diff --git a/.DS_Store b/.DS_Store index d2cd4faf..bffb3d81 100644 Binary files a/.DS_Store and b/.DS_Store differ diff --git a/.obsidian/appearance.json b/.obsidian/appearance.json index 05244ffe..d3dae1a6 100644 --- a/.obsidian/appearance.json +++ b/.obsidian/appearance.json @@ -1,7 +1,7 @@ { "theme": "obsidian", "cssTheme": "Minimal", - "baseFontSize": 28, + "baseFontSize": 27, "enabledCssSnippets": [ "pdf_darkmode", "query_header_title", diff --git a/.obsidian/bookmarks.json b/.obsidian/bookmarks.json index f44af1f3..a1e0da97 100644 --- a/.obsidian/bookmarks.json +++ b/.obsidian/bookmarks.json @@ -7,7 +7,7 @@ { "type": "file", "ctime": 1727273810488, - "path": "cours L3.topologie.md", + "path": "cours L3.cours topologie.md", "title": "topologie" }, { diff --git a/.obsidian/community-plugins.json b/.obsidian/community-plugins.json index eef474e2..f29c4ba3 100644 --- a/.obsidian/community-plugins.json +++ b/.obsidian/community-plugins.json @@ -10,5 +10,6 @@ "obsidian42-brat", "obsidian-day-planner", "obsidian-hider", - "lazy-plugins" + "lazy-plugins", + "mysnippets-plugin" ] \ No newline at end of file diff --git a/.obsidian/graph.json b/.obsidian/graph.json index 8d215da2..63c00d52 100644 --- a/.obsidian/graph.json +++ b/.obsidian/graph.json @@ -130,6 +130,6 @@ "repelStrength": 6.47786458333333, "linkStrength": 1, "linkDistance": 30, - "scale": 0.934860444721763, + "scale": 0.12691043529086585, "close": false } \ No newline at end of file diff --git a/.obsidian/plugins/breadcrumbs/data.json b/.obsidian/plugins/breadcrumbs/data.json index 08fb29af..eef37b75 100644 --- a/.obsidian/plugins/breadcrumbs/data.json +++ b/.obsidian/plugins/breadcrumbs/data.json @@ -526,7 +526,7 @@ "views": { "page": { "all": { - "sticky": true, + "sticky": false, "readable_line_width": false }, "trail": { @@ -556,7 +556,8 @@ }, "field_group_labels": { "prev": [ - "prevs" + "prevs", + "sames" ], "next": [ "nexts" diff --git a/.obsidian/plugins/lazy-plugins/data.json b/.obsidian/plugins/lazy-plugins/data.json index d23f1e7a..3a5e4460 100644 --- a/.obsidian/plugins/lazy-plugins/data.json +++ b/.obsidian/plugins/lazy-plugins/data.json @@ -267,7 +267,7 @@ "startupType": "short" }, "obsidian-spaced-repetition": { - "startupType": "long" + "startupType": "disabled" }, "obsidian42-strange-new-worlds": { "startupType": "disabled" @@ -340,6 +340,9 @@ }, "zotlit": { "startupType": "long" + }, + "mysnippets-plugin": { + "startupType": "instant" } } } diff --git a/.obsidian/plugins/mysnippets-plugin/main.js b/.obsidian/plugins/mysnippets-plugin/main.js new file mode 100644 index 00000000..000d904c --- /dev/null +++ b/.obsidian/plugins/mysnippets-plugin/main.js @@ -0,0 +1,386 @@ +/* +THIS IS A GENERATED/BUNDLED FILE BY ROLLUP +if you want to view the source visit the plugins github repository +*/ + +'use strict'; + +var obsidian = require('obsidian'); + +/****************************************************************************** +Copyright (c) Microsoft Corporation. + +Permission to use, copy, modify, and/or distribute this software for any +purpose with or without fee is hereby granted. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY +AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM +LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR +OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THIS SOFTWARE. +***************************************************************************** */ + +function __awaiter(thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +} + +function setAttributes(element, attributes) { + for (let key in attributes) { + element.setAttribute(key, attributes[key]); + } +} + +class CreateSnippetModal extends obsidian.Modal { + constructor(app, plugin) { + super(app); + this.app = app; + this.plugin = plugin; + this.onOpen = () => this.display(true); + } + display(focus) { + return __awaiter(this, void 0, void 0, function* () { + const { contentEl } = this; + const customCss = this.app.customCss; + contentEl.empty(); + contentEl.setAttribute("style", "margin-top: 0px"); + const title = document.createElement("h1"); + title.setText("Create a CSS Snippet"); + contentEl.appendChild(title); + const fileTitleSetting = new obsidian.Setting(contentEl); + const fileTitleValue = new obsidian.TextComponent(fileTitleSetting.controlEl); + fileTitleSetting + .setName("CSS Snippet Title") + .setDesc("Write the title for this CSS snippet file."); + const cssStylesSetting = new obsidian.Setting(contentEl); + // avoiding having to reference this specific modal - add style in code + cssStylesSetting.settingEl.setAttribute("style", "display: grid; grid-template-columns: 1fr;"); + const cssStylesValue = new obsidian.TextAreaComponent(cssStylesSetting.controlEl); + setAttributes(cssStylesValue.inputEl, { + style: "margin-top: 12px; width: 100%; height: 32vh;", + class: "ms-css-editor", + }); + cssStylesSetting + .setName("CSS Snippet Styles") + .setDesc("Add in styling for this CSS snippet file."); + cssStylesValue.setValue(this.plugin.settings.stylingTemplate); + const doAdd = () => __awaiter(this, void 0, void 0, function* () { + let fileName = fileTitleValue.getValue(); + let fileContents = cssStylesValue.getValue(); + let snippetPath = customCss.getSnippetPath(fileName); + if (fileName) { + if (!customCss.snippets.includes(fileName)) { + yield app.vault.create(`${customCss.getSnippetsFolder()}/${fileName}.css`, fileContents); + console.log(`%c"${fileName}.css" has been created!`, "color: Violet"); + if (this.plugin.settings.snippetEnabledStatus) + customCss.setCssEnabledStatus(fileName, true); + if (this.plugin.settings.openSnippetFile) + this.app.openWithDefaultApp(snippetPath); + customCss.requestLoadSnippets(); + this.close(); + } + else + new obsidian.Notice(`"${fileName}.css" already exists.`); + } + else + new obsidian.Notice("Missing name for file"); + }); + const saveButton = new obsidian.ButtonComponent(contentEl) + .setButtonText("Create Snippet") + .onClick(doAdd); + saveButton.buttonEl.addClass("wg-button"); + fileTitleValue.inputEl.focus(); + }); + } + onClose() { + const { contentEl } = this; + contentEl.empty(); + } +} + +function snippetsMenu(app, plugin, settings) { + const windowX = window.innerWidth; + const windowY = window.innerHeight; + const menuExists = document.querySelector(".menu.MySnippets-statusbar-menu"); + if (!menuExists) { + const menu = new obsidian.Menu(); + menu.setUseNativeMenu(false); + const menuDom = menu.dom; + menuDom.addClass("MySnippets-statusbar-menu"); + if (settings.aestheticStyle) { + menuDom.setAttribute("style", "background-color: transparent; backdrop-filter: blur(8px); -webkit-backdrop-filter: blur(8px);"); + } + const customCss = app.customCss; + const currentSnippets = customCss.snippets; + const snippetsFolder = customCss.getSnippetsFolder(); + currentSnippets.forEach((snippet) => { + const snippetPath = customCss.getSnippetPath(snippet); + menu.addItem((snippetElement) => { + snippetElement.setTitle(snippet); + const snippetElementDom = snippetElement.dom; + const toggleComponent = new obsidian.ToggleComponent(snippetElementDom); + const buttonComponent = new obsidian.ButtonComponent(snippetElementDom); + function changeSnippetStatus() { + const isEnabled = customCss.enabledSnippets.has(snippet); + customCss.setCssEnabledStatus(snippet, !isEnabled); + } + toggleComponent + .setValue(customCss.enabledSnippets.has(snippet)) + .onChange(changeSnippetStatus); + buttonComponent + .setIcon("ms-snippet") + .setClass("MS-OpenSnippet") + .setTooltip(`Open snippet`) + .onClick((e) => { + app.openWithDefaultApp(snippetPath); + }); + snippetElement.onClick((e) => { + e.preventDefault(); + e.stopImmediatePropagation(); + }); + }); + }); + menu.addSeparator(); + menu.addItem((actions) => { + actions.setIcon(null); + actions.setTitle("Actions"); + const actionsDom = actions.dom; + setAttributes(actions.titleEl, { style: "font-weight: 700" }); + const reloadButton = new obsidian.ButtonComponent(actionsDom); + const folderButton = new obsidian.ButtonComponent(actionsDom); + const addButton = new obsidian.ButtonComponent(actionsDom); + setAttributes(reloadButton.buttonEl, { style: "margin-right: 3px" }); + setAttributes(addButton.buttonEl, { style: "margin-left: 3px" }); + reloadButton + .setIcon("ms-reload") + .setClass("MySnippetsButton") + .setClass("MS-Reload") + .setTooltip("Reload snippets") + .onClick((e) => { + customCss.requestLoadSnippets(); + new obsidian.Notice("Snippets reloaded"); + }); + folderButton + .setIcon("ms-folder") + .setClass("MySnippetsButton") + .setClass("MS-Folder") + .setTooltip("Open snippets folder") + .onClick((e) => { + app.openWithDefaultApp(snippetsFolder); + }); + addButton + .setIcon("ms-add") + .setClass("MySnippetsButton") + .setClass("MS-Folder") + .setTooltip("Create new snippet") + .onClick((e) => { + new CreateSnippetModal(app, plugin).open(); + }); + }); + menu.showAtPosition({ + x: windowX - 15, + y: windowY - 37, + }); + } +} + +const icons = { + "art-fill": ``, + "art-brush": ``, + "ms-create-file": ``, + "pantone-line": ``, + "ms-code": ``, + "ms-reload": ``, + "ms-folder": ``, + "ms-snippet": ``, + "ms-add": ``, + "ms-save": ``, + "ms-delete": ``, + "ms-css-file": ``, +}; +function addIcons() { + Object.keys(icons).forEach((key) => { + obsidian.addIcon(key, icons[key]); + }); +} + +class MySnippetsSettingTab extends obsidian.PluginSettingTab { + constructor(app, plugin) { + super(app, plugin); + this.plugin = plugin; + } + display() { + const { containerEl } = this; + containerEl.empty(); + containerEl.createEl("h1", { text: "MySnippets" }); + containerEl.createEl("p", { text: "Created by " }).createEl("a", { + text: "Chetachi 👩🏽‍💻", + href: "https://github.com/chetachiezikeuzor", + }); + containerEl.createEl("h2", { text: "Plugin Settings" }); + new obsidian.Setting(containerEl) + .setName("Glass menu effect") + .setDesc("Choose to change the background from the secondary background color of your theme to a glass background.") + .addToggle((toggle) => { + toggle + .setValue(this.plugin.settings.aestheticStyle) + .onChange((value) => __awaiter(this, void 0, void 0, function* () { + this.plugin.settings.aestheticStyle = value; + this.plugin.saveSettings(); + })); + }); + new obsidian.Setting(containerEl) + .setName("Auto open new snippet") + .setDesc("Choose whether or not to open CSS snippet files immeditaley after creating them. It will open in your default app.") + .addToggle((toggle) => { + toggle + .setValue(this.plugin.settings.openSnippetFile) + .onChange((value) => __awaiter(this, void 0, void 0, function* () { + this.plugin.settings.openSnippetFile = value; + this.plugin.saveSettings(); + })); + }); + new obsidian.Setting(containerEl) + .setName("Set new snippet status") + .setDesc("Choose whether or not to have newly created CSS snippet files toggled on automatically upon creation.") + .addToggle((toggle) => { + toggle + .setValue(this.plugin.settings.snippetEnabledStatus) + .onChange((value) => __awaiter(this, void 0, void 0, function* () { + this.plugin.settings.snippetEnabledStatus = value; + this.plugin.saveSettings(); + })); + }); + const stylingTemplateSetting = new obsidian.Setting(containerEl); + stylingTemplateSetting.settingEl.setAttribute("style", "display: grid; grid-template-columns: 1fr;"); + stylingTemplateSetting + .setName("CSS snippet template") + .setDesc("Set default CSS styling as a template for new CSS files you choose to create."); + const stylingTemplateContent = new obsidian.TextAreaComponent(stylingTemplateSetting.controlEl); + setAttributes(stylingTemplateContent.inputEl, { + style: "margin-top: 12px; width: 100%; height: 32vh;", + class: "ms-css-editor", + }); + stylingTemplateContent + .setValue(this.plugin.settings.stylingTemplate) + .onChange((value) => __awaiter(this, void 0, void 0, function* () { + this.plugin.settings.stylingTemplate = value; + this.plugin.saveSettings(); + })); + const msDonationDiv = containerEl.createEl("div", { + cls: "msDonationSection", + }); + const donateText = createEl("p"); + donateText.appendText("If you like this Plugin and are considering donating to support continued development, use the buttons below!"); + msDonationDiv.appendChild(donateText); + msDonationDiv.appendChild(paypalButton("https://paypal.me/chelseaezikeuzor")); + msDonationDiv.appendChild(buyMeACoffeeButton("https://www.buymeacoffee.com/chetachi")); + msDonationDiv.appendChild(kofiButton("https://ko-fi.com/chetachi")); + } +} +const buyMeACoffeeButton = (link) => { + const a = createEl("a"); + a.setAttribute("href", link); + a.addClass("buymeacoffee-chetachi-img"); + a.innerHTML = ` `; + return a; +}; +const paypalButton = (link) => { + const a = createEl("a"); + a.setAttribute("href", link); + a.addClass("buymeacoffee-chetachi-img"); + a.innerHTML = ` + + + + + + + `; + return a; +}; +const kofiButton = (link) => { + const a = createEl("a"); + a.setAttribute("href", link); + a.addClass("buymeacoffee-chetachi-img"); + a.innerHTML = ``; + return a; +}; + +const DEFAULT_SETTINGS = { + aestheticStyle: false, + snippetViewPosition: "left", + openSnippetFile: true, + stylingTemplate: "", + snippetEnabledStatus: false, +}; + +class MySnippetsPlugin extends obsidian.Plugin { + onload() { + return __awaiter(this, void 0, void 0, function* () { + console.log(`MySnippets v${this.manifest.version} loaded`); + addIcons(); + yield this.loadSettings(); + this.addSettingTab(new MySnippetsSettingTab(this.app, this)); + this.app.workspace.onLayoutReady(() => { + setTimeout(() => { + this.setupSnippetsStatusBarIcon(); + }); + }); + }); + } + setupSnippetsStatusBarIcon() { + this.statusBarIcon = this.addStatusBarItem(); + this.statusBarIcon.addClass("MiniSettings-statusbar-button"); + this.statusBarIcon.addClass("mod-clickable"); + setAttributes(this.statusBarIcon, { + "aria-label": "Configure Snippets", + "aria-label-position": "top", + }); + obsidian.setIcon(this.statusBarIcon, "pantone-line"); + this.statusBarIcon.addEventListener("click", () => { + snippetsMenu(this.app, this, this.settings); + }); + this.addCommand({ + id: `open-snippets-menu`, + name: `Open snippets in status bar`, + icon: `pantone-line`, + callback: () => __awaiter(this, void 0, void 0, function* () { + snippetsMenu(this.app, this, this.settings); + }), + }); + this.addCommand({ + id: `open-snippets-create`, + name: `Create new CSS snippet`, + icon: `ms-css-file`, + callback: () => __awaiter(this, void 0, void 0, function* () { + new CreateSnippetModal(this.app, this).open(); + }), + }); + } + onunload() { + console.log("MySnippets unloaded"); + } + loadSettings() { + return __awaiter(this, void 0, void 0, function* () { + this.settings = Object.assign({}, DEFAULT_SETTINGS, yield this.loadData()); + }); + } + saveSettings() { + return __awaiter(this, void 0, void 0, function* () { + yield this.saveData(this.settings); + }); + } +} + +module.exports = MySnippetsPlugin; + + +/* nosourcemap */ \ No newline at end of file diff --git a/.obsidian/plugins/mysnippets-plugin/manifest.json b/.obsidian/plugins/mysnippets-plugin/manifest.json new file mode 100644 index 00000000..cc04fee3 --- /dev/null +++ b/.obsidian/plugins/mysnippets-plugin/manifest.json @@ -0,0 +1,10 @@ +{ + "id": "mysnippets-plugin", + "name": "MySnippets", + "version": "1.2.3", + "minAppVersion": "0.15.3", + "description": "MySnippets is a plugin that adds a status bar menu allowing the user to quickly toggle their snippets on and off 🖌.", + "author": "chetachi", + "authorUrl": "https://github.com/chetachiezikeuzor", + "isDesktopOnly": true +} diff --git a/.obsidian/plugins/mysnippets-plugin/styles.css b/.obsidian/plugins/mysnippets-plugin/styles.css new file mode 100644 index 00000000..f6751dac --- /dev/null +++ b/.obsidian/plugins/mysnippets-plugin/styles.css @@ -0,0 +1,132 @@ +.ms-css-editor { + width: 100%; + height: 36vh; + margin-top: 12px; + text-align: left; + white-space: pre; + word-wrap: normal; + overflow-x: scroll; + padding: 6px 10px; + font-size: 0.875em; + border-radius: 6px; + white-space: pre-wrap; + color: var(--text-muted); + font-family: var(--font-monospace); + background-color: var(--background-primary); + border: 1px solid var(--background-modifier-border); +} + +/*---------------------------------------------------------------- +STATUS BAR MENU +----------------------------------------------------------------*/ + +.MiniSettings-statusbar-button { + cursor: pointer; + display: flex; + align-items: center; + line-height: 1; +} + +.MySnippets-statusbar-menu { + width: 290px; + max-height: calc(100% - 90px); +} + +.MySnippets-statusbar-menu .menu-item-icon { + display: none; +} + +.MySnippets-statusbar-menu .menu-item { + display: flex; + align-items: center; + justify-content: space-between; + flex-direction: row; +} + +.MySnippets-statusbar-menu .menu-item.settings-item { + font-size: 12px; + text-align: center; + line-height: 1; + border-radius: 5px; + height: auto; + padding: 8px 5px 0px 5px; + margin: 0 auto; + width: fit-content; + color: var(--text-faint); +} + +.MySnippets-statusbar-menu.menu-item:hover, +.MySnippets-statusbar-menu.menu-item .selected:hover, +.MySnippets-statusbar-menu + .menu-item.selected:not(.is-disabled):not(.is-label) { + background-color: transparent; +} + +.MySnippets-statusbar-menu .menu-item-title { + margin-right: 10px; + width: 60%; + line-height: initial; + overflow-x: hidden; + text-overflow: ellipsis; +} + +.MS-OpenSnippet { + padding: 3px 10px; + border-radius: 6px; + margin-right: 0; + margin-left: 8px; + display: flex; + background-color: var(--interactive-accent); +} + +.MS-OpenSnippet svg { + height: 1.35em; + width: 1.35em; +} + +.MS-OpenSnippet:hover { + background-color: var(--interactive-accent); +} + +.MySnippetsButton { + width: auto; + padding: 5px 14px; + margin-right: 0; + margin-top: 4px; + border-radius: 6px; + display: flex; + font-size: 12px !important; +} + +.MySnippetsButton svg { + height: 1.35em; + margin: auto; + width: 1.35em; +} + +.MySnippetsButton.MS-Reload, +.MySnippetsButton.MS-Reload:hover, +.MySnippetsButton.MS-Folder, +.MySnippetsButton.MS-Folder:hover { + background-color: var(--interactive-accent); +} + +.MySnippets-statusbar-menu .menu-item.buttonitem { + justify-self: space-between; +} + +.menu.MySnippets-statusbar-menu { + overflow: auto; +} + +/*---------------------------------------------------------------- +MYSNIPPETS SUPPORT +----------------------------------------------------------------*/ + +.msDonationSection { + width: 65%; + height: 50vh; + margin: 0 auto; + text-align: center; + color: var(--text-normal); +} diff --git a/.obsidian/plugins/obsidian-completr/blacklisted_suggestions.txt b/.obsidian/plugins/obsidian-completr/blacklisted_suggestions.txt index 44396ad4..83e14c76 100644 --- a/.obsidian/plugins/obsidian-completr/blacklisted_suggestions.txt +++ b/.obsidian/plugins/obsidian-completr/blacklisted_suggestions.txt @@ -123,4 +123,5 @@ Summary \deg \int \notChar -\pitchfork \ No newline at end of file +\pitchfork +\operatorname{#} \ No newline at end of file diff --git a/.obsidian/plugins/obsidian-latex-suite/data.json b/.obsidian/plugins/obsidian-latex-suite/data.json index ac162edd..0015aad8 100644 --- a/.obsidian/plugins/obsidian-latex-suite/data.json +++ b/.obsidian/plugins/obsidian-latex-suite/data.json @@ -1,5 +1,5 @@ { - "snippets": "[\n // textes pour les démonstrations\n {trigger: \"dlsq\", replacement: \"de là suit que\", options: \"tA\"},\n\n // phrases de définition communes\n {trigger: \"deam\", replacement: \"Dans l'[[espace mesuré]] $(E, \\\\mathcal{A}, \\\\mu)$\", options: \"tA\"},\n\n // textes autres\n {trigger: \"mupp\", replacement: \"$\\\\mu$-presque partout\", options: \"tA\"},\n \n // Math mode\n {trigger: \"mk\", replacement: \"$$0$\", options: \"tA\"},\n // {trigger: \"dm\", replacement: \"$$\\n$0\\n$$\", options: \"tA\"},\n {trigger: \"beg\", replacement: \"\\\\begin{$0}\\n$1\\n\\\\end{$0}\", options: \"mA\"},\n\n {trigger: \"disp\", replacement: \"\\\\displaystyle \", options: \"smA\"},\n // Dashes\n //{trigger: \"--\", replacement: \"–\", options: \"tA\"},\n //{trigger: \"–-\", replacement: \"—\", options: \"tA\"},\n //{trigger: \"—-\", replacement: \"---\", options: \"tA\"},\n\n\n // Greek letters\n {trigger: \":a\", replacement: \"\\\\alpha\", options: \"mA\"},\n {trigger: \":A\", replacement: \"\\\\alpha\", options: \"mA\"},\n {trigger: \":b\", replacement: \"\\\\beta\", options: \"mA\"},\n {trigger: \":B\", replacement: \"\\\\beta\", options: \"mA\"},\n {trigger: \":c\", replacement: \"\\\\chi\", options: \"mA\"},\n {trigger: \":C\", replacement: \"\\\\chi\", options: \"mA\"},\n {trigger: \":g\", replacement: \"\\\\gamma\", options: \"mA\"},\n {trigger: \":G\", replacement: \"\\\\Gamma\", options: \"mA\"},\n {trigger: \":d\", replacement: \"\\\\delta\", options: \"mA\"},\n {trigger: \":D\", replacement: \"\\\\Delta\", options: \"mA\"},\n {trigger: \"@e\", replacement: \"\\\\epsilon\", options: \"mA\"},\n {trigger: \"@E\", replacement: \"\\\\epsilon\", options: \"mA\"},\n {trigger: \":e\", replacement: \"\\\\varepsilon\", options: \"mA\"},\n {trigger: \":E\", replacement: \"\\\\varepsilon\", options: \"mA\"},\n {trigger: \":z\", replacement: \"\\\\zeta\", options: \"mA\"},\n {trigger: \":Z\", replacement: \"\\\\zeta\", options: \"mA\"},\n {trigger: \":t\", replacement: \"\\\\theta\", options: \"mA\"},\n {trigger: \":T\", replacement: \"\\\\Theta\", options: \"mA\"},\n {trigger: \":k\", replacement: \"\\\\kappa\", options: \"mA\"},\n {trigger: \":K\", replacement: \"\\\\kappa\", options: \"mA\"},\n {trigger: \":l\", replacement: \"\\\\lambda\", options: \"mA\"},\n {trigger: \":L\", replacement: \"\\\\Lambda\", options: \"mA\"},\n {trigger: \":m\", replacement: \"\\\\mu\", options: \"mA\"},\n {trigger: \":M\", replacement: \"\\\\mu\", options: \"mA\"},\n {trigger: \":r\", replacement: \"\\\\rho\", options: \"mA\"},\n {trigger: \":R\", replacement: \"\\\\rho\", options: \"mA\"},\n {trigger: \":s\", replacement: \"\\\\sigma\", options: \"mA\"},\n {trigger: \":S\", replacement: \"\\\\Sigma\", options: \"mA\"},\n {trigger: \"ome\", replacement: \"\\\\omega\", options: \"mA\"},\n {trigger: \":p\", replacement: \"\\\\varphi\", options: \"mA\"},\n {trigger: \":o\", replacement: \"\\\\omega\", options: \"mA\"},\n {trigger: \":O\", replacement: \"\\\\Omega\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])(${GREEK}|${SYMBOL})\", replacement: \"[[0]]\\\\[[1]]\", options: \"rmA\", description: \"Add backslash before greek letters and symbols\"},\n\n\n // Insert space after greek letters and symbols, etc\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL})([A-Za-ik-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) sr\", replacement: \"\\\\[[0]]^{2}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) cb\", replacement: \"\\\\[[0]]^{3}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) rd\", replacement: \"\\\\[[0]]^{$0}$1\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) hat\", replacement: \"\\\\hat{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) dot\", replacement: \"\\\\dot{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}),\\\\.\", replacement: \"\\\\mathbf{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK})\\\\.,\", replacement: \"\\\\mathbf{\\\\[[0]]}\", options: \"rmA\"},\n\n\n // Mathematical fonts\n {trigger: \"te\", replacement: \"\\\\text{$0}\", options: \"mA\"},\n {trigger: \"bf\", replacement: \"\\\\mathbf{$0}\", options: \"mA\"},\n {trigger: \"scr\", replacement: \"\\\\mathscr{$0}\", options: \"mA\"},\n {trigger: \"cal\", replacement: \"\\\\mathcal{$0}\", options: \"mA\"},\n {trigger: \"bb\", replacement: \"\\\\mathbb{$0}\", options: \"mA\"},\n {trigger: \"frak\", replacement: \"\\\\mathfrak{$0}\", options: \"mA\"},\n {trigger: \"([a-zA-Z]),\\\\.\", replacement: \"\\\\mathbf{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])\\\\.,\", replacement: \"\\\\mathbf{[[0]]}\", options: \"rmA\"},\n\n // Operations\n {trigger: \"sr\", replacement: \"^{2}\", options: \"mA\"},\n {trigger: \"cb\", replacement: \"^{3}\", options: \"mA\"},\n {trigger: \"rd\", replacement: \"^{$0}$1\", options: \"mA\"},\n {trigger: \"sd\", replacement: \"_{$0}$1\", options: \"mA\"},\n {trigger: \"_\", replacement: \"_{$0}$1\", options: \"mA\"},\n {trigger: \"sts\", replacement: \"_\\\\text{$0}\", options: \"rmA\"},\n {trigger: \"sq\", replacement: \"\\\\sqrt{ $0 }$1\", options: \"mA\"},\n {trigger: \"//\", replacement: \"\\\\frac{$0}{$1}$2\", options: \"mA\"},\n {trigger: \"rm\", replacement: \"\\\\mathrm{$0}$1\", options: \"mA\"},\n {trigger: \"conj\", replacement: \"^{*}\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])bar\", replacement: \"[[0]]\\\\overline{$0}\", options: \"rmA\"},\n {trigger: \"hat\", replacement: \"\\\\hat{$0}\", options: \"mA\"},\n {trigger: \"dot\", replacement: \"\\\\dot{$0}\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot)\", replacement: \"[[0]]\\\\[[1]]\", options: \"rmA\"},\n {trigger: \"(th|ch|sh)\", replacement: \"\\\\mathrm{[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot|csc|sh|ch|th)([A-Za-gi-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"}, // Insert space after trig funcs. Skips letter \"h\" to allow sinh, cosh, etc.\n {trigger: \"\\\\\\\\(arcsinh|arccosh|arctanh|arccoth|arcsch|arcsech|sinh|cosh|tanh|coth|csch|sh|ch|th)([A-Za-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"}, // Insert space after trig funcs\n {trigger: \"trace\", replacement: \"\\\\mathrm{Tr}\", options: \"mA\"},\n {trigger: \"trans\", replacement: \"\\\\,^T\\\\!\", options: \"mA\"},\n\n // automatic stuff (subscript, bar, hat...)\n {trigger: \"([A-Za-z])(\\\\d)\", replacement: \"[[0]]_[[1]]\", options: \"rmA\", description: \"Auto letter subscript\", priority: -1},\n {trigger: \"\\\\\\\\mathbf{([A-Za-z])}(\\\\d)\", replacement: \"\\\\mathbf{[[0]]}_{[[1]]}\", options: \"rmA\"},\n {trigger: \"([A-Za-z])_(\\\\d\\\\d)\", replacement: \"[[0]]_{[[1]]}\", options: \"rmA\"},\n {trigger: \"\\\\hat{([A-Za-z])}(\\\\d)\", replacement: \"hat{[[0]]}_{[[1]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])bar\", replacement: \"\\\\overline{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])hat\", replacement: \"\\\\hat{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])ddot\", replacement: \"\\\\ddot{[[0]]}\", options: \"rmA\"},\n {trigger: \"ddot\", replacement: \"\\\\ddot{$0}\", options: \"mA\"},\n {trigger: \"([a-zA-Z])dot\", replacement: \"\\\\dot{[[0]]}\", options: \"rmA\"},\n \n\n\n // Visual operations - don't work with vim mode\n {trigger: \"{\", replacement: \"\\\\underbrace{ ${VISUAL} }_{ $0 }\", options: \"mA\"},\n {trigger: \"#\", replacement: \"\\\\underset{ $0 }{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"~\", replacement: \"\\\\cancel{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"^\", replacement: \"\\\\cancelto{ $0 }{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"S\", replacement: \"\\\\sqrt{ ${VISUAL} }\", options: \"mA\"},\n \n\n // centered \\not\n {trigger: \"cnot\", replacement: \"\\\\centernot{$0}\", options: \"mA\"},\n\n\n // Symbols\n {trigger: \"ooo\", replacement: \"\\\\infty\", options: \"mA\"},\n {trigger: \"pm\", replacement: \"\\\\pm\", options: \"m\"},\n {trigger: \"...\", replacement: \"\\\\dots\", options: \"mA\"},\n {trigger: \"\\\\dots.\", replacement: \"\\\\cdots\", options: \"mA\"},\n {trigger: \"sto\", replacement: \",\\\\dots,\", options: \"mA\"},\n {trigger: \"->\", replacement: \"\\\\to\", options: \"mA\"},\n {trigger: \"to\", replacement: \"\\\\to\", options: \"mA\"},\n {trigger: \"<->\", replacement: \"\\\\leftrightarrow \", options: \"mA\"},\n {trigger: \"!>\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"|->\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"maps\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"^->\", replacement: \"\\\\vec{$0}\", options: \"mA\", priority: 1},\n {trigger: \"^-->\", replacement: \"\\\\overrightarrow{$0}\", options: \"mA\", priority: 1},\n {trigger: \"tto\", replacement: \"\\\\xrightarrow{$0}\", options: \"mA\", priority: 1},\n {trigger: \"invs\", replacement: \"^{-1}\", options: \"mA\"},\n {trigger: \"~~\", replacement: \"\\\\sim\", options: \"mA\"},\n {trigger: \"\\\\sim ~\", replacement: \"\\\\approx\", options: \"mA\"},\n {trigger: \"prop\", replacement: \"\\\\propto\", options: \"mA\"},\n {trigger: \"nabl\", replacement: \"\\\\nabla\", options: \"mA\"},\n {trigger: \"xx\", replacement: \"\\\\times\", options: \"mA\"},\n {trigger: \"**\", replacement: \"\\\\cdot\", options: \"mA\"},\n {trigger: \"pal\", replacement: \"\\\\parallel\", options: \"mA\"},\n {trigger: \"===\", replacement: \"\\\\equiv\", options: \"mA\"},\n {trigger: \"Sq\", replacement: \"\\\\square\", options: \"mA\"},\n {trigger: \"tl\", replacement: \"\\\\vartriangleleft \", options: \"mA\"},\n\n // Operators\n {trigger: \"lts\", replacement: \"\\\\limits\", options: \"mA\"},\n {trigger: \"sum\", replacement: \"\\\\sum\\\\limits\", options: \"mA\"},\n {trigger: \"prod\", replacement: \"\\\\prod\\\\limits\", options: \"mA\"},\n {trigger: \"lim\", replacement: \"\\\\lim\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n {trigger: \"sup\", replacement: \"\\\\sup\\\\limits$0\", options: \"mA\"},\n {trigger: \"inf\", replacement: \"\\\\inf\\\\limits$0\", options: \"mA\"},\n {trigger: \"lsup\", replacement: \"\\\\limsup\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n {trigger: \"linf\", replacement: \"\\\\liminf\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n \n // Logic\n {trigger: \"||\", replacement: \"\\\\mid\", options: \"mA\"},\n {trigger: \"and\", replacement: \"\\\\wedge\", options: \"mA\"},\n {trigger: \"orr\", replacement: \"\\\\vee\", options: \"mA\"},\n {trigger: \"inn\", replacement: \"\\\\in\", options: \"mA\"},\n {trigger: \"nii\", replacement: \"\\\\ni\", options: \"mA\"},\n {trigger: \"=>\", replacement: \"\\\\implies\", options: \"mA\"},\n {trigger: \"=<\", replacement: \"\\\\impliedby\", options: \"mA\"},\n {trigger: \"iff\", replacement: \"\\\\iff\", options: \"mA\"},\n {trigger: \"e\\\\xi sts\", replacement: \"\\\\exists\", options: \"mA\", priority: 1},\n {trigger: \"fora\\\\ll\", replacement: \"\\\\forall\", options: \"rmA\", priority: 1},\n {trigger: \"tq\", replacement: \",\\\\quad \", options: \"mA\", priority: 1},\n {trigger: \"!=\", replacement: \"\\\\neq \", options: \"mA\"},\n {trigger: \"neq\", replacement: \"\\\\neq \", options: \"mA\"},\n {trigger: \">=\", replacement: \"\\\\geq \", options: \"mA\"},\n {trigger: \"<=\", replacement: \"\\\\leq \", options: \"mA\"},\n {trigger: \">>\", replacement: \"\\\\gg\", options: \"mA\"},\n {trigger: \"<<\", replacement: \"\\\\ll\", options: \"mA\"},\n \n // Sets (ensembles)\n {trigger: \"sm\", replacement: \"\\\\setminus\", options: \"mA\"},\n {trigger: \"set\", replacement: \"\\\\{ $0 \\\\}$1\", options: \"mA\"},\n {trigger: \"bag\", replacement: \"\\\\{\\\\!\\\\!\\\\{ $0 \\\\}\\\\!\\\\!\\\\}$1\", options: \"mA\"},\n {trigger: \"ems\", replacement: \"\\\\emptyset\", options: \"mA\"},\n {trigger: \"##\", replacement: \"\\\\#\", options: \"mA\"}, // cardinal\n {trigger: \"cap\", replacement: \"\\\\cap\", options: \"mA\"},\n {trigger: \"cup\", replacement: \"\\\\cup\", options: \"mA\"},\n {trigger: \":w\", replacement: \"\\\\subset\", options: \"mA\"},\n {trigger: \":x\", replacement: \"\\\\supset\", options: \"mA\"},\n {trigger: \"\\\\subset eq\", replacement: \"\\\\subseteq\", options: \"mA\"},\n {trigger: \"\\\\subset neq\", replacement: \"\\\\subsetneq\", options: \"mA\"},\n {trigger: \"\\\\subseteq q\", replacement: \"\\\\subseteqq\", options: \"mA\"},\n {trigger: \"\\\\subsetneq q\", replacement: \"\\\\subsetneqq\", options: \"mA\"},\n {trigger: \"\\\\supset eq\", replacement: \"\\\\supseteq\", options: \"mA\"},\n {trigger: \"\\\\supset neq\", replacement: \"\\\\supsetneq\", options: \"mA\"},\n {trigger: \"\\\\supseteq q\", replacement: \"\\\\supseteqq\", options: \"mA\"},\n {trigger: \"\\\\supsetneq q\", replacement: \"\\\\supsetneqq\", options: \"mA\"},\n\n\n // Sequences (suites)\n {trigger: \"xnn\", replacement: \"x_{n}\", options: \"mA\"},\n {trigger: \"xii\", replacement: \"x_{i}\", options: \"mA\"},\n {trigger: \"xjj\", replacement: \"x_{j}\", options: \"mA\"},\n {trigger: \"xkk\", replacement: \"x_{k}\", options: \"mA\"},\n {trigger: \"xp1\", replacement: \"x_{n+1}\", options: \"mA\"},\n {trigger: \"ynn\", replacement: \"y_{n}\", options: \"mA\"},\n {trigger: \"yii\", replacement: \"y_{i}\", options: \"mA\"},\n {trigger: \"yjj\", replacement: \"y_{j}\", options: \"mA\"},\n {trigger: \"ykk\", replacement: \"y_{k}\", options: \"mA\"},\n\n\n // letters (special fonts)\n {trigger: \"ell\", replacement: \"\\\\ell\", options: \"mA\"},\n {trigger: \"lll\", replacement: \"\\\\ell\", options: \"mA\"},\n {trigger: \"LL\", replacement: \"\\\\mathcal{L}\", options: \"mA\"},\n {trigger: \"HH\", replacement: \"\\\\mathcal{H}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{(N|Z|Q|D|R|C|H)}(\\\\*|\\\\+|-)\", replacement: \"\\mathbb{[[0]]}^{[[1]]$0}$1\", options: \"rmA\"},\n {trigger: \"CC\", replacement: \"\\\\mathbb{C}\", options: \"mA\"},\n {trigger: \"RR\", replacement: \"\\\\mathbb{R}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{R}bar\", replacement: \"\\overline{\\\\mathbb{R}}\", options: \"rmA\"},\n {trigger: \"ZZ\", replacement: \"\\\\mathbb{Z}\", options: \"mA\"},\n {trigger: \"NN\", replacement: \"\\\\mathbb{N}\", options: \"mA\"},\n {trigger: \"QQ\", replacement: \"\\\\mathbb{Q}\", options: \"mA\"},\n {trigger: \"II\", replacement: \"\\\\mathbb{1}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{1}I\", replacement: \"\\\\hat{\\\\mathbb{1}}\", options: \"mA\"},\n {trigger: \"AA\", replacement: \"\\\\mathcal{A}\", options: \"mA\"},\n {trigger: \"BB\", replacement: \"\\\\mathbb{B}\", options: \"mA\"},\n {trigger: \"EE\", replacement: \"\\\\mathbf{E}\", options: \"mA\"},\n \n\n // Algebra (algèbre)\n {trigger: \"[zZ]_?{?(n|p|q|[0-9]+)}?[zZ]\", replacement: \"\\\\mathbb{Z}/[[0]]\\\\mathbb{Z}\", options: \"rmA\"},\n {trigger: \"dist\", replacement: \"\\\\trianglelefteq\", options: \"mA\", description: \"sous groupe distingué\"},\n {trigger: \"orb\", replacement: \"\\\\operatorname{Orb}\", options: \"mA\"},\n\n\n\n // Unit vecttors\n /*\n {trigger: \":i\", replacement: \"\\\\mathbf{i}\", options: \"mA\"},\n {trigger: \":j\", replacement: \"\\\\mathbf{j}\", options: \"mA\"},\n {trigger: \":k\", replacement: \"\\\\mathbf{k}\", options: \"mA\"},\n {trigger: \":x\", replacement: \"\\\\hat{\\\\mathbf{x}}\", options: \"mA\"},\n {trigger: \":y\", replacement: \"\\\\hat{\\\\mathbf{y}}\", options: \"mA\"},\n {trigger: \":z\", replacement: \"\\\\hat{\\\\mathbf{z}}\", options: \"mA\"},\n */\n\n\n // Derivatives\n {trigger: \"par\", replacement: \"\\\\frac{ \\\\partial ${0:y} }{ \\\\partial ${1:x} } $2\", options: \"mA\"},\n {trigger: \"pa2\", replacement: \"\\\\frac{ \\\\partial^{2} ${0:y} }{ \\\\partial ${1:x}^{2} } $2\", options: \"mA\"},\n {trigger: \"pa3\", replacement: \"\\\\frac{ \\\\partial^{3} ${0:y} }{ \\\\partial ${1:x}^{3} } $2\", options: \"mA\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ \\\\partial [[0]] }{ \\\\partial [[1]] } \", options: \"rm\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ \\\\partial^{2} [[0]] }{ \\\\partial [[1]] \\\\partial [[3]] } \", options: \"rm\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])2\", replacement: \"\\\\frac{ \\\\partial^{2} [[0]] }{ \\\\partial [[1]]^{2} } \", options: \"rmA\"},\n {trigger: \"de([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ d[[0]] }{ d[[1]] } \", options: \"rm\"},\n {trigger: \"de([A-Za-z])([A-Za-z])2\", replacement: \"\\\\frac{ d^{2}[[0]] }{ d[[1]]^{2} } \", options: \"rmA\"},\n {trigger: \"dd(t|x)\", replacement: \"\\\\frac{d}{d[[0]]} \", options: \"rmA\"},\n\n\n\n // Integrals\n {trigger: \"oinf\", replacement: \"\\\\int_{0}^{\\\\infty} $0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"infi\", replacement: \"\\\\int_{-\\\\infty}^{\\\\infty} $0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"dint\", replacement: \"\\\\int_{${0:0}}^{${1:1}} $2 \\\\, d${3:x} $4\", options: \"mA\"},\n {trigger: \"oint\", replacement: \"\\\\oint\", options: \"mA\"},\n {trigger: \"iiint\", replacement: \"\\\\iiint\", options: \"mA\"},\n {trigger: \"iint\", replacement: \"\\\\iint\", options: \"mA\"},\n {trigger: \"int\", replacement: \"\\\\int$0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"mint\", replacement: \"\\\\int$0 \\\\, d\\\\mu $1\", options: \"mA\"},\n {trigger: \"lint\", replacement: \"\\\\int_{${0:\\\\mathbb{R}}} $1 \\\\, \\\\lambda(dx) $2\", options: \"mA\"},\n\n {trigger: \"cpm\", replacement: \"C^0_{pm}($0)\", options: \"mA\"}, // fonction continue par morceaux\n\n\n // Physics\n {trigger: \"kbt\", replacement: \"k_{B}T\", options: \"mA\"},\n\n\n // Quantum mechanics\n /*\n {trigger: \"hba\", replacement: \"\\\\hbar\", options: \"mA\"},\n {trigger: \"dag\", replacement: \"^{\\\\dagger}\", options: \"mA\"},\n {trigger: \"bra\", replacement: \"\\\\bra{$0} $1\", options: \"mA\"},\n {trigger: \"ket\", replacement: \"\\\\ket{$0} $1\", options: \"mA\"},\n {trigger: \"brk\", replacement: \"\\\\braket{ $0 | $1 } $2\", options: \"mA\"},\n {trigger: \"\\\\\\\\bra{([^|]+)\\\\|\", replacement: \"\\\\braket{ [[0]] | $0 \", options: \"rmA\", description: \"Convert bra into braket\"},\n {trigger: \"\\\\\\\\bra{(.+)}([^ ]+)>\", replacement: \"\\\\braket{ [[0]] | $0 \", options: \"rmA\", description: \"Convert bra into braket (alternate)\"},\n {trigger: \"outp\", replacement: \"\\\\ket{${0:\\\\psi}} \\\\bra{${0:\\\\psi}} $1\", options: \"mA\"},\n // */\n\n\n\n // Chemistry\n /*\n {trigger: \"pu\", replacement: \"\\\\pu{ $0 }\", options: \"mA\"},\n {trigger: \"msun\", replacement: \"M_{\\\\odot}\", options: \"mA\"},\n {trigger: \"solm\", replacement: \"M_{\\\\odot}\", options: \"mA\"},\n {trigger: \"ce\", replacement: \"\\\\ce{ $0 }\", options: \"mA\"},\n {trigger: \"iso\", replacement: \"{}^{${0:4}}_{${1:2}}${2:He}\", options: \"mA\"},\n {trigger: \"hel4\", replacement: \"{}^{4}_{2}He \", options: \"mA\"},\n {trigger: \"hel3\", replacement: \"{}^{3}_{2}He \", options: \"mA\"},\n // */\n\n\n // Environments\n {trigger: \"pmat\", replacement: \"\\\\begin{pmatrix}$0\\\\end{pmatrix}\", options: \"mA\"},\n {trigger: \"bmat\", replacement: \"\\\\begin{bmatrix}$0\\\\end{bmatrix}\", options: \"mA\"},\n {trigger: \"Bmat\", replacement: \"\\\\begin{Bmatrix}$0\\\\end{Bmatrix}\", options: \"mA\"},\n {trigger: \"vmat\", replacement: \"\\\\begin{vmatrix}$0\\\\end{vmatrix}\", options: \"mA\"},\n {trigger: \"Vmat\", replacement: \"\\\\begin{Vmatrix}$0\\\\end{Vmatrix}\", options: \"mA\"},\n {trigger: \"case\", replacement: \"\\\\begin{cases} $0 \\\\end{cases}\", options: \"mA\"},\n {trigger: \"align\", replacement: \"\\\\begin{align} $0 \\\\end{align}\", options: \"mA\"},\n {trigger: \"array\", replacement: \"\\\\begin{array}\\n$0\\n\\\\end{array}\", options: \"mA\"},\n {trigger: \"matrix\", replacement: \"\\\\begin{matrix}$0\\\\end{matrix}\", options: \"mA\"},\n\n {trigger: \"func\", replacement: \"\\\\begin{align} $0 :& $1 \\\\\\\\& $2 \\\\mapsto $3 \\\\end{align}\", options: \"mA\"},\n\n\n // Brackets\n {trigger: \"lr(\", replacement: \"\\\\left( $0 \\\\right) $1\", options: \"mA\"},\n {trigger: \"ll(\", replacement: \"\\left( $0\", options: \"mA\"}, {trigger: \"rr)\", replacement: \"\\\\right)\", options: \"mA\"},\n {trigger: \"lr|\", replacement: \"\\\\left| $0 \\\\right| $1\", options: \"mA\"},\n {trigger: \"lr{\", replacement: \"\\\\left\\\\{ $0 \\\\right\\\\} $1\", options: \"mA\"},\n {trigger: \"lr[\", replacement: \"\\\\left[ $0 \\\\right] $1\", options: \"mA\"},\n {trigger: \"lr<\", replacement: \"\\\\left\\\\langle $0 \\\\right\\\\rangle $1\", options: \"mA\"},\n {trigger: \"lra\", replacement: \"\\\\left< $0 \\\\right> $1\", options: \"mA\"},\n {trigger: \"lrfloor\", replacement: \"\\\\left\\\\lfloor $0 \\\\right\\\\rfloor $1\", options: \"mA\"},\n {trigger: \"lrceil\", replacement: \"\\\\left\\\\lceil $0 \\\\right\\\\rceil $1\", options: \"mA\"},\n {trigger: \"m||\", replacement: \"\\\\middle|\", options: \"mA\"},\n \n {trigger: \"avg\", replacement: \"\\\\langle $0 \\\\rangle $1\", options: \"mA\"},\n {trigger: \"pv\", replacement: \"\\\\langle $0 \\\\rangle $1\", options: \"mA\"},\n {trigger: \"(\", replacement: \"(${VISUAL})\", options: \"mA\"},\n {trigger: \"[\", replacement: \"[${VISUAL}]\", options: \"mA\"},\n {trigger: \"{\", replacement: \"{${VISUAL}}\", options: \"mA\"},\n {trigger: \")\", replacement: \"\\\\left( ${VISUAL} \\\\right)\", options: \"mA\"},\n {trigger: \"]\", replacement: \"\\\\left[ ${VISUAL} \\\\right]\", options: \"mA\"},\n {trigger: \"}\", replacement: \"\\\\left\\\\\\{ ${VISUAL} \\\\right\\\\\\}\", options: \"mA\"},\n {trigger: \"(\", replacement: \"($0)$1\", options: \"mA\"},\n {trigger: \"{\", replacement: \"{$0}$1\", options: \"mA\"},\n {trigger: \"[\", replacement: \"[$0]$1\", options: \"mA\"},\n {trigger: \"mod\", replacement: \"|$0|$1\", options: \"mA\"},\n {trigger: \"norm\", replacement: \"\\\\|$0\\\\|$1\", options: \"mA\"},\n {trigger: \"tnorm\", replacement: \"|\\\\!|\\\\!|$0|\\\\!|\\\\!|$1\", options: \"mA\"},\n {trigger: \"big(\", replacement: \"\\\\big( $0 \\\\big)$1\", options: \"mA\"},\n {trigger: \"Big(\", replacement: \"\\\\Big( $0 \\\\Big)$1\", options: \"mA\"},\n {trigger: \"big[\", replacement: \"\\\\big[ $0 \\\\big]$1\", options: \"mA\"},\n {trigger: \"Big[\", replacement: \"\\\\Big[ $0 \\\\Big]$1\", options: \"mA\"},\n {trigger: \"big{\", replacement: \"\\\\big\\\\{ $0 \\\\big\\\\}\", options: \"mA\"},\n {trigger: \"Big{\", replacement: \"\\\\Big\\\\{ $0 \\\\Big\\\\}\", options: \"mA\"},\n {trigger: \"llb\", replacement: \"[\\\\![\", options: \"mA\"},\n {trigger: \"rrb\", replacement: \"]\\\\!]\", options: \"mA\"},\n {trigger: \"lrbracket\", replacement: \"[\\\\![ $0 ]\\\\!]\", options: \"mA\"},\n\n // fonctions particulières\n {trigger: \"ee\", replacement: \"e^{ $0 }$1\", options: \"mA\"},\n {trigger: \"id\", replacement: \"\\\\mathrm{id}\", options: \"mA\"},\n \n // Permutations\n {trigger: \"\\\\sup\\\\limitsp\", replacement: \"\\\\mathrm{supp}\", options: \"mA\"},\n {trigger: \"orb\", replacement: \"\\\\operatorname{Orb}\", options: \"mA\"},\n\n\n\n // Misc\n {trigger: \"tayl\", replacement: \"${0:f}(${1:x} + ${2:h}) = ${0:f}(${1:x}) + ${0:f}'(${1:x})${2:h} + ${0:f}''(${1:x}) \\\\frac{${2:h}^{2}}{2!} + \\\\dots$3\", options: \"mA\"},\n]\n\n\n", + "snippets": "[\n // textes pour les démonstrations\n {trigger: \"dlsq\", replacement: \"de là suit que\", options: \"tA\"},\n\n // phrases de définition communes\n {trigger: \"deam\", replacement: \"Dans l'[[espace mesuré]] $(E, \\\\mathcal{A}, \\\\mu)$\", options: \"tA\"},\n\n // textes autres\n {trigger: \"mupp\", replacement: \"$\\\\mu$-presque partout\", options: \"tA\"},\n \n // Math mode\n {trigger: \"mk\", replacement: \"$$0$\", options: \"tA\"},\n // {trigger: \"dm\", replacement: \"$$\\n$0\\n$$\", options: \"tA\"},\n {trigger: \"beg\", replacement: \"\\\\begin{$0}\\n$1\\n\\\\end{$0}\", options: \"mA\"},\n\n {trigger: \"disp\", replacement: \"\\\\displaystyle \", options: \"smA\"},\n // Dashes\n //{trigger: \"--\", replacement: \"–\", options: \"tA\"},\n //{trigger: \"–-\", replacement: \"—\", options: \"tA\"},\n //{trigger: \"—-\", replacement: \"---\", options: \"tA\"},\n\n\n // Greek letters\n {trigger: \":a\", replacement: \"\\\\alpha\", options: \"mA\"},\n {trigger: \":A\", replacement: \"\\\\alpha\", options: \"mA\"},\n {trigger: \":b\", replacement: \"\\\\beta\", options: \"mA\"},\n {trigger: \":B\", replacement: \"\\\\beta\", options: \"mA\"},\n {trigger: \":c\", replacement: \"\\\\chi\", options: \"mA\"},\n {trigger: \":C\", replacement: \"\\\\chi\", options: \"mA\"},\n {trigger: \":g\", replacement: \"\\\\gamma\", options: \"mA\"},\n {trigger: \":G\", replacement: \"\\\\Gamma\", options: \"mA\"},\n {trigger: \":d\", replacement: \"\\\\delta\", options: \"mA\"},\n {trigger: \":D\", replacement: \"\\\\Delta\", options: \"mA\"},\n {trigger: \"@e\", replacement: \"\\\\epsilon\", options: \"mA\"},\n {trigger: \"@E\", replacement: \"\\\\epsilon\", options: \"mA\"},\n {trigger: \":e\", replacement: \"\\\\varepsilon\", options: \"mA\"},\n {trigger: \":E\", replacement: \"\\\\varepsilon\", options: \"mA\"},\n {trigger: \":z\", replacement: \"\\\\zeta\", options: \"mA\"},\n {trigger: \":Z\", replacement: \"\\\\zeta\", options: \"mA\"},\n {trigger: \":t\", replacement: \"\\\\theta\", options: \"mA\"},\n {trigger: \":T\", replacement: \"\\\\Theta\", options: \"mA\"},\n {trigger: \":k\", replacement: \"\\\\kappa\", options: \"mA\"},\n {trigger: \":K\", replacement: \"\\\\kappa\", options: \"mA\"},\n {trigger: \":l\", replacement: \"\\\\lambda\", options: \"mA\"},\n {trigger: \":L\", replacement: \"\\\\Lambda\", options: \"mA\"},\n {trigger: \":m\", replacement: \"\\\\mu\", options: \"mA\"},\n {trigger: \":M\", replacement: \"\\\\mu\", options: \"mA\"},\n {trigger: \":r\", replacement: \"\\\\rho\", options: \"mA\"},\n {trigger: \":R\", replacement: \"\\\\rho\", options: \"mA\"},\n {trigger: \":s\", replacement: \"\\\\sigma\", options: \"mA\"},\n {trigger: \":S\", replacement: \"\\\\Sigma\", options: \"mA\"},\n {trigger: \"ome\", replacement: \"\\\\omega\", options: \"mA\"},\n {trigger: \":p\", replacement: \"\\\\varphi\", options: \"mA\"},\n {trigger: \":o\", replacement: \"\\\\omega\", options: \"mA\"},\n {trigger: \":O\", replacement: \"\\\\Omega\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])(${GREEK}|${SYMBOL})\", replacement: \"[[0]]\\\\[[1]]\", options: \"rmA\", description: \"Add backslash before greek letters and symbols\"},\n\n\n // Insert space after greek letters and symbols, etc\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL})([A-Za-ik-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) sr\", replacement: \"\\\\[[0]]^{2}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) cb\", replacement: \"\\\\[[0]]^{3}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) rd\", replacement: \"\\\\[[0]]^{$0}$1\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) hat\", replacement: \"\\\\hat{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}|${SYMBOL}) dot\", replacement: \"\\\\dot{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK}),\\\\.\", replacement: \"\\\\mathbf{\\\\[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(${GREEK})\\\\.,\", replacement: \"\\\\mathbf{\\\\[[0]]}\", options: \"rmA\"},\n\n\n // Mathematical fonts\n {trigger: \"te\", replacement: \"\\\\text{$0}\", options: \"mA\"},\n {trigger: \"bf\", replacement: \"\\\\mathbf{$0}\", options: \"mA\"},\n {trigger: \"scr\", replacement: \"\\\\mathscr{$0}\", options: \"mA\"},\n {trigger: \"cal\", replacement: \"\\\\mathcal{$0}\", options: \"mA\"},\n {trigger: \"bb\", replacement: \"\\\\mathbb{$0}\", options: \"mA\"},\n {trigger: \"frak\", replacement: \"\\\\mathfrak{$0}\", options: \"mA\"},\n {trigger: \"([a-zA-Z]),\\\\.\", replacement: \"\\\\mathbf{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])\\\\.,\", replacement: \"\\\\mathbf{[[0]]}\", options: \"rmA\"},\n\n // Operations\n {trigger: \"sr\", replacement: \"^{2}\", options: \"mA\"},\n {trigger: \"cb\", replacement: \"^{3}\", options: \"mA\"},\n {trigger: \"rd\", replacement: \"^{$0}$1\", options: \"mA\"},\n {trigger: \"sd\", replacement: \"_{$0}$1\", options: \"mA\"},\n {trigger: \"_\", replacement: \"_{$0}$1\", options: \"mA\"},\n {trigger: \"sts\", replacement: \"_\\\\text{$0}\", options: \"rmA\"},\n {trigger: \"sq\", replacement: \"\\\\sqrt{ $0 }$1\", options: \"mA\"},\n {trigger: \"//\", replacement: \"\\\\frac{$0}{$1}$2\", options: \"mA\"},\n {trigger: \"rm\", replacement: \"\\\\mathrm{$0}$1\", options: \"mA\"},\n {trigger: \"conj\", replacement: \"^{*}\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])bar\", replacement: \"[[0]]\\\\overline{$0}\", options: \"rmA\"},\n {trigger: \"hat\", replacement: \"\\\\hat{$0}\", options: \"mA\"},\n {trigger: \"dot\", replacement: \"\\\\dot{$0}\", options: \"mA\"},\n {trigger: \"([^\\\\\\\\])(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot)\", replacement: \"[[0]]\\\\[[1]]\", options: \"rmA\"},\n {trigger: \"(th|ch|sh)\", replacement: \"\\\\mathrm{[[0]]}\", options: \"rmA\"},\n {trigger: \"\\\\\\\\(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot|csc|sh|ch|th)([A-Za-gi-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"}, // Insert space after trig funcs. Skips letter \"h\" to allow sinh, cosh, etc.