diff --git a/.obsidian/appearance.json b/.obsidian/appearance.json
index 961372ea..5a092cc3 100644
--- a/.obsidian/appearance.json
+++ b/.obsidian/appearance.json
@@ -8,7 +8,6 @@
"hide_excalibrain_ui",
"tabs_on_multiple_rown",
"popup_preview_size",
- "checkboxes",
"darkmode",
"breadcrumbs",
"[ui] Ultra Compact Tab Header",
@@ -29,19 +28,20 @@
"omts-MySnippets",
"omts-Day Planner (Ivan Lednev)",
"omts-[ui] Compact Sidebar",
- "omts-[editor] Compact Right Sidebar notes",
"latex_mathjax",
"day_planner",
"dataview",
"omts-[ui] Compact Tab Header",
- "general_interface",
"compact_tabs",
"ITS-checkboxes",
"supercharged-links-gen",
"stacked_tabs",
"vertical_stacked_tabs",
"headers",
- "custom_callouts"
+ "custom_callouts",
+ "general_interface",
+ "omts-[editor] Compact Right Sidebar notes",
+ "checkboxes"
],
"interfaceFontFamily": "CMU Bright,CMU Sans Serif,FiraCode Nerd Font",
"textFontFamily": "CMU Sans Serif,FiraCode Nerd Font,CMU Serif",
diff --git a/.obsidian/snippets/omts-[editor] Compact Right Sidebar notes.css b/.obsidian/snippets/omts-[editor] Compact Right Sidebar notes.css
index 4c559ab7..d9304fb7 100644
--- a/.obsidian/snippets/omts-[editor] Compact Right Sidebar notes.css
+++ b/.obsidian/snippets/omts-[editor] Compact Right Sidebar notes.css
@@ -47,510 +47,510 @@
}
}
-/* Duotone hover */
-
-/* Light themes */
-.theme-light.minimal-default-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-atom-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-ayu-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-catppuccin-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-everforest-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-gruvbox-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-macos-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-nord-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-notion-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-rose-pine-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-solarized-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-light.minimal-things-light .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-
-/* Dark themes */
-
-.theme-dark.minimal-default-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-atom-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-ayu-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-catppuccin-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
- /* removed .2 from light values text overlay legibility */
-}
-
-.theme-dark.minimal-dracula-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-everforest-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-gruvbox-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-macos-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-nord-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-notion-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-rose-pine-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-solarized-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
-
-.theme-dark.minimal-things-dark .mod-top-right-space .markdown-reading-view:not(:hover) {
- filter: url('data:image/svg+xml,\
- #filter');
-}
+/* /* Duotone hover */ */
+/**/
+/* /* Light themes */ */
+/* .theme-light.minimal-default-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-atom-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-ayu-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-catppuccin-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-everforest-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-gruvbox-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-macos-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-nord-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-notion-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-rose-pine-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-solarized-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-light.minimal-things-light .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/**/
+/* /* Dark themes */ */
+/**/
+/* .theme-dark.minimal-default-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-atom-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-ayu-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-catppuccin-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* /* removed .2 from light values text overlay legibility */ */
