--- aliases: - matrice modulaire --- up:: [[matrice]], [[groupe des classes modulo n]] #s/maths/algèbre > [!definition] [[matrices modulaires]] > Soient $m, n \in \mathbb{N}_{\geq 2}$ > On définit $\mathcal{M}_{n}(m)$ l'ensemble des matrices carrées de taille $n$ à coefficients dans $\mathbb{Z} / n\mathbb{Z}$ (le [[groupe des classes modulo n]]) > $(\mathcal{M}_{n}(m), +)$ et $(\mathcal{M}_{n}(m), \odot)$ sont des groupes (avec l'addition et le [[produit de hadamard]]) ^definition # Propriétés > [!info] $\mathcal{M}_{n}(m)$ est un groupe pour la loi $+$ > C'est simplement une "réorganisation" du groupe $\displaystyle(\mathbb{Z} /m\mathbb{Z})^{n^{2}}$ > - de neutre $\begin{pmatrix} \overline{0}\end{pmatrix}$ > - pour lequel l'inverse de $\begin{pmatrix}\overline{m}_{ij}\end{pmatrix}$ est $\begin{pmatrix} -\overline{m}_{ij}\end{pmatrix}$