. Maybe even try to generalize to 
arrays? But I had no more time available.” 

The reader may wish to compare this 
approach -- which involves some spatial 
transformations -- with the winning 
solution (see 112 1) which generates a 
spiral of indices. 

6. The Echelon Pivots Problem 

This last problem is a “quickie”, one 
solution to which involves uncomplicated 
use of only a few functions. You are given 
an “echelon” matrix, such as: 

M 
41749013 
05662725 
00030404 
0000006 5 
00000000 

The first nonzefo element -- the so-called 
“pivot” -- in each row of M is located to 
the right of the pivot in the row above it; 
and any zero rows come at the bottom. (Such 
matrices are produced in the course of 
solving systems of linear equations or 
testing column vectors for linear 
independence.) The problem is to locate the 
columns containing these pivots. 

To solve it, first see which elements in M 
are nonzero: 

M*O 
11111011 
011111~1 
00010101 
00000011 
00000000 

Turn off all bits after the first 1 in each 
row (of course, it helps to know this 
idiom) : 

<\M*O 
10000000 
01000000 
00010000 
00000010 
00000000 

Mark the desired columns, 

vf<\MtO 
11010010 

and, finally, select their indices: 

(vf <\M*O)Il-l+pM 
12 4 7 

Another Scan idiom might come to mind 
initially, but it leads to a bug for KOWS 
of all OS: 

l+t/I\\M= 0 

The question this example raises is: to 
what extent does “APL thinking” consist of 
being familiar with very powerful 
primitives (including their idiomatic 
combinations) and merely selecting them 
when needed? That is, does a lot of APL 
thinking really consist of not having to 
think very much at all? 

Conclusion 

The examples here have illustrated a 
variety of ways of solving problems with 
APL, such as: 

- combining cases 

- creating ‘excessive” arrays 
(beyond the domain of the problem) 

- setting up arrays in order to apply 
appropriate primitives or idioms 

- coercing ragged arrays into 
rectangular arrays 

- forming bit masks 

- considering edge conditions 
and special cases 

- seeking efficiency 

- using examples as guides 

- transforming spatial representations 

In several of the example problems we were 
able to capture to some degree the actual 
thinking-in-progress toward solutions 
(however imperfect). In others, we had no 
alternative but to speculate, that is, 
invent plausible scenarios for how solvers 
were led to their solutions. 

BY contrast, unfortunately, much of the 
literature on APL proqramming consists of 
“textbook” examples: typically, the line of 
reasoning leading to the final result is 
presented as linear, Polished, and 
pristine. Rarely do we see a detailed 
account Of how a mortal Droblem-solver 

thinks, really replete with all paths taken 
-- including blind alleys -- and various 
errors encountered. 
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Doubtless, many APL proqrammers are to0 
busy going about their work to take time to 
describe how they do it. Even if they have 
time, they may be unwilling to air their 
“dirty laundry” and are unaccustomed to 
thinking about their thinking -- or at 
least unpracticed in recording their 
thoughts. 

If we, in the APL community, believe that 
APL is a good (or better) tool for solving 
problems -- and especially if we 
oroselvtize 
‘Incumbent 

about this -- then it is 
upon us to understand why. 

Indeed, we need to be able to articulate 
just what is ‘APL thinking’. 
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