+/* } */
+/**/
+/* .theme-dark.minimal-dracula-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-everforest-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-gruvbox-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-macos-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-nord-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-notion-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-rose-pine-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-solarized-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
+/**/
+/* .theme-dark.minimal-things-dark .mod-top-right-space .markdown-reading-view:not(:hover) { */
+/* filter: url('data:image/svg+xml,\ */
+/* #filter'); */
+/* } */
diff --git a/S2 LOGOS . mathématiques pour non spécialistes.md b/S2 LOGOS . mathématiques pour non spécialistes.md
index 48c1a864..06fd4904 100644
--- a/S2 LOGOS . mathématiques pour non spécialistes.md
+++ b/S2 LOGOS . mathématiques pour non spécialistes.md
@@ -30,5 +30,7 @@ share_updated: 2026-01-12T23:01:48+01:00
- [[boule ouverte]]
- [[espace métrique]]
- [[espace topologique]], [[structure de topologie|topologie]]
+ - [[topologie engendrée]], [[topologie discrète]], [[topologie grossière]]
+ - définition des [[partie fermée d'un espace métrique|fermés]] comme complémentaires des ouverts dans un espace topologique
diff --git a/organisation physique.md b/organisation physique.md
index 7a8980c3..31823aab 100644
--- a/organisation physique.md
+++ b/organisation physique.md
@@ -1,7 +1,8 @@
-up::[[réseau informatique]]
-title::"types d'architectures de réseau"
-#s/informatique
-
-----
+---
+up: "[[réseau informatique]]"
+title: "types d'architectures de réseau"
+tags:
+ - "#s/informatique"
+---
![[Réseau informatique architectures.svg]]
\ No newline at end of file
diff --git a/projet M.chanson.md b/projet M.chanson.md
index 08e61f48..e1d91f4f 100644
--- a/projet M.chanson.md
+++ b/projet M.chanson.md
@@ -1,5 +1,5 @@
---
-difficulty: 0
+difficulty: 5
due: 2024-04-01
up: "[[devoirs]]"
tags:
diff --git a/python module collections.md b/python module collections.md
index 34a6cd14..6cb63386 100644
--- a/python module collections.md
+++ b/python module collections.md
@@ -1,26 +1,25 @@
---
-description: |
- - [[python collections namedtuples|namedtuples]]
- - [[python collections deque|deque]]
- - [[python collections ChainMap|ChainMap]]
- - [[python collections Counter|Counter]]
- - [[python collections OrderedDict|OrderedDict]]
- - [[python collections defaultdict|defaultdict]]
- - [[python collections UserDict|UserDict]]
- - [[python collections UserList|UserList]]
- - [[python collections UserString|UserString]]
+down:
+ - "[[python collections namedtuples|namedtuples]]"
+ - "[[python collections deque|deque]]"
+ - "[[python collections ChainMap|ChainMap]]"
+ - "[[python collections Counter|Counter]]"
+ - "[[python collections OrderedDict|OrderedDict]]"
+ - "[[python collections defaultdict|defaultdict]]"
+ - "[[python collections UserDict|UserDict]]"
+ - "[[python collections UserList|UserList]]"
+ - "[[python collections UserString|UserString]]"
+up: "[[python modules]]"
+title: "des types conteneurs alternatifs"
+tags:
+ - "#s/informatique/langage/python"
---
-up::[[python modules]]
-title::"des types conteneurs alternatifs"
-#s/informatique/langage/python
-----
-
-> [!query] Sous-notes de `=this.file.link`
-> ```dataview
-> LIST title
-> FROM -#cours AND -#exercice AND -"daily" AND -#excalidraw AND -#MOC
-> WHERE any(map([up, up.up, up.up.up, up.up.up.up], (x) => econtains(x, this.file.link)))
-> WHERE file != this.file
-> SORT up!=this.file.link, up.up.up.up, up.up.up, up.up, up, file.name
-> ```
+```breadcrumbs
+title: "Sous-notes"
+type: tree
+collapse: false
+show-attributes: [field]
+field-groups: [downs]
+depth: [0, 0]
+```
diff --git a/python modules.md b/python modules.md
index 0b39d13a..e2467379 100644
--- a/python modules.md
+++ b/python modules.md
@@ -1,8 +1,9 @@
-up::[[python]]
-title::"liste de modules python"
-#s/informatique/langage/python
+---
+up: "[[python]]"
+tags:
+ - "#s/informatique/langage/python"
+---
