This commit is contained in:
Oscar Plaisant 2024-03-28 15:55:40 +01:00
parent 2c61798962
commit bcca52f387
8 changed files with 28 additions and 1839 deletions

2
.gitignore vendored
View File

@ -2,3 +2,5 @@
*.swp *.swp
blog/* blog/*
identités.md identités.md
.obsidian/workspace.json
.obsidian/workspaces.json

View File

@ -1,7 +1,7 @@
{ {
"theme": "system", "theme": "system",
"cssTheme": "Minimal", "cssTheme": "Minimal",
"baseFontSize": 23, "baseFontSize": 22.5,
"enabledCssSnippets": [ "enabledCssSnippets": [
"pdf_darkmode", "pdf_darkmode",
"query_header_title", "query_header_title",

View File

@ -8,7 +8,7 @@
"lineWidth": 40, "lineWidth": 40,
"lineWidthWide": 5000, "lineWidthWide": 5000,
"maxWidth": 98, "maxWidth": 98,
"textNormal": 23, "textNormal": 22.5,
"textSmall": 13, "textSmall": 13,
"imgGrid": false, "imgGrid": false,
"imgWidth": "img-default-width", "imgWidth": "img-default-width",

646
.obsidian/workspace vendored
View File

@ -1,646 +0,0 @@
{
"main": {
"id": "239f495bbbd2d5df",
"type": "split",
"ophidian:layout-settings": {
"pane-relief:sliding-panes": {
"active": false
}
},
"children": [
{
"id": "3a577d58ceca2f87",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "3a577d58ceca2f87",
"group": null,
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_beamer_cours.pdf\"}}",
"eState": "{}"
},
{
"leaf": "3a577d58ceca2f87",
"group": null,
"state": "{\"type\":\"mindmapview\",\"state\":{\"file\":\"sources/annotations/L2 maths arithmetique CC1.md\"}}",
"eState": "{}"
},
{
"leaf": "3a577d58ceca2f87",
"group": null,
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_CC1.pdf\"}}",
"eState": "{}"
},
{
"leaf": "3a577d58ceca2f87",
"group": null,
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_beamer_cours.pdf\"}}",
"eState": "{}"
}
]
},
"state": {
"type": "pdf",
"state": {
"file": "sources/cours/L2_maths_arithmetique_beamer_cours.pdf"
}
}
},
{
"id": "dea49c79a5f7625a",
"type": "split",
"children": [
{
"id": "f9a21f6d67f25162",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":5,\"ch\":0},\"to\":{\"line\":5,\"ch\":0}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction paire.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction impaire.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":4,\"ch\":25},\"to\":{\"line\":4,\"ch\":25}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction cosinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":4,\"ch\":30},\"to\":{\"line\":4,\"ch\":30}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":40},\"to\":{\"line\":7,\"ch\":40}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":44},\"to\":{\"line\":7,\"ch\":44}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction convergente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arctangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arccosinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arcsinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":32},\"to\":{\"line\":7,\"ch\":32}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"démonstration de l'expression de l'arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"démonstration expression de l'arg cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":1,\"ch\":11},\"to\":{\"line\":1,\"ch\":11}}}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"domination en un point.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"Do.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "f9a21f6d67f25162",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"cosinus pi sur 2 moins x.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{\"cursor\":{\"from\":{\"line\":3,\"ch\":0},\"to\":{\"line\":3,\"ch\":0}}}"
}
]
},
"state": {
"type": "markdown",
"state": {
"file": "fonction tangente.md",
"mode": "source",
"backlinks": false,
"source": false
}
}
},
{
"id": "4676a33f3abec10a",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "4676a33f3abec10a",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
},
{
"leaf": "4676a33f3abec10a",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
"eState": "{}"
}
]
},
"state": {
"type": "markdown",
"state": {
"file": "fonction tangente hyperbolique.md",
"mode": "source",
"backlinks": false,
"source": false
}
}
}
],
"direction": "horizontal"
}
],
"direction": "vertical"
},
"left": {
"id": "64de298669508ee4",
"type": "split",
"children": [
{
"id": "a3e04033addcedcd",
"type": "tabs",
"children": [
{
"id": "8e6cf92b1e047f14",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "8e6cf92b1e047f14",
"group": null,
"state": "{\"type\":\"empty\",\"state\":{}}",
"eState": "{}"
}
]
},
"state": {
"type": "file-explorer",
"state": {}
}
},
{
"id": "390d098cee0c9651",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "search",
"state": {
"query": "tours ",
"matchingCase": false,
"explainSearch": false,
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical"
}
}
},
{
"id": "ccd1190664578ee9",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "tag",
"state": {