\n {trigger: \"\\\\\\\\(arcsinh|arccosh|arctanh|arccoth|arcsch|arcsech|sinh|cosh|tanh|coth|csch|sh|ch|th)([A-Za-z])\", replacement: \"\\\\[[0]] [[1]]\", options: \"rmA\"}, // Insert space after trig funcs\n {trigger: \"trace\", replacement: \"\\\\mathrm{Tr}\", options: \"mA\"},\n {trigger: \"trans\", replacement: \"\\\\,^T\\\\!\", options: \"mA\"},\n\n // automatic stuff (subscript, bar, hat...)\n {trigger: \"([A-Za-z])(\\\\d)\", replacement: \"[[0]]_[[1]]\", options: \"rmA\", description: \"Auto letter subscript\", priority: -1},\n {trigger: \"\\\\\\\\mathbf{([A-Za-z])}(\\\\d)\", replacement: \"\\\\mathbf{[[0]]}_{[[1]]}\", options: \"rmA\"},\n {trigger: \"([A-Za-z])_(\\\\d\\\\d)\", replacement: \"[[0]]_{[[1]]}\", options: \"rmA\"},\n {trigger: \"\\\\hat{([A-Za-z])}(\\\\d)\", replacement: \"hat{[[0]]}_{[[1]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])bar\", replacement: \"\\\\overline{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])hat\", replacement: \"\\\\hat{[[0]]}\", options: \"rmA\"},\n {trigger: \"([a-zA-Z])ddot\", replacement: \"\\\\ddot{[[0]]}\", options: \"rmA\"},\n {trigger: \"ddot\", replacement: \"\\\\ddot{$0}\", options: \"mA\"},\n {trigger: \"([a-zA-Z])dot\", replacement: \"\\\\dot{[[0]]}\", options: \"rmA\"},\n \n\n\n // Visual operations - don't work with vim mode\n {trigger: \"{\", replacement: \"\\\\underbrace{ ${VISUAL} }_{ $0 }\", options: \"mA\"},\n {trigger: \"#\", replacement: \"\\\\underset{ $0 }{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"~\", replacement: \"\\\\cancel{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"^\", replacement: \"\\\\cancelto{ $0 }{ ${VISUAL} }\", options: \"mA\"},\n {trigger: \"S\", replacement: \"\\\\sqrt{ ${VISUAL} }\", options: \"mA\"},\n \n\n // centered \\not\n {trigger: \"cnot\", replacement: \"\\\\centernot{$0}\", options: \"mA\"},\n\n\n // Symbols\n {trigger: \"ooo\", replacement: \"\\\\infty\", options: \"mA\"},\n {trigger: \"pm\", replacement: \"\\\\pm\", options: \"m\"},\n {trigger: \"...\", replacement: \"\\\\dots\", options: \"mA\"},\n {trigger: \"\\\\dots.\", replacement: \"\\\\cdots\", options: \"mA\"},\n {trigger: \"sto\", replacement: \",\\\\dots,\", options: \"mA\"},\n {trigger: \"->\", replacement: \"\\\\to\", options: \"mA\"},\n {trigger: \"to\", replacement: \"\\\\to\", options: \"mA\"},\n {trigger: \"<->\", replacement: \"\\\\leftrightarrow \", options: \"mA\"},\n {trigger: \"!>\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"|->\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"maps\", replacement: \"\\\\mapsto\", options: \"mA\"},\n {trigger: \"^->\", replacement: \"\\\\vec{$0}\", options: \"mA\", priority: 1},\n {trigger: \"^-->\", replacement: \"\\\\overrightarrow{$0}\", options: \"mA\", priority: 1},\n {trigger: \"tto\", replacement: \"\\\\xrightarrow{$0}\", options: \"mA\", priority: 1},\n {trigger: \"invs\", replacement: \"^{-1}\", options: \"mA\"},\n {trigger: \"~~\", replacement: \"\\\\sim\", options: \"mA\"},\n {trigger: \"\\\\sim ~\", replacement: \"\\\\approx\", options: \"mA\"},\n {trigger: \"prop\", replacement: \"\\\\propto\", options: \"mA\"},\n {trigger: \"nabl\", replacement: \"\\\\nabla\", options: \"mA\"},\n {trigger: \"xx\", replacement: \"\\\\times\", options: \"mA\"},\n {trigger: \"**\", replacement: \"\\\\cdot\", options: \"mA\"},\n {trigger: \"pal\", replacement: \"\\\\parallel\", options: \"mA\"},\n {trigger: \"===\", replacement: \"\\\\equiv\", options: \"mA\"},\n {trigger: \"Sq\", replacement: \"\\\\square\", options: \"mA\"},\n {trigger: \"tl\", replacement: \"\\\\vartriangleleft \", options: \"mA\"},\n\n // Operators\n {trigger: \"lts\", replacement: \"\\\\limits\", options: \"mA\"},\n {trigger: \"sum\", replacement: \"\\\\sum\\\\limits\", options: \"mA\"},\n {trigger: \"prod\", replacement: \"\\\\prod\\\\limits\", options: \"mA\"},\n {trigger: \"lim\", replacement: \"\\\\lim\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n {trigger: \"sup\", replacement: \"\\\\sup\\\\limits$0\", options: \"mA\"},\n {trigger: \"inf\", replacement: \"\\\\inf\\\\limits$0\", options: \"mA\"},\n {trigger: \"lsup\", replacement: \"\\\\limsup\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n {trigger: \"linf\", replacement: \"\\\\liminf\\\\limits_{ ${0:n} \\\\to ${1:\\\\infty} } $2\", options: \"mA\"},\n \n // Logic\n {trigger: \"||\", replacement: \"\\\\mid\", options: \"mA\"},\n {trigger: \"and\", replacement: \"\\\\wedge\", options: \"mA\"},\n {trigger: \"orr\", replacement: \"\\\\vee\", options: \"mA\"},\n {trigger: \"inn\", replacement: \"\\\\in\", options: \"mA\"},\n {trigger: \"nii\", replacement: \"\\\\ni\", options: \"mA\"},\n {trigger: \"=>\", replacement: \"\\\\implies\", options: \"mA\"},\n {trigger: \"=<\", replacement: \"\\\\impliedby\", options: \"mA\"},\n {trigger: \"iff\", replacement: \"\\\\iff\", options: \"mA\"},\n {trigger: \"e\\\\xi sts\", replacement: \"\\\\exists\", options: \"mA\", priority: 1},\n {trigger: \"fora\\\\ll\", replacement: \"\\\\forall\", options: \"rmA\", priority: 1},\n {trigger: \"tq\", replacement: \",\\\\quad \", options: \"mA\", priority: 1},\n {trigger: \"!=\", replacement: \"\\\\neq \", options: \"mA\"},\n {trigger: \"neq\", replacement: \"\\\\neq \", options: \"mA\"},\n {trigger: \">=\", replacement: \"\\\\geq \", options: \"mA\"},\n {trigger: \"<=\", replacement: \"\\\\leq \", options: \"mA\"},\n {trigger: \">>\", replacement: \"\\\\gg\", options: \"mA\"},\n {trigger: \"<<\", replacement: \"\\\\ll\", options: \"mA\"},\n \n // Sets (ensembles)\n {trigger: \"sm\", replacement: \"\\\\setminus\", options: \"mA\"},\n {trigger: \"set\", replacement: \"\\\\{ $0 \\\\}$1\", options: \"mA\"},\n {trigger: \"bag\", replacement: \"\\\\{\\\\!\\\\!\\\\{ $0 \\\\}\\\\!\\\\!\\\\}$1\", options: \"mA\"},\n {trigger: \"ems\", replacement: \"\\\\emptyset\", options: \"mA\"},\n {trigger: \"##\", replacement: \"\\\\#\", options: \"mA\"}, // cardinal\n {trigger: \"cap\", replacement: \"\\\\cap\", options: \"mA\"},\n {trigger: \"cup\", replacement: \"\\\\cup\", options: \"mA\"},\n {trigger: \":w\", replacement: \"\\\\subset\", options: \"mA\"},\n {trigger: \":x\", replacement: \"\\\\supset\", options: \"mA\"},\n {trigger: \"\\\\subset eq\", replacement: \"\\\\subseteq\", options: \"mA\"},\n {trigger: \"\\\\subset neq\", replacement: \"\\\\subsetneq\", options: \"mA\"},\n {trigger: \"\\\\subseteq q\", replacement: \"\\\\subseteqq\", options: \"mA\"},\n {trigger: \"\\\\subsetneq q\", replacement: \"\\\\subsetneqq\", options: \"mA\"},\n {trigger: \"\\\\supset eq\", replacement: \"\\\\supseteq\", options: \"mA\"},\n {trigger: \"\\\\supset neq\", replacement: \"\\\\supsetneq\", options: \"mA\"},\n {trigger: \"\\\\supseteq q\", replacement: \"\\\\supseteqq\", options: \"mA\"},\n {trigger: \"\\\\supsetneq q\", replacement: \"\\\\supsetneqq\", options: \"mA\"},\n\n\n // Sequences (suites)\n {trigger: \"xnn\", replacement: \"x_{n}\", options: \"mA\"},\n {trigger: \"xii\", replacement: \"x_{i}\", options: \"mA\"},\n {trigger: \"xjj\", replacement: \"x_{j}\", options: \"mA\"},\n {trigger: \"xkk\", replacement: \"x_{k}\", options: \"mA\"},\n {trigger: \"xp1\", replacement: \"x_{n+1}\", options: \"mA\"},\n {trigger: \"ynn\", replacement: \"y_{n}\", options: \"mA\"},\n {trigger: \"yii\", replacement: \"y_{i}\", options: \"mA\"},\n {trigger: \"yjj\", replacement: \"y_{j}\", options: \"mA\"},\n {trigger: \"ykk\", replacement: \"y_{k}\", options: \"mA\"},\n\n\n // letters (special fonts)\n {trigger: \"ell\", replacement: \"\\\\ell\", options: \"mA\"},\n {trigger: \"lll\", replacement: \"\\\\ell\", options: \"mA\"},\n {trigger: \"LL\", replacement: \"\\\\mathcal{L}\", options: \"mA\"},\n {trigger: \"HH\", replacement: \"\\\\mathcal{H}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{(N|Z|Q|D|R|C|H)}(\\\\*|\\\\+|-)\", replacement: \"\\mathbb{[[0]]}^{[[1]]$0}$1\", options: \"rmA\"},\n {trigger: \"CC\", replacement: \"\\\\mathbb{C}\", options: \"mA\"},\n {trigger: \"RR\", replacement: \"\\\\mathbb{R}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{R}bar\", replacement: \"\\overline{\\\\mathbb{R}}\", options: \"rmA\"},\n {trigger: \"ZZ\", replacement: \"\\\\mathbb{Z}\", options: \"mA\"},\n {trigger: \"NN\", replacement: \"\\\\mathbb{N}\", options: \"mA\"},\n {trigger: \"QQ\", replacement: \"\\\\mathbb{Q}\", options: \"mA\"},\n {trigger: \"II\", replacement: \"\\\\mathbb{1}\", options: \"mA\"},\n {trigger: \"\\\\mathbb{1}I\", replacement: \"\\\\hat{\\\\mathbb{1}}\", options: \"mA\"},\n {trigger: \"AA\", replacement: \"\\\\mathcal{A}\", options: \"mA\"},\n {trigger: \"BB\", replacement: \"\\\\mathbb{B}\", options: \"mA\"},\n {trigger: \"EE\", replacement: \"\\\\mathbf{E}\", options: \"mA\"},\n \n\n // Algebra (algèbre)\n {trigger: \"[zZ]_?{?(n|p|q|[0-9]+)}?[zZ]\", replacement: \"\\\\mathbb{Z}/[[0]]\\\\mathbb{Z}\", options: \"rmA\"},\n {trigger: \"dist\", replacement: \"\\\\trianglelefteq\", options: \"mA\", description: \"sous groupe distingué\"},\n {trigger: \"orb\", replacement: \"\\\\operatorname{Orb}\", options: \"mA\"},\n\n\n\n // Unit vecttors\n /*\n {trigger: \":i\", replacement: \"\\\\mathbf{i}\", options: \"mA\"},\n {trigger: \":j\", replacement: \"\\\\mathbf{j}\", options: \"mA\"},\n {trigger: \":k\", replacement: \"\\\\mathbf{k}\", options: \"mA\"},\n {trigger: \":x\", replacement: \"\\\\hat{\\\\mathbf{x}}\", options: \"mA\"},\n {trigger: \":y\", replacement: \"\\\\hat{\\\\mathbf{y}}\", options: \"mA\"},\n {trigger: \":z\", replacement: \"\\\\hat{\\\\mathbf{z}}\", options: \"mA\"},\n */\n\n\n // Derivatives\n {trigger: \"par\", replacement: \"\\\\frac{ \\\\partial ${0:y} }{ \\\\partial ${1:x} } $2\", options: \"mA\"},\n {trigger: \"pa2\", replacement: \"\\\\frac{ \\\\partial^{2} ${0:y} }{ \\\\partial ${1:x}^{2} } $2\", options: \"mA\"},\n {trigger: \"pa3\", replacement: \"\\\\frac{ \\\\partial^{3} ${0:y} }{ \\\\partial ${1:x}^{3} } $2\", options: \"mA\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ \\\\partial [[0]] }{ \\\\partial [[1]] } \", options: \"rm\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ \\\\partial^{2} [[0]] }{ \\\\partial [[1]] \\\\partial [[3]] } \", options: \"rm\"},\n {trigger: \"pa([A-Za-z])([A-Za-z])2\", replacement: \"\\\\frac{ \\\\partial^{2} [[0]] }{ \\\\partial [[1]]^{2} } \", options: \"rmA\"},\n {trigger: \"de([A-Za-z])([A-Za-z])\", replacement: \"\\\\frac{ d[[0]] }{ d[[1]] } \", options: \"rm\"},\n {trigger: \"de([A-Za-z])([A-Za-z])2\", replacement: \"\\\\frac{ d^{2}[[0]] }{ d[[1]]^{2} } \", options: \"rmA\"},\n {trigger: \"dd(t|x)\", replacement: \"\\\\frac{d}{d[[0]]} \", options: \"rmA\"},\n\n\n\n // Integrals\n {trigger: \"oinf\", replacement: \"\\\\int_{0}^{\\\\infty} $0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"infi\", replacement: \"\\\\int_{-\\\\infty}^{\\\\infty} $0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"dint\", replacement: \"\\\\int_{${0:0}}^{${1:1}} $2 \\\\, d${3:x} $4\", options: \"mA\"},\n {trigger: \"oint\", replacement: \"\\\\oint\", options: \"mA\"},\n {trigger: \"iiint\", replacement: \"\\\\iiint\", options: \"mA\"},\n {trigger: \"iint\", replacement: \"\\\\iint\", options: \"mA\"},\n {trigger: \"int\", replacement: \"\\\\int$0 \\\\, d${1:x} $2\", options: \"mA\"},\n {trigger: \"mint\", replacement: \"\\\\int$0 \\\\, d\\\\mu $1\", options: \"mA\"},\n {trigger: \"lint\", replacement: \"\\\\int_{${0:\\\\mathbb{R}}} $1 \\\\, \\\\lambda(dx) $2\", options: \"mA\"},\n\n {trigger: \"cpm\", replacement: \"C^0_{pm}($0)\", options: \"mA\"}, // fonction continue par morceaux\n\n\n // Physics\n {trigger: \"kbt\", replacement: \"k_{B}T\", options: \"mA\"},\n\n\n // Quantum mechanics\n /*\n {trigger: \"hba\", replacement: \"\\\\hbar\", options: \"mA\"},\n {trigger: \"dag\", replacement: \"^{\\\\dagger}\", options: \"mA\"},\n {trigger: \"bra\", replacement: \"\\\\bra{$0} $1\", options: \"mA\"},\n {trigger: \"ket\", replacement: \"\\\\ket{$0} $1\", options: \"mA\"},\n {trigger: \"brk\", replacement: \"\\\\braket{ $0 | $1 } $2\", options: \"mA\"},\n {trigger: \"\\\\\\\\bra{([^|]+)\\\\|\", replacement: \"\\\\braket{ [[0]] | $0 \", options: \"rmA\", description: \"Convert bra into braket\"},\n {trigger: \"\\\\\\\\bra{(.+)}([^ ]+)>\", replacement: \"\\\\braket{ [[0]] | $0 \", options: \"rmA\", description: \"Convert bra into braket (alternate)\"},\n {trigger: \"outp\", replacement: \"\\\\ket{${0:\\\\psi}} \\\\bra{${0:\\\\psi}} $1\", options: \"mA\"},\n // */\n\n\n\n // Chemistry\n /*\n {trigger: \"pu\", replacement: \"\\\\pu{ $0 }\", options: \"mA\"},\n {trigger: \"msun\", replacement: \"M_{\\\\odot}\", options: \"mA\"},\n {trigger: \"solm\", replacement: \"M_{\\\\odot}\", options: \"mA\"},\n {trigger: \"ce\", replacement: \"\\\\ce{ $0 }\", options: \"mA\"},\n {trigger: \"iso\", replacement: \"{}^{${0:4}}_{${1:2}}${2:He}\", options: \"mA\"},\n {trigger: \"hel4\", replacement: \"{}^{4}_{2}He \", options: \"mA\"},\n {trigger: \"hel3\", replacement: \"{}^{3}_{2}He \", options: \"mA\"},\n // */\n\n\n // Environments\n {trigger: \"pmat\", replacement: \"\\\\begin{pmatrix}$0\\\\end{pmatrix}\", options: \"mA\"},\n {trigger: \"bmat\", replacement: \"\\\\begin{bmatrix}$0\\\\end{bmatrix}\", options: \"mA\"},\n {trigger: \"Bmat\", replacement: \"\\\\begin{Bmatrix}$0\\\\end{Bmatrix}\", options: \"mA\"},\n {trigger: \"vmat\", replacement: \"\\\\begin{vmatrix}$0\\\\end{vmatrix}\", options: \"mA\"},\n {trigger: \"Vmat\", replacement: \"\\\\begin{Vmatrix}$0\\\\end{Vmatrix}\", options: \"mA\"},\n {trigger: \"case\", replacement: \"\\\\begin{cases} $0 \\\\end{cases}\", options: \"mA\"},\n {trigger: \"align\", replacement: \"\\\\begin{align} $0 \\\\end{align}\", options: \"mA\"},\n {trigger: \"array\", replacement: \"\\\\begin{array}\\n$0\\n\\\\end{array}\", options: \"mA\"},\n {trigger: \"matrix\", replacement: \"\\\\begin{matrix}$0\\\\end{matrix}\", options: \"mA\"},\n\n {trigger: \"func\", replacement: \"\\\\begin{align} $0 :& $1 \\\\\\\\& $2 \\\\mapsto $3 \\\\end{align}\", options: \"mA\"},\n\n\n // Brackets\n {trigger: \"lr(\", replacement: \"\\\\left( $0 \\\\right) $1\", options: \"mA\"},\n {trigger: \"ll(\", replacement: \"\\left( $0\", options: \"mA\"}, {trigger: \"rr)\", replacement: \"\\\\right)\", options: \"mA\"},\n {trigger: \"lr|\", replacement: \"\\\\left| $0 \\\\right| $1\", options: \"mA\"},\n {trigger: \"lr{\", replacement: \"\\\\left\\\\{ $0 \\\\right\\\\} $1\", options: \"mA\"},\n {trigger: \"lr[\", replacement: \"\\\\left[ $0 \\\\right] $1\", options: \"mA\"},\n {trigger: \"lr<\", replacement: \"\\\\left\\\\langle $0 \\\\right\\\\rangle $1\", options: \"mA\"},\n {trigger: \"lra\", replacement: \"\\\\left< $0 \\\\right> $1\", options: \"mA\"},\n {trigger: \"lrfloor\", replacement: \"\\\\left\\\\lfloor $0 \\\\right\\\\rfloor $1\", options: \"mA\"},\n {trigger: \"lrceil\", replacement: \"\\\\left\\\\lceil $0 \\\\right\\\\rceil $1\", options: \"mA\"},\n {trigger: \"m||\", replacement: \"\\\\middle|\", options: \"mA\"},\n \n {trigger: \"avg\", replacement: \"\\\\langle $0 \\\\rangle $1\", options: \"mA\"},\n {trigger: \"pv\", replacement: \"\\\\langle $0 \\\\rangle $1\", options: \"mA\"},\n {trigger: \"(\", replacement: \"(${VISUAL})\", options: \"mA\"},\n {trigger: \"[\", replacement: \"[${VISUAL}]\", options: \"mA\"},\n {trigger: \"{\", replacement: \"{${VISUAL}}\", options: \"mA\"},\n {trigger: \")\", replacement: \"\\\\left( ${VISUAL} \\\\right)\", options: \"mA\"},\n {trigger: \"]\", replacement: \"\\\\left[ ${VISUAL} \\\\right]\", options: \"mA\"},\n {trigger: \"}\", replacement: \"\\\\left\\\\\\{ ${VISUAL} \\\\right\\\\\\}\", options: \"mA\"},\n {trigger: \"(\", replacement: \"($0)$1\", options: \"mA\"},\n {trigger: \"{\", replacement: \"{$0}$1\", options: \"mA\"},\n {trigger: \"[\", replacement: \"[$0]$1\", options: \"mA\"},\n {trigger: \"mod\", replacement: \"|$0|$1\", options: \"mA\"},\n {trigger: \"norm\", replacement: \"\\\\|$0\\\\|$1\", options: \"mA\"},\n {trigger: \"tnorm\", replacement: \"|\\\\!|\\\\!|$0|\\\\!|\\\\!|$1\", options: \"mA\"},\n {trigger: \"big(\", replacement: \"\\\\big( $0 \\\\big)$1\", options: \"mA\"},\n {trigger: \"Big(\", replacement: \"\\\\Big( $0 \\\\Big)$1\", options: \"mA\"},\n {trigger: \"big[\", replacement: \"\\\\big[ $0 \\\\big]$1\", options: \"mA\"},\n {trigger: \"Big[\", replacement: \"\\\\Big[ $0 \\\\Big]$1\", options: \"mA\"},\n {trigger: \"big{\", replacement: \"\\\\big\\\\{ $0 \\\\big\\\\}\", options: \"mA\"},\n {trigger: \"Big{\", replacement: \"\\\\Big\\\\{ $0 \\\\Big\\\\}\", options: \"mA\"},\n {trigger: \"llb\", replacement: \"[\\\\![\", options: \"mA\"},\n {trigger: \"rrb\", replacement: \"]\\\\!]\", options: \"mA\"},\n {trigger: \"lrbracket\", replacement: \"[\\\\![ $0 ]\\\\!]\", options: \"mA\"},\n\n // fonctions particulières\n {trigger: \"ee\", replacement: \"e^{ $0 }$1\", options: \"mA\"},\n {trigger: \"id\", replacement: \"\\\\mathrm{id}\", options: \"mA\"},\n \n // Permutations\n {trigger: \"\\\\sup\\\\limitsp\", replacement: \"\\\\mathrm{supp}\", options: \"mA\"},\n {trigger: \"orb\", replacement: \"\\\\operatorname{Orb}\", options: \"mA\"},\n\n\n\n // Misc\n {trigger: \"tayl\", replacement: \"${0:f}(${1:x} + ${2:h}) = ${0:f}(${1:x}) + ${0:f}'(${1:x})${2:h} + ${0:f}''(${1:x}) \\\\frac{${2:h}^{2}}{2!} + \\\\dots$3\", options: \"mA\"},\n\n\n // Pour les fonctions avec des noms rares :\n {trigger: \"mop\", replacement: \"\\\\mathop{$0}\", options: \"mA\"},\n\n\n]// end of the list", "snippetVariables": "{\n\t\"${GREEK}\": \"alpha|beta|gamma|Gamma|delta|Delta|epsilon|varepsilon|zeta|eta|theta|vartheta|Theta|iota|kappa|lambda|Lambda|mu|nu|xi|omicron|pi|rho|varrho|sigma|Sigma|tau|upsilon|Upsilon|phi|varphi|Phi|chi|psi|omega|Omega\",\n\t\"${SYMBOL}\": \"parallel|perp|partial|nabla|hbar|ell|infty|oplus|ominus|otimes|oslash|square|star|dagger|vee|wedge|subseteq|subset|supseteq|supset|emptyset|exists|nexists|forall|implies|impliedby|iff|setminus|neg|lor|land|bigcup|bigcap|cdot|times|simeq|approx\",\n\t\"${MORE_SYMBOLS}\": \"leq|geq|neq|gg|ll|equiv|sim|propto|rightarrow|leftarrow|Rightarrow|Leftarrow|leftrightarrow|to|mapsto|cap|cup|in|sum|prod|exp|ln|log|det|dots|vdots|ddots|pm|mp|int|iint|iiint|oint\"\n}\n", "snippetsEnabled": true, "snippetsTrigger": "Tab", diff --git a/.obsidian/plugins/obsidian-list-callouts/data.json b/.obsidian/plugins/obsidian-list-callouts/data.json index 040a98eb..7074f86e 100644 --- a/.obsidian/plugins/obsidian-list-callouts/data.json +++ b/.obsidian/plugins/obsidian-list-callouts/data.json @@ -168,5 +168,23 @@ "color": "41, 158, 60", "icon": null, "custom": true + }, + { + "char": "def", + "color": "54, 140, 243", + "icon": "lucide-feather", + "custom": true + }, + { + "char": "dem", + "color": "252, 213, 0", + "icon": "lucide-square", + "custom": true + }, + { + "char": "prop", + "color": "29, 180, 30", + "icon": "lucide-book-open-check", + "custom": true } ] \ No newline at end of file diff --git a/.obsidian/plugins/obsidian-minimal-settings/data.json b/.obsidian/plugins/obsidian-minimal-settings/data.json index 0c8019e6..f40afcf4 100644 --- a/.obsidian/plugins/obsidian-minimal-settings/data.json +++ b/.obsidian/plugins/obsidian-minimal-settings/data.json @@ -8,7 +8,7 @@ "lineWidth": 40, "lineWidthWide": 50, "maxWidth": 98, - "textNormal": 28, + "textNormal": 27, "textSmall": 18, "imgGrid": false, "imgWidth": "img-default-width", diff --git a/.obsidian/snippets/Calendar.css b/.obsidian/snippets/Calendar.css new file mode 100644 index 00000000..9195e269 --- /dev/null +++ b/.obsidian/snippets/Calendar.css @@ -0,0 +1,64 @@ +/* + Calendar plugin tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.view-content:has(#calendar-container) { + padding:0; +} + +#calendar-container { + padding:0 8px 8px 8px; +} + +#calendar-container .year { + color:var(--text-muted); +} +#calendar-container td, +#calendar-container .day { + border-radius:0 !important; +} +#calendar-container .day { + padding-top:0; + padding-bottom:0; +} +#calendar-container .day.active { + outline:1px solid var(--tx3); +} +#calendar-container .day.active .filled, +#calendar-container .day.today.active .filled { + fill:var(--tx1, var(--text-normal)) !important; +} +#calendar-container .day.active .hollow, +#calendar-container .day.today.active .hollow { + stroke:var(--tx1, var(--text-normal)) !important; +} +#calendar-container .day.today .filled { + fill:var(--text-muted) !important; +} +#calendar-container .day.today .hollow { + stroke:var(--text-muted) !important; +} + +#calendar-container .day.today { + color:var(--text-bold); + font-weight:700; + outline:2px solid var(--color-background-day-active); +} +.theme-dark #calendar-container .day.today { + /* outline:2px solid var(--tx3); */ +} + +#calendar-container .day.today.active { + /* color:var(--text-bright); */ +} +#calendar-container .day:active { + background:var(--tx2, var(--text-muted)); +} +#calendar-container .day.adjacent-month { + /* color:var(--tx2) */ +} + +#calendar-container .weekend { + background: var(--bg2, var(--background-primary)); +} diff --git a/.obsidian/snippets/CardBoard.css b/.obsidian/snippets/CardBoard.css new file mode 100644 index 00000000..c0a54836 --- /dev/null +++ b/.obsidian/snippets/CardBoard.css @@ -0,0 +1,31 @@ +/* + Card Board plugin styles + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.card-board-tab-list { + padding-top:6px !important; +} + +.card-board-tab-icon { + transform: translate(0, 2px); + position:absolute; + right:5px; + height:30px !important; +} + +.card-board-tabs-inner { + color: var(--tx3) !important +} + +.card-board-tabs-inner:hover { + color: var(--tx1) !important +} + +.card-board-tab-title.is-active .card-board-tabs-inner { + color:var(--tx2) !important; +} + +.card-board-boards { + padding-top:5px; +} \ No newline at end of file diff --git a/.obsidian/snippets/Checklist - Ultra compact.css b/.obsidian/snippets/Checklist - Ultra compact.css new file mode 100644 index 00000000..417dd8ce --- /dev/null +++ b/.obsidian/snippets/Checklist - Ultra compact.css @@ -0,0 +1,108 @@ +/* + Checklists plugin Ultra Compact styles + Targeting 'classic' style option in UI with 'tags' mode + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace .view-content:has(.checklist-plugin-main) { + padding:0 +} + +.workspace .view-content .checklist-plugin-main { + padding:0 6px 0 8px; +} + +.workspace .view-content .checklist-plugin-main .group { + margin-bottom:0; + border:none +} + +.workspace .view-content .checklist-plugin-main .group-header { + padding-left:8px; + margin-bottom:0; +} + +.workspace .view-content .checklist-plugin-main .group-header .space { + /* order:3; */ + display:none +} + +.workspace .view-content .checklist-plugin-main .group-header .collapse { + margin-left:-2px +} + +.workspace .view-content .checklist-plugin-main .group-header .count { + display:none; +} + +.workspace .view-content .checklist-plugin-main .group-header .title { + font-size:13px; +} + +.workspace .view-content .checklist-plugin-main .group-header .title span { + color:var(--tx2) +} +.workspace .view-content .checklist-plugin-main .group-header .title span:last-of-type { + color:var(--tx1); + font-weight:600; + text-indent:0.1em +} + +.workspace .view-content .checklist-plugin-main .settings-container svg { + transform: scale(0.75); + opacity:0.3; +} + + +.workspace .view-content .checklist-plugin-main .group-header:has(.left) { + opacity:0.5 +} + +.workspace .view-content .checklist-plugin-main ul li { + align-items:flex-start; + margin: 8px 0; +} + +.workspace .view-content .checklist-plugin-main ul p { + margin:0; + font-size:13px; + color: var(--tx2); + line-height:1.35em; + padding-bottom:4px; + color:var(--tx1) +} + +.workspace .view-content .checklist-plugin-main ul .toggle { + padding:0 6px 0 8px; + margin:0; + height:auto !important; +} + +.workspace .view-content .checklist-plugin-main .toggle .checkbox { + border-color:var(--tx2); + height:16px !important; + width:16px !important; + min-height:auto; + min-width:auto; + transform:translate(0,0px) +} + +.workspace .view-content .checklist-plugin-main input.search { + margin:0 +} + +.workspace .view-content .checklist-plugin-main input.search { +} + +.workspace .view-content .checklist-plugin-main input.search:focus { + box-shadow: none !important +} + +.workspace .view-content .checklist-plugin-main input.search::placeholder { + color:var(--tx3); + opacity:0.4; +} + +.workspace .view-content .checklist-plugin-main > .container { + margin-bottom:0; +} \ No newline at end of file diff --git a/.obsidian/snippets/Custom Frames - Duotone.css b/.obsidian/snippets/Custom Frames - Duotone.css new file mode 100644 index 00000000..831ad621 --- /dev/null +++ b/.obsidian/snippets/Custom Frames - Duotone.css @@ -0,0 +1,514 @@ +/* + Custom Frames - Duotone + Make custom frames appear duotone before interaction + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +.custom-frames-view webview:not(:hover) { + filter:grayscale() brightness(1) contrast(1.7); + } +/* Light themes */ + +.theme-light.minimal-default-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-atom-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-ayu-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-catppuccin-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-everforest-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-gruvbox-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-macos-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-nord-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-notion-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-rose-pine-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-solarized-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-things-light .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + + +/* Dark themes */ + +.theme-dark.minimal-default-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-atom-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-ayu-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-catppuccin-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); + /* removed .2 from light values text overlay legibility */ +} + +.theme-dark.minimal-dracula-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-everforest-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-gruvbox-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-macos-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-nord-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-notion-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-rose-pine-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-solarized-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-things-dark .custom-frames-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + diff --git a/.obsidian/snippets/Custom Frames.css b/.obsidian/snippets/Custom Frames.css new file mode 100644 index 00000000..f332c48a --- /dev/null +++ b/.obsidian/snippets/Custom Frames.css @@ -0,0 +1,9 @@ +/* + Custom Frames plugin tweaks + Pretty much just removing the frame padding... + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.custom-frames-view webview { +padding:0 !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/Daily Note Outline.css b/.obsidian/snippets/Daily Note Outline.css new file mode 100644 index 00000000..cefc604e --- /dev/null +++ b/.obsidian/snippets/Daily Note Outline.css @@ -0,0 +1,69 @@ +/* + Daily Note Outline + Visual tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Container */ +.workspace-leaf-content[data-type="daily-note-outline"] .view-content { + padding-bottom:0; +} + +/* Compact header */ +.workspace-leaf-content[data-type="daily-note-outline"] .nav-header { + padding:4px 2px 4px 2px; + transform:scale(0.85); + transform-origin:0 0; + text-align: left; +} +/* Date range buttons styling */ +.workspace-leaf-content[data-type="daily-note-outline"] .nav-date-range { + color: var(--tx2); + line-height:1em; + padding: 4px 6px; + border-radius: 10px; + opacity:0.7 +} + +.workspace-leaf-content[data-type="daily-note-outline"] .nav-buttons-container + .nav-date-range { + margin-right: 4px; + margin-left: 4px +} + +/* Files container */ +.workspace-leaf-content[data-type="daily-note-outline"] .nav-files-container { + padding:4px 0 0 4px; + border-top:1px solid var(--divider-color); + margin-top:-6px; + + /* file title */ + > .nav-folder .nav-folder-title { + /* Fix indentation of first heading */ + padding-left:8px; + } + +} + +/* Note detail suffix styling */ +.workspace-leaf-content[data-type="daily-note-outline"] .nav-folder-title::after { + padding-left: 4px; + opacity: 0.7; +} + +/* Files preview */ +.workspace-leaf-content[data-type="daily-note-outline"] .nav-file-title-preview { + color: var(--tx2); + opacity:0.7; + padding-left:8px; + font-style:italic; +} +.workspace-leaf-content[data-type="daily-note-outline"] .nav-file-title-preview::after { + content:''; + background:linear-gradient(to right, transparent, var(--bg1)); + width:1.5em; + height:1.5em; + position:absolute; + right:0; + top:5px; + display:block; +} \ No newline at end of file diff --git a/.obsidian/snippets/Database Folder.css b/.obsidian/snippets/Database Folder.css new file mode 100644 index 00000000..14ed00bd --- /dev/null +++ b/.obsidian/snippets/Database Folder.css @@ -0,0 +1,190 @@ +/* + Database Folders visual tweaks + (alignments, compact density, a few interactive bugs) + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +/* Header */ + +.database-plugin__header-menu { + transform:scale(0.75) translate(5px, 4px) +} + +.database-plugin__header-menu .svg-icon svg { + fill:var(--tx2) +} + +.database-plugin__th .svg-icon { + display:none !important; +} + +.database-plugin__th > .database-plugin__header-menu .svg-icon { + display:block !important +} + +.database-plugin__th-content { + transform:translate(0,-7px); + width:100%; + text-align:center !important; + justify-content:center; + font-size:12px; +} + +/* main */ + +.database-plugin__th { + overflow: hidden !important; +} +.database-plugin__tr:nth-of-type(2n-1) .database-plugin__td:last-child { + background: linear-gradient(to right, var(--background-secondary), var(--tab-container-background)) +} + +.database-plugin__tr.database-plugin__footer-group:last-child .database-plugin__td:last-child { + background:var(--tab-container-background); +} + +.database-plugin__td.database-plugin__footer { + border:none +} + +.database-plugin__tbody .database-plugin__tr:last-child .database-plugin__td { + border-bottom:1px solid var(--background-modifier-border); +} + + + +.database-plugin__td { + padding:0 !important +} + +/* Fix target/focus outlines */ +.database-plugin__td:hover { + box-shadow:none !important +} + +.database-plugin__td > span:focus { + box-shadow:none !important; +} + +.database-plugin__td:hover { + outline:none +} + +.database-plugin__tr .database-plugin__td:last-child:hover { + outline:none; + background:inherit +} + +.database-plugin__td:focus-within { + outline: 1px solid var(--tx3); + background-color:inherit; +} + +.database-plugin__td a[href] { + color:var(--tx2); + text-decoration:none; +} + +.database-plugin__td a[href*='.md']::after { + content:'MD'; + color:var(--tx3); + display:inline-block; + font-size:8px; + font-weight:bold; + padding:2px; + margin-left:2px; + background:var(--bg2); + border-radius: 4px; + line-height:1em; + transform:translate(0,-2px) + +} + +/* partial fix of outline hover issue */ +.database-plugin__tr:hover, +.database-plugin__tr:hover .database-plugin__td { + z-index:500 +} + +.database-plugin__tr .database-plugin__td:first-child .database-plugin__relationship[style] { + background-color:transparent !important +} + +.database-plugin__tr .database-plugin__td:first-child p { + color: var(--tx2) !important; + opacity:.6; +} + + +.database-plugin__tr:nth-of-type(2n-1) .database-plugin__td:first-child { + background:var(--background-secondary) +} + +/* checkbox */ +.theme-light .database-plugin__td input[type=checkbox]{ + border-color:var(--tx3) !important; +} + +.database-plugin__td input[type=checkbox]{ + border-color:var(--tx2); + transform:translate(0,0px) +} +.database-plugin__td input[type=checkbox]:checked { + border:none; + background-color:var(--tx2) +} + +.theme-light .database-plugin__td input[type=checkbox]:checked { + background-color:var(--tx3) +} + +.database-plugin__td input[type=checkbox]:focus { + outline:none +} + +.database-plugin__td.data-input textarea.database-plugin__editor-cell { + /* resize:none; */ + border-radius:0; + margin-bottom:-2px; +} + + + +/* Header search */ +.database-plugin__th input[type=text] { + border-radius:0 !important; + border-left:0; + border-right:0; +} + +.database-plugin__th input[type=text]::placeholder { + font-size:11px; +} + + +/* Footer */ + +.database-plugin__tfoot .database-plugin__footer-group .database-plugin__td { + border-right-color: transparent !important; +} + +.database-plugin__tfoot { + box-shadow: 0 -5px 5px -4px var(--background-secondary) +} + +.database-plugin__table { + border-bottom-color:transparent !important +} + +/* Pagination */ +.database-plugin__pagination { + right:auto; + left:10px; + transform:scale(0.8); +} +.database-plugin__pagination-button { + border:1px solid var(--background-modifier-border) !important; + padding:4px !important; +} + diff --git a/.obsidian/snippets/Day Planner (Ivan Lednev).css b/.obsidian/snippets/Day Planner (Ivan Lednev).css new file mode 100644 index 00000000..625bc4d9 --- /dev/null +++ b/.obsidian/snippets/Day Planner (Ivan Lednev).css @@ -0,0 +1,22 @@ +/* + Day Planner (Ivan Lednev version) + Ivan has done an amazing job with this plugin. THANK YOU. + This snippet just makes the toolbar a little bit more compact. + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +.workspace-leaf-content[data-type=timeline] { + .view-content { + > .controls > .controls { + padding:4px; + .header { + .clickable-icon:not(:is( + [aria-label="Go to previous day"], + [aria-label="Go to next day"] + )) { + padding-left:0px !important; + padding-right:0px !important; + } + } + } + } +} \ No newline at end of file diff --git a/.obsidian/snippets/Day Planner (old version).css b/.obsidian/snippets/Day Planner (old version).css new file mode 100644 index 00000000..37b19c9b --- /dev/null +++ b/.obsidian/snippets/Day Planner (old version).css @@ -0,0 +1,191 @@ +/* + Day Planner visual changes + This is for the abandoned plugin. + These styles will be ported over to my forked plugin: + https://github.com/replete/obsidian-day-planner + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Container max size */ +.mod-right-split [data-type=timeline] .view-content { + padding:0; +} +.mod-right-split [data-type=timeline] .events { + padding-bottom: 0 !important +} + +/* Planner box styling - hide timeline bar, minimal styles */ +.mod-right-split [data-type=timeline] .aside { + width:30px !important; + opacity:0.75 !important; +} +.mod-right-split [data-type=timeline] .aside__line { + left:20px !important; + display:none; +} +.mod-right-split [data-type=timeline] .event_item_contents { + padding-left:30px !important; +} +.mod-right-split [data-type=timeline] .event_item .ei_Dot { + display:none; +} +.mod-right-split [data-type=timeline] .event_item .ei_Title { + margin-left:-5px; + font-size:11px; + line-height:1em; +} +.mod-right-split [data-type=timeline] .event_item .ei_Copy { + margin-left:10px; +} + +/* Fix 'hour quarters' bg in dark themes */ +.mod-right-split [data-type=timeline] .aside, +.mod-right-split [data-type=timeline] .aside .aside__line { + filter:invert(100%); + mix-blend-mode:overlay; +} + +/* Make colours fit minimal theme */ +.mod-right-split [data-type=timeline] .event_item { + /* background-color:var(--background-modifier-hover) !important; */ + /* background: linear-gradient(0deg, var(--background-primary), transparent); */ + /* border-bottom-color: var(--tx3) !important; */ +} + .theme-light .mod-right-split [data-type=timeline] .event_item { + filter:brightness(2) saturate(0.4); + } +.mod-right-split [data-type=timeline] .event_item:hover { + box-shadow:none !important; + background-color: var(--tx2) !important; +} + +.theme-light .mod-right-split [data-type=timeline] .event_item:hover { + background-color: var(--color-red) !important; +} +.theme-light .mod-right-split [data-type=timeline] .event_item { + border-bottom-color: var(--tx2) !important; + +} + +.mod-right-split [data-type=timeline] .event_item .ei_Title { + color: var(--tx1) !important; + opacity:0.8; + text-shadow: 1px 1px 1px var(--progress-outline) +} + +.theme-light .mod-right-split [data-type=timeline] .event_item .ei_Title, +.theme-light .mod-right-split [data-type=timeline] .event_item .ei_Copy { + color:var(--tx3) !important +} + +.theme-dark .mod-right-split [data-type=timeline] .event_item .ei_Title, +.theme-dark .mod-right-split [data-type=timeline] .event_item .ei_Copy{ + color: var(--tx1) !important +} + +/* Cleverer colours (limited to theme, but better than nothing) */ +.mod-right-split [data-type=timeline] .event_item:nth-of-type(2n-1) { + /* background-color:var(--color-green) !important; */ + +} +.mod-right-split [data-type=timeline] .event_item_color1 { + /* background-color:red !important; */ +} + +/* Now line overlay */ + +.mod-right-split [data-type=timeline] #now-line { + /* background-color:var(--interactive-accent) !important; */ + /* height:1px !important; */ +} +.mod-right-split [data-type=timeline] #now-line .timeline-time { + left: 80% !important; + position: absolute !important; + font-size:12px; + padding-bottom:0 !important; +} + + + +/* Planner box timeline line colors */ +.mod-right-split [data-type=timeline] #day-planner-timeline-container .aside__line, +.mod-right-split [data-type=timeline] #day-planner-timeline-container .ei_Dot { + background-color: var(--tx3); +} + +/* Hide autoscroll label */ +.mod-right-split [data-type=timeline] label[for=auto-scroll] { + display:none !important; +} + +/* Restyle autoscroll checkbox and place over the planner top right */ +.mod-right-split [data-type=timeline] #scroll-controls { + position: fixed !important; + top:0 !important; + margin-top:-10px !important; + background:transparent !important +} +.mod-right-split [data-type=timeline] #auto-scroll { + position:absolute !important; + right:-4px; + top: 10px; + transform:scale(0.8); + transform-origin: 0 0; + opacity:0.5; + background-color: var(--tx2) !important; +} +.mod-right-split [data-type=timeline] #auto-scroll:hover { + opacity:1; +} +.mod-right-split [data-type=timeline] #auto-scroll::before { + content: 'time time' !important; +} +.mod-right-split [data-type=timeline] #auto-scroll:not(:checked)::before { + text-indent:-33px !important +} + +.mod-right-split [data-type=timeline] .empty-timeline { + color: var(--tx3) !important; +} + +#day-planner-timeline-container::after { + content:''; + display:block; + background: linear-gradient(to bottom, transparent, rgba(0,0,0,0.6)); + width:100%; + height:8px; + position: fixed; + bottom:0; + pointer-events:none; +} + +/* Hide scrollbar */ + +.view-content:has(#day-planner-timeline-container) { + outline: 2px solid red !important; +} + +.view-content:has(#day-planner-timeline-container)::-webkit-scrollbar { + scrollbar-width: 0 !important; + width:0 +} + + +/* status bar fixes */ + +.status-bar-item.plugin-obsidian-day-planner .progress-pie { + background-image:linear-gradient(to right,transparent 50%, var(--tx1) 0) +} +.status-bar-item.plugin-obsidian-day-planner .progress-pie::before { + background-color:var(--tx1); +} + +.status-bar-item.plugin-obsidian-day-planner .day-planner-status-bar-text { + transform: translate(0, 3px) +} + +.status-bar-item.plugin-obsidian-day-planner .day-planner-progress-bar { + background:var(--background-modifier-border); + transform:translate(0, -1px); +} \ No newline at end of file diff --git a/.obsidian/snippets/Excalidraw - Compact.css b/.obsidian/snippets/Excalidraw - Compact.css new file mode 100644 index 00000000..9e272af3 --- /dev/null +++ b/.obsidian/snippets/Excalidraw - Compact.css @@ -0,0 +1,265 @@ +/* + Excalidraw plugin + Compact layout. Only tested on Desktop. + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.excalidraw { + + /* Fix illegible island contrast */ + --island-bg-color:#dde4eb !important; + &.theme--dark { + --island-bg-color:#292929 !important; + } + + /* Better looking floating utility island */ + > .Island:not(.sidebar) { + width:180px !important; + + > div:first-child { + border-bottom-left-radius: 0 !important; + svg { + opacity:0.2; + /* height:16px; */ + + > path { + display:none + } + } + } + > .Island { + padding:4px; + border-top-left-radius: 0 !important; + border-top-right-radius: 0 !important; + margin-top:-4px; + border-top:1px solid rgba(255,255,255,.2); + + legend { + opacity:0.5; + margin:4px 0 -2px 5px; + /* text-align:center; */ + text-transform:uppercase; + letter-spacing:0.04em; + font-size:10px; + /* border-bottom:1px solid rgba(255,255,255,0.5); */ + width:100%; + } + + .buttonList { + gap:2px + } + + .ToolIcon_type_button { + padding:2px !important; + border-radius:0 !important; + background:none; + + .ToolIcon__icon { + transform: scale(1.3) !important; + } + } + } + } + + .App-toolbar { + padding:0; + + /* Increase icon size toolbar */ + .ToolIcon { + .ToolIcon__icon svg { + transform:scale(1.4) !important; + } + } + + /* make keyboard shortcut numbers more visible */ + .ToolIcon__keybinding { + font-size:8px !important; + top:30px; + left:12px; + } + + .App-toolbar__divider { + margin-right:0; + margin-left:0; + } + } + + .HintViewer { + margin-top:20px + } + + /* Remove padding around canvas UI */ + .FixedSideContainer.FixedSideContainer_side_top { + padding:0; + top:2px !important; + left:10px !important; + bottom:0 !important; + right:2px !important; + } + .App-menu_top__left, + .layer-ui__wrapper__top-right { + margin-top:4px !important; + } + + .dropdown-menu .Island /* desktop */, + .dropdown-menu--mobile > .Stack /*mobile*/{ + padding:0 !important; + + [data-testid=canvas-background-label] { + padding-left:8px; + opacity:0.5; + margin-bottom:0px !important; + } + + .dropdown-menu-item { + margin:0; + height:1.5rem !important; + font-size:0.85rem; + + + div[style]:empty { + margin:4px 0 !important; + } + } + } + + .dropdown-menu-container { + gap:0; /* mobile */ + } + + .sidebar-trigger { + padding-top:12px; + } + + [role=contentinfo] { + bottom:-1px !important; + left:0 !important; + padding-left:34px; + + .help-icon { + position:fixed; + bottom: -1px; + padding:0; + left: 2px; + opacity:0.8; + } + + .reset-zoom-button { + font-size:75% !important; + opacity: 0.8; + } + } + + /* Library sidebar */ + .Island.sidebar { + width:400px; + background: var(--island-bg-color); + + .sidebar-tabs-root { + padding-top:4px; + } + + .sidebar__header { + padding-bottom:0; + } + + .library-menu-items-container__items { + padding-top:0; + } + + .library-menu-dropdown-container { + margin-top:-14px; + } + + .library-menu-items-container__grid { + width:100%; + gap:5px; + + .library-unit { + width:100%; + } + + .library-unit__active { + border-radius:2px; + } + + .library-unit__dragger { + width:100%; + height:100%; + } + } + + .library-menu-control-buttons--at-bottom[style] { + padding-top:4px !important; + width:40%; + + } + } + + /* Smaller on mobile */ + &.excalidraw--mobile .Island.sidebar { + width:250px !important; + + .Checkbox-box { + width:12px; + height:12px; + border-radius:2px; + } + + .library-menu-control-buttons--at-bottom[style] { + width:60%; + } + } + + /* Fix sidebar trigger bg color */ + .sidebar-trigger:not(:hover) { + background-color:transparent !important + } + + /* Tray mode - sidebar*/ + .mobile-misc-tools-container { + right:0; + + .ToolIcon { + svg { + transform:scale(1.4) + } + } + } + + /* Tray mode - bottom bar */ + .App-bottom-bar[style] { + margin-bottom:0 !important; + + .Island { + padding:0; + background-color:transparent; + + > .Stack > .Stack { + padding:0 !important; + } + } + + .App-toolbar-content { + padding:0; + } + + .dropdown-menu-container { + background:var(--island-bg-color); + margin-bottom:-20px; + } + + + } +} + +/* Show excalidraw right footer help icon above minimal statusbar */ +/* @container style(--status-bar-position: fixed) { + .excalidraw-container { + [role=contentinfo] { + .help-icon { + margin-top:-40px; + } + } + } +} */ diff --git a/.obsidian/snippets/Excel.css b/.obsidian/snippets/Excel.css new file mode 100644 index 00000000..f8a9ec56 --- /dev/null +++ b/.obsidian/snippets/Excel.css @@ -0,0 +1,87 @@ +/* + Excel plugin + Colours inherit from minimal theme and various adjustments + Limitations: + - Cannot adjust spreadsheet editor colours as it is rendered in + - Cannot set dark/light mode automatically based on minimal theme dark/light mode + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Colors */ +.x-spreadsheet { + --sheet-iframe-border-color: var(--bg2); + --sheet-iframe-background-color: var(--bg1); + --sheet-toolbar-background-color: var(--bg1); + --sheet-toolbar-divider-color: var(--tab-outline-color); + --sheet-dropdown-content-background-color: var(--bg1); + --sheet-dropdown-content-color: var(--icon-color); + --sheet-dropdown-title-color: var(--icon-color); + --sheet-menu-color: var(--tx1); + --sheet-menu-active-background-color: var(--tx3); + --sheet-header-background-color: red; + --sheet-checked-before: #025492; + + /* Note: Actual table is inside so colours aren't changeable by CSS override */ +} + +/* Chrome */ +.workspace-leaf-content[data-type=excel-view] { + + .view-content { + border-top:1px solid var(--tab-outline-color); + } + + .x-spreadsheet-toolbar { + padding-left:16px; + border-bottom-color: var(--divider-color); + + .x-spreadsheet-dropdown-content { + border:1px solid var(--divider-color); + box-shadow: -2px 2px 6px -2px var(--divider-color); + padding-bottom:4px; + border-top: 0; + } + } + + .x-spreadsheet-toolbar-btns { + margin-top:-2px; + } + + .x-spreadsheet-icon-img { + background-image:none !important; + background: var(--icon-color); + opacity: 1 !important; + /* + This is a hack to colorize the toolbar icons, this property value will need to be copied + from x-spreadsheet CSS if they update it because they hardcoded it >:| + */ + -webkit-mask-image: url("data:image/svg+xml,%3Csvg width='249' height='69' viewBox='0 0 249 69' xmlns='http://www.w3.org/2000/svg'%3E%3Cg fill='none' fill-rule='evenodd'%3E%3Cpath d='M4.434 9.434L7 12H0V5l2.958 2.958A8.287 8.287 0 0 1 8.32 6c3.459 0 6.424 2.11 7.68 5l-2 1c-.937-2.39-3.13-3.92-5.68-4a6.572 6.572 0 0 0-3.886 1.434zM29.566 9.434L27 12h7V5l-2.958 2.958A8.287 8.287 0 0 0 25.68 6C22.22 6 19.256 8.11 18 11l2 1c.937-2.39 3.13-3.92 5.68-4 1.469.053 2.82.579 3.886 1.434zM46.114 11.226a4.778 4.778 0 0 1-3.166 1.208c-2.733 0-4.948-2.336-4.948-5.217S40.215 2 42.948 2c2.733 0 4.948 2.336 4.948 5.217 0 1.27-.43 2.433-1.145 3.338l.228.238h.71l3.59 3.794L49.94 16l-3.6-3.785v-.749l-.225-.24zm-3.166-.215c1.988 0 3.599-1.699 3.599-3.794 0-2.096-1.611-3.794-3.599-3.794-1.987 0-3.598 1.698-3.598 3.794 0 2.095 1.61 3.794 3.598 3.794zM65 2h-8c-.55 0-1 .45-1 1v3c0 .55.45 1 1 1h8c.55 0 1-.45 1-1V5h1v3h-7v8h2v-6h7V4h-3V3c0-.55-.45-1-1-1zM73.27 4.55l5.16 5.15L76 15h2.5l1.64-3.58L84.73 16 86 14.73 74.55 3.27l-1.28 1.28zM76.82 3l2 2h1.76l-.55 1.21 1.71 1.71L83.08 5H87V3H76.82zM102 6.5c0-1.93-1.57-3.5-3.5-3.5H93v12h6.25c1.79 0 3.25-1.46 3.25-3.25 0-1.3-.77-2.41-1.87-2.93.83-.58 1.37-1.44 1.37-2.32zM98 5c.83 0 1.5.67 1.5 1.5S98.83 8 98 8h-2V5h2zm-2 8v-3h2.5c.83 0 1.5.67 1.5 1.5s-.67 1.5-1.5 1.5H96zM114 3v2h2.58l-3.66 8H110v2h8v-2h-2.58l3.66-8H122V3z' fill='%23000'/%3E%3Cpath d='M134 15c2.76 0 5-2.24 5-5V3h-2v7c0 1.75-1.5 3-3 3s-3-1.242-3-3V3h-2v7c0 2.76 2.24 5 5 5zm-6 1v2h12v-2h-12z' fill='%23000' fill-rule='nonzero'/%3E%3Cpath d='M147.887 6.06c0-.457.098-.874.297-1.252.198-.38.476-.702.836-.968s.784-.472 1.279-.619A5.712 5.712 