from github to this gitea
This commit is contained in:
36
démonstration simplification de la congruence.md
Normal file
36
démonstration simplification de la congruence.md
Normal file
@@ -0,0 +1,36 @@
|
||||
up:: [[congruence]]
|
||||
title:: "démonstrations sur les simplifications possibles avec la congruence"
|
||||
#démonstration
|
||||
|
||||
---
|
||||
|
||||
# Simplification totale
|
||||
|
||||
> $ka \equiv kb [kn] \iff a \equiv b[n]$
|
||||
|
||||
$$
|
||||
\begin{align}
|
||||
ka \equiv kb [kn] &\iff kn \mid ka - kb \\
|
||||
&\iff \exists i \in \mathbb{Z}, ka - kb = ikn \\
|
||||
&\iff \exists i \in \mathbb{Z}, a - b = in \\
|
||||
&\iff n|a-b \\
|
||||
&\iff a \equiv b [n]
|
||||
\end{align}
|
||||
$$
|
||||
# Simplification partielle (sans le modulo)
|
||||
|
||||
> $ka \equiv kb [n] \iff a \equiv b [n]$ si $\text{pgcd}(k, n) = 1$
|
||||
|
||||
On suppose que $\mathrm{pgcd}(k, n) = 1$
|
||||
Alors :
|
||||
$$
|
||||
\begin{align}
|
||||
ka \equiv kb [n] &\iff n \mid ka - kb \\
|
||||
% &\iff \exists i\in\mathbb{Z}, ka - kb = in \\
|
||||
&\iff n \mid k(a-b) \\
|
||||
&\iff n | a-b & \text{car } n \text{ et } k \text{ sont premiers entre eux, et donc n'ont aucun diviseur commun} \\ \\
|
||||
&\iff a \equiv b [n]
|
||||
\end{align}
|
||||
$$
|
||||
|
||||
|
Reference in New Issue
Block a user