"sortOrder": "frequency",
"useHierarchy": true
}
}
},
{
"id": "325e33879123bbe0",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "sekund-main-view",
"state": {}
}
},
{
"id": "bd1d7503d0848342",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "RSS_FEED",
"state": {}
}
},
{
"id": "c7afda8b81d643de",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "outgoing-link",
"state": {
"file": "fonction tangente hyperbolique.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
}
},
{
"id": "e855affa02bb755e",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "backlink",
"state": {
"file": "fonction tangente hyperbolique.md",
"collapseAll": true,
"extraContext": false,
"sortOrder": "alphabetical",
"showSearch": false,
"searchQuery": "",
"backlinkCollapsed": false,
"unlinkedCollapsed": false
}
}
}
],
"currentTab": 1
}
],
"direction": "horizontal",
"width": 467
},
"right": {
"id": "1102f19b896c7a16",
"type": "split",
"children": [
{
"id": "980f845ab893296e",
"type": "tabs",
"dimension": 56.815578465063,
"children": [
{
"id": "5f0a6b2e995376e5",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "outline",
"state": {
"file": "fonction tangente hyperbolique.md"
}
}
},
{
"id": "d45511af0bde9bcf",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "advanced-tables-toolbar",
"state": {}
}
},
{
"id": "bae8ca5650bdd5bf",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "calendar",
"state": {}
}
},
{
"id": "bf6c068c22a39e9f",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "review-queue-list-view",
"state": {}
}
},
{
"id": "32d6a52d872d783d",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "localgraph",
"state": {
"file": "fonction tangente hyperbolique.md",
"options": {
"collapse-filter": false,
"search": "-path:(\"__sekund__\" OR \"daily\" OR \"kanban\") -file:(\"todo\" OR \"things to do\") -file:.excalidraw",
"localJumps": 1,
"localBacklinks": true,
"localForelinks": true,
"localInterlinks": true,
"showTags": false,
"showAttachments": true,
"hideUnresolved": false,
"collapse-color-groups": true,
"colorGroups": [
{
"query": "tag:#todo",
"color": {
"a": 1,
"rgb": 16711680
}
},
{
"query": "tag:#not-done",
"color": {
"a": 1,
"rgb": 2829614
}
},
{
"query": "tag:#MOC",
"color": {
"a": 1,
"rgb": 6356992
}
},
{
"query": "tag:#flashcards",
"color": {
"a": 1,
"rgb": 16427551
}
},
{
"query": "tag:#maths",
"color": {
"a": 1,
"rgb": 2520842
}
},
{
"query": "tag:#logique",
"color": {
"a": 1,
"rgb": 2902193
}
},
{
"query": "tag:#informatique",
"color": {
"a": 1,
"rgb": 32882
}
},
{
"query": "tag:#personne",
"color": {
"a": 1,
"rgb": 10710150
}
},
{
"query": "path:annotation",
"color": {
"a": 1,
"rgb": 12844865
}
},
{
"query": "tag:#PKM OR tag:#obsidian",
"color": {
"a": 1,
"rgb": 4667545
}
}
],
"collapse-display": true,
"showArrow": true,
"textFadeMultiplier": -1,
"nodeSizeMultiplier": 1,
"lineSizeMultiplier": 2.66151355284701,
"collapse-forces": true,
"centerStrength": 0.791642706536324,
"repelStrength": 15.6584243818286,
"linkStrength": 1,
"linkDistance": 30,
"scale": 1.2059531043345284,
"close": true
}
}
}
},
{
"id": "837d069be727ad7e",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "custom-frames-detexify",
"state": {}
}
},
{
"id": "bf9c467678aa05e4",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "BC-matrix",
"state": {}
}
},
{
"id": "843072ab0d510e3d",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": []
},
"state": {
"type": "BC-tree",
"state": {}
}
}
],
"currentTab": 5
},
{
"id": "9b0b445260de35cb",
"type": "tabs",
"dimension": 43.184421534937,
"children": [
{
"id": "cb9c41a428bebf8c",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "cb9c41a428bebf8c",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"things to do.md\",\"mode\":\"preview\",\"backlinks\":false,\"source\":false},\"pinned\":true}",
"eState": "{\"scroll\":3.804469273743017}"
}
]
},
"pinned": true,
"state": {
"type": "markdown",
"state": {
"file": "things to do.md",
"mode": "preview",
"backlinks": false,
"source": false
},
"pinned": true
}
},
{
"id": "523cd7a78782d297",
"type": "leaf",
"pane-relief:history-v1": {
"pos": 0,
"stack": [
{
"leaf": "523cd7a78782d297",
"group": null,
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"devoirs à faire.md\",\"mode\":\"preview\",\"backlinks\":false,\"source\":false},\"pinned\":true}",
"eState": "{}"
}
]
},
"pinned": true,
"state": {
"type": "markdown",
"state": {
"file": "devoirs à faire.md",
"mode": "preview",
"backlinks": false,
"source": false
},
"pinned": true
}
}
],
"currentTab": 1
}
],
"direction": "horizontal",
"width": 309.5,
"collapsed": true
},
"active": "4676a33f3abec10a",
"ophidian:layout-settings": {
"pane-relief:focus-lock": true
},
"lastOpenFiles": [
"notes 2022-09-01.md",
"fonction tangente hyperbolique.md",
"daily/2022-10-15.md",
"fonction arctangente.md",
"sources/cours/L2_maths_analyse_TD2-annotate.md",
"sources/cours/L2_maths_geometrie_TD1_2020-2021-annotate.md",
"daily/2022-10-13.md",
"things to do.md",
"flashcards anglais.md",
"diagramme UML.md"
]
}