0 0 1 151.926 3c.608 0 1.159.083 1.654.251.495.169.919.402 1.271.705.353.3.623.657.814 1.073.191.412.285.866.285 1.357h-2.257a1.85 1.85 0 0 0-.11-.637 1.26 1.26 0 0 0-.333-.506 1.535 1.535 0 0 0-.563-.327 2.425 2.425 0 0 0-.798-.116c-.297 0-.552.034-.773.098a1.52 1.52 0 0 0-.54.27 1.144 1.144 0 0 0-.431.9c0 .36.184.663.551.907l.065.042c.262.172.739.483 1.239.983h-3s-.786-.624-.824-.691c-.191-.357-.288-.773-.288-1.249zM159 9h-14v2h7.219c.135.053.3.105.412.154.278.123.495.255.653.382.157.132.262.274.319.424.056.154.082.326.082.514 0 .176-.034.341-.101.491a1.018 1.018 0 0 1-.311.394 1.603 1.603 0 0 1-.533.258 2.71 2.71 0 0 1-.761.094c-.326 0-.623-.034-.889-.097a1.797 1.797 0 0 1-.679-.312 1.446 1.446 0 0 1-.438-.558c-.105-.229-.192-.574-.192-.744h-2.231c0 .252.06.688.176 1.025a3.15 3.15 0 0 0 1.223 1.598c.281.195.585.36.915.487.33.131.671.229 1.035.289.36.064.724.094 1.084.094.6 0 1.147-.068 1.635-.207a3.879 3.879 0 0 0 1.252-.592 2.69 2.69 0 0 0 .803-.953c.19-.378.28-.806.28-1.286 0-.45-.078-.855-.232-1.211a2.258 2.258 0 0 0-.127-.252L159 11V9z' fill='%23010101'/%3E%3Cpath d='M171 1h-2l-4.5 12h2l1.12-3h4.75l1.12 3h2L171 1zm-2.62 7L170 3.67 171.62 8h-3.24z' fill='%23000'/%3E%3Cpath d='M193.5 8.87s-1.5 1.62-1.5 2.62c0 .83.67 1.5 1.5 1.5s1.5-.67 1.5-1.5c0-.99-1.5-2.62-1.5-2.62zm-1.79-2.08L184.91 0l-1.06 1.06 1.59 1.59-4.15 4.14a.996.996 0 0 0 0 1.41l4.5 4.5c.2.2.45.3.71.3.26 0 .51-.1.71-.29l4.5-4.5c.39-.39.39-1.03 0-1.42zm-8.5.21l3.29-3.29L189.79 7h-6.58z' fill='%23000' fill-rule='nonzero'/%3E%3Cpath d='M200 6h-2V2h7v2h-5v2zm7-2V2h7v4h-2V4h-5zm0 10h5v-2h2v4h-7v-2zm-9-2h2v2h5v2h-7v-4zm0-4h4V6l3 3-3 3v-2h-4V8zm9 1l3-3v2h4v2h-4v2l-3-3zM217 16h10v-2h-10v2zm10-10h-10v2h10V6zm-10-4v2h14V2h-14zm0 10h14v-2h-14v2zM237 14v2h10v-2h-10zm0-8v2h10V6h-10zm-2 6h14v-2h-14v2zm0-10v2h14V2h-14zM5 34h10v-2H5v2zm-4-4h14v-2H1v2zm0-10v2h14v-2H1zm4 6h10v-2H5v2zM20 20v2h12v-2H20zm2.5 7H25v7h2v-7h2.5L26 23.5 22.5 27zM47.5 21H45v-3h-2v3h-2.5l3.5 3.5 3.5-3.5zM38 26v2h12v-2H38zm2.5 7H43v3h2v-3h2.5L44 29.5 40.5 33zM65.5 27H63v-7h-2v7h-2.5l3.5 3.5 3.5-3.5zM56 32v2h12v-2H56zM87 21H73v2h14v-2zM73 33h4v-2h-4v2zm11.5-7H73v2h11.75c.83 0 1.5.67 1.5 1.5s-.67 1.5-1.5 1.5H82v-2l-3 3 3 3v-2h2.5c1.93 0 3.5-1.57 3.5-3.5S86.43 26 84.5 26zM91 21v1l6 6v5l2-1v-4l6-6v-1H91zm4 3h6l-3 3-3-3zM121 20h-10v1.8l5.5 5.2-5.5 5.2V34h10v-2h-6.9l4.9-5-4.9-5h6.9zM130 25l4 4 4-4zM150 31l4-4-4-4zM162.9 27c0-1.16.94-2.1 2.1-2.1h4V23h-4c-2.21 0-4 1.79-4 4s1.79 4 4 4h4v-1.9h-4a2.1 2.1 0 0 1-2.1-2.1zm12.1-4h-4v1.9h4a2.1 2.1 0 1 1 0 4.2h-4V31h4c2.21 0 4-1.79 4-4s-1.79-4-4-4zm-8 5h6v-2h-6v2zM195 19c.55 0 1 .45 1 1v14c0 .55-.45 1-1 1h-14c-.55 0-1-.45-1-1V20c0-.55.45-1 1-1h14zm-13 2v12h12V21h-12zm4 10h-2v-5h2v5zm3 0h-2v-8h2v8zm3 0h-2v-4h2v4z' fill='%23000'/%3E%3Cpath stroke='%23000' d='M198.5 21.5h15v12h-15z'/%3E%3Cpath fill='%23000' fill-rule='nonzero' d='M203 26h1v7h-1z'/%3E%3Cpath fill='%23D8D8D8' fill-rule='nonzero' d='M199 22h14v3h-14z'/%3E%3Cpath d='M199 25h14v1h-14v-1zm0 4h14v1h-14v-1z' fill='%23000' fill-rule='nonzero'/%3E%3Cpath d='M219 25.5c-.83 0-1.5.67-1.5 1.5s.67 1.5 1.5 1.5 1.5-.67 1.5-1.5-.67-1.5-1.5-1.5zm10 0c-.83 0-1.5.67-1.5 1.5s.67 1.5 1.5 1.5 1.5-.67 1.5-1.5-.67-1.5-1.5-1.5zm-5 0c-.83 0-1.5.67-1.5 1.5s.67 1.5 1.5 1.5 1.5-.67 1.5-1.5-.67-1.5-1.5-1.5zM243 26v-4h-2v4h-4v2h4v4h2v-4h4v-2zM1 38v14h14V38H1zm6 12H3v-4h4v4zm0-6H3v-4h4v4zm6 6H9v-4h4v4zm0-6H9v-4h4v4z' fill='%23000'/%3E%3Cg fill='%23000'%3E%3Cpath d='M19 52h2v-2h-2v2zm2-11h-2v2h2v-2zm1 11h2v-2h-2v2zm8-14h-2v2h2v-2zm-9 0h-2v2h2v-2zm3 0h-2v2h2v-2zm-5 11h2v-2h-2v2zm9 3h2v-2h-2v2zm3-14v2h2v-2h-2zm0 5h2v-2h-2v2zm0 9h2v-2h-2v2zm0-3h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M27 38h-2v6h-6v2h6v6h2v-6h6v-2h-6z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M43 52h2v-2h-2v2zm-3-12h2v-2h-2v2zm3 9h2v-2h-2v2zm-3 3h2v-2h-2v2zm-3-9h2v-2h-2v2zm0 9h2v-2h-2v2zm0-12h2v-2h-2v2zm0 9h2v-2h-2v2zm12 0h2v-2h-2v2zm0 3h2v-2h-2v2zm0-9h2v-2h-2v2zm0-5v2h2v-2h-2zm-6 2h2v-2h-2v2zm3 0h2v-2h-2v2zm-3 3h2v-2h-2v2zm3 9h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M37 46h14v-2H37z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M58 52h2v-2h-2v2zm-3-9h2v-2h-2v2zm0-3h2v-2h-2v2zm3 6h2v-2h-2v2zm0-6h2v-2h-2v2zm-3 12h2v-2h-2v2zm0-6h2v-2h-2v2zm0 3h2v-2h-2v2zm12-11v2h2v-2h-2zm0 8h2v-2h-2v2zm0 6h2v-2h-2v2zm0-9h2v-2h-2v2zm0 6h2v-2h-2v2zm-3 3h2v-2h-2v2zm0-6h2v-2h-2v2zm0-6h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M61 52h2V38h-2z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M81 41h-2v2h2v-2zm3 3h-2v2h2v-2zm-3 0h-2v2h2v-2zm0 3h-2v2h2v-2zm-3-3h-2v2h2v-2z' opacity='.54'/%3E%3Cpath d='M73 38h14v14H73V38zm12 12V40H75v10h10z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M97 46h2v-2h-2v2zm0-3h2v-2h-2v2zm0 6h2v-2h-2v2zm0 3h2v-2h-2v2zm-3 0h2v-2h-2v2zm0-12h2v-2h-2v2zm0 6h2v-2h-2v2zm9 6h2v-2h-2v2zm0-6h2v-2h-2v2zm0 3h2v-2h-2v2zm0-6h2v-2h-2v2zm-6-3h2v-2h-2v2zm6-2v2h2v-2h-2zm-3 14h2v-2h-2v2zm0-6h2v-2h-2v2zm0-6h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M91 52h2V38h-2z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M112 46h2v-2h-2v2zm-3 6h2v-2h-2v2zm6 0h2v-2h-2v2zm0-3h2v-2h-2v2zm-3 3h2v-2h-2v2zm-3-3h2v-2h-2v2zm6-3h2v-2h-2v2zm-6-3h2v-2h-2v2zm0 3h2v-2h-2v2zm12 0h2v-2h-2v2zm0 3h2v-2h-2v2zm0-6h2v-2h-2v2zm-6 0h2v-2h-2v2zm3 9h2v-2h-2v2zm0-6h2v-2h-2v2zm3 6h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M109 38v2h14v-2z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M127 40h2v-2h-2v2zm3 0h2v-2h-2v2zm0 6h2v-2h-2v2zm0 6h2v-2h-2v2zm-3-9h2v-2h-2v2zm0 3h2v-2h-2v2zm0 6h2v-2h-2v2zm0-3h2v-2h-2v2zm9-3h2v-2h-2v2zm-3 6h2v-2h-2v2zm3 0h2v-2h-2v2zm-3-12h2v-2h-2v2zm3 0h2v-2h-2v2zm-3 9h2v-2h-2v2zm0-6h2v-2h-2v2zm0 3h2v-2h-2v2z' opacity='.54'/%3E%3Cpath d='M139 38v14h2V38z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M150 38h-2v2h2v-2zm3 6h-2v2h2v-2zm0 3h-2v2h2v-2zm3-3h-2v2h2v-2zm-6 0h-2v2h2v-2zm6-6h-2v2h2v-2zm-3 3h-2v2h2v-2zm0-3h-2v2h2v-2zm-6 9h-2v2h2v-2zm10 2h2v-2h-2v2zm0-6h2v-2h-2v2zm0 3h2v-2h-2v2zm0-8v2h2v-2h-2zm-10 0h-2v2h2v-2zm0 3h-2v2h2v-2zm0 3h-2v2h2v-2z' opacity='.54'/%3E%3Cpath d='M145 52h14v-2h-14z'/%3E%3C/g%3E%3Cpath d='M169 52h2v-2h-2v2zm-3-6h2v-2h-2v2zm0-6h2v-2h-2v2zm3 9h2v-2h-2v2zm-3 3h2v-2h-2v2zm-3-9h2v-2h-2v2zm0 9h2v-2h-2v2zm0-12h2v-2h-2v2zm0 6h2v-2h-2v2zm6 0h2v-2h-2v2zm-6 3h2v-2h-2v2zm12 0h2v-2h-2v2zm0 3h2v-2h-2v2zm0-6h2v-2h-2v2zm0-3h2v-2h-2v2zm0-5v2h2v-2h-2zm-6 2h2v-2h-2v2zm3 0h2v-2h-2v2zm-3 3h2v-2h-2v2zm3 9h2v-2h-2v2zm0-6h2v-2h-2v2z' fill='%23000' opacity='.54'/%3E%3Cpath d='M189.5 39.62l-6.5 6.5V49h2.88l6.5-6.5-2.88-2.88zm5.35.4c.2-.2.2-.51 0-.71l-2.17-2.17c-.2-.2-.51-.2-.71 0l-1.35 1.36 2.88 2.88 1.35-1.36zM199 40h14v2h-14v-2zm0 4h6v2h-6v-2zm0 4h2v2h-2v-2zm8-4h6v2h-6v-2zm-4 4h2v2h-2v-2zm4 0h2v2h-2v-2zm4 0h2v2h-2v-2zM226 41l-4 4 4 4zM245.53 42.53l-1.06-1.06-2.47 2.47-2.47-2.47-1.06 1.06 2.47 2.47-2.47 2.47 1.06 1.06 2.47-2.47 2.47 2.47 1.06-1.06-2.47-2.47zM11.44 60.44L8 63.88l-3.44-3.44L3.5 61.5 8 66l4.5-4.5zM26 60l-4.5 4.5 1.06 1.06L26 62.12l3.44 3.44 1.06-1.06zM46.56 66.44L43.12 63l3.44-3.44-1.06-1.06L41 63l4.5 4.5z' fill='%23000'/%3E%3Cg fill='%23000'%3E%3Cpath d='M65 63l-4.5-4.5-1.06 1.06L62.88 63l-3.44 3.44 1.06 1.06z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M74 62h8.875l-3.935-3.94L80 57l6 6-6 6-1.06-1.06L82.875 64H74z'/%3E%3C/g%3E%3Cg fill='%23000'%3E%3Cpath d='M104 62h-8.875l3.935-3.94L98 57l-6 6 6 6 1.06-1.06L95.125 64H104z'/%3E%3C/g%3E%3C/g%3E%3C/svg%3E"); + } + + .x-spreadsheet-icon .x-spreadsheet-icon-img.add { + left:-232px; /* icon mask fix */ + } + + .x-spreadsheet-scrollbar { + background:var(--bg2); + + > div { + background:var(--bg2); + } + } + + .x-spreadsheet-bottombar { + border-top-color:var(--tab-outline-color); + + .x-spreadsheet-dropdown-content { + border:1px solid var(--divider-color); + box-shadow: -2px 0 6px -2px var(--divider-color); + padding-bottom:4px; + border-bottom: 0; + margin-bottom:-6px + } + } + +} + diff --git a/.obsidian/snippets/Full Calendar (abandoned).css b/.obsidian/snippets/Full Calendar (abandoned).css new file mode 100644 index 00000000..b670b2b3 --- /dev/null +++ b/.obsidian/snippets/Full Calendar (abandoned).css @@ -0,0 +1,62 @@ +/* + Full Calendar plugin tweaks + This is more condensed but obviously pretty hacky to achieve the result + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Full Calendar in right sidebar */ +.mod-right-split [data-type="full-calendar-view"] .fc { + --link-color:var(--text-normal); + --fc-button-active-bg-color: var(--background-modifier-hover); + font-size:75% +} + +.mod-right-split [data-type="full-calendar-view"] .fc a:hover { + color:var(--text-on-accent) +} + +/* Header toolbar */ + +.mod-right-split [data-type="full-calendar-view"] .fc-header-toolbar { + margin-bottom:6px +} +.mod-right-split [data-type="full-calendar-view"] .fc-header-toolbar .fc-button { + padding: 4px !important; +} + +/* List table styling */ +.mod-right-split [data-type="full-calendar-view"] .fc-list { + border:none +} +.mod-right-split [data-type="full-calendar-view"] .fc-list-day-side-text { + float:left; + font-weight:normal; +} +.mod-right-split [data-type="full-calendar-view"] .fc-list-day-side-text::before { + content:' '; + padding-left:.4em; +} + +.mod-right-split [data-type="full-calendar-view"] .fc td { + padding:4px 4px 0px 0; +} + +.mod-right-split [data-type="full-calendar-view"] .fc .fc-list-day-cushion { + padding:8px 4px 4px 0; + background:transparent; + margin-bottom:4px; + margin-top:4px; +} + +.mod-right-split [data-type="full-calendar-view"] .fc-toolbar-title { + font-size:11px +} + +.mod-right-split [data-type="full-calendar-view"] .fc-button { + font-size:10px +} + +.mod-right-split [data-type="full-calendar-view"] .fc-col-header-cell { + font-size:9px; + font-weight: 600; +} \ No newline at end of file diff --git a/.obsidian/snippets/Heatmap Calendar.css b/.obsidian/snippets/Heatmap Calendar.css new file mode 100644 index 00000000..950a3914 --- /dev/null +++ b/.obsidian/snippets/Heatmap Calendar.css @@ -0,0 +1,22 @@ +/* + Heatmap calendar tweaks + Very basic styling tweaks, likely to change as I use it more + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.cm-s-obsidian .heatmap-calendar-boxes li { + color:#000; + text-align:center; + font-size:9px; + font-weight:bold; + padding-top:2px; +} +.cm-s-obsidian .heatmap-calendar-boxes li.today { + border:none; + box-shadow:inset 0 0 1px 0 rgba(255,255,255,1); +} + +/* colour fixes */ +.heatmap-calendar-boxes .isEmpty { + background-color: var(--bg3) !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/MakeMD Inline Context - Duotone banner.css b/.obsidian/snippets/MakeMD Inline Context - Duotone banner.css new file mode 100644 index 00000000..29e21201 --- /dev/null +++ b/.obsidian/snippets/MakeMD Inline Context - Duotone banner.css @@ -0,0 +1,520 @@ +/* + Make.MD Contexts: Duotone Banners + Duotone banner images to match each minimal theme + + https://i.imgur.com/fvLOHfA.png + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +.mk-space-banner { + /* Needed for blending mode function */ + background:var(--background-primary); +} + +/* Light themes */ + +.theme-light.minimal-default-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-atom-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-ayu-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-catppuccin-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-everforest-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-gruvbox-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-macos-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-nord-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-notion-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-rose-pine-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-solarized-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-things-light .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + + +/* Dark themes */ + +.theme-dark.minimal-default-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-atom-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-ayu-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-catppuccin-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); + /* removed .2 from light values text overlay legibility */ +} + +.theme-dark.minimal-dracula-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-everforest-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-gruvbox-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-macos-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-nord-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-notion-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-rose-pine-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-solarized-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-things-dark .mk-space-banner img { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + diff --git a/.obsidian/snippets/MakeMD Inline Context - Faded banner.css b/.obsidian/snippets/MakeMD Inline Context - Faded banner.css new file mode 100644 index 00000000..ed50da7a --- /dev/null +++ b/.obsidian/snippets/MakeMD Inline Context - Faded banner.css @@ -0,0 +1,43 @@ +/* + Make.MD Contexts: Gradient Banners + Gradient Banners + + https://i.imgur.com/o3e6GTa.png + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --replete-banner-fade-offset: 2; /* integer */ +} +.mk-inline-context { + + .mk-path-context-component { + + &:has(.mk-space-banner) { + /* Moves the note text above the fade of the banner */ + height:calc(var(--replete-banner-height) / var(--replete-banner-fade-offset)); + } + } + + .mk-space-banner { + &::after { + content:''; + display: block; + width:100%; + height:100%; + left:0; + top:0; + background: + linear-gradient(to bottom, transparent 20%, var(--background-primary)), + linear-gradient(to bottom, transparent 60%, var(--background-primary)); + position: absolute; + pointer-events:none; + } + + img { + /* Disable magnify cursor */ + cursor:default !important + } + } +} + + diff --git a/.obsidian/snippets/MakeMD Inline Context.css b/.obsidian/snippets/MakeMD Inline Context.css new file mode 100644 index 00000000..5865db07 --- /dev/null +++ b/.obsidian/snippets/MakeMD Inline Context.css @@ -0,0 +1,41 @@ +/* + Make.MD Banners + + The only thing I use Make.MD for now is the banner functionality. + This base snippet hides inline-contexts altogether - we only want it for the banners. + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --replete-banner-height: 180px; /* Set banner height here */ +} +.mk-inline-context { + + .mk-path-context-component { + /* Hide inline context entirely */ + display:none; + + &:has(.mk-space-banner) { + /* ...Except if there's a banner displaying... */ + display:inherit; + + /* ...and we hide it this way */ + .mk-props-contexts { + display:none; + } + } + } + + .mk-space-banner { + height: var(--replete-banner-height); + :is(img) { + height: var(--replete-banner-height); + /* Disable magnify cursor */ + cursor:default !important + } + } +} + +/* Hide banner in hover popover */ +.hover-popover .mk-space-banner { + display:none; +} diff --git a/.obsidian/snippets/MetaBind Compact.css b/.obsidian/snippets/MetaBind Compact.css new file mode 100644 index 00000000..5fcc15b0 --- /dev/null +++ b/.obsidian/snippets/MetaBind Compact.css @@ -0,0 +1,108 @@ +/* + Metabind compact editor styles + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Inline controls styles */ +/* .cm-line { + background:rgba(0,255,0,0.1); + box-shadow: inset 0 -2px 3px rgba(255,255,255,.2); +} */ + +.markdown-source-view.is-live-preview .cm-editor { + /* Only apply to live preview view editor */ + + /* inline styling */ + .mb-input-inline { + .mb-input-type-inlineSelect { + .dropdown { + height:calc(1rem + 6px); + vertical-align: bottom; + padding-left:6px; + padding-right:18px; + font-family:var(--font-interface) !important; + background-position-x: calc(100% - 6px); + } + } + .mb-input-type-number { + [type=number] { + height:calc(1rem + 6px); + font-family:var(--font-interface) !important; + padding-left:6px; + padding-right:6px; + } + } + .mb-input-type-time { + :is([type=time]) { + height:calc(1rem + 6px); + vertical-align: bottom; + padding-left:6px; + padding-right:0px; + font-family:var(--font-interface) !important; + background-image:none; + box-shadow: var(--input-shadow); + border-radius: var(--input-radius); + background-color: var(--interactive-normal); + } + + /* meta-bind updated recently and now uses a real 'time' input type, so this is deprecated: */ + /* .mb-input-element-group { + position:relative; + &::after { + content: ':'; + display:block; + position:absolute; + left:50%; + width:1rem; + text-align:center; + margin-left:-.5rem; + color: var(--tx2); + user-select:none; + } + } + .dropdown { + height:calc(1rem + 6px); + vertical-align: bottom; + padding-left:6px; + padding-right:6px; + font-family:var(--font-interface) !important; + background-image:none; + + &:nth-of-type(1) { + padding-right:4px; + } + &:nth-of-type(2) { + padding-left:4px; + } + } + */ + } + .mb-input-type-toggle { + .checkbox-container { + transform: scale(0.8) translateY(2px) !important; + transform-origin:left center; + } + } + .mb-slider-input { + transform:translate(-4px, -5px) !important; + + &::-webkit-slider-thumb { + transform:scale(0.75); + background: var(--tx1) + } + } + + .em2 > * {width: 2rem} + .em3 > * {width: 3rem} + .em4 > * {width: 4rem} + .em5 > * {width: 5rem} + .em6 > * {width: 6rem} + .em7 > * {width: 7rem} + .em8 > * {width: 8rem} + .em9 > * {width: 9rem} + .em10 > * {width: 10rem} + } +} + + + diff --git a/.obsidian/snippets/MySnippets.css b/.obsidian/snippets/MySnippets.css new file mode 100644 index 00000000..1504e519 --- /dev/null +++ b/.obsidian/snippets/MySnippets.css @@ -0,0 +1,28 @@ +/* + MySnippets plugin tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Embiggen menu width for longer filenames */ +.MySnippets-statusbar-menu { + width:420px; +} + +/* Re-order menu item */ +.MySnippets-statusbar-menu .menu-item .checkbox-container { + order:1 +} + +/* Make code button less prominent */ +.MySnippets-statusbar-menu .MS-OpenSnippet { + box-shadow:none; + background:transparent; +} +.MySnippets-statusbar-menu .MS-OpenSnippet:hover svg path{ + fill:var(--interactive-accent) !important; +} + +/* Fix open snippet button on light themes */ +.theme-light .MS-OpenSnippet svg path{ + fill:var(--tx3) !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/Obsidian Buttons (abandoned).css b/.obsidian/snippets/Obsidian Buttons (abandoned).css new file mode 100644 index 00000000..913784fc --- /dev/null +++ b/.obsidian/snippets/Obsidian Buttons (abandoned).css @@ -0,0 +1,15 @@ +/* + Obsidian Buttons tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets + + (I abandoned this plugin for time being, but whatever) +*/ + +.block-language-button { + padding-left:0 +} + +.block-language-button button[class*=button-] { + margin-left:0; + margin-right:0; +} \ No newline at end of file diff --git a/.obsidian/snippets/Omnisearch.css b/.obsidian/snippets/Omnisearch.css new file mode 100644 index 00000000..18018fd5 --- /dev/null +++ b/.obsidian/snippets/Omnisearch.css @@ -0,0 +1,94 @@ +/* + Omnisearch + Cleaner and less jank, essential fixes to be honest it was noisy on the eyes + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.omnisearch-modal.prompt { + + .prompt-results { + + } + + :has(> .omnisearch-result__title-container) { + width:100%; + } + + .omnisearch-result__title { + display:flex; + width:100%; + font-size:1rem; + font-weight:500; + margin-bottom:3px; + + :has(svg) { + display:none; + margin-left:-2px; + transform:scale(0.9) translate(0, 2px) + } + } + + .omnisearch-result { + } + + .omnisearch-result__folder-path { + /* font-style:italic; */ + font-size:11px; + margin-top:-5px; + margin-bottom:3px; + + /* > span { + background: var(--bg3); + padding:0px 4px; + border-radius:2px; + + &::before { + content:'/'; + } + } */ + + :has(svg) { + /* display:none; */ + /* icon resized inline with text: */ + transform: scale(0.7) translate(0,2px); + transform-origin: left center; + margin-right:-7px; + } + } + + .omnisearch-result__extension { + display:none; + transform: translate(-4px,2px); + font-weight:500; + } + + .omnisearch-result__counter { + margin-left: auto; + + /* &::before { + content:'(' + } + &::after { + content:')' + } */ + } + + .omnisearch-result__body { + margin-left:0; + font-style:italic; + } + + .omnisearch-result { + padding-top:var(--size-4-3); + padding-bottom:var(--size-4-3); + margin-top:calc( (-1 * var(--size-4-3)) / 2); + } + + .omnisearch-highlight { + text-decoration-color:var(--accent-color); + text-underline-offset:3px; + text-decoration-thickness:1px; + } + +} diff --git a/.obsidian/snippets/Outline.css b/.obsidian/snippets/Outline.css new file mode 100644 index 00000000..1e9d174a --- /dev/null +++ b/.obsidian/snippets/Outline.css @@ -0,0 +1,41 @@ +/* + Compact outline panel + This makes the outline view far more condensed and shifts the chevrons to where I prefer them on the right + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +.outline .tree-item-children { + --nav-item-children-padding-left:4px; + --nav-item-children-margin-left:5px; + border-left-color:transparent +} + +.outline .tree-item-icon.collapse-icon { + order:2; + padding-left:2px; + transform:scale(0.8) translate(0, -1px) +} + +.outline .tree-item-inner { + flex:0 1 auto +} + +/* First item (page h1) */ +.outline > .tree-item > .tree-item-self { + font-weight:500; +} + +.outline > .tree-item > .tree-item-children { + padding-left:4px; + margin-left:5px; + --nav-item-children-padding-left:0px; + --nav-item-children-margin-left:0px; +} + +/* .mod-right-split .outline > .tree-item > .tree-item-children .mod-collapsible{ + text-transform:uppercase; + font-size:75%; + font-weight:500; + margin-top:5px +} */ \ No newline at end of file diff --git a/.obsidian/snippets/Quiet Outline.css b/.obsidian/snippets/Quiet Outline.css new file mode 100644 index 00000000..7d57ce9e --- /dev/null +++ b/.obsidian/snippets/Quiet Outline.css @@ -0,0 +1,107 @@ +/* + Quiet Outline plugin tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.quiet-outline { + padding-bottom:0; +} + +.view-content:has(.quiet-outline) { + padding:0 !important +} + +.quiet-outline .function-bar .n-button { + order:2 !important +} + +.quiet-outline .n-input-wrapper { +} + +.quiet-outline .n-slider { + width: calc(100% - 20px); + margin-left:10px !important; + margin-bottom:8px !important; + margin-top:12px !important; +} + +.quiet-outline .function-bar .n-input { + background-color: var(--background-secondary) !important; +} +.quiet-outline .function-bar .n-input__border, +.quiet-outline .function-bar .n-input__state-border { + border:none !important; + box-shadow:none !important; +} + +.quiet-outline .function-bar input { + box-shadow:none; +} + +.quiet-outline .function-bar { + /* background: var(--background-secondary) !important; */ + background: linear-gradient(to bottom, transparent 1%, var(--background-secondary) 15%); + position: fixed; + bottom:0; + padding: 6px 0; + z-index:1; + width:100%; + margin-bottom:0; +} + +.quiet-outline .function-bar .n-button { + box-shadow:none !important; + opacity: 0.6; + transform: scale(0.8); +} + +.quiet-outline .function-bar .n-button__border { + border:0 !important; +} + +.quiet-outline .n-tree { + padding: 2px; + padding-bottom: 40px; +} + +.quiet-outline .n-config-provider { + display: flex; +} + +.quiet-outline code { + padding-left: 10px; + font-size: 13px; +} + +.quiet-outline .n-tree-node.located p { + color: var(--tx1) +} + +/* Make bright colours fit theme instead of user-selectable */ +.quiet-outline .n-slider[style] { + --replete-subdued-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 10%), 0.7) !important; + --n-fill-color: var(--tx3) !important; + --n-fill-color-hover: var(--tx3) !important; + --n-dot-border: 2px solid var(--replete-subdued-color) !important; + --n-dot-border-active: 2px solid var(--tx3) !important; + --n-rail-color: var(--replete-subdued-color) !important; + --n-dot-color: var(--background-primary) !important; + --n-handle-color: var(--tx2) !important; +} + +.theme-dark .quiet-outline .n-slider[style] { + --replete-subdued-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 20%), 1) !important; +} + +.quiet-outline .n-input__placeholder { + color: var(--tx3); + opacity:0.6 +} + +.quiet-outline .n-tree-node-indent { + border-right-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 5%), 1) !important; +} + +.theme-dark .quiet-outline .n-tree-node-indent { + border-right-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 15%), 1) !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/SheetsPlus - Darkmode.css b/.obsidian/snippets/SheetsPlus - Darkmode.css new file mode 100644 index 00000000..94716170 --- /dev/null +++ b/.obsidian/snippets/SheetsPlus - Darkmode.css @@ -0,0 +1,100 @@ +/* + Sheets Plus - Dark mode + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +[data-type=excel-pro-view] { + /* compact mode bonus */ + .my-univer { + border:0; + } + .view-content { + padding:0 !important; + padding-bottom:32px !important; /* accomodate floating statusbar */ + } +} + +.theme-dark [data-type=excel-pro-view] { + /* &::after { + content:''; + width:100%; + height:100%; + display:block; + background:var(--bg2); + position: absolute; + z-index:20; + user-select:none; + pointer-events:none; + opacity:0.2; + filter:saturate(2); + } */ + + /* Dark mode hack */ + /* for the love of God, do not ever do something like this in production */ + + header, + footer { + filter: invert() contrast(0.78); + + .univer-toolbar-item-select-arrow, + .univer-toolbar-item-select-button-arrow, + svg { + filter:brightness(.2); + } + .univer-toolbar-group::after { + filter:brightness(.8); + } + + .univer-slide-tab-div { + /* border:1px solid black; */ + border-bottom:0; + box-shadow: 0 -3px 8px -2px rgba(0,0,0,0.7); + } + + .univer-sheet-container { + padding:0; + } + } + + footer { + .univer-slider-handle { + filter:invert() + } + } + + canvas[id^=univer-sheet-main-canvas] { + filter: invert() contrast(1.6); + } + .univer-workbench-container-canvas { + background:var(--bg1) !important; + } + [id=__INTERNAL_EDITOR__DOCS_NORMAL] { + canvas { + filter:invert(); + } + } + +} + +.univer-dropdown { + filter: invert() contrast(.78); + + .univer-toolbar-item-select-arrow, + .univer-toolbar-item-select-button-arrow, + svg { + filter:brightness(.2); + } + .univer-toolbar-group::after { + filter:brightness(.8); + } + + .univer-slide-tab-div { + /* border:1px solid black; */ + border-bottom:0; + box-shadow: 0 -3px 8px -2px rgba(0,0,0,0.7); + } + + .univer-menu-item-content { + color:black; + } +} diff --git a/.obsidian/snippets/Smart2ndBrain.css b/.obsidian/snippets/Smart2ndBrain.css new file mode 100644 index 00000000..da620909 --- /dev/null +++ b/.obsidian/snippets/Smart2ndBrain.css @@ -0,0 +1,57 @@ +/* + Smart Second Brain + This plugin is early and there are no CSS classes really being used so this is extremely hacky, but improves the UX a bit. + The plugin isn't quite practical enough for me just yet, so I'll revisit this another time in the future. + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace-leaf { + + [data-type=chat-view] .view-content:has(.chat-window) { + /* selectors aren't great in this plugin right now */ + padding:0; + + output { + font-size:13px; + } + + [aria-label="Open quick settings"] { + transform:translate(0, 7px) !important; + opacity: 0.7; + } + + textarea { + margin-left: 16px; + margin-right: 12px; + + + button { + padding-left:8px; + padding-right:8px; + margin-right:12px; + } + } + + :is(.min-h-\[33\%\]) { + padding:10px; + min-height: 20% !important; + height:auto; + font-size:13px; + } + + .chat-window { + border-radius:0; + border:0; + + .group { + margin:4px; + margin-left:12px; + padding-left:12px; + font-size:13px; + } + } + + > div:first-child { + padding-bottom:0 !important; + } + } +} \ No newline at end of file diff --git a/.obsidian/snippets/Task Progressbars.css b/.obsidian/snippets/Task Progressbars.css new file mode 100644 index 00000000..7c13c508 --- /dev/null +++ b/.obsidian/snippets/Task Progressbars.css @@ -0,0 +1,58 @@ +/* + Task Progress bars + I really like this plugin. This aligns them to my typography and makes them less ugly + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.markdown-source-view:not(.is-live-preview) { + .cm-task-progress-bar { + display:none; + } +} + +.cm-task-progress-bar.with-number .progress-status { + color:var(--tx2); + font-weight:400; + font-size:10px; + position:absolute; + transform:translate(-4px,-12px); + width:4em; +} + +.HyperMD-header .cm-task-progress-bar { + pointer-events:none; + position: absolute; + margin-top:calc(.5em + 1px); + margin-left:10px; +} + + +/* colors */ +/* .cm-task-progress-bar .progress-bar-inline-1 { background-color:var(--color-red) } +.cm-task-progress-bar .progress-bar-inline-2 { background-color:var(--color-yellow) } +.cm-task-progress-bar .progress-bar-inline-3 { background-color:var(--color-green) } */ +.cm-task-progress-bar .progress-bar-inline-4 { background-color:#6BCB77 } + +/* background color */ +.HyperMD-header .cm-task-progress-bar .progress-bar-inline-background { + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 10%), 0.8) !important; + opacity:0.5 +} + +.theme-dark .HyperMD-header .cm-task-progress-bar .progress-bar-inline-background { + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 25%), 0.8) !important; +} + +/* complete checkmark state */ +.cm-task-progress-bar .progress-bar-inline-4 { + display:none; +} +.cm-task-progress-bar:has(.progress-bar-inline-4)::after { + content:'✓'; + position:absolute; + top:50%; + color: var(--tx2); + font-size:24px; + line-height: 1em; + transform:translate(-4px, -8px) +} \ No newline at end of file diff --git a/.obsidian/snippets/Tasks - Compact.css b/.obsidian/snippets/Tasks - Compact.css new file mode 100644 index 00000000..72a6fe1e --- /dev/null +++ b/.obsidian/snippets/Tasks - Compact.css @@ -0,0 +1,193 @@ +/* + Tasks: Compact + Colour-based priority status. Show dates on hover. Monochrome emojis. + + Original credit to @sunb_mn on Obsidian's discord server for + the basis of these styles which saved me a bit of time: + https://discord.com/channels/686053708261228577/744933215063638183/1108617092137226320 + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/*! +Included icons were modified from https://lucide.dev +License reproduced from https://lucide.dev/license + +ISC License +Copyright (c) for portions of Lucide are held by Cole Bemis 2013-2022 as part of Feather (MIT). All other copyright (c) for Lucide are held by Lucide Contributors 2022. +Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. +*/ +@font-face { + font-family: 'TasksMonoEmojis'; + src: url('data:@file/octet-stream;base64,d09GMgABAAAAAAigAAsAAAAAFDwAAAhQAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHII0BmAAhjIKlESRPgs+AAE2AiQDeAQgBYRqB4FSG7ERURRTn+xnQku4P6KzXOMyqnXpGLBdz7XMv/0vGIOvZdDav87c7u0hfSBSAQSHwA5VNIOuSupYyFa/qZzaBgAdtwoAGKHsSeQAmySzTFBCeRIVAAP4LB2DpCMAHngu929aa+qBp1uk+F50z8N4WiQBRYHFPS/bVvzft/Zqb5JMiFV0NnTREQZcnMPJflq4CxBtCD6oYFkCybpqVmWHKFQ9sdB9vsJXqKoKL7u/d/ZSU5g413AsNZt8lxP9LUGArc8o2mzSRhikF8s9dlBMAgCAEK5lsR7VgER3hCQBzI/td4ZUlwkG7cQD/KBRQg6pUiJAgi9AksYSiPhCoVgiRZLLEApUKxfwCKZcHYtSqUqgTDlB0k1OETLezFROMqAvVVDA9IpctbyCzRI5xuPL9jc36MpVC5Xjt6G4UTjmq8CX9YQimUKZCjKs5TWggxzq+wDYhZ8vzlaEsYBGj8CeYM5SpgePWP43XgE8M09NYgC+AlgAHSAAXQAJvCAA+EQgoItgAy+kWwByIUFZzsAE4+XPvi3/pVVvvV0CLKeDsnDxZ9/ItoQuyu3CFWq06IruiQSqRTzBJE7FcplrEpXCCf6P7atistgcLjAF452RJUd2nMlWcQ4DeM3dIu+vwBJc2SwQX81d7kM1roQIV4GHqyHAtZDiOihwPcS4EXLcBBluhgrcAgluhUrcASHuhDLcBeW4G3zca1UlN97jYSY3PuJhJTc+42EntybxcJJbjza4+HqyGEB82wEN3wV2QOCbbQckvrl2QMc3zw4o/HyTARiRQA0AGHGMhMgB5AqAJa9iBNK2UyRpHOThCaxoUz95wbDWPFF5UsIZ2pJXlIfdIukvLgknRx1/cOEd4AavZm9IEqg1RaVEF3+9EWUcp+lACjj2/uJH0tvfq3PxPhAHxx/uD/EP1BN57N7Bn3Q/T4DJFjimnGBtfQLZ0eHteDDzLj7MTtr24l9vBOkUpSaCh+v+POIs3vnkHjDuT6dcLLjVeg25Jozn38xV93Dt7fei+amvZd8VTwtO3S0GXn8jVzhNquDb+IfjnTQCznnNIbcrXiAdON1r1KEO6i84c/nVj+LHMkHkxuPHU/gV0iYW9EbfwGzk/bG2ywiYDOM38wOIviKBIpWsNdzZWXP8+mCpoVLDyyYiN/IMaPl1eGcdMuMe5qlbU334bQv2KQ5ro1u883YccARpxpJL987VmVN5/GGK6T2d5nGaTu6Lcoq7buzBdtaqT+SdSInUn7p0MX8ch0kSJnfeah15HPSuu6A5gD8+atetVBFL7oR/gnw4F5nh/hn8XisWn7gRuVWAzsYt4fRXvPRDiOlLVHCQoSYaksniHh6YMM8IXBGmThAKCBH6IMXcPl6EBBNcTU+3hvsl12vSdLsEPoEwIxYShJLQqJzbJ/iEr4GA/BDtpyFUuNf/JYRAe/x7IB/QrhZlEPt/dg7bhg5W76maSrYmGxsn6wYVo+qkotd+LHZNbHQiAVwajzybede/3SyXcS4q4SRH8lv81UOdSIc29xPem7JhBWrgjHV5Mt2pNsi0dj7SqenWp7rXf8o4PsZI3cfzcVyPzQWaws17GY+0VBAZP+8fdgyZqg9U7QH8Xd/lXc4k+5LWNcjrWkW/TS2++et3vLdxqsH2+vUX1lG0ovxotjxXiZmIch7kCQRh1gwL3gWpVFaGmWFiWJQu6lOtwUostuW4PEU/vzl2a03rt6pz/L/QbCbG/JMFAzAsc6VgKWidpUE28uv04pu/vi9nShinsr67fneYopTlR3PkOUrMSFQQFZ5gQMq6w5YGAz9shjasBa1lpzPNM21t7W0y1gxLZtBLWbBeL2NJZ0Lpv9inBn750jatpesyTbanCQLChBripeyhIJB/noccpw1I0gKzVEuls0Gglk3NLAjd+RlWxMxvvA+gpwTn44fabnHmNCduB84PxvP/6+f++m54I/JnM00tBaklddSqTtlMMMe2pMNYMH74u9mfWV2KiJBSJg2h0P2qLe3Vlgf6ELgPv/i7gBH5+K5d6qe70PKYWX1mZZlf1fkeQr51vgYdrRqqPHSuaahq9KUV7ehEl/RSvOTDYEwzVMKSy8fvXKrrbd7S1KRq7n1iRTs60aV40txLlYKqFyy43gTLV7Y5v0AAwp09kREl+Jbmr78ZHb2/w6en778pnjtTxTQNGFYlRlyhr45IuX9VXOTUKp/wN2o2fXLlytVAETvw86oIOq/Uo8jlwI4fQOmvKngEAKiB/q/YaVVV2xUgFmqXmyN4QJP2hSr3pzpV9YicAgD9sIi0VMFNqykgdhPWP67jtvrHRAb3f9MxfuNZJaKnb1K7VsCkgeOlNKmTwiqdAFGYUwOBNBdiXtogbqLe8yyeTI0bkACatDkDSsyGfiBtNgDQkYbgdZgQyEFiM9M5hpgSGM1snWaR8laJ/WIwtkA1LgHT+J4yocYrkPiT6XL/MaUmsJltUVBjHC3BkW9e3WATZsdkNsxscv/c72aSzVKf3v9ErU0t0g2f51jq9qFtHg+yiM+/usR1af4/efAtnbqIw3UPQQCm4WZZF7IJxv7rkLHBmJm49TJAeVlpuGg7UUz1M3A50aazA+nXo48OCm0vUljDw0A/tUIQBFM+qDZJhgci16iXY2wgk6rgRGnlBgPZJpdmU+rMnibrClyaA1uvXmviniYrK2mNxiqQehNqAo2CkjoVDZq0aNOhS48+A4aMGDNhyow5C5axnBWsZBWrWcNaiHy3Iem///jilIrV+bgJOjEnfpHFxFi3+uO0LyoWlfGXlqEhaQlJxeqI3ASNjIjiz++lgS7qaKKdKK200Eg3PbQRo58aAAAA') format('woff2'); + unicode-range: U+1F4C5, U+1F501, U+1F517, U+1F53A, U+1F53C, U+1F53D, U+1F6EB, U+23EB, U+23EC, U+23F3, U+2705, U+2795; + /* 📅, 🔁, 🔗, 🔺, 🔼, 🔽, 🛫, ⏫, ⏬, ⏳, ✅, ➕ */ + /*! Generator: obsidian-tasks-custom-icons v1.0.3 https://github.com/replete/obsidian-tasks-custom-icons */ +} + +span.tasks-list-text, +.cm-line:has(.task-list-label) [class^=cm-list-] { + font-family: 'TasksMonoEmojis', var(--font-text); +} + +span.tasks-list-text, +.cm-line:has(.task-list-label) [class^=cm-list-] { + font-family: 'TasksMonoEmojis', var(--font-text); +} + +/* Priority as colour */ +.task-list-item[data-task-priority=highest] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-red); + border-color: var(--color-red); +} +.task-list-item[data-task-priority=high] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-orange); + border-color: var(--color-orange); +} +.task-list-item[data-task-priority=medium] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-yellow); + border-color: var(--color-yellow); +} +.task-list-item[data-task-priority=low] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-cyan); + border-color: var(--color-cyan); +} +.task-list-item[data-task-priority=lowest] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-cyan); + border-color: var(--color-cyan); + opacity:0.6 +} +.task-list-item[data-task-priority=lowest] .task-description { + opacity:0.6 +} +.task-priority { + display: none; +} +input[type=checkbox]:checked { + box-shadow: none !important; + border-color: var(--checkbox-border-color) !important; +} + +.task-description { + margin-right:3px; +} + +/* Show dates hover */ +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created, .task-due) { + font-size: 1px; + letter-spacing: -1px; + color: transparent; + background-color: transparent; +} +:is(.task-recurring, .task-start, .task-scheduled,.task-done, .task-created, .task-due)::after { + letter-spacing: 0px; + font-size: var(--font-adaptive-normal, 1rem); + line-height: var(--line-height); + color: var(--tx1, var(--text-normal)); + margin-left: 3px; +} +.task-recurring::after { + content: "🔁"; +} +.task-start::after { + content: "🛫"; +} +.task-scheduled::after { + content: "⏳"; +} +.task-done::after { + content: "✅"; +} +.task-created::after { + content: "➕"; +} +.task-due::after { + content: "📅"; +} + +.plugin-tasks-query-result [class^=task-]::after { + cursor: default !important; + opacity:0.6 +} + +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created, .task-due):hover::after { + opacity:1; +} + +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created, .task-due):hover span { + position:absolute; + display:inline-block; + flex-grow:1; + letter-spacing: 0px; + font-size: var(--font-adaptive-small, 0.8rem); + line-height: var(--line-height, 20px); + color: var(--tx1, var(--text-normal)); + background:var(--bg2, var(--background-primary)); + border-radius:4px; + outline:1px solid var(--tx3, var(--text-faint)); + margin-left:10px; + padding-left:2px; + padding-right:4px; + min-width:7rem; + width: fit-content; + pointer-events:none; + z-index:1000; + box-shadow:2px 2px 3px var(--bg2, var(--background-primary)), 0 0 7px var(--bg2, var(--background-primary)); + line-height:1.2em; + margin-top:1.5rem; + margin-left:2px; +} + +/* File backlink */ +.plugin-tasks-query-result .tasks-backlink { + font-size: 1px; + letter-spacing: -1px; + color: transparent; + background-color: transparent; + width:1.5rem; + height: 1.5rem; + align-self:baseline; +} + +.plugin-tasks-query-result .tasks-backlink::before { + content:'... '; + font-size: var(--font-adaptive-normal, 1rem); + line-height: var(--line-height, 1rem); + color: var(--tx1, var(--text-faint)); + transform: translateX(6px); + display:inline-flex; + opacity:0.6; +} + +.plugin-tasks-query-result .tasks-backlink:hover { + font-size: var(--font-adaptive-normal, 0.8rem); + line-height: var(--line-height, 1rem); + letter-spacing:0; + width:inherit; +} + +.plugin-tasks-query-result .tasks-backlink:hover::before { + content:'' +} + +/* Edit button */ +.tasks-edit { + background-color: var(--tx1, var(--text-normal)); + /* https://caniuse.com/?search=mask-image */ + -webkit-mask-image: url('data:image/svg+xml,'); + -webkit-mask-size: 85%; + -webkit-mask-position: 0 -3px; + -webkit-mask-repeat: no-repeat; + transform: translate(0,-1px); + opacity:0.6; + margin-left:5px; +} + +.tasks-edit:hover { + opacity: 1; +} + +.plugin-tasks-query-result .tasks-backlink { + float:right; +} \ No newline at end of file diff --git a/.obsidian/snippets/Tasks - Expand dates on hover.css b/.obsidian/snippets/Tasks - Expand dates on hover.css new file mode 100644 index 00000000..a96c0bec --- /dev/null +++ b/.obsidian/snippets/Tasks - Expand dates on hover.css @@ -0,0 +1,170 @@ +/* + Tasks: Expand dates on hover (WIP) + Color priority markers and dates that expand on hover. + + Original credit to @sunb_mn on Obsidian's discord server for + the basis of this styles which I've tweaked and extended a little, + he also quotes @SlRvb and @esm7 for help with code: + https://discord.com/channels/686053708261228577/744933215063638183/1108617092137226320 + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Priority as Checkbox Color and Remove the Emoji */ +.task-list-item[data-task-priority=high] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-red); + border-color: var(--color-red); +} +.task-list-item[data-task-priority=medium] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-orange); + border-color: var(--color-orange); +} +.task-list-item[data-task-priority=low] input[type=checkbox] { + box-shadow: 0px 0px 1px 1px var(--color-cyan); + border-color: var(--color-cyan); +} + +.task-priority { + display: none; +} + +input[type=checkbox]:checked { + box-shadow: none !important; + border-color: var(--checkbox-border-color) !important; +} + +.tasks-list-text { + display: inline-flex; + max-width: 100%; +} + +.task-description { + flex: 2; + min-width: 0; + width: 350px; + white-space: nowrap; + display: block; + overflow: hidden; + text-overflow: ellipsis; +} + +/* Show dates on emoji hover */ +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created) { + font-size: 1px; + letter-spacing: -1px; + color: transparent; + background-color: transparent; +} +:is(.task-recurring, .task-start, .task-scheduled,.task-done, .task-created)::after { + letter-spacing: 0px; + font-size: var(--font-adaptive-normal); + line-height: var(--line-height); + color: var(--tx1); + margin-left: 5px; +} +.task-recurring::after { + content: "🔁"; +} +.task-start::after { + content: "🛫"; +} +.task-scheduled::after { + content: "⏳"; +} +.task-done::after { + content: "✅"; +} +.task-created::after { + content: "➕"; +} +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created):hover::after { + content: ""; +} + +:is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created):hover { + letter-spacing: 0px; + font-size: var(--font-adaptive-normal); + line-height: var(--line-height); + color: var(--tx1); + margin-left: 5px; + background:var(--bg2); + border-radius:4px; + outline:1px solid var(--tx3); + margin-left:10px; + padding-left:4px; + /* transform: translateX(-4px); */ +} + +/* Due date on right */ +.task-due { + width: fit-content; + margin-left: 5px; + order: 5; + font-weight: var(--bold-weight); +} + +.plugin-tasks-query-result li { + display:inline-flex; + width:100%; +} + +.plugin-tasks-query-result .task-list-item-checkbox { + transform: translateY(6px); +} + +.plugin-tasks-query-result .tasks-list-text { + flex-grow:1; +} + +.plugin-tasks-query-result .task-extras{ + display:flex; + justify-self: flex-end; + height:1em; +} + +/* File backlink */ +.plugin-tasks-query-result .tasks-backlink { + font-size: 1px; + letter-spacing: -1px; + color: transparent; + background-color: transparent; + width:1.5rem; + height: 1.5rem; + align-self:baseline; +} + +.plugin-tasks-query-result .tasks-backlink::before { + content:'📄'; + font-size: var(--font-adaptive-normal); + line-height: var(--line-height); + color: var(--tx1); + transform: translateX(6px); + display:inline-block; + opacity:0.5; +} + +.plugin-tasks-query-result .tasks-backlink:hover { + font-size: var(--font-adaptive-normal); + line-height: var(--line-height); + letter-spacing:0; + width:inherit; + opacity:1; + transform: translateX(8px); +} + +/* Show all text on edit hover */ +.tasks-edit { + transform:translate(0,3px) +} + +.plugin-tasks-query-result li:has(.tasks-edit:hover) :is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created) { + letter-spacing: 0px; + font-size: var(--font-adaptive-normal); + line-height: var(--line-height); + color: var(--tx1); + margin-left: 5px; +} + +.plugin-tasks-query-result li:has(.tasks-edit:hover) :is(.task-recurring, .task-start, .task-scheduled, .task-done, .task-created)::after { + content:''; +} \ No newline at end of file diff --git a/.obsidian/snippets/Tasks - Mono Icons (lucide2).css b/.obsidian/snippets/Tasks - Mono Icons (lucide2).css new file mode 100644 index 00000000..32d48a75 --- /dev/null +++ b/.obsidian/snippets/Tasks - Mono Icons (lucide2).css @@ -0,0 +1,21 @@ +/*! +Included icons were modified from https://lucide.dev +License reproduced from https://lucide.dev/license + +ISC License +Copyright (c) for portions of Lucide are held by Cole Bemis 2013-2022 as part of Feather (MIT). All other copyright (c) for Lucide are held by Lucide Contributors 2022. +Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. +*/ +@font-face { + font-family: 'TasksMonoEmojis'; + src: url('data:@file/octet-stream;base64,d09GMgABAAAAAA44AAsAAAAAHpAAAA3oAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHINuBmAAh04KpSifTQtSAAE2AiQDgSAEIAWEageCMBucGqOinJLCJPvrBCpyFqTdASEptM06uwu9Ql5BBQ+aeb7pbX3NqaRjffCXK4V2jpBk1v//tf/tM/7MRvS+uWPYV024ti8qq9NYhM4iayQRIiERIv0TEGtt3wzXkNwiQ+cbmq5BiniJhIJH2g+J6FKP53nu3bt/tBcm2PEokbBNgZdbRFncEG7r/Er8KOSdOpBPyhogP/iNMBKsxJFGbfJRGMk+ItGviPkVNairJf+eglf+mMVsUumlL+pdGtgS2Np7EZnAT3CJ9D++P8AyAMxXrdy/5j5tXq87kysAH6aAnl2dw5fdg91s/jXHvz9HnAMu0L8CsKyrZoWAFkiYjq+qMB1fWSkrjO5TnKEctt6ZKVT/37v9YdEqsxqvd9EMsT7hVfyUIEBelwnC/P7RK5SD4+46bBIAAAjCyhScFqagubotJUPRLinykufr8MGlQxeuvUb4BjxhRt1aItMZTBaBwibLYVwhg0HniJRpGM8saGOMAVTQjZ9g2kLBYsw8mYUzmOWOuKs8h8vm8WG0XCwt1CUHEpmAdN+gMjCc7rL0tkbZOLqQdyAKjbRrLHwWDiOKPDrX9ZHY0k0t9YEslWSnGNpWSK1wYjkii+bmaZJyD+VBQVWNlKsQxQ4xBFpOXovV/tlbXMNdqFKgiyRlQDFkVxDKFi7Z5vLgdNu4hBT9RqZKgDRVHwbUsPj04omVaLtAIMdCT+fZxu1Z/LYcSl0C39KVxF+FqHlHlgEi4CZAAnqGxT9DkttQlH8Ucb+Aq0pUNGXJpj0H3U/8lX/yn6SUJtKD/85/YMqMFdtA/16mkbqJSxqZHkN9jzgA58qWbHGsR10s4HFcPpd3HUoVFJWUVQT0j65rACVDWc3+T+hkrSjREbd7ju3DaLBCpIhvUSO6VZACpnzgZAZcMgttMgeMzEOLLEBEFiEhS6CTFYjJKgRkDTyyDg7ZAJtsgk+2wSA7YJJdsMgehORASWvxJxWFWvxFRbEWf1VRqsU/VZRr8R8VlVpJSUW1VppQUauVLqio10p3NGigr20tEPo51YKAfi+1IKLfKy1I6C+iBWT0V68FFPQ3qgVU9DeuBTT0N6EFcuj/RQt5ldp3fWjaQObCs9xhUGrLqEgB8EWiLI9ALJ0tgIQkIKBJJBCnn56E1eR3NEf8yM6nm1bp1a6nRXl8zBNno6LhWD1Wm1J5Om+USLuast/Gttt2uVyjpExi+dBR6tXscViIZg9szvkjRbiqpFvSI5xFadwdwbI7mVh9O53TWCgwApBU9+N2iM6aEV6njXnx6a6YALP6waP3L7Nz5vUr/taoL6LUPxgxB2EyGVqaCydpbI5ldbOtJQXJ/vj2Z8idfaLr01ufHP2A6KVn+LTEElH7w8lp3e8HPWMsAZNVCTnhq+KiWD6K8/nMnNU3BNNJ9zR+9tRz9uAiSOI0CkBxgdFT4hwohLaRKQXTiZTdGsg8Fq418H0KMQDqkCR6NtA4TN2c4kV7WpAq70ksaHp3XH3Q9th/7PaavaEApAuLBEQhvZviX6Ne5Lmt2Ak23F4u5dwTgilF4obro7Ccou3kmo6ZNABGoMGgH89YyxIkjlCp1OGCWSxxEj6oe6aj4Bj6Mhqz5naogh2XmrMmdAJTrz+GVq6+vPjx8ucLfX2W818VjSv5HXuexskeHAKNacFl5rf+4M20obpqVvn7HRh/8WnLOyz5Dd/X7T/8iv8x1H1nicW8nUcsKePSWbOyPCdepQzhrooFb6c/nT3A3gG6ZYrYjFFRlb2uu3dXLjbL2TfXn8t/eNVOyS1Ncg+RUmZjiV63XSGAnPfSKEgjvCDqZkoc5a9LRpeirWexz4+inM6ai2SPgxdJgu2qCAa8fr3cn2739LVm7nlN9L6MdmXPe7uCGY3NWY5o3coJH/VH2hLZjS8vH2m2X5LA2FAHSY9GNElS/ICRJqN3ke7Mklp4UXswj3IYFNWEOBQibxtcA0lC42Xoej2JlEgchpbe1XaMZv6RjEBje/rGRs3C+wyzQm8TH9m3M8PvWEmRQSg0C62jP+JOsFit3VG8iuw4dWf2zvLKo3EV5VyNq6ro7Gh3XVITPMamg1/V1s9jby1GIjSP6uH9wri8ffcXlvxOt9+vZ/ePEJ+JjFnG+iyXEOhMKNcjoaTsLs7rCju+bmNnSYldC6EBMJDVv8eKnxQVyaaHNAVS97IZDx9Ol7lCAtDhhkeOGAoSePrDR9OlLoQjuJ0QvTk1lRKUjvzddU8Jdu4UUCNLfyPgFk0JGeh46v9CkoTkyOI/I8uEFSHLlc96K/j5ugXdOlbl8xW9T/ffv0C7PLtPt/m6An95tGSluOn3u5/DHQl+wEtlU5DcA+Z77kdPvj6OPcRZ2W/SQ4m+3E/dfYSo25E+8/S3VLmL6Y70ksX7GKm4X94JaM72UacWSUFqX0ZX8/+zRXQh+8nETQNG9/8QAys94/vpibje928evNu8uif5CUSiBHQ5yXe8ZDxf1R+k8JbE9os3xYLf+7Z5ds/i0E6fs9b/uBMpdqUuVpLLPprkl97XBP26Y6BnZtEaiEBJSNMyq0piTFqeHRKcLX8hbyOzgyeEsJ0yISqUprUIS9sy+5Lo+0ZDFNRKtUImtJJ6ARGQk3JCJAgCHXNbc5791cpW5xMGc3H9KGfk0mmVYkpQsnlziYASdSRFpYJNm4UlIqpyWsTSUc7ieoM5n9ihlf1tzdkKVs0k0njJcF0dN5mXZppudEc5qxoTUnLixEpM+ViRzps13WRacHIUMzBrux1KPSNVvK9clKdc0OHEvx6KFih5KHcPN3xbkc2ocHmkR+KRnnNX4F4ayNk6sCdd/ak4JT+51t/Ja+oSdDGPyBqapEkzdG7mro+0I9q16d0OvPLpQJw+eN/fRKlx2WKtvnNRl5uKrXWBREBOn8ehN/AUjSlPlh5Uxirtlg9ZvNc3BGYHG7uVhj1hz0xnd6sKJWUlR1oqRo4VVLIPCWG653d1RckW/xqeEygmv+27lHUtvrNuuHqoSPm1yY0vb0Nv1TPD86+uPKdjWjV+03up+2gLLbSfjFFW4dAjbkQ/jRETY2db2Rb2A38l4mMGF3rZSCnaPtN6NqrdOL7oTcwCxU+1EaeQ8ztLD0AKXtK1sKtpqG04nvrF5caXe2rOaPYcz7cr96YwjNZvem91b22hmYZpuMxRgSHrpJij4n0UFO4NRL5zWVa3WCwR44gbwfOMGKI3GnEEc4/p8dleN/D5he2IfHQsi83KEHkaNzgVk6Y6gPpZCbIpJmhE6xGoNNbsAAa8SQYBda2XRZOWUW+JhZA+ZI8O5gSrWC6GnBbyoeyz/4wtP98C/SUg7zhVuRXcKrxDgQE5+BFk/yuDgpgpcohATZAcMqFEKKfnGDeG4K9fvX6NSdchGIfjnu09x83xcls5l64+zbJ0AWAKZhogN+52FEwTszIIwDtUkuKbawfOAp4FNqriHI7IqHlnupbsd5IjTmWELbyC4gu6aKzC0XJvxTBI08kp42Cjv6WgjVNCiko3byoVUGJyym0GSQqXn/c44WZxk678gje5Nx8jCqzCybZ0Spu7yUUOZq12u1zz9vTfsw6TYnxJsgHBWxkcwdbt7b933ionbOphhnFuN2KY3PP2DlBKYQjIcP0Sxafk+BBKwofTCpmgh4209aFp653puHvxXxWOklSUTIZPYRHviNUwb0tWD96wu8S1mwsHm1rSsBZOxgk32j7lgkgyqnOBC0nb71CanBsniB45MkYQd6zDCTc88uM4S8wIYv5q8CTavmihezYLIqBMiESpMd9zD9Azt4JCDlyLl/wuL+p6gKd41RdwP9FpaXcZJsK0M/O8ODtlgOzK8zEOKcUJ/6z39Nkao0cmaPzhn507Ho5gQMqi5ZlJur8G+YshP7Ju3GNUDZ3Ix8tcdGDQc6BYXs8R7fIxoQTIKr8zXtsV71I3vJ3s6jEx42urRVf/X7Sw+tZau5xOkcQHAQBqapwX67Awb6KLXZIz+toloFGDL1+fYQyGvLz5tHJzG9DF9bluOyufnbHm6ky4CENLXD2Z3+BBB4m7SRiZke2VeJLkBIAy2DAWt+cgl0MsNiYvWpShQVTxHKsmhzGzEVx/Tq+aMORBlpLACLdFvcvEGoArA5AXq9sQY7UrbviG6OTjCTddx5kV+U/r2vygmM1w408GGgGICUykchRRwjWEUDMj0zBqJS79eUVeu9Nm/EFUUg3tTxJmrgDIix9wNQVVf0RwBRUAOYmqysZPVKGDRGI/WUGfUCwy6Zd3w5MjFzQcEVG8HeL7SPwEZV+FCOSXkID89ZPp/vsp/EjeL+9NhO8UJJHzt4Hv4fHG+sbttY3lpZ3vHphSNKVR6IsQ1tTT0cWs8uLS0pvkQs9W2fwrCuj7qKliL+wbp0L1uK55hypCxsIrU3as9O0f27D+47htzYZlS3a8MGfBnlVTtnHTA+S+MWebfZY2DtOtQxce7sr1NEGn7JozmzvtCIPcfQt6jPq75sV8vOyGNcydPChSrIqzgdlki2UUM2h3WEyxbZtGdOo0P7A7zOQSI6CD0fQqZhFBqVJraGpp6+jq6RsYGqmpa2hq0RlMFpvD5fEFmLYQF4klUplrkb/dMa7wrv0pFI3POU2BFJH72mKqVzMkdZVLVeeZin7IEe2PA1lxZGiqJfSe9TkJFIqlzHGtkOqmkue2c9+HyVRSrDhD0n3Nlvvf7brpUnVOhqTOG5MIFiVKrRdXqECufEXs8hiVy2ZiY0YFAA==') format('woff2'); + unicode-range: U+1F194, U+1F3C1, U+1F4C5, U+1F4CD, U+1F501, U+1F517, U+1F53A, U+1F53C, U+1F53D, U+1F6EB, U+23E9, U+23EB, U+23EC, U+23F0, U+23F3, U+26D4, U+2705, U+274C, U+2795, U+F1589; + /* 🆔, 🏁, 📅, 📍, 🔁, 🔗, 🔺, 🔼, 🔽, 🛫, ⏩, ⏫, ⏬, ⏰, ⏳, ⛔, ✅, ❌, ➕, 󱖉 */ + /*! Generator: obsidian-tasks-custom-icons v1.0.4 https://github.com/obsidian-tasks-group/obsidian-tasks-custom-icons */ +} + +span.tasks-list-text, +.cm-line:has(.task-list-label) [class^=cm-list-] { + font-family: 'TasksMonoEmojis', var(--font-text); +} \ No newline at end of file diff --git a/.obsidian/snippets/Tracker.css b/.obsidian/snippets/Tracker.css new file mode 100644 index 00000000..7c4b484c --- /dev/null +++ b/.obsidian/snippets/Tracker.css @@ -0,0 +1,524 @@ +/* + Tracker + Tracker plugin styles and themed colours + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* chart display tweaks */ +.block-language-tracker { + + .tracker-legend { + stroke: none; + } + + .tracker-tick-label { + fill:var(--tx2); + } +} + +/* Duotone on hover effect */ +/* Light themes */ +.theme-light.minimal-default-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-atom-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-ayu-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-catppuccin-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-everforest-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-gruvbox-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-macos-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-nord-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-notion-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-rose-pine-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-solarized-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-things-light .