from github to this gitea

This commit is contained in:
oscar.plaisant@icloud.com
2023-10-23 23:09:51 +02:00
commit a2ee0fa5ca
2898 changed files with 307871 additions and 0 deletions

View File

@@ -0,0 +1,13 @@
#exercice #maths
----
![800](app://local/Users/oscarplaisant/devoirs/cours/attachments/markmind/1664963348304.png?1664963348339)
$\displaystyle I_{4} = \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3}t}{1+\cos ^{2}t} \, dt$
On pose $x = \cos t$, alors $t = \arccos x$
$\cos 0 = 1$ et $\cos \frac{\pi}{2} = 0$, donc les bornes sont inversées, et on doit changer le signe.
$\displaystyle\frac{dt}{dx} = - \frac{1}{\sqrt{ 1-x^{2} }}$ donc $\displaystyle dt = - \frac{dx}{\sqrt{ 1-x^{2} }}$