1186
.obsidian/workspace.json vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +0,0 @@
{
"workspaces": {},
"active": "fac"
}

View File

@ -1,3 +1,7 @@
---
aliases:
- creative extension principle
---
up:: [[paradigme de programmation]] up:: [[paradigme de programmation]]
#informatique #informatique
@ -13,6 +17,11 @@ up:: [[paradigme de programmation]]
> > Le principe de l'*extension créative* permet d'organiser les concepts pour former réellement un paradigme. > > Le principe de l'*extension créative* permet d'organiser les concepts pour former réellement un paradigme.
> ^SVNS3KNFaP4L4LCJZg5383243p8 > ^SVNS3KNFaP4L4LCJZg5383243p8
> [!idea] extension créative = méta-paradigme
> L'extension créative est un paradigme pour créer des paradigmes.
# Fonctionnement de l'extension créative # Fonctionnement de l'extension créative
1. Apparition d'une modification envahissante 1. Apparition d'une modification envahissante
@ -30,7 +39,6 @@ up:: [[paradigme de programmation]]
> > ajouter ce concept au langage => éviter les modifications envahissantes => retrouver la simplicité > > ajouter ce concept au langage => éviter les modifications envahissantes => retrouver la simplicité
> ^6ZNVVQGIaP4L4LCJZg5383243p9 > ^6ZNVVQGIaP4L4LCJZg5383243p9
## Exemples de modifications envahissantes et solutions ## Exemples de modifications envahissantes et solutions
> [!cite] [Programming Paradigms for Dummies: What Every Programmer Should Know](zotero://select/groups/5383243/items/673TMQRT) - [Page 17](zotero://open-pdf/groups/5383243/items/P4L4LCJZ?page=9&annotation=VAZ8DBMA) > [!cite] [Programming Paradigms for Dummies: What Every Programmer Should Know](zotero://select/groups/5383243/items/673TMQRT) - [Page 17](zotero://open-pdf/groups/5383243/items/P4L4LCJZ?page=9&annotation=VAZ8DBMA)

View File

@ -26,4 +26,19 @@ up::
1. on prends la clef sous le paillasson 1. on prends la clef sous le paillasson
2. on ouvre la porte 2. on ouvre la porte
3. on remet la clef sous le paillasson 3. on remet la clef sous le paillasson
- pour changer d'étage si deux bâtiments sont reliés par des passerelles, mais seulement l'autre possède un ascenseur
- Les bâtiments A et B sont reliés à châque étage par des passerelles
- Le bâtiment A ne possède pas d'ascenseur, le bâtiment B possède un ascenseur
- pour changer d'étage si on est dans le bâtiment A :
1. traverser la passerelle de A vers B
2. changer d'étage dans B
3. traverser la passerelle de B vers A
- arrondir des nombres à $n$ décimales près
1. multiplier le nombre par $10^n$
2. arrondir à l'entier le plus proche
3. diviser le nombre par $10^n$