-----
> [!query] sous-notes directes de `=this.file.link`
> ```dataview
diff --git a/sources/Adám Brudzewsky.md b/sources/Adám Brudzewsky.md
index 2465cb12..52eff84c 100644
--- a/sources/Adám Brudzewsky.md
+++ b/sources/Adám Brudzewsky.md
@@ -1,9 +1,15 @@
-#t/personne
+---
+link: ""
+tags:
+ - "#t/personne"
+---
-
-```dataview
-LIST title
-FROM ""
-WHERE contains(author, this.file.link)
+[[APL]]
+```breadcrumbs
+title: "Sous-notes"
+type: tree
+collapse: false
+show-attributes: [field]
+field-groups: [downs]
+depth: [0, 0]
```
-
diff --git a/structure de topologie.md b/structure de topologie.md
index e5d5e644..5035ccc6 100644
--- a/structure de topologie.md
+++ b/structure de topologie.md
@@ -15,10 +15,21 @@ tags:
> - $\mathcal{O}$ est stable par intersection **finie**
^definition
+```breadcrumbs
+title: "Sous-notes"
+type: tree
+collapse: false
+show-attributes: [field]
+field-groups: [downs]
+depth: [0, 0]
+```
# Propriétés
# Exemples
+ - [[topologie grossière]]
+ - [[topologie discrète]]
+
- topologie de Zariski
- topologie sur les fonctions $\mathscr{C}^{\infty}$ à [[support d'une fonction|support]] [[espace métrique compact|compact]]
diff --git a/tangente hyperbolique d'une somme.md b/tangente hyperbolique d'une somme.md
index 94e3e232..296855dc 100644
--- a/tangente hyperbolique d'une somme.md
+++ b/tangente hyperbolique d'une somme.md
@@ -1,13 +1,15 @@
---
alias: "th(a+b)"
+up: "[[formules de trigonométrie]]"
+sibling: "[[tangente d'une somme]]"
+type:
+ - "formule de somme"
+ - "hyperbolique"
+tags:
+ - "#s/maths/trigonométrie"
---
-up::[[formules de trigonométrie]]
-sibling::[[tangente d'une somme]]
-type::"formule de somme", "hyperbolique"
title::"$\mathrm{th}(a+b) = \dfrac{\mathrm{th}(a)+\mathrm{th}(b)}{1-\mathrm{th}(a)\mathrm{th}(b)}$"
-#s/maths/trigonométrie
-----
$\mathrm{th}(a+b) = \dfrac{\mathrm{th}(a)+\mathrm{th}(b)}{1-\mathrm{th}(a)\mathrm{th}(b)}$
diff --git a/topologie discrète.md b/topologie discrète.md
new file mode 100644
index 00000000..bac0ed9e
--- /dev/null
+++ b/topologie discrète.md
@@ -0,0 +1,26 @@
+---
+up:
+ - "[[structure de topologie|topologie]]"
+tags:
+ - s/maths/topologie
+aliases:
+---
+
+> [!definition] [[topologie discrète]]
+> Soit $E$ un ensemble
+> La **topologie discrète** sur $E$ est la topologie pour laquelle
+> $\forall x \in E,\quad \{ x \} \text{ est un ouvert}$
+> - I la
+^definition
+
+# Propriétés
+
+> [!proposition]+ les ouverts sont les fermés
+> Tout ouvert de la topologie discrète sur un ensemble est aussi un fermé.
+> > [!démonstration]- Démonstration
+> > Soit $U$ un ouvert de la topologie discrète sur un ensemble $X$
+> > $X \setminus U \subseteq X$ donc est un ouvert
+> > $U = X \setminus ($
+
+# Exemples
+
diff --git a/topologie engendrée.md b/topologie engendrée.md
index cf20e112..9a8e6e03 100644
--- a/topologie engendrée.md
+++ b/topologie engendrée.md
@@ -7,15 +7,18 @@ aliases:
---
> [!definition] [[topologie engendrée]]
-> Soit $X$ un ensemble et $B$ un ensemble de sous-ensembles de $X$ tel que $X \in B$ et stable par intersection finie.
-> Alors toutes les unions de membres de $B$ forment une topologie sur $X$, qu'on appelle topologie engendrée par $B$
-> ---
> Soit $X$ un ensemble
-> Soit $B \subset \mathscr{P}(X)$
+> Soit $B \subset \mathscr{P}(X)$ tel que :
+> - $X \in B$
+> - $\forall A_1, A_2 \in B,\quad A_1 \cap A_2 \in B$ ($B$ est stable par intersection finie)
+>
+> ---
+> Soit $X$ un ensemble et $B$ un ensemble de sous-ensembles de $X$ tel que $X \in B$ et stable par intersection finie.
+> Alors toutes les unions de membres de $B$ forment une [[structure de topologie|topologie]] sur $X$, qu'on appelle topologie engendrée par $B$
+>
^definition
# Propriétés
# Exemples
-
diff --git a/topologie grossière.md b/topologie grossière.md
new file mode 100644
index 00000000..8decefae
--- /dev/null
+++ b/topologie grossière.md
@@ -0,0 +1,17 @@
+---
+up:
+ - "[[structure de topologie|topologie]]"
+tags:
+ - s/maths/topologie
+aliases:
+---
+
+> [!definition] [[topologie grossière]]
+> Soit $E$ un ensemble
+> La **topologie grossière sur $E$** est la [[structure de topologie|topologie]] sur $E$ dont les seuls ouverts sont $\emptyset$ et $E$
+^definition
+
+# Propriétés
+
+# Exemples
+