from github to this gitea
This commit is contained in:
31
série entière.md
Normal file
31
série entière.md
Normal file
@@ -0,0 +1,31 @@
|
||||
---
|
||||
alias: [ "séries entières" ]
|
||||
---
|
||||
up:: [[série de fonctions]]
|
||||
title:: "$\sum\limits_{n\geq 0} a_{n}x^{n}$, où $a_{n}$ ne dépend pas de $x$"
|
||||
#maths/analyse
|
||||
|
||||
---
|
||||
|
||||
> [!definition] Série entière
|
||||
> Une **série entière** est une [[série de fonctions]] de la forme :
|
||||
> $\sum\limits_{n} a_{n}x^{kn}$ avec :
|
||||
> - $(a_{n})$ une suite sur $\mathbb{R}$ qui ne dépend pas de $x$
|
||||
> - $k \in \mathbb{N}$ un coefficient devant la puissance de $x$
|
||||
^definition
|
||||
|
||||
> [!idea] Intuition
|
||||
> On peut voir les séries entières comme la généralisation des [[polynôme|polynômes]] pour un [[degré d'un polynôme|degré]] infini.
|
||||
>
|
||||
> On peut aussi voir les séries entières comme la décomposition de fonction dans la base $x, x^{2}, x^{3}, x^{4}\dots$
|
||||
|
||||
|
||||
|
||||
> [!query] Sous-notes de `=this.file.link`
|
||||
> ```dataview
|
||||
> LIST title
|
||||
> FROM -#cours AND -#exercice AND -"daily" AND -#excalidraw AND -#MOC
|
||||
> WHERE any(map([up, up.up, up.up.up, up.up.up.up], (x) => econtains(x, this.file.link)))
|
||||
> WHERE file != this.file
|
||||
> SORT up!=this.file.link, up.up.up.up, up.up.up, up.up, up
|
||||
> ```
|
||||
Reference in New Issue
Block a user