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + + +/* Dark themes */ + +.theme-dark.minimal-default-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-atom-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-ayu-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-catppuccin-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); + /* removed .2 from light values text overlay legibility */ +} + +.theme-dark.minimal-dracula-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-everforest-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-gruvbox-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-macos-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-nord-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-notion-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-rose-pine-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-solarized-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-things-dark .block-language-tracker:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + diff --git a/.obsidian/snippets/[editor] Compact Right Sidebar notes.css b/.obsidian/snippets/[editor] Compact Right Sidebar notes.css new file mode 100644 index 00000000..4c559ab7 --- /dev/null +++ b/.obsidian/snippets/[editor] Compact Right Sidebar notes.css @@ -0,0 +1,556 @@ +/* + Compact Right sidebar notes (for reference) + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.mod-top-right-space { + /* Hide properties or filename */ + .mod-header { + display:none; + } + + /* TODO editing view */ + + /* Reading view */ + .markdown-reading-view { + + .markdown-preview-view { + --file-margins: 0; + } + + .markdown-rendered { + + :has( > :is(p,pre,table,ul,ol)) + div > :is(h1,h2,h3,h4,h5,h6) { + margin:0; + margin-block-start:1rem; + margin-block-end:0; + font-weight:700; + } + + :is(p) { + margin-block-start:.25rem; + margin-block-end:0; + } + + :is(li) { + margin-block-start:.25rem; + margin-block-end:0; + } + + :is(ol,ul) { + margin-block-start:1rem; + margin-block-end:1.5rem; + } + } + + + } +} + +/* Duotone hover */ + +/* Light themes */ +.theme-light.minimal-default-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-atom-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-ayu-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-catppuccin-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-everforest-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-gruvbox-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-macos-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-nord-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-notion-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-rose-pine-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-solarized-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-light.minimal-things-light .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + + +/* Dark themes */ + +.theme-dark.minimal-default-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-atom-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-ayu-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-catppuccin-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); + /* removed .2 from light values text overlay legibility */ +} + +.theme-dark.minimal-dracula-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-everforest-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-gruvbox-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-macos-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-nord-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-notion-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-rose-pine-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-solarized-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + +.theme-dark.minimal-things-dark .mod-top-right-space .markdown-reading-view:not(:hover) { + filter: url('data:image/svg+xml,\ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + #filter'); +} + diff --git a/.obsidian/snippets/[editor] Custom Tag styles.css b/.obsidian/snippets/[editor] Custom Tag styles.css new file mode 100644 index 00000000..2955524d --- /dev/null +++ b/.obsidian/snippets/[editor] Custom Tag styles.css @@ -0,0 +1,116 @@ +/* + Custom tag styles + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +:root { + --replete-tag-border: none; + --replete-tag-radius: 3px; +} + +/* --- Clean style tags --- */ +/* .cm-hashtag { + border-radius:0 !important; + border:var(--replete-tag-border); +} +.cm-hashtag-begin { + padding-left:var(--replete-tag-padding-horizontal) !important; + border:var(--replete-tag-border) !important; +} + +.cm-hashtag-end { + padding-right:var(--replete-tag-padding-horizontal) !important; + border:var(--replete-tag-border) !important; +} */ + +/* --- Box styling if tag is in a list --- */ +.HyperMD-list-line .cm-hashtag { + border:var(--replete-tag-border) !important; + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 20%), 0.3); + color:var(--tx4); + display: inline-block; + line-height:1em; + transform: translate(0,-2px); +} +.theme-dark .HyperMD-list-line .cm-hashtag { + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 40%), 0.4); +} + +/* Hide pound sign without breaking dropdown UI hook */ +.HyperMD-list-line .cm-hashtag-begin { + width:0; + visibility:hidden; + display:none; + font-size:10px; +} + +/* main hashtag styling */ +.HyperMD-list-line .cm-hashtag-end { + border:var(--replete-tag-border) !important; + border-radius: var(--replete-tag-radius) !important; + padding: 3px 3px 3px 4px !important; + text-transform: uppercase !important; + font-weight:600; + font-size:10px; + letter-spacing: 0.04em; +} + +/* alternate styles when line is active for editing */ +.HyperMD-list-line.cm-active .cm-hashtag-end { + text-transform:none !important; + font-weight:500 !important; + font-size:11px; + letter-spacing:normal; + border-top-left-radius:0 !important; + border-bottom-left-radius:0 !important; +} + +.HyperMD-list-line.cm-active .cm-hashtag-begin { + width:0.6em; + font-size:11px; + font-weight:500 !important; + visibility: visible; + display:inline-block; + border-top-left-radius: var(--replete-tag-radius); + border-bottom-left-radius: var(--replete-tag-radius); + padding: 3px !important; + opacity:0.8; +} + +/* Boxed style for Tasks dataviews */ +.plugin-tasks-list-item .tag { + border:var(--replete-tag-border) !important; + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 20%), 0.3); + border-radius: var(--replete-tag-radius) !important; + padding: 3px 2px 3px 2px !important; + text-transform: uppercase !important; + font-weight:600; + font-size:10px; + letter-spacing: 0.04em; + transform: translate(0,-2px); + display:inline-block; +} + .theme-dark .plugin-tasks-list-item .tag { + background-color: hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 40%), 0.4); + } + +/* GTD tags */ +.cm-tag-next { + color:var(--color-accent-1) !important; +} + +.cm-tag-someday { + color:var(--color-orange) !important; +} + +.cm-tag-waiting { + color:var(--color-pink) !important; +} + +.cm-tag-blocked { + color:var(--color-red) !important; +} + +.cm-tag-done { + color:var(--color-green) !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] Editor fixes.css b/.obsidian/snippets/[editor] Editor fixes.css new file mode 100644 index 00000000..377880d0 --- /dev/null +++ b/.obsidian/snippets/[editor] Editor fixes.css @@ -0,0 +1,27 @@ +/* + Editor fixes + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Make collapse icon less colorful */ +.cm-s-obsidian .collapse-indicator.collapse-icon svg{ + stroke: var(--tx2) +} + +/* Fix edit block alignment in gutter */ +.cm-s-obsidian .edit-block-button { + left: calc(max(calc(50% + var(--folding-offset) - var(--line-width-adaptive)/ 2),calc(50% + var(--folding-offset) - var(--max-width)/ 2)) - 30px )!important; +} +.markdown-source-view.mod-cm6.is-live-preview.is-readable-line-width .cm-embed-block>.edit-block-button { + opacity:1 !important; +} + +/* Make indentation guides less visible */ + +.cm-indent { + opacity:0.4 +} + +.theme-dark .cm-indent { + opacity: 0.5 +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] Frontmatter tweaks.css b/.obsidian/snippets/[editor] Frontmatter tweaks.css new file mode 100644 index 00000000..034785ff --- /dev/null +++ b/.obsidian/snippets/[editor] Frontmatter tweaks.css @@ -0,0 +1,39 @@ +/* + Frontmatter tweaks + Styling frontmatter in preview views is tricky, and the opinion I have is that I want frontmatter to be less prominent than the body of the note + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +:not(.is-live-preview) { + /* Editor: Override Syntax Highlighter Frontmatter styles */ + + .cm-s-obsidian .cm-line .cm-hmd-frontmatter.cm-atom { + color: var(--text-normal); + } + .cm-s-obsidian .cm-line .cm-hmd-frontmatter ~ .cm-hmd-frontmatter{ + color: var(--blockquote-color); + } +} + +.is-live-preview { + .cm-s-obsidian .cm-def:nth-of-type(1){ + /* both --- */ + /* font-size:50%; */ + } + .cm-s-obsidian .cm-line:nth-of-type(1) .cm-def { + /* first --- */ + /* background:blue; */ + color: var(--blockquote-color); + } + .cm-s-obsidian .cm-line:nth-of-type(1) ~.cm-line .cm-def { + /* last --- */ + color: var(--blockquote-color); + } + + .cm-s-obsidian .cm-hmd-frontmatter { + font-size:75%; + } + .cm-s-obsidian span.cm-meta { + /* opacity:0.5 */ + } +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] Mono Emojis everywhere.css b/.obsidian/snippets/[editor] Mono Emojis everywhere.css new file mode 100644 index 00000000..f80de12b --- /dev/null +++ b/.obsidian/snippets/[editor] Mono Emojis everywhere.css @@ -0,0 +1,8 @@ +/* + Monotone Emojis (override all) + Apply monotone emoji font to all editor instances + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +.cm-s-obsidian, .markdown-source-view, .markdown-source-view.mod-cm6 .cm-scroller { + font-family: var(--font-emojis), var(--font-text); +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] Table tweaks.css b/.obsidian/snippets/[editor] Table tweaks.css new file mode 100644 index 00000000..2a9866e4 --- /dev/null +++ b/.obsidian/snippets/[editor] Table tweaks.css @@ -0,0 +1,19 @@ +/* + Tables tweaks + WIP + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --table-border-color: var(--text-faint); +} + +/* Border color */ +.cm-s-obsidian .cm-table-widget th, +.cm-s-obsidian .cm-table-widget td{ + border-color: var(--table-border-color); +} + +/* Bold header row */ +.cm-s-obsidian .cm-table-widget th { + font-weight:bold; +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] Typography fixes.css b/.obsidian/snippets/[editor] Typography fixes.css new file mode 100644 index 00000000..0f510b7b --- /dev/null +++ b/.obsidian/snippets/[editor] Typography fixes.css @@ -0,0 +1,138 @@ +/* + Typography + WIP. Loosely following github markdown styles, but will change over time + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Markdown source view (not live preview) */ +.markdown-source-view:not(.is-live-preview) { + + /* Set source view to monospace font */ + font-family: JetBrains Mono,Menlo, Monaco, 'Courier New', monospace; + + /* Reset header font sizes */ + .cm-header { + font-size:1rem; + font-variant:normal; + } + + /* Fix footnote indent */ + .HyperMD-footnote { + font-size:inherit; + padding-left:0; + text-indent:0; + } + + .cm-inline-code { + font-size:inherit; + } + + /* Fix heading font-size */ + .cm-line[class*=HyperMD-header-] { + font-size:inherit; + line-height:inherit; + } +} + +.markdown-source-view.is-live-preview { + + /* unordered list item children alignment (to match checkbox size metrics) */ + .cm-formatting-list-ul { + + .list-bullet { + transform: translateX(-1px); + margin-right: 7px; + } + } + + /* unordered list item alignment and style */ + .cm-formatting-list-ol { + padding:0; + min-width:2rem !important; + display:inline-flex; + + .list-number { + text-align:center !important; + display:inline-flex; + font-size:0.85em; + text-align:center !important; + min-width:var(--checkbox-size) !important; + margin:0 auto; /* centered */ + } + } + + /* list and blockquote colors */ + .cm-s-obsidian .cm-formatting-quote { + color: var(--tx2) + } + + .cm-s-obsidian .cm-formatting-quote { + transform:translate(-3px,0); + display: inline-block; + } + + /* Headings */ + &.cm-s-obsidian { + --h1-size:2em !important; + --h2-size:1.5em !important; + --h3-size:1.25em !important; + --h3-weight:600 !important; + --h4-size:1em !important; + --h4-weight:600 !important; + --h4-variant: normal !important; + --h5-size:0.875em !important; + --h5-weight:600 !important; + --h5-variant: normal !important; + --h6-size:0.75em !important; + --h6-weight:600 !important; + --h6-variant: normal !important; + } + + /* Quotes */ + .HyperMD-quote { + display:block !important; + } + .HyperMD-quote::before { + opacity:0; + } + .HyperMD-quote::after { + content:''; + display:block; + background:var(--bg3); + width:1px; + height:100%; + position: absolute; + top:0; + left:0; + } + + .HyperMD-quote.cm-active { + border-color:transparent; + } + .HyperMD-quote.cm-active::after{ + display:none; + } + + .HyperMD-quote cite { + color:var(--tx3); + display: inline-block; + } + + /* fix is-flashing display */ + .cm-editor .is-flashing { + background:hsla(var(--base-h), var(--base-s), calc(var(--base-l) + 30%),0.5); + } + + + /* Footnote styles */ + .HyperMD-footnote { + color:var(--tx2); + padding-left:0 !important; + + .cm-hmd-internal-link > *{ + color:var(--tx2) !important; + text-decoration-color:var(--tx2) !important; + opacity:1 !important; + } + } +} \ No newline at end of file diff --git a/.obsidian/snippets/[editor] debug.css b/.obsidian/snippets/[editor] debug.css new file mode 100644 index 00000000..76600435 --- /dev/null +++ b/.obsidian/snippets/[editor] debug.css @@ -0,0 +1,7 @@ +.cm-line { + background:rgba(0,255,0,0.1); + box-shadow: inset 0 -2px 3px rgba(255,255,255,.2); + background-position:right !important; + background-image: repeating-linear-gradient(270deg, #00FFFF2E 0em, #073AFF00 9px); + /* FIX? */ +} \ No newline at end of file diff --git a/.obsidian/snippets/[font] Mono Emojis.css b/.obsidian/snippets/[font] Mono Emojis.css new file mode 100644 index 00000000..8734fa6d --- /dev/null +++ b/.obsidian/snippets/[font] Mono Emojis.css @@ -0,0 +1,1404 @@ +/* + Monotone Emojis (font) + Load custom emoji font + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +:root { + --font-emojis: 'ObsidianMonoEmojis'; +} + +@font-face { + font-family: 'ObsidianMonoEmojis'; + font-style: normal; + font-weight: 400; + + /* https://fonts.google.com/noto/specimen/Noto+Emoji */ + /* https://github.com/googlefonts/noto-emoji */ + /* src file: https://github.com/zjaco13/Noto-Emoji-Monochrome/tree/main/fonts (I had issues with other versions) */ + + src: url('data:font/ttf;charset=utf-8;base64,AAEAAAARAQAABAAQRkZUTZK6kj8ADYoAAAAAHEdERUY4bjpUAAzViAAAAihHUE9TRHZMdQANieAAAAAgR1NVQiECQ/AADNewAACyLk9TLzJguQtbAAABmAAAAGBjbWFwm7gAlAAAHBwAAAv+Z2FzcAAAAAsADNWAAAAACGdseWaDCawsAABFbAAMLOhoZWFkJn617gAAARwAAAA2aGhlYRGHDfMAAAFUAAAAJGhtdHiWwnWTAAAB+AAAGiJsb2NhMdTfSAAAKBwAAB1QbWF4cAfNCzoAAAF4AAAAIG5hbWW7V68HAAxyVAAACQZwb3N0nlPXngAMe1wAAFojdmhlYQuUGT0ADYocAAAAJHZtdHhjFi/PAA2KQAAADq4AAQAAAAIAQjLvTjlfDzz1ACsIAAAAAADd1TVnAAAAAN9BNc8AD/5hChkHFwAAAAgAAgABAAAAAAABAAAHbP4MAAAKKAAAAAAKGQABAAAAAAAAAAAAAAAAAAAFvgABAAAHUwmvAGIBiAATAAEAAAAAAAAAAAAAAAAABAACAAQKJgGQAAUAAAUzBZkAAAEeBTMFmQAAA9cAZgISDA8FAgEDAQICAgICgAAAAwJB5KwUAAAABAAAAEdPT0cAQAAA//8HbP4MAAAHbAH0AAAAAQAAAAAAAAdsAAAAIAAJA+gAaASwAAAEsAAACigAAAooAzgKKANUCigDmAooBD8KKAOaCigDnAooA2sKKAOqCigDnAooA5QKKAOZCigDnQooAQQKKAEEAAAAAAooArwKKAGGCigBBAooAPAKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAHWCigCgAooAKkKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAZAKKAGaCigBCgooAoAKKAEECigBBAooAQQKKAEECigD8gooA/IKKAEECigBBAooAe8KKAHvCigC8wooAvMKKAEICigAhAooAP0KKAHWCigBNgooAEEKKAEECigA/QooAV4KKAEsCigCTwooAP4KKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAKACigBEwooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAooKKAFyCigBLAooALQKKAISCigA5gooAK8KKAEECigBBAooAIwKKAE7CigA5gooAg0KKAC+CigA7gooAQQKKAEECigBQAooAQ4KKAHWCigBLAooAQQKKAEECigBKgooAqMKKAEECigBBAooAeoKKABmCigA4gooAQQKKAEdCigBDgooAdYKKAEECigAeAooAdYKKABaCigAqAooAY0KKAEeCigAeAooAWYKKAEECigA5gooATEKKABYCigBGAooAUAKKAEECigBBAooALoKKAFACigB2gooAk8KKAEUCigA4wooAP8KKAD6CigBTgooAQQKKAEECigAZAooAQ4KKAEOCigBbAooAQQKKAEiCigBBAooAsYKKAK3CigEJAooBC4KKAHMCigAqgooAWgKKAFoCigBaAooAQQKKAFyCigAjAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKADVCigBBAooAQ4KKADSCigBBAooAQQAAAAAAAAAAAooAjsKKAImCigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigChgooAxUKKALrCigCygooA3sKKAN7CigCtQooAuUKKAQMCigECQooAv0KKAN4CigCOgooAtAKKAJxCigDQAooAnEKKAMKCigDRgooAvAKKALgCigCrQooAXUKKALECigC0AooAxkKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAFGCigBBAooAPAKKADKCigBBAooAQQKKADKCigAygooAMQKKAEECigA1QooAW4KKAEECigBBAooAQQKKAEECigBCQooARMKKAETCigBEwooARMKKAETCigBEwooARMKKAETCigA8AooARMKKAFCCigBVAooARMKKAEFCigBMgooAQQKKANDCigAkwooAOIKKAHRCigA4gooAOIKKADsCigBSAooAQQKKABYCigAngooAGsKKAEWCigAtAooAKIKKAFiCigBbgooAZ8KKAF8CigAzQooAiIKKAC0CigCYgooANAKKAHMCigA2AooAPgKKACCCigA0AooAcwKKAFWCigAjAooAmQKKAFFCigAtAooAMoKKAGCCigBiAooAPIKKAEACigA2gooAXkKKALGCigBSgooAUoKKAIeCigA3AooAegKKAF4CigBEwooAaoKKAFLCigBKgooAVEKKADTCigA+gooAHQKKADVCigBFAooAQkKKAHGCigBWwooAQQKKAEICigBDgooAGMKKAEHCigCwAooAVkKKAIICigAwgooAPAKKAEOCigAqAooAPIKKACKCigB9gooAWoKKACwCigAOQooAbIKKAM2CigCugooAhoKKAMWCigBqQooAo4KKAH+CigAbgooAQQKKABmCigBHAooAagKKACxCigBSwooAcwKKAD8CigBYgooAbMKKAEECigBBAooAnoKKAEmCigBOAooAPsKKAB6CigCngooAIAKKACaCigB8QooAQQKKAEECigAXwooAqAKKAHjCigCZwooAlgKKAEECigBTwooAJYKKAEOCigBRwooAOIKKAEiCigBBAooAOYKKAEECigBYwooALQKKABkCigBOwooAKoKKAEsCigAZAooAMMKKADSCigAzAooAQQKKAE7CigBYwooAhIKKAGfCigAngooALwKKAD6CigBDgooANwKKADcCigBDgooAeoKKAEdCigAtAooAQQKKAEVCigBkAooAR0KKAFWCigCgAooAOEKKADMCigBIgooARgKKADDCigAggooAfQKKAAqCigAeAooANwKKAEECigBDgooANcKKAGVCigAWgooAOYKKAFACigARgooAEYKKADKCigA9AooAQgKKAEECigBkAooAQQKKAEMCigA9AooAPIKKACVCigAZwooANkKKAD5CigBCAooAQQKKAB1CigAdQooARIKKABpCigAQAooALAKKAJYCigBDgooAQkKKAFlCigBZQooAPUKKADpCigA+gooARgKKAKKCigBBAooAQQKKAEECigBBAooAQQKKABQCigA7QooAJsKKABUCigAMgooAF8KKABVCigBugooAUAKKAGDCigBkAooAH0KKACWCigA5gooAGkKKACgCigCCwooAR8KKAEUCigBbgooAQQKKAFbCigAoAooAPMKKABuCigAUAooAOoKKAFPCigAbgooAKYKKADtCigASAooAOAKKABuCigAggooAM4KKADDCigAwwooAFgKKAJdCigAOQooAV4KKACqCigAqgooATYKKACwCigAxgooAQQKKAHwCigAoAooAHAKKABsCigBPgooAIcKKABuCigAvgooAJYKKAD6CigBFQooAPoKKACcCigAhQooAUkKKABkCigAbgooAIwKKAJJCigByQooAI8KKADACigB9AooAfQKKABeCigAXgooANwKKAETCigCOAooAWgKKAFoCigBTwooAF4KKACCCigAXwooAIcKKAETCigAfQooAtoKKAHRCigBBAooAhcKKACWCigA4QooASIKKAA+CigBDgooAQQKKAE7CigBGAooAiYKKAEsCigBmgooAHMKKAHRCigA0gooAk4KKAHHCigANwooAFAKKABQCigAUAooAj8KKAJTCigBMQooAaQKKAI/CigCCAooAgMKKAFoCigChwooAfQKKAHgCigBGAooAS4KKAFUCigA0gooAUoKKABaCigAvgooAbQKKAGQCigCVgooAhIKKAKACigA8AooAMgKKACRCigDFgooAU0KKAEECigBGAooALQKKAHdCigAbgooAEsKKAEiCigARgooAJAKKACqCigAqgooAQQKKACqCigA9QooAQQKKACqCigAqgooAKoKKACqCigApQooAPUKKAEECigBBAooAnAKKAEOCigBswooAUAKKADcCigBJwooAmwKKACHCigBGAooAQQKKAEsCigBlQooARIKKAD0CigA5gooAXwKKAGLCigDLQooALkKKAB4CigAeAooAHgKKAB4CigAfAooAQQKKAHlCigAtwooAIIKKAEECigBAgooAQQKKAEECigAxgooAGoKKAE7CigB4AooATYKKAD1CigAhwooAQQKKAEECigBBAooAhoKKAEICigDCQooALAKKAECCigA+AooAYEKKAGZCigBuAooAbgKKAG4CigAbgooAbgKKAG4CigBuAooAPoKKAEYCigA1gooAN4KKAEECigBDgooAMoKKAFKCigA3AooAHMKKAE2CigBNgooAV4KKAC5CigAnQooAZQKKADgCigBBwooAQkKKADhCigB4gooAM0KKADhCigCqAooARkKKAE7CigBBAooAQ4KKAEECigAoAooAKAKKAClCigArwooAEsKKAC0CigAyAooABQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBDgooAQwKKADwCigA3AooAvgKKAD/CigA9QooAPUKKAEpCigBDgooAPsKKAJECigCRAooARgKKAEOCigA6gooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEOCigBBAooAQQKKAEECigBBAooAQQKKAEECigB9AooAQYKKAEdCigA2wooAQEKKADUCigATgooAX8KKACWCigBzAooAQQKKAGVCigBOwooAQQKKAEECigBBAooAQQKKAEOCigBDgooA8AKKAPACigCsQooArEKKAEECigBBAooAQQKKAB8CigA8AooAOIKKAFtCigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooA1cKKACbCigA+gooA8oKKADhCigAggooAFoKKAF4CigBcgooAhIKKAE7CigBCwooAQoKKAC6CigBBAooAYkKKAJGCigBiAooAKoKKAFACigBCQooAmEKKAEyCigA+gooAPUKKAEECigBGwooAWMKKAHCCigA5gooAf4KKADPCigApQooAQAKKAEECigBlQooAPAKKAEJCigAVwooADIKKAJ+CigBaAooAQQKKAIcCigBBAooAQQKKAA8CigBBAooAQQKKADBCigBBAooAUUKKAC+CigBBAooAQQKKAEECigBBAooAQQKKADoCigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigAxAooAPAKKAEECigBBAooAQQKKAEECigA6wooAQQKKAEECigBBAooAQQKKAEECigA5gooAHwKKAEECigBBAooAP4KKAEECigBBAooAQQKKACgCigAoAooAKAKKACgCigAoAooAKAKKACgCigAoAooAKAKKAEECigBBAooAQQKKAEECigAfwooALkKKAA8CigAUAooAFoKKADGCigB0QooAHoKKAC5CigAfwooATYKKAEiCigAVgooALwKKAB4CigBBAooAQoKKAIICigBBgooAPwKKADGCigBMwooAQ4KKAB/CigAqgooAPIKKAFuCigAUAooAFoKKABcCigASQooAMAKKABVCigBEwooAJ0KKABuCigAZAooAGwKKACCCigASgooAQYKKAEECigA8AooARoKKAEOCigAugooAIcKKABKCigAPAooAyoKKADzCigBQwooARIKKALICigBBAooAPUKKAEOCigBBAooAQ4KKAEECigBDgooAH8KKAEOCigBVAooAJAKKALNCigBDgooAQQKKAEECigBBAooAQQKKAEECigCEgooAQQKKADcCigA/wooAO8KKAEECigBBAooAQQKKAEECigA0gooAJsKKAEsCigA1gooAJsKKAEECigA/wooAUAKKAHjCigAugooAQQKKAEECigBZwooAQQKKAEECigArwooAbMKKAJMCigBBAooAQQKKABVCigAZAooAGQKKADSCigA6wooAPMKKAEiCigAyAooAFoKKABaCigBCgooAGMKKABuCigAPgooANQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAEECigBBAooAQQKKAE2CigBfAooAKoKKACqCigAzgooAPIKKAEECigA1wooAPAKKADxCigBBAooAOYKKABLCigCLAooATYKKAIVCigAwwooAMYKKACqCigCTwooAUIKKAEiCigAlgooAQQKKAD6CigBBAooAMcKKADUCigA2AooAQQKKAEECigBBAooARgKKAEECigBBAooAQQKKADwCigCWAooAjgKKADICigBcgooAeAKKAJJCigBswooAE4KKAETCigBqQooANwKKADSCigA3AooAhwKKAETCigBkwooATYKKADOCigBsgooAQQKKABQCigCgAooAoAKKAKACigCPwooANIKKABaCigAzQooAQQKKAGLCigA1wooAQ4KKAEOCigAaQooAKoKKADWCigBOAooAIwKKAE2CigBCgooAgAKKAKVCigAuQooAQ8KKAEgCigBDAooASUKKAEvCigA6gooAKMKKAJGCigBDgooAQoKKAC0CigAZAooANIKKACWCigCpAooAZoKKADqCigBIgooAFoKKABzCigBBAooAQQKKAEECigBBAooAH0KKABaCigBGAooAPoKKAEECigBBAooAcwKKAFACigApQooAKAKKADcCigAjAooAXgKKAEsCigA6wooARMKKAEoCigBdAooAFoKKADICigB/gooANoKKACCCigCLAooAZoKKAGWCigAYAooAEYKKADyCigBnwooARMKKABBCigBCQooAF8KKACJCigAngooAQoKKAEWCigAKAooAWQKKAArCigBegooAHoKKAEYCigAPAooAH4KKACwCigBEQooAQ8KKAA6CigA7AooAV4KKAGQCigBAAooAOYKKAC0CigAdgooAK8KKAEECigBBAooAQQKKAEECigBBAooAP8KKAFACigBDgooAf4KKAB4CigAjAooAZAKKAG9CigBxQooAKIKKAEECigCIwooAMsKKAHWCigClQooAn0KKAHRCigBgAooAGoKKABECigATQooAgMKKAEMCigCZwooANIKKALGCigCigooAFoKKAEECigBqQooAeoKKAGkCigBqQooAjAKKAGkCigCCgooAYQKKADACigAZAooAH0KKADDCigBWQooAK8KKAGpCigAqAooAKoKKACvCigCMAooADwKKABLCigBJwooAecKKAB4CigBJwooAFgKKABuCigCwgooAOIKKACqCigDGwooANYKKAD6CigBLAooAdkKKAKoCigCHAooAV4KKAD4CigBiwooAOgKKAD/CigCAAooALkKKAC6CigBLAooAQQKKAEiCigCqAooAPAKKADNCigC2gooAKoKKACqCigAqgooAmwKKAEECigBAgooAQYKKAEJCigBNAooAMgKKAEiCigA5gooAQQKKAEECigBkAooAIIKKAEeCigAcAooAnUKKAFiCigBAAooASwKKADcCigAtAooAQ4KKAFACigBSgooAOcKKAD2CigCsgooAjoKKAFUCigBOAooAP8KKAEICigCqAooARAKKAC2CigBCwooAaYKKAG4CigAwwooANwKKACMCigC+AooAZkKKACCCigBDgooAQQKKAGQCigAOgooAP0KKADsCigAdAooAeAKKAFCCigA5gooAL4KKADKCigAygooAsEKKAJECigAggooAbgKKAHlCigAWgooATYKKAJYCigCWAooAeAKKAC0CigAlgooAOYKKAIQCigAtgooATwKKADrCigApwooAGYKKAGFCigAwwooAjAKKAEOCigA9wooAaAKKADjCigBBAooAKoKKAEECigA/wooAGIKKADTCigAMgooAf4KKADXCigA1wooAQ4KKADXCigA8gooAIIKKAGQCigBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKAB8AHwAfAB8AHwAfAB8AHwAfAB8AQQBBAEEAQQBBAEEAQQBBAEEAQQBBABYASwBzACqAGYAvgBaAIIAvgGrAU0AmwBuANIAeAI4Af8CEgHkAj0BVAD/ANkAZAB4ANIBJwBuAKAAzQETAQQDxwQMA8oDxwPeA84DjgOOA2IDjgKUAZoCgAGEAXIBGAAyARgAHgAPARsARgEbADcAIwKUAZoCgAGGAXcBGwBGARsAMgAjAk4CFwJOAhcAUAJTAUwBqQGkAccBkAHHAZABBAVtBaYFdAWMBc4FxQVlBcEGJQXdBZYGAwU0BY0FVgW1BUwFsgXGBa8FlwVmBNwFdQWGBcMCNgKQAi8CbQKuAq8CGQKGAr0CmAKUAtECOwKKAlACqwJQAoECswJ4AoYCZwHmAnYCaAJ6AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AHwAfAB8AAAAAAAFAAAAAwAAACwAAAAEAAADRAABAAAAAAr4AAMAAQAAACwAAwAKAAADRAAEAxgAAADCAIAABgBCAAAADQAgACMAKgA5AKkAriANIDwgSSDjISIhOSGZIaojGyMoI88j8yP6JMIlqyW2JcAl/iYEJg4mESYVJhgmHSYgJiMmJiYqJi8mOiZAJkImUyZgJmMmZiZoJnsmfyaXJpkmnCahJqcmqyaxJr4mxSbIJs8m0SbUJuom9Sb6Jv0nAicFJw0nDycSJxQnFicdJyEnKCc0J0QnRydMJ04nVSdXJ2QnlyehJ7Anvyk1KwcrHCtQK1UwMDA9Mpcymf4P//8AAAAAAA0AIAAjACoAMACpAK4gDSA8IEkg4yEiITkhlCGpIxojKCPPI+kj+CTCJaoltiXAJfsmACYOJhEmFCYYJh0mICYiJiYmKiYuJjgmQCZCJkgmXyZjJmUmaCZ7Jn4mkiaZJpsmoCanJqomsCa9JsQmyCbOJtEm0ybpJvAm9yb9JwInBScIJw8nEicUJxYnHSchJygnMydEJ0cnTCdOJ1MnVydjJ5UnoSewJ78pNCsFKxsrUCtVMDAwPTKXMpn+Dv//AAH/9f/j/+H/2//W/2f/Y+AF39ffy98y3vTe3t6E3nXdBtz63FTcO9w323Daidp/2nbaPNo72jLaMNou2izaKNom2iXaI9og2h3aFdoQ2g/aCtn/2f3Z/Nn72enZ59nV2dTZ09nQ2cvZydnF2brZtdmz2a7Zrdms2ZjZk9mS2ZDZjNmK2YjZh9mF2YTZg9l92XrZdNlq2VvZWdlV2VTZUNlP2UTZFNkL2P3Y79d71azVmdVm1WLQiNB8ziPOIgKuAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAe0AAAAAAAAAKMAAAAAAAAAAAAAAAEAAAANAAAADQAAAAIAAAAgAAAAIAAAAAMAAAAjAAAAIwAAAAQAAAAqAAAAKgAAAAUAAAAwAAAAOQAAAAYAAACpAAAAqQAAABAAAACuAAAArgAAABEAACANAAAgDQAAABIAACA8AAAgPAAAABMAACBJAAAgSQAAABQAACDjAAAg4wAAABUAACEiAAAhIgAAABYAACE5AAAhOQAAABcAACGUAAAhmQAAABgAACGpAAAhqgAAAB4AACMaAAAjGwAAACAAACMoAAAjKAAAACIAACPPAAAjzwAAACMAACPpAAAj8wAAACQAACP4AAAj+gAAAC8AACTCAAAkwgAAADIAACWqAAAlqwAAADMAACW2AAAltgAAADUAACXAAAAlwAAAADYAACX7AAAl/gAAADcAACYAAAAmBAAAADsAACYOAAAmDgAAAEAAACYRAAAmEQAAAEEAACYUAAAmFQAAAEIAACYYAAAmGAAAAEQAACYdAAAmHQAAAEUAACYgAAAmIAAAAEYAACYiAAAmIwAAAEcAACYmAAAmJgAAAEkAACYqAAAmKgAAAEoAACYuAAAmLwAAAEsAACY4AAAmOgAAAE0AACZAAAAmQAAAAFAAACZCAAAmQgAAAFEAACZIAAAmUwAAAFIAACZfAAAmYAAAAF4AACZjAAAmYwAAAGAAACZlAAAmZgAAAGEAACZoAAAmaAAAAGMAACZ7AAAmewAAAGQAACZ+AAAmfwAAAGUAACaSAAAmlwAAAGcAACaZAAAmmQAAAG0AACabAAAmnAAAAG4AACagAAAmoQAAAHAAACanAAAmpwAAAHIAACaqAAAmqwAAAHMAACawAAAmsQAAAHUAACa9AAAmvgAAAHcAACbEAAAmxQAAAHkAACbIAAAmyAAAAHsAACbOAAAmzwAAAHwAACbRAAAm0QAAAH4AACbTAAAm1AAAAH8AACbpAAAm6gAAAIEAACbwAAAm9QAAAIMAACb3AAAm+gAAAIkAACb9AAAm/QAAAI0AACcCAAAnAgAAAI4AACcFAAAnBQAAAI8AACcIAAAnDQAAAJAAACcPAAAnDwAAAJYAACcSAAAnEgAAAJcAACcUAAAnFAAAAJgAACcWAAAnFgAAAJkAACcdAAAnHQAAAJoAACchAAAnIQAAAJsAACcoAAAnKAAAAJwAACczAAAnNAAAAJ0AACdEAAAnRAAAAJ8AACdHAAAnRwAAAKAAACdMAAAnTAAAAKEAACdOAAAnTgAAAKIAACdTAAAnVQAAAKMAACdXAAAnVwAAAKYAACdjAAAnZAAAAKcAACeVAAAnlwAAAKkAACehAAAnoQAAAKwAACewAAAnsAAAAK0AACe/AAAnvwAAAK4AACk0AAApNQAAAK8AACsFAAArBwAAALEAACsbAAArHAAAALQAACtQAAArUAAAALYAACtVAAArVQAAALcAADAwAAAwMAAAALgAADA9AAAwPQAAALkAADKXAAAylwAAALoAADKZAAAymQAAALsAAP4OAAD+DwAAALwAAfAEAAHwBAAAAL4AAfDPAAHwzwAAAL8AAfFwAAHxcQAAAMAAAfF+AAHxfwAAAMIAAfGOAAHxjgAAAMQAAfGRAAHxmgAAAMUAAfHmAAHx/wAAAM8AAfIBAAHyAgAAAOkAAfIaAAHyGgAAAOsAAfIvAAHyLwAAAOwAAfIyAAHyOgAAAO0AAfJQAAHyUQAAAPYAAfMAAAHzIQAAAPgAAfMkAAHzkwAAARoAAfOWAAHzlwAAAYoAAfOZAAHzmwAAAYwAAfOeAAHz8AAAAY8AAfPzAAHz9QAAAeIAAfP3AAH0/QAAAeUAAfT/AAH1PQAAAuwAAfVJAAH1TgAAAysAAfVQAAH1ZwAAAzEAAfVvAAH1cAAAA0kAAfVzAAH1egAAA0sAAfWHAAH1hwAAA1MAAfWKAAH1jQAAA1QAAfWQAAH1kAAAA1gAAfWVAAH1lgAAA1kAAfWkAAH1pQAAA1sAAfWoAAH1qAAAA10AAfWxAAH1sgAAA14AAfW8AAH1vAAAA2AAAfXCAAH1xAAAA2EAAfXRAAH10wAAA2QAAfXcAAH13gAAA2cAAfXhAAH14QAAA2oAAfXjAAH14wAAA2sAAfXoAAH16AAAA2wAAfXvAAH17wAAA20AAfXzAAH18wAAA24AAfX6AAH2TwAAA28AAfaAAAH2xQAAA8UAAfbLAAH20gAABAsAAfbVAAH21wAABBMAAfbcAAH25QAABBYAAfbpAAH26QAABCAAAfbrAAH27AAABCEAAfbwAAH28AAABCMAAfbzAAH2/AAABCQAAffgAAH36wAABC4AAffwAAH38AAABDoAAfkMAAH5OgAABDsAAfk8AAH5RQAABGoAAflHAAH5/wAABHQAAfpwAAH6fAAABS0AAfqAAAH6iAAABToAAfqQAAH6vQAABUMAAfq/AAH6xQAABXEAAfrOAAH62wAABXgAAfrgAAH66AAABYYAAfrwAAH6+AAABY8ADgAwAA4AOQAABZgADgBhAA4AegAABaIADgB/AA4AfwAABbwAD+TlAA/k7gAABb0AD+gsAA/oLAAABccAD+guAA/oNwAABcgAAAEGAAABAAAAAAAAAAECAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAMAAAQAAAAAAAAFAAAAAAAGBwgJCgsMDQ4PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAREBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAAACgAAAAoAAAAKAAAAJQAAADcAAABPAAAAXAAAAHQAAACTAAAApwAAAMAAAADhAAAA6gAAARMAAAE0AAABbgAAAaQAAAGkAAABxgAAAfsAAAIgAAACOwAAAlUAAAJtAAAChQAAApsAAAKxAAACxwAAAt0AAAL8AAADGwAAA60AAAQbAAAFMgAABUcAAAVeAAAFdAAABYoAAAWgAAAFugAABdQAAAXtAAAGkAAAByMAAAfHAAAIOQAACE4AAAhgAAAIegAACKUAAAjSAAAI6wAACP0AAAkPAAAJKAAACWUAAAl+AAAJrAAAChoAAAphAAAKvwAAC24AAAu6AAAMsQAADN0AAA1qAAAN9AAADlgAAA6/AAAPsAAAD/oAABCPAAAQsQAAEOMAABEbAAARaQAAEewAABIxAAASrQAAEs8AABL0AAATJAAAE10AABOZAAAT7AAAFDoAABR+AAAUsgAAFOkAABURAAAVVwAAFc4AABYAAAAWfgAAFqoAABbYAAAW7wAAFwkAABdPAAAXxAAAF/kAABhDAAAY0wAAGW4AABpnAAAatwAAG6UAABxTAAAcxAAAHZUAAB49AAAebQAAHpcAAB7KAAAfAgAAH00AAB97AAAf9gAAIJwAACFdAAAhzQAAIkEAACKmAAAi6gAAIzgAACOvAAAkwQAAJOIAACV2AAAl3QAAJmEAACa+AAAnmwAAJ+YAACi1AAApDQAAKXcAACouAAAqnQAAKyMAACvUAAAsWgAALHsAAC0RAAAtKQAALacAAC31AAAuYwAALtYAAC9LAAAvtAAAL8wAAC/cAAAv8wAAMCYAADCeAAAxCwAAMTsAADJ6AAAzOwAAM2EAADOPAAAztAAAM/YAADQUAAA0JwAANF8AADSiAAA0rwAANLYAADTUAAA06QAANRQAADVSAAA1cQAANY8AADWkAAA1uQAANc4AADYLAAA2JAAANl4AADaBAAA2qgAANusAADc6AAA3pwAAN6cAADenAAA4MQAAOQsAADkqAAA5UwAAOXkAADmXAAA5zAAAOfIAADo2AAA6agAAOokAADrHAAA69wAAOyIAADtzAAA7qAAAO94AADvyAAA8EAAAPCkAADw+AAA8SgAAPFUAADxxAAA8fQAAPIkAADyZAAA8qQAAPLEAADzHAAA82AAAPPQAAD0IAAA9KQAAPT8AAD1iAAA9awAAPXwAAD2NAAA9sQAAPcAAAD3MAAA92AAAPhAAAD5EAAA+lwAAPuAAAD89AAA/cgAAP54AAD/rAABAIQAAQE8AAEB2AABAtAAAQO0AAEFAAABBcAAAQa8AAEJLAABCuAAAQ44AAERCAABE6AAARdIAAEaxAABHDgAASAAAAEhVAABJOwAASpUAAEwJAABM4wAATnsAAE7nAABO/QAATzUAAE9qAABPogAAT8kAAFABAABQNgAAUG8AAFCbAABQ+wAAUV0AAFG/AABSHwAAUnQAAFLiAABTbgAAU6YAAFQkAABUkgAAVRgAAFV0AABV5QAAVisAAFbVAABXMgAAWAkAAFiMAABZLwAAWeoAAFo2AABakgAAW2cAAFvIAABcWQAAXaMAAF4EAABeagAAXwQAAF+yAABg8gAAYboAAGL5AABjzQAAZKMAAGVtAABl3QAAZosAAGddAABnrwAAaBwAAGiXAABo4QAAab8AAGqhAABrHwAAa4kAAGvvAABshAAAbTIAAG1ZAABtoAAAbgYAAG5LAABuvAAAb2QAAHArAABw0AAAcWIAAHHEAABySgAAcsIAAHNHAAB0LgAAdN8AAHXIAAB1+gAAdo0AAHbtAAB3VwAAd/0AAHjDAAB5uAAAej0AAHq+AAB7fgAAfEIAAHzKAAB9gQAAfccAAH5LAAB+pAAAfwUAAH95AACAHwAAgaUAAII9AACChgAAgsMAAIMwAACDngAAg/gAAIRwAACFAgAAhZYAAIazAACHVAAAh8MAAIhVAACJQQAAibkAAIpWAACLHAAAi+QAAI13AACN6gAAj20AAJABAACQZgAAkTQAAJICAACSggAAkvMAAJO2AACU7gAAlpUAAJdLAACYOwAAmPAAAJk+AACZzAAAmh4AAJq2AACbDQAAm7UAAJvyAACcOwAAnZAAAJ6DAACfUgAAoCMAAKBqAAChKgAAoVoAAKIZAACi1AAAo0YAAKREAACklAAApOAAAKXCAACmcgAApugAAKekAACoCAAAqJEAAKlmAACplQAAqasAAKnoAACqhAAAq0YAAKuLAACsPAAArWMAAK3DAACuMAAArs0AAK+bAACwBgAAsJsAALE5AACxfwAAsjsAALKQAACzMgAAtNQAALV8AAC2CAAAtoEAALbiAAC3OAAAuEwAALjmAAC5PwAAucYAALokAAC6dwAAuuoAALuYAAC8nAAAvT4AAL30AAC+vQAAv5QAAMB8AADBAQAAwl8AAMNPAADEZwAAxUQAAMXPAADGugAAxysAAMeSAADIFQAAyHEAAMkWAADJPgAAycQAAMpfAADKrQAAyzMAAMwFAADMwAAAzTwAAM+bAADQTQAA0JAAANC6AADSIgAA0k8AANLmAADTPAAA080AANS8AADVvQAA1gUAANZyAADWrwAA13EAANgrAADZMgAA2g8AANsSAADcUwAA3Z8AAN5tAADfcAAA4RAAAOIzAADi6QAA47cAAORAAADlVwAA5jAAAOcQAADn3gAA6PgAAOm0AADqNQAA6ycAAOvZAADstgAA7a0AAO8rAADvrwAA8IAAAPETAADxyQAA8oMAAPLmAADzfAAA9CYAAPThAAD1YQAA9bYAAPYqAAD2pAAA9ygAAPfSAAD5DgAA+hkAAPtIAAD75gAA/I8AAP07AAD+YwAA/zEAAP/pAAEBAwABAfUAAQKBAAEDKgABA6cAAQQ+AAEEwQABBY8AAQZ7AAEG2wABB2wAAQezAAEIFQABCQMAAQljAAEJqgABCgUAAQpEAAEKqQABCt4AAQsnAAELcAABC74AAQwMAAEMjwABDQsAAQ1+AAEOBAABDooAAQ8tAAEP4wABEKgAARFNAAERkgABEi8AARKOAAETBgABE3sAART4AAEWCQABFoMAARbyAAEXlgABF+EAARhaAAEY8gABGUkAARmfAAEaFQABGokAARq+AAEbCQABG34AARwhAAEcdAABHMgAARzTAAEc1wABHNsAARzfAAEdeAABHfgAAR7LAAEfaQABH9cAASBLAAEgvgABIW8AASH0AAEibAABInAAASO9AAEkjwABJSQAASYMAAEmVQABJqkAAScVAAEnlQABKAoAAShhAAEpRQABKYMAASoEAAEqwAABK5UAASvsAAEsOgABLGoAAS0hAAEtZwABLbYAAS3tAAEuegABLz8AAS+/AAEw8wABMXIAATGnAAEx6wABMmQAATLFAAEzMQABM3cAATPEAAE1xQABNhMAATaDAAE26QABNwoAATeYAAE4WQABOLYAATkfAAE5QQABOYMAATn/AAE6KwABOr0AATsTAAE7jAABPAYAATxMAAE8rwABPYwAAT4KAAE+hQABPtIAAT76AAE/XwABP64AAUAIAAFAZAABQLsAAUIhAAFCVQABQu0AAUNoAAFDwAABRAUAAUQrAAFEcQABRKQAAUTCAAFE4AABRQwAAUUvAAFFkQABRgIAAUaUAAFGzAABRwQAAUcsAAFHYwABR7UAAUfsAAFIXwABSI4AAUjBAAFI9AABSYwAAVDQAAFRJAABUWAAAVKhAAFS6QABUywAAVN+AAFT/wABVCIAAVUnAAFWKAABVp0AAVdeAAFYowABWSwAAVmTAAFZ+QABWi4AAVpjAAFaqgABWsoAAVrrAAFbCQABW0kAAVuKAAFb0AABXAIAAVw6AAFc/QABXU0AAV2eAAFd9QABXk4AAV6lAAFe/AABXxgAAV94AAFf8AABYHYAAWDtAAFhlwABYgUAAWOJAAFlaAABZZkAAWXDAAFl+wABZiUAAWZPAAFmuQABZyQAAWdtAAFntwABaBAAAWh5AAFoywABaR4AAWl9AAFp3AABapQAAWsYAAFrVwABa6gAAWwAAAFsdAABbOYAAW1CAAFtygABbf4AAW5RAAFugwABbsMAAW8dAAFvVAABb94AAXAiAAFwbAABcNMAAXEcAAFxiQABcdgAAXIVAAFyegABcroAAXM8AAFz4gABdCsAAXTkAAF1pQABdi0AAXaKAAF2xQABdtQAAXcvAAF3SAABd2wAAXelAAF34wABeCkAAXhkAAF4qAABeN8AAXjuAAF4/gABeRAAAXkiAAF5mQABemwAAXsZAAF8HAABfKcAAX06AAF9nAABff4AAX5fAAF+wQABfyMAAX+EAAF/5gABgEgAAYCpAAGBCwABgW0AAYHOAAGCMAABgpIAAYL0AAGDVgABg7gAAYQaAAGEfAABhN4AAYVAAAGFogABhgQAAYZmAAGHCQABh6gAAYfZAAGINgABiPsAAYmFAAGKKAABiooAAYrYAAGK3AABi4kAAYv5AAGMfgABjOYAAY08AAGNqgABjfUAAY5QAAGOrwABj1MAAY/JAAGQDAABkJEAAZEOAAGRLwABkWQAAZGUAAGSeQABkvIAAZPyAAGUuQABlR0AAZXXAAGWbQABlt4AAZcMAAGXPgABl3oAAZjdAAGZPgABmaYAAZpqAAGbcAABm/UAAZxXAAGcxQABnVYAAZ23AAGeFwABnowAAZ7sAAGfRwABn7MAAaAEAAGgdwABoNAAAaEfAAGhagABocwAAaIjAAGiXwABopMAAaLpAAGjOQABo4UAAaPHAAGkCAABpFEAAaS6AAGlBAABpYgAAaXnAAGmZQABpsIAAab+AAGnTAABp5kAAagPAAGocAABqMQAAalYAAGptwABqfwAAapOAAGqxgABqyEAAauPAAGr7AABrEoAAazhAAGtIwABrXEAAa37AAGu6QABrz4AAa/uAAGwUwABsKAAAbDYAAGxSwABshcAAbMDAAGzxAABtIoAAbVRAAG19QABtpoAAbdsAAG4WgABuJoAAbjaAAG5GgABuYEAAboMAAG6owABuygAAbwFAAG83QABvboAAb4qAAG+/QABv0QAAb/HAAHATgABwMwAAcFVAAHCYQABwtAAAcMrAAHDlwABxCQAAcSPAAHFDwABxdYAAcaBAAHHBgABx5AAAchXAAHI9AAByV0AAcoJAAHKsgABy1wAAcwYAAHM4QABzXMAAc4xAAHOuQABz2IAAc/zAAHQhAAB0Q8AAdH2AAHShQAB00kAAdQXAAHUnQAB1SIAAdW7AAHWOQAB1pIAAdcGAAHXYgAB2AYAAdiEAAHYxAAB2OcAAdkTAAHZqQAB2egAAdoxAAHajQAB2s8AAdszAAHcDgAB3H8AAd1OAAHeQgAB3oQAAd7oAAHfYgAB35gAAd/RAAHgMQAB4IMAAeDVAAHhEQAB4bAAAeI2AAHjfAAB48sAAeQdAAHkcQAB5MMAAeUwAAHlegAB5fEAAeZ0AAHmswAB5vgAAecWAAHnlAAB6HEAAekqAAHpjQAB6ccAAepdAAHq1gAB61sAAewgAAHsWQAB7NMAAe2MAAHukgAB7wkAAe+wAAHwXQAB8SkAAfF7AAHySgAB8vwAAfO7AAH0OAAB9L8AAfU2AAH1xgAB9lcAAfbmAAH3+AAB+EcAAfrHAAH7DgAB+1IAAfuiAAH7zAAB+/kAAfxBAAH/EwAB/1oAAf+lAAH/7wACAAgAAgCWAAIAwAACASsAAgHOAAICRwACAwoAAgNzAAIEGQACBLYAAgUYAAIFuAACBosAAgbvAAIHRQACB7QAAgf2AAIIOAACCQYAAgl+AAIJ4AACCmUAAgrvAAILUgACC94AAgxJAAIMnQACDQYAAg18AAINzQACDk4AAg7SAAIPcwACEB8AAhCyAAIRYQACEoQAAhKIAAISwAACE4kAAhQ8AAIUQAACFMgAAhTMAAIVWwACFa0AAhYsAAIWlAACFzMAAhgGAAIYXgACGQgAAhnaAAIaZwACGxoAAht6AAIbpgACHFMAAhybAAIc6wACHUQAAh2aAAIeqwACHzYAAiAYAAIg2AACITgAAiHdAAIiJwACIqEAAiMYAAIjmQACJBUAAiRYAAIlowACJpUAAie5AAIoIwACKHIAAijhAAIpZgACKjYAAiqcAAIq+gACK2wAAiuAAAIr2QACLB8AAizzAAIt0gACLmUAAi99AAIv4gACMJQAAjDeAAIxngACMgMAAjNWAAI0aAACNNwAAjViAAI1uAACNoUAAjbyAAI3gwACOLgAAjk/AAI6OgACOtEAAjtHAAI8GAACPJAAAj1EAAI+NQACPmsAAj92AAJAJgACQZUAAkK8AAJDcQACRCQAAkSjAAJFaAACRfIAAkbyAAJHvwACSV0AAkqGAAJLcAACTN4AAk25AAJOmAACUB4AAlG6AAJSuQACU8cAAlR7AAJVtwACVokAAldSAAJYGQACWcIAAlqfAAJbPAACW+sAAlzcAAJdiwACXl0AAl8tAAJftQACYPgAAmGxAAJjEAACZHcAAmWRAAJmIgACZtYAAmdTAAJoJwACaT0AAmnoAAJqzwACaxgAAmvZAAJsxAACbXwAAm6XAAJu3wACb0kAAm/WAAJwHAACcN0AAnGRAAJyGgACcrgAAnNpAAJ0GAACdNAAAnVdAAJ1zgACdpwAAncPAAJ3ZgACd+cAAnhZAAJ5twACejUAAnq7AAJ7EQACe6wAAnxdAAJ9TQACfYkAAn3EAAJ+YAACfy0AAn+fAAJ//AACgKYAAoE6AAKBuAACgmQAAoL5AAKDNQACg9oAAoTqAAKFbgAChxcAAofMAAKIlwACiW0AAorJAAKLLgACi50AAoxhAAKNLgACjfsAAo6uAAKPBQACj2wAAo/2AAKQbwACkOoAApFyAAKSQwAClFQAApTjAAKVYgAClf4AApYrAAKW/AACl3QAApgGAAKY2gACmXwAAppHAAKaqAACnBUAApyAAAKdQQACnlwAAp7gAAKfPQACoDUAAqCiAAKg6gACoakAAqH6AAKilwACo1AAAqOLAAKjqQACpHYAAqU6AAKmNgACpsgAAqdPAAKn0gACqGYAAqjQAAKpKAACqqAAAqteAAKtIgACrYEAAq2/AAKuKAACrnUAAq7KAAKvhgACsEUAArDNAAKxwwACskQAArMBAAKzdgACs/UAArQhAAK0kAACtRUAArVCAAK1jAACtdYAAracAAK3EgACt3QAArfaAAK4MwACuFEAAri0AAK58wACujwAArqbAAK7HgACu4kAArwQAAK8mAACvUEAAr4BAAK+wQACv30AAsI2AALCqAACw0EAAsRrAALF9gACxtIAAsfEAALIvgACyWYAAsntAALKgAACy6EAAs0fAALNnAACzaAAAs3MAALOpAACz0kAAtAzAALQxQAC0UQAAtHSAALSGgAC0rkAAtN3AALUDQAC1E8AAtTfAALVOQAC1kMAAtb2AALXfgAC2BgAAtifAALZfwAC2bwAAtolAALajgAC2yQAAtu+AALcIgAC3IcAAtzcAALdRAAC3awAAt47AALe6AAC31kAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC38oAAt/KAALfygAC39EAAt/YAALf3wAC3+YAAt/tAALf9AAC3/sAAuACAALgCQAC4BAAAuBNAALgfAAC4LUAAuD2AALhLQAC4WcAAuGqAALh1QAC4iEAAuJkAALinQAC4vEAAuNCAALjlwAC4/QAAuUPAALl2AAC5psAAudsAALoCQAC6QEAAunbAALqfgAC6yIAAuvuAALsdQAC7McAAu2FAALunAAC7vsAAu+KAALwJwAC8MMAAvE3AALx/wAC8pwAAvKgAALzPgAC88gAAvSrAAL1NQAC9ckAAvZQAAL2hwAC9r0AAvbzAAL3LQAC92wAAverAAL33wAC+BoAAvhVAAL4nQAC+KQAAvisAAL4swAC+LsAAvjDAAL4ywAC+NYAAvjeAAL46QAC+PQAAvj8AAL5BwAC+Q8AAvkaAAL5JQAC+SwAAvk0AAL5OwAC+UMAAvlLAAL5UwAC+V4AAvlmAAL5cQAC+XwAAvnxAAL6WgAC+l4AAvrtAAL7gAAC++MAAvx+AAL8ggAC/UEAAv24AAL+JQAC/ikAAv7MAAL+/wAC/xEAAv8rAAL/QQAC/1AAAv9cAAL/ZwAC/38AAv+MAAL/mAAC/6cAAv+3AAL/vwAC/9QAAv/lAAL/+AADAAoAAwAhAAMANQADAFIAAwBbAAMAawADAHsAAwCZAAMAqAADALQAAwDAAAMA0gADAOwAAwECAAMBEQADAR0AAwEoAAMBQAADAU0AAwFZAAMBaAADAXgAAwGAAAMBlQADAaYAAwG5AAMBywADAeMAAwH3AAMCFAADAh0AAwItAAMCPQADAlsAAwJqAAMCdgADAoIAAwKJAAMCkAADApcAAwKeAAMCpQADAqwAAwKzAAMCugADAsEAAwLIAAMCzwADAtYAAwLdAAMC5AADAusAAwLyAAMC+QADAwAAAwMHAAMDDgADAxUAAwMcAAMDIwADAyoAAwMxAAMDOAADAz8AAwNGAAMDTQADA1QAAwNbAAMDYgADA2kAAwNwAAMDdwADA34AAwOFAAMDjAADA5MAAwOaAAMDoQADA6gAAwOvAAMDtgADA70AAwPEAAMDywADA9IAAwPZAAMD4AADA+cAAwPuAAMD9QADA/wAAwQDAAMECgADBBEAAwQYAAMEHwADBCYAAwQtAAMENAADBDsAAwRCAAMESQADBFAAAwRXAAMEXgADBGUAAwRsAAMEcwADBHoAAwSEAAMEiwADBJIAAwSZAAMEoAADBKcAAwSuAAMEtQADBLwAAwTEAAMEywADBNIAAwTZAAME4AADBOcAAwTuAAME9QADBPwAAwUDAAMFCgADBREAAwUYAAMFHwADBSYAAwUtAAMFNAADBTsAAwVCAAMFSQADBVAAAwVXAAMFXgADBWUAAwVsAAMFcwADBXoAAwWBAAMFiAADBY8AAwWWAAMFnQADBaQAAwWrAAMFsgADBbkAAwXAAAMFxwADBc4AAwXVAAMF3AADBeMAAwXqAAMF8QADBfgAAwX/AAMGBgADBg0AAwYUAAMGGwADBiIAAwYqAAMGMgADBjoAAwZBAAMGSAADBk8AAwZWAAMGXQADBmQAAwZrAAMGcgADBnkAAwaAAAMGhwADBo8AAwaXAAMGnwADBqYAAwatAAMGtQADBr0AAwbEAAMGywADBtIAAwbZAAMG4AADBucAAwbuAAMG9QADBv0AAwcEAAMHDAADBxMAAwcbAAMHIwADByoAAwcxAAMHOAADBz8AAwdGAAMHTQADB1QAAwdbAAMHYgADB2kAAwdwAAMHdwADB34AAweFAAMHjAADB5MAAweaAAMHogADB6kAAwewAAMHugADB8EAAwfIAAMHzwADB9YAAwfdAAMH5AADB+sAAwfyAAMH+QADCAAAAwgHAAMIDgADCBUAAwgcAAMIIwADCCoAAwgxAAMIOAADCEAAAwhHAAMITgADCFUAAwhcAAMIYwADCGoAAwhxAAMIeAADCH8AAwiGAAMIjQADCJQAAwibAAMIogADCKkAAwiwAAMItwADCL4AAwjFAAMIzAADCNMAAwjaAAMI4QADCOgAAwjwAAMI9wADCP4AAwkFAAMJDAADCRMAAwkaAAMJIQADCSgAAwkvAAMJOQADCUEAAwlIAAMJTwADCVYAAwldAAMJ9wADCoYAAwrUAAMK+gADCzoAAIAaAAAA4AFeAADAAcAADMRIRElIREhaAMY/UICZP2cBXj6iE4E3AACAzgAhwbvBP0AGwAfAAAlEyM1MxMjNTMTMwMzEzMDMxUjAzMVIwMjEyMDEzMTIwPEPcneM9bpQHRA5kBuQMvgMdvwQnFB5D9U5DLlhwFOawEAagFT/q0BU/6tav8Aa/6yAU7+sgG5AQAAAAABA1QBSQbUBKoADgAAAQsBJxMlNwUDMwMlFwUTBaufi7nc/rAeAWIpzioBaxr+q98BSQE8/sVeASUawmYBZ/6ZZsUX/tkAAAACA5gAsQaPBUkADQAbAAAlMhIRNAImIyIGAhUQEjciJjU0PgEzMh4BFRQGBRLNsFSpgImmS7m/gmsuaVZWaDBusQE4ARW6AQaLjP76uf7r/sh46uuc0Gdn0Jzs6QAAAAABBD8AwgXpBTkADAAAJTMRIwUXNz4BNw4BFQVfinX+y0p5ICwZBATCBHfwX2MaJhotVUQAAQOaAMIGjgVIABwAACUhNSE1Nz4CNTQmIyIOAQcXPgEzMhYVFA4BBwEDmgL0/b7uV4RKup9JfmstS0J+VFpvPXZW/tTCgAbsV5icWY6iJDwmXjM5Yl5NgYZX/tIAAAAAAQOcALIGjAVIACoAACUyNjU0Jic1PgE1NCYjIgYHFz4BMzIWFRQOASsBFTMyFhUUBiMiJicVHgEE1uPTh4lsga+zc7Q+R0CEXGBwQYBecG+XqYiaTKdIR5myv5ZxjRAHFYlzeqFGMGAqNltTQWE2eF9rangoJIQiHAAAAAIDawDCBr0FOAAKABUAACUzETM1IxEjARUhJQE+ATczDgIVEQWOiKenkf3mAiP+ZwFWEScNBgEEA8IBA38C9P0FeH8B4xhHHiNLVzj+nQAAAQOqALMGfgU4AB4AACUyNjU0JiMiBgcTITUhAxc+ATMyFhUUBiMiJicVHgEE0sri0a85XBsbAcX9wytGI3IulYqcfkykOjWbs8uyoLANBQFKgP3mLQkPeHB+eCkihR8fAAAAAAIDnAC0BowFSgAOAC0AAAEiLgI1ND4BMzIWFRQGBzI2NTQmIyIGByM+AjMyFhc1LgEjIg4CFRQeAgUfPFw+Hz9wS25vfWOnxLaVZ4QkCQZEo5QkShwaUSKhzXEsPGqNASo0VWg0M2A/f26IgnbOsqa1Tjh90n8JCngIBnPC7nuAvn09AAEDlADCBpMFOAAGAAAlMwE1IRUhBCibAdD9AQJowgQKbIAAAAMDmQCzBo4FSQANACoANgAAASImNTQ+ATcXHgEVFAYHMj4BNTQuASc+ATU0LgEjIg4BFRQeARcOARUUFhMuATU0NjMyFhUUBgUUe3YxYUYZboJ8cXKpXEVzR1mBWJpkYZtZNVs4Xo/Gulh5cVhccXIBI29TOllIHgkocVNXb3BMjGBOcFUiLoNnWXk/P3lYRmpRICuTdJGiAqMmX1hQVVVQVmQAAgOdALQGiwVIAB4ALQAAJTI+AjU0LgIjIgYVFBYzMjY3Mw4CIyImJxUeARMiJjU0NjMyHgIVFA4BBH+izXEsO2qMUabGs5RogyQKBUSjlSRMHRpWo29sfmQ9Wz0fPXG0c8Hue4C9fD7Os6W0Tjd90X4LCngICAIpfm2HgzRWZzQyYD4AAwEE/qwJJAbMABMAMQBFAAABIiQAAjU0EgAkMzIEABIVFAIABAMiJgI1NBI2MzIWFwcuASMiDgEVFB4BMzI2NxUOAQcyJDYSNTQCJiQjIgQGAhUUEhYEBRTj/oT+6JmZARgBfOPXAXkBHqKa/uj+hLe8+XuE/rhXtk9RR4Y7cJ1SRpl9QaNEQ4uPtgE+8omC6/6+wMH+vu2Cgu0BQv6smgEYAXzi4wF8ARiZmf7o/oTj4v6E/uiaAZSeAR+/uQEdoispriUlbMmLkMlpJRu1Hif9g+8BRcK4AUP1i4Pv/rrDuP6+9YoAAAQBBP6sCSQGzAATACcANQA+AAABIiQAAjU0EgAkMzIEABIVFAIABCcyJDYSNTQCJiQjIgQGAhUUEhYEAxEhMhYVFAYHASMBIxkBMzI2NTQmKwEFFOL+hP7ompoBGAF84uIBfAEYmpr+6P6E4sABQ+yCguz+vcDA/r3sgoLsAUPEAWvo14dVAUn1/uWvjW98cnyK/qyaARgBfOLiAXwBGJqa/uj+hOLi/oT+6JqWg+8BRsLCAUbvg4Pv/rrCwv6674MBDQTWtreFmyL92QHq/hYCmnBZZVkAAAQCvP6sB2wGzAADABMAIwAnAAABAyEDASIuATU0PgEzMh4BFRQOASEiLgE1ND4BMzIeARUUDgEBAyEDBfwhAVsh/Is+aD4+aD4+Zz4+ZwKqPmc+Pmc+P2c+Pmf8TCEBWyEBYwVp+pf9ST5oPj5nPj5nPj5oPj5oPj5nPj5nPj5oPgK3BWn6lwAEAYb+rAiiBswAHwAvAD8AQwAAAT4DNz4CNTQmIyIGByE0NiQzIAAVFA4BBw4CBwEiLgE1ND4BMzIeARUUDgEhIi4BNTQ+ATMyHgEVFA4BAQMhAwWqAx07Ykk+WC6OiIKeD/7YmQENrgEXATA8inVBQxsG+6tAaT4+aUA/aD4+aAOJQGk+PmlAP2g+Pmj7aSEBYCEBXWGLb2xCOVtkRYuekXqV7Ir+3PpdnaJmOVZqVv1PPmg+Pmc+Pmc+Pmg+Pmg+Pmc+Pmc+Pmg+ArcFafqXAAAAAAMBBP6sCSQGzAAPAB8ALgAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYHASEyNjURAR4BFREUBiMBqkRiYkMG1kRhYUT5KwbVIzIyI/kqIjMzCQEMBPcpOQEMEAVBLf6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMhoBDToqBPQBDBQuLvluLkEAAAACAPAAlgk4BOIAFgAeAAAlETMBMwEzESMRND4BNyMBIwEjHgEVESERITUhFSERBO7NAVMGAVnLiQMGAgb+kXL+lgYFBvza/qgDOP6qlgRM/HsDhfu0AqQ2a10h/D0DxC+iWP1lA9J6evwuAAADAQT+rAkkBswAAwAPAB8AAAUhESE3MjY1NCYjIgYVFBYBIiY1ETQ2MyEyFhURFAYjBJIBBP78gkVgYEVFYGD820RiYkMG1kRhYUQfA+GAYEVFYGBFRWD6amFDBtdEYWFE+SpDYgAAAAIBBP6sCSQGzAAPABkAAAEiJjURNDYzITIWFREUBiMBESERCQERIREBAalDYmJEBtVEYWFE+2oCVgHO/jL9qv4y/qxiQwbXRGBhRPkqQ2ICXwE6/sYBsQGx/sYBOv5PAAIBBP6sCSQGzAAPABkAAAEiJjURNDYzITIWFREUBiMJASERIQkBIREhAalDYmJEBtVEYWFE/JUBsf7GATr+T/5PATr+xv6sYkMG10RgYUT5KkNiARcBzgJWAc7+Mv2qAAIBBP6sCSQGzAAPABYAAAEiJjURNDYzITIWFREUBiMBNwE3JRM3AalDYmJDBtZEYWJE/jOp/Wre/YgU3v6sYkMG1kRhYUT5KUNhAeOpApXeFP2I3gAAAAACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjCQEXEwUXAQGqRGJiQwbWRGFhRPr4ApXeFP2I3v1q/qxhQwbXRGFhRPkqQ2IB4wKW3gJ4FN79awAAAgEE/qwJJAbMAA8AFgAAASImNRE0NjMhMhYVERQGIwEDBwEHAQcBqUNiYkQG1URhYUT+fxTe/WupApbe/qxiQwbXRGBhRPkqQ2ICDQJ43gKWqf1r3gAAAAIBBP6sCSQGzAAPABYAAAEiJjURNDYzITIWFREUBiMBJScBJwEnAapEYmJDBtZEYWFE+qsCeN4Clqn9a97+rGFDBtdEYWFE+SpDYgINFN4Clan9at4AAAACAQT+rAkkBswADwAmAAABIiY1ETQ2MyEyFhURFAYjAREhMj4BNTQuASMhFSEyFhUUBiMhEQEBqUNiYkMG1URiYUT7SwJNl+uHhuuY/iAB4IGbnID9s/4y/qxiQwbWRGFgRPkpQ2IBcAE6huuWmOuF7ZuAf5oBOv5PAAAAAgEE/qwJJAbMAA8AJgAAASImNRE0NjMhMhYVERQGIwkCESEiJjU0NjMhNSEiDgEVFB4BMyEBqUNiYkMG1URiYUT93wHO/jL9s4Ccm4EB4P4gmOuGh+uXAk3+rGJDBtZEYWBE+SlDYgFwAbEBsf7Gmn+Am+2F65iW64YAABYB1v6sCFIGzAATABsAHwAjADwAQABEAEgATABQAGQAcAB0AHgAfACAAIQAnQChAKUAsgC6AAAFIiQmAjU0EjYkMzIEFhIVFAIGBAEDNxchNxcDASc3FxMnNxcDIi4BNTMWBDMyJDczFA4BIyoDMioCATUzFQE1MxUBJzcXASc3FwEnNxcTMj4CNTQuAiMiDgIVFB4CEyImNTQ2MzIWFRQGASc3FwEnNxcBJyUfATUzFQE1MxUFND4BMzoDIjoCMzIeARUjJiQjIgQHJSc3FxMnNxcTIj0BNDsBMhYVFAYjAScTIRMHJyEE1J3+6tN4eNMBFp2eARXTeHjT/uv9j0hOOAMgOE5I/EYeWR6KMzM01lBeKRWLASa1tQEnixQpXlCdrkoQAxBLrf7DZgHLPP4sWB1YAqczMzP+f+Ep4haN+L5ra774jY34vmtrvviNKz4+Kys+Pv7HMzMzAsxYHVj+KiABISGPZv2TPP1iKV5Qnq1LEAMQSq6dUF4pFIv+2bW1/tqLA3k0NDN1Hlke0yEhaxYbGxb65k5IA5xITjj84Et41AEYoKABGNR4eNT+6KCg/ujUeP73ARUU2dkU/usCzDMzM/8AHVgd/pRDraCtmpqtoK1DAwQ8PP3PZmYDKTQzM/zjWR5ZAduHRYj9Hmy++4+P+75sbL77j4/7vmwCSz4rLD09LCs+AgFZHln9CTM0NAEDNLMzxzw8AgdmZlSgrENDrKCtmZmtBB1YHf7qMzMz/nsgtiBJMjFKA2EUARX+6xTZAAAABwKA/qwHqAbMAA8AKwA/AFQAZACAAJQAAAU0Aic1NhIRMxACBycEEhEBIi4BJy4BPQEzFScWBDMyJDcHNTMVFAYHDgInIi4CNTQ+AjMyHgIVFA4CJT4CNz4BNz4BMzIWFx4BFx4CFwUQEiUHJgIRMxASFxUGAhUBIi4BJy4BPQEzFScWBCEgJDcHNTMVFAYHDgInIi4CNTQ+AjMyHgIVFA4CBx3X7ezYUe78AwD/7v2mlfy1KxQPTjNWATrp6QE6VjNODxQrtfyVgu26a2u57oKD7blra7rt/c0IQl8xL1MWFxsNDhsWFlMvMV9DB/v17gD/A/zuUdnr7dcCCYr8uysXEU46KQFWAQEBAQFXKDpOERcqvPuLgu26a2u57oKD7blra7rtDP4BRmFCYgFUAQz+3v6KZzln/pf+7f64FSYZDBkXtflmNC4uNGb5tRcZDBkmFdEQHScWFyYeEBAeJhcWJx0QhCdnczg2ZScoHBwoJ2U2OHNnJw0BEwFpZzlnAXYBIv70/qxiQmH+uv4FPBcoGA4fHJHedDg/Pzh03pEcHw4YKBfHEB0nFhcmHhAQHiYXFicdEAAhAKkACgl/BW4ADwAfACwAOgBGAFMAYABsAHoAhwCTAKEArgC7AMgA1gDjAPAA/gELARgBJQEzAUABTwFdAWsBeAGFAZMBoQGvAcMAACUiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWEzMyPQE0JisBIh0BFDsBMjY9ATQmKwEiHQEUJzMyPQE0KwEiHQEUNzMyPQE0KwEiHQEUFgUzMj0BNCsBIh0BFBYBMzI9ATQrASIdARQFMzI2PQE0KwEiHQEUFgUzMj0BNCsBIh0BFBYBMzI9ATQrASIdARQBITI9ATQmIyEiHQEUFhMzMj0BNCsBIh0BFBYFMzI9ATQrASIdARQWATMyNj0BNCsBIh0BFAUzMjY9ATQrASIdARQWBTMyPQE0KwEiHQEUFgEzMjY9ATQrASIdARQFMzI2PQE0KwEiHQEUFgUzMj0BNCsBIh0BFBYBMzI2PQE0KwEiHQEUATMyPQE0JisBIh0BFAEzMjY9ATQrASIdARQWJzMyNj0BNCsBIh0BFAEzMjY9ATQmKwEiHQEUFgEzMjY9ATQrASIdARQWFyEyPQE0IyEiBh0BFBYDMzI2PQE0KwEiHQEUBTMyPQE0KwEiHQEUFiczMjY9ATQrASIdARQWBTMyNj0BNCsBIh0BFBYnMzI2PQE0JisBIh0BFAEzFRQGIyEiJj0BMxUUFjMhMjY1AYVodHRoBx5odHRo+OIHHkdFRUf44kdFRVdUFg0JVBb0UwsODQpTF8ngFhbgFhabFhabFg4BbVMWFlMXDv6mVBYWVBYBMFMKDxlTFg0BJ1MWFlMXDv6bVBYWVBYBBAOIGA0L/HgYDzdTGBhTGA8BL1QWFlQWDf6RVAoOGFQYATRTCg8ZUxgPATpTFxdTFg3+iFQKDhhUGAEyUwoPGVMYDwFFUxYWUxcO/n1UCg4YVBgCuFQYDQtUGP6UUwoPGVMYD0dUCg4YVBgCyFMLDg4LUxgP/nNTCg8ZUxgPgwFuGBj+kgkPD8FUCg4YVBgBNFMYGFMYDkhUCg4YVBgPASVTCg8ZUxgPPpoKDw8KmhgBUVB0aPjiaHRQRUcHHkdFCnRoA6xodHRo/FRodFBFRwOsR0VFR/xUR0UBMhhTCg8ZUxgOClMKDxlTGNUYUxgYUxjUGVMYGFMKD9QWUxcXUwgOAakYVBgYVBjVDwpTGBhTCg/UFlMXF1MIDgGpGFQYGFQY/YIYUwsOGVMJDwGpGVMYGFMKD9QWUxcXUwgOAakPCVQYGFQY1Q8KUxgYUwoP1BZTFxdTCA4BqQ8JVBgYVBjVDwpTGBhTCg/UFlMXF1MIDgGpDwlUGBhUGP2CGFMKDxlTGAGpDwpTGBhTCg/VDwlUGBhUGP2CDgpTCg8ZUwkPAakPClMYGFMKD9YYWRgOClkKDgGrDwlUGBhUGNUZUxgYUwoP1Q8JVBgYVAoO1Q8KUxgYUwoP1Q8JVAsNGFQY/l3IaHR0aMjIR0VFRwADAQT+rAkkBswADwATABYAAAEiJjURNDYzITIWFREUBiMBITUhJyEBAalDYmJDBtVEYmFE+pIEBvv6BQQQ/fj+rGJDBtZEYWBE+SlDYgGvw7oDcwACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjCQERCQERAQGpQ2JiQwbWRGFiRPoBAnoC9f0L/Yb+rGJDBtZEYWFE+SlDYQJSAXb+igG+Ab7+igF2AAAAAAIBBP6sCSQGzAAPABYAAAEiJjURNDYzITIWFREUBiMBEQERAREBAapEYmJDBtZEYWFE/LACev2G/Qv+rGFDBtdEYWFE+SpDYgJSAXb+igN8/ooBdv5CAAACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjASEBIQkBIQGpQ2JiQwbWRGFiRPrYA3z+igF2/kL+QgF2/qxiQwbWRGFhRPkpQ2EBewJ6AvX9CwAAAgEE/qwJJAbMAA8AFgAAASImNRE0NjMhMhYVERQGIwkBIQEhASEBqUNiYkMG1URiYUT8lQG+/ooBdvyEAXb+iv6sYkMG1kRhYET5KUNiATYC9QJ6/YYAAAIBBP6sCSQGzAAPABsAAAEiJjURNDYzITIWFREUBiMJAREBETMRIxEBEQEBqUNiYkMG1kRhYkT5sQJ6Amve3v2V/Yb+rGJDBtZEYWFE+SlDYQJSAXb+igFt/pgDcv6YAW3+igF2AAAAAgEE/qwJJAbMAA8AGwAAASImNRE0NjMhMhYVERQGIwEzEQERAREBEQERIwGqRGJiQwbWRGFhRPm33gJrAnr9hv2V3v6sYUMG10RhYUT5KkNiAlcBaP6TAXb+igN8/ooBdv6TAWgAAAAEAQT+rAkkBswADwASABYAGgAAASImNRE0NjMhMhYVERQGIwkDMxEjATMRIwGpQ2JiQwbVRGJhRPndAvX9CwN8t7cBRbe3/qxiQwbWRGFgRPkpQ2ICUgG+Ab78iQNy/I4DcgAAGwGQ/qwImAbMABMAFwAbAB8AIwAnACsALwAzADcASwBfAHMAfwCDAIcAiwCPAJoAngCiAKYAqgCuALIAvQDBAAABIiQmAjU0EjYkMzIEFhIVFAIGBCEnNxc3JzcXJSc3Fyc1MxUBNTMVASc3FwEnNxcBJzcXASc3FxMyJDYSNTQCJiQjIgQGAhUUEhYENyIkJgI1NBI2JDMyBBYSFRQCBgQnMj4CNTQuAiMiDgIVFB4CEyImNTQ2MzIWFRQGBSc3FwEnNxcBJyUXCQE3AQUmNTQ2NzYzMhYXEzUzFQE1MxUBJzcXEyc3FwE1MxUnNSEVCQE+ATMyFx4BFRQFJwEXBRS7/rn3i4z3AUe6uwFG94yM9/66/UpEXESdRjRG/ucoWii8aAG5UAHTXURd/AxaKFoCjzRGNP6A4SjiD6oBKuF/f+H+1qqq/tfif3/hASmrmP73yXJyyQEJmJgBCclycsn+95iH7bNlZbTsh4fts2Vls+2LKDs7KCk6OgG6Wiha/N00RjQBDRsBIRv8xP7qRAEW/nUbVU1MUk2CI+RQAbpo/spGNEZtKFoo/cdQyAFAAoX96SODTFJMTVX+nkQBFkT+rIz5AUe7ugFH+IyM+P66u7v+uPiMKpAq5yhaKG1GNEbsUFD93mho/sSQKpAEKjRGNPzdWihaAcuIRYj8oX/jASqrqgEq4n+A4v7Xqqv+1uKAWnLJAQqYmAEJyHJyyf73l5j+9slyUGWz7YiH7LNlZbPsh4jts2UCKjooKTo6KSg65jRGNAKPWiha/j4rsyoCEAG5Kv5HGDs8TY8mJkQ//f1oaP32UFABtShaKP7nRjRGAlHi4rpQUP68ARw/RCYmj008TSoBuSoAABUBmv6sCI4GzAATABcAGwAfACMAJwArAD8AUwBnAHMAdwB7AH8AgwCHAIsAjwChAKUAtwAAASIkJgI1NBI2JDMyBBYSFRQCBgQBJzcXJSc3Fyc1MxUBNTMVNyc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBDciJCYCNTQSNiQzMgQWEhUUAgYEJzI+AjU0LgIjIg4CFRQeAhMiJjU0NjMyFhUUBgEnNxcBJzcXJREzEQU1MxUvATcXLwE3FwE1MxUnIiY9ATQ3PgEzMhYXFh0BFAYBJzcfAQYmJy4BPwE2MzIWFx4BFRQHBRS6/r30iYn0AUO6ugFE84mJ9P69/kZGOEb+5ChhKMJxAapQ2DhGOP0RYShhAYOqASbdfXze/tqqqf7a3n193gEmp5b++sVvb8UBBpaXAQbGb2/G/vqXh+mvY2Ov6YeG6K9jY6/ohyc3NycnNzf+zDhGOAKqYShh/c5QAapxmihhKP5GOEb+mFAoOVERDDY3NzcLEVEB/DpcOlMISykoLQpgCQ0UPhspJQf+rIv3AUW6ugFF94uL9v66urr+uvaLAXYoYShnRjhG41BQ/eRwcDlhKGECqjhGOPvCf+ABKamqASjhfn/h/tipqf7Y4X9ZcckBCJaYAQjJcXHJ/viYlv74yXFQZbLrhofrs2Vls+uHhuuyZQIqOCcnODgnJzgB4mEoYf0ROEY4/QJh/Z8oUFDvRjhGhShhKAFjkZF/GQ2EFAgGDAsHCxGEDRn+rzZjNjYJJCgnSgpmCSsbKDQTCggAABYBCv6sCR4GzAASACQAKAAsADAANAA4ADwATgBhAHUAiQCbAKkArQCxALUAuQC9AMEAxQDIAAABIiY3EzYSACQzMgQAEhcTFgYjJS4BJyY2NzYWFx4BFx4BBw4BEzcnByc3JwcBMzUjATM1Iz8BJwcBNycHEwYmJyY2Nz4BNz4BFx4BBw4BBSEyNicDJgImJCMiBAYCBwMGFgEyJDYSNTQCJiQjIgQGAhUUEhYENyIuAjU0PgIzMh4CFRQOAiciLgE1ETQ+ATMyHgEVERQOAScyNjURNCYjIgYVERQWNxEzEQU3JwcBNycHBTM1IwEzNSMDNycHFzcnBwEnIQG4WFYFOg2bAQQBV8jIAVcBBJsNOgVVWftMhN9RCgcODx8KSsp5EA0FBR4PVUZVxpMokwJDUlL9dKqq3CiTKAOkRlVGdRAfBQUNEHrJSgofDw4IC1Hf+sgGuC8tAzoMj+7+xri4/sbujww6Ay4DipgBCslycsn+9piY/vbJcnLJAQqYh+20ZWW07YeH7bRlZbTth0JqPz9qQkJrPj5rQkJZWUJCWVkaUAIcKJMo/SZGVUYBVVJSAjSqquJVRlX2kyiT/k+dATr+rGJRA6fVAWIBAo2N/v7+ntX8WVFi2TSydQ8gCQkHDmqiLwYdERAPAQ+TKJPGVUZV/oOqAeJQukZVRvxeKJMo/mUHDxARHQYvomoOBwkJIA91sr0xLgOlxgFH7oGB7v65xvxbLjEBIHLIAQqXmAEKyXJyyf72mJf+9shyUGWz7IeI7bNlZbPtiIfss2XSP2pBAaBBaj8/akH+YEFqP1BaQAGgQVlZQf5gQFqIAeL+HptGVUYC2CiTKDmq/SRQAYiTKJP2VUZVAfCUAAAABwKA/qwHqAbMABoANgBKAFoAagCGAJoAAAU+ARI1NCYnLgInMj4CNw4BBw4BFRQSFhcBIi4BJy4BPQEzFScWBDMyJDcHNTMVFAYHDgInIi4CNTQ+AjMyHgIVFA4CJRASJQcmAhEzEBIXFQYCFSE0Aic1NhIRMxACBycEEhEBIi4BJy4BPQEzFScWBCEgJDcHNTMVFAYHDgInIi4CNTQ+AjMyHgIVFA4CA5dbqGsWLzp1WxRU1t3DQQqXmS0ZTLGW/lSV/LUrFA9OM1YBOunpATpWM04PFCu1/JWC7bpra7nugoPtuWtruu39JO4A/wP87lHZ6+3XBBLX7ezYUe78AwD/7v2mivy7KxcRTjopAVYBAQEBAVcoOk4RFyq8+4uC7bpra7nugoPtuWtruu0KSMABD70kKxoiYHI9FSMvGYvKUhguJrr+98BN/qsVJhkMGRe1+WY0Li40Zvm1FxkMGSYV0RAdJxYXJh4QEB4mFxYnHRB3ARMBaWc5ZwF2ASL+9P6sYkJh/rr+/gFGYUJiAVQBDP7e/opnOWf+l/7tBTwXKBgOHxyR3nQ4Pz84dN6RHB8OGCgXxxAdJxYXJh4QEB4mFxYnHRAAAwEE/qwJJAbMAA8AEwAXAAABIiY1ETQ2MyEyFhURFAYjATMRIwEzESMBqUNiYkMG1URiYUT7Md7eAere3v6sYkMG1kRhYET5KUNiAlcDcvyOA3IAAgEE/qwJJAbMAA8AEwAAASImNRE0NjMhMhYVERQGIwEhESEBqUNiYkMG1URiYUT65QNg/KD+rGJDBtZEYWBE+SlDYgJfA2IAAgEE/qwJJAbMAA8AHwAAASImNRE0NjMhMhYVERQGIwEyPgE1NC4BIyIOARUUHgEBqkRiYkMG1URiYUT8lInfhYXeiIjghYXf/qxhQwbXRGFgRPkpQ2ICJIXfiIjfhYXfiIfghQAAAAACAQT+rAkkBswAFwAvAAAlMxE0LgEnMwEzATMOAhURMxEjASMBIwEiLAEKATU0GgEsATMyDAEaARUUCgEMAQMddQIFAwYBS2kBUAYCBQN+u/7DBf7KvAH3q/7K/vvAamrAAQUBNqurATYBBcBqasD++/7KsAJjNmdXHfyMA3IeVmIx/ZUD8PzGAzr6DGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmsAAAAACAPyAZoGNgPeAA8AEwAXACcAKwAvADMANwAAASEyNjURNCYjISIGFREUFjczESMDITUhFyImNRE0NjMhMhYVERQGIwczESMDITUhATMRIwUhNSEEdwE6OUxMOf7GOUxMOiwsZQID/f1kJzIyJwE6JzIyJ7MsLOsCA/39AXEsLP6PAgP9/QGaSzkBPDlLSzn+xDlLIAIE/mIshTIlATwmMTEm/sQlMg0CBP7oLP7oAgSSLAAAAgPyAZoGNgPeAA8AHwAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYEdzlMTDkBOjlMTDn+xgE6JzIyJ/7GJzIyAZpLOQE8OUtLOf7EOUstMiUBPCYxMSb+xCUyAAIBBP6sCSQGzAAPABIAAAEiJjURNDYzITIWFREUBiMJAgGpQ2JiQwbVRGJhRPtaAvT9DP6sYkMG1kRhYET5KUNiAlIBvgG+AAIBBP6sCSQGzAAPABIAAAEiJjURNDYzITIWFREUBiMBEQEBqUNiYkQG1URhYUT90P0M/qxiQwbXRGBhRPkqQ2ICUgN8/kIAAAIB7/+mCDkF0gAPAB8AAAUhMjY1ETQmIyEiBhURFBY3IiY1ETQ2MyEyFhURFAYjAnAFSTVLSzX6tzVMTTQTHh4TBUkUHBwUWks0BS40S0o1+tI0S1AdEgUuExwcE/rSExwAAAAMAe//pgg5BdIADwATABcAGwAfAC8AMwA3ADsAPwBDAEcAAAUhMjY1ETQmIyEiBhURFBY3MxEjAyE1IQEzESMBITUhEyImNRE0NjMhMhYVERQGIwEhNSEBMxEjATMRIwEhNSEBMxEjASE1IQJwBUk1S0s1+rc1TE24RkbdBf36AwHcRkb+JAX9+gNZEx4eEwVJFBwcFPpeBf36AwLaRkYA/0ZG/CcF/foDBNhGRvsoBf36A1pLNAUuNEtKNfrSNEsoBdz68kb+7AXc+/FG/hUdEgUuExwcE/rSExwCo0b87wXc+iQF3P3uRvvwBdz+7UYAAAAAAgLzAKoHNQTOAA8AHwAAJSEyNjURNCYjISIGFREUFjciJjURNDYzITIWFREUBiMDgQMmPlBQPvzaPVFRPRsjIxsDJhsjIxuqUT0DCD5QUD78+D1RUCMbAwgbIyMb/PgbIwAAAAgC8wCqBzUEzgAPABMAFwAnACsALwAzADcAACUhMjY1ETQmIyEiBhURFBY3MxEjAyE1IRciJjURNDYzITIWFREUBiMBITUhATMRIxMzESMBITUhA4EDJj5QUD782j1RUapQUN8ECvv2chsjIxsDJhsjIxv8aAQK+/YB3VBQ/lBQ/SUECvv2qlE9Awg+UFA+/Pg9UR4D4/ztUO4jGwMIGyMjG/z4GyMBmlD95APj/B0D4/7mUAAAAAAEAQj+rAkgBswAMQBgAHQAiAAAASImJwMFBi4BNxMlLgE2NyUDJj4BFwUTPgEzMhYXEyU2FgcDBR4BBgcFExYOASclAwYnEzcFFjYnAzclPgEnJScTNgcFJwMuAQcDByUmBhcTBwUGFBcFFwMGFjclFxMeARMiLgI1ND4CMzIeAhUUDgInMj4CNTQuAiMiDgIVFB4CBFsfKAZS/msuPA0a5P6SJxEnLQGlXwojQyUBaPAOJxYfKgdRAbY7MSPtAXAnECct/lxcCCc/Hv6a9SEj92EBZQYIAlwuAboMAQz+jCTyCRH+amFTAQUC7Xb+ngUFAWEs/kIKCgGGD/EJBAwBrEhVAgewg+WsYWGs5YOD5axhYazlg3LHl1VVl8dycseXVVWXx/6sKSIBulwKKEknAVfnGUk/CEkBry05CxrzAXUXGi0i/ldRC1I0/qXuGUg9CU3+TyI1EBTx/oY0XgF+HvEEAgkBtUdRAgsH8VcBYgwCSjgBsAUBBP6QGu0DAwf+SU5NAQ0H9k/+lA0IA2E0/jsHAQFIYazlg4PlrGFhrOWDg+WsYVBVl8dycseXVVWXx3Jyx5dVAAIAhP90CaQGBAAvAGcAAAUiJwYjIiYnBiMiLgE1ND4BNz4CMzIWFz4CMzIeAhUUBgceAhUUDgErAQ4BJzI2Nx4BMzI+ATU0LgEjPgE1NC4CIyIOAQceARUjNC4BIyIOAR0BDgIVFB4BMzI3HgEzMjcWBpPQmGh8ZLY/VFt6yndmpmAGbrBqESMQLLHvh4HjrGEHCFaIT2OlZQxL1ndwxEAQFAxPgU1ZjlAJEFWWxXF10JsmcI5QVpFYWJFWb6NZYqVka1sxq2aMZoqMjDFDPRxdnmBalmAIaaplAwOAwGxhrOOBI0YiD2eYWmSmY1tkUGZcAgFNgk5WiE8mZzlxxZZVXaZuLMd3U41VVpFYMwhNdURJeUksQ01FoAAABwD9/qwJKwbMACEANQBJAE0AZQB4AHwAAAEuASMiBgcuATU0EiwBMzIMARIVFAYHLgEjIgYHLgEjIgYTIi4BNTQ2MzIWFRQzMjURMxEUBicyNj0BIxUUBiMiJjU0JiMiFRQWExEzEQE2ISAXNjMyFhcmAiwBIyIMAQIHPgEzMhc0GgE3MxYaARUjNAoBJwYKARUBNTMVA2RGnFVGnUoBAqMBIAF82NgBfAEgowECSp1GVZtHQt2Rkd3iTXhEQTYvQB4h4ItxVmVeNissNBgWNm6+UP4hogEVARWii6Uybz0To/78/rO+vv6z/vyiFD1wMaVmccuHMofLcVBjsnd3smMBZFACO05OMjMSJBG9AUT0iIj0/ry9ESQSMzJOTmVoaPwMO2lESlQ8OyUcART+ymV/PFtN+tkmMTQtIxhiTV8BvQKL/XUCDKendhcYoQERzXFxzf7voRgXmq0BWwEvamr+0f6lrZwBOgEWZGT+6v7GnANr1NQAABAB1v6sCFIGzAA1AEgAVABgAGwAeACCAI4AnACvALsAzwDbAOcA8wD/AAABIi4CNTQ2NyY1NDY3Mw4BFRQWFw4BFRQeATMyPgE1NCYnPgE1NCYnMx4BFRQHHgEVFA4CAScmNTQ2MzIfATU0NjMyFh0BFwMiJjU0NjMyFhUUBiciJjU0NjMyFhUUBjciJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJzcWMzI3FwYlIiY1NDYzMhYVFAYXIi4BNTQ2MzIWFRQOAQEnNzU0NjMyFh0BNzYzMhYVFAcBIiY1NDYzMhYVFAYDICQ1NDY3ETQ2MzIeAQcDFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgMiJjU0NjMyFhUUBhciJjU0NjMyFhUUBgUUguWuYoFza1VJgFxyUkyKnZX6mJj6lZ2KTVFyXIBJVWtzgWKu5P1s5xQaEBIOQBQODxRVnRMcHBMUGxuZFR8fFRUfH2cVHR0VFB0dexUfHxUUHx8C4T8/HSw1NSwdP/7vEhoaEhIaGsAGGBQfExQeFBgCCylVFA8OFEAOEhEZFP3aEhoaEhIaGm3+/v7rflN9SkiHVgIlsoIBuhMcHBMUGxtKFR8fFRUfH2IUHx8UFR8fmhQdHRQVHR3+rFKRwG573EuHqmu7QzfAcl6pPjzWfHvPfHzPe3zWPD6pXnLAN0O7a6qHS9x7bsCRUgLYuRETEhgMMzMOFBQOa0QBgRwTFBsbFBMckh8VFB8fFBUfpx0VFB0dFBUdtB8VFR8fFRUf/W4jMhkZMiPgIhgYIiIYGCJcKTENBwoKBw0xKf5UTERrDhQUDjMzDBgSExEBTyIYGCIiGBgiAT0rKBsgAQFNDxgXJBL+xQ03Hxj+fhwTFBsbFBMc1x8VFB8fFBUfAVIfFRUfHxUVH5EdFRQdHRQVHQAKATb+3gjyBpoAGgAqADYAQABEAEgATABQAFQAWAAAASImJy4BNTQ2NwEXAQYVFBYXFjMyNwEXAQ4BJyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFjciJjU0PwEXBwYlJwEXBScBFwEnARcDJwEXASc3FwEnNxcDHF2zSEZIRkkD0jn8Lng9OXaqq3cCazn9lEmzXkNsQEBsQ0NsQEBsQ0NcXENDXFx7EhQN6DfnDgE8NwE7OP2YOAJ5OP7HOQKnORw4AQs5/fE2OTkCPzg5Of7eRUhHs11ftEkD0zn8LnisUZQ5dncCbDn9lElF+UFtQkNsQUFsQ0JtQVBdQ0RcXERDXXcXERIN6DrnDiE6ATo0FDkCeTn9hzwCoDX9pDkBDDoC6To2Of1PODo5AAAAEQBB/qwJ5wbMACMANwBFAFMAYwBxAIUAlQC5AMcA1QDjAPEBHwEtAT8BUQAAJSImNTQ2NxM+AT8BPgE/ASERMxEhFx4BHwEeARcTHgEVFAYjASImNREXERQWMyEyNjURNxEUBiMBMzI/ATYmKwEiDwEGFjczMj8BNiYrASIPAQYWBTMyNi8BLgErASIGDwEGFgMzMj8BNiYrASIPAQYWAyI9ATQ2NxM2MyEyFxMeAR0BFCMBMzI2LwEuASsBIgYPAQYWASEyNjU0JicDLgEvAS4BLwEjESERIwcOAQ8BDgEHAw4BFRQWATMyNi8BJisBIgYfARYBMzI2LwEmKwEiDwEGFgUzMjYvASYrASIGHwEWNzMyNi8BJisBIgYfARYFIiY1NBIsASEgDAESFRQGIyImJzceATMyNjU0JiwBISAMAQYVFBYzMjY3Fw4BATc+ATMyFhcVJiIjKgEFFw4DIyImLwEeATMyPgIlHgMzMjY3Bw4BIyIuAicCyqKNBwqFEUpGJD4uBxIBI+wBIxIHLj4kR0oRhQsFjKP671BiUDgqBY4qOFBhUfualyYDDAIUDpwcAw4CETSUGwULAhMOkRkFDwISASu4DhMBBAETC7ILEgEEARPwixwDCwITDoUaBBECE5EeAwN3BRcC+RgFdgMDHv21pg0SAQUBEgyaDBEBBQER/hYElH1iBAmHDCY0JFJOCwuZ/oiZCwpPUSQ0JwyGCQVjA86XDxECDgMdnA0UAgwD/tWQDhMBBQIehh0CBQESATuUDxICDwUakQ0SAQsDBYsOEwIRBBuFDRIBCwP757K7rgFGAccBGAEZAcYBRq66szE5IwIcPDKSjKH+0f5W/vf+9/5W/tGhjZEyPRwBIjoCnAEdUygoVB0cVyYlWAUoCBNwkY8yEhoIDwkYDDONknb2xRt3ko0yDRgJDwgbEjKPkW8TRlJfDCkyAoJURhIJEDg7p/7nARmnOzgQCRJGVP1+MikMX1L+ZlxNAaIU/nIrLi4rAXwd/mdNXAL3G1YOFRpVDxbIG1cOFBpWDRfIEw1WDRERDVYNEwGRHF4OFBdgDhf94x9YCRsNAi8XF/3RDRsJWB8BVBQMVg4QEA5WDBT+KyY9CR0qAoc5KwsIElleZP7nARlkXlkSCAwqOf15Kh0JPSYBDRYPVRoVDlYbAZETDl4dHV4OE8kXDVYaFA5XG8kXDmAXFA5eHDqIf7kBDq9VVa/+8rl/iAUHVQoHak2o8ZlJSZnxqE1qBwpVBwUB/0UCAQECRQJ6TwsaGA8CA00BAg4XGg0NGhcOAgFNAwIPGBoLAAAAAAMBBP6sCSQGzAAYACgAOAAABSImJwMmNTQ2MzIWFxMBPgEzMhYVFAcBBgEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWA7crRA35Bko3KkMNsQMeEzUeOEsc/Eop/bZEYmJDBtZEYWFE+SsG1SMyMiP5KiIzMx8wKALxEhIyUC8o/fgD9BcaSjgvIvtQMv7LYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMgAADAD9/qwJKwbMACEANQBJAFYAWgBnAH8AkgCeAKIArwC8AAABLgEjIgYHLgE1NBIsATMyDAESFRQGBy4BIyIGBy4BIyIGEyIuATU0NjMyFhUUMzI1ETMRFAYnMjY9ASMVFAYjIiY1NCYjIhUUFgEiJjU0PwEXHgEVFAYBETMRASImNTQ/ARceARUUBgE2ISAXNjMyFhcmAiwBIyIMAQIHPgEzMhc0GgE3MxYaARUjNAoBJwYKARUBIiY1ND8BFxYVFAYDNTMVASImNTQ2PwEXFhUUBhMiJjU0Nj8BFxYVFAYDZEacVUadSgECowEgAXzY2AF8ASCjAQJKnUZVm0dC3ZGR3eJNeERBNi9AHiHgi3FWZV42Kyw0GBY2bv5+Ki4mMjIUES0CFlD86SouJjIyFBEtAQ6iARUBFaKLpTJvPROj/vz+s76+/rP+/KIUPXAxpWZxy4cyh8txUGOyd3eyYwGMKi4mMjImLlJQAkAqLREUMjImLl0qLREUMjImLgIJTk4yMxIkEb0BRPSIiPT+vL0RJBIzMk5OZWho/D47aURKVDw7JRwBAP7eZX88W03mxSYxNC0jGGJNXwRcLigxOEtLHjMYKC79TQJt/ZMFMS4oMThLSx4zGCgu/L2np3YXGKEBEc1xcc3+76EYF5qtAVsBL2pq/tH+pa2cAToBFmRk/ur+xpwBVS4oMThLSzgxKC4CFtTU/X4uKBgzHktLODEoLgJ+LigYMx5LSzgxKC4AAAAACQFe/qwIygbMACEAQwBTAGEAcgB7AIkAowC9AAAFIAARND4BNxcOAhUUHgIzMj4CNTQuASc3FgQWFRAABSIkLgE1NDY3Fw4BFRQeAQQzMiQ+ATU0Jic3HgEVFA4BBAEGJicuATU0MzIWFx4BFxYTMjYSEwYEIyIkJxoBFgUiJjU0Nz4BNzYzMhYVFA4BASU+AjMyFhcTNT4BNTQmIzUyFhUUBgEuATU0PgQ1NCYnMhYVFA4EFRQWJy4BNTQ+BDU0JicWFBUUDgMVFBYXBND+tv7Eh+mRQILjjFufzHBxy59bmfWKC6gBEqP+w/63u/6/8IabsiCXhn/fASGjowEh33+GlyCzmobw/r/+MAsXBiEnHQ0RAQMeHxD5tfGCC1H+2Lq6/thRDIHyAskNDwsXJA8JFAsRJzb90/4oJZTFbaLoN2+msJenyNrv/VKJnkVue25FFB1+mkJodGhCDmECAkNqdmpDMiMBX4uMX0I3bwHwAflFdVIOTAc+WTAjPzIcHDI/IzNcPgNPBFB/TP4E/hPlO2mMUVWMQ0o4aTk9b1QxMVRvPTlpOEpDjFVRjGk7AkAGBws+fTsfEA01bjcc/ueqAV8BDzpFRTr+8f6hqhwRDAwLFzIeEg8OE0U4AtJqHzciRy7+gmQDS0ZEPGR2bnCDAj0tjWBDXUMyLTIiEyYbfmRHWTYmJDMrGT0oCxUKPUwxJyxCNSlIDQQIBTRJOTtNOS1NFQAAAwEs/qwI/AbMADwATACOAAAlIi8BLgEjIgYPAQ4BIyImNTQ3JjU0PgEzMhcuATU0PgEzMhYXPgEzMh4BFRQGBzYzMhYVFAYHHgEVFA4BASYCPQE0NjczDgEdARQSFwEyNjU0Jz4BNTQmIyIGDwEnNz4BNTQmIyIGBy4BIyIGFRQWHwEHJy4BIyIGFRQWFw4BFRQzMjY/AT4BMzIWHwEeAQdm+MIsOi8XGz5BR2zmZZameDtOh1OflRMVTIRTSoQuJl4vWY1SNztERo2wODQaGlie/gp+iAUCVAUGd2oBY3uTTj5IgnZMplfLLdSTfYBoMV00JX5KW3hISHQ/c2Dfb1x8LSJFR+xczWRHSVMoMEtDLFi5WPc4SigbKS1ETJaInnFPYVSGTm84fTRkmVg/Nx0fVJRfWJJED6GCR3UlJ1IqWYhM/lRJATnaOTl3Jy1rS02w/vU+Abl5ZFpcF25JZW4zOYZCjGK8dW6JJC5CSpJzYNpinTGcg4F8XDdcIzp+T9BFPy0uIjpWOHBpAAAAAAUCT/6sB9QGzAAsADoAQgB1AIcAAAEgABEXEAAhIAA1NCYjIg4BFRQWFx4CFwcuAicuATU0PgIzMh4BFRQCBAEyNjcDLgEjIgYfAR4BASc+ATcXDgEBIi4BLwEmNjMyFhc+ATMyFhc+ATMyFhcTBycuASMiBh8BIycuASMiBh8BHgEXByYnDgElJxE0JiMiBhURJxE0NjMyFhUFG/6l/rlSAR4BMgElAUSsqbfaYWp3bYVgN0EtS29jmpU/it6gg7pjp/7I/TQ7RwoZA0cyP0EECAM/ArZKC15OJ0BJ/Xo+WTIECAVyYSBCGAxnUjJHGhhcRG1fBQ1LDAQ7SUJABxRQEgY/PEM9CBUFGhwQKRsaWwROUEE4OT5Qb1hYcf6sAY8BqCz+l/6uARzzoaUfRDo8NgIBHUxJLz49FQIDYGFBWjgaXrWEuf7wlQL4OSgBASEtTEecQEH+QQpZkiY/HnkBKjFcQp9jfxITSVYcGTlAeWf+/Qb7TlVqU/DYSERVVdczMQtKCxYqNxNGBE89Q0Q9/VnFAehacXFZAAAMAP7+rAkqBswAMQBeAGUAbABzAH8AkQDDAPABHQEpAVYAAAUiJyoBIyImNTQmJy4BNTQ3JjU0PgIzMh4CFRQHFhUUBgcOARUUBiMqASMGIyInBgUiJicuATU0Nj8BPgE/ARcHDgEPAQYVFBYXHgEzMjY/AT4BPwEXBw4BDwEOAQEnNTQzMhUXNTQzMh0BMzU0MzIdAQEiJjU0NjMyFhUUBhciNTQ+ATMyHgEVFCMiJicOAQMyNjceATMyNjcWMzI2NTQ2Nz4BNTQnNjU0AiQjIgQCFRQXBhUUFhceARUUFjMyNx4BAScuAS8BLgE1NDY3PgEzMhYfAR4BHwEHJy4BLwEuASMiBgcOARUUHwEeAR8BASImLwEuAS8BNxceAR8BHgEzMjY3PgE1NC8BLgEvATcXHgEfAR4BFRQGBw4BASImNTQ2MzIWFRQGEyc3PgE/ATY1NCYnLgEjIgYPAQ4BDwEnNz4BPwE+ATMyFhceARUUBg8BDgEHBKpVMwQGBEdlIzhPOwwoZ7r5k5P5umcoDDpQNyRlRwQGBDNVOy8v/WFDVwpKWmRaBzs1FJE1jh5NRQd6Tk0FLSscIwcBChwcmDWVEhAIAQtLAdA8Hh6gHh6gHh791zpQWD46UFe8JRcoGhooFyUMGg4OGkIeORMUOB4hNQomECY2OEBALREtnv7vrq7+7p0tES1AQTc2JhAmCjX+Q4UUNTsHWmRaSgpXQ0BLCwEIEBKBNYQcHAoBByMcKy0FTU56B0VNHoIE4UBLCwEIEBKVNZgdGwoBCCIcKy0FTU56B0VNHo41kRQ2OgdaZFpKClb+HT9XUDo+WFDfNYIeTUUHek5NBS0rHCIIAQobHYQ1gRIQCAELS0BEVgpKWmRaBzo2FHZDZkgXLiY3ZE8mIXV+kfa3ZWW39pF+dSEmT2Q3Ji4XSGZDJCTeWEkKV0I+UQ0BCBQUjzqNHiAKARI6LSkFU0Y1PQhMSx2ZPJUSM0EIWl4BIyiCIyOqqiMjqqojI4ICB1Y/QmBWP0BirTUeUz8/Ux41DQoKDf6JGBQUGCsjCzcnNk8mJkc9JCF6e6sBDZub/vOre3ohJD1HJiZPNic3CyMrBF2EFBQIAQ1RPkJXCkpXXloIQTMSgTyFHUtMCD40RlMEKi06EgEKIB6C+jteWghBMxKVPJkdS0wIPTVGUwUpLToSAQogHo06jxQUCAENUT5CVwpJWANSYkA/VmBCP1YCOTqCHiAKARI6LSoEU0Y0PghMSx2FPIESM0EIWl5XSgpXQj5RDQEIFBQABgEE/qwJJAbMABMAHwAoADQASABRAAABIiQAAjU0EgAkMzIEABIVFAIABCciJicBFjMyNwEOAQE0EjY3AQ4BBxciJjU0NjMyFhUUBgMyJAASNTQCACQjIgQAAhUUEgAEAS4BJwEeARIVBRTV/of+4aOjAR8BedXVAXkBH6Oj/uH+h9dvyFUBJTI3NzIBJVXJ/GNhsnoBJjA4AuMwREQwMkREMcUBWwEJl5f+9/6lxcX+pf73l5cBCQFbAakCODABJnqyYf6sowEgAXnV1QF4AR+jo/7h/ojV1f6H/uCj3TQyAfsaGv4FMjQDNocBA9xL/gYdYDp+RDAwREQwMET8u5cBCQFcxcUBWwEJlpb+9/6lxcX+pP73lwPDOmAdAfpL3P79hwAAAAAIAQT+rAkkBswAEwAbAEUAbgCCAIoAlAC9AAABIiQAAjU0EgAkMzIEABIVFAIABAEuASc3HgEXAyc+ATU0JicmPwE2MzIWMzI2MzIfARYHDgEVFBYXBy4BJy4BIyIGBw4BASc+ATc+ATcuATU0NjcXDgEVFB4BFxYVFAcGFRQWFxYHBicuASMiBwYBMiQAEjU0AgAkIyIEAAIVFBIABAEnPgE3Fw4BASc2MzIXByYjIgEmJyYjIgYHBicmNz4BNTQnJjU0Nz4CNTQmJzceARUUBgceARceARcFFNX+h/7ho6MBHwF51dUBeQEfo6P+4f6H/opYcAc8BlpJ1gSCpBURCQkVCAgIGR8bHgcICBUJCRAWpIIEa4s+DRULChUOPov9ug4bUj44onc5PjM3Cx0bV5pmFRJTBgQFDhYRO41JjXVNAwfFAVsBCZeX/vf+pcXF/qX+95eXAQkBWwFmFUhbBzsHcf5hIFltbFkfTVlZA5U1TXWNSY07ERYNBAUFUxIVZptWGx0LODI+OXqgNz5SG/6sowEgAXnV1QF4AR+jo/7h/ojV1f6H/uCjArIlm14CTHwf/jMQJsCGKW4qFwkWCA0NCBYJFypuKYbAJhARSk8RFhYRT0oB6wVjiDItOQ5Xmk5Mjk0HO2IwYqVuEQMVEQgkTQ4hExMLEBM8OV8+/LuXAQkBXMXFAVsBCZaW/vf+pcXF/qT+95cCYjkffEwCX5sCSDM3NzMu/c57Pl85PBMQCxMTIQ5NJAgRFQMRbqViMGI7B02OTE6aVw45LTKIYwAAAAIBBP6sCSQGzAAPACsAAAEiJjURNDYzITIWFREUBiMBMxEXNyURITUhNSE1ITUjFSEVIRUhFSERJwcFAalDYmJDBtZEYWJE/Fd+zz7+8wIg/eABGP7ofv7oARj94AIg0D4BDv6sYkMG1kRhYUT5KUNhAVQBB3JqlgGsfL1+qKh+vXz+mnVslwADAQT+rAkkBswADwA1AD8AAAEiJjURNDYzITIWFREUBiMlMiQ3PgE3DgEjIi4CNTQ+AjMyFhcuAScmJCMiBAYCFRQSFgQBNxcnNyMnByMXAapEYmJDBtZEYWFE/KmxARNaFx8Gb/6AiPG6amq68YiA/m8GHxdb/u6xq/7a23t72wEmAe6qqjyYv0dHv5j+rGFDBtdEYWFE+SpDYv6AXxcyFWBmZLT0kJD0tGRmYBUyF16BeNb+4qen/uLWeAIiXV2zgrS0ggAAAAYBBP6sCSQGzAAEAA4AEwAnADEAQQAAJS4BJwkBLgE1ND4CNxETEQEOAQcyJDYSNTQCJiQjIgQGAhUUEhYECQERHgMVFAYBIiY1ETQ2MyEyFhURFAYjBOx/4VYBtv4VRlBjr+mGUAG2VeGongET0nZ20f7snp3+7NJ2dtIBFAKw/hWG6a9jT/o8RGJiQwbWRGFhRBQIZ1QBsP6LWNl5iPC5bwj9k/0dAnP+UFRnWXbSARSdngEU0XZ20v7tnp3+7NJ2AU8B5QJtCG+574l52f1CYUMG10RhYUT5KkNiAAAABgEE/qwJJAbMAA8AGwAvAEMAWgBmAAABIiY1ETQ2MyEyFhURFAYjASImNTQ2MzIWFRQGAzIkNhI1NAImJCMiBAYCFRQSFgQ3IiQmAjU0EjYkMzIEFhIVFAIGBCcyPgI1NAInHgEVFAYHDgMVFB4BEzI2NTQmIyIGFRQWAaBAXFtABupAW1tA/IomNjYmJjc3JKUBINx8fNv+36Wl/t7cfHzdASGllP77xnBwxgEElZUBA8ZvcMX+/Hdy0KNei4QUEo56ZppmM1KUQzNERTIxRUX+rFs/ButAW1tA+RZAWwKBNiYmNzcmJjb+dnzcASGlpQEh3Hx83P7fpaX+39x8UHDFAQWUlQEExXBwxf78lZT++8Vwf16iz3KXAQFXLVo3e50MCjFOaUNPgEoDE0QxMkRFMTFEAAAACwEE/qwJJAbMAFcAZQBsAHMAegCBAIgAjwCWAJ0ArQAABTI2PQE+ATcXFjI3PgEvAT4BNzMyNjU0JisBLgEnNzY0JyYiDwEuASc1NCYjIgYdAQ4BBycmIgcGFB8BDgEHIyIGFRQWOwEeARcHBhYXFjI/AR4BFxUUFhMiLgE1NDYzMhYVFA4BBS4BJyEWFxMuASc3FhcTETY3Fw4BJSc2NyEOAQMmJzceARclJicRHgEXBSc+ATcRBgU+ATcXBgcBIiY1ETQ2MyEyFhURFAYjBRQRF27QVUsNHwwMAQ1LS1YHahEXFxFqBldMTAwMDB8NTFTPbxcREBhvz1RMDR8MDAxMTFcGahAYGBBqB1ZLSw0BDAwfDUtWz24YEDNWM29NTW8zVf4SQEoGAUEJKa9gsUjjNEJQQjTjSLEBMuMpCQFBBkrxCSnjQUoF/lU2QV+xSf3g4kmyXkH+HwVLQOMpCf2fRGJiQwbWRGFhRHEYEGsGVktLDQwMIA1LVNBwGBARF2/PVUsMIQwMDUtLVgZrERcXEWsGVktLDQwMIQxLVc9vFxEQGHDQVEsNIAwMDUtLVgZrEBgCcTdXL05vb04vVzfFSLFhQjX+VQZKP+QpCf6/AUEJKeQ/SsLjNUJhsQFiQjXiSbFfsCgJAUAFSkDi4kBKBf7ACdhfsUniNUL7x2FDBtdEYWFE+SpDYgAFAQT+rAkkBswAEwAlADEARQBRAAABIiQAAjU0EgAkMzIEABIVFAIABAEnPgIzMh4BFwcuAiMiDgETIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEiJjU0NjMyFhUUBgUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of9TEYxq9ZxcdWsMUYqlbtjY7uVUzNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcAiczSkozM0pK/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEB+ShYhEpKhVcoS3JBQHICG1k9PlhYPj1Z+/CVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEEFk9PlhYPj1ZAAANAQT+rAkkBswAEwAdACcAMQA7AEUAWQBhAGsAdQB/AIkAkQAAASIkAAI1NBIAJDMyBAASFRQCAAQBJj8BNhcWDwEGFyY/ATYXFg8BBjcmPwE2FxYPAQYBIic3FjMyNxcGASc2MzIXByYjIgEyJAASNTQCACQjIgQAAhUUEgAEASc+ATMVIgYBJj8BNhcWDwEGFyY/ATYXFg8BBjcmPwE2FxYPAQYBJzYzMhcHJiMiAS4BIzUyFhcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/JEWCjcLFxcLNwtXFwtRCxcXC1ELcRYKNwsXFws3CwGLt8M0qpyYrzLE/SM8aIiIaDxRY2MB18cBXAEIlZX++P6kx8f+pP74lZUBCAFc/nU2QrqDdp0DcRYKNwsXFws3C1cXC1ELFxcLUQtxFgo3CxcXCzcL/l48aIiIaDxRY2MBQTaddoO6Qv6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAy4LF3MYDAsXcxgQDBarGAwMFqsYKAsXcxgMCxdzGP6soT6Pjz6hAmg0d3c0W/u/lQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBVM8PDhQLv1ZCxdzGAwLF3MYEAwWqxgMDBarGCgLF3MYDAsXcxgBFDR3dzRbARIyLlA4PAAAAgKA/qwHqAbMABwALAAAAREjNTM1LgECNTQ+AjMyHgIVFAIGBxUzFSMRAzI+ATU0LgEjIg4BFRQeAQSc9/ed9ItntfCIie+1Z4vznvf3eHW+cXG/dHS/cXG//qwBD/D8Hr0BFJ+J8LZoaLbwiZ/+7L0e/PD+8QPgc8F1dMBzc8B0dcFzAAAAAAIBE/6sCRUGzAAcACwAAAEiJCYCNTQSNiQzMhYXASE1IREjEQEeARUUAgYEJzI+ATU0LgEjIg4BFRQeAQPslv74yXJyygEHlnHSWgHw/qsC8fD+EUVIccj++ZeH3YOD3YeF34WF3/6scskBCZaVAQbIckI/AgLw/Q8BWf3/Xdx0l/73yXHwhN+HhtyDhNyFht+FAAACAQT+rAkkBswAFwA4AAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEDMxM+ATMyFhczLgIjIgYHCwEuASMiDgEHMz4BMzIWFwUUq/7K/vvAamrAAQUBNqurATYBBcBqasD++/7K4m5pF2laVnMEeANXkFuKrBwoKBysilqRVwN4BHRVWmoW/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAdMCmY2FfFldl1m1w/7mARrDtVmXXVl8hY0AAAADAQT+rAkkBswAFwAnAEUAAAEiLAEKATU0GgEsATMyDAEaARUUCgEMAQMiLgE1ND4BMzIeARUUDgEHMj4BNTQmJz4BNycOAiMiLgEnBx4BFw4BFRQeAQUUq/7K/vvAamrAAQUBNqurATYBBcBqasD++/7Kq2WoY2OoZWanY2OnZofdhINxdqccdBeEuWVluIUXdB2mdnCEhN7+rGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmsBxWOoZWanY2OnZmWoY3iE3oaD40A0uHAfWI5TU45YH3C4NEDjg4behAAAAAADAQT+rAkkBswAFwA5AEcAAAEiLAEKATU0GgEsATMyDAEaARUUCgEMAQE+AjMyHgEXNy4BJxE+ATcnDgIjIi4BJwceARcRDgEHJREeATMyNjcRLgEjIgYFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yv1OJJ7Sc3PSniRQKItaWosoUCSe0nNz0p4kUCiLWlqLKAGFMmk3N2kyMmk3N2n+rGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmsBxiEzHh4zIVglOhMDABQ5JVggNB4eNCBYJTkU/QATOiWFAtoHBgYH/SYHBgYAAAAFAQT+rAkkBswAFwAnAEAAWQBpAAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEBIi4BNTQ+ATMyHgEVFA4BATIkNjU0LgEjIg4BFRQeARcGIyImJwcWBAMyPgE1NC4BJzYzMhYXNyYkIyIEBhUUHgEFIi4BNTQ+ATMyHgEVFA4BBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sr9xEh1RkZ1SEh0RUV1AYXXAUW1ZqxpaKtmP3BLZXK+/VdSaAEp+WirZj5xS2Vyvv1XUmj+2NTX/ru1ZqwDi0d1RUV1R0h2RUV2/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrA7BGdUhHdUVFdEhIdUb933jYjmmsZmasaVCJYhcUTVRWZF8BqWasaVGIYxYUTVRWZV54149prGbMRXVHSHZFRXZIR3VFAAAAAAMBBP6sCSQGzAAXACcAZwAAASIsAQoBNTQaASwBMzIMARoBFRQKAQwBASIuATU0PgEzMh4BFRQOAQEyNjcnBiMiJjU0Njc+ATU0LgEjIg4BFRwBFS4BIyIOARUUHgEzMj4BNTQmJy4BNTQ+ATMyHgEVFAYHDgEVFBYFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yv3MP2g+Pmg/QGc+PmgCpEV9K1I3YklNT05BcGqzbWm0bh9GI2CfXl6fYGCfXiUUExNKfk1NfElbPkNykv6sa8IBBQE2qKgBNgEFwmtrwv77/sqoqP7K/vvCawMMPWg/P2g9PWg/P2g9/lcuKlk5WFNCo2FQtWRus2tjqWkHDgcODl6eYGCeXl6fXzxdISBDKE19Skl9TkiMTVPPbIWeAAAAAAMBBP6sCSQGzAAXAEoAVwAAASIsAQoBNTQaASwBMzIMARoBFRQKAQwBATcuASc2EjU0JiMiBy4BIyIHJiMiBhURMxE0MzIWFREzETQzMhYVERQWFwYHFz4BNx4BAy4BNRE0NjMyFhUUBgUUq/7K/vvAamrAAQUBNqurATYBBcBqasD++/7KAW49YF0WsrmEbl49EYxtkUNDj4GOeJdKTXiXSk0GB3+gP02BOSBxSgECTEQ9Q4n+rGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmsBR2o3WzubASiBfZU9doRzc6qa/P4DAsxoZPz+AwLMaGT+GjpdJmdjZi9aLUJrAYcXLxcBO1hiUEpc4QAAAwEE/qwJJAbMABcAGwA/AAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEBITUhNSE1LgE1ND4BMzIeARUUBgcVITUhPgE1NC4BIyIOARUUFhchBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sr88wTE+zwBo0dWXp5gYJ5eVkcBo/7uP0V/1IGA1X9FP/7u/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAhB4m5QrolxalFhYlFpcoiuUeD+qXHvLeHjLe1yqPwAAAAIBBP6sCSQGzAAXAEYAAAEiLAEKATU0GgEsATMyDAEaARUUCgEMAQEyNjczJwczDgEjIiY1ETQmIyIGBy4BIyIGFREzETQ2MzIWFREzETQzMhYVERQWBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/soBNW6BBWKenmIEPDs+PZF9SGsiImtGgI54S0xJTniXSk1//qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAfuQftnZTUpcXwH2lrA9Ozs9q5v9KALYaWVqZP0oAtjOaWX+B5CfAAACAQT+rAkkBswAFwAoAAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEJARc3JwERMxEhFSEBJwcXAQUUq/7K/vvAamrAAQUBNqurATYBBcBqasD++/7K/YEBbuhU6AHFeP2yAYL+OuhU6P6S/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAcIBbuVV5AHF/pICOnj+POVV5f6TAAAAAwEE/qwJJAbMABcATgBaAAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEDMjY3FjMyPgE1NC4BIyIOAQcmNRE0JiMiBgcuAScHFhURMxE0NjMyFhURFBYXDgEjIiYnBx4BASInPgIzMhYVFAYFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yshlkyBIV2GWVUmAUVqCTApuk3pHcSMTNyBIfHhQR0dQcGcUVzsfRxFRIG8B7kw/CCpPPEhadP6sa8IBBQE2qKgBNgEFwmtrwv77/sqoqP7K/vvCawE1e24UUI1bV4dOX7eGV7IBXIymPTogNxhgWaX9lwKdWWFhWf6kiM86TFIaEVghKQFNEn+cR2RQVmoAAAMBBP6sCSQGzAAXAFoAnQAAASIsAQoBNTQaASwBMzIMARoBFRQKAQwBATI/ATYzMhYfARYzMj8BPgEzMhcTNwMuASMiBg8BDgEjIiYvAS4BIyIGDwEOASMiJi8BLgEjIgYHAxcTNjMyFh8BFhMyPwE2MzIWHwEWMzI/AT4BMzIXEzcDLgEjIgYPAQ4BIyImLwEuASMiBg8BDgEjIiYvAS4BIyIGBwMXEzYzMhYfARYFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yv5XUStjDhAIDgljLFBQLGQJDQgRDo1tkx4+Kik+F2QKCwcHCwpbHD8sKz8cWwkLCAcLCmQWPykrPR6UbowPEQgNCWQsUFErYw4QCA4JYyxQUCxkCQ0IEQ6NbZMePiopPhdkCgsHBwsKWxw/LCs/HFsJCwgHCwpkFj8pKz0elG6MDxEIDQlkLP6sa8IBBQE2qKgBNgEFwmtrwv77/sqoqP7K/vvCawHiY90gDBTdY2PdFAwg/tAzATQ+Ni803RUNDRXMPjY2PswUDg0V3TIxNj7+zDMBMCAMFN1jAnFj3SAMFN1jY90UDCD+0DMBND42LzTdFQ0NFcw+NjY+zBQODRXdMjE2Pv7MMwEwIAwU3WMAAgEE/qwJJAbMABMANwAAASIkAAI1NBIAJDMyBAASFRQCAAQBNhI3IRYSFzcuASchNSE+ATcnBgIHISYCJwceARchFSEOAQcFI9/+gf7goaEBGwFy0t8BgAEgoaH+5P6O/RWAlwoB0guWgEZpewoBL/7RCntpRoCWC/4uCpeARml7Cv7RAS8Ke2n+rKQBIwGC3s8BbwEaoaT+3f5+3s/+kf7moQGjWQEpuLj+11lgSvWbeJz1SWBZ/te4uQEpWGBJ9Zx4m/VKAAAGAor+rAeeBswAPwBRAGkAgQCYAKgAAAEiLgM1NDY3JjU0Njc+ATc+ATcuATU0NjcmNTQ+ATMyHgEVFAceARUUBgceARceARceARUUBx4BFRQOAycWNjU0JicuAScmBgcGFhceATcyNjc+AScuAQcOASMiJicmBgcGFhceARMyNjc+AScuAQcOASMiJicmBgcGFhceARMyNjc+AScuAQcOASMiJyYGBwYWFx4BAxY3PgE3NicuAQcOAQcGFgUUecufbjkqIwlZPQU+LkMmBExSOjRJVJViYpVUSTQ6UU0FJUMvPgQ+WAkjKjlun8u+FBsZFGCmQxIeBwcNEEe2sJvsRg0GCQoeEUHNkJDNQREdCwkGDUbtml6RPREQBgUcEzqFVFSEOxMcBQYQET2RXjZvQxAMBQUdETJlNWljER0FBQwQQ29OIQsIJh8hBAIeETJFDAQQ/qwYLkBRLydOGhsoPpEnNEwLVLJnF1U5MkcPWH9jmllZmmN/WA9HMjlVF2eyVAtMNCeRPigbGk4nL1FALhiCARMREBQBBiQcCAgODxwIICfVNTEJHQ0PAwsrKiorCwMPDR0JMTUBNhATBRoRDw0FDhERDgUNDxEaBRIRAooWFgUcEA8LBxMSJQcLDxAcBRcVAZgFKx0iCgweEhEFDUU1EB4AAAABAXL+rAi2BswAPAAAASImNTQ+ATc+AjU0Jw4CIyIuATU0NhI3PgM3HgMXHgIVFA4BIyIuAScGFRQeARceAhUUBiMDBBwjMGFHOXFMBUJ2eEd9vmpZsoUyjJmKMTGKmYwyhbJZar59Rnl2QgVMcjhIYDAiHf6sJB4iQkEfGUZnSBYcN0MdZrh6Z+IA/5A3jZSAKSmAlI03kP/iZ3q4Zh1DNxwWSGdGGR9BQiIeJAAAAAEBLP6sCPwGzABAAAABIiY1ND4BNz4CNw4BIyIuATU0PgEzMhYXLgE1ND4BMzIeARUUBgc+ATMyHgEVFA4BIyImJx4CFx4CFRQGIwL6KDA2WTU4cFYQLqpulOmFf9uKHjAcLCmC4I2N4IIpLB0vHovaf4XolW2qLxBWcDg1WTYwKP6sMyg0RDAWGD1fTD5FeNGFidl+CApHeDuP4oOD4o87eEcKCH7ZiYXReEU+TF89GBYwRDQoMwABALT+rAl0BswAFwAAAQgBAjU0EiQzMh4BFz4CMzIWEhUUAgAFFP52/hLokwD/onTTrTg5rNRzo/6T6P4S/qwBLgIEAc7bqgEGlVWhcnKhVZX++qrb/jL9/AAAAAECEv6sCBYGzAAbAAABIiYnAS4BNTQ2NwE+ATMyFhcBHgEVFAYHAQ4BBRQrMyj9wiUZGSUCPigzKyszKAI+JhgYJv3CKDP+rC03AyE0NiEhNjQDITgsLDj83zQ2ISE2NPzfNy0AAAAABADm/qwJQgbMACAANABKAF4AAAEiLAEmNTQ2NzMOARUUFgQzMiQ2NTQmJzMeARUUBgwBIwE+ATU0LgE1NCUzDgEVFB4BFRQFJT4BNTQuATU0NjczDgEVFB4BFRQGBwU+ATU0LgE1NCUzDgEVFB4BFRQFBO/c/oj+55x8a1UfE8IBafn6AWjCEiBVa3yc/uf+iNz9PhISMzQBCmESEjQz/vYBdxAROzqLmWYQETo7i5kBqhISMzQBCmESEjM0/vb+rFuk3IB02kZBSSqb4Hl54JsqSUFG2nSA3KRbAr9NiTxZsLZf3rtMijxYsbVg3rsGTa42cczDYYDbbkyvNnHNwmGB2m4GTYk8WbC2X967TIo8WLG1YN67AAYAr/6sCXkGzAAeAD0AUABhAH0AjgAACQIzFSEyPgE1NCcDBQEHASUTFhUUBgcBDgIrARUlIiYnAy4BNTQ2PwEnNyUTBycHDgEVFBYzIREhNyERJTQ2NxMXBwMFJxcHDgEVFBYXEwE1MzI+ATcTFw4BIyE1FwkCJRM+ATMhMh4BHwE3FwMlJzcnLgEjIgcDBRMXARMXBycuAiMhJx4BFxMHJwae/pkBZ0gBDWKKShaz/uABAEj+2gGs3B8kIf72HzxSQVb79E91Ls8SDhccLaolAiC7JI2BJCNdRgFr/e8JAlj9WSIqp7k4ov4uCOFUFxIODcMEb6M2OSUY8TU8lE7+qT3+ygEz/T7+RsAjg2cB2DZJPyYwoSiR/dkpiZo6gD5jLZ0BKudEAfZ/NsZaHSwzKv5PBUVwMcSwDv6sAaYBpaUyXD8nJQE4o/49IwIF8P6CNT0nYTH+ei4xEsN8Vl4BqSYyGCBEMk5gP2j99j5Q5EBvMEVoAU1Q/hPqQZNJASZpJQG9WUuAkig1FxAlG/50/r/sCB8jAWEYJCzTGP6V/pgE8tkBjEhDFTo3RW49/eo7PF3gVVhe/ryVAdws/n0BzSaIgyssEC8WVUj+43dCAAAAAAQBBP6sCSQGzAANACkANwBHAAABIi4BNTQ+ATMyFhcOAQcyNjceATMyPgE1NC4BIyIGBy4BIyIOARUUHgElIiYnPgEzMh4BFRQOAQEiJjURNDYzITIWFREUBiMDXkRyQ0NyRFupcnGpXnTKenrLc2CdXl6dYHPJfHvJdF+eXl6eA81bqnFyqVtFcUNDcfqbRGJiQwbWRGFhRAGcRXRGR3NFeIiGeGSIkJCIYKJhYqFgiJGRiGChYmGiYGR4hoh4RXNHRnRF/RBhQwbXRGFhRPkqQ2IABAEE/qwJJAbMAA8AIwBXAGMAAAEiJjURNDYzITIWFREUBiMBMjY3JwYjIi4BNTQ3Jw4BFRQeASU+ATU0Jic3AwYWMzI2NxM2JgcFNzY1NCclJiMiDwEGFRQWMzI/ARcDBgcXNjMyHgEVFAcBMjY1NCYjIgYVFBYBqkRiYkMG1kRhYUT74k+SPXNOXVWOVDRzLzJ/1gHdPEEaGosfAzEqJDEDJgQ0LP6vsSM4/mITGCAb0R0yJCMZoYvrjmdxWXVWjVROAX4+WFg+PVlZ/qxhQwbXRGFhRPkqQ2IBGTIvczRUjlZaUHM+kk2C13+YQ6VYNWs1CP6EKTYtIwHhLDUCEskoKjoh8QwYuhonJDQWj1H+9BdfcU5UjVZ2WQPfWD0+WVk+PVgAAAAJAIz+rAmcBswAFwAbADMARwBbAHAAdACbALcAAAEiLwEmNTQ3ARcBBhUUHwEWMzI3ARcBBgkBNwkBIicBNwEWMzI/ATY1NCcBNwEWFRQPAQYBIi8BJjU0NwE2MzIfARYVFAcBBicyNwE2NTQvASYjIgcBBhUUHwEWAyInJjU0Nj8BPgEzMhYVFAYPAQ4BCQE3AQUiJicuAScHBiMiJicuAycmNTQ/AS4CJzclHgIXHgIVFAYnMjY1NC4BJy4CJzcFHgIXBx4BFzceARceAQKPNihvMyYEdzn7iA4WcBIYHBQEHzv74i4BX/6mOAFbAyA+Lv3VNAIzFBwYEnAWDv2LNAJ5JjNvKPoYTDWTMzMCDTNLSzSTNDT98zdFJh4CDB0dkx0pJx798xwckx41BwMSCRg9EScaFhoKEXMRGwN0/pQ2AW8EHC9KNSpqN4sRFAwgJgowODENEQ15KHiDOQMBJU26ukxcikwvLg4IQoRiQrKzRVb/AD+HfS+hJVs0qTedRC8n/qwjYi49OiYEdjz7jg0bHBNgERcEqjb7WDMDgwGDN/59/EYzAnU8/YMXEWATHBoOAnM9/YgmOj0uYiMEGzWUNUpLMwIMMzSTNEtKNP30NVAeAgwdKCkdkx0c/fQcKSsckx4CGwQVHQ4jFjsRFxQOCxkRbxEJ/ccBbTb+lK1UVkR6K5EREh0ILTczDREZEhCLHzgrCVrBDFiIU2T08mElOlASDkTL6HBMfVQNDKkON0YluzBYJbEik3JOOAAEATv+rAjtBswAXwC/AMsA1wAAASIsAScOAQcuATU0NjMyHgEfAR4BFw4BBx4CMzI2NxMnLgE1NDY/Ai4BNTQ+ATMyHgEVFAYHHwEeARUUBg8BEx4BMzI+ATcuASc+AT8BPgIzMhYVFAYHLgEnBgwBJyAANx4BFz4CNTQmIyIOAQ8BDgEHHgEXDgMjIicDNz4BNTQmLwEDPgE1NC4BIyIOARUUFhcDBw4BFRQWHwEDBiMiLgInPgE3LgEvAS4CIyIGFRQeARc+ATcWAAEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgUUs/7C/wBWFC4XGx46NhgtQjQUIFc3DCUXLXl7LwsMAS+XNDo7NKwNTWVRiVJTiFFlTQ2sNTo5NZcvAQ0KL3t5LRYmDDdXIBQ1QS4XNjoeGxYvFFb/AP7CswEGAaJ2FScOCBALExAIHTEnFBZAJRIhGRdmhIk6YAY33x0PEBvrFlBrPGVAP2Y8a1AW6xsQEBzfNwZgOomEZhcaIBIlPxcUJzEdCBATCxAIDicVdgGiAQY3UVE3OFBQOB8tLR8fLS3+rHPcmwcIAl+0TGRtGUI/GCdcNRUjDixLLQ0NAnAbCjMsLTUIG7Ihi1hRhE1NhFFYiyGyGwg1LSwzChv9kA0NLUssDiMVNVwnGD9CGW1kTLRfAggHm9xzUAEI7wcJAh1iZyM4Qxg2LxgbQyYPEw4uX04wUALMJwUMCgoMBCUBKQ11UT5kOjpkPlF1Df7XJQQMCgoMBSf9NFAwTl8uDhMPJkMbGC82GEM4I2diHQIJB+/++AYmUTc4UFA4N1E8LR8fLS0fHy0AABUA5v6sCUIGzAAQACsAOQBGAFMAYAB8AJYAmgCnALUAwwDeAOsBBwEhATIBNgE6AT4BQgAAJScBNjcXBgcBJwE2JDcGAgcBIicmNTQ2HwInJgYVFBYXHgEzMi8BHwEWBj8BLgEnJiMiBhUUFx4BPwEuAScmIyIGFRQXFgciJicuATU0NxMXBQY/AS4BJyYjIhUUFx4BBSInLgEnLgEnJjU0NjMyFx4CFx4CFxYVFAYnMjU0Jy4CJy4CJyYjIhUUFx4BFx4BFxYlATcBBTY3NjU0JiMiBw4BByc+ATc2NTQmIyIHDgEHFz4BNzY1NCYjIgcOAQcXIiY/AgcGMzI2Nz4BNTQmDwE/ATYWFRQHBiciJyU3ExYVFAYHDgElIiY1NDc+Ajc+Ajc2MzIWFRQHDgEHDgEHBicyNz4BNz4BNzY1NCMiBw4CBw4CBwYVFAkBJgInFgQXAQcBJic3FhcJAjcJAjcJAjcBBScBFwPNOARSmCkO+pb7rzgEUGEBE6AMdGL5pzxRUzQoNAMuDBAgIB4rDRkDBUQGBTYfJBYuDgUFBw4HCyZjJRYtCwUJCQsHGjIWNRwcIwvp3f7zDJcmGjkJBAkVBQczAaEjIj2YYmSDLxowHiMiJ1RuT09nRRsZKyUNCxtCZE9PblEkDwwMDC1+ZWWTORECNf6YOAFoATkqGgcMCAkFCywXKBg0BwUNCAcGDTUawRUmCwcNCAYECjIWbCg2BAZEBQMZDSseICAQDC4DNCg0U1F2Egz+893pCyIdHDT9uCIsGRxEZ09PblQnIiMeMBoug2VilUAlHgkROpRkZXowDQ0KESVRbU9OZUEbDP4L/hJhdQyhARJhAfM5/g2W+g4pmAHwAq3+myoBZf15/NYrAyoCp/6XOAFp+78qBYYrZjkEUpj4DiuW+604BFNhdA2h/u9i+fRSVDooMwMERAUCCwsNKyEfHRssBDMoNNEfCCoSBxAICAwUITsbCzASCRIHCwsnvSAcHToWDw0BDN3pC+UcDzYSCBsJCg4syRovgmVolDwiIyIrGBxDZlFRblInIyIfMEIODA8lUm1OTmNCHAwNCw84kWlofSsN1gFoOf6Y3hsnCwsIEQkTLwsoES4OCgkMDwgQOA+jCSEUDAgHEQcTKQjwNCgzBCwbHR8hKw0LCwIFRAQDMyg6VFJzC+nd/vQNDxY6HRwgLzAfIiMnUm5RUWZDHBgrIiMiPJRoZYUsGkINK3xpaZQ1DgwNDBtCY09OblElEAsOAzkB72IBEaENdGH+CzcB9JYrDviY/hD98AFlK/6bAjIDKir81v3nAWk6/pWmKwWGKgAAAAQCDf6sCBsGzABaAF4AZgByAAABLgEnJS4BNTQ2MyEyNjU0LgEnJS4CNTQ2MyEyNjU0JiMhICQ1NDYzMh4BFRQrASIVFDsBBiMiJicUHgEzISAVFAYjISIGFRQWFwUeARUUBiclIhUUFhcFHgEFETMRATI1NCMiFRQFIiY1NDYzMhYVFAYHHzihZf7YwqOThQHYVkIiXVv+PWuwZ7zCAjxrWlRu/g7+wf7EtY1RcDs2OBsbJgRcQG8iS76sAfsBmdjU/clIPERiAb3kxbK//hc/QFIBNaGM/ixQ/ekgIB8CD0lmZ0hIZmX+zCs9DikbXldfaRkdERYTCjUNMmdZa2giJyQdkJR2lyY9JS4YFyYNDS48HPt9gRIVFhgMNxxvaHZsAQMrGyALKxZ3kQb/+QEHAh8gIB8/ZklIZmZISWYAEwC+/qwJagbMABkAIAA6AHUAeQCFAJEAnwC0ALsAzQDpAO0A+QEFARoBKwE3AUMAAAUiLgE1NDY3ExcDPgEzMhYXAzcTHgEVFA4BJTI2NyEeARciLgE1NDY3ExcDPgEzMhYXAzcTHgEVFA4BASIuATU0Njc+AS8BJjY3FwYfARYOAQcOARUUHgIzMj4CNTQmJy4CPwE2JzcWDwEGFhceARUUDgEBETMRAyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASInERcRFjMyNxE3EQYBIic3HgEzMjY/AT4BNwcOAQ8BDgEBMjY3IR4BASInNxYzMj8BPgE3BwYPAQ4BBSImNTQ2NxcOAhUUFjMyNjU0LgEnNx4BFRQGAREzEQEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiJi8BLgEvAR4BHwEeATMyNjcXBiciJi8BJi8BFh8BFjMyNxcGFyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWB/dqqGEMB/1J/jKRVVaRMf5J/QgLYaj50HqFCf3wCYZ5aqhhDAf9Sf4ykVVWkTH+Sf0IC2GoAnm51lpUXkUvAgMENTctSwYDAytMMDZKHlWihISiVR5KNi9MKwIDBkstbwcDAi9FXlRa1vw8UChFYmFGRWJiRSM0NCMkMzMDB0E4UBoPDxpQOP3HhV9hHEIlLGU/EB1DIw0aLBQOLn4EmXqFCf3wCYb7oUE5HyY1O2gPK2Q5EFRGDzNiAclYc0UyPBQuIUQ3N0QhLhQ8MkVzAmNQ/PU3T083OE5OOBcfHxcWICACDkJ9Lw4ULBoNI0MdED9lLCVCHGFeiSxiMw9GVBBxVw9oOzUmHzmtRWJiRUZhYkUkMzMkIzQ1CDtvTBU2GgNxF/yKFw0NFwN2F/yPGjYVTG87UEY/P0ZQO29MFTYaA3EX/IoXDQ0XA3YX/I8aNhVMbzv+tBc8Nj1IIhklJTRHZB1FJGA2LDwpEBIrHw8ZEgkJEhkPHyoTESg8LDZgJEU8jDQlJRkiSD02PBcCfQOP/HEDbGJERmFiRURiUDQiIzQ0IyI0+9smA6cm/LsICANFJvxZJgOgVBwPERgYBgsRB1QFDAgGEyP76EY/P0YEtiFMHSkGERgGUgwbBhQbumdORKQzMBVYXiAsOTksIF5YFTAzpEROZ/zlA4/8cQSYTjc4Tk44N05QHxYXHx8XFh/+TyMTBggMBVQHEQsGGBgRDxxUnhsUBhsMUgwjBikdTCFpYkRFYmFGRGJQNCIjNDQjIjQAAAoA7v6sCTMGzAAsADIARABuAHwAhQCVAKUArADiAAABIi4BNwEXLgE1NDYzMhceAQQzMiQ2NzYzMhYVFAYHNwEWDgEjIiYnASEBDgETJicXFhcBIiYnAxcTHgEzMjY3EzcDDgEFMjcBHgEzMjY3ARYzMjYnAT4BNTQjIgcOAQQjIiQmJyYjIhUUFhcBBhYBIiYvAR4BMzI2NxcOASciJic3IRcOAQMlLgEnHgIzMj4BNw4BByUiLgE1ND4BMzIeARUUDgEBJz4BNzMGEzY1NCYnBRY2NzY1NCclLgIjIg4CFRQWFycuATU0EjYkMzIeARcFHgEVFAcOASclNxQGBwFqKDwYDgE5GamwNCoeGDPTAROTlAES0zMYHio0tqEXATkOGDspIjkO/pf+Dv6XDTmTYTtiLj4B0y5DAxdRFgEVDg8UARZRFwNC/RYYCAF0R5hYWJlGAXQIGBQcB/62oLoiDA053P7lmZj+5Nw5DQwiuqD+tgccAtVctFEUZrVaVadbHFW9VF6NSDICAjJIjWz9/wsQAiCa3oaG3pogAREL/gCP+JmY+JCQ95iZ9wGRKBckDlswHw8BAgHAHS8NChz+BGTc6XmK8rdoBwdTBQZ0zQEPm4L55mUCBB4gDBRgMv52HgUH/qwuRyUDOyYeZkMpMgoVLB8fLBUKMilGZxkl/MUlRy4kHwND/L0fJAMgYH0OUDv9ED8uAYsY/pIOFBMPAW4W/ncuPyQUA3IHCAgH/I4UIBIDYRhOLSAFFTAhITAVBSAtThj8nxIgAfouK1w0MSouRy8ytCwpXFwpLAFUJiBTKBIbDg4bEihTIMQTHg8PHRMTHQ8PHhP9+k4aMRlhASVFRCMuDmwHNDAnHzYO+DFcPGi38ooiQyILHT8gmwEPzXQ/YDL+D0YzLC1MWQxeEydOJwAAAAYBBP6sCSUGzAApAFMAYwBvAH8AjwAAAQMuAScFJxMmJyURJTY3AzcFNjcTIRMWFyUXAxYXBREFBgcTByUOAQcDJTMTNjcXNyc2NyU1JS4BJxMnByYnAyMDBgcnBxcOAQcFFQUWFwcXNxYXEyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFhcyPgE1NC4BIyIOARUUHgEXIi4BNTQ+ATMyHgEVFA4BBGIiH0Mk/vj81yMS/qwBVRMi2PwBCTlMIgFlIkk8AQj92SIUAVX+rBQh1/3++CNCICL+49Ugc2P9lc5CFQFF/rwNLR/Plf1obiDVIW1p/ZTPHy0O/r0BRRNDzZT9YnSLTX9LS39NTn9LS39OVnd3VlV3d1V2wXR0wXZ1wnR0wnWJ4oaG4omJ4oaG4f6sAVQJGxLX/AEJRUAiAWMiRj0BCvzXIRYBU/6tFSLX/P72PEci/p0iQUT+9/zXEhsJ/qxQAUMZQc6U/W5oIdMgPGouAP+UzkQVAUT+vBVEzpT/Lmo8INMhZ2/9lM5AGgFlS39NTn9LS39OTX9LS3dVVnd3VlV333TCdXbBdHTBdnXCdEaG4omJ4oaG4YqJ4oYAEAEE/qwJJAbMAA8AHgAqADYAQgBRAF0AlQC5AMUA0QDgAOwA+AEEARMAAAEiJjURNDYzITIWFREUBiMBIicmNTQ2Nx4BFx4BFwYBIiYnPgE3HgEXDgEBLgEnHgEXHgEXDgEDLgEnPgE3DgEVFBYnLgE1NDc2MzIXDgEHDgEBLgEnPgE3PgE3DgEDMjY3HgEzMjY3NjU0Jic+ATU0Jy4BIyIGBy4BIyIGBy4BIyIGBwYVFBYXDgEVFBceATMyNjceARMuAScuAScuATU0Njc+ATc+ATceARceARceARUUBgcOAQcOAScyNjU0JiMiBhUUFgM+ATceARcOAQcOAQEiJz4BNz4BNx4BFRQHBgM+ATU0JiceARcOAQMuAScuASc+ATceAScuASc+ATMyFhcOAQEuAScuASc2MzIXFhUUBgGqRGJiQwbWRGFhRPrAdSMOT0kgTC0GEwxhAYY3ZSYvYTIyYi4mZf7wCAwFDh0PFy8XHj+ZGSwUFC0YAQEBkUlPDiVwSGoNEgYpTAKZIT8eFy8XDx4NBA3hVI0vN2IqUG8eG1pWVVsaHG9OLmU1Lo5UVI0vNGYuTm4dGltVVVsbHnBPKmI3L41UIkkjHDkaAwMDAh86HCBEJSVEIBw6HwIDAwMaOB0jSCMrPDwrKzw8xwUNBx0/IhYsFhAgArhOYgwTBi1MIElPDiL6AQEBARgtFBQseA8gEBYrFyI/HQgN7jFjMCdmNzdmJzBiAbEiTSkGEg1qSHIjDk7+rGFDBtdEYWFE+SpDYgJUORceNY5PH0AiP3MyG/7ihnwQKBgYKBB8hgFQI0giCRMKDxoNDRkBLxQnExQnExMlEhUpc1CPNCIWORw0dT4fQP4dCxkNDRoPChMJIkj+PaOYDg8yLSk2RatcXK1GNCsuMA8PmKammA8PMC4rNEatXFyrRTYpLTIPDpijAfwSKBYSJhMkSickRiIWKBEUJxMTJxQRKBYiRiQnSiQTJhIWKLY8Kys8PCsrPAFeJkkiChoQCxoOChX9QRsycz8iQB9PjjUeFzkBbBQpFRIlExMnFBMnATQLFQoOGgsQGgoiSWcZKBB9h4d9ECj+mSJAHz51NBw5FiI0jwAAAAAEAUD+rAjoBswAgwDfAO0A+wAAASIuATU0PgEzMhYXBy4BNTQ+ATceAhUUBgcnPgEzMh4BFRQOASMiJz4BNTQmIyIGByc+ATMyFhUUBgcnHgEzMj4BNTQuASMiBgcVIzU+AjU0LgEnDgIVFB4BFxUjNS4BIyIOARUUHgEzMjY3By4BNTQ2MzIWFwcuASMiBhUUFhcGAS4BNTQ2NxcOASMiJjU0NjceATMyNjUXFAYjIiYnMw4BFRQWMzI2NTMOARUUFhc+ATU0JiczFBYzMjY1NCYnMw4BIyImNTcUFjMyNjceARUUBiMiJic3HgEVFAYBIiY1NDYzITIWFRQGIyUhMjY1NCYjISIGFRQWAk5SeUNjrW5dsEYYKyNRoXd3oVEiLBhHr11vrGNDeVIvJRcXSz5CYBVIGotaXHgNGAsECgY3US1Pilp73D9OSE0cQX9eXYBBHUxITj/ce1mLTy1RNwYKBAsYDXlbWowZSBVgQj5LFxclApdpXwsKECJ9UmJ/KS0aLyEuLUlVTSdBFB8ODFNDa4BuISFDOjtCISFugGtDUwwOHxRBJ0xWSS0uIS8aLSl/YlJ9IhAKC1/97C5AQC4DVi8/Py/8qgNWEhYWEvyqEhYWASpEfVVysGRRTR1Pi1lp2d5ubt7ZaVmLTx1NUWSwclV9RAghSiZHVk9JDGFzg2QZOCcrAQIxXUFejlGfhIGiYI2FUVe2uVtbubZXUYWNYKKBhJ9Rjl5BXTECASsnOBlkg3NhDElPVkcmSiEI/YJIzX4aRh9eTFFvVixOIiojQUICYGkhHxAkEzdGtptUizljpzExp2M5i1SbtkY3EyQQHyFpYAJCQSMqIk4sVm9RTF4fRhp+zQI6Py4vPj4vLj9GFhERFhYRERYAAAAEAQ7+rAkaBswAEAAcAC0AOwAAASImNTQ3ATYzMhcBFhUUBiMBIiY1NDYzMhYVFAYFITI2NTQnASYjIgcBBhUUFgEiJicDJjYzMhYHAw4BAbdJYBkDRzltbTkDRxlfSvyjJDMyJSUyM/x/BropMBH8uSI8OyP8uRExA4UUHAI+BUA1Nj8FPgEd/qxgSTE0Bp9zc/lhNDFJYAElMyUlMjIlJTPVLygjIAagRkf5YiIiJzAB5hkTAv0+T1A9/QMTGQACAdb+rAhSBswAHgAwAAABIiY1NDY3ASEiJjU0NwE+ATMyFgcBITIWFRQHAQ4BNwE2JiMhATYmBwEGFjMhAQYWAv4cKBIcAZP9px8tHwU7ER0OKSsZ/kgCFyAsHvshHycRBNoDAQT9bwHmAgQE+ucDAQMC1P4VBAb+rCcdECsuApMpHygYBDoOEEQp/TIoICcZ+9MbFWUEKQIFAxsEAwP74gIE/NwHBQACASz+rAj8BswANgBGAAABNSM1MzUuAjU0NjcnByc3JxUjESEVIxc3FwcXPgEzMhYXASM1IREjNQEeARUUDgEHFTMVIxUDMj4BNTQuASMiDgEVFB4BBLnf33GwZSspcpx+mrW0AgDLtqR+onE7h0pKiDoBp8sCALT+WSkrZbFy399ZU4hSUohTUolSUon+rMy03RaJx3NJijpzmYKXt80CALS4oIKecCkqKikBqLT+AM3+VjqKSXTIiBXdtMwDCFKJU1OIUlKIU1KKUgADAQT+rAkkBswAEwAmADoAAAEiJAACNTQSACQzMgQAEhUUAgAEAS4BNzYSJDc2FhUUBwYEAgcOAQEyJAASNTQCACQjIgQAAhUUEgAEBRXW/of+4aOjAR8BedbVAXgBH6Oj/uH+iPxAERUCGL8BKLMUGyOh/vWtFQIYAtnFAVsBCJeX/vj+pcXF/qT+95eXAQkBXP6sowEfAXnV1QF5AR+jo/7h/ofV1f6H/uGjBDYBGhKzASrEGQMWEiUFFbD+86IRFPwblwEJAVvFxQFbAQmXl/73/qXFxf6l/veXAAAAAAwBBP6sCSQGzAATACcAKwAvADMANwA7AD8AQwBHAEsATwAAATIkABI1NAIAJCMiBAACFRQSAAQ3IiQAAjU0EgAkMzIEABIVFAIABAEhNyEXMxEjATMRIwEhNSEDITUhATMRIwEzESMBITUhATMRIwUhJyEFFdUBeAEfo6P+4f6I1db+h/7ho6MBHwF51sX+pP73l5cBCQFcxcUBWwEIl5f++P6l/F8FthT6IjtAQAFKQED9wwdO+LIyB7L4TgO5QEABSkBA+y8HTviyBhtAQPqdBd4U+kr+rKMBHwF51dUBeQEfo6P+4f6H1dX+h/7ho1CXAQkBW8XFAVsBCZeX/vf+pcXF/qX+95cBDEBnBbH5gwdO+u9AAQpA/AcHsviAB079g0D7uwWxYkAAAAcBKv6sCP4GzAAHAA8AFwAbAB8AIwAnAAABERMJAREBJQUBBQERCQEDEzcTCQEXCQIjETMlIxEzAQUVJQEFFSUBeuQE1wF5/PD9e/4RAeICwgMw/kH64fYDS+YE1wGJMP5R+uEFQlBQ+wVQUALEATb+yv3kATb+ygVd/jv9tf28ARUBvwPA1+sBQ+v8GP39/rYCZgJ4Adkd/a79uwEiQP7CAmX77wHXewHd/diSWZIBVpJZkgAAAAAHAqP+rAeFBswAOQBHAFkAawB5AI0AowAAASImJy4BCgE1NDY3PgE3Fw4BBw4BFRQaARYXHgEzMjY3PgEaATU0JicuASc3HgEXHgEVFAoBBgcOASciJic3HgEzMjY3Fw4BAyIuASc3HgIzMj4BNxcOAgciLgEnNx4CMzI+ATcXDgIDIiYnNx4BMzI2NxcOASciJjU0Nj8BPgEzMhYfAR4BFRQGJzI+ATU0Ji8BLgEjIgYPAQ4BFRQeAQUUcp5QQGZGJXOLGxoJSQ0pKHxgIkJfPD6JYGCJPjxeQiJffSYqDkkJGhyLcyVHZ0FNn3Gg6E0PR+KdnuFHD0zpoJ/0pSceJpvnmZnmmiYeJ6P0n6P1oSYeJpjnnJzmmCUfJqHzpITBNi4vqXV1qS8uNsGE3+NKTic+hUA/hT8nTkri4GqoYjAwJzt6ODh5PCcxMGKp/qwuOFb1ATABXLyBvFsSOTsLSlIcVplstf6y/t3qUSkkJClR6wEjAU60bZhWGlJMCzw4Ely8gLv+pP7P9lc3Lc1YM000WVk0TTNYA80rNxJEETQoKDQRRBI3K7MqNxNDETQnJzQRQxM3KgI8HBw+FRYWFT4cHLRJSyw9GAwUFBQUDBg9LEpKSxQiFA4bDwwSExITDA8cDRQiFAAAAAAQAQT+rAkkBswAEwAlAC0AOwA/AEcAVQBpAHIAfACFAJoApAC2ALoAxQAAASIkAAI1NBIAJDMyBAASFRQCAAQBLgEnPgM3HgIXFB4CFwUmJCc3FgQXAS4BNTQ2NxcOARUUFhcFJwEXAScBBQcOAgEuAic+ATc+ATcDDgEBMiQAEjU0AgAkIyIEAAIVFBIABAEuAic3HgEXAS4CJzceAhcBJz4CNxcOAQEuAycuATU0Njc+AzcBDgIlLgInNx4CFwM0LgEnPgI3HgEVFA4BBw4BAScTHwEnLgInHgEXHgEFFdb+h/7ho6MBHwF51tUBeAEfo6P+4f6I/IdKcCkIHSMhCy2EijUQGRsKAcSC/vB7G3cBB3z8XQoMBgdQBwYMCgEbJwGNJwEBlgFGAS8MM5ix+8QLNDQOFU9XWbo0Ml6xAtjFAVsBCJeX/vj+pcXF/qT+95eXAQkBXAIlBRciF04gLgn+JlSSmV8UX52ZWgKaNDF8bx1ESbH+Wy6IjG8XDg0HBh1xhHUgASYXVmECDTeZmjsMO5+dOR8KFxMNFhIHOCkCBgUHOf2ZTldOu/YSYWwlPpJSR3X+rKMBHwF51dUBeQEfo6P+4f6H1dX+h/7howE0PJ9iJ2lmSgkXMSoMMHZ2Xhe2EVs/Sj1XEQImVKVSOnM3BjZtOFCkU3YrAWUs++veASs74jZfRgTeBCAmDjGNY2VoE/7XRpH6vZcBCQFbxcUBWwEJl5f+9/6lxcX+pf73lwHBQJORPBRX6m4Dci5GOxtKGTtJL/wBOSWHlToxeNABkQYkMC8ROJJGNlsbFzEsHAH+kzmRh9EXKiMKUAokLBf+CFuqoU4cSE4jWOp8IUVOMgcZA08PATYPPgIPQEQUAxIdGUgADgEE/qwJJAbMABMAMQBFAFcAaQB7AI0AnQCxAMEA0QDhAO8A/wAAASIkAAI1NBIAJDMyBAASFRQCAAQnPgE1NAoBJy4BIyIOAQcnPgIzMhYXFhoBFRQGBy8BJjU0NjMyHwE3NjMyFhUUBg8BLwEmNTQ2HwE3NjMyFhUUBg8BASImNTQ/AScmNjMyFh8BDwEGAScuATU0Nh8BNzYzMhYVFA8BASImNTQ/Aj4BMzIWDwMGFwYmNTQ/Aj4BMzIWDwITMiQAEjU0AgAkIyIEAAIVFBIABBMiJj8DNhYVFA8CDgEXIiY/AzYWFRQPAg4BFyImPwM2FhUUDwIOAQUmLAEuASc3HgIMARclIiY9AT8BNhYVFA8BFRQGBRXW/of+4aOjAR8BedbVAXgBH6Oj/uH+iK0ICjiOgmbZWzlpXCcqLmp3QGr1cJSYNwsHLVwTFxAPDz5GDgwTEg8OWRt3HSIZVUkODxEWCQpU/K8SFAs9GAcXFA4YBBwCUwsC2Y8PFB8Xbk0TFBAYDmD9+REWGFgDARYSEhcBBA5zC70SHClsMggUDBcWCzsafsUBWwEIl5f++P6lxcX+pP73l5cBCQFcmRYVCi0dcBUaLVAkBhXaFhYFHBeBFyAiYxUEF/gTFQMPFnsZISBeDQIXAheO/tn+5fjCOkYzuPIBFAEhi/64EhISZRYlG0sW/qyjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aM3LFwstgEkAQF/ZG0nTjlIO1Eqd26Q/uH+y7IpYCt/NAsVERgJJB0GGg0MFQYl6R0GHxcUBhQ5CxcQChIIQwL5FRATD1taGSETEWohdxD+GxACFQ8UFgIMThMbEBENWwF4GQ0UE0RgFhkaF3EfVwiPBBgTHwkYZA4QJRd4F/x+lwEJAVvFxQFbAQmXl/73/qXFxf6l/veXBjgoFl8YCAIZESUDBUwND+YfGH4fJwcbER0LH2cTFdUfF30gMQoYFRsNJGoUF/1a1ePexkwpRbzX39NZExkVaSE3DBsUGQ4oTRcZAAgB6v6sCD4GzAA1AEgAUgBeAGwAeACLAJ8AAAEiLgI1NDY3JjU0NjczDgEVFBYXDgEVFB4BMzI+ATU0Jic+ATU0JiczHgEVFAceARUUDgIBJSY1NDYzMh8BNTQ2MzIWHQEXJSInNxYzMjcXBiUiJjU0NjMyFhUUBhciLgE1NDYzMhYVFA4BNyImNTQ2MzIWFRQGASc3NTQ2MzIWHQE3NjMyFhUUBwEgJDU0NjcRNDYzMh4BBwMWFRQGBRSC5a5igXNrVUmAXHJSTIqdlfqYmPqVnYpNUXJcgElVa3OBYq7k/Wz++xQaEBIOWxQODxRYAeg/Px0sNTUsHT/+7xIaGhISGhrABhgUHxMUHhQYzBIaGhISGhoBLSlYFA8OFFsOEhEZFP1h/v7+635TfUpIh1YCJbKC/qxSkcBue9xLh6pru0M3wHJeqT481nx7z3x8z3t81jw+qV5ywDdDu2uqh0vce27AkVIC2NIRExIYDElMDhQUDoRH3CMyGRkyI+AiGBgiIhgYIlwpMQ0HCgoHDTEpXCIYGCIiGBgi/fhMR4QOFBQOTEkMGBITEQJzKygbIAEBTQ8YFyQS/sUNNx8YAAAEAGb/EAm9BmgAHwA1AFwAmgAABSImNTQ+ATc+AjMyFz4CMzIeAhUUBx4BFRQOASMBLgE1ND4BMzIWFwcuASMiDgEVFBYXAyEyNjU0JiMiBgc2NTQuASMiDgEHHgEVIzQuASMiDgEdAQ4BFRQWAwYuATcTJS4BNjclAyY+ARcFEz4BMzIWFxMlNhYPASM3NiYHBScDLgEHAwclJgYXEwcFDgEXBRcDBhY3JRcCqpKrXJdZBmWhYRsgKKLbe3LLnFgNd6FUlWP6cG19iOWLjOdBRzfBdHXBc1BKNwXHc4mXcAoYCymE2oNqu4sjYntQS35MT4JNmrF62ig5DBje/rIjDyQoAXNeCiE+IQE+zAwjFR0nBD4BiDYvIWZjbwQEB/7AfjUBCASxi/7nBgYBVUL+nwcBBgEyHssEBQcBbwzwjntSiFkJYJtcBXOvYlmdz3dBOhSrd1mITQIpSd2DjOWIi3QeXHFzwHZfp0L9xnpkZYYBAmNmiN+FU5ViKLJwTX1LToJPMQyLXFhhAVsKJUMiATrBFUQ7BjsBeSg1CxjpAVEUGCod/oBbDU8ujZkFCAJKUgFMBwIG/tsizgUGB/6tajkBCgSwjv7hBgUBXVAAAAYA4v6sCUYGzAA0AEEATgBdAGoAjwAABSImPwEjIiY1NDcTISImNTQ2Nz4CMzIWFz4CMzIeAhUUBx4BFRQGIyEHMzIWFRQHAQYFIiY1ND4CMzIWFRQBIiY1ND4CMzIWFRQFATYmKwE3IQMGMyEDBhYlIiY1ND4CMzIWFRQBITI2NTQmJz4BNTQuASMiDgEHHgEVIzQuASMiDgEdAQ4BFRQWBPwfJAcy5iEpCWz95Y6stJgHZqViDx4OKKLbe3fRnloNfpi6n/4JMpchLBb+ohf+Cy0+KT1AGBEQ/pwtPik9QBgREAJ/ARUICAzuV/7wcAgXASg0AQgCky0+KT1AGBEQ+gIFvX6LmY4OEIbhiWq7iyJqh1BQh1NQhU6mp4byMiH3KB8UFwEVi3N3mAtfm1wCAnOuYlmdz3dAOhOcdH+VaiUgIBz+Nx1iNiYdTkoxLD7YAXw2Jh1OSjEsPtiGAWsKDrr+4Bf+/wcEjDYmHU5KMSw+2AIHZ11ncQcuXzGI34VTk2AnsWtGeUtOgk8xDWhbUlwAAwEE/qwJJAbMABcALABUAAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEDIi4BNRE+ATMyFx4BMzI2NxEUDgEHMj4BNRE2NycOAQcRIxEOASMiJicuASMiBgcRIxEGBxc+ATcRFB4BBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sqrW5ZYESQSaYZOij8SIhFYlVx9y3mEk0o5ZS94ESQTNXRET4s/ESIReIWTSjhlMXnM/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAdhYllsBYAMCLxwbAgL+/VuWWHh5zHwBHSx2Xi0/FAHJ/hUDAhcZHRsCAgGM/lkrd14sQBT+wXzMeQAAAAAEAR3+rAkLBswAFwAwAEIAXwAAATcBFjMyPwE2NTQnATcBFhUUDwEGIyInATYkNwcMAQcGAgMnNgA3FxYzMjc+ATU0JwEWFRQGBw4BIyInJjc+Ajc2ARoBNzYsASEVBgQHFx4BFRQGBwYjIiYvAQ4CBwQOPAOSEh0YEnAWD/weOgPiJTNvKDZEKfxOsAF10AP+wf4vtMvODh9QAP+rwg0QFzkfHQz+qwo2KSdJFgsHDwIDSWIqEv3VEd/ZgwE8AZEBAMb+n6+REA8xLFVBEhwQk2iyiy0DNTP7qxcRYBMcGRAEFjf76Sc4PS5iIzMGCpjiPCMFmJ6z/i3+4wLBAV2i1g82HSQNDQwBzQsKFEcmJS4FCw8UT1MaC/tKAXUCCb90k0hcN8SSnRAbDyBPKE8REaVj4fB5AAAIAQ7+rAkaBswAHgAuAEIAVAB4AJkAoQCpAAABIiwBJj0BNDY3PgM3NSEVHgMXHgEdARQGDAEBIiY9ATQ2MyEyFh0BFAYjJyIkJgI1MxQSBDMyJBI1MxQCBgQBIiYnLgE3PgEXHgEXHgEVFAYlIj0BNCsBIj0BNDsBMj0BNDsBMh0BFDsBMh0BFCsBIh0BFCMDMiwBNj0BNC4BJy4DJzUhFQ4DBw4CHQEUFgwBCwE3NTMUDgEFLgI1MxUXBRTb/oj+6ZwsQQpJjN6fAnqf3oxJCkEsnP7p/oj+sCxGEg0BkA4RRix1tP7R3XpQvwFR2tsBUL9Qet3+0f3aVr5HEAUJCx8NPptZEhYYASsXGIwYGIwYF2oXGIwYGIwYFzW/AVcBCJgKLDQGP4jmrP4mrOaIPwYzLQqYAQgBV8VKxjghTgLDRE8hOMYBYC5UdEZFKjYtYO3qwDM0NDPA6u1gLTYqRUZ0VC79TFo0CQ4SEg4JNFo3ctABGqjK/siysgE4yqj+5tByA2gzKwogDhEDCCUpBAEVExEWhhmTGBlxGRiTGRmTGBlxGRiTGf7fKERULEUKESMjXenovDAfHzC86OldIyMRCkUsVEQoA1wBK1QqkLBaDw9asJAqVAAAABwB1v6sCFIGzAAPABkAIwAtADcARQBTAGMAcwCDAJUApQC1AMMA0QDbAOsA+wEFARMBIQErATUBRQFVAWUBdQGHAAABJz4BPQE0Jic3HgEdARQGATU0NjcXDgEdASM1NDY3Fw4BHQEhNTQmJzceAR0BMzU0Jic3HgEdASUiJjURNDYzMhYVERQGJzI2NRE0JiMiBhURFBYDLgE9ATQ2NxcOAR0BFBYXJy4BPQE0NjcXDgEdARQWHwEnPgE9ATQmJzceAR0BFAYBETQ2MzIWFREjETQmIyIGFREnLgE9ATQ2NxcOAR0BFBYXJy4BPQE0NjcXDgEdARQWFwEiJjURNDYzMhYVERQGJzI2NRE0JiMiBhURFBYDLgE9ATMVFBYXASc+AT0BNCYnNx4BHQEUBgcnPgE9ATQmJzceAR0BFAYBLgE9ATMVFBYXASImNRE0NjMyFhURFAYnMjY1ETQmIyIGFREUFgEnPgE9ATMVFAYvAT4BPQEzFRQGAS4BPQE0NjcXDgEdARQWFycuAT0BNDY3Fw4BHQEUFh8BJz4BPQE0Jic3HgEdARQGByc+AT0BNCYnNx4BHQEUBgMiJjURMxEUFjMyNjURMxEUBgOpF2JwcGIXdoOD/msiICMUE/KEdRdhcQGcExQjICJ2cGIXdYT+mjc/QTU3Pz83GiAgGhgiIlV2g4N2F2FxcWEaICIiICMUExMUvSMUExMUIyAiIgKmQzY2Q0EfGRkfNHaFhXYYYXFxYRsoGhooIxUPDxX8nTc/Pzc3Pz83GiAhGRkhIlV1hD5xYQR0IxUPDxUjKBoaKxhicHBiGHaFhfr/ICI+ExQD/DZDQzY2Q0M2GR8fGRkfH/zXF2JwPoRyIxQTPiICs3aFhXYYYXFxYRsoGhooIxUPDxW7IxUPDxUjKBoaKxhicHBiGHaFheI2Q0EfGRkfQUMBATkanXC2cJ0aOSK7g7aCu/2IxzVQGTcPMibHx4O7IjkanXDHxyYyDzcZUDXHx3CdGjkiu4PHv0E6Agg7QEA7/fg4Qz8jGQIIGiIiGv34GSMBVyO7graDuyI5Gp1wtnCdGokaUDS2NVAZNw8yJrYmMg83Nw8yJrYmMg83GVA1tjRQ/M8BdTtAQDv+iwF3GiAgGv6JiyO9e66AvyI8HJtotGiaHYIiUTWNNVEiNxQyJJskMhQC40E6Agg6QUE6/fg6QT8jGQIIGiIiGv34GSMBVyO7gsfHcJ0a+xc3FDIkmyQyFDciUTWNNVHgPB2aaLRomxw8Ir+Arnu9Bg0aUDTHxyYyD/ukQToB/jtAQDv+AjpBPyEZAgIaICAa/f4ZIQMkORqdcMfHgrufNw8yJsfHNFD9ViO/f657viI8HJtotGiaHZMiUTWNNVEiNxQyJJskMhQ3NxQyJJskMhQ3IlE1jTVR8Twdmmi0aJscPCK+e65/vwHiQToBdf6JGSEhGQF3/os6QQACAQT+5AkkBsIAEwAjAAABIiQAAjU0EgAkMzIEABIVFAIABAElMjY9ATQmIwUiBh0BFBYFFNP+iP7gpaUBIAF409MBeAEgpaX+4P6I/IQFVBMcHBP6rBQdHv7knwEYAWzMzAFsARifn/7o/pTMzP6U/uifA00CHhOzFB4CHhSzEx4AAAAGAHj+rAmwBswARgBcAHIAvQDJANUAAAURIyImNTQ2OwE8ATc+ATM1LgEnLgM1NDYzMhYXFgQhICQ3PgEzMhYVFA4CBw4BBxUyFhcWFBUzMhYVFAYrAREhESERByImJyY1NDY3PgEzMhYXHgEVFAcOASEiJicmNTQ2Nz4BMzIWFx4BFRQHDgElMxEhETMRMzI2NTQmKwE1LgEjEQcRIgYHFSERPgQ3PgE3BwYEISAkLwEeARceBBcRITUuASMRJxEiBgcVIyIGFRQWOwElMxEuAScVMhYXFhQFMzwBNz4BMzUOAQcCRbwXIyMXVQEXMSFTaxchVVE0HyAMIiveAf8BJwEnAf/eLCEMIB80UVUhF2tTITIWAVUXIyMXvP7s/IqKIU5BCQUEKVgvMFcpBQQJQU4EaSFOQQkFBClXMC9YKQUECUFO+xt0BBZ05wYJCQZ6ETolbiU6Ef6UUMvUwI8fHVArO+L+Ef7l/uX+EeI7K1EcH4/A1MtQ/pQROiVuJToRegYJCQbnASvSUqRGIjEWAQHW0gEWMSJGo1PaAzxWTU1WDy0PAwTIBxAKDmGAfSkmLgoQUFRUUBAKLiYpfYBhDgoQB8gEAw8tD1ZNTVb8xAM8/MR6BQc4PSA1HAUDAwUcNSA9OAcFBQc4PSA1HAUDAwUcNSA9OAcFygM8/MQDPDYdHTZSAgIBCwb++wICUgGeAQQIDRQODXFbDzk3NzkPW3ENDhQNCAQB/mJSAgIBBQb+9QICUjYdHTb2AP8CBAK1BAMPLQ8PLQ8DBLUCBAIAEAHW/qwIUgbMABIAFgAfACgALAA0AD0ASQBRAFUAXgBnAGsAdwCAAIwAAAERJz8BPgEzMhYfAgcRIxEhESU1MxUHETQ2MzIWFREnMxE0JiMiBhUjJwEXAREzESERMxElETQ2MzIWFREnMzUzNSM1IxUjFTMXMjU0IyIVFAU1MxUHETQ2MzIWFREnMxE0JiMiBhUhATcJASImNTQ2MzIWFRQGASEDLgEjIgYHNzUjNTM1MxUzFSMVA+9SWqogMSIjMR+qWlJQ/lb+jJeqOSkpOZJgHBQUHN03AjA4/cVQBYJQ/GJNQEBNpjI8PDI8PIIODg4BV5exOSkpOZJgHBQTHQE9/c84AjD8wjFERTAxRET+8QG8qhIYCgoYEgxfX1BfX/7UBPNSRP4vKiov/kRS+w0FB/r5oZeXHQFOKjs7Kv6yMgEdFB4dFTkCLDr72gJX/fkCB/2pKAGaQFdXQP5mduEwaWkwgyIjIyIzl5cdAU4qOzsq/rIyAR0VHR4UAis6/dQBREQxMEVEMTFEAgcA/xsfHxs8ulBcXFC6AAgAWv7eCc4GmgAsAEAASwBcAGcAegCeAKYAAAEiLAEuATU0PgE/AT4CMzIeAhcFAT4BMzIWFxMeARceARcyHgEVFA4BDAEBPgMzNy8BNy4BIyIOAQcOAgUyNy4BIyIOAQcWLQE/AhcDBwUHDgEPAQ4CBTI3LgIjIgYHFgEnAxMDNxMHFRc1Nyc3JxsBAxcBJz4CNz4CPwE+ATMyHgESFwcmAi4BIyIOAQ8BDgIHBgIBJz4BMzIeAQUUt/6g/szqhSJRRRJSXjcUDixBWzwBAgJrGiofFDY5xR9COhk7FxY7LoXq/sz+oPrkG19sYR0/BxwGBQ0HDT5RLUJFGwVwQh8WOh0NGyAXLvyoAo6ig9Z6g17+9TUHHy/CcKN+BTosLQofIQ4TIwof/F9iYXtOmkZljrgLJZM3zBKQ++xEZHtIFRQmNCh2Sk4kIExuonRGXpVsPwgHLDYXfiksHBEhigainRYlCw4iH/7eHjVFTykXQmpRFWBlJRYuSTNbAm9JRClE/roTXmYrXB9GXSEpT0U1HgEcAwYFA1+fNmEFBj1iN1JZJ5kajaY1hngaZYTENXg2Agz/xA8CHjDIFDhVcBRckVW2lQsBOQMBbgEhAWx+/irzhTBt9GDElAGK/uj920v+syqn+LA7N0U8KHaKYkys/uHTJqkBBrRdPl4wfik1OC5Y/sH9m6psZm6uAAAAAAgAqP6sCYAGzAAcAC0AOwBJAE0AXQBtAHEAAAEuASMiBy4CIyIGBy4BIyIGBzYAJDMyBAASFRQBJiQuATU0NjcVIgYVFBYEFwERNiQzMgwCMzI2NxElIREOASMiLAIjIgQHAScBFyU+AjcmIyIEBgc+ATMyFgE2NTQCJCcWEhUUBzYzMhYBJzcXCJRJqmd7fSOn2nJXmD1KsokrWik3AQYBeePkAZUBNrD8qtr+5KBBaGEvSnkBG/P7ObkBcLGkAR4BCwEPlVq6efd4CDhelkmc/u3+9v7ooJ3+u6gDGFcBAVb97C6l2n5cXb7+uPA7FiwVa7YFtQub/uXAUlUVV1VTl/2cVzlXAYBTY1JqlE83NoprBQTRATGnmP72/qTFjP1jAQ8jOy0+QQFMHRcaIREB/vECNTU3JjMmERP9ulABmAsLJjMmLCz+5RgDvRsaifrPRxB/5p0CAlP+Y0I8rAE7+EeL/rilc2wgOQOWF9IYAAAAAAwBjf6sCJsGzAA4AE0AVgB6AIwAnAClAN8A8wEDASUBPwAAASIkLgE1NDY3LgI1LgEnJjU0NzQ+ATU0EjYzMhYXPgEzMhYSHQEWFRQHDgEHDgIVHgEVFA4BBAEiJjU0PgE3NiYzMhYVFAYVFBYVFBM+ATMuAScOAQEiJjU0PgE3IgYHND4CMzIWMzI2MzIeAhUuASMeAhUUBgUiNTQ2NTQuATU0NjMyFhUUBgEiJjU0NjMyFRQGFRQWFRQBNCYnDgEHMhYDMiQ+ATU0JicuATU0Njc+ATU0JzY1NC4BIyIGBy4BIyIOARUUDgEVFBYXDgEVFB4CFw4BFRQeAQQTIiYnNS4BNTY3FzcWFxQGBxUOARciNTQ2NTQmNTQzMhYVFAYlLgE1ND4BMzIWHwEeATMyNj8BPgEzMh4BFRQGBy4BIyIGNzYzMhc0LgEjIgYPAQ4BIyImLwEuASMiDgEFFLT+u/ySzuIFBgIdIxAqFxsbVZZhRGkYGGlEYZZVTSgNKRcDAwHdyJL8/rv9nCVEHyMFCAUXEBk0IYcsUigEVkEEBwEbbV8oKwUrbkASJDgnQlsbGlxCLTogDUBsLAUrKF8BcxIIHB0OFi1EMf0yL1JQKBksLgHWBgVBVgQpUvCTASTvkNmxAwMQHhIUKANGe087VTU0VjtPe0YaGUA+FhIDBQYDxdCQ7wEkkycpCyghJixSUiwmISgLKcoVFyQbKD87/WkBAjtYKzJSEQICHRARHAICEVIyLFc7AQIryoyLyg2GwsOFKjwcGDcMAgZAIyNABgIMNxgcPCr+rFmax21odRlha083GDUlIiwiHRwdGRaoAQmZUS8vUZn+96gxKUctISI4GC9cdlgadWZtx5pZAcwrGRceFAcLFg0LECEaESoMCwFhAwNLaQsdXv5/JSMbHzQ3BAWcuFobBAQnY7OMBQQ3NB8bIyUVDQcaDBcfFQYFCSwhHDADCC8ZGi4MChcXGCEJCv5ESl4dC2lLA/4aKkVTKT1WERA2GrvqEwsgEh4YMC6e9o5Qa2tQjvaeJCQbFyA+GhJAOxNYbm0pE1Q4KVNFKgPBDAyMJ1FPIQ2Hhw0hT1EnjAwMHwkIGBUaGAcIJBkYKpgRGhCYyGJ9gQ8QFhYQD4F9YsiYEBoRDRcXSBUVY6ZjcVoPKzMzKw9acWOmAAAABQEe/qwJCgbMABgALwA7AEQAYwAAASIuBCcuAzU0JCEgDAEWFRQOAQQnMiQ2NTQmLAEhIAQVFB4CFx4EEyImNTQ2MzIWFRQGJxE0NjMyFhURAyc+AT8BPgE3IiQnLgEnNR4CFxYEMxQOAQ8BDgIF6KTimGdPUTcoenpSAWYBYAEXAeABZ8h11/7asNEBRru//qz+P/7+/tT+tk9zbx9EXGCN5gk8SUk8PElJaRYUFBQQORm0xDR3nyuk/tmiNDcOJktMJZgBKadUr4k0g5dJ/qw1WG50bCkeND1TPYmJXqnihWOnekNQYaltccWUVGZcJD42MRg0g4VxRQIOLCUkLCwkJSxaBUETFBMU+r8CSyc7c1MWMlwsRkgXEgJNDx8eDzovMGJqPBY4T0AAIwB4/qwJtAbMAB4AMABBAEUAWgByAHYAegCIAIwAkACUAJgAnACgAKQAqACsALAAtAC4ALwAwADEAMgAzADQANQA2ADcAOAA5ADoAOwA8AAAAScTNjcjNyc1JTUlBxUnNQcnJQUVBxUFFRcHMxQGBwEiJicmAjUyBBcMAQUDDgIjJSEyNjcTLAElJiQnHgEXHgEBJRMzASc3NictASYGHQEjNTQ2Fw0BHgEHJScTLgE1MzczNyUXNRcRJwUHIwcjFBYXATUzFQE3MxUTJxMyNjcjExcDMxQGBxcnNRcTNTMVAT8BBwEnNRcBPwEHASc1FwEnNRcBNTMVASc1FwEnNRcBJzUXASc1FwE1MxUBJzUXASc1FwE1MxUBJzUXASc1FwEnNRcBJzUXASc1FwEnNRcBJzUXASc1FwEnNR8BJzUXCTJQDEMNTgWJ/hD+gfdQKAMBdwH2LAHwiwVSMSb5GYrNMiwpuAEimQGyA1YBsyEGQWE4+bEGTzNWBxv+bfy5/mx8/uyJBSUgKacCDv5Zot0F3EIJBCX7KvyTDRhGKiIDkQTnMSIF+A9JoBESUWFlEgF4T1Cc/s8ReVU9Ew8C7Ub9SzD4hlAZGSgEQRtQGEYoJ/U8POtG/MkJMgkCajw8/cgJMgkBcjw8ASo8PAEJRv4dPDwBKjw8/fc8PAF1PDz9ZSIDozw8/ew8PP6pIgK1PDwBKDw8/eQ8PAGKPDz9t0ZGAUs8PAGWPj79q0ZGAUs8PIw8PAE2AgGzBkW2EPVU6kwNogeWAlAVZlECi1rsEMlMRxH755qLfQEEmggLHk0q/nZLeklQdk8BPydFHQkJAXPPYXuCArwRAYj96AlOJQNnJQESDkBZIi0CJmkEOSkMIgGqGEQg/vUKCckS/uUdB/jgFSsI/h2rqwIyf3/9wAkB5SsfAhwV/io8URGYBXYH/kmrqwNiagJs/dUFcAcBwGoCbP7MCHcJ/oMFawf+T7W1Aj4HdAn+jARnCAHGCWwM/l4HcQkCJiws/G4FYQgBxAlnDAEMLCz9WQdtCf6eBF8HAb4JYQz+bQhpCQIPDUQN/mYJWwz+dQhmCgIJDUQN/m4JVQxmCU8MAAAACgFm/qwIwgbMABAAGAAgACkANQBBAE0AXQBlAGsAACU2GgIANwoBFRQWFyYjIgQTITI/ASUeARciJicFBwYjLQE+AT8BBRYXBTI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWATYkMzIWFyY1NBI3BgoCARM+ATMyFwMnNyUBNwEBxiZkk9QBKMdDOw0NfHOh/sUOBXgRCSX5kSBdO2uSIgdcZR9B/sr8Uxc1IsMCKCoL/jwRGRkRERkZyBAXFxAQGBi4DhUVDg4VFfv8fgEXjiZKJRIlJqf6s3gC0nIGDQYZHnEdBQI8/gsnAkRwvAE4ARwBHgFBw/7W/iPkcuh9Dz7+Sw8+f2ZmUL+1kaw38TdHUQ4IPQUoIhsSExsbExIbExoSEhoaEhIaDRgQERcXERAYAQsvMAQDw76/AXe+qf7S/t3+1P7BBoEBAQj5hZNQCQTudPpQAAcBBP6sCSQGzAARACEAMQA6AEIASwCJAAABIiY1ND8BFwcGFRQWPwEXBwYTMjcBJwEGIyImIyIGFRQWFyImNTQ2MzIWMzI3ARcBBgE1ATYeARUUBwkBNjU0JgcBJSc3PgEfARYGJTQ+ATMyHgEXPgEzMh4BFwUVAQ4BDwEGFRQeAhcFLgE1NDY/AQMOAiMiJjU0NjMyNj8BLgEnDgEjIi4BAdscLCfBHLwQGBDNG9YZrTkoBeMn+ksZHylLIBYdXDpPeTsqLEkdFA0F3l757zYB0wO6GS0cHvw0A7EJFA38ZwN1kCEDGAVlBRD4omKlYl6cYgY+dDeD4ZoZ/fUCGgRza5ciQFVCAv5kHCEWGKTeO4+RPztUVDsoXzJtPGogJEclYqViAdIvHywTXCtZBxAODgdhKmUL/QwXA1o7/MAPJR0UIi8ySjkpOiUIA1iP/IweBHulAcYMFzAbIg/+agHABQgNGgb+SvhMpQ4DDOELEMljoWBbnWQJCSxbSPJ5AQZdZyg4DScfb4SAMvARNBsXJw9nAWsxZUVVOztUGRg1CWVLEBBgogAOAOb+rAlCBswAMQBbAHQAgACMAJgAyQDNANkA3QDhAOUA8QD1AAAFIiYnLgEnBw4BIyIuAScuAjUuATU0PgE3Ez4BNyU+ATMyFhcTHgEXAR4CFRQOASMDIiwCJy4BJzQ2PwE+ATcXFBYXBT4BNTMUFhchMjY1NCYnNx4BFQ4CAQ4BIyImJy4EJzUWDAEWFx4BMzI2NwEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBhMhMj4BNTQmJwEuAScDLgEjIgYVBQ4BBwMOAhUUFhcUHgEXHgIzMjY/ATIWFx4BEyc3FwEiJjU0NjMyFhUUBgEnNxclJzcXJSclFyUiJjU0NjMyFhUUBi8BJRcGGnO3WUyZWgguXUtVYSoEAQIBFBMUKSGQEjdJAVQUYUFcVws3BEJLAd5DaT1YwaBbt/6I/qj+7FR7sysnMZkgLw+BDiUDTTUoahkrAQsoMR4XPEU6Xp6gAYlYpE+E8G5Yv8/i94mtATIBEfRvbO6FTaFV/PEhJSYgICUlpSElJiAgJSX+ayAmJiAgJSWhAW6KnkJwVf4dSV4IOAgtOzdC/oYqIRGPISgREhUBAwEEFjw9JkwaCH7GY1SoZzPVNP35ICYnHyAlJQHcPL48/dIo6Sf+mRQBFhT+pyElJiAgJSUiEQE9EUs7JSA1CVkJCyFZUxdLUyE1SzkpYIhkAbQ4SBJVKy9jdP3AKlE3/qEZPV5NVmkv/vcLDxAGCBUHLysECwtuRgRDYSMtFEBIQ0sYJyQXQxMPMaxQBwkEAcQEBhEQDSk3Q08sUDhgTjoREBAFBAFYJh8hJSUhHyayJh8hJSUhICUBeyYfISUlISAl/SoeRTtUTB4BYzZlTAJEVDkrI14KITL+UGWBViU2STUeVVEZODUOBgRnPykjNwIsPbc9AQolICAmJiAgJf2UNs82rEWGRotNS02OJSAgJiYgICUcT0ZPAAAKATH+rAj3BswAXABhAGcAbAByAIIAiACNAJMAmAAAASImNTQ2NzQ+ATcDDgIjIiY1NDY/AT4ENy4BNTQ+ATMyHgEVFAYHFgQeARUUBiMiLgMjEx4BFRQGFRQWMzI+ATMyFhUUBiMiJicOASMiJicOAxUUBgE2NyMWFzUjBgcWJzMmJwYTNjcmJyMDIi4BNTQ+ATMyHgEVFA4BAzM1BgcWBTY3IxYnMzY3JicXMyYnBgSdRmkxKRY0LVpKs7FHRFFBMqUlT1dfaTlSZVOMVVaLUzkykAEN135BLys4Nkx8Y2AOCAY0KCApLSVAUzQqIDsOGGg+c7VcIysWB2T8tikGWwbCOwg3NoRbCCcm9EU1Nwg7GU+CTk6CT1CCTU2CpDtGNDcBESUIWwZ0Owg4NUZuWwgkKf6sVTspQhOMvog6AXVMd0Q+Myw6CiEHQ1xcRQgpj1pVjFRTjFZDbS0CQ2+IRy5DMUlJMf6nMF0rJVodMz8lJHFNOkImHxwkkaM2U1RrT0dZAUUsRD2MyVs6LfRGKTH+xwctPFn++k2DT1CCTU2CUE+DTQE4yQgtOvwwQEV3WjouB8lALysAAAAHAFj/dAnQBgQAQwBNAFkAcAB4AKcAsgAABSImJy4EJzc2Ej8BPgE3PgEzMhYfAR4CMzIWFx4DFwEFJzcBLgMnLgEjIgYHAwYKAQceATMyNjcXDgIlIicDJjMyFxMWASInAyY2MzIWFREUJxIAGwEuAycmBgcOAQ8BAgceAwUnPgEzByIGBSImNTQ+Az8BNjMyFx4BHwEeAxUUDgEjIiYnAy4BIyIOAxUUBgcOAiUiJjUTNjMyBwMGBFMxWho+tMi/mCcKI5xhEjhlJBZGSCawqyl305keMjgcFEdRTBkBTf7/Dpj+5xlNU0gUExsUEBsMn1W6sUgUPCI1l2ImJlJ6++QrAhICNDYCEgIC6S4CEwEnHB0jcZYBA3ylYuDgxUcaKQ09ajIS+C86ttLIAswObddqBGbN/ok2Nk56iXgjJAsPDwcUPioTJIOKYFB0NyBDGHoTJwsOJSchFAMEBFOEBEEWJgoBODkCDwJvCAcFK0FNTiKLVgExrSBj5m1CXxoRBAsTCjREMKW7qDP9VChOGAJCNKm9pjEvHxMa/rOz/o/+roQDBQkNPBESB/gPAQ0hIP74Ff7rDAEeDxERDf7nE4ABHAH6AQMBVgYUFxgKBCkmsedYIP5FoChVTDgHUBULUAlzCgoXlNHv6F5hHBtNv3Q0YaeEXBYNGhIKCQJhYWNcl7OwRUdHDxAbEVkLBgEWHRv+7BUAABEBGP6sCRAGzAAXABsAKwA3AEEAVwBbAF8AYwCTAJcApQCtAMAA0gDeAOoAAAEiJjU0NjcRND4BMyEyHgEVER4BFRQGIyU1IRUlIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNyIuAT8BFxYOAQEhMjU0JicRNC4BIyEiDgEVEQ4BFRQBNSEVBREhESUhESEBIiY1NDY/AT4BNTQmJzceARUUBg8BDgEVFBYzMjY1NCYvAS4BJzceAR8BHgEVFAYBNSEVBQMmNjMhMhYHAyMDIQMFETIWFREUBiU3JyY2PwEmLwE3JwcOARUUFhcTAy4BNTQ2PwEXBxceAR8BBxMvATc+AS8BNxcWBgcDJz8BNjMyFhUUDwEBeDIuLCp3zoMBboPOdyosLjL7MwSw/ahYjlNTjlhYjlNTjlhoi4xnZ4yMZyw9DRldXRoOPP1sBM4eKytbpG7+fG2lWysrAbABq/2/Atf9ZQJf/aEE9UleJyYILikOD0oWDSw1CB8kLygmMFNQGVWaPkM8lVMZYFlf+x4Bq/3CJAYvMQJlMi4GJA4o/ZsoA88aLS0BAms3CA4ZawwaMRZSHzMkBAQbVAUGKTo6tBsGHCIHDJlJHxI6ERAFKjkqDiQpV0RE1wcLDh0Ky/6sMCsrUxsFd37GcXHGfvqJG1MrKzDRUFC7UoxXV4tSUoxWVo1SQoxnZ4uLZ2eMVDtUJIWFJFQ7/i4bGDocBZJiomFhomL6bhw6GBsEyVZWlgJg/aA8Aez5yHJZQ5RMEFyuUzdcLCRAdS5cvmkQPYs1OEM2KC+LVBtdxF4tXL9aG2edQUpkBWpWVrkBdj44OD7+igGi/l6HAhIkFP5dEyQCHdYhJAcdJRMmKi42NkMkDR0R/qgBRBQoEy9TQGFjMAUWMx00KP7hJUQQBRwQoRSjNUQMAe4reL0GHRAOCbMAAA0BQP6sCOgGzAAMABgAJAA2AEkAXABuAIEAkgCWAJoApwCzAAABNDYzMh4BFRQGIyImNxQWMzI2NTQmIyIGATQmIyIGFRQWMzI2JTIWFzcmNTQuASMiDgEVFB4BFyIuATU0PgEzMh4BFRQWFwMuARc3ATY1NCYnASU3BQEeARUUBgcTMj4BNTQuASMiDgEVFAcXPgEXIgYHAz4BNTQ+ATMyHgEVFA4BCQEuATU0NjcBFwEOARUUFwEDNxcHFzcXBwEUBiMiJjU0PgEzMhYHNCYjIgYVFBYzMjYCDmRJN1s3YkdVeElNNyg4TTMqOgMCKB4cKCceHCn9nVpzJGBIV5VeVYVLZKRedcd6YKlsdLltKzO4K21tRALPKxQV/rL+5zUBKAFUFRZGUHRfo2RLhFZdlldIYCRzWmdtK7gzK226c22oYHnI/Yn+OlBGFhUBMDX+5RUUKwG1EIs3gZxNQ20CKndWR2I3XDZJZEk6KjNNOCg3TQU2U3A/aD9ScIZfQFtFMz9dRf2WHCgnHRwpKOkQFLRHXWusZVGQX2KoZlB8zHh1tGd70IEqPir+qkAkISv7iRUsF0M2A2noPfX8hTdYIztMGQUgZqhiX5BRZaxrXUe0FBBQJEABVio+KoHQe2e0dXjMfP4B/S8ZTDsjWDcDHFT9GjZDFywVArkCNHI7ar14K6kChl+GcFI/aD9wUzRFXT8zRVsAAgEE/qwJJAbMAA8AKAAAASImNRE0NjMhMhYVERQGIwEyNwE2NTQmIyIGBwEDLgEjIgYVFBcTHgEBqkRiYkMG1kRhYUT7OEQqA7YeUTwgOhT87qsOSC44Uwb5Dkr+rGFDBtdEYWFE+SpDYgErNgSwJzA7URsa/BoB+CsyVDgUFP0PKjQAEwEE/qwJJAbMABUAGQAdACEAJQApAC0AMQA1AD8ASQBTAGgAcgB8AIUAjgCYAK4AAAUnPgI3EggBJDMyFhUUAggBBQ4CNyU3BRMDJRMBJzcXASc3FwEnNxcBJzcXASc3FwEnNxcnIiY1NDYzMhYVAScBNwEHAQcBFwkBJzcXATcBNwElNiwBNjc2ADY1NCYjIgYABwYAAgcBIiY1NDYzMhYVNyImNTQ2MzIWFQEnNDY/AR4BFwEnNx4BFwcOAQMiJjU0NjMyFhU3Jz4BNTQuASMiBgcnPgEzMh4BFRQGAjtaNYCPSsABeAFWARxkU1Sm/sz+U/74ZtfKAv50WgHon+4BCGb90jk6OgTsLEws+4I4OjgDby5ILvzxOUU8AfgsXCvyERgYEREY/tKS/POuBIZH+9tKAsCWAzX+baA8pQFoUf7MPwFP+ZOMARUBCvhuuQELjzEmUPX+0aeE/vP/cQP9ERgYEREYbhEYGBERGP5GmSMnYi5ZCQHqXLAwWglcJEWMERgYEREYvSEZEzhXLh5CGB41Ri45ZD4TeVpWytZmAQgBrQE0plJTZP7k/qr+iMBKkYLj7YBl/QUBjrb+FgXULEws+oE5OzoEbi5ILvwFODo4AvQsWyv9WDlIPH0iGBgiIhgBF6ABk8H+sT8BNFH+mKX67wMOkjWW/UBKBCVH+3qgVLrFymSoAS/0UCYvjv71upP+q/6SuwK5IhgZISIYUyIYGCIiGAGlXCJFJFwJWjD8iJmjCVkuYicjAX8iGBgiIhihHhhCHi5WNxQZISkUPWM5LkYABQC6/6YJbgXSAAMABgALAA4AEQAAFxEhESUJARMhCQIFASEBEQG6CLT3nAIn/dkjB8/9vP5c/lwBpAPD+HsHzP3ZWgYs+dSpAzQB0vqhA1r+owFd9QMn+s0FBv4uAAAABgFA/qwI5gbMAB0AKwA9AIgAlQCkAAABIiQAAjURFxUUEhYEMzIkNhI1NCYnNxYSFRQCAAQBMjYnAy4BIyIGFxMeASU8ATc+AT8BAy4BIyIGFxMeAQEuAiMiDgIjIiYnLgEnDgEjIi4BJwMmPgEzMhYXPgEzMhYXPgEzMhYXPgEzMh4BBwMOAgcuAwcFDgEVFBYzMj4BMzIeARcBJT4BNxE0JiMiDgEXAT4BNxM2JiMiBhURHgIFHcj+pP74lFCI8gE/t7cBQfaLLz8gVkiY/vX+ofxtSnIDDgNpSUttAw0DZgG6AQtXXjQNA2RIS2wDEAI9A4A0U1U4HU5QQhFhkyMuThwahVVGc0YDDQJGeEk0XSIJlGQ/ayIchFJQgR0ja0BJeEQEFQMYJxg0cm5hI/4cPT18Zx5naiFKb2Y5/asBQwkSCGpKMFk4AgL8Cw0CFgVrS0hwM3Js/qyWAQkBXccBHl7Atv7A84qJ8wE/t2TQiVqR/vqAx/6j/viWBDVpSAFqS1RpSP6qTGdbCA4HXF8JBQFnTWdpR/5SN1f+AWh0LwIBAkhACDEkSmJFdEgBVkd1RyEfXoQ5L0leWUcyOUh2Rv6WNFdFGS1HMBcDKwU8O09aAwI7h3MCsRwBAQEBfUptNFo5/f4UMyMBekdpZ03+sAktOwAAAgHa/qwITAbMAC4AbwAAASAkJwMmNjMyFzU0NjMyFzU0NjMyFh0BNjMyHgEVETc+ATMyFhUUBgcOAQ8BBgQnMiQ/AT4CNz4BNTQmIyIGDwEOAhUjND4BNxE0JiMiBhURIxE0JiMiBhURIxE0JiMiBhURIxE0JiMiBhcTHgEEPv7f/uoIIwJtSDErZUgxK2VISGQrMjBOLi46f05VbCQpQoxSGlD+yP/nAQ9HGjpraTQXDjw1Nl02aWyrZFBhqm02Jic2UDYmJzZQNiYnNlA2Jic9ASMH5/6s7u4ECkpjGzxIZRstSGVkSDQbL04w/T1BUUxTRCk6GCfj1ETSw1CnukSWzoEhDhYTICc8RYYPgL5tdc6XHwL9JzY2J/2TAzMmNjYn/M4Ccyc2Nif9jQGlJzY2J/v4y8MABAJP/qwH2QbMAC0ANQBqAJIAAAEiJAIRFxAAISAANTQmIyIOARUUFhceAhcHLgInLgE1ND4CMzIeARUUAgQDJz4BNxcOAQEiLgEvASY2MzIWFyM+ATMyFh8BIycuASMiBh8BHgEXBy4BLwEuASMiBh8BHgEzMjY3Fw4BJScTNiYjIgYHAyMDJiMiBhUUFhcTBwMuATU0NjMyFhcbAT4BMzIWBwUb5/7VkFIBHgEyASUBRKypt9phandthWA3QS1Lb2OalT+K3qCDumOn/shRSgteTidASf16PlkyBAgFcmEyUBklBmlaXGwIE1ASBj88QzwIFQUZHBA9NQgSBDg9QkIECAM/OztMCkkTcQPISXgQOkcxNBGAcJ8ZXDVJDg1STlMODndWTGYSh2sWX1JsZhT+rLABbQEaLP6X/q4BHPOhpR9EOjw2AgEdTEkvPj0VAgNgYUFaOBpetYS5/vCVATkKWZImPx55ASoxXEKfY38kIFpkamTm2EhEVVXXMzELShBIT8ArLkxHnEBBOzUTUluuOQM3ams8UP2mArBrQDUZTzv+mhABZz5TIVVwWk79tgHwZmehjgAFART+rAkQBswADAAiADwATgCcAAABIjcTARcBBQcXDwEGJSIuASc3HgIzMjY1NCYnFx4BFRQGNyImJy4BJzceARceATMyNjU8ASc3FhQVFAYlIiY3Ez4BNyUXBQ4BBwMGFjMBIi4BJy4BIyIGBw4BIyImNTQ2PwE+ATMhFSEiBg8BDgEVFBYzMjY3PgEzMhYXHgEzMjYzMhYzMjY1NC4BKwEBNwEzMhYVFAYjIiYjIgYBIw8FTQQjxP2R/rswO3jzDwKOL3RqIEYYV1sdFx8UEmcIB1H3JVdPLzUTHhpCNDtGExYhAVACT/zKUlAPXQtkPQHVHv4rLEkHXQcjOgS+U394STRPJB1DP0xuNlJlWD/uKVo8AQ3+8zA9IO4wSTYxKVVGRF0qRW0rWZhsNHw2KmUiL0QhNB5d/MQkAypLWGtqWTFRLzRt/qwUATQG2HT77/CVgMfEC7ZBZzkoKVY6JyEcNhYRFCoURldGMUMpJgdKCi4tMywwHAwLBAwHDQhCZeNWSwHHN2sYuUq5EUwj/jkkHf6kJ11POC4cJy8pW0ombTTDIR5QExrDKFUMKC0fLSskRzRpVR0OqoRZjlMBlEj+dN6sqdUOHQAACADj/qwJRQbMACoAMQA9AEsAWQB1AIMAigAAASImJyUuAScBDgEHATY3JyY1ND8BNjMyHwE+ATcBDgEHAR4BFxMeARUUBgEWNjcBBgcBPgE3PgE3JgYPAQYTPgE3PgE3Jw4BBw4BBwE+ATc+ATcnDgEHDgEHAT4BNz4BNwM3DgEHDgEHFgYHDgEnDgEHDgEHPwEWNjc+AScBDgEHDgEHATI2JwEGBwjUCRoi/eAsNxP81g0aD/74BAp1R41ff3VQQH0IJw8BCAMHBAMhFScLwA4HQ/0aMUAK/QQ6QP4RP2hDP1IaKmI2X3zaRHFJTFkZrR9cRUhvRAFYVI1bWl0Yqh5lVU+GUAXvLDEQERsJiysBDRATOCEFGx8iUDgFFw4QJx0Ddi42FRMNB/0AECIUFCMRA7hALxr8/hws/qwGC7YPGxMDLAQGAwEKHBdzRU9vgVZzO3cEDgT++A0ZDfzdFUUe/gkmHAkrQQFRCCglAv8qGwIOG0hAPWEvBC8xVnD+wxpMRkpwOqQ4cUNEUB7+ZhdZVlaBS55Ih1FMVx37dQkWEBE3MgFvERclDxMWBTNOHR8XBBcnEBESByKnBQ0UEjAlAwIQIxMTHg79yTcuAwU5OAAABQD//qwJKQbMADQAQABiAIYAigAAASInLgInLgEnLgInBiMiJy4BNTQ+Ajc+AjMyFxYVFAceAxceARceAhcWFRQHBgEiJjU0NjMyFhUUBgkBJjU0Nz4BNz4BNzYzMhcBBwEmIyIHDgEHDgEHBhUUFwkBFjc+AScuAycuAScuAycOAQcOAQceAhceARceAxcBNwEIsTEwWPH4YmFuLChBUUAiISQaFx07XWcrTpd7IzIbFBE+U0hWP09LExRPYi4bISL9oThQUDg4T0/8Tv4gLhooi1hYqjomKT4nAas8/lwXHBMWTJw/VYQiEhQB3wVAJSEOBAsmTkc4EBA5QD9WTFlCPY4yNHUwRlVBKCRUUE++xLKE/Ys9AnD+rBowYE0TE0pQS2htUBMTES4ZEVlycitNg1AoHSQiITNDMjAhKXBiYPPvWzQxNiAgAghPODhPTzg3UAFjAaYpPCwkOKpZWYklGC3+IDYB2RkPNYJAVaEyGhQWEv5d/LIVHA0oEkGww71PUFYiITE0RzYudzI0ij5VdWtJQTYREDhGTFECbjT9lwAAAQD6/qwJLgbMABoAAAEiJicBJjU0PgEzMhYXEwE+ATMyHgEVFAcBBgMiSnkX/r0LPmk+SnkYwAQIL1w5QGk/MPrdR/6sWEYDyyEsP2c+Wkf9wgT5OTNAa0BPPPmuWAAAAQFO/u0I2gaLAAsAAAkLB3/9lf2T/qcCa/2WAVoCbAJsAVn9lgJp/u0Cdf2NAVoCdAJ0AVr9jAJy/qb9jf2LAAIBBP6sCSQGzAALABsAACUzESE1IREjESEVIQEiJjURNDYzITIWFREUBiME0oQBY/6dhP6dAWP82ERiYkMG1kRhYUQKA3yCAXD+kIL7JmFDBtdEYWFE+SpDYgAACQEE/qwJJAbMAAIABQAIABQAGgAdACAAIwAzAAABNxcBJyEBJyEBEyEDEyELASETAyE3AxMhEwMzNxcBNxcBJyEBIiY1ETQ2MyEyFhURFAYjAtuQjwEajAEY/cuQAR8BGukB3u/v/iLp6f4i7+8B3i2/vwF4v79ej5D9O4yMAR2PAR/6XURiYkMG1kRhYUQBg+zs/srmAdbs+74BgAGJAYkBgP6A/nf+d1ABOQE5/sf+x+zsAsLm5v7E7Pq3YUMG10RhYUT5KkNiAAAABgBk/qwJxAbMACMAPwBXAHMAiwCrAAABAy4ELwE1Nz4ENxMzEx4EHwEVBw4EBwMhJy4CLwE1Nz4CPwEzFx4CHwEVBw4CDwEnPgM3FS4DJzMOAwc1HgMXEycuAi8BNTc+Aj8BMxceAh8BFQcOAg8BJz4DNxUuAyczDgMHNR4DFwE+BTcVLgUnMw4FBzUeBRcGRCgYNU97t4SlpYS3e081GChiJxc1UHu3hKWlhLd7UDUXJ/tPIRQrTEeenkdMKxQhZSAUK01HnZ1HTSsUIDYSLUp7YWF7Si0SBhIsSnthYXtKLBJtGBArVU9OTk9VKxAYYBkRKlVPTU1PVSoRGTQQJjxiTExiPCYQCBAmO2JMTGI7JhADphcvQF6Kw4aGw4peQC8XBxcvQF6Jw4aGw4leQC8X/qwBEaLai1U4GyJdIhs4VYraogER/u+i2otVNxsiXSIbOFWL2qL+76FkdD0TKl0rFD1yZKGhZHI9FCtdKhM9dGShcXWaXjUSBhI1XZp1dZpdNRIGEjVemnUEW39UWi0REVwSEi1ZU39/U1ksExJcEREuWVR/ZF9zQSYQBhElQnNfX3NCJREGECZBc1/7kKr0qW9KOBwIHTdKb6n0qqr0qW9KNx0IHDdKb6n0qwAAAgEO/qIJGgbMAD8AfwAAASImNxMBDgEnJjY3AQUGJjU0NhcFAS4BNzYWFwEDJjYzMhYHAwE+ARcWBgcBJTYWFRQGJyUBHgEHBiYnARMWBicyNicDAR4BNzYmJwEFFjY1NCYHBQE+AScmBgcBEzYmIyIGFxMBLgEHBhYXASUmBhUUFjclAQ4BFxY2NwEDBhYFFF1oCCH+7kWlQUITTwE//l9pgoJpAaH+wU8TQkGlRQESIQhoXV1oCCEBEkWlQUISUP7BAaFpgoJp/l8BP1ASQkGlRf7uIQhoXTg6BTMBsC9gKCkPNv4HApVHTk5H/WsB+TYPKShgL/5QMwU6ODg6BTP+UC9gKCgONgH5/WtHTk5HApX+BzYOKChgLwGwMwU6/qKCaQGx/sFQE0JDpEQBEiEIaF1daAghARJEpENCE1D+wQGxaYKCaf5PAT9QE0JDo0X+7iEIaF1daAgh/u5Fo0NCE1ABP/5PaYJQTkcCpf4HNw4oKWAuAbAzBTo4ODoFMwGwL2AoKA43/gcCpUdOTkf9WwH5Nw4oKGAv/lAzBTo4ODoFM/5QLmApKA43Afn9W0dOAAYBDv6sCRoGzAAHAA0AEwAbACEAJwAAAQMtARsBDQEJARcJARcJAgcJAhMtAQsBDQEJATcJATc1JwkBJwEFFOn84wMd6ekDHfzj+4gB2ET+xQIVJP6+/igDGiT96wE7AXOpAlP9ramp/a0CUwQ4/OYkAhX+xkREATr96yQDGv6sAybq6gMm/Nrq6v2AAvgs/ggBIEcCLwL4/lNHASD+CPxNAmuqqgJr/ZWqqv1BAaxH/uAB+CzkLAH4/uBHAawAAAMBbP6sCLwGzADXAcYBzAAAASIuAj8BDgIjIiY1NDY3NQUUDgEHBiMiJy4BNQcGIyIuAScmPgI/AS4CNTQ+ATMyFhc3Jw4BIyIuATU0PgE3Jy4DNz4CMzIfATQ2NzYzMhceAhUFNS4BNTQ2MzIeARcnJj4CMzIeAg8BPgIzMhYVFAYHFSU0PgE3NjMyFx4BFTc2MzIeARcWDgIPAR4CFRQOASMiJicHFz4BMzIeARUUDgEHFx4DBw4CIyIvARQGBwYjIicuAjUlFR4BFRQGIyIuAScXFg4CJz4CNycuATU2MzIfATc2JicRMzcFDgEVFBYfATU0NjceAR8BPgI3LgEnIyImJz4BPwEuASMiBgclNyclHgEzMjY3Jy4BJz4BOwE+AjcuAicHDgEHLgE9AQcOARUUFhcFJyMRPgEvAQcGIyInNDY/AS4CJw4CBxceARUGIyIvAQcGFhcRIwclPgE1NCYvARUUBgcuAS8BDgIHHgIXMzIWFw4BDwEeATMyNjcFBxcFLgEjIgYHFx4BFw4BKwEOAgceAhc3PgE3HgEdATc+ATU0JiclFzMRDgEfATc2MzIXFAYPAR4CAyc3MxcHBRQTOzkjBQ0UKiQMJShkaP7+FjEoKCUqFgYHFBUaJ1hCCQkMHCIOJRsvHTNOKSh6N/DwN3ooKU4zHS8bJQ4iHAwJCUJYJxoVFAcGFiolKCgxFgECaGQoJQwkKhQMBCI5OhMTOjkjBQwUKiQMJidkaAECFjEoKCUqFgYHFBUaKFdDCAkMHCIOJRwuHTNOKSh5OPDwOHkoKU4zHS4cJQ4iHAwJCENXKBoVFAcGFiolKCgxFv7+aGQnJgwkKhQNBSM5OxMMHiAODg0NDxAmOlIEC2V0OhQBWwQEKigYGhYZNQ4SBzM4DgobBhgeTBcEJTJDESgYJ3oy/rUYGAFLMnonGCgRQzIlBBdMHhgEDxEHDjgzBxIONRkWGhgoKgQE/qUUOnRlCwRSOiYQDwgNEw4gHgwMHh8PEw0IDxAmOlIEC2V0OhT+pQUDKigYGhYZNQ4SBjQ4DgcRDwQYHkwXBCUyQxEoGCd7MQFLGBj+tTF7JxgoEUMyJQQXTB4YBA8RBw44NAYSDjUZFhoYKCoDBQFbFDp0ZQsEUjomEA8NDQ4PHx4gNjZYNjb+rC5BPQ4jCxUMRS5HeTT9iGBuPhcXIglDNBgZFB4PEEtVPQIFESYhCR45JTAokpIoMCU5HgkhJxAFAj1VSxAQHRQZGDVCCSIXFz5uYIj9NXhHLkUMFAwnDjtALS1AOw4nDBQMRS5HeDX9iGBuPhcXIglCNRgZFB0QEEtVPQIFECchCR45JTAokpIoMCU5HgkhJhEFAj1VSxAPHhQZGDRDCSIXFz5uYIj9NHlHLkUMFQsjDj1BLlANISURFhRBJwUfKxc/XSkBeB25HDAWTlYKBkw4PhMMKBkgBA0LARlMGBMQHjEgKxMROyzHKirHKzwREysgMR4REhAuLxABCw4DIBkoDBQ9OEwGClZOFjAcuR0BeCldPxcrHwUlOhQfEiQhDQ0hJBIfFDolBR8rFz9dKf6IHbkcMBZOVgoGTDg9FAwoGSADDgsBEC8uEBIRHjEgKxMRPCvHKirHLDsREysgMR4QExAuLhEBCw0EIBkoDBM+OEwGClZOFjAcuR3+iCldPxcrHwUnQRQWESUhA15VVVVVAAANAQT+rAkkBswAEQAtAD8AUwBlAHkAlQChAL0AzwDjAPcBEwAAASIuAScmNTQ3PgIzMhYVFAYBIicmNTQ3PgM3PgEzMhcWFRQHDgMHDgEDIiY1NDYzMh4BFxYVFAcOAicyPgE3PgE1NCYnLgIjIgYVFBYBIiY1ND4BNzYzMhceAhUUBicyNjU0LgEnLgEjIgYHDgIVFBYDIiYnLgMnJjU0NzYzMhYXHgMXFhUUBwYBIiY1NDYzMhYVFAYBIiYnLgMnJjU0NzYzMhYXHgMXFhUUBwYBIicuAjU0NjMyFhUUDgEHBgEyNjU0JiMiDgEHDgEVFBYXHgIBMjY3PgI1NCYjIgYVFB4BFx4BBSInJjU0Nz4DNz4BMzIXFhUUBw4DBw4BCBUwcZhtkZFtmHEwepWV+eMiHyA0F1hsaykOGgsQDAsUHVFWSxgZMXZ6lZV6MXCZbZCQbZlwMStmlG8tJiYtb5RmK1hnZwNZZHkPIx4oZWYnHSMQeWRBTA4iHgwdFhYdDB0jDkzsCxoOKWtsWBc0IB8iFzEZGEtWUR0UCwwBHTRISDQ0SEgCbhcwGhhLVlEdFAsMEAsaDilrbFkWNCAf/TxnJh0jEHlkZHkPIx4oApxZZmZZKmaUby4mJi5vlGb9KRYdDB4iDkxBQUwOIx0MHQFDEAwLFB1RVksYGjAXIh8gNBZZbGspDhoB3w8kHShlZyYdIxB5ZGR5/fkdHiMsNhdNV1IcCgoMCxEVHSlsbFkXGRkCB3lkZHkQIx0nZmUoHiMPUA4jHQwdFhYdDB4iDkxBQUz8fZV6MXCZbZCQbZlwMXqVUGdYK2aUby0mJi1vlGYrWGcEpwoKHVFXTRc2LCMeHRkZF1lsbCkdFRELDP6dSDQ0SEg0NEj9mBkZF1lsbCkdFRELDAoKHFJXTRc2LCMeHQOukW2YcTB6lZV6MHGYbZH+qUxBQUwOIh4MHRYWHQwdIw4BpyYub5RmKllmZlkqZpRvLiYzDAsRFR0pbGxZFxkZHR4jLDYXTVdRHQoKAAAAAQEi/t4JBgaaACsAAAEiJy4BNTQ3CQEmNTQ2NzYzMhcJATYzMhceARUUBwkBFhUUBgcGIyInCQEGAehTORweRgKZ/WdGHhw5U05LApMCk0tOUDwcHkb9ZwKZRh0dPFBOS/1t/W1L/t45HEcoUUMChgKGRFApRhw5SP2BAn9IORtGKlBE/Xr9ekRQKUcbOUgCf/2BSAAAAAACAQT+rAkkBswADwA3AAABIiY1ETQ2MyEyFhURFAYjATI3CQEWMzI3NjU0JwkBNjU0JyYjIgcJASYjIgcGFRQXCQEGFRQXFgGqRGJiQwbWRGFhRPo1OigCBQIKKzY5KSgp/fgCAygpJzo6KP37/fYnOjooKCkCCf38KCkn/qxhQwbXRGFhRPkqQ2IBFSgCCv38KSkoOjwnAgQCCSg6OiknKP32AgUnKCg6PCf9/P33KDs5KScAAAAAAgLG/qwHYgbMAB8ALwAAAT4DNz4CNTQmIyIGByE0NiQzIAAVFA4BBw4CBwMiLgE1ND4BMzIeARUUDgEEagMdO2JJPlgujoiCnw/+2JoBDa4BFwEwPIp1QUMbBos+aD4+aD4+Zz4+ZwFdYYtvbEI5W2RFi56RepXsiv7c+l2domY5VmpW/U8+aD4+Zz4+Zz4+aD4AAAQCt/6sB3EGzAAeAC4AOgBZAAABND4BNz4CNTQmIyIGByE0NiQzIAARFA4BBw4CBwMiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYDMz4CNz4CNTQkIyIOAQczPgEzMhYVFA4BBw4CBFEnZFlbZCeDf3+VCv68lwERtwEfATw7jXpCQBcFoEJuQUFuQkJsQUBtQkJdXkFDXl4LowgjSkBxgDX+8/6R3okSrB65iqGxLW9kR1QoAUl1q5VSVHJcMYOGhXql9Ib+5P7+XqCoazlValz9Y0FtQkJsQUFsQkJtQVBeQkFeXUJDXQKdSWZaN2GVjFPg7l+sdHmGtaQ+cINcQXF7AAAAAAQEJP6sBgQGzAADABMAHwAjAAABAyELASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgMzEyMEdyIBfiKcQm5BQW5CQmxBQG1CQl1eQUNeXg2eHtoBWAV0+oz9VEFtQkJsQUFsQkJtQVBeQkFeXUJDXQKsBNQAAAIELv6sBfoGzAADABMAAAEDIQsBIi4BNTQ+ATMyHgEVFA4BBIUhAWAhj0BoPj5oQEBoPj5oAWMFafqX/Uk+aD0+Zz4+Zz49aD4AAAAEAcz+rAhcBswAFQAlADEARwAAJSQAAjU0PgEzMhYXPgEzMh4BFRQCAAEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYTCAE1NC4BIyIOAQcuAiMiDgEVFAAFFP7m/ou5b8aCf89DQ89/gsZvuf6M/uU8ZDw8ZDw9Yzw8Yz06UlI6OlJSOgGBAXdaoWxYpXoaGXukWWuiWgF3uuEBfgFTnoPLdHpra3p0y4Oe/q3+gv0RPGQ9PGM8PGM8PWQ8UFM6OVJSOTpTAiQBOQHh0G2nXlSTYGCTVF6nbdD+HwAAAAkAqv6sCX4GzAAZAB0AIQAlACkAQQBFAEkATQAAAQgBEjU0LgIjIg4BBy4CIyIOAhUUEgABESMRAREjEQERIxEFMxEjEwgBAjU0PgEzMh4BFz4CMzIeARUUAgAHNxEjATcRIwE3ESMFFAGLAfPsVZnNd3niry4tsOJ5d82ZVewB8/5rUAFoUAFoUAEYUFAo/pP+MN1/2omA2qk1Nanbf4naf93+MH1QUAEYUFABGFBQ/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AgImBFD7xP6cBez6KP7uBqv5aeoGgvmsARsB4wGnwJPtjGrEhobEaoztk8D+Wf4dcxQGl/pTFAXY+2QUBDwAAAABAWj+3gjABpoACwAAAREhESERIREhESERBCn9PwLBAcwCy/01/t4C+AHMAvj9CP40/QgAAQFoAcIIwAO2AAMAAAERIREBaAdYAcIB9P4MAAMBaP6sCMAGzAADABMAIwAAAREhEQEiLgE1ND4BMzIeARUUDgEDIi4BNTQ+ATMyHgEVFA4BAWgHWPxUU4tSUopUVIpSUopUVIpSUotTVIpSUooBwgH0/gz86lKLU1OKUlKKU1OLUgXBUopTVIpSUopUU4pSAAAAAAIBBP6sCSQGzAAPABYAAAEiJjURNDYzITIWFREUBiMJAhEhFSEBqUNiYkMG1URiYUT9lgHO/jL8WQOn/qxiQwbWRGFgRPkpQ2ICXwGxAbH+xu4AAAIBcv/YCLYFoAAqADYAAAUiLgI1NBI3LgEjIg4BBwM+ATMyFhc2JDMyFhcDLgIjIgYHFhIVFAIEJzI2NTQmJw4BFRQWBRR91J5XknouZjVJm4MnEUPmgIL4c3cBCIeA5UMSK4eaSjdoMYmTl/75qJCoo5iRpKkoW6XhhrkBJ2wICRMgFgEEIyYwMC8xJiP+/BYgEwcIbf7bvLT+6579zrSh7ExK8Z+yzwAAAAADAIz/2AmcBaAANwBEAFEAABM1FgQXNiQzMgQXNiQ3FQ4BBxYSFRQCBiMiJgI1ND4BNy4BIyIGBx4CFRQCBiMiJgI1NBI3LgETFBYzMjY1NC4BJw4BBRQWMzI2NTQmJw4CjJABJXCDATaqqgE3gnEBJY9qqkaBlIbljY3lh0WJZ2rPTk7Oa2eKRYfljo3khpOCRaq/mHp7miVzdneiBJSZe3uYond2dCQEr9kDSDtKVFRKO0gD2QYgHXn+ya2k/v+SkgEApYPhuUYpIiIpRrnhg6X/AJKSAQGkrQE3eRsh/WejtrajVrCtUFD8t6O2tqO3/FBQrbAAAAIBBP6sCSQGzAAPACYAAAEiJjURNDYzITIWFREUBiMBMj4BNREhCQEhERQGIyImPQEjFRQeAQGpQ2JiQwbWRGFiRPv1luuGATr+T/5PATqaf4Cb7YXr/qxiQwbWRGFhRPkpQ2EBE4frlwI+Ac7+Mv3CgJybgaCgmOuGAAACAQT+rAkkBswADwAmAAABIiY1ETQ2MyEyFhURFAYjJQEhETQuASMiDgEdATM1NDYzMhYVESEBqUNiYkMG1URiYUT9hAGx/saG65aY64Xtm4B/mv7G/qxiQwbWRGFgRPkpQ2L4Ac4CPpfrh4brmKCggZucgP3CAAACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjAREhNSERAQGpQ2JiRAbVRGFhRPuUA6f8Wf4y/qxiQwbXRGBhRPkqQ2ICXwE67gE6/k8AAAACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjATMRIQkBIQGqRGJiQwbWRGFhRPwe7gE6/k/+TwE6/qxhQwbXRGFhRPkqQ2IBagOnAc7+MgACAQT+rAkkBswADwAWAAABIiY1ETQ2MyEyFhURFAYjCQEhESMRIQGqRGJiQwbWRGFhRPyVAbH+xu7+xv6sYUMG10RhYUT5KkNiAUEBzgOn/FkAAAAMAQT+rAkkBswADwATABcAGwAfAC8AMwA3ADsAPwBDAEcAAAEhMjY1ETQmIyEiBhURFBY3MxEjASE1IQEzESMBITUhEyImNRE0NjMhMhYVERQGIwEhNSEBMxEjATMRIwEhNSEBMxEjASE1IQGqBtVEYWFE+SpDYmLwQED+xQf1+AsCikBA/XYH9fgLjyMzMyIG1iMyMiP4nAf1+AsD2UBAAU9AQPrYB/X4CwZ3QED5iQf1+Av+rGJDBtZEYWFE+SlDYSsHzflaQP6ZB836qUD9bzIiBtcjMjIj+SoiMwOgQPv7B834MwfN/UdA+qwHzf6WQAAAAgEE/qwJJAbMAA8AHwAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYBqkRiYkMG1kRhYUT5KwbVIzIyI/kqIjMz/qxhQwbXRGFhRPkqQ2JQMyIG1iMyMiP5KSIyAAIA1f6sCVMGzAAhAEEAAAEiJjcTASY1NDY3JQE2MzIXAQUeARUUBwETFgYjIicJAQYnMjcJARYzMjYnAwE2NTQnJQEmIyIHAQUGFRQXAQMGFgK3Nz4Ld/49LD0xAmMBBCNHRyMBBAJjMT0s/j13Cz43ISH95f3lISEKEAJDAkMRCQ8SBYEB5RIo/XH+6g0VFQ3+6v1xKBIB5YEEEf6sVzoCXgGkKjAsPgZKAi9KSv3RSgY+LDAq/lz9ojpXEwEu/tITUAkBRP68CRsWAooBwhEPHARQAlccHP2pUAQcDxH+Pv12FhsAAAACAQT+rAkkBswAEwAnAAABIiQAAjU0EgAkMzIEABIVFAIABAMyPgI1NC4CIyIOAhUUHgIFFNX+iP7go6MBIAF41dUBeQEfo6P+4f6H1X/dqF9fqN5+ft6oX1+o3f6sowEfAXnW1QF4AR+jo/7h/ojV1v6H/uGjAa1fqN5/ft6nX1+n3n5/3qhfAAAAAAEBDgGaCRoD3gA3AAABIiYnLgEjIg4BBw4CIyImJyY1NDYzMhYXHgIzMjY3PgEzMhYXHgEzMjY3PgEzMhYVFAYHDgEG8FiVXx89IBYmMCYnYHlQg+d8Uk46J0gyQFtMKDtXOjiIX1KLQypBLi9uTkdPKzpKR1RkzwGaWm4lOhIsJyhTN6WBVTw1SCo1QlcrPj07aFVcOkFLVk82SDkpZ1ZmbAAAAgDS/qwJVgbMACYASwAAASYAAicHDgEjIiYvAQUJAT4CMzIWHwE3PgEzMhYXHgEXFhoCFwkBJgoCJyYnJiMiBg8BAy4BIyIOAQcBFwETHgEzMjY/ARYSAAfWqP7ozjoWN2JEVnwZLf7n/ugBrj5YTCpfcxshV0R5SVZwDQIEAQdjq+aK/n4BEn/bpWEFAQUScjZaO7tGE0hEIDpHNf6MsAFBShRQOi8+N34rugEN/qyeAX8BruQbRDZlZ73vAU0Bjjk/GWVlemJNQ2NdECkUrf6X/qL+xX/+3gEgfgE+AWABZKQtHn40Qc8BB0pFFDUx/qPVAQ/+y1BEJECQ7P47/moAAAAEAQT+rAkkBswAFwA5AF8AYwAAASIsAQoBNTQaASwBMzIMARoBFRQKAQwBATMRHgIXNy4CJz4BNycHIxEjESMVIQ4CBx4BFz4BNwE+ARI3MxEUFjsBMj4BNy4BJw4CKwEiJjURMxEhETMOAgceARMRIREFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yv1AciJJPhJIEFVgIzhgIkAUgXLjAZk0l65ZDScIOHE3ATmHjDkImjNSiDE1GQUVOxECCRISaRoRy/0imgcufHwVKsMB/P6sa8IBBQE2qKgBNgEFwmtrwv77/sqoqP7K/vvCawFRApghTUcYXhJRWB1Np1cqBQEk/txqZ8KiNxBCFyZhOP2gRc4BE6790lc/MHhtBhgOYGEhFCMCLgJe/aKa8rI6EDcDKgGK/nYABQEE/qwJJAbMABcARABOAIMAjAAAASIsAQoBNTQaASwBMzIMARoBFRQKAQwBATMRHgEXNy4DJzUzNSMRPgE3Jw4CBx4BFz4BNxUjFTMOAgceARc+ATcBPgI3Jw4CBwEzMj4BNy4BJw4CKwEiJj0BPgE3HgIXNy4CJwc+ATcnBgIHESMRDgEHHgEXPgE3FRQWEzcuAScHHgIFFKv+yv77wGpqwAEFATarqwE2AQXAamrA/vv+yv2UbyNIEEYKMj03EcHBNWIpUjafslQLFQQ1bjf53xtQXC4OJgk4bysBTicwHQheBxwxJQHD1T5CHQYXOxUDCxscvCsYYpo9IjkoB2kILkImRyxGG2wysYVxSalhFjILR386RMhNMbRVRjh2Zv6sa8IBBQE2qKgBNgEFwmtrwv77/sqoqP7K/vvCawFHAr4waR5UDjhCPBFBbAEKDR8RVRgtJg4TMhQIEwzxbFm7pDgTPhlL53v+rz2nuVQTU66dOv5qNoNxCBkQYmknHS+qb/eIRp+WPCA/n6ZIFGbbcxnk/mauAkH9Ok6MPQ0wEy5kNjZrSgROUTh/LkkfVFYAAAkCO/6sB+0GzAARACIAJgA6AHEAgwCIAJkAtwAAASIuAScDJjYzITIWBwMOAiMnIiY1NDY3PgE3PgEzMhUUBgE3JwcDITI+ATcTNi4BIyEiDgEXEx4CJSImJwMjFCMiJicDJjYzMhYXNzUuATU0NjMyFhcWFRQHFTc+ATMyFhcVDgEPAR4BFxQjBQMOAQEiJjc+ATMyFhUUBgcOAQcOAQEzNycHATQ+ATc2JDMyBBceAhUnISc+Ajc+ATMyFhceAhcHLgInLgEjIgYHDgIHA1dgZicEJwRdeQQGeV0EJwMoZWG0ExgXElg/AwEXESd1/YvYCOC0A3pKQhMCJwIROTr7+jk6EQInAxJDAhsTFAIO1xcJDAZmAxAQGDAO7h8dJBIRMBk8ELIcNxARMRoNGQc+GhEBDf7VDgEV/eQRFwEFcHQTGBcSWEADARcCL70kE8787hZHSD8BFc/PARU/SUYWVfsaNgwvXlJ013N013NSXi8MUAoePTpy1HRz1XI6PR0L/qwgZmkE8XFgYHH7D2lmILoWEREXAQQ5ThIXLWluAksE9AP8VhJESwTvOjcQEDc6+xFLRBLLGB8BbjYPGQGtDhIiHQ2pIywKCSIRDiApFBaTEQMZHRIbDCQZ4Q8aExAC/pIfGAPWGBNyZxYRERcBBDlOEhf+G8wrAwIMY4JHCAgHBwgIR4JjcFKCjDgDBQQEBQM4jIIGcGojAgUEBAUCI2pwAAAAABECJv6sCAIGzAAPACkAXQBpAHAAfgCOAKIAsAC9AM0A5wD7AQkBFgEiAS4AAAEiJjURNDYzITIWFREUBiMnIiciJyY2Ny4BNzYWFz4BFxYGBx4BBwYjBgEiJz4BNQ4BIyInPgI3LgE1NDY3PgEzMhYXHgEVFAYHHgIXBiMiJicUFhcGIyImJw4BASImNTQ2MzIWFRQGASImJzMOASUuAiMiByc2MzIeAR8BIicmNTQ3NjMyFxYVFAcGFzI+ATU0JicuASMiBgcOARUUHgEBITI1ETQmIyEiFREUFhMnNjMyFhcHLgEjIgYBIicmNTQ3NjMyFxYVFAcGASY2Ny4BNzYzNjMyFzIXFgYHHgEHBiYnDgEBNBI3HgIVFAYHJzY1NCYnDgEVBT4CMzIXByYjIg4BBzcuASMiBgcnPgEzMhcBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYCtEZIS0MEwEdHS0OkDxQ1BAIYEAUJBAUlFhckBgUKBREWAgM1Fv1TEhE+Kh9LJjISMkInCR0ZBAIvgU5Ogi4CBBkdCSdCMhIyJUsgKz0REi+LKSiM/tUhLy8hHy0tAcAxKwO/Ayv+0gYxQyATESEhIzBcPwZmDwImJgIPDwImJgJRQ1wxAQIaaklJahoBAjFd/eQEu0EcJftFQBvMMUB5OF4bHRdJNC5CAf4PAiYmAg8PAiYmAv2VBAoEEBcCAzUWDg8UNQQCFxEFCgUGJBYWJQFAam4oOB8DBDcHKyNNTgFGBj9cMSYeIQ4WIUMxBrwYQi4ySxwbI1o3eUD+OyIwMCIhLy8Bmx8tLR8hLy/+rEhGBwVDSkdH+PtDSrk4CAUhEw8uBAUSDg4SBQQuDxMhBQg4ARgKOFk1HB8XGz0/GzFxPRQpFSwwMCwVKRQ9cTEbPz0bFx8cNVk4ClpSUloDDy4gIC4uIB8v/nQkHh0l/DdjPw4tGEt6R3wrAg4OAisrAQ8PASvaO3hbER8PFigoFg8fEVt4O/1SQQb9JhxB+QMlHQTpGoAwLDYvLDD+bCsCDg4CKysBDw8BKwLVBS0PEyEFCDg4CAUhEw8uBAQRDg4T/eHFARtUIH2sZiBAHwQ5QXTFLkj5qi9FeEoYLQ4+YjfnMzAvMzkvMYABMC8iIi4uIiIv/l0vHyAuLiAgLgAAAwEE/qwJJAbMAA8AFwAiAAABIiY1ETQ2MyEyFhURFAYjATMTIRMzASMDEz4CNx4CFxMBqkRiYkMG1kRhYUT6D7isAj2uvP3OpJSlCRUWCgwZFwmi/qxhQwbXRGFhRPkqQ2IBOwHA/kAFrPy2AbUYRlIpKlFGGP5LAAAAAAQBBP6sCSQGzAAPABkAKwA0AAABIiY1ETQ2MyEyFhURFAYjAREhMh4BFRQGIwUhMj4BNTQuASc1PgE1NCQpARMRMzIWFRQGIwGqRGJiQwbWRGFhRPtxARaHnEOXwP4kAf+b4npXk1uGjv7p/vD+YrfvuamLuv6sYUMG10RhYUT5KkNiAdcCDkByTHmXm2C5g3GOTg8KGal/xqL9lwHMaXd0eAAAAwEE/qwJJAbMABEAHQAtAAAFMj4BEjU0Ai4BIyICERQSHgE3IgIREBIzMhIREAIBIiY1ETQ2MyEyFhURFAYjBRaGvnc3N3e+hvr8NnfAh5abmZuVmJv8AURiYkMG1kRhYURwfd8BKKuqASfdfP5t/muo/tjhgKkBRgE/AT0BRf6+/sD+vP6//nNhQwbXRGFhRPkqQ2IAAAADAQT+rAkkBswADwAbACUAAAEiJjURNDYzITIWFREUBiMBMxEzMj4BNTQkKQETETMyFhUUDgEjAalDYmJDBtZEYWJE+vC3p9n9bf78/uP+gLe5wLRatov+rGJDBtZEYWFE+SlDYQE6AjWC0XjL4P0mAj2KjGuCOgAGAQT+rAkkBswADwAXACAAKQA5AEIAAAEiJjURNDYzITIWFREUBiMBMxMhEzMBIwMTPgE3HgEXEwERMzIWFRQGIwUhMjY1NCYnNT4BNTQmIyETETMyFhUUBiMBqkRiYkMG1kRhYUT5NHtyAX10ff6KbWNtCxUKCxcMawITuYVoZID+xQFRm7R9W1leubT+7nmee3Bce/6sYUMG10RhYUT5KkNiAioBKv7WA8b90AEiHkkqKkcg/t7+0QFcXExRY2ePgnFnDgcRb1WDa/5nATJGT01QAAMBBP6sCSQGzAAbACEAMQAAJTI2NzUOASMiJjU0PgEzMhYXNy4BIyIOARUUEiUhNSERIwEiJjURNDYzITIWFREUBiMECE5xNDVvPaSjT5NmP2wrLzSHSZPLadkCnAIV/mN4++BEYmJDBtZEYWFE0hMUZxAWzrB3qlwfFGQcHnzbj+D++AprA0v6GmFDBtdEYWFE+SpDYgAABwEE/qwJJAbMABkAJQAxAD0ASQBPAF8AAAEyNjc1DgEjIiY1NDYzMhYXNy4BIyIGFRQWITI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGBTI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGBSE1IxEjASImNRE0NjMhMhYVERQGIwJULD8dHj4iWVphUyM7GBsdSyl5gXgCM3Z6enV7dnZ6WFRUWVhSUgHXdnp6dXp4eHlYU1NZWFFRAQYBJeNC+gtEYmJDBtZEYWFEAasLCzkKC3FhYnESCzcPD5R3epKUeHqSk3h5lDlxYmRwcGRicTmUeHqSk3h5lDlxYmRwcGRicTE6Ac/68GFDBtdEYWFE+SpDYgAAAAAGAQT+rAkkBswADwAZACcAMAA8AEgAAAEiJjURNDYzITIWFREUBiMBMzUzNSM1MzUhATM1MxczJz4BNTQmKwEXNTMyFhUUBiMBITUjNTM1IzUzNSEBITUjNTM1IzUzNSEBqUNiYkMG1kRhYkT5g0HPz93+4gGXQWd9TY8nQVxgj0FKQD06PwFJASLh1NTh/t4BmQEi4dTU4f7e/qxiQwbWRGFhRPkpQ2EDB906uTn999fX6Q5APkpK+sErMzEy/vE6ujmjOf33Oro5ozkAAAAABAEE/qwJJAbMAAMADAAUACQAACUzESMBITIkNTQkIyETETMyFhUQIQEiJjURNDYzITIWFREUBiMC9Xl5AZ4BC+4BCP8A2f7YeZ6tvv55/BtDYmJDBtZEYWJE1gPA/ED28+jv/KcC8rTA/oL9b2JDBtZEYWFE+SlDYQAAAAQBBP6sCSQGzAAPACEALQBOAAABIiY1ETQ2MyEyFhURFAYjATMRNCYnMwEzESMRFBYXIwEjASE1ITUzNSM1ITUhATMTPgI3HgIXEzMTIwMOAQcuAScDIwMOAQcuAScDIwGpQ2JiQwbWRGFiRPkcRgUCBAFDWUcFAQP+vVgCbQFS/vv29gEF/q4CME1yCAwIAQIIDQd2TaFQXQoPBAQRDG9PawoRBQQPCl5P/qxiQwbWRGFhRPkpQ2EC6AFSL1ce/goCXP6rKWIUAfT9pEPYQr1C/aQBihoyJggIJzEY/nQCXP6QKEkgHU4nAW/+lCVPISBKJgFxAAAAAwEE/qwJJAbMAA8AIQA/AAABIiY1ETQ2MyEyFhURFAYjATMRNCYnMwEzESMRFBYXIwEjATI2NxEhFTMVDgEjIiY1NDYzMhYXNy4BIyIGFRQWAalDYmJDBtZEYWJE+a2UBQUFAVbTlgQEA/6r0gS7VIY9/smVFjEjbWCBbTJdJDcxeT/G1b/+rGJDBtZEYWFE+SlDYQKCAXI5bzj9rgMT/os3azcCTvziGRQBl4qkBAeUc3mTGRKFFhvbucbPAAAABAEE/qwJJAbMAA8AGwAnADYAAAEiJjURNDYzITIWFREUBiMBMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYFMxE3EzMJASMDDgEHESMBqkRiYkMG1kRhYUT66NTIyNLVyMjTc2hpdHRlZgHKtk7i0P7QAS7M6RMlEbb+rGFDBtdEYWFE+SpDYgJP9cjK8vLJyfWZnIiJm5uJiJyNATQ4/pQB4gF+/toZNRoBjgAAAAUBBP6sCSQGzAAPADQAQwBNAHMAAAEiJjURNDYzITIWFREUBiMBMjY1NCYnLgE1NDYzMhc3LgEjIgYVFBYXHgEVFAYjIiYnFR4BITI+ATU0LgEjIgYVFB4BNyIREDMyFhUUBgUyNjU0JicuATU0NjMyFhc3LgEjIgYVFBYXHgEVFAYjIiYnFR4BAapEYmJDBtZEYWFE+fx5kVRWTjAtK0pTMDFpOHmJXk9MLjIxLmoxMmYC0m2NRkWObZ2mR49tj49GRkYCHXmQU1ZOMS4tIk4sLzFqN3mJXVBNLTEyLmoyNGb+rGFDBtdEYWFE+SpDYgI6m3pZeTAsOTAnMTWbGx2Lc2xuMC49LCk6IiCxGxZx0ZCR0HDr5Y/ScpkBOQE6nJ6fmpmbell4MSw5MCcxGRybGx2Lc2xvLy0+LCk6IiCxGxYAAAYBBP6sCSQGzAARAB0AJgAyADYARgAAJTI2NREjERQGIyImNREjERQWJTMRMzI+ATU0JiMhExEzMhYVFAYjATI2NTQmIyIGFRQWAzMTIwEiJjURNDYzITIWFREUBiMC7rm0uVNcWFi6twKyvE+Bl0Ceqv7lvFVMR1xOAkArPj4rLD8/HZIg0vnnRGJiQwbWRGFhRPC8iAI7/eVnYFltAhz9x5K0DQE5UodNgJP+YAEGPz9HQf4eMDc5Li45NzABNQJN+j1hQwbXRGFhRPkqQ2IAAAAAAwEE/qwJJAbMAA4AOABIAAAlMwEjAw4CBy4CJwMjATI+ATU0LgEnLgI1NDYzMhYXNy4BIyIGFRQeARceARUUBiMiJicVHgEBIiY1ETQ2MyEyFhURFAYjA2Z4AVF91A4XEgYGEhUO1n0EiWiYUzt0VE1bJ1tYPnQxJTWCToaoNm1QgV9sakyOLyyI+11EYmJDBtZEYWFE3AO2/aEoSEIgIEFHJwJi/D0/eFRKYkYfHTNALz5OHRVmGB2DcEpoSx0uT0VHUyMVchYX/d1hQwbXRGFhRPkqQ2IAAgKGAAAHoQW8AAcAEgAAIQMhAyMBMwkBLgInDgIHAyEG4rD9vK66AjumAjr9tgYcHAgKFxYIpgHPAcX+OwW8+kQEIxFVXBkqU0YY/kUAAAADAxUAAAcTBbYAEgAbACUAAAEgBBUUDgEHFR4CFRQOASMhEQEyNjU0JisBERURITI2NTQuASMEtgESARlAfFpclVd84539/gHGvIyrufIBJ8KYRJ2HBbaiyFaGVxEKD06PcoW6YQW2/ZJ5dnhq/i+a/e6Xe01zQAABAuv/7Ac9BcsAHQAAASIGAhUUEhYzMjY3FQ4BIyIkAjU0EiQzMhYXBy4BBaec43tw4KhfrVNSrnng/tWVowE54nHQU0pDpwUpjv74uLX+95AhGaAfHLgBU+beAVK+LSmcHzEAAgLKAAAHXQW2AAoAEwAAARQCBCMhESEyBBIHEAAhIxEzIAAHXbb+q/H+aQHC3QFDscL+3/748McBKAEqAun3/rWnBbaj/sHxASQBEvuFASQAAAAAAQN7AAAGrAW2AAsAACkBESEVIREhFSERIQas/M8DMf2HAlT9rAJ5Bbai/jig/fYAAQN7AAAGrAW2AAkAACEjESEVIREhFSEEM7gDMf2HAlL9rgW2ov36oQAAAAABArX/7AdzBcsAIQAAASERDgEjIiQCNTQSJDMyFhcHLgEjIgYCFRQSFjMyNjcRIQV6Afl28prj/sihswFT8HvbXkZOwmmv+IRw88Rhhzf+vwME/TMmJbcBUOjlAVG6LiigIjKP/vi3r/71lhYNAbIAAQLlAAAHQwW2AAsAACEjESERIxEzESERMwdDuP0SuLgC7rgCqv1WBbb9lgJqAAAAAQQMAAAGHAW2AAsAACkBNTcRJzUhFQcRFwYc/fCsrAIQrKxqJwSSKWpqKftuJwAAAQQJ/+wGHgW2ABEAAAUiJic1HgEzMj4BNREzERQOAQShMUscIEoqM1w5uV+rFA4NmwkLKGZdBD370o23WAAAAAEC/QAAByoFtgAOAAAhIwEHESMRMxE+ATcBMwEHKtn9+ZW4uD5/PwGL1/29ArqD/ckFtv0vRotGAbr9gwAAAAABA3gAAAavBbYABQAAIREzESEVA3i4An8FtvrupAAAAAECOgAAB+4FtgAXAAAhASMeAhURIxEhATMBIREjETQ+ATcjAQS//h4IBAcEqgEQAcMIAcsBDrYFBgMI/hgFAip+lU78iQW2+1IErvpKA4NHjnws+wAAAAABAtAAAAdXBbYAEwAAISMBIx4CFREjETMBMy4CNREzB1fX/PEIAwgGqtUDDAgCBwWsBL4wgJJL/M8FtvtGIYObQgM5AAICcf/sB7cFzQAPAB4AAAEUAgQjIiQCNTQSJDMyBBIFFBIWMzI2EjUQAiMiBgIHt5r+1Nzk/tSUlAEt5dsBLJn7fGfWpabUZeX4ptZoAt3i/q28vQFU4uEBUby6/q7kuP72kJABCrgBFQE5jf74AAACA0AAAAboBbYADAAWAAABIAQVFA4CKwERIxEFIxEzMj4BNTQmBMMBHwEGPIfhpKi4AXK6k4y3W7UFtuHNWqeCTP3HBbad/b47g2uNjAAAAAICcf6kB7cFzQAVACQAAAEUAgYHASEBIgYjIiQCNTQSJDMyBBIFFBIWMzI2EjUQAiMiBgIHt2C+jAFe/vj+5QwbDOT+1JSUAS3l2wEsmft8Z9alptRl5fim1mgC3bP+38kw/pQBSgK9AVTi4QFRvLr+ruS4/vaQkAEKuAEVATmN/vgAAAIDCgAABx4FtgAPABgAAAEyHgEVFA4BBwEjASERIxEFIxEzMjY1NCYEnbbsc1WGSgGR1/6e/t24AYnR27OjrQW2XLiLdZteGv1xAlz9pAW2n/3hjIqPegABA0b/7AbiBcsALgAAARQOASMiLgEnNR4BMzI+ATU0LgEnLgI1ND4BMzIWFwcuASMiDgEVFB4BFx4CBuKA6qBSlXwvStt1bZJLPpaEfahUdtOKeMlSOUyzX1t8Pj2Md4GyXAGHgrhhEB8WsCA2OWpJSGJTMC1zoHJ0p1otJZ4gLjZfQEljTywwa5gAAAEC8AAABzgFtgAHAAAhIxEhNSEVIQVyuf43BEj+OgUUoqIAAAEC4P/sB0cFtgASAAABFA4BIyAANREzERQWMzI2NREzB0d8/ML+7/7kub/AxrK3AgSX844BKPQDrvxMssXTpgOyAAAAAQKtAAAHegW2AA4AAAkBIwEzAR4CFz4CNwEHev32uf32wQFJFiIaCgobIxUBRwW2+koFtvxWPG5lMDBnbz0DpgAAAAABAXUAAAiyBbYAKQAACQEjAS4DJw4DBwEjATMTHgMXPgM3ATMBHgMXPgI3Ewiy/nu6/uMNGRQOAgEMExgO/uy6/n3A4wwVEg4FBRAUGA0BAr4BDQ8YFA8GBhUcEOIFtvpKA74sWlE8Dg48UV0v/EgFtvyDMFtYUicoWFxeLQNy/IcwX1tTIzNwe0ADewAAAAABAsQAAAdkBbYACwAAISMJASMJATMJATMBB2TR/n3+d8MB5v45zQFmAWnC/jwCe/2FAvoCvP3DAj39SAABAtAAAAdXBbYACAAACQEzAREjEQEzBRQBfcb+Gbn+GckC5wLP/IH9yQIvA4cAAAABAxkAAAcPBbYACQAAKQE1ASE1IRUBIQcP/AoDAv0WA8n8/gMXiwSHpIv7eQAAAAADAQT+rAkkBswADwAtAEsAAAEiJjURNDYzITIWFREUBiMBMy4BNRE0NjcOASMhIicVPgEzIREhIiYnFT4BMyEFMy4BNRE0NjcOASMhIicVPgEzIREhIiYnFT4BMyEBqkRiYkMG1kRhYUT7nHECAwMCDSIO/nArKw4yFgFf/p0ZMA8RMRcBYgMycQIDAwINIg7+cCsrDjIWAV/+nRkwDxExFwFi/qxhQwbXRGFhRPkqQ2IB4yNYGwMIG0QaAQEIigID/T0GBI8EAlYjWBsDCBtEGgEBCIoCA/09BgSPBAIAAAIBBP6sCSQGzAA6AEoAACU+ARI9ATMyFhc1DgErATU0NjcjHgEdASE1NDY3Ix4BHQEjIiYnFT4BOwEVFAYHMy4BPQEhFRQOAgcBIiY1ETQ2MyEyFhURFAYjBLa0wkqsNE8NEEw0rAcBjQIF/kIHAYwEA6oxYAsOXDKqBAOKAgQBvjVroGv9XURiYkMG1kRhYUQdUNEBJtA5AwKEAgbELkcLC0cuxMgpPgwbPxnICQKJAgX+LU4UFFAr/kKl4ZZmKf4sYUMG10RhYUT5KkNiAAAMAQT+rAkkBswABwAPABcAGwAfACcAKwBKAE4AUgBWAGYAACU+ATcnDgEHBTcuAScHHgEFNy4BJwceAQERMxEzETMRATcuAScHHgEBETMRASE1IxEzNSMRMzUhPgE3Jw4BBx4BFz4BNxUjFTMRIyERMxEBETMRMxEzEQEiJjURNDYzITIWFREUBiMCq0BlHGwdaD0B8m8BFg5rDhIBfHEMOCBtHjb97K5jtgIDdB97O2o5dvxSrv4pBT/G29uh/CQXKhJvN7JlFToQI0gi2dnAA1S3/i+2ZLf7PURiYkMG1kRhYUQPN6xYGlWjMB4QNaBFC0ajNxc4oUMVRaIBuwEM/vQBDP70/f4qQK1GJEmyAzcBCf73/iRpAQxnAQloI0slIXbZSgwwER1IJspn/vQBDP70AXMBCf73AQn+9/sqYUMG10RhYUT5KkNiAAYBBP6sCSQGzAAhACUALQAxAFIAYgAABRY2Nz4BNRE3JwcRMzUjESMRIxUzEQcXNxEUBgcGIiceASU1IRUFMzUhFTMRIRc1IRUBITI+ATcuAScOAiMhIiY9AT4CNycOAgc1IxEUHgEBIiY1ETQ2MyEyFhURFAYjAqJPYh4eGs8Owbe3ctra7SHMDREOWDULFQKXAfz9lW8B/HP9Im8B/P54AW5OUycIF0AUBBIsK/6hTCtm1MVPWTqkul1zJ2P8WkRiYkMG1kRhYUQUAQgNDjUxAcRAbDgBLmwBO/7FbP6vQHE9/l8RCgIBARY+kaSkqEhCAqX/m5sBgSxwZQYYEFRUHBcocBQwOR9WGjQwFOr+RkNKHfuTYUMG10RhYUT5KkNiAAAHAQT+rAkkBswACQAfACkALQBNAGsAewAAJT4BNycOAQceAQUyNjc+ATURITUhFSERFAYHBiYnHgElNy4CJwceAgEhNSE3MxEeAhc3LgMnNTM1IzUjFSEVMw4BBx4BFz4BNwEzER4BFz4BNy4BJzM1ITUjFSEVMw4BBx4BFz4BNwEiJjURNDYzITIWFREUBiMCqVOvPG40olYUOQFpXHsmJhsCaPq1Am8MFBN1SgsZAzteI256OFs6emv79gP6/AZhbCBGPBI/Dz5LRRba2mz++uI1mE0RKQ5BgDUCo244iD8LLhFNozjx/u5u/uvtOaZRESgNSJE5+5dEYmJDBtZEYWFEFzSbVCNJhS4OLSUEDQ0vMAEaZWX+6Q8LAgEBAxc5Aj0mXl8mOCdiYAI7YTcBGRo5MxFNDC02MA0OYp6eYlqkLg4vEyyQUf7mASJPkC0TLw4solVinp5iV6EtDS4TLZRT+nBhQwbXRGFhRPkqQ2IAAAADAQT+rAkkBswACwA3AEcAACUhNSERITUhFSERIRM+AjczERQWOwEyNjcuAScOASsBIiY1ESEVMxEhNSMVIREzNSEOAgceAQEiJjURNDYzITIWFREUBiMCZwVa/YoB7/vQAcv9kku5yloP5UNm4U89CBY9EQQVIskrGAE8dv2jdv2wcgEvDUyzqBIm/wBEYmJDBtZEYWFEVmsBO2lp/sUB5yqKy4v+yVc6Sm8FGA1SLRAdATeuARejo/7G0XKmcCERO/vvYUMG10RhYUT5KkNiAAAAAAUBBP6sCSQGzAAHAAsADwAmADYAACUzNSEVMxEhExEhEQEhNSEFPgI3HgIXPgE3LgInIw4CBx4BAyImNRE0NjMhMhYVERQGIwMxcgLPePxHcgLP/RADEfzv/vuG+ctASdr7eQ8oFnv/41N2Pc3+iRQqyERiYkMG1kRhYUQhQEACcP45AV7+ogKLZ6VIu8tfZMyzQBk3FDiu13Nk18FFEzb7gWFDBtdEYWFE+SpDYgAABgEE/qwJJAbMAAkAEQAZAFYAWgBqAAAlPgI3Jw4CBxM3LgEnBx4BEzcuAScHHgETMxEhESM1IxEzNSEVMxEjFSMRIREUBwYmJx4BFzI2Nz4BNREhNSE1ITUzNSM1IxUhNSMVIxUzFSEVIRUhJTUhFQEiJjURNDYzITIWFREUBiMCvyhVUiJYJltZJfNBMKVJQU2jaEgrnUdESZqPaQEzfU9PAVxMTIQBQRwQZDsLEARTbyEgFf5eAdX+7ejob/7rbODg/uoB0/5vAUABFftoRGJiQwbWRGFhRA5Jq7FSRVi6pjwCjGQlUBpaHFcBdlkrXh9TImP7VAKJ/sLp/l9eSAGL6QE+/fMYAwECAhY3FQQLCzUrAnSEaa9moqKiomavaYTtr6/61GFDBtdEYWFE+SpDYgAEAQT+rAkkBswAAwAxADUARQAAATUhFQEzESEVFCMiJiceARcyNjc+ATURIT4BNyE1IT4BNycOAQchFSEGAgceARc+ATcXNSEVASImNRE0NjMhMhYVERQGIwQRAo79AHICjiQWf00MFgRkhiYmHP0NGi8WA0v84xEeDnQOIxT+RgGJS9aNES4MSoI4cgKO+wtEYmJDBtZEYWFEAd+lpf5nATWjIgEDGT8aBg4OOTUDFyxcLm4qWCsdM2Uybpv+8F8QNhM0fEZQnp77xGFDBtdEYWFE+SpDYgAEAQT+rAkkBswAHQAjACcANwAAJT4BNyERFAYHBiInHgEXMjY3PgE1ESERFAoBBx4BAT4BNSERAREhEQEiJjURNDYzITIWFREUBiMCrXJ+HQLxFhsbpmIOHAZ+oC0sJfxGIXR9ETkBLAoHAs39MwLN+v9EYmJDBtZEYWFEAmT+hf7HGhMCAQQZRxkHDw5CPQSb/iB8/uf+8W4NNQJHRYU9/vkBdgEE/vz62mFDBtdEYWFE+SpDYgAABgEE/qwJJAbMAA8AEwAXABsAHwAvAAAlMxEhFTMRITUjFSERMzUhJTUhFQE1IRUTNSEVATUhFQEiJjURNDYzITIWFREUBiMEz3cBt3b903f95XMBqP5YAaj+WAGodwG3/kkBt/qtRGJiQwbWRGFhRAUBqlEDbc/P/ItZce3tAVnj4/6n7e0BWePj+zNhQwbXRGFhRPkqQ2IAAAAABwEE/qwJJAbMAAcACwAjAC8AMwBFAFUAACUzNSEVMxEhEzUhFQEhNSE1MzUjNTM1IzUjFSMVMxUjFTMVIQMzNSEVMzUhNSMVIQEzESMTMjY3PgE1ESMRFAYHBiYnHgEBIiY1ETQ2MyEyFhURFAYjAqppAadu/YJpAaf9kgMk/qf19fX1bPX19fX+oQpfAoBf/ppy/poDnW5ualqDJCUdbw8TFn1JDhj7ZURiYkMG1kRhYUQkUEAB0P7J3d0Bjl1sVGZYZmZYZlRsAXaamviLi/yMA1v7FwgODj08BNf7JxQPAQEBAxlI/m9hQwbXRGFhRPkqQ2IAAAAFAQT+rAkkBswAAwATABcAOQBJAAAlNSEVBTM1IRUzESE3IREhESEHITc1IRUlMzUhFTMRIz4BNycOAQchNy4BJwceARchNy4BJwceARcjAyImNRE0NjMhMhYVERQGIwN2A0D8Um4DQHL92TIBe/zGAUAi/nbaAlv8UWwELW/2Jk8jeRtaKv7iTQ9II2YhQxD+zi8TVCpjIkcW3eREYmJDBtZEYWFEmtXVozw6Adx9AWr+ln3YtLS5zc0BMiplMSk0gzIdLX4xIzF3LhYqcy4sKGQp+hRhQwbXRGFhRPkqQ2IAAAAIAQT+rAkkBswAFwAnAC8ATQBXAFsAXwBjAAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEBMxE+ATcnDgEHHgEXPgE3ATcuAScHHgEXMjY3PgE1ETM1IzUzNSEVIRUhFSERFAYHBiInHgEBPgE3Jw4BBx4BBTUhFQUhESEXNSEVBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sr9THMjQhtmRdJqDycHLl0sAitZHnM2UzZvk1lyIyMZ6enN/G4CUf2LAnUMFBBqQgwW/MRo0UVvNLtdDyQCgAID/YwC6P0YcQID/qxrwgEFATaoqAE2AQXCa2vC/vv+yqio/sr++8JrAUwDUS9iMCl54U0VSREjVjD9qz4vezA1NICrBg0NMy8BLWSFZWWFZP7WDwsCAQMYOgPdRcpkK1KyPBI4S39/WQIC1X19AAAAAAQBBP6sCSQGzAAXAB0AIQA2AAABIiwBCgE1NBoBLAEzMgwBGgEVFAoBDAEBMzUhESETESEREzI2Nz4BNREzNSEVIREUIyImJx4BBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sr9OnECC/2EcQGZbHOjLiwkwfqVBDMtG6leDh7+rGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmsCQX4CRf4qAWX+m/4JBhAQQD8EDXR0+/QvAgMZSgAAAAEBRv7UCOIGpABWAAABIiQAAjU0EgAkMzIeAxUUBiMiLgMjIgQGAhUUEh4BMzI+AjU0LgEjIgYVFBYzMjY1NC4CNTQ2MzIeARUUDgEjIi4BNTQSJDMyBBYSFRQCBgQFF8j+n/7ymrIBNQGO24f71J5YIRgfT3Km66Kr/tfhfmu++5B81qFaetGDmr2CVj5MKjYqNy0/dktdoWaE0nqbAQyomQEJx3CE6v7J/tScAREBZcnhAXQBDZNFdZCYRCwpTnN0TnXR/uqhlP7+w25Wmct1h9d9spF5gzUvIS8rMyUpL1mJSWCZWYHei6UBBplwyP72mq7+0eWBAAAAABMBBP6sCSQGzAAPABMAKQAtADEANQBOAFIAVgBmAIcAoACkALgAvADAAMQAyQDOAAABIiY1ETQ2MyEyFhURFAYjATUzFQUmIyIGBy4BIyIHJzYzMhYXPgEzMhclNTMVNxEzETMRMxEBEgAhOgEXNiQzMhcHLgEjIgQHJiIjIgQHARE3EScRMxEBITI2NRE0JiMhIgYVERQWAzUyPgQ3Mx4CFx4DFwcuAicuAScOBQUnNiwBNjc+ATU3HgEXBy4BJw4BBw4BDAElMxEjAxEzETMVFjMyNjc1MxEzEQc1IxEBETMRATMRIwERMxEBNDMyFTM0MzIVAbJGaGdGBsZHZmZH+dM8ApJrhjKDUFanXz05E0ZDaLNVPXo6wpj9qzxHPEY8/ohcAXMA/wcPD3QBHqplZxkuVi+i/vxrKB0L4v63TQHqPL48/MMGxSY3Nyb5OiU4OUZT3/jyz40VRAwsOR45lqSfQhhMydllJ1gYKKDU8PPdARNYkwEzASDwTzIkTFv7kSGO610MNzFN4P70/t4C0cvLUBJuJxEbMg1MDVDLAYo8/ke2tgIJPP2VHh6sHRz+rGdGBsZHZmZH+TtHZwM0ycn2Yx8sa1wOThBXXBscrG6YmAICDv3yAUj+uP2WAQUBBgGztCJMDw+3sQLn1AHYAm48/VZwAwD9AP29OCYGxSY3Nyb5OiU4A1ZETYSntrJMGlVYIT2DfGUfQySPvWkpbiVRs7OffUerLiyayel5TV9AD4LkZkJm54Anakt45syh2AED/SEDOQG2RAYODSz+UP4ZZJH+ywEeAX/+gQHOAQP9LwIU/ewDgDc3NzcAAAUA8P6sCTgGzAAfACoARwBkAIwAAAUiJwE+ATcHJz4CNwcnNxcjPgE3Fwc+AjcBFhUUBhciLwE/ARcWFRQGATI2NTQmJy4BNTQ2MzIfATcnLgEjIg4BFRQXHgEXIiYnJjU0PgEzMhYfAQcnJiMiBhUUFhceARUUBgEyNjU0JwEXDgEHJwEHATcOAgcnAQcBFw4CBzcBBwEXDgEHNwEWCEc/P/oTOKNYAs0ulqlJCaJIpCMXTS5tEw8zOhkDKhdQbiMVaj0saBUn+KUaJQcJCxQ/Kzksi1qNMV4yPG5HPQ8fECI8Gk5bkVBCfDrAyL4XFg0TCwcLFFMGWx0iD/ztRSVDER0CLT/9jEIaMigMDAL1M/0HLkebjjMfA8Iq/Nw4X30pBAWaJtYqBAclLgQsnBgpGwMltUO2deZdvQwxYU0S+ZEuLzxMfhhzJTtzGB4cJgY5IRYIEAwPJhkrPDGVVJc1MkVrO0tDEBNLIB1XaE+OWT8/z7nKGhEMCREJDCgaNU362iIcGR8GRAsxdFxm/DAgBEMdMpCiTjT8nC0DYBICEh8VOP0bOAJnBwUUDxn8NBsAAAAuAMr+rAleBswADwATABcAGwAfACMAJwArAC8AMwA3ADsAPwBDAEcASwBPAFMAVwBbAF8AdQB5AH0AgQCFAIkAjQCRAJUAmQCdAKEA4wDnAPAA9AD4APwBAAEEAQgBDAEQARQBJgAAASImNRE0NjMhMhYVERQGIyUhNSE1ITUhNSE1ITUhNSE1ITUhNzUzFQEzNSMBNTMVATM1IyczNSMBNTMVATM1IwEzNSMnMzUjATM1IwE1MxUBMzUjATM1IwEzNSMBMzUjAREjESEVIzUjFSMHIxEjNSMVMxUzERMzNSMBMzUjJzM1IwUzNSMBMzUjATM1IwEzNSMBMzUjATM1IwEzNSMnMzUjATMRIzUzETM3MxczETMVIxEzETM1MzUzFTMVMxEhETM1IxUjESM1IzUjNSMVIxUjFSM1MzUjESMnIzUhESMRIREhAzM1IwEzNTQmIyIGFQEzNSMBMzUjATM1IxczNSMBMzUjATM1IwE1MxUnNTMVJzUzFQEyPgE1NCYnFhUUBiMiJiceAQF6SGhoSAc0SGhoSPhOAen+FwHp/hcB6f4XAen+FwHp/hdaMgKSWlr9PDIDMFpanlpa/TwyBMoyMv5mWlqeWloCujIy+oIyBMoyMvyiMDAEYjIy/WJaWv6bqwISTDARRzAkMCwoZFpaAroyMoIyMgEEMjL9YlpaAhwyMvwgMDADXjIy/RAwMAP0MjKCMjL8TccoKCJHjEYhKCjIUlpqWlIBLEZ4jDxSWs5aUmQoKC5HFf2KYv7oAiUtMDABXYolIB8mAwUyMvwMMDADJSwsUCws/PkwMANXLCwBWzIyMjIy/tNHcUJGMBqHcSNFICB4/qxnRwbER2dnR/k8R2fUPGQ8ZDxkPGQ8qkZG/Y1aArlGRvztWlBaAq9GRvsTRgGeWlBa/RhGBUdGRvsnRgM0ivtIRgJIWv4gAnMDaZAwMNz+6laKlP1uAjBa/SJGWkbmRgI+Wv3CRgN6ivxWRgLaivu2RlpG/pwC9mQBFtzc/upk/dMBoW5ubm7+WwKsMpz+o/Jubm5urNTIARbcwvxlAtr89AKxiv3lgSYnJyb9CkYDwIr8ZZqamgJ3ivxlmv58RkaMRkaMRkYBxkJyRkhwHkJBZIkTFj1MAAAAEAEE/qwJJAbMAA8AHwBPAFQAXgBkAGoAcAB2AHsAgwCUAKQAuwDfAO4AAAEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWJQEuASMiBy4BIyIGByc+AjMyHgEXNjMyFhcTNz4CMzIeAhcHLgMjIg4BBwkBNQEGNwE1NDY7AQEOATcBMwEOATcDMxMOARcuAScTMxMuAScBFQUmJwEzASYnAR4BHQEBJxE+AzMyFRQGBw4DASc+ATMyHgEXBy4CIyIGEyImJy4BJy4BNTQzMh4CFx4DFRQXLgE1NDMyFhc+Ajc+Azc+ATMyFRQGBw4CBw4BBw4BBwUuAicuATU0MzIeARcDAahGXl1GBtpHXFxH+ScG2SYtLSb5JiUuLgOs/tsqOBscLk9sKjGEaBIrYWo5LFFULx4aM0sz7pVs0LZDMzwwPjQdMzwtNS05nrlk/aL9jwKBCFT9PkIsKAJGBg5p/l2rARUHD3OqpiQIEJcHDQc5oYsFCwcCPv0MDg0BHKX+ywwQAiU1RfjhnSQ/OjofFB0GBxEUFAI+PSe6dVaSZxNDDFN6Rl6bORhxNxQCES5bCSNJPysFFDMvH6cYNxASXyoDGyMNCC88Ng40QAwNLhcMKzIZEzILECYaAwwMGxoLBxwUIjU1IAz+rFxGBttHXFxH+SZHXFAuJQbaJi0tJvklJS31AVkyLyF9dYiocEh8TDNjRw9EPP7oj2inYyg8PhZKFTs6J12eYAGTAeXd/VYLXQN/DyM2/C4EC0MDnvxuAwYjA3j8jQECAQIBAQNz+64KEAkCSrn/BwQDkvwZCwsD0QFFMzP5AxABmRpRUjgNFVc4QZeObgKFO2eGSX9ROEx0QXX9aD1KHF4aSG0oDEFdVRUNQE9IFQNmQzsdETcjCklXHAolLSwSQDoLEzEEQDwlHxhhHy44GyUuobdOOFgTDUVcJf6UAAAAFAEE/qwJJAbMAA8AGQAfACkARwBMAFQAWgBgAGkAbwB1AHsAgQCJAJcApQDBAM8A3QAAASImNRE0NjMhMhYVERQGIyUhMjY1ESERFBYBJTUFDgEFIRE0JiMhIgYVATwBNTQ+ATMyHgEVHAEVIzwBNTQuASMiDgEVHAEVJwE1AQY3ATQ2NwEOATcBMwEOATcDMxMOATcuASMqAQcDMwEuASclFQEuAScTFxMuAScBFQUuAScBMwEuAScBFh0BASImNTQ2OwEyFhUUBiMnIiY1NDY7ATIWFRQGIwUiJjU0NjcjIiY1NDYzITIWFRQGKwEeARUUBiMlIiY1NDYzITIWFRQGIxciJjU0NjsBMhYVFAYjAahHXVxHBtpHXFxH+ScG2SYt+IAuAXr+OgHUBAj+VgeALSb5JiUuAeOA2IWF2IBQarNwb7VqZ/4YAg4VPf3HGhwCQhAhXf4s2QFFEiVyzK93GSznEiISBxEIGZ0BtQEGBwHY/PIWLhmIskgIEwwCEf1sEiMTAUTA/qoNHhECVxP5rhAWFhB7EBYWEP0QFhYQexAWFhACfRAWBAnOEBYWEAHZEBYWEF4JBBYQ/eAQFhYQA0sQFhYQ2hAWFhB7EBYWEP6sXEYG20dcXEf5JkdcUC0mAlT9qyUtAzRYr7gOLVEENiYtLSb7uQUIBIncgYHciQQIBQUIBHK4bGy4cgQIBd8BFMr+cCVeAkJVZh39Kg8jVQLt/UAJFjgCqf1vBAwUAgIBAor7hRQpGpmrAYIKDgYCkwL8GxUrFAGK0SAOFwoCyPydEyMQAt4UH8L65BcQERcXERAXnhYRERYWEREW6xQPBw4JFxARFxcREBcJDgcPFPUWEREWFhERFgoWEREWFhERFgAAADgAyv6sCV4GzAApAC0AMQA1ADkAPQBBAEUASQBRAFUAWQBdAGEAZQBpAG0AcQB1AHkAfQCBAIUAiQCNAJEAlQCZAJ0AoQClAKkArQC1ALkAvQDFAMkAzQDRANoA3gDiAOYA6gDuAPIA9gD6AQIBBgEOARYBHgEmAS4AAAEiJjURIREzESM1MxEzNzMXMxEzFSMRMxEzNTM1MxUzFTMRIREzERQGIyUhNSE1ITUhNSE1ITUhNSE1ITUhNzUzFQEzNSMBNTMVAxEhESMRIxEBMzUjATM1IwEzNSMBNTMVATM1IyczNSMlMzUjJzM1IwE1MxUBMzUjJzM1IwE1MxUBMzUjJTM1IyczNSMBNTMVATUzFQEzNSMnMzUjJzM1IyUzNSMBNTMVATM1IwEmJzY3FhcGATM1IwE1MxUBESERIzUhEQEzNSMBNTMVJTUzFQEzNTQmIyIGFQEzNSMBNTMVATM1IxczNSMBNTMVMzUzFQE1MxUnNTMVBTUzESEVIxE3NTMVASYnNjcWFwYDJic2NxYXBgEmJzY3FhcGAyYnNjcWFwYFJic2NxYXBgFwRGICulYoKChGnkYoKChZXFp0WlwBXnNhRPhXAi790gIu/dICLv3SAi790gIu/dJGMgKSWlr9PDK+AUoy5gO8WloBSjIy/hhaWv08MgT8MjKCMjL+tlpanlpa/TwyBX4yMoIyMvx0KALiMjL+tlpanlpaARya/ZYoA3gyMoIyMoIyMv62Wlr+QCgD5jIy+noSJSUSEiUlBPIyMvziKP7oAnYy/e4EXjIy/M4o/vwoATGKJSAfJgHsICD9KSgC/yAgUCAg/PcoRigD+jIyMv7acgEQ3lAy/cESJSUSEiUlohIlJRISJSUB5hIlJRISJSXGEiUlEhIlJQFqEiUlEhIlJf6sYUMDQf2NAtiCARbc3P7qgv0oAlZ4bm54/m8CrPvCQ2LUPGQ8ZDxkPGQ8q0ZG/YxaArpGRv7nAyD84ALu/RL+BVr+gEYBiloCsEZG+yZGWkbqWlBaAqZGRvqGRlpGAziCgv0iRvRaUFr+vDIyAeSCgvyCRlpGWkb+WgGGgoL8PEYFXSYSEyUlExL610YC3oKC/h8D3/7R/fxT/r1GAt6CguaCgv5rgSYnJyb9+5gCgYKC/OeYmJgCgYKCgoL8AUZGjEZGPTIBXTD+oclGRgIXJhITJSUTEgEYJhITJSUTEv50JhITJSUTEgH3JhITJSUTEoEmEhMlJRMSADQAyv6sCV4GTwA2ADoAPgBCAEYASgBOAFIAVgBeAGIAZgBqAG4AcgB2AHoAfgCCAIYAigCOAJIAlgCaAJ4AogCmAKoArgCyALYAugC+AMIAygDOANIA1gDfAOMA5wDrAO8A8wD3APsBAgEGAQ4BEgEuAAABIi4BNREhETMRIzUzETM3MxczETMVIxEzETM1MzUzFTMVMxEhETMRFAYjIREjNSM1IxUjFSMRJSE1ITUhNSE1ITUhNSE1ITUhNSE3NTMVATM1IwE1MxUDESERIxEjEQEzNSMBNTMVATM1IwE1MxUBNTMVJzUzFQEzNSMnMzUjATUzFQE1MxUnNTMVATUzFQE1MxUBMzUjJzM1IwE1MxUBNTMVATUzFSc1MxUnNTMVATM1IwE1MxUBNTMVJzUzFQE1MxUBESERIzUhEQE1MxUBNTMVJTUzFQEzNTQmIyIGFQE1MxUBNTMVATUzFTM1MxUBNTMVMzUzFQE1MxUBNTI3FQ4BFzUzFQU1MxEhFSMRNzUzFSc2NTQuASMiDgEVHAEVIzwBNTQ+ATMyHgEVFAcBejBQMAK6VigoKEaeRigoKDZcWrpaXAE7c2hI/tBcWlZaXPtUAi790gIu/dICLv3SAi790gIu/dJGMgKSWlr9PDK+AUoy5gO8WloBSjL95lpa/TwyBPwytDL+hFpanlpa/TwyBX4ytDL8QigC4jL+hFpanlpaARxt/cMoA3gytDK0Mv6EWlr+QCgD5jK0MvywKP7oAnYy/e4EXjL8nCj+/CgBMYolIB8mAewg/QkoAv8gMCD81yhGKAP6Mv76OTQZN7cy/v1PARDeUDI+Iz9rQUFrQDJNgk9PgU0c/qwvUC8DN/2NAtiCARbc3P7qgv0oApF+bm5+/jQCrPvLR2cD0X5ubn78L9Q8ZDxkPGQ8ZDyqRkb9jVoCuUZG/ugDIPzgAu79Ev4FWv6ARkYB0FoCr0ZG+ydGRqBGRgEwWlBaAqVGRvqHRkagRkYDfoKC/SJGRgE6WlBa/rwyMgHkgoL8gkZGoEZGoEZGAURaAYaCgvw8RkagRkYDJIKC/h8D3/7R/fxT/r1GRgMkgoLmgoL+a4EmJycm/fuYmAMZgoL855iYmJgDGYKCgoL8AUZGAScyGzcKDJtGRj0yAV0w/qHJRkaxOUJBaz8/a0EBAwICAwFPgU1NgU9BOgAGAMT+rAlkBswACwAqAFMAXgBpAHUAAAESCAEkIRUgBAgBBwEiJjU0NjcuATU0PgEzMh4BFzYyMzIeARcyFhUUBiMlITI2NTQmIyoBIzY0NTQuASMiDgEVIzQ2Ny4BIyIOARUUFhcOARUUFgEnNgAkMxUiBA4BJSc2EiwBMxUiBAAlJzYALAEzFSIMAQICv18BUwHDAhMBHf7v/g3+Wv7BXf6XbYR8XgQFes9/Yq2CIAkTCk+CUwdvkIV0+1AEsFpPbVwNGQ0BPWU9PWM6UGRSKsJ3aatkDQphh1UEvjE3AQIBZ86Z/u3glv71UDneATABbcn7/lP+x/7iR1cBDgFeAZ3m2/51/rT+AjcBAAGtATutUKL+3f584/xcfF5YgA0YKBh/znpMiFoCSXtNe19kY1A9OkNJDRgNPWQ8PGQ9XpYibIdkqmktRiYGU0s9TQFlbLgBG6BQYrHvKwe6ATPeeVDC/qgSJr8BPOh+UHre/tQAAAAgAQT+rAkkBswADwATABcAGwAfACkAOgA+AEIARgBKAE4AUgBaAF4AagCIAJAAngCiANcA3wDpAO0A8QD6AP4BCgESARoBOAFAAAABIiY1ETQ2MyEyFhURFAYjJTU3MwERMxEBETMRCQEzFwUhMjY1ESERFBYnNTIWFz4BJDMyBBYXPgEzFQERMxEBNTczAxEzEQMlMxclETMRJSE1IRMiNTQzMhUUAREzESU1NiwBNjczBgIMARMiLwImNTQ/ATU0MzIfATc2FxYPARcWFRQvAQcGAyI1NDMyFRQBMjY3NS4BIyIGBxUeAQERMxEhETMRBgwBBzU2JD4BNzQ2OwEyFh0BHgEzMjY3NTQ2OwEyFhUeAgQXFSYsAScRMxEjNSMVASI1NDMyFRQBIRE0JiMhIgYVAREzETcRMxEBMjY3NSMVHgEBETMRNyYsAQInMx4BDAEXASI1NDMyFRQnIjU0MzIVFDciPwEnJjU0PwI2MzIfAhYVFA8BFxYjIi8BBwYFIjU0MzIVFAGgSFRTSAbqSFNTSPv/wUj+wWT9bDwDQv73SMH8AAbpHi34gC1VT4s6TOgBF5O3AUX+ShtLNPnGMgGWv0gfZDj++Ui//b48/bwHgPiAWR8fHwISMv0cnAE7ARvcPT095P7X/q7aAwIIJA8IKgYGDhYqCwMDCRMWBQ4pGgdTHBwcApUVLhIULRQTLhQSLgEZMv4RHUz++f62r5YBGOedGxMRCBETCisWFyoKExEIERMbnecBGJav/rf++EwdZKr+mxYWFf3lB4AtHvkgHjcFPDxoMv2uESkSmBMoAsc89qz+rv7X4z49PtsBGwE7nP5BGhoarBgYF48FAQkdDAwtDAkFBQkMLQwMHQkBBQQHJCQHAUcZGRn+rFNHButIU1NI+RZIUylGu/7+Ahv95QIbAnj9iP3mAQG7Hy0eAYD+fx4slaEoJhgkFBUlGBANbgIIARD+8P5YRrj95QIb/eUBHf64uANo/JgoZAMdHx8fH/0BAeL+HhU/Orfi83aE/vnvwgJvCTANBQYEAxMiGRAYCwMEBA4gJQoCBwMIIAkBGh0cHB39PwUE4AUEBAXgBAX+5AHi/h4CZgEoZ+TYVUNLtLywRhQWExFQDA8PDFARExYURrC8tEtDVdjkZ/7Y/ZrJyQPzFhUVFvwrBHoeLS0e+r4DaPyYqgEQ/vACZAME/f0EA/zyAnj9iL8/wu8BB4R28+K3OgKXGhoaGsUYFxcYIwkxGQkFBQEDHxYWHwMBBQUJGTEJBRUVBVcaGRkaAAAAAAIA1f6sCVMGzAAuAHIAAAEiLAEmIyIGByYCNRASACQhMgQWFRQGBx4BFRQGIyImLwEOARUUHgEMARcOAwE2Ejc+ARYzMjY1NCYjIgYHJz4BMzI2NTQmIyIGByc+ATMyHgEXHgEzMjY1NC4BJzceAjMyNjU0LgIjIgQAAhUUEgcXjP7r/vrxaF7JQWxuqwE6AbABBagBGqpPPXRCTlNHkHlQRU1vxwEKATmoBmSgx/o3GllfRoR6Nk1VoXozYi0iRrl4RllkTBw4GhctWCxpvJUvZ5c+IzNkuoERNlFNLys2W5vDaeb+c/7Wp07+rENZQzk1uwF1xwD/AbcBSblMhlc6QgZhoDJKYFBYOiF5WW3l3MGSKCJNRCsBCuYBFC8jDgk/PV12ExM/Ni09MThJCQtFEBBHYCZTYCkzRZWILjwQKiAjIixOPSKt/sv+Ze6e/soAAAANAW7+rAi6BswAEwAkADMAnQC0AMYA2QDrAP0BFQErAT4BTgAAASAkJwEXAR4BBDMyJDY3ATcBBgQBIjU0PgEzMhUUBhUUFhUUBgMiNTQ+ATMyFRQOAQcOAQEiJy4BLwEuASMiBg8BDgEjIi8BLgEjIgYPAQ4BIyI1NDY/AT4BNTQjIg8BDgEjIiY1NDY3DgIjIiY1ND4CNz4CMzIeATMyPgEzMhYXHgEXHgIVFCMiJi8BLgEjIhUUHgEXHgEVFAEiNTQ+ATMyHgEVFCMiLgIjIgYHDgEBMjY1NCMiDgEjIi4BIyIVFBYTIicCIyIGIyImNTQ2MzIeARUUASImNTQ2NTQmNTQzMh4BFRQGASImLwEuAjU0NjMyHgIVFBMiNTQ+AjMyHgEVFAYjIicuASMiDgInIjU0PgEzMh4BFRQGIyIuASMiBgcGEyI1ND4CMzIWFRQGBw4BBw4BASIuAScuATU0MzIeARUUBgUU/rn+GnkCSEH94k/0ATy8vAE89E/94kECSHn+GvwtKRchDgwBAhamI0JWHBEgKAwYHQTuNEEiMBEMEyMRERUJBgsjHSwFAgMQEh5QKhZAdyUmO0ERJy4iIyIMHjYUEhQNEBYtJw4KEj5XTxAoMzUsJTM1Jyo6PjAlMh8XSxwOPTUcGS0wERwmDhgrQR8hJPuXLkt4QUhwQRAQIzJKN0BfEQUUAkpNcBAMM0UpLkMtDxBwJBoHS503XywXHHFPZZ1ZAtIWGwMCEA8kGRj8+wsdHysgNyIaFB5GPifNDyZKbUZDaT4YEhoUIkg7QFc4JHUeZqliOmM+ERQUPVAyUpstCAsYL1BmNx4lHBdMcCYRFgL0Ex4iGhMqDiFZQxL+rIB8AzQu/QY7VCsrVDsC+i78zHyAA4JNJ1Q7JAcpFA8nESUvAewmIEczDAoiJxIkK/xNaDhsLSE2KiEpHDMvMBkiG0Q9IF5MHBdENg4gSB4qNRItLxwbFzwtMEYmFA0SVWRWEy9TNDExKyomNCh3KxRKSBMhOFcfNSoiG3J+MTJPFigDGjs6ZkE+WSocJjImTkQUF/7QZUYUHh4eHhRGZQF2IQFgMR0YMEJ4z4Mt/mM0KQs0DhMrDihBXSooLgN7FiMxJSkfFBAYN1NXIBL+ERYZT082PVsuEhgjOjUyQTITKn/XgyxHKBMcKim5tB8B0h0eXVs+GhURGQYTVDsbFf5vFywgGCsNCzdJGw4VABoBBP6sCSQGzAAPABsAJwAzAD8ASwBvAHsAoACsAM8A8AD8AQgBLQE5AUUBaAF1AYEBjQGxAdUB4QHtAfkAAAEiJjURNDYzITIWFREUBiMBMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYBMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYBMjY/AjY1NC8BNzY1NCMiDwEnJiMiFRQfAQcGFRQfAh4BATI2NTQmIyIGFRQWATI/ARcWMzI1NC8BNzY1NCMiDwEnLgEjIgYPAgYVFBYfAhYBMjY1NCYjIgYVFBYBMjY/ARcWNTQvATc2NTQjIgYPAScuASMiHQEHBhUUHwIWAT4FPwE+Azc+ATc1DgEHDgMPAQ4EBwEyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgEyPwI2NTQvATU0IyIGDwEnLgEjIhUUHwEHBhUUMzI/ARceAQEyNjU0JiMiBhUUFhcyNjU0JiMiBhUUFgE+BT8BPgI3PgE3NCYjDgEHDgMPAQ4FBxE+BDcjDgMHBTI2NTQmIyIGFRQWATI2NTQmIyIGFRQWEzI/ARcWMzI1NC8BNzY1NC8CLgEjIgYPAgYVFB8BBwYVFAEyNj8CNjU0LwE3NjU0IyIPAScmIyIVFB8BBwYVFB8CHgEFMjY1NCYjIgYVFBYBMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYBskZoZ0YGxkdmZkf6Cg4TEw4NFBQBjQ8UFQ4PFRX93hAVFg8QFhb2DBESCwwSEgF/GSQlGBglJAFWCQ8JFlQdGTYPAw4JEUNDEQkOAw82GR1UFgkP/kcdKysdHSsr/qUJEDdKCQoUCiEqExQFClMkDhMICgkDCFEYERA/BQIEzhQaGxMTHBz9JwUMBSU/IAskHAwQAgkGQSMNDwcPQBEfNwwF/WRcyM/SzcNZI0Z4amEuMG5aapY5PF9dck8jXdXl7/B1AZ8aJycaHCgoA1oPFBUODxUVAekOBQw3HxFADwcODiNBBgkCEAwcJAsVCQQ9JQUN/DoSGxsSExsbshAVFg8QFhb8hFvCy83LxFsfcYhpPzSTWjYfToYvPFZTbVQfUbC7wcTDX2XU3eHkcORs29zZawKFDBISDAwSEgKjDBESCwwSEt8JEUNDEQkOAw82GR1UFgkPCQkPCRZUHRk2DwP+TwkPCRZUHRk2DwMOCRFDQxEJDgMPNhkdVBYJDwKqFiEiFRcjI/53EhsbEhMbGwHVGSMjGRkjI/6sZkYGx0dmZkf5OkZnAUYUDQ4TEw4NFLUVDw4VFA8PFQJTGBAQFxcQEBgIEgwLEhEMDBL3JRkZJCQZGSX+6hcXOAcDDgwWLU8OCQ4KKCgKDgkOTy0WDA4DBzgXFwJQKh4dKiodHioBShA4GAMOBhVHORsKDgIOMhQQGxk9GwcPBwwIIE8j/VEcExMbGhQTHAKzCQc0CgUPBxE3MxUJDgECFiQOCy4yIAgMDAoRPxz9MVNXKxwpV1EgQKeoiiMlLg5wEDssL4ieoUggVU0hI1JZA9goHBonJxocKP0OFQ8OFRQPDxX+Xhw/EQoMDAggMi4LDiQWAgEOCRUzNxAFDgEKNAcJBGsaExMaGhMTGm0WEA8WFRAQFv2UUk8hFSpgXiB11qsyKTYQJDYTPCUveI6fVyBTVycVH0ZIAudbUB4ZQEwiGhxHUCwSDAwREQwMEv4SEgwLEhEMDBL+nAooKAoOCg1PLRYMDgMHOBcXFxc4BwMODBYtTw0KDgJ2Fhg4BwMODBYtTw4JDgooKAoOCQ5PLRYMDgMHOBcX3iMXFSIhFhcjAgcaExMaGhMTGl0jGRkjIxkZIwAAAAAJAQT+rAkkBswAEwAcADAB4QHqAfsCAwIWAi0AAAEiJAACNTQSACQzMgQAEhUUAgAEAyI1NDc2FRQGEzI+ATc+ATU0IyIGBw4BFRQGFRQFMjY3PgE3PgE1ND4BNTQuATU0PgI1NCYjIgYjIiYnLgEnLgEnLgEnLgEnLgEnJjYnLgE1NDMyFhceARceARceARceARceARceATMyNjc+ATc+ATc+ATc+ATU0JicuASMiBiMiJy4BJy4BNTQzMhYzMjYzMhYzMjYzMh4BMx4BFx4BMzI2NTQ2Ny4DJw4BFRQyNhUUBiMiJiMiBgcOAhUUFjMyNjMyFjMyNjc+ATU0JjU0NjMyFRQGFRQzMjYzMhUUBiMiBw4BBw4BIyIuASMiBgcOAQcOASMiJiMiBgcOARUUFhcGBwYiIyImIyIHDgEVFBYzMjc+ATc+ATUyNjMyFhceARceATMyNjU0JjU0Nx4BFx4BFx4BFx4BMzI2NTQmNTQ2MzI2NTQ2MzIWMzI2MzIWFx4BFRQGIyImIyIGBw4BFRQWMzI2NzYWMzI2MzIWFRQGIyIGIyImIyIOASMiJicuATU0NjU0JiMiBiMiBiMiJiMiBgcOAQcOAQcOARUUBhUUFx4CMzI2MzIWMzI2MzIeATMyFRQGFRQeARcOARUUFhceARceARceAQEyNjU0IyIVFCcyNjU0JiMiFRQGIyIGFRQWATI1NCMiFRQBMjY3PgE3PgE1NC4BJwcOARUUASIuAScuATU0NjMyFhUUBhUUHgEVFAYFFdb+h/7ho6MBHwF51tYBeAEfoqL+4f6IZxAlGRrLDx4bChMSCQodEhMuAv6/IyATFxEJIx0tLQICN0g3CQgQNi8SBgwKJwsEBAgEEgUIBQ4EFQMDAQIMEwcFCAgFCwQFBAYFEgQJAxMUGBMMEREKFhUOJw4HDgoJGAQSEBkOChIIDhEPDBwFCQUOGg0RJB0OERAODxwlGxQPISgWBSITDBQNDgsEBSqfzuVwEQwWFjUODycgJVQgDSkfDgcIDwMFAhMLEQcJEAIeCgYWCQgeCw0kFgQRBhkICRULDQoOEgoHCwgZCBMaDQcMAwgUCAQICA8GBwUQBhMUAhAUBA0ZCiEcCw8LGB0dHgcFBQoHEwgMFwcLBi8EAg0MChUDBxgDAhEEDA4JEBYOFx8UCQ8KBx0KDRYNCxItHgsQCwwUDRswHBwGCgcFDgUOEwoFBAYREAQOKlwvFgsFDBUgFwofCycPDTwOFBoPDSUQFisFBRsXBxMKChQkIAkmLhQKEgcMEhUXLBAMDBUXLQMzNgULDyQdDRYNCBgIGjH+8ggOCxgsDhMGDBkNEQwgHwHtEhIS/gELIRMdRSIzXCg0EqUkLwNKIxwNDg4fFw4MEwM0NA7+rKABHAF62tYBeQEfoqL+4f6H1tr+hv7koAKdFS0CARQTHv6oLz0TJTkRDicVFh4LHD0RF44NDhEcBx0oJw8oKBAGNkMaL0lIVjwPGiobEA0UCwQUCgYJBw4kFgcCBgYVBR0aBQkOCAULBwcPCAYLBw0SGhsJHRI4CwwIEQ0GFQgHCAYYMB4SEQoHEycXBRQFDg8NCzMSIRArLBQ6JhcqM0tBglJjvpteBA4eCAsCCBAMMi8gDRAWGA0MDSQQBwkPBAYKBwciBQcdBwYLCAcNEwcNCAkPDw4PBwUFBxAZBA8GBAkHBwoOAhABBjkKEwgTIRMIHgcQFQkfEg4KDwgMGBQKCy0SCggCDwgHDAsYJRELEhQKCwgTCQcOChgqDA8YCAcCAg4QDQkDBhkQDSkEAgIBEA0OLxsWIBERHA0FBwgIDQcLEQgeBC0YFxcJAyYPDxEQQFsyMAwDOzkMGB8TEyMNGBEiMkE5CiAaCzwfDR0QCg0KHhYFEhwTEygazCEtDBQrBwYYDgkH/u0PDg4PAZcPBwscDhUaDQsIBAM3GzYOC/6nHisSFAsbFBcRCwcKAwojLhwKDwADAQT+rAkkBswAEwEnAUwAAAEiJAACNTQSACQzMgQAEhUUAgAEJzI+ATU0JjU0NjMyFz4BNzY1NDYzMjY3PgE3PgE3PgE1NCYjJiMnLgEjIi4BIyImIyIGIyImIyIGBy4BKwEiJjU+ATU0JicmKwEiBiMiNTQ2Nz4BNz4BNTQmIyIGIyIGBw4BIyImNTQ2NTQ2MzIWMzI2MzIeATMyNjU0Jjc+AjU0JjU0PgEzMjY1NjcGFRQzMjY3PgE1NCYjIiY1NCYjIgYjIjU0NjMyFhUGFRQWMzI1NCYnLgEnLgE3LgEjIg4CBx4BFRQWMzI1NCY1NCY1NDMyHgIVFBYXHgEzMjYzMhYXHgEXFjIXHgEXHgEzMjYzMhYVFAcOARUUFhUUBhUUFhceARceARUUBhUcARUUBx4BAzI2MzI2NTQmIyIGIyImIyIGIy4BIyIGFRQWMzIeATMyNjMyFgUV1v6H/uGjowEfAXnW1gF4AR+iov7h/oiPL2ZICgkNFh0ZJBAGKx8ROhYSEBMXHwMCAkA/JDQJDzs8IiErMkEzEA0KDgsNCBYxIgkaCjoOIwsMAwMLHC0GCwUGCgcEBgQIDwwKBRkFDhcKCSoUDBscJR8XLBkVKQ4MERQQCwcPCg41LAMcHwUiDAwVARIHEg8RIDcPAwQCBAcZCAhAJhYQDR8rHxIbBhgpFxwFJTUmgvzYmB0EEhAQFQ4ICgkMCAQbJCQqDw4YBwUQDgkTCQ0fEBETJRUnDxUYCRUPNA0UDhIpCA4fFjUhBhwNPRYHEQgVJiAWCg8JBxQHCg4FPT0PMichFjRDKAwHDgcGDf6soAEcAXra1gF5AR+iov7h/ofW2v6G/uSgXBAeFAgOCAUHBBEfFAcXGj4nIhxFGiAuDQsWHh0kICE2ICkpFhEKIykLFicLDiQRBhIEEQcJBgsNBxMHDhQFBwwCChcUDyESKiYkFCcBCTM0EQgYRhUdFBAXCAUHCR0YFRwJCwYHEhAICRUHCgcNDAUICwYLEwkPBAgNGxEFEBEEJxsPMx0LCEh/olpJPA4cMxMJERAaLAwVOlFKEAohGhobCwwTDBUFBg4PKB0QGhAuHwwjCR0TCQsGBgkYFzAUIigPJR0LEUc3ESERYR8ECwQzEAsHDScODAopHgkGDh8jIwMSAA0BBP6sCSQGzAATAB0APwBkALwA2QD4AQwBKgH+AjUCRAJuAAABIiQAAjU0EgAkMzIEABIVFAIABDcyNjU0IyIVFBYBMjYzMjYzMjY1NCMiBgcGIyIGBw4BIyImIyIGFRQWMzIWNzI+ATc+ATU0Njc+ATU0IyIHDgEHDgEHIyIGFRQeATMyNjMyFgEyPgE3NjU0JjU0NjU0JjU8ATU0JicuASMiBgcOASMiJjU0NjU0JiMiBgcGIyImIyIGBw4BBw4BBw4BIyIGFRQWFw4BFRQzMjYzMj4BMzIVFAYVFBYzMhYBMjU0JjU8ATU0PgE1PAE1NCMiFRQjIiYjIgYVFAEyPgI1NCYnJjYjIgYVFAcGFRQjIiYjIgYHDgEVFAEyNTQmNTQ2NTQjIgYVBhUUMzIWJzI1NCc2NTQuASMiJjU0JiMiBhUUFxwBFRQWMzIWBTI2NTQmJy4BJy4BJyY2MzIeATMyNjc+ATU0LgE1NDYzMhUUBhUUFjMyPgEzMjY3PgE1NC4BNTQ2NTQmNTQ2MzIVFAYVFDMyFBccARUUMzI2NTQnPgE3NhY3PgE3PgE1NCYnLgEjIgYjIiY1NDYzMhYzMj4BMzIWFRQGFRQWFx4BMzI2NTQmNTQ2NTQmJy4BBw4BIyImJyY2NQYEDgEHHgEVFAYVFBYVFBYXHgEzMj4BMzI+ATMyFhcWFRQWMzIWFRQWFx4BFy4BIyIeAhceARceASUyNjU0JjU0MzIWMzI1NC8DLgEnJgYHDgEjIi4BIyIGBxUUFhceATMyNjMyFhUUBhUUMzIWASImNTQ2Nz4BMzIWFRQGATI3Njc+ATc+ATc+ATU0NjU0IyImIyIGFRQGBw4BBw4BIyIGBw4BFRQWBRXW/of+4aOhAR8BedjWAXgBH6Ki/uH+iEMOHB8lEP4FSkoeDg8KCyMHCBwHBwsOMxkWNSALFw4ECQkGDhYvCBUTAwUJAwECCgkoEgwGCxElCR0KFhsgBwoOCgoTAe0wMCEYRhwCKRAGBw8MChIJBQ8REi8OLSklJAUHEg0MCAgoJgQEAgEJERESCxEPLxYHBC0TGxARDyo5LgIOCQ0a/qwhDhoaBwoIBgkNFCMCEQ84PCkKBQYCDAcIDg8FBAcIBh4RGQ3+thERBxAPERcmBQ84GAsIGh8ICggRCAcFGAsTCBr+1AgRLxYNEAgFLQMIAgkPGhYHCBcMESAaGxcKCg0OBxAOGB8iPCsdCxoaFSMcCgYEIBUaBBogHBgLCgglCgkPBgwNDgQFDAoICQgKECYcCRINDRQUDAoHAwwECB4KCA0HBgEBRrI7Fh4EEkEUBgKy/uXPghkMHAISDwsFBgoTDwoLDC4uCRgTChALEBQQAwQFDQcTHQ4QFTE4EwcRCQ0aArwHJQULCxwaFSIfARkOHg4kOyANEgwIAgoVCiYJFgUIChkNNBkVEAwzDBj9wBAUFw4KEAsKCiYBQgItMgYLFhAFCQEBAxwJGQ4GBw4EBQQhCAMMFw0ZBwQFDP6soAEcAXra1gF5AR+iov7h/ofW2v6G/uSgox8MEhoOFQHxIBQgCgkOCwwIBQQIAhAGBQ8BSi8yAwUNBQ4ZDQ0iDQ0MCCgJDiIQFAsNJRwGDP4cJjISNj4XDQkHDQcUJBIKEgoKGQwOGCYmFhkjDQsMDxESEREXEiEfBA4FBg4HBwklERZXNwcLBBgFDg4cAwcDBwwdAegPCwoHBQgJCQkKCwIJBAsNDgsrJCP94hgjIgsFFQsOFA8aDwgHEg8VFQsQEwgRAlwQDA0PCgkFCSAaBgsLA1AJBBUFCgknIBcQEQ8SGiQbBQkEJBQTzxINEC4cESMKBxYLHx4iIxAFCBULHiQYCwwUBQQNDAcLICAkNCMTDBwaDwgHGRAJBRMJGQUECQYNEgUKGQoWHB8fHAceCwkHCQghCxcmHAoaDREaCAsNDy8OHh0PFwgVCQoMChYqKDAYKSIRDhAFDQcbJgIgHgoHAiEJD5HQ4F8HGAwTHxAKAQwoZCYSKTg4LCsKEx0OJBk3JggVCAoUCgsZIDI4FwgGBQcLTRAHAwcEBx4MDwUjGAcKFAkCAgMMIBMTCggKCg8FCBMEBwoKCAgNBQOBGQsMCQoHFBQNGST+eg8RCQ8XEAUSFw0fFgwHFhIaFx8sLg8EHwgDARsMBw4FCQwAABEBCf6sCR8GzAATABkAIQAmACwANAA5AD8ARQBLAFEAVgBeAGQAaQBxAHcAAAEiJAACNTQSACQzMgQAEhUUAgAEJSQnIxYEATMuATUjHgEBESEeAQEhESEUFgEzNDY3Iw4BAT4BNyETNiQ3IwYBIREhDgEBIT4BNSEBMzYlBgQXIREOAQEzPgE3IxQGASE0JichNSEuAScBMy4BJyMeAQMzJiQnBAUU1/6I/uSgoAEcAXjX1wF4ARygoP7k/oj+Zf8Af9RnATP+Nt8nLf4FOwNS/kBJ4P6uAen9vDD+gv4tJt4zOwPdmOBI/kCguAExZtR9+84CRP4WKjAClAHqKjD9vPzB1HwA/7j+z8kBwJjgBAneMzwE/i39mQJEMSz+GQG9Sd6WApT+BDwz4Ccue9Zn/su6AQD+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioWSf8ZfSAble0nRy1P3HAYt7xgGRAaR20gGYdNJeXtT7vUzGe/5xJ9GX7wMzAaRc0v2WXNJ2AkTvoCfRlwGNS8b7nF7UcnTSAZZ10l1QesZL/IFy1F5e0gGAmNMlnwAAAAEBE/6sCRUGzAATAAABIiQAAjU0EgAkMzIEABIVFAIABAUU1f6M/uaengEaAXTV1QF0ARqenv7m/oz+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogAAAAADARP+rAkVBswAEwAnADsAAAEiJAACNTQSACQzMgQAEhUUAgAEJyAkAAI1NBIAJCEeAhIVFAIOAQcyJAASNTQCACQjIgQAAhUUEgAEBRTV/oz+5p6eARoBdNXVAXQBGp6e/ub+jF7+7f5k/u6IjgEWAZkBDEigjVhYjaC/xQFWAQSSkv78/qrFxP6p/vySkwEDAVf+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iojGmARoBYry8AWMBG6Y6qu7+wc/P/sHtqhqVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUAAAMBE/6sCRUGzAATACMANwAAASIkAAI1NBIAJDMyBAASFRQCAAQnIiwBAjU0EiwBMxYSERACBzIkABI1NAIAJCMiBAACFRQSAAQFFNX+jP7mnp4BGgF01dUBdAEanp7+5v6Mw77+nv7opKQBGAFivgoeHhzEAVcBA5OS/vz+qsXE/qn+/JKSAQQBV/6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiOoT9AW3o6QFs/YRn/g3+hP6F/g1SlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAAAAAwET/qwJFQbMABMAJwA7AAABIiQAAjU0EgAkMzIEABIVFAIABCcmJAACNTQSACQ3DgICFRQSHgEXMiQAEjU0AgAkIyIEAAIVFBIABAUU1f6M/uaengEaAXTV1QF0ARqenv7m/oz8wP6s/vyVlQEEAVTAZ76WV1eWvo7FAVYBBJKS/vz+qsXE/qn+/JKTAQMBV/6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiPASbAQwBYMnJAWABDJsEMZ7q/rzX1/686p4dlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAAACARP+rAkVBswAEwAnAAABIiQAAjU0EgAkMzIEABIVFAIABCcyJAASNTQCACQjIgQAAhUUEgAEBRTV/oz+5p6eARoBdNXVAXQBGp6e/ub+jNXEAVcBA5OS/vz+qsXE/qn+/JKSAQQBV/6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiUJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQADARP+rAkVBswAEwAnADsAAAEiJAACNTQSACQzMgQAEhUUAgAEJzIkABI1NAIAJCMiBAACFRQSAAQXPgISNTQCLgEnFgQAEhUUAgAEBRTV/oz+5p6eARoBdNXVAXQBGp6e/ub+jNXEAVcBA5OS/vz+qsXE/qn+/JKSAQQBV+tnvpZXV5a+Z8ABVAEElZX+/P6s/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qJQlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVFDGe6gFE19cBROqeMQSb/vT+oMnJ/qD+9JsAAAMBE/6sCRUGzAATACcANwAAASIkAAI1NBIAJDMyBAASFRQCAAQnMiQAEjU0AgAkIyIEAAIVFBIABBcmAhEQEjcyDAESFRQCDAEFFNX+jP7mnp4BGgF01dUBdAEanp7+5v6M1cUBVgEEkpL+/P6qxcT+qf78kpMBAwFXsgoeHgq+AWIBGKSk/uj+nv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiUJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lRZoAfMBewF8AfNnhP3+lOno/pP9hAAAAwET/qwJFQbMABMAJwA9AAABIiQAAjU0EgAkMzIEABIVFAIABCcyJAASNTQCACQjIgQAAhUUEgAEFy4CAjU0Ej4BNzYMARYSFRQCBgwBBRTV/oz+5p6eARoBdNXVAXQBGp6e/ub+jNXEAVcBA5OS/vz+qsXE/qn+/JKSAQQBVz9DmopYWIqaQ9YBWwEHsVpasf75/qX+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iolCVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUGMJ/pAT7PzwE+6Z8wDV+8/f7dl5f+3f28XwAAAgDw/qwJOAbMABgALgAAASIsAQInFgQzMiwBEjU0AicWABIVFAIABCcyJAASNTQKAScWFRQCAAQjICcWDAEE57f+s/7vvCZsAVLC2wFnAQGLPj7OARiQrP7Q/nDl1AF0ARqfasOEV5f+6P597P735l4BDgFH/qxuxgELnVV8hfcBVtGLASy7X/7e/o3b5f5w/tCsUJ8BGgF01KgBOwEJXP3u4v6N/vSSeZfZdAAAAAAHARP+rAkVBswAEwAaACQANwBLAGUAeAAAASIkAAI1NBIAJDMyBAASFRQCAAQDJz4BNxcGJyInNxYzMjcXBgEiJjU0JiMiBgcnPgEzMhYVFAYTMiQAEjU0AgAkIyIEAAIVFBIABBMiJzcWMzI2NTQuATU0NjcXDgEVFB4BFRQGJSImNTQmIyIGByc+ATMyFhUUBgUU1f6M/uaengEaAXTV1QF0ARqenv7m/ozkCidIHCxJVaF5NWGEhGE1ef5RNCMICBkxFzkWd0hBTjznxQFWAQSSkv78/qrFxP6p/vySkgEEAVe8Ji0aJBUUGS4uLCMlEBQuLkUBfjQjCAgZMRc5FndIQU48/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIB5k8EHBJAMqNgQFBQQGABqToZCBApIAxaYUc7NDP8D5UBCAFcx8cBXAEIlZX++P6kx8f+pP74lQMJEUoLGRErTlg4LVAVSAoqFiVRXDc3Q+g6GQgQKSAMWmFHOzQzAAAEAUL+rAjeBswAMgA9AG8AgQAAASAAAyY+ARceATMyNjc2NzY3PgE3PgE1NC4BNTQ2Nz4BNTQuAScmNjMyBBYaARUUAgAEAyInNx4BMzI3FwYDMiQ2EjU0Ai4CIyIGFx4CFRQGBw4BFRQeARUUBgcGBwYHBgcOASMiLgEnJgYXFgQBIiY1NDYzMhYXBy4BIyIVFAYE/P7K/imXFhc9IEaXVozNGQgCBxcJGwsMEjc3NjqEkzZhPyksR48BCuKoXpL+9f6Uq1xXOSA7H1JSJmOVyQFO9YZYnM3sfAwGCjtkPbagGxg4ODQmBwYEAwsKKeijPXNiJQkLBIoBrgL2KC8/Mj5SDzAMFg4LIv6sAQAA/ydAHg0aGi4jCwsiEggOAwMLCQkpQzEuOA0dv5VRurBCLF9wyf7y/sGt2/6R/vKVAilVOB8eLEY2/ieI+AFTyqABJ/q6aBALO7nOW7HrIwYUEyMuLSAiOwgBBgQIIA45PAsXEAQNB9rrA341KTE8VlALIiISHDAAAAQBVP6sCN0GzAAyAEQATwCBAAABIiQAAjU0GgE2JDMyFgcOAhUUFhceARUUDgEVFBYXHgEXFhcWFx4BMzI2NzYeAQcGAAEiJjU0IyIGByc+ATMyFhUUBgEiJzcWMzI2NxcGAyAkNzYmBw4CIyImJyYnJicmJy4BNTQ+ATU0JicuATU0PgE3NiYjIg4CAhUUEhYEBSzX/pj++JFdpt8BB45HLCk/YDeThDo2NzcSDAsbCRcHAggazIxTk0MhPBgXlf4u/PksIgsNFwwwD1M9Mj8vAX5nYyZSUh88HzlXLgEfAamIBQwJI2BuPKPoKQoLAgUFCCY0ODgYG6C2PWQ7CwcMeurKmleF8gFL/qyVAQ4Bb9utAT8BDslwXyxCsLpRlb8dDTguMUMpCQkLAwMOCBIiCwsjLhoaDR5AJ///AAPOMBwSIiILUFY8MSk1/ls2RiweHzhV/ifr2gcNBBAXCzw5DiAIBAYBCDsiIC0uIxMUBiPrsVvOuTsLEGi6+v7ZoMr+rfiIAAAABwET/qwJFQbMABMAGgAkADcASwBlAHgAAAEiJAACNTQSACQzMgQAEhUUAgAEAyc+ATcXBiciJzcWMzI3FwYBIiY1NDYzMhYXBy4BIyIGFRQGATIkABI1NAIAJCMiBAACFRQSAAQTIic3FjMyNjU0LgE1NDY3Fw4BFRQeARUUBjciJjU0NjMyFhcHLgEjIgYVFAYFFNX+jP7mnp4BGgF01dUBdAEanp7+5v6M5AonSBwsSVWheTVhhIRhNXn9syc8TkFIdxY5FjEaCAgiAXfEAVcBA5OS/vz+qsXE/qn+/JKSAQQBV7wmLRokFRQZLi4sIyUQFC4uReAnPE5BSHcWORYxGggIIv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAeZPBBwSQDKjYEBQUEBgAakzNDtHYVoMICkQCBk6/A+VAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUDCRFKCxkRK05YOC1QFUgKKhYlUVw3N0PoMzQ7R2FaDCApEAgZOgAABgEF/qwJIwbMABcAIQAtAEEAXQBpAAABAwUTJQkBJQMFEwkBEyUDBQkBBRMlAwERIic3FjMyNxcGASImNTQ2MzIWFRQGEzI+AjU0LgIjIg4CFRQeAhMiJzcWMzI2NTQuATU0NjcXDgEVFBYXHgEVFAY3IiY1NDYzMhYVFAYD/VT+c4T+ZQE5/scBm4QBjVQBFwEXVAGNhAGb/scBOf5lhP5zVP7pjGYyUW9vUTJm/lggLS4fIC0t/I31u2lpu/WNjfW7aWm79YoeLBsbFBERJygnHyQMEA4TDx097iAtLh8gLS3+rAGchAGNVAEXARdUAY2EAZz+xAE8/mSE/nNU/un+6VT+c4T+ZAE6AY9TO0JCO1MBiTkpKTg4KSk5/Rhpu/WNjfW7aWm79Y2N9btpAhsPRgkRDyhDSTAnRhNEBiURECQjG0YsLz3NOSkpODgpKTkAAAcBMv6sCPYGzAAhAC4AOwBbAGgAdQCCAAAFIiY3EwEmNTQ2NyUTNjMyFxMFHgEVFAcBExYGIyInCQEGAQYmLwEmNj8BNhcWBwEiJj8BNjMyHwEWBiMBMjcJARYzMjYnAwE2NTQnJQMmIyIHAwUGFRQXAQMGFhMGLwEmNj8BNhYfARYBJyY3Nh8BHgEPAQ4BASY/AT4BHwEeAQ8BBgLuMToKbf5mKDgsAivtH0FBH+0CKyw4KP5mbQs6Mh8d/hb+Fh3+ihIkBiMGFBXXKQoKIgKOFRcFMwojIwozBRcV/aEMDAIOAg4MDA4JBHQBthMn/bH5EA8PEPn9sScTAbZ0BAp/HB+lEAIQXREkCFEOBRa2IgoKKdcVFAYjBiT+JRsOUQgkEV0RAhGlH5ZPNAInAX4mLCk4BUMB/END/gRDBTgpLCb+gv3ZNE8RARL+7hEBswsME24UHwEQAyEiFf0eHhTRJyfRFB4BDQcBJv7aBxgUAksBlxEMFAVIAhghIf3oSAUUDBH+af21FBgFKRUaig4nC0INChTHJfwncRUiIQMQAR8UbhMMA9AUJccUCg1CCycOihoAAAAACQEE/qwJJAbMAA8AGwBBAE0AaAB0AJsApwDBAAABIiY1ETQ2MyEyFhURFAYjJTI2NTQmIyIGFRQWBTI3EyU2NTQnARM2NDU0JiMiBwUlLgEjIgYVFBcTBQYVFBcFExYBMjY1NCYjIgYVFBYBMjc+ATc2NTQnLgEnJiMiBw4BBwYVFBcWFxYBMjY1NCYjIgYVFBYBMjY3PgE3PgM1NCYjIgwBDgEHDgEVFDMyNz4BMzIVFA4CFRQBMjY1NCYjIgYVFBYBMjc+ATc2NTQnJicmIyIHDgEHBhUUFxYXFgGyRmhnRgbGR2ZmR/0AHSgpHBwoKP6CGRKuAX8zE/7vWAIaFg4P/qr+uwgQCxUaAT7+3xYxAXmUEf5SFyIiFxgiIgFRDQ0LIBQSEhYeCwwODgwKHhcSEikWDgT1IS4vICEvL/3sER8aLJpnXHxIH0lDdP75/vnqsCsWFjcrTHK9SownMif+3SAvLyAhLy8DqwsTDiYcGBgyHhENDxENKRoWFjcZEf6sZkYGx0dmZkf5OkZndiodHCcnHB0qKyIBUyEFLxURARABcQcJAxcaCK7EBQcbFQcF/oH4FBgoCDv+oicGuCMXFyMjFxcj/u4WFBgMCwoJCgwbExYWEhwMCgkMCRQkFvu8LSEhLy8hIS0BzB0mQdSJep1gOxgyNkt5j4w3HC0TNS1EQ1Qcd4t5HhcDoS4hIS4uISEu/HodFiMPDQoPChQyHR0YIA4MDQsMHSsdAAAHA0P+rAblBswAFQAlACkAPwBDAEcASwAAASIuATU0NjcRNDYzMhYVER4BFRQOASciLgE1ND4BMzIeARUUDgEDETMRAzI+ATU0JicRNCYjIgYVEQ4BFRQeAQM1MxUnNTMVJzUzFQUUg9N7YU+chYWcUGB70oRFcUNDcUVGcENDcZekUmqvaFtVbmNjblVbaK9+1tbW1tb+rH3Md2m6QwPQhqSkhvwwQ7ppd8x9xENyRkZwQ0NwRkZyQwFKAoL9fv5AZqhkWqg9A/dld3dl/Ak9qFpkqGYErk5O5k5O5k5OAAMAk/8QCY8GaABMAGIApgAABSImJwMFBi4BNxMlLgE2NyUDJj4BFwUTPgEzMhYXEwcDLgEHAwclJgYXEwcFBhQXBRcDBhY3JRcTHgE3EzcBFjYnAzMXFg4BJyUDDgEBLgE1ND4BMzIWFwcuASMiDgEVFBYXEyImNTQ+ATc+AjMyHgEVIzQmIyIOARUiDgEVFBYzITI2NTQmJz4BNTQuASMiDgEHJz4CMzIeAhUUBgceARUUBiMDmyIpBTz+jCxADhvg/q8nEScsAXldCyZGJAE/zQ0nGSEsBkVFTwEKA81n/roGBgFeMP50CgoBXBblCgcUAXFbPAIIBd5DAWAGBAI+UzYLJkUn/sbNDyr+9jhAjfCSVpxAMjeCR3vLeSYi3X+WUH5DC1mMVlyQVFCIaE14RD51S2ZfBLVrd31xCwhxuG1Rm3kfTCSNumVksIZMAwRpeaaM8CsiAYNeCylMJgE7wxdLQgc9AXsuPQ0b6wFRFhwvI/5wRAHFBgEF/rAd8AUHBv58VEABEAbJY/6/DwwFXTj+dAcCCAFmGP79BAUHAP/hLEIRHOf+tRgcAmVEql6R7480Lz4nKnnKfEF8Nf7ugXBId0sGUYBKT4dWYH5Keko5XjhOVWteYHgKNTsddMV3UIxbGmikX1OPt2UUKRUamGt/mAAAAAMA4v90CUYGBABEAFsAmgAABSImNTQ2Nz4CMzIeARUjNC4BIyIOAR0BDgIVFBYzITI2NTQmJz4BNTQuAiMiDgEHJz4CMzIeAhUUBx4BFRQGIwEuATU0PgEzMhYXBy4CIyIOARUUFhcFBi4BPwEnLgE2PwEnJj4BHwE3NjMyFh8BNzYeAQ8BJzc2Jg8BLwEmIyIPAicmBh8BDwEOAR8CBwYWPwEXAhGSnbWWCGeiYG+vZFBPillTh09hklBvcAXUgJGXggwMUIu3aG3DkCBMJqfifXfTo10Le5HCn/rqTFxgpWZ9vx5GDlNzQE+CTkZA/uElNA0Wis8gDiIl4jkJIjwewn0XLBkkBCb3IioHFZI7dgQHB+Y3JQIHBQNzTrYFCgE1JN8HAgbEFIIEBwbTE4yLeXGWCmGbW16jaFJ/SlmQUhUCMlg+WF5wXGJ3AjxaKGWziE5XmGQYdbFjWJ3QdzxAFJpvgJoC5jGgYmKlZJx2HUVmOE6CT0t+JJcJIDwfxHcTPTYGJOklMgwWj88oKBzqNwggNx3JLaEFCwI0KN4IBb8NhgQGB91AJAEMBHBPugYJATROAAAABgHR/qwIUgbMAEAATQBaAGgAfwC9AAAlIiY1ND4BNz4CMzIWFwcmIyIOAR0BDgIVFBYzITI2NTQmIyIHPgE1NC4BIyIGByc+ATMyHgEVFAceARUUBiMBIiY1ND4CMzIWFRQFIiY1ND4CMzIWFRQlIiY1ND4CMzIWFRQGAS4BNTQ+ATMyFhcHLgIjIg4BFRQWFwUGLgE/AScuATY/AScmPgEfATc2MzIWHwE3Nh4BDwEnNzYmDwEvAS4BDwInJgYfAQ8BDgEfAgcGFj8BFwL5dopGcEAJUn9KcqIfTS+3OmE7SG4+WlYES1Zob1MJEA4MY6Zldb0mTC7mkHvLeAdYcJh2/AkuPytBRBkQDgEKLj8rQkQYEA4BKy4/K0FEGRAOPPzJTFxhpWZ+wB9NEFBwQE6BTUU9/uolMwwUhscgDx8m3TEIHzoduIAZKBwiBCbuIigFFZs/hAMGBc1JIgEJA3ZfnwQJAStBvAUBBLYWewMGBbIU2XVkQGpGCEp1RXVxFbA7ZUAYBjNPMUBLXUlFbAIuSB5mp2OJcRqGqHjLey0kFYRZa4n+YDcnHlNPNTE+5I04Jx5SUDQxPeVlNyYeU1A0MT10cAQfL6BhYqRjmXQUPl82TIFOSX0mlwkfOh7HeRQ8MwYk3iYwCRaGzCcpHOExByE5HdgtuQUIAis9xwYBBb0JcwQFBsJUHwEKA29btwUHASxLAAAHAOL+rAlGBswAHgArADgARQBSAF8AhAAAASImNTQ2Nz4CMzIWFz4CMzIeAhUUBx4BFRQGIwEiJjU0PgIzMhYVFAEiJjU0PgIzMhYVFAEiJjU0PgIzMhYVFAEiJjU0PgIzMhYVFCEiJjU0PgIzMhYVFAEhMjY1NCYnPgE1NC4BIyIOAQceARUjNC4BIyIOAR0BDgEVFBYCHI6stJgHZqViDx4OKKLbe3fRnloNfpi6n/ufLT4pPUAYERD+QC0+KT1AGBEQA2ItPik9QBgREP50LT4pPUAYERACSC0+KT1AGBEQ+gIFvX6LmY4OEIbhiWq7iyJqh1BQh1NQhU6mp4YB34tzd5gLX5tcAgJzrmJZnc93QDoTnHR/lfzNNiYdTkoxLD7YAXw2Jh1OSjEsPtj+hDYmHU5KMSw+2AF8NiYdTkoxLD7YNiYdTkoxLD7YAgdnXWdxBy5fMYjfhVOTYCexa0Z5S06CTzENaFtSXAAAAAcA4v6sCUYGzAAeADAAQgBUAGYAeACdAAABIiY1NDY3PgIzMhYXPgIzMh4CFRQHHgEVFAYjASc3IzUzJzcXNxcHMxUjFwcnASc3IzUzJzcXNxcHMxUjFwcnBSc3IzUzJzcXNxcHMxUjFwcnASc3IzUzJzcXNxcHMxUjFwcnJSc3IzUzJzcXNxcHMxUjFwcnASEyNjU0Jic+ATU0LgEjIg4BBx4BFSM0LgEjIg4BHQEOARUUFgIcjqy0mAdmpWIPHg4oott7d9GeWg1+mLqf+6E1O3FxOzU+PjU7cXE7NT7+PDU7cXE7NT4+NTtxcTs1PgKcNTtxcTs1Pj41O3FxOzU+AVw1O3FxOzU+PjU7cXE7NT4BFjU7cXE7NT4+NTtxcTs1PvoiBb1+i5mODhCG4Ylqu4siaodQUIdTUIVOpqeGAd+Lc3eYC1+bXAICc65iWZ3Pd0A6E5x0f5X8zSJkQGQiZWUiZEBkImUBJSJkQGQiZWUiZEBkImVvImRAZCJlZSJkQGQiZf5AImRAZCJlZSJkQGQiZfYiZEBkImVlImRAZCJlAZ5nXWdxBy5fMYjfhVOTYCexa0Z5S06CTzENaFtSXAAAAwDs/t4JPAaaADQAOwBgAAABIiY/ASMiJjU0NxMhIiY1NDY3PgIzOgEXPgIzMh4CFRQHHgEVFAYjIQczMhYVFAcBBicBITchAyEBITI2NTQmIz4BNTQuASMiDgEHHgEVIzQuASMiDgEdAQ4BFRQWBP4fJAcy5iEpCWz97pekrp0HZKFhFBkPKKLae3bPnVkNfJOym/4JMpchLBb+ohcDATn+81f+73gBQPzcBb16g5yBCxCF3ohouYska4VQTYdXT4JNqaF7/t4yIfcoHxQXAROFeXiVDV+bXAJyrWJZnc93QDoSnXR/lWglICAc/jcdfgGZt/7MAYVnXWp2KWA0iN+FUZJgJbxyUX5IToJPMQ1mXVdXAAAAAAsBSP6sCOAGzABHAE8AYwBxAHoAjgCuAMMAywDgAOwAAAEiJic1FjM+AzU0JiQjIg4CFRQWMzI2NTQmIyIGFRQWOwEVDgEjIiY1NDYzMh4BFRQOASMiLgE1ND4BJDMyBBYVFA4BBAEuASc3HgEXAT4BMzIWFz4BMzIXPgEzMhcyFhclJz4BNTQmJzceARUUBhcnPgI/AQ4BAyImJy4BJzceARceATMyNjcXDgEBIi4DJy4BNTQ+ATMHIg4BFRQWFxQeAjMyNjcXBhMnPgE1NCc+ATU0JzcWFRQHFhUUBgEnPgE3Fw4BAScyNjU0Jz4BPwEeARUUBgcWFRQGJSc2NTQmJzcWFBUUBVccMyIoR4fyumqa/vSre92rYem1rtddVlBTJR8MBw8HNk2OcFiQVYjyn6D7j3bRAROdzgE2robh/u/8rYGlIjodknMBEQNKQwsZDRhIKFQ5I1w3dEJKaQr9r1tFVQkGSAwMR6J2OnFWEFwNieN+x0COiBtZDm2II8J2Om8oEity/tK29ZdQHwMxP4TehYE7glk3Lkqe+rAvf0gGmvcJe2wZDg4wOUYVE4368CBp5nkDhNEDOgPKzANVRQhIAgFWSQP7AdgnjAEBOwIDFQICPAQBPWmHS1eOUy1NYjZPZF5JMkUmGREWNAEBOio2TzhbN0VxQ0V1SUyHaDtnsnJjo3dB/pEvtZAPeaso/M8dQgIEIywZGCBRQTWFEkq8TxowFSUrPxpVrYIaF2R5NzJpyAGQQlcYencEWlYZSE0QEDgUHAFLN1psbS0mcj5ZlFlnP2U7LV0ZXJBkNAUFPhL+ATsPU0wyLw4lEjUpPzdXLi0pKm1xBdI1OUAEOwo7+1E8bHEgJS5kWCkJGQtRmiQYFIKHgC16tAcOBwUIEAjTAAAABgEE/qwJJAbMAA8AHwAvAE4AaAB6AAABIiY1ETQ2MyEyFhURFAYjJSc2JDc+ASQzFSIEBgcGBAUhMjY1ETQmIyEiBhURFBYBLgEjIgYHLgIjIgcuASc3Fhc2MzIeARc+ATMyFhcBJz4CMzIXNiQzMhYXBy4BIyIEByYjIg4BAS4BIyIHLgEnNx4BFzYzMhYXAapEYmJDBtZEYWFE+mI6mQF+5nL1AS3Gwf7l53Pp/pL+OQbVIzIyI/kqIjMzB1xhyWg1cUg5vOR4tZtSx38S9KSUqoHvwz4yazF22mr5hU4nsvuUVlNaARqfe99WNkzAbp3+80pkZILbmwOxQo1OhZgadD0eO3MogHRWokn+rGFDBtdEYWFE+SpDYhQ4mqEIcYg9UDqHdAaUVjMiBtYjMjIj+SkiMgKiOjUOD2+XTmNqgRxONrlNTZRsCws7PgGGFITDahNpd09PPEVFfm0eW6gBtiIhMEJ9HEoaa0EhJiUAAAAABwBY/qwJ0AbMADUARgCiAKwAvQDOAT8AABMRPgEzMhYXPgEzMh4BFRQGBxceARceARceARUUBgcWFRQGBxYVFAYHDgEVFA4BIyImIyIGByUnJBE0Jic2NxcOAQceARUQATc+ATMyHgEzMj4BNTQ2PwEiJic+ATUiJjU0Njc+ATU0JicuAScuAS8BDgEjIiY1NDYzMhYVFAYjIiYnNxYzMjY1NCYjIgYVFBYzMj4BNTQuASMiBgcuASMiBgcBJzY1NCc3FhUUAyImJzceATMyNTQnNxYVFAYFLgEjIgYHPgEzFSIGBzIWFxMiLgE1ND4BMzIWFRQGIyImNTQ2MzIWFwcmIyIGFRQWMzI2NTQmIyIOARUUFjMyPgE1NCc+ATU0LgEjIgYVFBYzMjY1NCYjIgYVFBYzMjcXDgEjIiY1NDYzMhYVFAYjIi4BNTQ+ATMyHgEVFAYHFA4BWCN8QE2gPi+CSViSV0lBJAsnDwsoLi8mEAtHExENKRkPDlC9pHNxJSY5H/7sGAEfBATMHUYOcF0CAv651CxSMBNMaz+NmTsZGC4TMA4yNkQ9Fg0SHxIXMD0UECsLJBcwGm2QeGJCaFg4EyURGxYYGiY3I0NHXk9BaDxBbkJXgB0gom8oSxwDg0gjJUYvzj58LEgdVSklD0UYPAMnNFIlIT8gPsV2QXMsNFQ1dWKSUEh9UWeSd1VGUFIuEiETEyERFiUrJTNJZ0I/WS6Bc1qJTANhcFKLVnCHbldJY0Y2Ii4gFxAiFhYiEDJLVkBXdZBsT35IU5NhbK9odVlkrf6sB8cZHB0jNDBQh1JKhCxbGlAaEyEZGSgYJjoTD0YZNhkXGRM3HREbDoKXQBAYF85R1gG+Jk8oZ9snZ6M7Hjsa/gb9554hHggILXRqHTAdNwsJJkUZGhwNGg0RIxIOEAwaMiAbVxxbBwd1YVxvPjw3RAoISQsYExUVQzg9STlhPDtkPEcsGjUMCvrDH1FPVVoiaWhiAVxeUCQ5SSQZHyQ1JzRAegsJBQV8dk4kLwgL/b1WkltTg0yAYVd8WDY6PAgIOgsdGhwqUTpFRzZcO2qLT4hWFhUimGpajVGJbVtzSUM4VCMdGSEKPgcIRjc7TXpaXX1KgVFeklRmsW+LoippqGIAAAAFAJ7+3gmKBpoAJQA/AFsAlACyAAAFIicuAScuAycuBCcmNTQ+ATMyHgMXFgQeAxUUBgEiLAEAAjU0NjMyHgMXHgUVFA4BJzI+ATU0LgEnLgInLgEnLgIjIgYVFBIADAEBPgEvAS4BDwEGJi8BLgEvAS4BLwEuAS8BLgEnJiMiBhUUHgEfAR4BHwEWHwEWHwEWPwE2Fh8BHgE3NCYnLgInLgMjIgcnNjMyHgIXHgIXHgEVCEc7TA5sT1PK08FLSH56fYxTJzFtWFKJgY2vcpUBF/bMlFCV/SjP/mn+mf7snotvTXJkbYthY9zaw5hYdMuEbqdeQJyJWsrLXneHPkFXSCpKYJYBBgFTAX4CrA4BDkUpg0NuRkwiQBlSLaVSSwYUCkJJLSAwERgbERYqQCItPDUHFBC6pVIqQEyUbj5pIEEOJfpbWVLo+WpQhnt9RzgoMj5UWYd8jl9i8OpXdGYaETlpKy1TV2hCP623omwKX0cuclRxut3bWXOLUDg+Zlhpjf74jfYBQAFruKHFUoyvvFhZelhLU3BSVIJKTjhfOzhTUDEhVnlUa8JhZ28qmICr/q3+0+iFAbULJRNiOz0IDgkqQn0wRgspFEI4uFZYGA8LHhIaFA4SLykKDRFER7iSLikVUn2WEQ0ILC5cEw6CZp03M2V+WEOgkFwgPjJYj6pSVHhjN0jMcgAAAA0Aa/7yCb0GhgAhACwAPABEAGkAfgCGAIwAnAC2ALwAxADSAAABLgECNTQaASwBMzIWFzYzMgQWFRQGBAcOAQcOAQcOAiMTMjY1NCMiBhUUFhMyNj8BNCYnIgYHDgEHFBYBJz4BNxcOAQEnLgE1NDY1NCY1NDY1NCY1ND4CNz4BMzI/AT4BMzIeARcDCQEyNhI3GgE2Ny4BIyIMAQoBFRQeAQEuASc3HgEXLwE2NxcGATI2NzY1NCcmIyIGBwYVFAM+Ajc+ATc+ATc+AjU0LgEjIg4BAgMGAgEmJzcWFwUuASc3HgEXATI2NTQmIyIGBwYVFBYCLYXLcnnZASQBV7qv9Fs/RKUBCptv/v3gQ4E9S5FLh/bzgx8uTm0pPTAmQWQKLhETJCUYMEwdHwIvIBQlEw8NHf4Ob0xNECQxITlPRAsoyrQ3OCsWYzohSDMD3P6S/oM9dZFni+fad03Pj6z+v/7wy3FfqQPXDR4PCBQlEo4mICEYHv5gJTglKRwdFis6GhZ2V5+5fEWRUj6KRs7vZoXkkXTJwc14Z5kCbhogCS8bARcNHg8IFCUS/akyPBkZGSkSCxP+8gGNAQOw3QGWAVb+jEVKEYzzm4POu2ofQyUuaztqgz4BMEwsekowNUMBjjYovihJHwUGLndIQE7+1zMMEgU8BAz+dwMCdVwtSiY1NRYgRCIgUzs+alxVKJSJOCsWRBghEP7O/MD+SXMBFfQBSgGq8zc4Moby/rv+f9GZ4XsCHwcHAzgCCwiPKxsQMxEBURATNTMoKwQTESskPPuTDj1yXTRoMiZIImOqsW+I1Hls8v5z/t/3/tQDbwsFOQkNrQcHAzgCCwgBrkArGhoQDhQbHyUAAAANARb+rAkSBswAFgAmADIAUgBcAGsAeACCAKcAxADWAOYA9QAAASImJwEuATU0EiQzMhYXAR4BFRQOAicBNxYXHgEXHgEXHgEXFjMBFjY1NC8BJgYVFBcBIiYnLgEnLgEnLgEnLgEnNx4BFx4BFx4BFx4BFx4BMwEuATU0NjMyFhcnMjY1NCYjIgYHDgEHBhYnNi8BLgEHDgEfAR4BEyc2JBI3Fw4BBAEyPgI1NCcBHgEVFA4BFRQeARceARcHLgIjIg4BBw4BIwEWATI+ATMyFhcnJjY1NC4BJy4CIyIEBhUUFhceAQc0LgE1NDY3PgEzMhYfAREXJRMyNz4BNzYmIyIHDgEHBhYXMjYnLgEnLgEjIgYVFBYGyjZiKfu0UlWvATXJbLgkA9YWG1ad1uf9s6cpQB0sChcpIyA1EE5e/AYaLi40Ii4kBVg3TSANKRotOiAIHxQtQR1GFzoiGioJFywiIDMOHz4k/D0EAw4bGiIC3hojGRQTGwIBBQMIFWMZDxAKLRYMBwUXCDDlT+EBTb8MSCmt/tEBumi3i04g/KIBAQcHGSURMnFBJn2yjUYwgpZQDRsOA8k5/A1Vmo9BO3E+PAsQBA8QEFJwPrL+75pJQxZGFxoaWV4gpHFAn0YONP5kGx4VCgwFCBcZIw4ECgcQFeMcFQgDBQEBGxQTGiP+rCAlA9FK3XK1ARqiKS/7CRxdOWnDmlkkAjNSeCEPIyFNQgoJIB+SBKULGBggFBYOFBwhD/t2Nz8aGggOWVUXHQwaalIYQ1cUDiEeS0gMCyQhRzIDhxImCiQlRjh8RTMcIh8ZDRsNIifUFDE2IxUSCh8RSBsT/LtQGqEBC7hNuPKd/clJgahfWSgEWxYxGi12ZhUVdJNCFDgkRkVLHRgaBQEB/KUzA94cHREU+jDAcElcOxUWHA+L9qBpujoTEyNHoZMyT2AcYmYcF3f+b/USAbolESISHSotDBkNHTWsJyINGw0ZHyIcM0UABgC0/qwJdAbMABcAKwA4AEUAUwBdAAABIiwBAjU0ADc+AjceAhcWABUUAgwBJzIkNy4BIyIOASMiLgEjIgYHFgQBNyY1NBI3JwYCFRQWBT4BNTQmJwcWFRQGBwU2EjU0AicHFhIVFAYHATI3LgEnDgEHFgUU9/5l/tWjAQT4jfe2Kiq1+I34AQSj/tX+Zvi3ASmgVctmMlRMKChMUzNmylagASn+D0hYqJgyprgyBKkjJx4dTDckIAFiRUuEezhxdkVB/VunhligNTSgWYb+rHzjATW56QGNllWrlDMzlKtVlv5z6bn+y+N8UENNO1MbGxsbUztNQwE2IrbOyQFfdz6C/oDbbdg0WNNvYsJWGqO9aMNRmnkBBoCtATl7OHD+5Z5373EE+Wo+ezExez5qAAQAov6sCYYGzAApADoAZQB2AAABIiY1ND4CNTQmJw4BIyIkACc2JDMyBBc2ACQzMhYXEAIABx4CFRQGAS4BJyY1NDYzMh4BFx4BBwYTMjY1NC4BJzYkNhI3LgEjIgQCByYkIyIGBx4BBDMyNjceARUUDgIVFBYTLgE3PgI3NhYXFgcOAQcGBX9YaSo3KhMUQ45Dtv62/vFdowEgkqcBLHtJAP8BUsdSXTHV/oP9IC4ZiP5Tbul9KBgSWq+oTw8GCxf1cF8dNyfGATvgewYbQzHF/rj1S5P+2Kd4+HxU7QEhoVOpTyEfKjcqNfAOBgo2gYxGEB8GDiFtsE0W/qxEOBxdhrV0TJZMFBSUARzKX1mCerUBAYoFBv7Z/jv+6iFv0cll0LQFCkxTBQInERYrTzgKIQ4f+1yDsWrW7IoIlPoBRLgCAo7+682bkURCo+t+GCBjyGN3uohWFBcaBS8JIQ9Og2kkCAwQIhE5m3EgAAAADAFi/qwIxgbMAFoAaQCvALcAvwDHAM4A8AEUARwBJAEsAAAFIicqASMiJjU0Njc+ATcXDgEHDgEVFB4BMzI2Nw4BFRQWMzI/AR4BMzI2NxcWMzI2NTwBJx4BMzI2NTQmJy4BJzceARceAhUUDgEjKgEjBiMiLwEGIyInBwYFIiY1NDY9ATMVFBYVFAYDIiYnDgEjIi4BNTQ2PwE+ATUzFAYHDgEVFB4BMzI2Nx4BMzI+ATceATMyPgE1NCYnLgE1MxQWHwEeARUUDgEjIiYnDgIBLgEnNx4BFwEnPgE3Fw4BAS4BJzceARcHLgEnNxYXBzI2Nx4BMzI2NTQuAScuAiMiDgIHDgIVFBYzMjceARciJicOASMiJjU0PgE3PgMzMh4CFx4CFRQGIyImJw4BBSc+ATcXDgETJz4BNxcOASUuASc3HgEXA4GcFwgPCJqzVWFJYx5SKndZRERIeEcWKiEBAS08SFxWFEJDQ0MTVl1HOy4CHi0WcJc1Q1iHIUobb0g9SyRSl2gHDQcXnFpoID5zcz4gaAE7TFEr5CtQjzpgMTuJMUyGUlleGl5SUHSGQkVCYjBTmishVjEqcWISLbBOPHZOQjt3iFBSVidbUlqZXS6STiNncQFkFikSMBYnEfyaJBQtGicWLwKJFigTMBYnEfkHDgZBCw4QKDUHLocxOERKbzlHXTsWDi89RiY7dk5eQlBjF2U3QXwkH0wiZIRYgTwsSUFDJyg7O089O31Vc1klWCYTVv4KGhYyHR4ZNWw7CxgLPAgZAiMOGQg8CxgLWndfSy9RKyBbPg5YcygfMBQYKRkCBAsRCDApJSMcLC8YIiUpLwgTCgQCOCITIxkigVIeQ2ocFy80HzJNK3crDTg4DSv6JycmPTFQUDE9JicnAt1JUhQQM1MvM1UrDCtIJ0ZvOx01FxcvHyAbVV05VCkZJh0rFg8tGTKWUj9eIxAlTC4wTy8YFC5JLAFeFCkZKxooD/3EOAsgFjMTIgO8FCoYKxooD2AcNhwPPyr6Xl0MESgcHUNTM0GGWz1eZilAVTsaFCQhUG9QYVUIDUk8MVJdQTBvZEA3W242NV1cNENRCAhTW4o9CBgRORAZ/bUeFDMfGB00Ixs0HRgfMxQAAAAABAFu/qwIugbMACwATgBeAIYAAAEiJjU0PgE9AQ4BIyIuAScmNTQ+ATc+ASQzMh4BFxYSFRQOAQcDFRQeARUUBicyNjU0LgE9ATciJicHLgE1ND8BBwMnDgEHFxEUDgEVFBYTIiYnNx4BMzI+ATUzFAYEBTI2NxclHgEzMj4BNTQuAScuAiMiDgIVFBYXBy4BJw4CFRQeAQUtc2MKCyJHJIjnlxFaYadpD6sBB5eI8bEolZx015XzBwZTdE0qBgfPHzoZaAECCR9zLs0TMB/bCwo8C3fdUzBJw2uJ4IZQm/77/ZZQiifdATUvczxblFlFelIlndd7Z72VVh0aNyIoBVGASmGi/qxBUiBNRBTcCQp81oZ4kmy5fhJjo2Jco2xS/vmoiNyVHf7UNBs7OBhVQ1AdKx1ORA5A+QsHeyI7GUU2yBz+8eIPGw3y/uwUUE4TKBsDbEU+QDc8W5dacrtvFTsrQ1YgJEyDUUySeiZrmVI0XXtGIjkWOx1JLRJok1VmnVkAAAgBn/6sCIkGzAAvADwARQBoAHAAeACrAMMAACUuATU0NjcBLgE1NDY3JSY1ND4BMzIXJjU0NjM6ARcDPgEzMhYXBT4BMzIWFRQHJRMiJic3FjMyNjcXDgEnNTI2NxcOAhMiJjU0PgE1NCYnNx4BFRQOAhUUHgEzMjY1EAInFxIRFAYDJzI2NxcOAS8BMjY3Fw4BCQEFNjU0JiMiBgcnJSYjIg4BBycTIg4BFRQWFwcuASMiDgEHBRcOAhUUFwEXDgEVFBYBJS4BNTQ2HwEnJjYzMhYfATc+ATMyFgcEN2BxBAb+1R4igXL+qgN5w21dVwTfuQ4ZCiJIq1torC7+pxERB7bUGP0Zti5LIBU5Rh9LLwouT4tIcRwdH1lZPoJwKio0PjVKQxkiGRRFSWIzeIBp33PhAzFaHygncHcCLFUfKCVr/lYBTQLUBaSnEC8OOwFbUoIqYIJcQCROhE8MEC8ygjlalF4LAZkDVI5WDwFhLSUXMQG3/u0iISofjEsTDRcOFw1UGAoUEhgOCFEfrHcULB/+2DqMRondRgUXFHGoXiMbIrLXAv6uR0xmWfgCAdSyWFLV/JILC0ISBgdGBwbnRQ8NPw4PBf43OVI8c5BnacFuR3vlf1B9ZFEkFxoKEhABNwHxwgb+ff2fRS0CrkcaFjwaIclGGRU7GSD+mQKfzyUgkaUCAmT5WxpRUSQBV06MXSZBISQfI0R1SgZbF3qsYj8+AWEfOnhLT3ICGk8KHhAUEAoskCMwERmjcCwiMCoAAAAXAXz+rAisBswAOwBQAF4AbACBAJYApAC0AMIA0ADkAPIBNAFIAVYBawF9AZEBnwGtAcEB1gHkAAABIiY1JiQCNTQ2MzIWFRQGFRQWFzU0LgI1NDYzMhYVFA4CBx4BMzI2NTQmNTQzMhYVFAIGIyInERQGASI1NDcOASMiNTQ3NjMyFhcWFRQGASI1NDcmNTQzMhYXDgEBIjU0NyY1NDMyFhcOARMiJyY1NDMyFhcmNTQzMhYVFAcOARciJyY1NDMyFhcmNTQzMhYVFAcOAQEiJic+ATMyFRQHFhUUASICETQ3FwYVFBYzMjcXBgMiNTQ3JjU0MzIWFw4BASImJz4BMzIVFAcWFRQBEAInLgE1NDY3Fw4BFRQWFxYSEQEuATU0MzIXNjMyFRQGATI2NREWMzI+ATU0JiMiBhUUFhUUBiMiJz4DNTQmIyIGFRQeAh0BDgEjIiY1ND4BNTQmIyIGFRQSBDMVFB4BFxASNz4BNTQmJzceARUUBgcGAhEBIjU0NyY1NDMyFhcOAQEiJicmNTQ2MzIVFAc+ATMyFRQHBgEiJjU0NzIWFRQGIyInFhUUBiUiJic3HgEzMjY1NCYnNx4BFRQGJSImJz4BMzIVFAcWFRQBLgE1NDMyFzYzMhUUBgUiJicmNTQ2MzIVFAc+ATMyFRQGASImJyY1NDYzMhUUBz4BMzIVFAcGJS4BNTQzMhc2MzIVFAYFK4x1s/7rnYd6Z14MUksOEw6qlIucBwwMBQ8nDyIqDc54Z3TOhjEzfPyZEQgMFAgYDhkvCBEIAxsBmyEsKyAXMhAQMv2hICwsIBcyEBAyAi8ZDhgIFAwIERYbAwgRqy8ZDhgIFAwIERYbAwgRA8gWMhERMhYgKyz93+jrKjopzM09PwhKkiAsLCAXMhAQMgJUFjIRETIWICss/jgKBwQGDxU7FBAGBAcL/coaIRMUFBQUEyECSWVTY1FuqmA/UEM7DVlDVj8EDAwIb2hvfw4TDgoVCoKSBgY0QVRdlwETuyFOXQsHBQUQFDsVDwQFBwv+QCAsLCAXMhAQMgEYCBEIAxsWEQgMFAgYDhkClxYcBChQEQoOGAgH/rtEiEskQ3Q6dIsaHzofG6wBaBcyEREyFx8rLPyaHCUVFxUVFxUkAP8IEQgEHhQRCAwUCBg5AfMIEQgDGxYRCAwUCBgOGf7/GiETFBQUFBMh/qy30wvHAVHZv86VhECHPmFlC5c9prWmPcjIrK80nK+jPAkJLiVQh07trsO5/uGiDP71xbECLhkSFQUEEQsOGQICDA8hOv6GExQUFBQTIRoaIQLKExQUFBQTIBobIQFOGQ4LEQQFFRIZOiEPDAICoBkOCxEEBRUSGTohDwwCAvyIIRoaIRMUFBQUEwGEAR8BGqjYDNme/vsKPAsBVhMUFBQUEyEaGiH+ICEaGiETFBQUFBP+jAE8AejBgNlehuVtC2rfg17WgMD+Ff7CBaQQMhchLCwhFzL6YoCmAX0ujfqjpXxIVUyNTEZdOjOyyKwtj3yYqDqltag/5wEBlY4faGUZZWSen8z+zK1PeYk4FgE9Aei/g9xfg9xpC2/liV3WfsD+Fv7DBhoTFBQUFBMhGhoh/vACAgwPIToZEhUFBBELDhn9SEAdEw0aGwgJCRURChB+OzYwMDTRxVSiZA5mpFfg+rohGxogEhUUFBQTA9YROBkkMDAkGTjXAgINEh45GRIVBQQRFhz+cAICDA8hOhkSFQUEEQsOGfQQMhchLCwhFzIAAAADAM3+rAlbBswAOQBIAIUAAAEiJAI1NDYzMhYfAR4CMzI2NxM+ATcXDgEHAwYAIyIuAS8BLgEjIgYVFBIEMzIsARoBNTMUCgEMARMuATc+ATc2FxYHDgEHBgEiLgIjIg4BIyIuAiMiDgEjIjU0NjU0JiMiNTQ+ATMyFjMyPgE1NCYjIgcnNjMyFhUUBhUUHgMVFAQf+P6A2klEHTkzFDFgckqh40BhIFQ1UUZNHF9F/vK+VYp3ORQmHAsTJMIBW+XLAW4BMN96UILu/rz+et4RBg8lOBANIycLEDgmGwNKJishLSkeKyshHiEkQD4UQz4OJQ41ITQ7XDMjUxRHaToqLBknLD43X2otNk9ONv6spQEnwmJ5KkweSFQk5dwBT298FDEfYWP+sPT++ytkVR45F0RHqv78knXWASQBX8PQ/on+yON9AqoIJCJVsVBABgc9WLxaQAHqJzMnFxgxQTEKChgIKw4iGREYKhoIQ20/MjUPYxxuY1iAPBwzPE9rSiwAAAAABgIi/qwIBgbMADYAUgBfAHEAggCQAAABIiQCNTQ+ATMyHgMXBy4EIyIOARUUEhYzMgARNC4CIyIOAQcnPgIzMh4CFRQCBAEuAycmNjMyHgIXBy4DIyIGFx4DFzc2NTwBJzMWFBUUBgcDIiY1ND4EMzIWBwYCDgEnMj4CNzYjIg4EFRQWAyc+ATMyFhcHLgEjIgYFPLn+4qJAcEc7gX9vVBZNGVVobGIjKk0wjfqi6QELLkxZKiBgYyc6LW50NUJ3XjaO/vv+pWfNr3YPCC8uM7LSzlEWUc7NoycMCQQXcJy2XUocAlACCgtFT2hkpcTDoC0qLAgUkdX7f3DevoQVBw8giq+0mV42gzMnb0A1XCU1G0MjMFQBisUBXuOP4oNkpMTEUBVcvq+LUXC+ds3+xrEBKAEDc+C4bmm0cUd5t2d6zf6Ew/7kmv21JoWouFkvREVzikRURoxzRQ8QUaSUcyFpuq4YMRgaNRpPnU7+k0A4JYusrZNaRzyS/vPSek5vv/OEK1SIn5p3Gg4cBvc+QVc+LD4rL0oACQC0/qwJdAbMAEMATwBbAHEAdgC0AMAAzADYAAABIic3By4BNTQ3LgI1PAE/ASc+ATMyFy4BNTQ+ATcXNx4CFRQGBzYzMhYXBxcWFBUUDgEHFhUUBgcnFwYjIiYnDgETMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYXLgEnPgE1NCceATMyNjcGFRQWFw4BJzcnIwcBMjY3HgEzMjcDBTY1NCYnPgI3JTcuASMiBgc+ATU0JicHJw4BFRQWFy4BIyIGBxcFHgIXDgEVFBclAxYBMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYDnVxWGbBAR1dppmEBtII84IJmYAICWZ5mcHBnnVkCAmBmg988grQBYKdpV0ZBsBlVXXDGQUDHXBYgIBYWICDBFyEhFxchIRcxwXc6Qxo2hkpKhjYaQzp3wDJQKFAo/tl2vEVGvXQrLyMA/0pAPGqxcQj/ALo2pl5OjkcLBoBrkpJqgQYLRo9OXqY2uv8ACXCxajxASgD/Iy8BPxYgIBYWICABJBYgIBYWICAyFyAgFxYfH/6sJMNeQatblHkXgr5vCBAIK4Z2iC0PHxBfqHsbs7Mbe6hfEB8PLYh2hisIEAhvvoIXeZRbq0FewyRnWFhnA4UgFhYgIBYWIHwhFxchIRcXIbCKjwU5m1hNRiswMCtGTVibOQWPvEBRUfxxgnl6gQsBGodigFekQgZmpmU8wExWLTA7VyxjrC7r6y6sYyxXOzAtVkzAPGWmZgZCpFeAYof+5gsD9yAWFx8fFxYgwiAWFiAgFhYgwiAWFx8fFxYgAAAAAAUCYv6sB8YGzAClAMIAzADdAQAAAAUiNTQ+ATU0JjU0NjcOAQ8BDgEjIjU0PgI1NDY3LgE1NDY1NCYvAS4BNTQ+AjMyHgEVFA4DFRQWFwcuAjU0NjcHDgEVFBYfAR4BFRQGFRQeAjMyPgE9ATQ+AzU0LgEnNxYVFA4BBw4BByc+ATc+ATU0JiMiBgcnPgEzMhYVFA4DHQEUBgceARUUBhUUHgEVFCMiLgEvASIGDwEOAQE+ATU0LgEvAS4BNTQ2PwEOARUUFhcFHgEVFAYHAS8BPgEzMhYXDwE+BDU0JiMiBhUUHgITIi4BNREzERQWMzI2NTQ+ATMHLgEnERcRHgEVFA4CFRQGBC0hGhkLAQETLhEPH2IkIxoiGiUuZHscFR0ZKB5lsON/crhtO1dYO1ZTaZjogQMCTExFFiAYIiEcWJW4X4PKdBwpKRwLFA4PGFJwLHWSFEQhm4VhanFWEBgRQxM+IaHHHCkpHF1OCgcJHh4PFUdNIF84gR0SGUYBgg4NRaiVumNXISthJTg0NAFFuo8KDP7PaVEojVElRRx3ZA9FVk8zuoZ+jDZWZIgZPCtQGhYWHhMzMQYiNCdQL0AfKR9CmhAMIz0xJFInCRMJGEYrJk5AEgwSI0lFNW4xPsR8THsfEjEmITVsKVylfkg1X0AvOCEbJSAnOAdQO4iSSQoUChc3iT4iUC0hLkkjMXJDX5NmNFejcSN1k15LWEUVTFEZEzo0VmU1DyZtai10eisgb0NNYQQFPwsN07ZGYFJhimojcLgyGS4VIkMpPEkvFA0xVDSdaE4yR1IB50RlIlCFjFxzPXtGL2g1Hyh9PzJSIcx13GUvWjgDlRs4P0UOC09XND4jGiAcOUhGOyFQSjD5mg8iHAH5/h4KCwoLHj4qGiEYCwFaCf7PEzwXDwsNIiY1KgAAAA8A0P6sCVgGzACfAL4AyADoAQgBFAExAToBSQFVAXcBgwGiAa4B0gAAASImJy4BNTQ2Nw4BIyImJy4BNTQ2Ny4BNTQ2NyY1NDY3Fw4BFRQWFw4BFRQXDgEVFBYXHgEzMjY3DgEVFBYzHgEzMjY3MjY1NC4BJx4BMzI2NT4CNTQmJy4BJz4BNTQmJy4CIyIGBy4BIyIGBy4BLwEeARc+ATMyFz4BMzIeARceARUUBgceARceARUUDgEHDgEjIiYnHgEVFAYHDgEhIiY1NDY3PgE3IiY1NDY3FzcRFw4BIyImNTQ2Nw4BNz4CNycOAgcTIjU0NjcOAiMiNTQ+ATcuAjU0NjMyHgEVFA4DBSIuATUOAiMiNTQ+AjMyHgIVFCMiLgEnHgEVFAYBMjY1NCYjIgYVFBYBIicWFBUUBiMiLgEnNycFNx4CFRQGIyImJx4BJTcuAScHHgIBIiYnLgInNx4CFw4BATI2NTQmIyIGFRQWFyImJwYjIiY1NDY3LgE1NDYzMhYXNjMyFhUUBgceARUUBgEyNjU0JiMiBhUUFgEiLgM1ND4BMzIVFAYHHgIVFCMiJiceAxUUATI2NTQmIyIGFRQWASImNTQ2MzIeARU+ATc+ATMyFRQGBwYHNjc+ATMyFRQGBw4BBRtTgR5wgAICMmw2SHEpV2AgFgYGe2E/QT4WJSA7P4WSDBYgU08iTzY4l1UFB1eDEWBPPGc8Z2MFCQg6bzReZy9UNT87HmyCGSNGSwREYzEcRx0lSiFPXSkbPiAUGSsfLHxXREggUSA5bVUVTFQZFFGCIT5FNlk3DX1hJ1ksDgeGaz5+/GdRMwwNDiwfGyJcPJe+g0l7MBkcAQErdU4YUl4qIxthZCHZC0VDGlZTGCFMaCo1cEsoIVSVXSk/Rz4CBgwfFhQ1MA4NJjg6FBhQUjgLDUFIGgUHDv1oIC0tICAsLAao3HsCGBggYWUnSxQBCX4wTS0bFQgXBz8//uwsRp5LLDpqYf0TEyYRDzRYRkhVd1UhDC7+byAsLCAgLS0eKEMVK0JCWhoVGR5cQClEFStCQVsaFRodXf7KICwsICAsLARmEj5HPylelVRJh24na1EaG4VBEy4rG/yeICwsICAtLQI8JR4ZEAoSDAYLBylKEQspHgoRExo7YRgRWENAUf6sQzQNl4AOMhYiMkdOK5VLMGEpDSwUYm0PRFQ7cStQHDsjMV5HCk1WISwlaSw9byJIOlBKKUwqg6E2PjA9f38cO0AjFhhNTANNcDU+hyRvcAomgzFAUBoqTTESDg0NT1MREwRTAg0RR1AZDQ8xVDUld0koXCMLhGUumE1CfFoSUV0QDilPFnqTDjg4ExYLFRETQDkOEyxoNwlo/uFwTE4XHQYNBzAmvCFbXiUvE2BuKwItDhppTw4cEw4MMTALBx4iCwkLHTAbFEhSSi/wU3MvNmI+GilzcEtJamgeDjlVKRpVITQ8BC4tICAtLSAgLfoKYwoPBxwYITsnaPshTh1KSBsWEwIBPbGbKFF4HC0YRFMC4AwPW5GHS1JSmKJiGSQB7iwgIC0tICAsUCYfLV1AIjoWFT4lQVslIC1bQiI5FhU9JURaAVMsICAsLCAgLPwZL0pSSBQbLx4UFC8RCDEzDAwhFxE7QTYMDAPNLSAgLS0gIC3+TFx0U3dJckALFAtDWBAWYjwVFw0OHygLEUwnJSIAAAAACgHM/qwIXAbMAFMAXQBnAG8AeQCCAOYA9gEGARYAACUuAicOAQcuATU0NwYjIiYnPgE3LgEnPgE3Jic+ATMmNTQ2Nx4BFz4BNx4BFz4BNx4BFRQHMhYXBgceARcOAQceARcOASMiJxYVFAYHLgEnDgIBIiYnNjMyFhcGJzI3LgEjIgceARcnPgE1FxQCMyInPgEzMhcOAScyNyYjIgYHFgM+AjceARc+ATU0JiceATMyNy4BJz4BNy4BJz4BNy4BIyIGBz4BNTQmJw4CBy4CJw4CBy4CJw4BFRQWFy4BIyIGBx4BFw4BBx4BFw4BBxYzMjY3DgEVFBYXPgE3HgI3Ii4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEFFTtBMCU+dlATEwMbHitTNgciIzFQLytWN00pNJJKAxEUUHc+H1tWVVofPndQFBEDSpI0KU04VSsuUDIjIgc2UyseGwMSFFB2PiQxP/7ueLMlcXJ4sihxcT0/JnpPOkElevJKMjNQNt+LgjasY4x9NKtigVdQUD1xLFOULT0zHEFeQAsMCQgyQRwpNgwsLkNLLTFWNSpCFSttNw4cDgYHCgotS0ktFic5NDQ7JhcsSkouCgoHBg0dDjdsLBVCKjVVMi1LQy4sDDYpHEIxCAkMC0BeQRwzPyx6ynh4ynp6ynh4ynpkpWNjpWRkpWNjpWRDbkFBbkNDbkFBbVwmLzs3KCMCP14oGBgEFhhHbjEYSj07TRlUkCspFxcmXEACIClBXDc3XEEpIAJAXCYXFykrkFQZTTs9ShgxbkcYFgQYGChePwIjKDc7L/6pmndImndITh5JVh9JVc0ibeyWApv+/3JkdHRmcE52OD45NwFQHTZJOjEwCCxJIB00GQsJE0BWNxo1NzlAGipjQxcTAQEfMhgcPCgFGSwhOUs/JSU/SzkhLBkFKDwcGDIfAQETF0NjKhpAOTc1GjdWQBMJCxk0HSBJLAgwMTpJNvh6zHp7y3l5y3t6zHpOZKllZqdkZKdmZalkgUFtQ0NsQUFsQ0NtQQAZANj+rAlQBswAcwB6AIEAiQCQAJcAngClALEAvQDJANEBSQFZAWkBcQF9AYkBkAGXAZ4BpQGtAbQBuwAAASImJwYjIiY1ND4BNw4BIyImNTQ3LgE1NDY3LgE1NDY3JjU0NjMyFhcuAjU0NjMyFz4BMzIWFz4BMzIWFzYzMhYVFA4BBz4BMzIWFRQHHgEVFAYHHgEVFAYHFhUUBiMiJiceAhUUBiMiJw4BIyImJw4BAyY3ExcDBgEGJyY3JRcHJjQ/ARcHBgMnJjU0PwEBIi8BMwcGASUmNzYXBQEGJwM3ExYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAY3IiY1NDYzMhYVFAYvASY0NzYfAQMyPgE3HgIzMjY3HgEzMjY1NCceATMyNjU0Jic+ATU0Jic+ATU0Jic+ATU0JiMiBgc2NTQmIyIGBy4BIyIOAQcuAiMiBgcuASMiBhUUFy4BIyIGFRQWFw4BFRQWFw4BFRQWFw4BFRQWMzI2NwYVFBYzMjY3HgEBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQUGLwE3FxYUASImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGJwMmNzYXEwElNwUWBwYBNzYzMh8BATUXFhUUBwMnNzYXFhQPASclNhcWByUnEzYXFgcEBC5NEycoQVQHCwYWXC9gdhUzPXNTU3M9MxV2YC9cFgYLB1RBKCcTTS5Ejz0+j0MvTBMnKEFUBwoHFl0uYHYVMz1zU1NzPTMVdmAuXRYHCgdUQSgnE0wvQ48+PY+PGw6tSsIO/mgdCQoeAYUUJwkJXDRlGAGQHx+QAWccAgpQCgL+fv57HgoJHQGHAq0aDsJKrQ7+TBYfHxYVHx+NFh8fFhUfHxMWHx8WFR8fpFwJCRMYZScmZmQgIWNnJSA7DSAtGiosQj6iOz9FGBc8TZKKipJNPBcYRT87oj5CLCoaLSANOyAlZ2MhIGRmJh88DSAtGiosQj6iOz9FGRY8TZKKipJNPBYZRT87oj5CLCoaLSANPAEvaq9oaK9qaq9oaK9qVYxUVIxVVYxUVIwBzhMYZTRcCf5yFh8fFhUfHxMWHx8WFR8f7K0OGxoOwgNK/nkUAYUeCgn84goCHBwCCgE/kB8f2jRlGBMJCRMUAYcdCQoe/dBKwg4aGw7+rDgxFGJVGEA9EQYKXEkqKBRQMUWEGRmERTFQFCkpSlsKBhE9QRdVYhQyN3VoaHU3MhRiVRdBPREGCltKKSkUUDFFhBkZhEUxUBQoKklcCgYRPUAYVWIUMTh2Z2d2ATANHAFwGv6PGgHHCRscCo1MzQkYCmY0XBQBZAoCHBwCCv3DH5CQHwJ1jQocGwl5/HQMGgFxGv6QHAH7HxUVHx8VFR+CHxUVHx8VFR+gHxUVHx8VFR+eZgoYCRMUXPskVYVHR4VVQzwXFTg3YKsSGTQtGjgcDzgmM3s0NXozJjgPHDgaLTQZEqtgNzgVFzxDVYVHR4VVQzwXFTg3YKsSGTQtGjgcDzgmM3o1NHszJjgPHDgaLTQZEqtgNzgVFzxDAkBormpqrmhormpqrmhMU4xVVYxTU4xVVYxTRRMUXDRmChgBTB8VFR8fFRUfqh8VFR8fFRUfwQFwHA0MGv6P/Xp5TI0KHBsClJAfH5D+clAKAhwcAgEGNFwUEwkYCu5MeQkbHApaGgFxGgwNHAAAAwD4/qwJMAbMAKIBCgE7AAABIi4CNTQ+ATcuATU0PgE3PgI1NCYjIgc+AjMyFhc+ATceARc+ATMyFhc+ATMyFhUUBxYVFAYHHgEVFAYPAT4BNTQnPgE1NCYnNjU0JiMiBgcmIyIGBy4BIyIGFRwBFSYjIgYVFBciBhUUFw4BFRQXDgEVFBYXATYkNz4CMzIWFw4CBzoBMzIWFRQGBy4BIyIOAQ8BDgIjIiYnDgInMj4BNx4BMzI+AT8BPgIzMhYXNjU0JiMiBgc+ATcGDAEHAS4BNTQ3LgE1NDY3LgE1ND4BMyY1ND4BMzIWFyY0NTQ2Ny4BJw4BBy4CIyIHHgEVFA4CBw4CFRQWFw4CFRQeAgE+ATU0Jz4BNTQnFjMyNjU0JzoBMzI2NTQmJz4CNwYVFBcOARUUFyoBIyIGFRQWFwHtJFVMMDpPIB8URYJagpxFLzAzOwdFaT1RbyIaMQ47TxAUd08aJhAbWS5LYR0lWEMCAQ4Hcx8cBUpQGxYpNSkrRxQ+J0dVBQ0YDWZhHBJeXAp3XgpZVxITFRITAWTIAXzAX21UNytAH2R+WzMCBAJZhE9BBykhH1aGZ4KKz7JfNnk0IiYuMxIgLyZNfjpUnr+Dgn6TXy8nPRQSYF0oVChEp4K5/rr+xan+YDU3IQYFX0sBATlfOQM6YTkHDQcBZkwGHBcfTS0NLUw6JB49OydYkmtVdj0YJi9TMyU2NgHANDEOX2wLIBlMTg0FCgR0YwEBMzstHRcJVUQJBw0GbI4DAf6sMExUJTAsJyZTXzFz6eBkkMN/KSwqJThYM0lNKl0fK31SUmQHCCEoZEdCLi9KUYAPBw4IEzISISRMJhUhDVhFJD4YNjAxMjQlH25fAQFjaAYNBgRSTCYxZ1gyIARUVSsvDjMdGjYXATOt8DkcHQsKCUZfTS1dVEpoCzoqLGZYb3aIOhIQIlM8TztXKhcVNX9vb2xtJhwbJRsyMwwLUJxdJofOkf6bLXQzOzMfIxZZfw0JFgs7aUISEjtjOwEBBQoFRncMJVAfTlMRN2M+Ew5IOyhhgrJ5YM3SZy9iYD43GRERNjYkAjsybzQkLQJXWygkBUlJKzFNXw4ZDQMJFRQxKBYPJWRTKxqCYwocCwAUAIL+rAmmBswAMgBmAIAAigCpALMAuwDHAM8A2QDfAOkA8QD5AQUBDAEWARwBJQEtAAABIi4FLwEuAzU0NjMyHgEfAR4CFz4CMzIeARUUBiMiLgIjIgYVFBYVFAYnMjY1NCY1NDYzMh4CMzI2NTQuASMiDgEHLgQvAS4CJyIVFBceAh8BHgEaAR4BAyMuATU0PgE3Fw4BFT4BMzIWFwcuASMiDgElLgE1NDY3FhUUJSc1NBI+AjMyFhUUDgMdAQc1NBI2Nw4EFQEuATU0NjcWFRQXJjU0NxYVFAEiJic+ATMyFhcOASciJzYzMhcGJSY1NDY3FhUUBgEuATUeAQEiJz4BMzIXDgEXIic2MzIXBgEiJzYzMhcGJSY1ND4BNx4BFRQGNzQ+ATMUBhciJic2MzIWFwYFIiY1MhYlIic0NjMyFwYXIic2MzIXBgTkT5SIe29iUyIqLV5QMTwxjdWhP0EzTkYnFW6aVna0ZiYjLkE9TDhFQQhMPB4aCG1pRFs8KhIJCk6QY1uYXgYuTUI9Ox8+Oo2+hgUELVpPGiojX3SFj5cpLCUUXZ5fGmZoNd6JWbxXBlaNRIvUkwIeQkYCA4n8yU5Ukr3VbBoZXYmKXVBgtX1msI1lNgPQQkYCA4mcdxR3/j0IEgoRYEcJEwoPY7FSPz9SUUBB/wARWUQLUgNrWGNZYv5ZOjUgZTdBOylpoVI/P1JRQEH+emczP0FiN0P+yQQyVjUCA2uCNVczZMY8XBQ4MjdWFjcBF2d3aHb+whsgbUohI0DCTzw8T048PP6sZazZ7OPAQE9UZT4yIiMpedmPknLYoyZRdkBhqW0xODNEM19dI0MjSVxQLTIYRCODiS89LxIUP3tRW51kLXOFj5NJkIfEbAIDAQMfWGMyT0He/vX+9t+IAa1ijT957L0wKmrlkWR1MzA3My117YoOWkYNGw4djhszo2SEAQbptGcRDhlhjr/vkV+G5ZEBHP1hHnuox9Vq/rUOWkYNGw4djhuJL3szMy95MwE+AQFcYgECW2LSR0hIRywkLVKFFRsjRYv9RQN1ZgNzAQYYPjsmODN2R0hIRwHQVzNkJmsPFS1dSxIOHQ5bd0k4YDpkbnw9Nx9EPBMgZFdjgQlFWwueJUREREQAEgDQ/qwJWAbMABUAKQA5AEcAUwBfAGgAeQCKAKAArAC0AL4AygDbAOkA9wEHAAABJz4ENz4CNxcOAgcOBAE0Jic3HgEXPgEzMhYXBy4BIyIGAS4BJyY2MzIXHgEXFgcOAQEmJAI1NDY3FgQSFRQHJzY1NAIkJwYVFBIEASIkJzYkMzIEFwYEJyA3JiEiBgcWNwYnJjc+ATMyFhUUBiMiDgEBNC4BJzceAhU+ATcVIg4BAwYmJy4BNTQ2NzYzMhYHDgEVFBYXFhMuATU0NjceARUUBgc2NTQnBhUUATI2NyYjIgYHFhciLwE2JDMyFhcGBAMGJyY2Nz4BMzIWFRQGIyIGAyIvATQSJDMyFhcUAgQnMiQSNyYiIyIEAgceARMuATc+ATc2FhcWBw4BBwYCDgpOhnl2e0RSgXpFMzptfFNPi4SFkQFTHy49JCkFEicTIE4lBiNLHydA/pNYchwDEg0bBRVoVRYTCRcBBNP+zKYXGugBQqgpQxyM/vu2HIwBBQQamP7dgIABG6CkARiBg/7emAEF0dH++4DxZ9JaHAwNHDGAaw4SEg5JWD/+YgMICUMJCgQzdjArZ2U/DBcCBQoDAwMcDRICAwMIBgcPi4Vye4mEdHyguaEDLH3ZUZ2ket9SoKXSwgldAQ+XZtFuZ/75yxsOBgYNM3BADhAWDzhemjM2I68BN8sgTj60/rzZuQEbpQcWLhev/vOdBxMZhwoECTFcQQsZBxEcO1spEv6sUAw6ZprXkKzllzg6MInaqKDuqW06ATNhmVEjQIVEBQQEA0YDBBQCR1LSfg4ZG3XFSBMXCgL+4SfRATvEQpJfJ87+xcuEjzptbKwBFLwncGuq/uy7/WSVnpCRk5Sak1Da2m9r2usLGhwMFhcRDQ0RCRIBY22GXjIJKUpeSR0eAUgaLQJ9BA0NHkQgFS8bGxUOGSoUHTwaHP6acfyFeuxzcO+QheYHqcnbqqfI3P3GfXZxf3RxUJkzlKRVYqmkAQAOGgsYBhgYEQ4NEBQBKQYo3QFRvwYL7f6iv1CfAR29Ap/+470BAQERCBkKOV0rCAULGRMpUDkZAAMBzP6sCFwGzABDAE0AqQAAJSImNTwBNy4BNTQ2Ny4BNTQ+ATM6ARc+AjMyHgEXPgIzMh4BFzYyMzIeARUUBgceARUUBgcWFBUUBiMiLgEnDgIBJgI1ETMRFBYXATI+ATUzFB4BMzI2NTQmJxYyMzI2NTQuASsBNTMyPgE1NCYjIgYHPAE1NC4BIyIOAR0BIzU0LgEjIg4BFRwBFS4BIyIGFRQeATsBFSMiDgEVFBYzOgE3DgEVFBYDhmWMAVhyhnNwhkV1RwsIAwtHaDw/emMcHGN7PjxoSAoDCQpIdEWFcXSFcVkBjGVeqXYREXapAgaDfVpncP1rZKJgUGCjY0RdAwUECAVRb2StbtXVa6xlZksTJBYxVjhAfVNQU31AOFYxFCQVSmdlrWrV1W2uZG9RCAYDBARdiY9oCAUCD4hbXpQjL7ZsS3pHAT9iOUZ7T097RjliPwFHektsti8jlF5biA8CBQhoj2evbGyvZ/4jTwEm6AEZ/ufR/UQB4oTkj4/khGBHDyIdAWhMQ2k9UFGIVE9tBQcCBgQ1Y0Fkp2Xi4mWnZEFjNQQGAgcFbFBUiFFQPWlDTGgBHSIPR2AAAAADAVb+rAjSBswAVgCaAPcAAAU0NjcjIi4CJzcuASc3LgI1Mh4BFzcWFy4BNTQ2NxYXPgE3Fz4BNx4BFzceARc2Nx4BFRQGBzY3Fz4CMxQOAQcXDgEHFw4DKwEeARUiJicjDgEBIjU0PgI9AS4BKwEiNTQ7AToBFwEuATU0MzIWFwERNDYzMhYVEQE+ATMyFRQGBwE2MjsBMhUUKwEiBgcVFB4CFRQBPgI3Mx4CFzQmJx4BMzI+AjclPgE3Jz4CNw4BBycOAQcnPgE1NCYnBzQmJwcuAScOAQcnDgEVJw4BFRQWFwcuAScHLgEnHgIXBx4BFwUeAzMyNjcOAQOiAwEaXbmaYAXPTGc8hyc+I0OShzALXUQOCBQNLyUHNyMyGlIoKVIZMiM3ByUvDhMIDkRdCzGGk0IjPSiHPGdMzwRhmrldGgICWcxICkjMARk7BwgHIXg+sDs7ryRFIv49Ih0YDi4VAegREhIRAegVLg4YHCP+PSJFJK87O7A9eSEHCAf+mjB3ZhQUFWV4LwUCGTIZO4d6Vgv/AEx+OnM3RykJQKqMCyxZNTQ2HwECZxMdQhk/GBg+GkIdE2cCAR82NDVZLAuMqUEKKEc3czp+TP8AC1Z6hzsZMhkCBRobKg0wS1YmXzRmRiVAn6JEIzYbYCU3MWU6PnceGDFPgyMhN2cYGGc3ISODTzEYHnc+OmUxNyVgGzYjRKKfQCVGZjRfJlZLMA0qGzo9PTr+xiwOHTlxY+gICCMhAgFWGicPEh4Q/pIDIH1fX3384AFuEB4SDyca/qoCISMICOhjcTkdDiwBkAIsRigoRiwCES8QBAIaKjAWdxlmOyE+lpI3DD9OZB1OPSRirWMVKxNTVJEtNVNjGRljUzUtkVRTEysVY61iJD1OHWROPww3kpY+ITtmGXcWMCoaAgQQLwANAIz+rAmcBswAMwBCAHUAhgCZALQA0ADfAOcA8wEGARcBJAAABSImNTQ+AjU0LgE1ND4CNTQmNTQ+AT8BNiQzMh4CFRQOASMiJw4BBw4CIyImJw4BAS4BJw4BByc+ATcUHgEXATI+ATcWMzI2Nz4BNx4BMzI+ATU0LgIjIAMHDgIVFBYVFA4CFRQWFRQOAhUUHgEBLgEnDgEHJz4CNxQeAhcBJz4BGgE3PgE3Fw4BBw4BBwYAAToBMy4CNTQ+ATU0LgEjIg4BFRQfAQceAhciLgEnNwcuATU0PgEzMh4BFRQGFRQeAhUUBgEnPgE3HgIXBy4BJw4BFyYCNTMUEhcTLgMnNx4DFxMuAS8BLgE1ND4BMzIeAhUUBic0Jy4DIyIGFRQWHwEeASUuATU+ATMVIgYHFBcB0JWvSV9IGhsoNCgrLz4WElgBAqxru45QJUYyKB4tPBMfOzgdIk0gjdABnyAlBkqnWw1q1FsQJB39pk6Fl2hiLRE2KCNjPwsiEBIkF0R4nlr+2ZcWGDUkJSg0KDVIX0lJcQNrS2AQWMdWFEqulSYbNEou/Qo2e76TdjM1aDlCNmw2IUUjSP7/BjAIEAchLBUJCUuBUUl0QyCHPi6avHR+7bkwIEAcIViYYGelYRIiLSI//gQzI0VALjksGyMeOi0lNopCMks3N0Eqg5SNNRQ5k5mJMMVKRy5pordJfUxNjG1ACkcDBzlVZzZScJCFaR02/ssHBDFNJRM7GQkVSj4jVVdKGAwZHRAaR05GGBcvGxkrOCsjqqpmtOyGabp0GCtOIDVJJRkOQjUBW0SxVzBMEk4Vb0o4naE+/s8WODEvRzw1djkeJWOXTXbPnln+2CsvJxUTGSsaFEpURQ4SLxkhV1pLFA0aEQJMRs5iN1QRTQ9ETh0fa314LP37O2b5ARMBGISJ61MuTuCHU7Vfwf6L/bAwW1wwIk5QI1yRVUh+UVRIBIFLdURQV5pkOwIsfD9nol5qtnI8dzBEXT8uFyIgAjspLD4vDxcYEjoVHxAdN9WcAXzG4f6gggQPLWVeRw44DkZgajL+0xMPBxIco3pQgEtZmMFoIDI+HRxWmHRDdVZbfBQQBAuvJUBHCwk8AwRDLAAEAmT+rAfEBswAFgArAEEAcwAAASIuATU0NiQzMhYzMj4BMzIWFRQCDgElIic3FjMyPgE3PgI3Fw4BBw4CBTI+AjU0JicOASMiJiMiDgEVFB4BAyY1ND4BMzIeAhUUBiMiJC4BNTQ+AjMVIg4BFRQeAQQzMjY1NC4CIyIOARUUFhcFHI/jg5IBAKVosDA3SjkbMRhrvPb9nmd6JFxhQJGNOjp8ciknSqxgXImCAYR62aZfBgI+Wi43uleP3Hxtv/cniuaKacCXV3V5mv7U9ZJPia1dZ7hzhuABD4hbQ0yCo1Z0wnQSE/6sbsF6jtt9ICQkZ1Oc/uzUedU0Si5JWxwcKiYVRScwLStdQIVsvviLKi4KIx0gZ7d4Y5xaA9pZUW+4bTFWbz5QS1qYu2FKh2o+UFaIS06eg08jKCpSQSdZk1giTCcAAAAACAFF/qwI4wbMABEAPwBMAFoAagB6AIYAlAAAASAkJjU0EiwBMzIMARIVFAYEASIkNTQ2PwE+AjUXFA4BDwEOARUUFjMyNjU0Ji8BLgI1NxQeAR8BHgEVFAQBMjY1NCYjIg4BFRQWEzI+ATU0JiMiDgEVFBYBMj4BNTQuASMiDgEVFB4BAzI+ATU0LgEjIg4BFRQeAQEyNjU0JiMiBhUUFgMyNjU0LgEjIgYVFB4BBQD+r/5bxZMBBQFbyMwBaAETnNL+SP6n8/7/EhENCQkEUAUKCQ0QEdrKy9kREA0JCgVQBAoIDRES/v/8lHGLWl5Od0JtfCRWPisfKlA1JQKxTX9LS39NTYBLS4AMSnpJSXpKSntJSXsDUyIuPygnMUJwTFtPfEROZleEAYho5r2uASvifoLk/tapuudq/SSXjidvQDEhSmtREFRsSiExPGQiZ25uZyJkPDEhS21UEFVsSCAxQG8njpcEAaZ4X4RSiFNedgJqNkofGyQvSCYcJf0ZS4BNTX9LS39NTYBLAt0xUzIzUjExUjMyUzH9szMlMUsxJjNKAUJtR0J6T29HQ3pMAAAAAAQAtP6sCXQGzAA1AE4AnwCtAAABIiwBAjU0EjYkMzIWFwcuASMiDgIVFBIMATMyLAESNTQuAiMiBgcnPgEzMgQWEhUUAgwBASImJy4BNTQ2NzYzMhYVFAYVFBYXFhUUBgEiJicuBCMiBiMiLgE1NDMyPgI3LgI1NDMyFh8BHgEXHgEzMj4CMzIWFRQGDwEGBzIeATMyNjMyFRQOASMiJiMiBx4BFx4BFxYVFAE0Nj8BNjMyFg8BDgEVBRTo/mr+zK571AENkjt3OBQuY0WC8b1uowEfAXjW1gF4AR+jbr3wg0VjLhQ4eDqSAQ3Ue67+zP5q/KESIRIhMxIMFhkOFSAzMAgUA2EJFgxQYz4vNSscRi0td1gdPEgxMygyWDYNCR8RKRhOLjBCNSc8Q15JGDgbI0YsFjpWUjMIFgoYNEgdLlgeGwoOGAMCIBMX/n0cKAkNJyMaCgojG/6sj/oBR7icARvcfxMdThoWdMj+iqj+1eWCguUBK6iK/sh0FhpOHRN/3P7lnLj+ufqPAkchHDWiTzVbHTQUDhZjR0mTRQ0QEBQCFAICDzlDPCcJFzEmDgwXHhIQXIBGDRUPJRYDIiNLP1E/CQsFESdOMTE0NAMNFycWFxEbUx4WMg8SDw8B6XHKZxcjMhobXrJlAAIAyv6sCV4GzAAwAGIAAAEiLAEACgEnNxYaAQAMATMyPgE1NCYnLgMnLgMnNx4DFx4CFx4BFRQGBAEiJjU0PgE9ATQ2Ny4BNTQ2MzIWHwE2MzIeAjMyFhUUBiMiJiceARUUDgEjIi4BJwIHD5X+v/7F/uLnmRdMEIvaARIBLwE1j47oiVJFKZSxrUFWwbqZLUcvjqy3VmXs00FXYZ7+9PldHygiIjdDIyg2JyMQFD8WKktzY2c/MySNWyZDFwIEJzodFDo2EmT+rHHJAQkBMgFGnymV/sj+1f78xnFvvnRYkDcgRkhIIi2JnpxAKEGTkX8uNVxZM0S0aIrhhgR/FxYTIicai3+QMTliJi1FNil9Bys4KxQUQFEODAoWDTN7WDNRLv7iAAAAEwGC/qwIpgbMABgANABOAFIAbAB8AIgAmACkALwAvwDUANcA5wDzAQgBGAEkATkAAAERLgE1ND4BMzIWFwcmIyIGFRQWFwUHJRUDIi4BNTQ2NxcOARUUFjMyNjU0Jic3HgEVFA4BBSIuATU0NjcXDgEVFBYzMjY1NCc3FhUUDgEBJzcXASIuATU0NjcXDgEVFBYzMjY1NCc3FhUUDgEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEiLgE1NxQeATMyPgE1NCYnNx4BFRQOAQE1FwEiJic3HgEzMjY1NCYnNx4BFRQOAQEnNwciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBIiYnNxYzMjY1NCYjNzIeARUUDgEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWEyc+ATU0JiMiBgcnPgEzMh4BFRQGApEfJjxmPitBHC8lJz1IHxkBKh3+/FtNf0xTTCU3PXVTUHsKBkgLDUqAAVdRf0lzYRNAV3JXV3IVRh9Jf/77FGsKAgNQf0o/PC4oMXNWU3YdRShMf/zsTYBMTIBNTn9MTH9OU3Z2U1J3dwICTYBMTIBNTn9MTH9OU3Z2U1J3dwGuUIBJUThbNTVbODQsLEJDSX/9kH4C9kl6KUIdVTZSeUZBG1ZmS3/9y5eQ2k2ATEyATU5/TEx/TlN2dlNSd3cC3hsvFxEkJVl4eU8HSnxLTID+8E2ATEyATU5/TEx/TlN2dlNSd3eTViU4clY3ZyNGLI9NT35KLQOMARsylk1Me0kXFmEQVkotaSppX1re/OFMgExOiCpGH2I4UXhoYRYnDSEVOB9Qf0n8SYBQZZIZTRBxQldyclczKCQ6RVCASQHJkS+Z/TVMgE1JdylBHFkxVHdzWDYyJkRMUIBJAv1MgE1Of0xMf05NgExQd1JTdnZTUnf+10yATU5/TEx/Tk2ATFB3UlN2dlNSd/7JSYBQAjVbODhbNTFcH0Mse0pQgEkCm5E+++hCPywqM29aQWUWTBySWk9/SwPEW1iATIBNTn9MTH9OTYBMUHdSU3Z2U1J3/VMKCEsNdlNWdk1Lf09NgEwBUkyATU5/TEx/Tk2ATFB3UlN2dlNSdwGdIhFeN1hyQzwmTltKf089ZQAACAGI/qwIoAbMABMAJwBMAHcAtQDuAQwBSQAAASIkJgI1NBI2JDMyBBYSFRQCBgQnMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0Njc1IyImNTQ2MzIeATMyPgEzMhUUBgcOAiMVFhUUBgEvARsBPwEyFhUUBiMiBgcOAQcOAQcOAQcOARUUBgcOARUUFhUUBhUUHgEBPgE1NCY1NDY1NC4BNTQ2NTQmNTQ+ATU0JjU0PgEzMhYVFAYVFB4BFRQGFRQWFRQGFRQWFRQGFRQWFRQGByU+ATU0JjU0NjU0LgE1NDY1NC4CNTQmJy4BNTQ2MzIeARceARceAhceARUUHgEVFA4BFRQeARU3PgI1NCcuAicuAScuAScuASMiJjU0NjMfAhMBJy4BNTQ2NTQuATU0Njc2JjU0PgE3PgI3PgIzMhUUBgcOAQcOAQcOAhUUFhUUDgEVFBYVFAYVFB4BBRS8/rf6jYr4AUrAwQFK94qN+f63vawBLOSAfeH+0rCw/tPhfoHkASytOUQjIlqkfRQRDTyGeJrchBQiDw8ce55QNkP8/X0tMYzybz9OMiMuLCQoQRsmGBcWQxgRDRENDQ8ZCR0uAqoHExMXEBAYKhQUHxQiFRELBBsaDx4IGQwZDgwBcgkfKTEYGAQlMiUeJR88CAQPNDMLFA4ZETEyEQsGLCwXGB0cjg0KA1MNIiQSHkcjHhcfFkQiRTRuQsC/dyT7J6wRDxAbGyMGBw8eKA8PBw4ZFkxPGRYgFBMlCA4DDQ0oIAgkJDIaNzf+rI37AUq9uAE87ISE7P7EuL3+tvuNUIHkAS6sqAEf1nd41v7hp6z+0uSBBawpHxUjBecdMxQlDQ0lJCkZGgsTIxXyEicfKPuA5PQBFAE0xyIkGQsJHQ4PEBgiMiAfLjcnRUQVJxQUJxY0VxcKJRINYX/+ehRHFxhXGRtDLiUuKx8qQS09bj4pKyciLDsoIFZAKhUfOA0sOTkvJkwYIk48IWMqOFk4JUgcKi8kFjQQeRduJyRgKDVmJRk7Ng8XLRYnPz5KMhQlGRZLRhAIFyIRHTIgFQsaLR1YICxpZCclZ2EbKzg1KNN9jlouaoEVTlIZKx8ZFikTDgYSEB0KQdbl/v/84oAbLiYdNhogZmUdKEMlK2MqJTAsHx9DRB8cMB8QDBcKCR8QGyQpKTxBMxw1LShAOx8tWTE1PDJAY1gAAAsA8v8QCTYGaAAQAB4ALwA6AEYAUgBlAHIAhwCSAJwAAAUiJAACNTQaATcBFhUUAgYEJT4CNz4BNwcOAQceAQUyNjc2Nz4BNwcOAQcOAQcWASImNTQ2MzIVFAYDIiY1NDYzMhUUDgEBIiY1NDYzMhYVFAYBPgE3PgE3PgM1BxQOAQcOASUyJAA3AQ4CFRQSBCUiJAI1NBI3FwYCFRAAISAAExcCABMiJjU0MzIWFRQGAT4BNy4BJwceAQUm8/51/uOZVpRcBugWbvT+cv26Eio3JCQwB74sSx8WNgFJCxQKEYg4RxBbDysfWlsTE/6sER1MJxg9uxMcOSg4JDEBxxYfKRIQIB8BeRMpGAtOQDI+Igw/FDg4U2P9otABlAFtk/meS2Y0sQFLAQLL/tycdXA9aGoBLAEPARAB67pEw/3vvB4vGSBDHAJ0FBwFBiIXLiAY8JoBFwF64a0BSQEJTfzsgHy0/s7kfm0jMiAHCBkOCBVELQ0PNAMBYkYdVT4lFSESNmhNBAOLHhIiQRspTwEEHBQdKRgSLCD+hyoeH0E7HyEt/Q4CCwcyVCEaP2OeeDd3fUMhMXmIpAFJ9wLVW9vzgfL+oL17pwE32bcBRYM0ef7Yqv7c/r0BTgE2Kf65/pwB4kMpLUQiFR7+gzZtODBlOTo/pwAAAAoBAP6sCSgGzAARAB0AKwA7AEcAUwBfAHEAfACGAAABICQAETQSLAEzMgwBEhUQAAQnIiY1NDYzMhYVFAYBIiY3EiU2FhcWBwYDBgEgJBI1NAIkISAEAhUUEgQBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBJz4BNTQuASc0NjMyHgEVHAEBIiY1NDYzMhUUBgEiJz4BMzIXDgEFFP7E/ir+/pcBFgF/6OgBfwEWl/7+/ivUEhs5HBIbOPzAERUBIAEVER8IEB31GwMCkgEnAbHs7/5P/tz+3P5P7+wBsQM3ExoyHBQaMv3lQlBQQkFOTgJlFhgjHBkWI/1zbgEBDyspQC4tKgwCBhMYJRoqI/6tcpRVzoBykVPH/qzWAYcBB8IBOd53d97+x8L++f551vgZExs4GRIbOQIwGhIBX6IKCREiEY/+zCf9JsMBY/DoAVrAwP6m6PD+ncMBwBkTHDsYFBw7Ayo9MTE8PDExPf4RHxcfOCAWHjkCiwoLFQpne1EoFyE5ra0NGv6eGxQbNy4cNwJaMo+GM4uJAAAFANr/EAlOBmgAJgA0AEgAcACFAAAFIiQAAj0BNC4BNTQ2Nz4BMzIWFz4BMyAEABMeAhUUDgEjIiYnBiUmAjU0EjcXBxcbAQ4BEyIvAS4CNTQ2MzIeARcBFhUUBgEyNjceATMyPgE1NC4BJwoBJCEiBgcuASMiBhUOAhUUFh0BFBIMAQEiJyYnJicuATU0NjMyFhceARUUBgY72v6B/t2kERE9MQpZRxsyGEmiVwFpAeEBAxoDFxVXjlMsNySy+xyUi7ajQVspDXcmZ4kUDUdtbSYyGhIFCRcBHA8rA15Nn2EnNDM7akMVFgQe6f5I/qhbnkkfMRk0KRwvHCGWAQoBZAFQEw9La2l9ERcYEz2HPVx/E/CUAQcBXMcRY4JpOi5PGEhlCQgREOH+J/6NKm1rKk6HUwMDLvKkATCRrwFJm0FAxP6G/udFkQQ6DD1dek8dIzMiMBf+8Q4VGC/62BcZBARAZDYganApAWYBuMoRFAoLT0UBICsUQMGHEbn+wPCHBFEORScmBgEXEBEXHBciWiYNFAAAAAAHAXn+rAivBswASQBVAF8AfACRALIAzQAAAS4CIyIGBw4CIyImNTQ2NTQSNjMyHgEXPgEzMhYXHgMVFAYjIi4CJy4CIzcyHgEXHgMzMjY1NCYnLgEnLgEjIg4BASImNTQ2MzIWFRQGLwE2JBI3FwYCBBciJzc+AjU0Jic3HgEVFA4BDwEWMzIAExcGAgQBIiYnAyU1PgEzMhYXHgEfARYVFAYBJzQKASYjIgYVFB4BFx4CFwcuAScuATU0PgEzMhYaAQEuASMiDgEVFAYHDgEVFDMyPgE3PgIzMhYXBRkfSlUxSXhLPXBiKitBJme4elyxnj1AumqtsBcKHR0TSjtGeWNOGxwoKyEXLT41Hh1EUF43HRgFCQ8qDxSOg0uIb/0wIjMzIiMxMgMWuAEZqA5MErj+0h26bRCHv2UBAj0KDGXBiQZQgfsBd1hHPeT+ygQzHDUuhP76GlMmZLQgF0AMDB4u/hBSSn+fVkZQChUQFRoNAlACHBwaGTpoRGq/k1T98EarWGGUVBAJCgMVG0dcOUBrYzQfMhsBhTlEHnSPdJFELjMtVCi2AQOLQHJNXWvQ4GF9TDEXNDo1cLB7fn8sTjmQgXmmYiwPDwgRFSOKj8SkQHv89jcmKDg3Jyc4Ok0mwQEbqxy3/tLQjU6GcOjVUgsZCTkCQiJd4vN1NCgBRQEmH9L+1Z8CNhYaAX4xXxcYlY9jdw0NIQ8PFgHAH7cBVgEPn2ZQGVaCXXakcywGRM2RirEwS3dEq/7X/n/+2ztFdd+gITkXGRoHDzZ8aXaDNgcMAAoCxv6sB2IGzAAPACMANwBLAF8AbwCDAJcAqwEBAAABIiQCNTQSJDMyBBIVFAIEASI1ND4BMzIeARUUIyIuASMiDgEDIjU0PgEzMh4BFRQjIi4BIyIOAQEiNTQ+ATMyHgEVFCMiLgEjIg4BJyI1ND4BMzIeARUUIyIuASMiDgETMj4BNTQuASMiDgEVFB4BAyI1ND4BMzIeARUUIyIuASMiDgEFIjU0PgEzMh4BFRQjIi4BIyIOASciNTQ+ATMyHgEVFCMiLgEjIg4BAyImJy4CNTQ2MzIWFy4CNTQ2MzIWFy4DNTQ2MzIWFzQuATU0MzIWFz4BMzIVFA4BFT4BMzIWFRQOAgc+ATMyFhUUDgEHPgEzMhYVFA4BBw4BBRS0/veQlAEKr7ABCZSQ/vj+Pg0pNhESNSkNCiknCQknKKMLKjYRETYqCwwqJwkJJykB3w0pNhESNSkNCiknCQknKMEMLjsSEzouDAstLAsKLS1knuR7f+WZmeV/e+SNDi47EhM6Lg4NLCoKCiorAfYLKjYRETYqCwwqJwkJJymVDi47EhM6Lg4NLCoKCiorX0+fTzdjPiYcFjQZIWpTGSQiVygaSEUuKR1JdzkqKy5MoEFBoEwuKis5d0kdKS5FSBopViIkGVNpIhozFh0lPmI4T5/+rJYBE7y/ASChof7gv7z+7ZYBEBARMicnMhEQHh0dHgEODw8zKSkzDw8eHR0e/vIQETInJzIREB4dHR7zERM4LS04ExEhICAh/k2A76ap/IuL/Kmm74ACxA8SOCwsOBIPHx8fH/YPDzMpKTMPDx4dHR72DxI4LCw4Eg8fHx8fARgdHUBRLw0IDAgKRmtGDwgKIxpZc0UlCwkHLyxQaUESDldTU1cOEkFpUCwvBwkLJUVzWRojCggPRmtGCggMCA0vUUAdHQAAAAMBSv6sCN4GzAAdACcALQAAASIuAQI1NBIkMzIWFz4BMzIEEhUUAg4BIyImJw4BEzQuASc3HgIVAzYkIQYEA/qK+MBulAEEp1zCbW3CXKgBA5RuwPiKTJM7O5OnECQfRiInEkkvARwBAy3+5v6skPsBRLXPATetOTs7Oa3+yc+1/rz7kC0oKC0E1pbNjzkjP5vZmwF68d/x3wAAAAUBSv6sCN4GzAAdADsASQBTAFkAAAEiLgECNTQSJDMyFhc+ATMyBBIVFAIOASMiJicOAScyNjceATMyPgESNTQCJiMiBgcuASMiBgIVFBIeAQEiJic3HgEzMjY3Fw4BJzQuASc3HgIVAzYkIQYEA/qK+MBulAEEp1zCbW3CXKgBA5RuwPiKTJM7O5NMRpc9PpZGeNuqY4Dgj1bEcXHEVo/ggGOq2wGSQ4gzHDR0Ojp0NBwziGoQJB9GIicSSS8BHAEDLf7m/qyQ+wFEtc8BN605Ozs5rf7Jz7X+vPuQLSgoLU4vKysvheYBKKO3ARSaPDw8PJr+7Lej/tjmhQRfGRNLExUVE0sTGSmWzY85Iz+b2ZsBevHf8d8AAAAACAIe/qwICgbMAB0ALABLAFcAYwBvAHsAjQAAASIkAjU0Nj8BPgI3PgEzMh4DFx4DFRQCBAEuAScmMzIXHgEXFhUUBhcyJDY1NC4CJy4DIyIOAQcOAg8BDgIVFBYEASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGAyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGAyImJy4DNTQ2MzIWFQMOAQUR5v6suWdzPSsyJBU7nnFeeUw0LyEebnJQuP6r/r2p3Q4ELSEGE6uPKhxA0gEypUdrbCYqNDxoXzxbSSEXJDUxPUtYJaQBLwGsEhoaEhIaGvkSGhoSEhoacxIaGhISGhrHEhoaEhIaGtwNFwULICAWVDcXJg8BG/6smAETuo7oi0ozdXMwhXRAaoGHOzZ2k8KCxP7fnwEPF7mMKydyixQGJhMTvor+rnarhHZBSp2JVChYSjN1ejtKW5WNUaPwhAJVGhISGhoSEhqSGhISGhoSEhoBORoSEhoaEhIa1RoSEhoaEhIaAgkQESWAiGYLFyILCP5IEhsAAAAABADc/qwJTAbMABcALwA9AFMAAAEmJAACNTQSNiQzMhc2MzIEFhIVFAIABCc2JAASNTQuAiMiByYjIg4CFRQSAAQlJzYSNTQCJzcWEhUUAgMlBy4BJz4BMzIWFz4BMzIWFw4BBycFFO3+df7fn3HJAQiXuaamuZcBCMlxn/7f/nXt2wFtAQ2TZbLrh72ior2H67JlkwENAW0Bc0hKToqGRYqRU+X+hOA4ZjBZmUWK+HFx+IpFmVkwZjjg/qwv2QE1AXbMlwEIyXFUVHHJ/viXzP6K/svZIi3LAR8BWr2H67JlX19lsuuHvf6m/uHLnCKjAVWk2QF8ly6d/mfkrP6XBRhgTCl5USAeeXt7eR4gUXkpTAAACAHo/qwIQAbMACAAMQBBAE8AbQB5AIcAlQAAATQKAScXIiY1NDYzMhYVBR4BFxYSFQc0AicmJCU3FhIRAyIuATU0PgEzMh4CFRQOAScyPgE1NC4BIyIOARUUHgETIiYnNx4BMzI2NxcOAQEiJic3HgEzMj4BNTQuASMiBgcnPgEzMh4BFRQOAQMiJic3HgEzMjcXBgEyJDcXLgEjIgQHJx4BFyIkLwE2JDMyFhcOAgO+TKCAQkhaNycwTgF7dsRAg31NcX54/qL++hKqp0OF3IKC3IVkr4VLgtuGcLZtbbZwb7dtbbeUOWklOxtGKBRAHSQiSgJeYq0/NjWQU2msZ2esaW20MUI714J/0Xx80UBBdSM9HVAtMTIePP2FrwE/kQ+L2WLT/rdsDn7kbHb+/ooScgF382j8w3vr+QFB/AF5ARVlETwlHCY/Jno/h0GC/uKtBaUBBHlzwlUCnf4N/pn9a4HZhITZgUqErWOE2YFQa7VubrVra7VubrVrAfstLTMgIA0NQhMS/hlNQzs5QmetaWmvaHFZKGuDfNF/f9F9Ajs4NS8oJhNFHAPZmZkjJiONhSI0NE49PS+jqik1kbRTAAALAXj+rAiwBswANQBBAE0AWQBlAHEAwgDOANoA5gDyAAABIiYnLgInJgI9ATMVFBIXHgIXHgIzMjY1NC4BJyY+ATU0AiQnNxYEFhIVFAYXHgEVFAYBIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYlIi4CPQEOAQcOAQcOASMiJjU0PgE3LgE1NDY3PgIzMhYXFgYVFBYXNiQzMh4BFRQOAgceAxUUDgEjIiYnHgEVFAYHBiMiLgEnFA4BBSImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGAyImNTQ2MzIWFRQGBvtw64NTj4pOzdZQx6xKlJZMSqaXMai9Gx0FBQUKuP642AWuASbYdxEHCDXt+7QfQBgRH0AYARsfQBgRH0AYAbwkKSkkJCkp/kEfQBgRH0AYAV0bPBcQGzwW/NcMLzIkDB8RGT4pGx4OFglEd0tDRQgCAiMtERcKAQIEQkR3ARGRNW5MN1BRGxdTVzxIbzoQHg4VGwQKGDAubV0WNkMEQhgrFxAYKxb+hRk3FhAaNhUBNRciGBMXIhetHDsXEBw7Fv6sSiEVHiwrcgFk0FlZvv7HZSstHhUUMCK7oz2JgC43TFVCxQE4vw1QC33T/uimUXZMVr5nxecCGzobERY6GxAXgjobERY6GxAXfRkWFhkZFhYZAeU6GxEWOhsQF4dBHhEWQR4QF4IrRU0iPA8hCg8TFA0fNRld3dxZQZ9XJkcJCBwXCggTQSJNfhBgZwgVExNARDYLBzREPREdLRkCAy6TPRkpCBIaIw9VlV3jPyUVGz8lFRsCC0MhExdDIRMXNjcmGh83JhofAaw/HxEXPx8QGAANARP+rAkVBswAEQAxAEMAZQB4AMoA0QDZAOkA8QD5AQEBCAAAASAkJjU0PgEkMzIEHgEVFAYEASIkLgE1NDY3FwYVFB4BBDMyJD4BNTQnNx4BFRQOAQQnIi4BJy4BNTQ3CQEWFRQOAQQnJiwBJyY1ND8BFwcGFhcWBBcWNzYkNzYvATcXFhUUBwYEJSIkJy4BNRcFFyUFPwEOAQcGBCUiJicGIyImJy4BNTQ2NxcOARUUFhceATMyNjceAjMyPgEzMhYzMjY3HgEzMjY1NCY1NDY3BzQmIzUyFhUUDgEVFBYVFAYjIicGIyImIyIOAQEuASc3Fh8BLgEnNx4BFxMgJDU0LgEkIyIEDgEVFAQBJz4BNxcOARcnPgE3Fw4BNy4BIzUyFh8BLgEnNxYXBRP+4f5k3XTnAVjl5QFZ53Td/mP+4cH+uPOHCQpMD3rdASuxsQEr3XoPTAoJh/P+uMKA8sdAoH0XA54DQRiS+/7CgMT+wP7UqCgQiTh9BwINywG26CMfsAGF4RMKUDtWCCTf/mT+4bn+0F9zYK4BQKEBTQFCoo0Za1xf/s7+w1JiJF1Bc4EaZ3ZgTxpMLVxnDnh1JFczFSU5Mjx7fz5AiTY3ShYRKhY1YQlJLgw9L01tNDQIe00kLDKCRoYyRXh2/p8OHhEKKiO/CAoCOAILB6sBmgGvgOb+zrGx/s/mgAGvARQlEiYRGxAh6DwDDggzBghTESAREi8Q6REpFBYhHAKWY8aTbN+8c3O832yTxmP8FkuGtGoaOh0hKiZZmHE/P3GYWSYqIR06Gmq0hkv0Iz8qKphRKyf+SwHSNDtQlXVFEGGXiUoSJxgUqiiWChUFU8p5EhJizXAKE4gZlA8SJRFs4uNDKTKBbZczSlcVXhxCXSkqQkQyQxFRYRFOPDZiG0scLxgcMhpSTQgIKy8RNDMrQi0EBysqEjAaLkQeGy0xT2FGHScjGBYlHUleDXEqNDQDyQcIAj0GEZ0UKhENESYP/g6/r3TJmVZWmcl0r78CoTIPFAY0BhbFCRcoEBEOKKoFAjwDBrABCgk5DgQACwGq/qwIfgbMACUALwBdAGkAdQCBAI0AswDPANkA5QAAASImNTQSNiwBMyAVFAYHLgEjIgYHDgIHDgIHDgIHDgQBLgInNx4CFxMiLgE1NCYnATcBHgIVFB4BMzI2NTQ2MzIWFx4DFwcuAycmIyIGFRQGAyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJTI+Ajc+Ajc+Ajc+Ajc+ATMyFhc+ATU0JiMiDAEOARUUFgEiLgInNR4BMzI2NTQKAyc3FhoDFRQGAyImNTQ2NxMOAQMiJjU0NjMyFhUUBgKManiM9gFFAXTBAWZJMRpRIxxdKUl1YS01NzQyIVZPFigmExcyAotY5fRyOGXe0VFtPUQaFBf+IioB9hMYCwshITEoIx0KEg0jeIl7JgMlcoF7LQQFDwpSaS1AQC0tQUH+uUNdXUNDXV0ChTBCQjAvQUH+qjtUVDs8VVX8MyAUDik0H1JUICk2RDs3gIE4J04xJU4hERN/l7P+pf7Q6YVNBbIcaX99MLTbIhkcHC44PBpPHDw4LhtKeEdneV4zGDHjQl5eQkFeXgIsj3CLAQ7stWfuSmkOGRsxCxIHDh4jSEsoGignFypaVUUo/dpHx+FvOWTOuEX+PlLMtVZhFAGrOf49EUBiRZ2hOWeETFUJCBhHSTQERwUsQUYeA0xEeHUCXkEtLUFBLS1BASxdQ0NdXUNDXf4yQjAvQkIvMEIB5lU7O1VVOztVLjRXajUfKScaIkxQJyQVCREMLhUSEDUfUU1fptn2fVNc/DAoPkIaXWRrSj+aAQwBBAEWAUbKCtP+tP7p/wD+95theAL0ZkhLagT+qgcKAfxeQkJeXkJCXgAABQFL/qwI3QbMAD4AZAB+ALAA0gAAASImJy4CJy4BJy4BNTQ+ATc+ATMyFhceAxceAhceARUUByM+ATU0LgEjIgYHDgIVFB4BMzI2NxUOAQUiJicuAS8BAy4BNTQ+ATMyFh8CHgEXHgEVFAYHDgEjDgEHDgEnMjY/ATMyNjU0Ji8BASYjIg4BFRQXExceASUiLgE1NDYzMjY1NCYjIiY1ND4DMzIWFRQWMzI2NTQ2MzIeARUUBiMnIw8BFxQOAQEvASY1NDYzPgEzMh0BFwcnNTQmIyIGDwEjIgYVFBYfAgWKgbk+NUoxEhtTREFSOIh4eeJhUYY0MC0ZHB4jbIlMPGZiYDU9brpxbORqUoNMb7dqV6dMTKcBhitOFhANBgzSDQtAYjQVJhP5bi0xExQMHh0XOjcDFBUXSCY9JQcJSjwsIi+E/vwKExxBLgzjDAYf/oROjFd2gxwZQixSTUFneHAoLRwXDQwUMjY3XDh0j1hETzRGGDz8v3dVkFpfD0xSp3JAgic1LiMIC0s9JR0ub4v++V5COZR/GCUzNzWIcFjLylVWSjErJzozNyQqM0VGN7J6uqpPt15yo1hNVkO1yWFmo2AsJlMjJ00bGhQzNXABDBEcFi1gQw8U+hkKFxQWOB8uVhoUDTc1ExUVUCc3Ri5GMRoKHAESCys7GAgR/t6DPyu1O1wvMy8NDhEXICgnZ2laN1xxDxQWGnVaR3E/T0JNLl+uUF0nBKB+DhmFX1ZVR65Qmy+waj4hGjhKJTcrJwcRkwAAAAAFASr+rAj+BswALgA/AFEAYgB8AAABIiQnLgMnLgMnLgE1NDY3PgE3PgE3PgEzMh4BFx4CFxYMARcWEhUUDgElFjY3NicuAScuAQcGFhceASc+AScuAScuAQcOARceARceAQM+AScuAScuAQcGFx4BFx4BAT4BNy4BJy4BIyIOAgcOAQcOARUUFhceAQbV5v69WyotIS8sGzdRf2NpZiIlHDkSCgkHEUI6NU08GzZlflqLASEBEHGba4P3/sERIwkUJRQkExAhCwsEEBUnyBANBwcJBQQbERASBAUNBwYeaRANCAkUCwkgDiESCxMHBx7+MhY8KCVCGihAGiQfDg0SEzwbFh5SVTyA/qzXyl3Cv7ZSM0lARzE0YkEiPBUQGBULMBxGQUl1QoKlbC5FXmdUcv7yiY3lhvELBRAjFw0aEA0BDg0kDRAe5QYeExMlFBMVBAQeFBYqFhIPAYoGIBMXLBYSDQkVJBQnFRMSAhovRxc5hEduVjFFQBARHxANGxAlRyoeQwAAAAgBUf7eCNMGmgA/AEsAVQCJAJEAmQChAKkAAAEiLgIvAS4BLwEuAS8BLgEnAyY/ATY/ATY/AT4DOwEyHgEfAR4BHwEeAR8BHgEVERQPAQYPAQ4BDwEOASMBNxE0NjsBNSMiBhUBLQEDEwUtARMDJzc+AT8BNjURNC8BLgEvASYvAS4CKwEiDgIPAQ4BDwEOAQ8BBhcTHgEfAR4BHwEeARcTJz4BNxcOASUnPgE3Fw4BFyc+ATcXDgEFJz4BNxcOAQTNGGBuXhZ0FiMTnyYoEDQNDgIQBDZSGiiRLz+NFVZkVBPRGllaHJcgNRiWFB8NOBYUJlQYLG4bPCB1IXIm/ZVGEBpYXDoyAk3+jv6PFQ8B7gEYAWoYCgttERoLVB4hOAwXD5YdPZgWTUsU0Q9NWk4RjRsoFJERGAtSKwMQAQwKNBQeFp8UGw9bKxUuFh8QKAEXKxUuFh8QKNArFS4WHxAoAUsrFS4WHxAo/t4UHSAMPgwaEIcgSyiDID8iAbdpY5UvJo8tHT8JGRcPFR4QUxEiGZkULRpsK1Uv/ktWT7M1LXIcKxRGFDUB0gIBzhwRRC41/IMDpAJiAYcHAg79Nv70LHITIhiyQEMBtUlBbRcgEJkdIVMMGhMOFhUIPwwbE48QHxSVTlT+SRwvG4M0LhKHEBUIBKQ6DxkJOwcZtjoPGQk7BxneOg8ZCTsHGRw6DxkJOwcZAAAACwDT/t4JVQaaABsAIwA4AFYAZwBuAHoAggCKAJAAlwAAASAkJyYCNTQSNz4DMzIeAhcWEhUUAgcGBAE1PgE3Fw4BATI2NRE0NjsBMjY1NCYrASIVERQWBTIkNjc+ATU0AicuAyMiDgIHBgIVFBYXHgEEFyIuAScDER4BMyAlEQMOAgEmJzceARc/ARYzMjcXDgEjIiYBJz4BNxcOAQEnPgE3Fw4BASc2NxcGASc+ATcXBgUU/uD+nHSdrK+1VsfJtENDtMnHVrWvrJ1z/pv7giZHJhIoUQHWEhYMEjIRGBgRRloXAW27ARHER4yOq6dPu7qjODijurpQp6uOjEjDARG1daeOURKH/ocBDAEOElGUrP3ETkEwHT8jQwgeHistChYtFhMmA+cEJ0UlGShT/NMVKEMhJSNOAtorOjg7Nv5BFSZBISdG/vYvNEcBBbu4AZ/ha7uNT0+Nu2vh/mG4u/77RzQvAppMAggKSw4H/nUXEQG+EgwXEBEWWv4xEhfBEykgQOGfrwGH0GOwh0xMh7Bj0P55r5/hQCApE2YGDAoCJwHkBAUJ/hz92QoMBgS4Gzo8FyQRo0wDBkwEBgP84k0CDAtKEAwD1EoKHBNBGSH9OEIkOzRAAXpLChwTQy8ACAD6/qwJLgbMACsANQBLAFcAZQCXAKMArwAABSAAETQ+ATc+ATc+AjM+ATMyFz4BMzIWFzYzMhYXMh4BFx4BFx4CFRAABSImPQEFJRUUBgMgJBIRNCYnBgwBIyIsAScOARUQEgQBJz4BNTQnNxYVFAYvAT4BNTQmJzceARUUBhMyLAE3LgEnNCYnLgInJiIjLgEjIgcuASMiBgcmIyIGByoBBw4CBw4BFQ4BBxYMASUnPgE1NCc3FhUUBi8BPgE1NCc3FhUUBgUU/fj97iJHNQhXTAtNbDcmf0EbGyFlNDVkIRsbQYAlN2xOCk1XBzZGIv3v/ffG3gGkAaTexgEqAbPtAwVz/sf+nbOy/pz+x3MFA+0BswFhDSIoDTcSQqYWGx8JCzIOEDMLsgFeATBrEEAlYEcCOFs4BQsFHmc4JSIZWDg4WBkiJTdoHgYLBjdaNwNHYCU/EWwBLwFeAnANIigNNxJDxR8XFh8rLyZmAaoBpVySZxtfnh4yVzYyOgYXHBwXBjoyNlcyHp5fG2eSXP5b/lbuTUSlLi6lRE0BPpsBTwEPJTUcL0opKUovHDUl/vH+sZsDhDoFKh8RFxkcJTVL7zcLLRsNFg0iDy8WLkn+kSlKLyxECmejCy1NMgQBLzgOHB4eHA44LwEEM0wtC6NnCkQsL0opxzwFKh8RFxkcJTVN7jMPIhglGCskQSZCAAAAAA8AdP7eCbQGmgAiADUAQQBNAFsAZwB2AIQAuwD4AQcBFgEmATUBQQAABSAsAQI1NBI3FwYCFRQSDAEzMiwBEjU0ACUnFgQSFRQCDAEBMjY1NCYnLgEnJiMiBhUUHgIBICQmJw0BLQEOAQQBMjY1NCYjIgYVFBYBMjY1NCYjIgYHBhUUFic+ATU0JiMiBhUUFhM3MjY1NCc3FhUUBiMqAQEyNjU0JiMiDgIVFBYFIiwBJjU0NjcuATU0Ny4BNTQ2Nz4BNz4BMzIXPgEzMhYXNjMyFhceARceARUUBgceARUUBgwBATIkNjU0Jz4BNTQmJzY1NC4BIyIHLgEjIgYHLgEjIgYHLgEjIgYHJiIjIg4BFRwBFw4BFRQWFwYVFB4CJTcyNjU0JzcWFRQGIyoBJzcyNjU0JzcWFRQGIyoBATI2NTQmIyIHJiMiBhUUFgE3MjY1NCc3FhUUBiMqARcnPgE1NCc3FhUUBgUU/vb+Tf7GqbiwC4uYnQEkAZb5+QGWASSd/tH+8kDeAUKtqf7G/k39chUaDxdyoi4cHBAVVoOKAbf+9/6M3CcBigH2Af4Biybe/on9giwjWzcWNDQB/TQ5OzYmNQ4USmcvOycgLEQtHwYVJQIuBkMpAQMBtGtRKyAUPDsoHv7Zwv6s/v6SIi4HBhsODFU6Bm9QGm5FGBMhVjAwViEUF0VuGlBvBjpVCAunl5L+/v6r/uK7ASesHQ8MUDIBLUwxBwcTVD4PIAwaSCgoSBoMIA8+UxQFBQQwTS0BMVEMDx1wwv0BkgYVJQIuBkMpAQNPBhUlAi4GQykBAwIrZ1MgFBwaFRZQXE7+IAYVJQIuBkMpAQPVCg4VCiUXK8ZvzQEerrMBLGxZWP7+mJz/ALhkZLgBAJzTAUpSZjfU/uCqrv7izW8BgxkPDxgGHWQ+JhsPJF1WOf4hZq1ruT8/uWutZgKUHxQyMyAUNS/+808vOi4vIB0cOiTXGj0eISY/KiEpAY8zKBYHCBMSDytH/hRlZBlCM0xMGhwjw02Rz4FEgEAUJRE3JRYrF0FjG1F0BjxGAxwgIBwDRjwGdFEbY0EUMhNb23OBz5FNAjJVkFotJhM2E0FGCgUJNVEvAT08AgIdICAdAgI8PQEvUTUEBgQKRkETNhMmLkNzVzGqMygWBwgTEg8rR68zKBYHCBMSDytH/n8qMyQ4EQM4MhwlAl0zKBYHCBMSDytHrDIFIxQSDiIcJiY/AA8A1f6sCVMGzAATAB0AKQAyADoAUgBkAH8AlQCjALIAygDOANsA3wAABSIsAQI1NDYsATMyDAEWFRQCDAEHIiYnNQUlFQ4BJyAkNwYEISAkJxYEAT4CNycOAQcFPgE3Jw4BBwEyJD4BNz4BNwYMASMiLAEnHgEXHgIENyIsASc+ASwBMzIMARYXBgwBAS4BNTQ+ATU0JicHJjU0NjMyFhUUDgEVFBYXATIkPgI1NCYsASMiDAEGFRQeAgQFIiY1ND4BMzIWFRQOAQc3JT4BNTQmIyIOARUUFgMuATU0PgE1NCYnBzQ2MzIWFRQCFRQWFwElNQUTJSc+AzceAR8BBwEnJRcFFOj+dP7ZpKkBKwGK4eEBigErqaT+2f5055ftNQG4Abk07ZgBAAGkh4X+XP7+/v7+XYaHAaT+tjlxbTQWYtFsAYxEczMYRJlWAYmlASr0qyYbKApU/tb+e97d/nr+11ULJxsmq/QBKqWx/qL+xns51wEPASGEhAEfAQzUOXb+5f6n/Wg6QycnEw5wCzksO0wnJ0AzAYCfASn+vmuk/uT+l8bG/pf+5KRrvv4BKQF2MDY2VSwuPTZW6LoBESoffmFcnV8ToklVDQwJA4s7MDlDGU1CA4/6PQXHVf3Cjk98eY1fE1UugRr5gwcFtw3QiPQBSMBIfWA2Nl9/SMD+uPOIhDIxbDQ0bDEy1K2TPUZGPZOtAlQbMCgQQx9VMk8yQhJAGVpE/tkjOUYkMWo4PV42Nl49OGoxJEY5I9wzZEsyVD8iHzlQMlJqMwFKLplUa6ORTB5BFEwcHi06bFhWmJ9iSYEj/sQfNkZNJzBeTi8vTl4wJ01GNh8fKiUgPCcnIyA/KRIDIi9IHEE7Rm07Gh4BMD6oVUWopkEdMw0WPk1wYmf+/2xGizICUydEB/x84rxCWD0uGG/TSn9lA3hCqmQAAAoBFP6sCRQGzAAlAE8AYgBxAIEA2QD1ARcBMAFIAAABIiwBJjU0NiQ3FwYEBhUUHgEEMzIkPgE1NCYkJzcWBBYVFAYMASU3LgEvAS4BNTQ2MzIWHwEeATMyNjcnDgEjIiYvAS4BIyIGFRQWHwEeAT8BLgIvAS4BJwceAh8BHgIXPgEzMhYXNy4BIyIOAQcnPgIzMhYXNy4BIyIOAQcDIi4CJy4BNTQ+ASQzPgE3LgE1FxQWFRQGBw4CFRQeAhUUBgcXPgE1NC4CNTQ2Nz4BNTQmNTwBPwEUHgEXHgEXHgEfAh4BFRQGBw4DIyIOAgEyNjU0JicHHgEVFAYjIi4BIyIGBxc+ATMyHgEBBjU0NyU2NTQmBwUGNTQ3JTY1NAcFBjU0NyU2MzIWFRQHFyInNxYzMjY1NCYjIgYVBzQ2MzIeARUUBjcnPgM3PgE3PgEzMhUUBwUOAQcOAgUU3/6J/u2XlwEaxhOv/wCLi/0BWc/PAVn9i5b+8LYQygEsppf+7f6K/sA+GXmDLLqiSzYsRjYUKnxuJD4UFxQsHVRiIhs7XkNVdbzLKHRunDwaVYZnMoN6C0UKRYRmLG16P59KcEQYIhYpHDkkNlpTLSU7Ymc/JSoVOB5INkh3ajZoQU9FYFPg1nTJAQCMCzIiBwwyHxQaEjInP1E/Jy4dPkA/UT9AGiYZHQExBwkEER0HYmAc0KQmJVc/JTAvRDhyiFdMAnw1QmtVJkNdHBccRVo8NHJBHzhjLDZSSfxKFxEBUxoLD/6iEw4BThIX/q4SDQGjAwYbLB8aIRARCRUmNlI2KC84Uj4zWDVXQy8qMSc1MCByYUxwFh49/uBBPRgcKzX+rF6s6YuG6rAvTiqYyXZ5zJdUVJfMeXnRmiVNKa/xjYvprF7OIDNNLxBEl3VQZz1WIENuDQo/CAhTOC1iSo9ujL5HDihBNCQqQD0lEi9xVQ5Fa1UlECc3MS0VQA0ROBcVIikMKBQ8LxYcKiklMz8T/tEZKjUdTuKdaruPUQsbBilkTwVppkUuQhoSJi4gKDw1PSooNBY/G10/NU45KxMUKhsoYDRSnkcHDQoiR1E9KwYSBhA+Hll6I24/W58tG0M/KSQwJAG0RzdIli47I3k0HB0jIyQjPiAfIyMDkwIRDgItAxMIDAI4BBEMA0UEDRUFTQQTCwRqAVk7QANwGTAVSkdibTkwBkZbRHNHWHCrwQYdKC8YEDIfGRUfKw5GEC4fJFNQAAAAAgEJ/qwJHwbMACQAPwAAASInJiQnLgE1ES4BNTQ+ASwBMzIMARYVFAYHERQGBw4BBAcOAScWNjURPgI1NC4DIyIGFRQWFxEUFhcWBAUHKiiv/rC6LjBLSnzaARwBQaXLAV0BBZFNWSssW+r++4YPJJ8+VDdWMXG/7ft0g2hDUhEfXwE5/qwRSrh8H2A4AjVBqkxetZ55RGm59YxdpEf+UjRWI0idnEoIB38ePEwCVApAXjVLpJl7SWBOTIxB/bcrOhdHsgAAAAALAcb+rAhiBswAFwAnAD4ATgBeAGYAdgCMAJwArACyAAABIi4BJwM2MzIeAjMyPgIzMhcDDgIBJgInNxYSFwcmAicHFhIXAToBMz4BNxM2NTQjIgcDDgEHDgEVFBYBJgInJRYSFyMmAicHFhIfATYSNwUGAgcjNhI3JwYCBwEDNxMHAwcTASc2EjcnBgIHJzYSNxcGAgEnPgE1NCYnJRUUBgcjPgE1BxUUDgElNCYnJR4BFQc0JicHHgEVASc2EjcXBgIPATYSNycGAgMTIyczAwUwsMJRB8EeIjOBlahaW6iWgTQhHcEHUcL86CiCWdhCcycYKHBIbFB1KQLVAgIBZVcNUgEiHgZSCDRPEBUX/a0JNyoBDCQtCjoKJxyZKikLpQsnGgEvKjQPPQ8uJLMYHw3+8a3nhSl7eY8Clz4ka0mAT3UmNSeBXOtSdf3GPBQQAQIBGw8OPQ4QoAgPATwPEQETCg88CQqZDQsBRDsUXknmPFMXQxdMOnY9UwgLnwrnDf6sITkjA98NSF1ISF1IDfwhIzkhA8y0AWu4aYv+5Y+DmgE1mTWq/q2p/KIIQ00B+wgHKCb+ADQiCAEVDhASAt2fATyjR6b+rbGdAS+UKJT+3pRE3AGdvDms/oLSwgFmpSKv/ofHArQBi2L+0zUBEzP+vP0KDc4Bb6Q7qf5+1wruAaW1b6n+fwGrEXTgdylULQUhaO14a+VkBE9vnpMeXsN5HVnIZQdSqk8QcahK/ekC3wGvylah/rCzLLMBVaUruv55AUUBMTz+owAHAVv+rAjNBswAMwBNAGIAaABwAHYAfgAAJSc+ATU0LgIjIg4CFRQWFwcuATU0PgE3PgE3PgI3PgE3PgEzMhYXHgEVFAIHDgMBIi4BJy4BNTQ+ATc+ATMyFhceARUUBw4CJzI+ATU0JicuASMiBgcOAhUUHgEBNjcnBgcDPgE3Jw4BBwU2NycGBxMyNjcnDgEjBZwgkZVglaRESZR9TEc+Zjg3WpNUZeKAQpCSRClWIhklFhQgBBEQWj4okrrI/Zmc4oQSDRZOcTY7nFyR+T40SxkMf+ierNBeMjA+xXFOojgxYT964QQ9GjseVRvmJVkZMxM/GwFkEjcUVBxuJ0UYLBErGWJKB864btWuaDFmnm1qwEcEVshjhbaIPUp9MBkOCxILLxkTLxMTVPtyo/73hlbItXj+REh0QjFzKjpeQAwkM15WEE9BVG03cEu5Rm06KUcHRFYgKwowSjJMcj8DZV8lNDZ1AbEGQSUhHTAFnUYXOCFnASEbGigTDgAAAAAKAQT+rAkkBswAEQAjADUARwBYAGkAegCMAJAAlAAAATI+AjU0LgEjIg4CFRQeARciLgE1ND4CMzIeARUUDgIBIi4BNTQ+AjMyHgEVFA4CATI+AjU0LgEjIg4CFRQeAQEyNTQmNTQ2NTQmIyIGFRQWASImNTQ2MzIWFRQGFRQWFRQBIiY1NDYzMhYVFAYVFBYVFAEiLgE1ND4CMzIeARUUDgIBJzcXCQE3AQKLQoNtQkl2RUKFbUJKd0RZnGBPhKJSWZtfTYGiA1len2BMf59SXp5gTH+e/cRCg21CSXZFQoVtQkp3AYIiCRIXDxYeGv57FRoeFg8XEgn+GxUaHhYPFxIJAf1am2BPhKJSWZtfTYGi/Rm3SOEGiv42bQHKA9FCbINCRndJQmyDQkV3SlBfm1lSoYRPX5pYVqOCTfxcYJ5dUp6ATGCeXlKdgEwCIEJsg0JGd0lCbINCRXdK/uMhDBgQFR8NERY7KygvAdYvKCs7FhENHxUQGAwhAdQvKCs7FhENHxUQGAwh/SNfm1lSoYRPX5pYVqOCTQP24Ui3+JcByW7+NwAADwEI/qwJIgbNAB8AKwBAAEQAZAB0AHsAfwCDAIcApAC9AMEAyQDRAAABIi4CNTQ3NgA3NjMyFhc2MzIWFRQHHgEVFAcGAAcGJwYmJy4BNzYWFx4BATI2NTQnLgE1NDY1NCYjIgYVFB4BJQM3EwEyNzYANzY1NCYnNjU0JiMiBy4BIyIHBgAHBhUUHgIDIi4BNTQ+ATMyHgEVFA4BATclAzcTBwEnNxcBJzcXCQE3CQEiJicuAzU0NjMyHgIXHgEVFAYHDgIHDgEnMjc2ADc2NTQmJy4DIyIVFB4CFx4BASU3BQEnNgA3FwYAAyc2ADcXBgAFUD2Hd0se1wGCyiw5J0IOBg1DVAEpLivU/nzJGy8MQiAfIg0MQR8gIv6JDg8KEBEKDQ4WFhUj/jckRiQDAQsFygGF1Q8sJAY8LhYSDSgTFxTK/nvXBkBia7pfnFxcnF9gm1xcm/xsCAHSM0U4LQJQgF1//aVaWFsE6/4kXAHe+HckPAgKDwsFOSpr3tK1Qy4tERF24eyGEysXEg64AWakDQwMNJnF6YMbBQsPCgINAr385wUDGwEHK78BNZQvlv7GQSq3AVmlKKT+qv7kSnaFPDQcxwGD1i8xKQFdPgsFC0knOirK/n/WHOIMISAgQAwLHyAfQgLhDwwPERpGHxYpCAwTSiAgVkDPAxUG/Oz7qQXXAYPKDhkhKggXEis7ByYxFtb+esgEDitqYj8Cz1ycX2CbW1ubYF+cXAJwRgcB0hP9/Sf9eYBcfwGjWlpb+mEB3Vv+JAP0LS42n8rwhyk3BAoQDAg8JBYsE4Xs4XYQElENpwFgug4SCg0CCg8LBRqD6cWZNAwMAjgPRg/69yu8AUOjKKT+uf7LK7wBSZculP63AAAAABEBDv6sCRoGzAAbACIAKgAyAGAAegCUAJwApACsALMAuwDCAN4A5QDxAP8AAAEiJicuAiMiBgcOASMiJjU0NiQzMgwBEhUUBgEuASM3FhcBLgEnNx4BFy8BPgE3Fw4BASIuAycuAScuASc3HgEXHgEXHgQzMj4BNz4BNTQmJzceARUUBgcOAgEWNjc2Ji8BLgE1NDY3PgEnLgEHDgEVFBYXASIuAicuAzU0PgIzMgwBHgEVFA4CAS4BJzceARc3LgEjNx4BHwEuASc3HgEfASc2NxcOASUnNhI3Fw4BASc+ATcXBjcyNjU0AiwBIyIEBhUUMzI2Nz4BMzIEFhceAgEnEiUXBgQBJzYhMhYXBy4BIyIlJzYkMzIWFwcuASMiBAhlV9d7ZuXrcnd9LBk0H0M8wAFO0+QBhgEkol/5thEnEAQrJgEsDiYQDhYnD6wkEyQQGg8hAqJJ2vvzyDgoJgcFCwJOAgoGBRgdN8Dq7s1COYmRRBENHRlOFyERIzqbqv0yFyQEBRQUyTolGhoTGwUEIxRCPVdsAzlFnKarVGPNrWlvwPiJkAEnAQ3Te1qUsfyvJzQKUAgmH64QKBEEFyoQrQcZCywQFgeHGSQmEAso/bdATvOzJarkBAwZRm8jT2duLzaV/vP+ltTD/timKQ8cETKciH4A//Fobo1d/E1AxAG6BtL+5AIoOq4BCBcsFgoVKBTl/kw+bwEssg8eEAQOHg6g/vMCuYFeT45aLB8SHUk+jeCDe93+1q9kfv5sBgU8Awz+8QgLAzwFEQhVMA4VBTIFFv3KS3mMgy4gTD4zdz0DNXQ4LjIXLX6GdEg5aUgRIRxT12ETWeNiHUMlPndOA1kHERUUHwU2EBgQEBsKCBkSEQsHFkosMTUg/fw/YGcoLzs4UUZCdVgzVoujnDo0dWZAAwdOqVwISYtHrgcEPQEKBksPHwwnESEQXTQSBzIBErEetQEFZD9f6PyXTidpNxqe0E5GnAENynBvvnU3DQ0mOGGVTVFcJgHUKQFQJ0wTqf4VOLQDAlACAzU0hYUBAk8BAXQAAAkAY/6sCcUGzACZAJ0AqQCtALEAvAFJAVYBXgAAASInDgEjIiYnBiMiJjUmAicuAjU0NjMyFhc0NjMyFhc2MzIWFRQGBx4BFzYzMhYXPgEzMhYXLgE1NDY3LgEnDgEjIiYnBiMiLgE1NDcuATU0NjcmNTQ2MzIXPgEzMhc+ATMyFhc2MzIWFx4BFRQGBx4BFRQHHgEVFAYHHgEVFAYHHgEVFAYHFhQVFA4BIyImJw4BIyImJw4BATcnBwEiJic3FjMyNxcOAQE3AwcTMxEHASInNxYzMjcXDgEDMjY3HgEzMjY3HgEzMjY1PgE1NCYnPgE1NCYnPgE1NCYnPgE1NCYnNjQ1NCYnNCYjIgYHLgEjIgYHLgEjIgYHLgEjIgYVFBYXDgEVFBYXBhUUFjMyNx4BMzI2Nx4BFx4BFw4BBw4BFQ4BBw4BBy4BIyIGFRQWFw4BFRQXIgYVFBYzMjY3HgEzMjY3HgEBJz4BNTQmJzcWFRQGAzQmJzcyFhUFqEUpFDIcLksSHiI5TsXkJEufbEwzDxkOSFApQRYxQENRFw5RlkYsOSpIEzKAOA4aDQEBGQofQAURMRwxUxgcGj5lOwsdJy4lDVQ6FBEIY0oxLR1JKTNYHSInTm0DUm8BAkBRCDVDJBoQGTQoAwR5VgFLekYJDA4Sck0fORgTPfveKpk7BDUfPRYnHigfGSMQLvy7M2JC8zZGA90lIRAVGTMWNgpE2h06ECMzGVJTEA4cD2x4VWsCAywsGRojIkQyBQFNOQFfWEhFEy0QF04wKEEZEDEZO1EHDR0KMjUKBiQvJSENW1YaHBw6MhtNGgUbEBEvIxcWBQYEQGQtLFgVIj0gLlUSEhcVBylAQCsRIw4YTCAXNw8UOALUMw4ODA0zLRmnICURNUH+rDANDyogDks1jAFi4DKWuGNBRwUFQXIoIzaBX3DgcDWNVx8nHS4oAQILFg4jOhIIQR4HDC0jCUhzPykiFksrME8VGSI7UwU9UxQVGyIdDl1ECXVQChIJHXNIIB4YYTstThwXRSk+UhAOIBBkiAQECAVIbj4BATlODg0ZHwQ2Hvcl+98fHC4iEzMTFAO8FAE0GP6mAUkC+5kQOgkxICcr/tkaGw8LUjMEAodvCWJgFCMYEEk2IEQVH0slMVARHi4NQGkTCBIITWUBQlMMCRopIhUNE0g7AwM4KRAjDBJGLCM/ETEwQ2oHJCcLBxguExQeCyQ1HSA9LAELDQ0uEiYjPDwYLRIOJxsPFT0zLzoGByMfDw0VGQN+JBAiEREfDSkiPh05Ac0sNwc8ZUEAAAAAAwEH/qwJIQbMAEcAiwDDAAABIiYvASMiJi8CLgE9AScuATU0Nj8BNTQ2PwI+ATsBNz4BMzIWHwEzMhYfAh4BHQEXHgEVFAYPARUUBg8CDgErAQcOAScyPwEzMjY/Aj4BPQE3PgE1NCYvATU0Ji8CLgErAScmIyIPASMiBg8CDgEdAQcOARUUFh8BFRQWHwIeATsBFxYTIi4CNTQSJDcXBgAVFB4BMzI+ATU0LgEjIg4BFRQWMzI2NTMUBiMiLgE1ND4BMzIeARUUDgIFFCdBJGigVHAdPDdOUE0eHBweTVBONzwdcFSgaCRBJydBJGigVHAdPDdOUE0eHBweTVBONzwdcFSgaCRBJyMojb8/QhlEUT4yZRASEhBlMj5RRBlCP7+NKCMjKI2/P0IZRFE+MmUQEhIQZTI+UUQZQj+/jSghds+fWosBArQQ8/7yhuGHhuKJWZ9oU4lRY0o/SlB4YUhyQ2etaX7Db1uh0P6sIh5WPUaRERhrUoVmKEglJkcoZoVTahgRkUY9Vh4iIh5WPUaRERhqU4VmKEcmJUgoZoVSaxgRkUY9Vh4iUCJ1JTukGRRAOZ+FFTAWFjAVhZ85QRMZpDsldSIidSU7pBkTQTmfhRUwFhYwFYWfOUAUGaQ7JXUiAWJXm8t0qAEMtCNOL/7R34TbgoHWf2edWEt+TFRxUEJjf0p9TmKiYW7BfXDGmVcAAAcCwP6sB2gGzAAvADYAPQBbAHoAmQCyAAABIiYnAy4BNS4BNRcUFhcUFhcTHgEXHgEzMjY3PgE3Ez4BNT4BNTcUBgcUBgcDDgEnIiYnAxYXGwE2NwMOAQMiJCY1NDY3Fw4BFRQeATMyPgE1NCYnNx4BFRQGBAMiLgI1NDY3Fw4BFRQeATMyPgE1NCYnNx4BFRQOAQMiLgE1ND4DNTQmIyIGFS4BNTQ2MzIeAhUUDgEnMj4BNTQuAiMiBgcnHgEVFA4DFRQWBRSFrwgwKSkfFFEYGhozMwINCidiTE1hJwsNATMzGhoYURMgKSkwCK7DECURFSUhjxUhJRUQJU7O/vh+V0Y7R0Fv5bCx5G86QStMVH7++c9ZrY1UWmJFXlNxumyBtmFQRy9ZX4bdg1+TUjVNTjUqGR4cFxFuQ1KIYzZLj2ZPazYsTWA1ChcIASovNU1ONY3+rDpAAYEfV0MURlYwKi8LSEAa/mAMEQURDQ0RBREMAaAaQEgLLyowVkYUQ1cf/n9AOsQBAwFYBQH+qgFWAQX+qAMBAetMhFRHZRsyIkIxQ2AzM2BDMFQkOR95SVSETAFcHT1hRUN9HzIcXDE/UCc0YEE9XxlAJIdOYn8+AW4vUzYvRTYxNCIcJyMdEiMUND5IdYpCWoBEUDNcPzVuXTkDAgsGPTEzSzkvLxwsPAAAABEBWf6sCM8GzAARACEATQBZAGUAcQB9AIkAnQCpALUAwQDeAOoA9gECAQYAAAEgJCY1NBI2JDMyBBYSFRQGBAEyPgE3EwYEIyIkJxMeAhciLgEnAy4BNTQ2NxcOARUUFhceAQQzMiQ2Nz4BNTQmJzceARUUBgcDDgIBMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYTMiQ+ATU0LgEkIyIEDgEVFB4BBAMWNjc+AScmBgcOAQEyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgEiLgEjIg4BIyIuAic/AiUFHwIOAgcOAgEyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFicyNjU0JiMiBhUUFgUnARcEdP7Z/qaVdtUBIaqqASHVdpX+p/7YedaPDVBr/turq/7ba1AOjtd4jPSkFGg3RCsuJRkVJRwtzwEKhIQBCtAsHCUVGSUuK0M4aBSk9P1HEhkaERIaGqYXICAXFiEhGhIZGhESGhrSHCYnGxwnJ7IUHBwUFRwciM4BEqFFar/+/Zqa/v2/akShARPEET0aGQ0RED0aGQ0CGRYeHhYWHx/+3BEYGBERGRkBWThWTzEpV1ktOXJgQAgvufYBBAEE9rkvI2l+RS5MVv7jFyEhFxciIgJuGSIiGRkjI2USGRoREhoaASdhAclfAaBq9tGlARbOcnLO/uql0fZq/Vo2VC4BEzQ3NzT+7S5UNk4/bUQBZiWnbEljJUYZPjRDcywzTy4uTzMsc0M0PhlGJWNJbKcl/ppEbT8FhxoSERoZEhIaZSEWFyAgFxYhyRoSERoZEhIaLSccGycmHBwnJCIWFyEhFxch/agwb7qKlPm4Zma4+ZSKum8wA28UAhYVOxQVAhYVO/5ZHxYWHx8WFh8BaxkRERkZEREZ/kcjIxoZMEdIGMDfkA8PkN/APSMHFA01LQJcIhcXISEXFyL+QiMZGSMjGRkjuBoSERoZEhIaCYABZ38AAA4CCP6sCCAGzAAuAEwAXQBjAHsAmAClAKwAswC6AMAA+wECAQ4AACUiJC4BNTQ2Nz4CMzIWFzYzMhYVFAYHFhUUBgcGBzYkNjUuASc3HgIVFA4BBAMiLgE1NDY3Fw4BFRQeATMyPgE1NCYnNx4BFRQOASciJjU0PgE9ATMVFB4BFRQGASc2NxcGATI+Ajc+ATcOAQQjIiQmJx4BFx4DEz4BNzI2NTQmJz4BNTQmIyIGBy4BIyIOARUUFgQTJiIjIgcnPgEzMhYXJyYnNx4BFwUnPgE3FwYBJzY3Fw4BASc2MxUiJyImJzceATMyNjcyPgE1NCYnPgE1NC4BIyIOARUUFw4BFSc+ATcmNTQ+ATMyHgEVFAYHHgEVFAYjDgEDLgEnNxYXJyYiIyoBByc2MzIXBRS9/t3GZhcNEXSuZk6JQBwbP1gSEB86MAIFwgEkoxWHXxdeklVmxv7dvYPTetCoC4ulbK9iY61spYoLp9B60oNHUhkY0BkYWv3TGiEbDRkB2Ibnt3gWAgEBNcf+7aem/uzHNQECARZ4t+hLChIEJjoMFxQSMSoMJhExfE1ZmFyaARMMCQ8IDQYFCA8HCREIcRccCxQhDQJ/KwcQCCMP/kYmFhkcChICBA4fHRjnHzQWFRInGyw0CRoxHyAxBAVQjV1glFQHJR9PBRsgBFq1iWuzbAIEHTFNPAxTSw0YDQMhHp0HDwgGDAcGFBAUD7Jpr9lwKUUYXo9RQEwLWkQeNRgmOjpeGBgTCGWcWVWGHUwdgatccNmvaf36O2Q/Tn0WSBNTMyVCKSlCJTNTE0gWfU4/ZDv3MBwSGBwWi4sWHBgSHy0DzyoUBzAI/YM/dJ1dBwwHT3ZAQHZPBwwHXZ10PwERESkiUC4XMhMaOBsjLgsLTkpLgVBZmGIBKgIBLwIBAgJlDAgzBA0I+BERGwofEQJUHx0QKQcR/fAsCi4PEhFDDAo9LhEeERUsEBg2H12NUEuAUikoDy4XDhkyFxceVqduXrB6GCIRCEkiL1A4RAG9BAUBMAEMcQIBNAMEAAAOAML/QglmBjYAKQAxADkARwBPAFcAXwBnAHkAhQCNAJUAnQClAAAlIi4CIyIGJy4CJy4CNTQSLAEzMgwBEhUUDgEHDgIHBiYjIg4CATcuAScHHgEBNy4BJwceAQEgABEXEAAhIAARNxAAAT4BNycOAQcBNSImJwceAQE3LgEnBx4BATcuAScHHgEBPgIzMh4BFyM0LgEjIg4BFSUyNjU0JiMiBhUUFgU+ATcnDgEHAT4BNycOAQcFPgE3Jw4BBwU3LgEnBx4BBRRPhn6GUDlmOT1ELRkcQS2uATEBkeLjAZABMa4tQB0ZLEU9OWY5UYd+hP3MJyg6IzMmQP6HThMTCFAJFwOZ/dr98E8B5wIAAgAB50/98PuREB8ZRhkkEQJ2LUctDjJM/oZEFh8OShEfAwhLEBEGTggS/R8DcsyLi8xyA1FcqXZ1qlwBe83X183N19cDZRMUClAHFRH9oCxHKwwxSTACNhIWClAIFBIBSEMYKx89HSmaMkEyBxUXXWAaHyQ0NrUBNeV/f+X+y7U2NCQfGmBdFxUHMkEyAQBHFyofPSIuAWIZLEUtDDBM+/0ByAHHA/5b/mkBlwGlA/45/jgD7CpBJycrRi/+uVAICk8JCgJ9KydDLSAvR/znHCtELg4xSwECVoFJSYFWO143N147LHpVVnl5VlV6xTBKMQwsRi0C1xIUB1AKFBLsL0sxDCxHLLYrLEAoNiI9AAAADgDw/t4JQgaaACEAMwBCAFIAYACNAJsAqAC3AMYAzgDbAOcA/AAAASIuAScuAScmAjU0Ejc+ASQzMgwBFhIVFA4BBw4CIw4BASImJyYnJjU0PgEzMhYVFA4BASImLwEmNjMyHgIVFAYBIiY1NDY3PgIzMhYVFAYFIiY1ND4BMzIeARUUBgMyNjcmJzceATMyPgI3NAImLAEjIgQGBz4BMzIWFwcmIyIOARUUHgEXHgIBJyY1ND4BMzIeARUUBgEiJjU0NjMyHgEVFAYBIi4CNTQ2MzIWHwEWBgUiLgE1ND4BMzIWFRQOASU0NjcXDgEVBSImNTQ2MzIeARUUBgEiNTQ+ATMyHgEVFAEiJi8BLgE1NDY3ND4BMzIeARUUBgTZc9WtODpYHH2RZ15O7QEsqrsBVwEg1HZHflMlmMBjRL39GwkVCQMKGx4nDCBGKDICKIKEDA0HUj8VPz4pFv7gQWcHBQsxORQnNCsBZyo7ICsQDyYcMFQ/ezeBSUQsqmBy0atzFXnS/vH+0pel/v69QA4dDylyMCFLQ2GNTV+3hEWotAJWqkE5UiQiOiQp/Eg9M1o/HDgnSgG/Ezo3JhQOd3cLDAdLARITMSQlNRclMSMs/sKclAp/dQJASywuHB5CLTP9g0EwQhoZPzABvA0dERwcPiIVBRAQJDwjHf7eP3RNAkcwUAFCx6gBAT+s5HJltvL+5peL+8pAU243OT0DVQsPBQgVKg8qITscDjMo/vdARUspOi9GRhcqNwH+QioPIggRIhdWQSQ0nTwqDSIZIy4SFjX9LyAfL4AqTFFmt/iSkwEI26BYZrBvAgMTE0ofcMiGbsGdOlJwOQFVFghBLWJEP2Y7JDIECycuQl8vRSE1LP7vKz9AFSYyOj9EJTXlICsPGDEiQiIULSBkkKEWRRKCbr0fLzxYMkciICcCmisnYEY3Sx1Z/pIODBMUFRkXNBkJJSA4VCk4NAAABwEO/qwJHAbMABEAFwAdADAAPwBFAEsAACUnASY0NwE2MzIXATcXEwUDBQE3JwcnBwE3JwcnBwEiJwE3ARY3ATYnATcBHgEHAQYBNyU3JS8BDwcTNycHJwcnNycHJwcDtHD93RMTAosTGBgTAiV0aTT+1iP+XP4WozRqLzsBUKM0ai87A3kUGv2lPwI7Dw4CSw0N/kwaAeIbBBr9iBr9Y1oBdyEBGSY3QU2HLadsbBvkozRqLzuFozRqMDq/7QIiFDATApQTE/3cEnL+8or++VYCXKM1ajA6/rKjNWowOvuWGgJcMv3EDw8CVw8NAbdX/h0bNhr9exoCkk5N+4LBPAtiOmJO+x9EAlajNWowOoajNWowOgAAAAwAqP6sCYAGzAAPABMALQAzAE8AUwBjAG0AcQCNAKcAqwAAJSIuATU0PgEzMh4BFRQOAQEnNxcHMj4BNTQuAicGBw4CBw4CBw4BBx4CAScAExcCJSIuASc+ATc+Ajc+Ajc+AjceAxUUDgEBJzcXJTI+ATU0LgEjIg4BFRQeARcnNhoBNxcGCgEBJzcXAS4DNTQ+ATMyHgEXDgEHDgIHDgIHDgInNjc+Ajc+Ajc+ATcuAiMiDgEVFB4CEyc3FwUVjumLi+mOj+mLi+n9GLEbsRBDb0MRMVxLHS8lU0cVFAkHFA4jHEKHigE/OAFDLVAw/alVsbZdMk8QDwcPGh1NTRwdKScYMm1hPFyXBDhrM2v9kXrFdHTFennFdHTFGjRwqmgMUA1wtv3iazNrBBYxbmE8XJdYVbG2XTFPEQ4HDxsdTUwdHComHB0vJlJIFBUICBMOIxxBiIpGQ29DETFc+LEbsbyL6o6O6YuL6Y6O6osDfFw2XKY9aUIsSVJvUS8lHBcTGRhBRyIZLRoaSTf9tzgBRQGnCP46o0tfHTZaIh5KRxkbHBcTEzJCK1R9b3pSWpVZ/JOpIKnhdsZ3d8V2dsV3d8Z2KzxhAQABIpQGnv7K/u8DW6kgqfnoVH1velJalVlLXx02WiIeSkcZGxwXExMyQmovJR0WFBgZQEciGi0ZGkk3PWhDK0pSbwEcXDZcAAMA8v6sCTYGzAATAHcAewAAJSIkJgI1NBI2JDMyBBYSFRQCBgQnMj4CNz4BNwYHDgIjIi4BNTQ+AjMyHgEVFA4BIyIuATU0PgEzMhYVFAYjIiY1NDYzMhYXNjU0JiMiBhUUFjMyPgE1NC4BIyIOARUUHgEzMiQSNTQuAiMiBAYCFRQSFgQJATcBBBeo/tzdfHzdASSopwEk3X193f7cp3rasoEhBwoECxI3vf6anviOT468bYPSe2+7dF2WWEV8UlZ8XEQyODQiHSoKE001XmeVaF2YWWaubHvGdXjUiL0BHZ5ls+2Hl/75x3BwxwEHBSz9PY4Cv4J83QEkqKcBJN19fd3+3Keo/tzdfE5HhLlxFy8ZICJspV2N9Z1xxZdVes5/crpuT4dVUYNNb1FOaTMkIzMgGBwhMkV6WWB9W5daaqtkftSCiNJ3mAEJqormpltvx/74mZf++chx/dwCtoj9TwAABQCK/t4JngaaACMANgBQAGQAegAAASAsAQI1NBI2NxcOAhUUAAQhICQANTQuASc3HgESFRQCDAEBLgE/AT4BMzIWDwEGFhcWFRQGASIkLgE3ExcDBh4BBDMyJD4BJwM3ExYOAQQDIi4CNTQ+AjMyHgIVFA4CNz4BNTQmJyYGFRQXHgEVFAYHBhUUFgUU/vr+VP7NpYnhhBiFxWwBDAHnAUcBSAHmAQxsxYUYhOGJpf7N/lT9YWVLDigEFQ0RHAUoBy1LHCIBgsT+xtdjEoxPjA9kygEVo6MBFcpkD4xPjBJj1/7GxIz2u2pqu/aMjPa7amq79tJSXEo7FiYWKTI6OCUf/t5x0wEouLABDLIoTSio647d/ruysgFF3Y7rqChNKLL+9LC4/tjTcQLiLl5GwBEQGhfAIzMiDRkTG/7ZS4OoXQLLD/01TIZnOztnhkwCyw/9NV2og0sDVzNdfElJf2E2NmF/SUl8XTOoGl8+NFolDhwVFwwXOhwgORIMHhEZAAAAAAQB9v6sCDIGzABBAFMAewChAAABIiQnLgI1NDY3JjU0NiQzMhcHLgEjIgYVFB4BFRQGFRQWMzI2NTQuATU0NjMyFjMyNxMeARUUBx4BFRQOAQcGBAMiJCcuAScWBDMyJDcOAQcGBAMiJicuAScuAzUzFB4CFx4BMzI2Nz4DNTMUDgIHDgEHDgEDJwE0PgEzMhYfARYVFA4BIwEnAR4BMzI+ATU0LwEmIyIOARUUFwUC+v6hew8ZEGRPTK0BMsari301WSvi8hwdHEIxLzsXFy0tNYJnTEDrX19MT2QQGQ97/qL7yP7dYhUoE5gBULW2AU+YEygVYf7cyJbkJgwnGD1qTixUNFpyPlXHXl/HVD5yWjRULE5pPhgnDCXlwjQB/CxKLB03HUk4Q2g6/rNjAZUIEggjRC0fSx4SFC4gBAEBQz8xXl0uZtVIJjxBXzQVYAQDZWEhMkdBIYBHX39WRT6XkjY5OiYSAQIcSjI8JkjVZi5dXjE/Q/7DOjMpWC84OTk4MFYqMzr+6DYlDDUoZtrXxVBW2ObaWBMVFRNY2ubYVlDF19pmKDUMJTYFBDwB/jhnQxUcRzY/Kkwv/q8QAZMCAR4tFRUfSh4sQyMXEQAADgFq/qwIvgbMAD4ARQBNAFQAawB1AH0AlQCfAKcAswDDAM0A2QAAAQM3EzYsASU+ATU0JicDPgE1NCYjIgYHLgEjIgYHLgEjIgcnNjMyFhc+ATMyFhc2MzIWFRQHEx4BFRQGIwwBAzQ2MzIWFwUnLAElFwwBJSImJyUUBgUDLgEjIgcGDAEFJywCNz4BMzIWFxMlJywCNxcGDAEFND4BMzIWFQEnNgA3FwYABzYsAjcuASc3FgQXDAIBMjY1NCMiBhUUNzI1NCMiFRQnMjY1NCYjIgYVFBYTIiY1ND4CMzIeAhUUBicyNTQmIyIVFBYnMjY1NCYjIgYVFBYBmS9OLeMBsAHYAR56hh4gGCMjTDUTJxYHWzsOHg4TTC0OChETFjdfHAgPB0BqFxIQVnpEFiEerI/+QP0ljHpMQ3wf/ZwEAY4C7gFgHf6S/QIBi0BzFgGghgJiFwERFxIVpf5J/gn++xQBAgH1Aca6FSQPKSICFvniBAEJAhwB9s8d4/4C/ekDM0ptNTxZ+jghpQFTszqh/sqHpAFmAXoBf7tu6WsilAFBhf7Z/ZP9sQHrERYdEBi8ISEhWRQaEQsTHBOEoJk2Wm86Om9aNpkEHhcRHRcZCxIcEwoSGv6sA6UE/KQJNGFNAkxAIEElAtUZOiM2SwgIQVMDAy82Ak4ENy4BAUo6A3pWWz/9bStTJl99eXEBAVprUUlIUBF7bEpxedI8NVJhYscCiRwWBithUxhKFlRlLgUIO0T9jMZLGFNuQEZHcVBmSWAxNi8BdSPmAZ+7N6f+jbkSNUtjPz55MkdFrFFvmF0CYiYaJyYaJ2E1NTU1mzATEREsFxER/mZ6ik6eg1BQg55OinqeJxomJxom/BERFywRERMwACUAsP8QCXgGaAAFAAkADQAZAEwAUgBaAGQAbABwAIgAtAC4ALwAwADEAMgA3wDqAQIBFQEZAR0BNQF+AYIBhgGOAaEBswHLAdQB2wH1Ah4CKQIxAAAFAxMhEwMBNSEVJRMhEQEiJjU0NjMyFhUUBgMhMjY1NC4BNTQ2NTQmNTQ2NTQmIyIGIyImIyIGIyImIyIGFRQWFRQGFRQWFRQOARUUFgMhEwMhAwEuATU0MzIWFy4BNTQzMhUUBhc+ATMyFRQGAyc3FwcmNTQ2MzIWFRQHIz4BNTQmIyIGFRQWFwE1MjY1NCYjIgYVFBYzMjY1NCYjIgYHJz4BMzIWFRQGIyImNTQ2MzIWFRQGASc3Fy8BNxcDESERJSERIQERIRMBJjU0NjMyFhUUByc+ATU0JiMiBhUUFwEXNzUnNycFFRcjFyY1NDYzMhYVFAYjNTI2NTQmIyIGFRQfAT4BNTQmIyIGByc+ATMyFhUUBwEnNxcvATcXByY1NDYzMhYVFAcnPgE1NCYjIgYVFBYXASE0JjU0NjU0JjU0NjU0JjU0NjU0JjU0NjU0JiMiBiMiJiMiBiMiJiMiBiMiJiMiBhUUFhUUBhUUFhUUBhUUFhUUBhUUFhUUBgcRIRMBJzcXATcnByc3FwcBJzY1NCYjIgYHIz4BMzIWFRQGBSY1NDYzMhYXBy4BIyIGFRQfASImNTQ2MzIXByYjIgYVFBYzMjY3Bw4BJyE3JyMnIwcVBxEzHwEzESciJjU0NyY1NDYzMhc2MzIWFR4BFRQHDgEHJzI2Nx4BFzM2NTwBJxYzMjY1NCYjNjU0JiMiBgcmIyIGFRQXDgEVFBYBJwc+ATMyFhUUBgcDMxcHJyMXAQdXOwhSO1f3ughh+EcuAln+xTQrOiUmOSvOAUUpJQwMHBwUGxQdKB0eIB4dNh0WJBgZHB4eGgYGJ8sHlEo4+Eg4BIkcFhQMDiwKDRcXDR4FDA0UFcEuHy/HFHlycnkUXyIfT2pqTx8iAr8vJS0sRURWN1ZYZkxGZQciC3dSZHttblhhaUw+SDv9sS4fL44uHy/iAeT+TgGA/oACFgHXE/wcR3lycnlHLyMhT2pqT0QCEKq4IiUl/rg2LgUTaUw+SDpKMiUqL0RFE/UaGmFSRmQHJAt4UmR5P/1eLh8vji4fL5ZFeXJyeUUvIx9PampPHyMB8QF9DBEaFBEVFxYRDA4RDBAQDRkXEhQWERYWDhMTDg4OEhseHR8dGxgkAbwX/RUuHy8CLAVwSDlovgn+ChklTTk0SQgyCGdITWsh/k8mTjgxSAkyBywdIzELQzhOTjggHhIVFyMxMSMYJwsSCyBUAUdYU6k+QEwPmxZR4t4rOQ8QNCcNDBgzJzYaFTMBEA6eCRQYBAgEQQUBBAgQGiMVBhYTFhoCFRwRGh8RDhgCZjkqCjYjKzw8wgqITjI/MQbwAe0Fa/qV/hMBx1BQtAQp+9cBzBsgKUVFKSAb/sU9OCg0LyImNSsfSygqRCUjKQkNFAonHCpbJi9HKC5FJRooMiwhLv1EAaEFF/rpAewIEQsVGQcRGQoWFgoZKiEYFQsRAQwSUhKQGSI+Ozs+IhkIIRIfKCgfEyAI/g8rCQgHCSERGCU9Iyk3JxkSKDFPPDxPNDQvMB8dGSQCLxJSEk4SUhL+rwIS/e4yAa78CQGz/k0CtCA/Pjs7Pj8gIwgiEh8oKB8sEP1dGxyAKDh0CHojGhYhLzEgHRkkKAwIBwoiERINBQ4mEyk2JhkRKDNQPEMnAlwSUhJOElISth9CPjs7PkIfIwgjEx8oKB8TIwj+6wkWCA4YDRIKDxQTFBIREAsWDA4RDQ4XDQsTERgdHRoQFAwPGA4NEg4NGAwPExMPFg4QDRIVDgsHElECEv3uAZ8SUhL+QmQCZAaRBKH+oS0jNDNKPDdIXWdIKERXKDc4Tj0uBhwjMSMXE9lOODhODzANMSMjMRIOSQQFMVmaUm2vVgGzXTX+3w01KBsWGBwlMgMoNyAPMBY3GxIiDDQLFQoQBhQSBQgEAhoOFBkODxUfIhoUFBIUHxEYCxEVArSGAyErPCwrPHkBELEHhqQAAAgAOf6sCe8GzABSAF8AagB2AI4AogC2AM4AAAEgJCcDLgEnLgE1ND4BMzIWFzYkNxcGBAcuASMiDgEVFBYXHgEXExYEISAkNxM+ATc+ATU0LgEjIgYHJiwBIzcWBBc+ATMyHgEVFAYHDgEHAwYEATI2NTQmIyIGFRQeASUyNjU0IyIGFRQWBTI2NTQjIg4BFRQWASImNTQ2PwE+ATU0JzIWFRQGDwEOARUUJzQ2PwE+ATU0JicUBg8BDgEVFBYBND4BJDMyBB4BFRQOAQQjIiQuATcUFz4DMzIeAhc2NTQuAiMiBA4BBRT+eP5vOV8RMDleUjhZMhxDKpoBXNAR0/6ioTFGFxo2IzNGTUoXXzEBawFpAWoBajFfF0tMRjMjNRsWRzF9/uX+rtBw+wGksCpDHDJZOFFfOTARXzn+b/1qIzdgRCg0N00BPCcvWhYuKQFWHTI/GTkpMv7oc5J0nTxXQCFzknSdPFdARFVkPIJhLSNVZDyCYS79d4DeASCgoAEg3oB82/7epaX+3tt8UDIUgLvdcHDdu4AUMnrP/4aF/wDPev6st80BVz80EyBbS0yHVBcYb4UTUBOIeh8eQmMyLjUXGVFT/qmvnJyvAVdTURkXNS4yY0IeH2N8Ok0Gg38YF1SHTEtbIBM0P/6pzbcDaBMLMkYkHBEpHB8YE0YwFhMYIDgfLCEtExIQAf56Y0x/RBomLRkjJndjTH9EGiUuGSZFJ0MrGjhaNys9CCdCLBo4WjcrPf49R35iODhifkdGfF01NV18RiwsKUw8IyM8TCksLDJhTi4uTmEAAAAABgGy/qwIdgbMABMAHwAjADEATgBeAAAlIiQmAjU0EjYkMzIEFhIVFAIGBAE2LwEuAQcGHwEeAQcBNwkBMjU0Njc2NTQjIgYVFBMyPgI1NC4CIyIOAgcOAhUUHgEzMjYzMhYDIi4BNTQ+ATMyHgEVFA4BBLOg/unTd3fTARegoAEX03d30/7pAooXEUUHFgsXEkQIFhT97LcCFPvyIBQTGCEhPtRnjVcnPm+SVFtuRTclJ1A1PGtIJD0mMV8WOmE5OWE6O185OWDLd9MBF6CfARfTd3fT/umfoP7p03f+eBEYYwsGCBAZYgsGkAL6gP0HBIEwFyQNEBMeVTQw/kBbkaZLWbugYk95gTE0ZXlTQ3JGESoBGzlhOjpgOThgOzphOQAAAAMDNv6sBvUGzAAbADIAUwAAASImNTQ2EjU0Jy4BNTQSPgEzMhcTHgMXFgYhIiY1ND4CNTQmJzMOARUUHgIVFAYDIiY1ND4BNzMDBhYzMjY1EzMTFBYzMjYnAzMeAhUUBgZ2Pj0nJxRFPSQ+TiogARkDBwkOCgM//TZJMhMYEwkLowoKExgTMkhXYQYNCjoTARUTExgEPAQYExMVARM6Cg0GYf6sLS5I3AEIhoJcJW5WowEu74w2/EmG1NH9sC0uNSZMx9/gZj1sKytsPWbg38dMJjUEPXJlPp3Nh/4dExcWEgHl/hsSFhcTAeOHzZ0+ZXIAAAAHArr+rAduBswAJwAxAEEATwBaAHYAkAAAASIkJicDNDY3Fw4CFRQeATMyPgE1NC4BIyoBBzU2MzIEFhUDDgEEByImLwEFJQcOAQEuAS8BJjMyHwEWFxYVFAYXMiQ3EwYEIyIkJxMWBBMlND4CMzIeARUBIi4BNTQ2PwE+ATU0JicyHgEVFAYPAQ4BFRQWJyY1NDY/AT4BNTQmJzcWFRQGDwEOARUUFhcFFKr+/5IFGNCqN2yeV5fvhITvl5PuiRkxGDAyqQEQoRgEk/7/qpqsBAQBTwFNBASr/qxCSQMIAiMhAggFTR4Xqu4A/wUTTv7wp6f+8E4TBQD/7v4tUYmnVnLUif4KVoBHdXJGXFgXFFaAR3VyRlxYGFgQanlGW11CLw8QanlGW11CL/74W7SFArdahx1GETxHIzNVMjJVMzJXNgJPA0l7TP1JhbRbTEAlKx4eKyVAAV4OXEm7JCK7ZBIHGQ8Twa6aAio6REQ6/daargMaUCA9Mh4zTysBCTlmQ1SNOSMuTSQULhM5ZkNUjTkjLk0kEy4eExw4Zz0jLmk6NFEHJBMcOGc9Iy5oOzRRBwAABgIa/qwIDgbMAFMAXABnAHcAjgCeAAABIiYnNx4BMzI2ETQuAScmNTQ+ATc+AjU0LgEjIg4BFRQeARceAhUUBw4CFSM0PgI3NjU0LgEnLgE1NDYzMhYVFAYHDgIVFBceAxUQAgUiJic1IRUOAScyNjUOASMiJxQWFyImPQE0PgEzMh4BHQEUBiUGJjU0Nz4BNTQmJyY2MzIWFx4BFRQGAyIuATU0PgEzMh4BFRQOAQYznds4LzbBitG6K19NSREtKhIiFTV8a2t+NRYhEiotEUlNXytQGTZYPjsNJiYoMK3Bv60vKSUnDTo/VzcZ6PxaMVQaAT4aVDGIjjSPU6psjoiovmOjYGGiY74CYxMXHTouBQYEFg4KEwMHB0iuWpJXV5JaWZJWVpL+uYF+O3V15gECdM7ciIJaGjhXSiBRShMbHw4OHxsTSlEgSlc4GlqCiNzOdF2nqbtvaEMSKElBR4ktUEhIUC2JR0FJKBJBa2+6qadd/t3+6w0PD29vDw+cwLoSEyW6wFDw1j8aKhoaKho/1vCcBBQOGgoUhU8gPx4UFw4QJEkjaKYGSxYnFxgmFhYmGBcnFgAHAxb+rAcSBswAFQAnADUARABcAHIAgAAAASIuATU0PgE3NDYzMhYVHgIVFA4BAyIuATU0PgIzMh4CFRQOAScyNjU0LgEjIg4BFRQWNyImNTQ2NxEzER4BFRQGAyIuATU0NjMyHgIzMj4CMx4BFRQOAQcyPgE1NC4BJw4BIyImJw4CFRQeARMyPgE1NCYjIgYVFB4BBRSU5oQnRSy2sLC2LUQnhOaUecNyUIGXRkeWgVBywnqdt1uaX1+aW7edPVYrIowiK1U+aqBZEgkMJz1WOkNcUmZMBQNZn2t/wm0gOSQvomBgoi8kOCFtwn9JeUqTeXmTSnsBq4XsmVXm72I+TU0+Yu/mVZnshf0BMV9DNlAzGRkzUDZDXzFOUTQgPScnPSA0Uc8iGBAbCAGQ/nAIGxAYIgJ7W55kHh4sOSw7TjsoLRpknltLccmCTcfPWB8iIh9Yz8dNgslxBAQZIAsPLi4PCyAZAAAHAan+rAh/BswASwBXAGUAcwCFAJkAnwAAASIkNTQ2Nz4BNRE0JicBLgE1MxQWFwEeAhURFA4BBw4BFRQeATMyPgE1NCYnLgI1ETQ+ATcBPgE1MxQGBwEOARURFBYXHgEVFAQDMjY1NCYjIgYVFBYXIiY1ND4BMzIWFRQOAQEnNiQzMgQXByYkIyIEBSIkLgE1NDYkISAEFhUUDgEEJzIkPgE1NC4BJCMiBA4BFRQeAQQTJwE3FwcFFOL+/FhkfWBpXP30KCVQFCICDD5kOjd7aE8sdbhlZbh1K1BnfDc6ZD4CDCMTUCQp/fRcaWB9ZFj+/NISFTcXEhU3FzlUOVs0OFM6Wv1gPIQBY7OzAWOEPIL+xqKi/sYB3Lv+we2E2QGKAQgBCAGJ2oTt/sG7lwEc44V82/7gpKT+4Nt8heMBHNc5AlGhFnv+rFtOKT0bImZxAQZhkl0CDyk8IgoiI/3xPniCUP76W3pNGhQcEBgpGBgpGBAcFBtNeVsBBlCCeD4CDyMiCiI8Kf3xXZJh/vpxZiIbPSlOWwSsGg4YMRoOGDE7Uzo0aklWPTJpRgIdOCo1NSo4JSwsiyM/VDFEZjg4ZkQxVD8jRiAyNxgaNi8dHS82Ghg3MiD+qy0CS48SqwAMAo7+rAeaBswAHQA7AEwAYgB4AJIAmACjAKwAuAC8AMgAACUiLgE1NDY3PgI1Nz4BMzIeARUUHgEXHgEVFA4BAyImNTQ+ATMVIg4BFRQWMzI2NTQuASM1Mh4BFRQGJyImNTQ+AT0BMxUUHgEVFAYDMjY1NCcmNTQ2NzYmIyIHDgEVFBcWFyIuATU0PgE3PgEzMhYXHgIVFA4BBzI+ATU0JicuAScOASMiJicOAQcOARUUHgEDJTUFNxcBLgE1ND4BMzIWFwkBJiMiDgEVFAEnAT4BPwEXBw4BBwUBNwElIiY1NDYzMhYVFAYFL4rghR0kGyIQbC99SV+gYhAiGyQdhOGKpsFSh082YDykbW6jPGA2UIZSwKdDTR8eph8fTdMOFBUvDRAIFxAaCQ0STwubYpdWFRwKMpNPT5QxCxsVVpdidLxvGiMkIwcvlVBRlC8HIyQjGm+8iP67AQgWRP7rNzpUh01Oljz+NAFrWmU8aEACHUwBSAs7IfoS+hAYBv2c/oA0AYD+zSMyMiMjMTFvdsh7QZF1WIVoKy0KCxIeEitohVh1kUF7yHb+PT85KD0jTA8ZDxMaGhMPGQ9MIz0oOT+jHA0NIyoWsbEWKiMNDRwCPRMOExAjNyNIMRccHi5XLFw6CIlOiVgzZ2c0EBYWEDRnZzNYiU5GYaVlPIFydZ5MCw4OC0yedXKBPGWlYQQVIkcf4Qr+HEGMQlGBS1RQ/toBLlg6Yz1U/YAvAxQcLgc2VzUDGA6OAc8t/jHvMiMjMTEjIzIAAAoB/v6sCCoGzAAnADkARgBSAF4AagB9AJcAvgDRAAABIi4CNTQ2NxMXAxQOARUUHgIzMj4CNTQuATUDNxMeARUUDgIBMjY1NC4BNRE0JiMiBhURFBYXIi4BNREXNyURFA4BEzI2NTQmIyIGFRQWJzI2NTQmIyIGFRQWNzI2NTQmIyIGFRQWATU+ATU0JiMiBzU+ATMyFhUUBgEnLgEnLgE1NDc+ATsBPgEzMhYXHgEVFAQhBzI+AjMgJDU0JicuASMiBgciBgcOARUUFhcOARUUFhceAR8BHgEBNT4BNTQmIyIHNTYzMh4BFRQGBG923LBnGQcLUAsPEGCevV1dvZ5gDxALUAsHGWew3P7oERIeHw0REQ0vyWGeXV3MAY9dnU0aJycaHCcnXB4pKR4cKyuGGSAgGRghIQGaPkcwNBMSDBgKTV5k/EhZGB8IXldZBYVcDjioYIbDKXlv/r/+vOYQKjdJMAEaARdVgCKbeFeRLQoSCUxbAQErM0cuGTQXFBIjAx+popSEGCMlG2ugWNL+rCM5RCFOmB4D9CX8MBVDVTIZNSwbGyw1GTJVQxUD7iX77h6YTiFEOSMBgw4NFBAfKgGGDhsaD/56QUd/I0EsA6ONrRL8KyxBIwG4JxwaJycaHCfTKx8dKysdHyvgIRgXISEXGCH+Rl0eW0U8MQNPAgJhXF2HAX2XKS4BEFhLV0JfgElUk4MKX1ePfHI7TDtdXjg6BIiIVUABAQdJOAwZDhM/IR8/BwQ1KiQgMv0RU0TNjo+jBVAFYK11r/8AAAATAG7+rAm6BswAIAA6AFQAYABuAHoApQDUAOAA7ADwAREBHgEqAS4BYAFkAXwBlAAAASIuAjU0NjcTFwMOAQcyDAEXPgE1NCcTFwMeARUUDgEBLgE1ND4CNzYzMhcHJiMiBw4DFRQWFzcmNTQ+Ajc2MzIXBy4BIyIHDgMVFBYXBTI2NTQmIyIGFRQWBS4BJxMyHgEXAxc3ExcFMjY1NCYjIgYVFBYXMj4BNz4BMzIeATMyNjU0JiMuASMiByYjIgYVFBYzMjYzMhYVFA4BFRQWFyImNTQ+ATU0JiMiBiMiJjU0NjMyFz4BMzIWFx4BFRQOASMiLgEjIg4CBw4CJTI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWASc3FwEiJjU0NwM3Ew4BFRQWMzI+AjU0JiMBNwEeARUUDgEEAyInAzc1NxcBDgMTMjY1NCYjIgYVFBYBJzcXASc+ATcWMzI2NTQmIyIGBy4BIyIHJiMiBgcnPgEzMhYXPgEzMhYXPgEzMhYVFAYjDgEBJzcXASc+ATU0LgIjIgYHJz4BMzIeAhUUBgcnPgE1NC4CIyIGByc+ATMyHgIVFAYD5n77znw1LK5GrisyAp4BGwENhgYOKchRxQ8VPYj9ZZmzHzI5Gj5iSFESSUBMLhMvKhyVgQ7NFyQmDxcpNUsSJToSEgcJHBwTT0YBUxQcHBQUHBwBIHX4i4wkZmQfTV1tUDv+PA4VFQ4PFBTiGCkgCBpYWx8eGxkjMnh9L4pTXGYxLTRKU0MsVRlNUDExHxg0Ri4tQywdUClfb3BcLy40aDFhpjZ5kypFKCUlGxgVMzAjBAQjQALEERgYERAYGKUPFhYPEBUV/JbsF+sCV21/GHRDfwsLTlhw4790Pyf+8kkBAjdCftP++n0RD853yl4BBA9kholDFRwcFRMcHP1cljGXAY0HPXkZFxhTdVNCBxoIIk4jckIhHktzIEopiWgJFAgifEMrUSILFApWf56EK4P+qDwWPAOJFEY0ER0jEQ06OCI/ShgjOywYTykWdG8iP1c1H1cyIDhpJ0VwTiqJ/qwsS18yJWkqA3Ek/IofVhciSDkGJQo0QQNVBvy5FkQjMkckAdQZjV8+oqF3EisYPhYfDW2UlDREbRRZHF4meXxcCg8XPgwKBAZTcWgbDyIJjxwUFBwcFBQc2SwvBQLACAwH/r9+UgFPF6kVDw8VFQ8PFbEiQTCVuBQVPi5FRlpUMBQ6NzwwClJUOpCMNhckQ0M3MIuXQTIhDGBeWWMPGBhbXgFvcSxNMBYXPF5pLDJNK74YEBEXFxEQGIEWDxAWFhAPFgPsXzde+ctbTjQ6AVcm/ogaOhI2MDxjdzosPwNIF/zcEls5TZR4RwEwAwJePcKRDvzOGz02IwJ9HhMUHR0UEx4CqOAi4P3eXhhMJwRWQDVLAgEbGngGU0oZY2kBAj4/GB0CAXBgZ3ctWgIkBegG+1s8Fy8lHVhYPBgiNicdRGlxLTtNsTwqfVBBk4JTHB04ICFblKtQZZ4AAAAIAQT+rAkkBswARQBaAGoAegCKAJoAzQDqAAABIi4DNTQ2Nz4DNxM+ATMyFwcuASMiBg8BDgIHDgEVFB4DMzI2Nz4CPwE+ATU0Jic3FhUUBgcFDgMHDgEDIiY1NDc+ATc2MzIWFRQHDgIHBiUyPwE2NTQmIyIPAQYVFBYnMj8BNjU0JiMiDwEGFRQWJzI/ATY1NCYjIg8BBhUUFgEyPwE2NTQmIyIPAQYVFBYXIi4DNTQ2PwE+ATMyFhc+ATMyFjMyPgIzMhYVFA4CFRQWFRQGBx4BFRQGDwEOARM+ATU0JjU0PgI1NCYjIg4CIyImIyIGBx4CA9xdyb+YW0FEKWxwXx39Ml87NEUUHC8UM0M15iuTlzM3NVOKqrFOPGsrO1VYP/YpKQYITRE4Ov70ITw+RSk4hjUSEREmUTERDxEVGBU5OBcSApAWE24SGBIWE24SGGsWE24SGBIWE24SGF8WE24SGBIWE24SGAGfFhNuEhgSFhNuEhguMZCciFYfNCUjVjEXLBQ3VTI0PBkQFyJBOThTLDssHD01DAwjICUxQ4E6Kx4tOy0jGCcoHisqI0kdIUwoEWmH/qxcmsHLXkWAQihHQj4fAQw1LRJOCAglOPUuWlwwNGU2T7SrjFQwLT2PjzvqKE4yFjAcFEI0Q283/R9da2gqOjwELxgNFBEmciQMFg8WEhBESBcSuxNuEhQRGBNuEhQRGIETbhIUERgTbhIUERibE24SFBEYE24SFBEY/nYTbhIUERgTbhIUERhqU4WZjjEmSDIkIycLCz0xHC06LU8/NEIoGw4XRik0XSkYMRgpUiEmMyMBpzBAHh5JJSIpIi4oGiAtOi0cOC48iGgAAAYAZv6sCcUGzAATACoASwBfAHwAmAAABSIkJgI1NBI2JDMyBBYSFRQCBgQBIiY1ND4CNTQmJzMOARUUHgIVFAYDIiY1ND4BNzMDBhYzMjY1EzMTFBYzMjYnAzMeAhUUBgEyPgI1NC4CIyIOAhUUHgIDBiYnLgE1ND4BMzIXHgEHBicuASMiDgEVFBYXFgEiJjU0NhI1NCcuATU0Ej4BMzIXEx4DFxYGBR+U/v3Fb2/FAQOUlAEDxW9vxf79+2lJMhMYEwkLowoKExgTMkhXYQYNCjoTARUTExgEPAQYExMVARM6Cg0GYQOqhOauY2Ou5oSE5q5jY67mqBAeChwfcL1ygWMRBAwXIidbMlyZWhgVEwU2Pj0nJxRFPSQ+TiogARgDBgkODAM/PG/FAQOUlAEDxW9vxf79lJT+/cVv/ug1JkzH3+BmPWwrK2w9ZuDfx0wmNQQ9cmU+nc2H/h0TFxYSAeX+GxIWFxMB44fNnT5lcv0rY67mhITmrmNjruaEhOauYwGaCwUQL207c7xwRAscEB4VGRtamF0uViUi/OgtLkjcAQiGglwlblajAS7vjDb8SYbU0f2wLS4AAAkBHP6sCQcGzQA0AEAAXQB7AIYAlACqALYAwgAAASInAS4CJyYnBiMiJjU0Ny4BNTQ2Mzc0NjMyFhc2MzIVFAceARceARcBHgEVFAYHDgEHBgEuATc+ARceAQcOAQUiJicuATU0Njc+ATc+ATM+AjMyFhUUBgcOAicyNjc+ATU0JiMiDgEVJiIjIgYHDgEHDgEVFB4CAT4CNTQnAQ4BBwE+ATcuAScuAScGBx4BAScGJi8BJjY3PgEfAR4BBxcWBgcOASUiJjU0NjMyFhUUBhcuATc+ARceAQcOAQc7NyP+YiUuJBUzqAwHFh0HJSgRHEEhESAlBBENMgNWyHJSiEABfSY0LlU2eEkx+fgcHAcGLRobHAcGLAHrEHQ9REUWERgfCRNVNwEbOzAjHwMCAg40PCMhBAICCw0MHxYGDAUxPg4HFRQQDi5JUwR3N3NOBv6pIn1j/rhQrl8LKBtyp1EdSEJf/S1NEhwQFhkXNTdQGBYPAQY+CxoaGUEBTRMbGxMTGxusDwkJCCEODwkJCCH+rCcB1ytKZ1TNywIZFxMRCCIZGRFSFQ0wKQUsCwxahR4WT0T+ayhFICaBVjdFFA0F7gsjEA8LCgojEQ8LgAQKCyQWCRUIDCMaNj8bUj9haSJRLyU1HTsUKBQ+KFNWNUoiASkqFBgJBwoECA0JBPr3EWN8NBQQAWtVjkMBFSQnAyZPJyZrTDwYWroDQD8KBRAVF1I0NRkZFxAfDU4OQBoZGb8rHx8rKx8fKwUFJBcWFwUEJRcVFwAACwGo/qwIgQbMACkAMgA8AEUAcwB/AI8BMAE0AUUBUwAAASUBJjYzMhYXPgEzMhYXNjMyFhc2MzIXPgEzMhc+ATMyFhc+ATMyFgcBBQMuASMiBhcTBTcTNiYjIgYXEyU3EzYmIyIGByUuATU0Njc2MzIXNjMyFhUUBzceARcHLgEnNjU0JiMiBgcuASMiBgcOARUUFhclJz4BMzIfASYjIgYnJjU0NjMyFwcmIyIGFRQXBS4BNTQ2NzY3LgEjIgYHJz4BNTQmIyIGFRQWFyM+ATU0JiMiBgcuASMiBhUUFjMXIiYnJiMiBgceARUUByc2NTQmIyIGFRQXJiMiBhUmIiMiBhUjNDY3PgE3PgEzMhc+ATMyFhc+ATMyFzYzMhc+ATMyFhUUBgceARc2MzIWFwc0JiMiBgceARUUBxYXBy4BJz4BNTQmIyIGByYjIgYVFBcvATcXByImJy4BNTQ+ATMyHgEVFAYnMjY1NCYjIgYVFDMeAQUU/cL+3w0tMSlGGhEmFipPHR8uMFwlNHBwNCZbMC4fHU8qFicQGkcoMS4O/t/8qaAKRTMcHwW+AbNEMwQ9Pj49BDMBYZq9BR4dM0UK/OgqKy0uHj0iIyElOU03CQQFATcCCwQxKyARJxQKGQ4WIgIoJh0cAUkoFkkrDwgFDxAhNpAVRjE1JCUOJRkiFwFBDA9gSBsnCUoyEB4NCwsSLC0dJQYHPQIDJRENFAgNMh8uQksuAjdZFBcbGDASKTIVUB8/Lig+BAYJIiIEBwQlM1RBNAsmGBFnQQsFHE8kBQwFD2xGPTMQCRoVFy8cSGoBAUlhDRkeUWgKST04CBAIBQUFDQM4AQoMBgQfFwwXAxMHMUMXMzZAM5YaNRQkIStIKiVDK1MyICguJiY/Mg4h/qz2BLM5TjInCww3Lho7MGFhMDsaLjcMCycyTjn7TSQEKz9lLB/7wMAeBCRTX19T+9xeRARAHyxlP2QUQSMkQg81FA9MNT00HQgaDgMUGgYrKR4mCw4RDhgRBSsZEyQKWzoiKQI+BSpHICQxQyc0HyIXHg/sEy0ZSWkGGwIsPQkIJw4fEyg6JC4NHhILFAgpHwQCDhhGMSs7OjwuCg4LFlIyLicKHyw1SzwrDw0BLyUBOSc5WhQaJww9UQEaGAEBQWgiAhIZGltECRAHBl1BB2lKFS9LAgIKFwsOERwmCA8iGgsUBBMZEBUERTIqHXw1OBw+HiMILxwmTzYxTCg6YDs5JSdDSiMeIRwAAAAIALH+rAl3BswAFwAvADoAWABmAHQAfwCdAAABJgInLgEnNxYSGwEXLgInNx4DFyUBAwU+AzcXDgIHNxMaATcXDgEHBgIBPgIWFwcmDgEPASICNRA2MzIEFhcHLgIjIgYVFBYzMj4BNxcOAiUiJjU0PgEzMh4BFRQGJzI2NTQuASMiDgEVFBYlLgIHJz4BHgEXByIuASc3HgIzMjY1NCYjIg4BByc+ASQzMhYRFAIG3UejUSVQJVFi01ua7SV2k1FOTYtxThD+yfud0/7JEE5yi01OUZN2Ju2bW9RhUCRPJlCk/hYGX6bmjgi063sLRHyKdYV4AP/rWThR2extXE5jU1qz6aogrvS/Av6diDN/c3R/MoeefFkfXFpaWyBaA5QLe+q0CI7mpl4GDl++9K8gq+myWlRiTV1t69lSOFnrAQB3hnSK/qzXAaHGXLdSEdz9+f8AAVVHXNrSUCNPwsy/TET+SgG2REy/zMJPI1DS2lwz/r8BAAIH3BFSt1zG/l8EBzxEGgEJUAwEIyX4AR/9AST6SoRZOlF7RdH90fsiU0lKS1YjoYmfo7JGRrKjn4lQWn6NjjAwjo1+WgclIwQMUAkBGkQ8+CNWS0pJUyL70f3RRXtROlmESvr+3P3+4QAVAUv+rAjdBswACQANABEAFQAZAB0AIQAlADMAOwBcAGIAZgBqAHoAigCOAJYAtwC7AMEAAAkBETMRCQERMxEFETMRFxEzEQERMxEBETMRASc3FwERMxEBETMRCQERNxcHEQkBESc3FxEBJz4BFwcmBgciJjU0PgEzMhYXBy4BIyIOARUUHgEzMj4CNxcOAwUlNwUlFxMRMxEBETMRASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEBETMRAy4BByc2Fh8BIi4CJzceAzMyPgE1NC4BIyIGByc+ATMyHgEVFAY3JzcXBSclBQclBRT8alADRgNGUPoEULRQ/nxQAh5Q/QDKIcsBJFACVFD+nvw3yR6XA3kDeZcdyvpwLzK1bgxbll6Vey1tYGLNaTtdsFBGShoiVEoeVVVBCkoPUGhrAdH+Ph8BowGiH1VQ/ttQ/m9aYickYl1dYiQmY1pCPxIRPkREPhESPwKHUM8olVwMbrQzBitraFAPSQtBVVQfSlQiG0lGUbBdOmnNYmFsLXtGIcoi+wMgAXsBeiD+pv6sAbACzv1l/ncBiQKb/TJkAqT9XHYCsv1OA0YBGf7n/C8EKvvWBSFcSlz9/AFR/q/9JAKy/U4CBwGXAZpRSz3+0v6MAXQBLj1LUf5mAT8wLxgaRhcO3LfcmbFMfXE3ZXA1jYR9jTkhNTsZIiRMQCizu0msrEn8TQKk/VwCZgFR/q8B3B1MRHqBLy+BekRMHVAJJy1lXBkZXGUtJwn+PgEZ/ucBlyAOF0YaGC/sKEBMJCIZOzUhOY19hI01cGU3cX1MsZnct3VKXErXSaOjSZUAFAHM/qwIXAa4ABcAIQAvADkAQQBLAH8AjQCXAJ8ArQC3AMUA0wDdAOUA8wEBAQ8BHQAAASIkJy4DNTQ2JDMyBBYVFA4CBwYEATI2NTQjIgYVFBciJjU0PgEzMh4BFRQGJzI1NCYjIhUUFicyNTQjIhUUBTI2NTQjIgYVFBMyNjc+ATMyFhceATMyNjc+ATM+AjU0JiQjIgQGFRQeARcyFhceATMyNjc+ATMyFhceARMiJjU0PgEzMh4BFRQGJzI1NCYjIhUUFicyNTQjIhUUASImNRE0NjMyFhURFAYBMjY1NCMiBhUUJSImNRE0NjMyFhURFAYBIiY1ND4BMzIeARUUBicyNTQmIyIVFBYnMjU0IyIVFAEiJjU0Nj8BFx4BFRQGASImNRE0NjMyFhURFAYBIiY1NDY/ARceARUUBiUiJjU0Nj8BFx4BFRQGBRTz/olfJzEcC9gBfPT1AXvYCxwxJ1/+if0GCxAUCxBURUIoPiEhPihCBBQQCxQQNhcXFwGdCxAUCxBVMkEdGS8iHCYUGjssQlMlGy0iAQEBxv6p29r+qMYBAQEjLBsmUkIsOxoUJhwjLhkdQTJFQig+ISE+KEIEFBALFBA2FxcX/uEfIiIfICEhApwLEBQLEP6OHyIiHyAhIQGnRUIoPiEhPihCBRQQCxQQNRcXF/0aHywNCjQ0Cg0rAkwfIiIfICEh/qofLA0KNDQKDSsBFh8sDQo0NAoNK/6sbWIoaqL0sZXbeHjblbH0omooYm0DbRkQGhgRGkc1Oy5eQEBeLjs1RxoRGBoQGWAiIiIi4hkQGhgRGv5BP0k+Lx4nMjBbZkoxHlpbH33Bbm7BfR9bWh4xSmZbMDInHi8+ST8BeDU7Ll5AQF4uOzVHGhEYGhAZYCIiIiIBRhYSAa4SFhYS/lISFv7cGRAaGBEawBYSAa4SFhYS/lISFv75NTsuXkBAXi47NUcaERgaEBlgIiIiIgMILCISLhqPjxouEiIs/bwWEgGuEhYWEv5SEhYB4CwiEi8ajo4aLxIiLGQsIhIuGo+PGi4SIiwAAAAADQD8/qwJLAbMACEAKQAxAEIAjACbAKoAsgDDANIA2gDvAQMAAAEgJAAREBIkJRcMAQIREBIEISAkEhEQAiQlNQwBEhEQAAQlJy4BJxceAQU+AT8BDgEHJScmAjU0EiQ3Fw4CAhUUEiUiLwEmIyIPAQYnAyY2HwEWMzI/ATYzMh8BFjMyPwE2MzIfARYzMj8BNjMyHwEWMzI/ATYWBwMGLwEmIyIPAQYjIi8BJiMiDwEGAyUmNTQ/ATYzMhcTFhUUFyI1ND8BNjMyHwEWFRQjASc+ATcXDgEBNhI1NAIuASc3FgQSFRQCBwEGNTQ3EzYzMh8BFhUUBwEuASc3HgEXJSImPQE0Ji8BLgE1NDYzMh4BFRQGJzI2NTQuASMiBhUUFh8BHgEVFBYFFP7E/in+++UBrAEqAf7t/n7K7gGuAR8BIAGu7cf+hf7wASgBpuH++v4p/kdSGjIVWg4xARYaMg1aFTIa/Ut1YWW0ATrHH4Dqtmp8AcoNDHgQEQ0QYRwMZAQJC44NDQ8SOgwRDQpvDw0QD0cOBgYORw8QDQ9vCwwRDDoSDw0NjgsKBWQMHGEQDREQeAwNDw5dCgwLC10NYP6bEQfBCAcKCJ4EVhwJcg0JCA1zCRz+fTUZcUY4QnYC2HV8arbqgCrFATSxZGL+hhUEnggKCAfBBxH+yBt2QjlHcBn+x0dVIzAOLyxPRV2dX1JDHClKeEcdJxYaHjs+KP6syAGLASMBGQF5wgZeB6X+tP78/vP+na+wAWMBDAEDAUulCV4IxP6J/un+3P51xzYDIo9YODd0KSl3NDhYjyJCQHQBSMDxAV3TIkMLcsf+7qvN/ptkCEoKCDIOIAEhDQkGSQcQOQoGRgkNPQ0NPQ0JRgYKORAHSQYJDf7fIA4yCApKCAxTCQlTDAIWJwELBgjeCQ7+/wUHD2ASCgqCEBCCCgoSAZRJVLs6NjHA+2CJAWXNqwETx3MKQCPU/qXvwP64dALDAg8HBQEBDgneCAYLAQEKbMAxNDq5VORBRycxMx8JHjwqN015wm1GVVAjIlqgZBoaERwQEiNnSikjAAAkAWL+rAjGBv4AUwBkAHAAfACIAJQAoADgAOwA+AEEAQ4BGAEiASwBNgFAAUoBVAFeAWgBcgF8AYYBkAGaAaQBrgG4AcIBzAHWAeAB7QIWAlUAAAUiJyoBIyIuATU0Njc2NxcGBw4BFRQeATMyNjcGFjMyPwEeATMyNjcXFjMyNiceATMyPgE1NCYnJic3FhceARUUDgEjKgEjBiMiJi8BBiMiJwcOAQUiJjU0Nj0BFjY3FRQWFRQGASImNTQ2MzIWFRQGAyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGByImJw4BIyImNTQ2Nz4BNzMUBgcOARUUFjMyNjceATMyNjceATMyPgE1NCYnLgEnFx4BFx4BFRQOASMiJicOASUiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiNTQzMhYVFAYXIjU0MzIWFRQGFyI1NDMyFhUUBjciNTQzMhYVFAY3IjU0MzIWFRQGATIWFRQGIyI1NBcyFhUUBiMiNTQ3MhYVFAYjIjU0NzIWFRQGIyI1NAUiNTQzMhYVFAY3IjU0MzIWFRQGNyI1NDMyFhUUBjciNTQzMhYVFAYBIjU0MzIWFRQGFyI1NDMyFhUUBhciNTQzMhYVFAYlMhYVFAYjIjU0FzIWFRQGIyI1NBcyFhUUBiMiNTQlMhYVFAYjIjU0FzIWFRQGIyI1NBcyFhUUBiMiNTQBJzcXByc3LwEzDwEXBzc2Ji8BJjY/AT4BPwE2MzIfAR4BHwEeAQ8BDgEfARYGLwEmBg8BBiYBNDY3PgE3Fw4CBw4BFRQWMzI+ATceATMyNx4CMzI2NTQmJy4BJzceARceARUUBiMiJicGIyImJw4BIyImA4GaGQgJBGKbWllZnjNIP7hCQkh4RxQpIwQnRUlbWhxLLi9KHFpbSUUoBSErFEd3SUM1vT5JNJpOXlqbYgQJCBmaLGA2ID5zcz4gNmABZ0pTKzlyOStT/v4pOTkpKTo6yCk5OSkqOjoClik5OSkpOjr9Mik5OSkpOjoBBCk5OSkpOjowUXwwN4A2ipprWmVWAVBwfEBVa2lUfz0ldUNPeh0pplg9dU5BO3aDA1ACal5XV16ZWTyTODV7AWEpOTkpKTo6/nEpOTkpKTo6AQEpOTkpKTo6/akiIg8UFEEiIg8UFF8iIg8UFNciIg8UFF4iIg8UFPyIDxQUDyJ8DxQUDyKgDxQUDyKkDxQUDyIBiCIiDxQUVSIiDxQUcyIiDxQUXyIiDxQU/cciIg8UFHkiIg8UFEsiIg8UFAE3DxQUDyKaDxQUDyKuDxQUDyL65g8UFA8ihg8UFA8irg8UFA8iASkTa2sTFUNaNxc3W0NgFQIICFcKCg55DA8ENQcQEQc1BQwNeg4LC1kIBQEUAxwLbQsQCGwNGv5rS09NjD0MOFFLLjE1YzoZRkISFWQ0Vg4cUlIdOks4RzRuPhAcXVh1WXZfHlMqKnxAdSYgSxpoiXx1KEs0Mk8rS2YiflcfMxQYKBgCBEU2JCQoICAoJCQ2RQQCGCkXFzQUSo0dcDoeVzQ0Syh1FhUNODgNFRbYJSgjUDI2EQUNNzJQIyglAVQ6Kyk6OikqOwFIOioqOjoqKTv+9TorKTo6KSo7AsU6Kio5OikqOtg6Kio5OikqOupTTBIQYko0YCcsSilGbDUcQRYiPCAbUWdlRw4nHCsWECwYMJJRATdtJiNKLzFOLBQOU0ZMOioqOTopKjoCoToqKjk6KSo6/u06Kio6OiopOwFNJCIUDg8VZCQiFA4PFTwkIhQODxV3JCIUDg8VMCQiFA4PFf6PFQ4PFCMjThUODxQjIyAVDg8UIyMeFQ4PFCMjoyQiFA4PFUYkIhQODxUUJCIUDg8VKCQiFA4PFf4AJCIUDg8VDCQiFA4PFVokIhQODxXBFQ4PFCMjRhUODxQjIxQVDg8UIyNkFQ4PFCMjUBUODxQjIxQVDg8UIyMEoQ04OA11QQxtbQxBpHkLEAhVCx8BEAIKCm8ODm8KCgIQAR8LVggPC3kREAY4BwIEOQcS/uIoSTAvaDpfKTwyHR8pFBYVCA4ISGCfBgsGHBYSMS0hTC5ZGkQ4SlUvPUMGBZNTRQYIPAAACQGz/qwIdQbMACUAMwA/AEsAYgCAAIwAmACcAAABICQnLgECNTMUEhYXFgQhMiQ2NTQmJy4BNREXFRQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGAT4CMzIeARcWNjU0LgIjIgQGFRQWBSciJicmJCMiDgEHBiY1NDY3PgEkMzIEFhIVFAYHAyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJxE3FQTJ/tz+qQ8LEQhQCBELDAEkAQrIASGbDA0TF1AUEg4Pr/685lWMNzMvb0dIcC4zN43+nyYyMiYmMzMB8yYzMyYmMjL8SELR9Xd337s9HSRpuOuD2/7Hpx8FJgcKGAxz/siqcevMRUJcaF4htAETrpgBBcRuCwkjVXh4VVZ4eFY1SUk1NElJaVD+rLSdd/sBQN3c/sH6c3aSRXdJFCcaKE8rAQ0x3CpGJBstG2aZVgJ5Q0MsOTMzOSxDQwE4OCgoOTkoKDg4KCg5OSgoOAFoDiAXFh8OBxwoQmlLJ0eDWh8f4pUCAxwsFSESEURDXowveM9/es/++4xTgiz+lXVVVnZ1V1V1UEczNEhINDJIzQEBHPYAADUBBP6sCSQGzAAPABUAHQAjACkALwA5AEEASQBRAFkAYQBpAHQAfgCEAIoAkQCYAKAAqAC0ALwAwgDNANQA3wDlAPAA+AEAAQwBFAEaASABJgEuATYBQgFOAVoBZgFyAX4BigGWAaIBrgG6AcYB0gHiAe4AAAEiJjURNDYzITIWFREUBiMBNjcnBg8BPgE3Jw4BBwUzNhMnAgE2NycGBwE3JjcnBhc3Jj4BNycOAgE+ATcnDgEHJz4BFzcmBgcBPgEnBxYGBwE+ATcnDgEHFz4BNycOAQcDPgEXNyYGBwE+ATc+ATcnDgEHATcuAiMVMh4BATYnBxYHATYnBxYHATcmBxc2FgE3JgInBxYBNy4BJwceAQE3LgEnBx4BATI2NTQmIyIGFRQWATcuAScHHgEnNyYlBxYBNy4BJy4BJwceAQM3JicHHgEBPgE3Jw4BBw4BBxc2FzcmBwE3LgEnLgEnBx4BATcuAScHHgEBNy4BJwceAQEyNjU0JiMiBhUUFhMzPgE3Jw4BATYXNyYHJzY3JwYHFzYXNyYHJz4BNycOAQcXPgE3Jw4BByUyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgUyNjU0JiMiBhUUFhcyNjU0JiMiBhUUFgMyNjU0JiMiBhUUFhMyNjU0JiMiBhUUFhMyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFgMyNjU0JiMiBhUUFgcyNjU0JiMiBhUUFgMyNjU0JiMiBhUUFiUuAScjDgEHFR4BFzM+ATcBMjY1NCYjIgYVFBYBskdnZkcGxkdmZkf6GhNVL2QWbSWlcyV8tSgBJkIDuzfI/tlnyCHScgJ3QSp1OoG0QwEECwdBBwsG/YokaTQJPXordl/HRhNQ4GgE7g8OAkMCDA/9xRdTMRw3YRytJU9ALUZYJqAfkVoKbbMrAewFCwQFCwRBChQK/nwlUpGJRUV9gQLMGk09RhgBUxi5NqoW/gU5b+QaXHwDJ0MSc18xsfyHNC5+YR5KdQK6LyhRKS8pUfwzERgYEREZGQJpQBM2Pio1KpU+cv79FugEOjETJBQTJBIxJUrwM1bbEWaC/q0xYjEvGDEZGTAZgnuGJbKgAv0xDBYLN3VTGld1/FVBCj8aPBk7A9knX8RnCm+v/AwRGBgRERkZ8UICOTA6ND4CO3BQF2SGin3CCdyNkL6wC8DP/zWbeRaFsjnBPdF1B4PsRvxfERgYEREZGQM9ERgYEREZGQHTERgYEREZGdgRGBgRERkZlBEYGBERGRm6ERgYEREZGS8RGBgRERkZ/C8RGBgRERkZAQsRGBgRERkZ/WYRGBgRERkZdREYGBERGRmjERgYEREZGRIRGBgRERkZBBswLAwUDCwwMCwMFAwsMAESERgYEREZGf6sZkYGx0dmZkf5OkdmAhNgVDBid0iD4Es5UvWP8NgBEif+2wD/inc5fJb9kw3a4CD3cwUYTE8fDyJXUwLYHSoIQgkzIYomGRI/Fhks+7RDcE4DSGVCApMdPRc8GUkjzl94OjNAiGUBMSghDkARLjj+fB03HB05HAs4cTkCpjk0KghCCCb85LfFGbei/u/n/SjoywM9I6RlPCgT+/oHogERaS3EA3QqOnQxPCVh/WMxJk4oMSZPBAIZEREYGBERGf2RFjdgMjQqTPAa+F0/UvtgLRQnExQmEy0oTQEsKmk6QRtDARIwYTAvGDAZFzEYf3BXN3ST/c4vDBgLPWskPiZ5A58NL4QzHjN5/QQ3QkQQQhFDA6sZEREYGBERGf5HX9xcIGLw/mcgHEAiJYGUHEIfqXFBHEEgRs6Amig/Lq2NQl17DEMNjGtMGRERGBgRERkBMhkRERgYEREZIRkRERgYEREZmBkRERgYEREZ+YEZEREYGBERGQF8GRERGBgRERkCkBkRERgYEREZ/CkZEREYGBERGQFPGRERGBgRERn+jhkRERgYEREZAR0ZEREYGBERGTsZEREYGBERGQJxGRERGBgRERmXBSYtLScFFgUnLS0oBfyKGRERGBgRERkAAAIBBP6sCSQGzAAPALIAAAEiJjURNDYzITIWFREUBiMhMxEBJwcXBxc3FzcnNycHEycDAQU3JQUHFzcXNyc3JwcnBxctAQcXNxc3JzcnBzcnBycHFwUBJwkBFzcnNycHNycHJwcXJwcXARMXNyc3JwcnBxcnBxcDARc3JzcnBycHFycHBQcXNwkBBwkBNycHNycHLwEHFwcXNxc3JwElNycHJwcXJwcXBxc3FzcnDQEXCQE3JwcnBxcHFzcXNyc3JwcBAbJHZ2ZHBsZHZmZH/Hl4AcnbAvIZOhAlNTXMDMdAOj7+QwGPH/5rAnRdMGEvNC9MA2g9NCv9mgIaMjY8XCpJbwN6WTJqoxt4/e0BuiX+bAFjzAeE0h7tFTwSUzNeZAp4/ngVeB18vCezDzwPeyCgE/7vkR6+ay1kLzgx9AMBASo6HwEB/g8sAe/9tWgLlRM8FCdRGXdxLGkhOx8CdP4bSCJkBzwItQGzEDoQXyAjAcD9MhMC6f4rFzwclC6smyeYdzFw4AyuAdT+rGZGBsdHZmZH+TpHZgNW/YMGPQZdDztDHV8pOicBRAz+1AJs8DP1THkkfVkbWgM8BXUdUkqXaRl+WCxEBzwHkh+sUzY8lQFiLv6/Ag4bPBF5NYjCBqaGIJYTOxf9uwKSQDRCnS6UkwaPTDNj/XECjlI0bHoncnEYcQo8CvAKrP2ZAhIo/e8BJhM7HJYHlBAmNjh0KmyFD3n+xhkzMUdaBWwBPAJkClo8MxYX/TkBBv4SjQmupCi+hi2EsCGoLzokAfMAAAAGAnr+rAeuBswAEgA4AFQAZwB2AIYAACUiLgICNTQSJDMyBBIVFAIOAQMiJjU0NjU0Jic3HgEVFAYVFBYzMjY3PgEzMhYXBy4BIyIGBw4BAwYmNTQ+ATcXDgEVFD8BPgE1NCYnNx4BFRQGBwMyPgESNTQCJiMiBgIVFB4DASInJicmNzYWFx4BFxYGASYnJjU0NhceARceAQcOAQWSdeXKnFikAR+2uwEfo0iBrwQrNyIFC0sOByITExMpIR9QKEdZElAMNi8YLyExN6owKhseAkcKIyxlDRMuKjJNMS40g1ORbT2N+6Wg+o9QjbbNATYpBhFFGBcOKg8qOQcCGf7UGhgnHxYUIhIUCgkKHp5ms+gBCIe/AS+wvf6307b+yeeB/g4/LC1MHxAiIBMnKRUjSRgVGhkZGCBQSRo1LhQXIh0BIgkqHh1ASCglKkkUFwkUAgoNEDUoNFJDGiInCgECdtMBGaO9ASWnm/72qXrw1KReAx4re1UeHREBEzWGRhYcAWoLAwUmFhoDAwoICSQSEwYAABIBJv6sCQIGzAAXAB8AKQA5AEkAUQBVAF0AYQBnAGsAbwBzAHcAfwCyAOkBFQAAASImNTQ2NwEXAQ4BFRQWMzI2NwEXAQ4BJS4BJzceARc3LgInNx4CFzciLgI1NDYzMh4CFRQGJzI2NTQuAiMiBhUUHgIBLgEnNx4BFxMnNxcBJy4BJzceAQUnNxcBJzYnNxYBLwEXASc3FzcnNxcBJzcXNyc+ATcXDgEBJz4BNTQmJyY1ND4BMzIWFRQGIyIuATU0NjcXDgEVFB4BMzI2NTQmIyIGFRQWFx4BFRQXNDY3PgE1NCYnJjU0NjMyFhceATMyNjU0Jic3HgEVFAYjIiYnLgEjIgYVFBYXHgEVFAYHDgEVASImJy4BIyIGBw4BIyImJzcWMzI2Nz4BMzIWFx4BMzI2Nz4BMxUiDgEHDgEBjS45FRkBe0n+hhISDBUXXDIDE2r8oE9gARZciSMrJqlysWGufBgxEovSeteB5K5koI9337RpmZJxal2dw2VtcliZxv0PKEUgOhcwHv6JNnUEYloBEQ5GFxsBXGc+Z/l2WBAHWgcGdXcDh/4PTEhMQCZSI/4QHFcZvkAWHQZUCSf8qjk7PAwMGkNwQU5ocV5XjlPQtQWUpjxpQztEOS1AZAsNDA5MhJVYNgoRKGFMLFk+OEYgODI1PUBEPmFZLl5BNz8eLDENEhQQWXF/XgJjM1xAMTUaECMgPGE2GTohEDstLE0zKDUZKFE7OEIhLy4YJouDRVY1Fh9Y/qw0LhtNOgODHvx9KzcRDRYiFAFCLP6fIBuSKoFQXWeeJ0QXdaVdbHbEfgxIYKncfJ6ubrzqe4uTUGRqa8ymYoB8bL+SVARIDykaPA8dD/7PR09J+zEPGDQZOCVXpGFAZwZ8HTw2Dk76NghZCQGCWD5W1HgafAJNihKMlkEYNRwOK0z7tTg+fD4fUCpZQkZ2SGdOT19UkFmPvQtQCY5wQ2s/MS0sOW1HFj80MFgjmrV5iSgXJSUSIB9JO05gJS4pH1BSUJJUMF6tW3R+KC8pGy8vEykiJTUdQk8dIV1f/sMwNywdCxEfGAYHTwwWGRQQKjMwI0Vpo41QK2lehWcAEwE4/rQI8AbMAAMABwAPADUAOQBAAEQASABkAGgAdACCAKcAtQDEANgA6QD9AQ4AAAUnNxcFJzcXLwE+ATcXDgElJjc+ATU0JicuATU0Njc+ATczDgIHDgEVFBYXHgEVFAYHDgEXASc3FwMuASc3FhcDJzcXASc3HwEOARUUHgQVFAYHJzY1NC4BJy4CNTQ2NwEnNxcBFjYmJyYnJgYWFxYFPgEzMjYmIyIGBw4BFgEeARceARUUDgEVFBYXFhUUBgcnNjU0Jy4BNTQ+ATU0JicuAScBJAARNCYnFx4BFRAABQE0NjcXDgEVFBIXBy4BAgE0PgIzMh4BFRQOASMiLgQ3HgEXHgEXPgE1NC4BIyIOAQU0PgEzMh4CFRQOBCMiLgE3FBYXPgE3PgE3LgIjIg4BAT8HXQcCFXY4diQ3GisTSRc2/bsNVCUaDRESETU5KjUDXgIqPiEfJgwKERoxOBUNAwPrSFBIWh02FzslLhU7cTv+8VA5UN8EB0t2hHZLDQpVDiZcUkWOXwcIAnReOF762R0gAxsfIh0fCx8bA2wUNhohFRUhIkodHgIm/Z4XNg9ANTo6JDFNS0ElUz0oPTo6IDERKRT9JwEDARYDBWECA/7U/usFBhsUXRQarJk0cqVY/tBQhaNTfcp3RGs6IXuYm4JPXFGyWnCVDC5BYqZmTphy+5h3y3xTo4VQT4KbmHshOmtEUEEuDJVwWrJRFnOYTmamYgltBm3NV0pX2EwTKRc8GzJeaj0aGw4OJiUnMxcuNxoUKTQ6SigKCRcaDCEUIUkfKzwoDx8e/d92MHYDOgwgEUodFf5ESVxJA3EyXDK/FjMWRn1xbm92Qx9FFyofMiFFXkU7iJ9fIT4d/jRGSkYDNgkgLwsNBgUoLgYFFgkMLS0QDQ0zIP5tCB0NN3BKTn1zQjVdSnRbQ3IgVStVQFs9f1RMf3Y/NksoDhoK+y26AhgBQhk/IRYUMB/+p/3AxwMyVctnCmPHU+r+hGhOTvIBMQRDL2ZZOHnJeWW0cTVacnp0UgNIPk2xSyeWXmOlYzVT43nJeThZZi8wdHpyWjVxtGVelidLsU0+SAMsUzVjpQAAAAAMAPv+rAktBswAEAAcAC4AOgBMAFwAZABuAHYAiACVAKIAAAUuAyc+AzceAhcOASU+ATc+ARcUBgcOAQE+ATU0JicWMjcOARUUFhcmIgMGJicuASceARceARc+ATU0JicWMjcOARUUFhcmIgE+AjcuAicOAQceAwEnNhI3FwYCNy4CJzceAhcvAT4BMxUOAQE+ATU0JicWMjcOARUUFhcmIgEOASYnLgEnPgEXHgEBJjY3PgI3DgEHDgEGZEVjT04vUV86LR5CkIk2PbH6Oy99YTp4IU07ZagCJw4ODg5KiEkODg4OSYiUL5JFcogwXMt2Q1JIDg4ODkqISQ4ODg5JiAKvSlcyETh0bi4tXTYjPUFP/lZDHZ95MnOWzw0mJAswCyUnDp8VLYJDP3b+Pw4ODg5KiEkODg4OSYgFblGyz31roQ0rx2mz9vyuBXdhc8+/WUbFpWTVOl+TjadyISMVExB60JEeTX4nQXQ5IhQSJl4jOyf+ZmSbRkiWYQ0NYJVKR5tjDgLtFiMvTqBYED5TL31hYZVISJZhDQ1glUpJlWAO/po4QikRLouiUBYjE1GDeH0BDhnMAWKKLoH+rRMfWVwhHCNdWyHAPxQYQgEWAQRhlUhHm2QNDWObSEmVYA7+TgwQDyIddT0tFR0ygwEnTLdEUVovD4HpcUUxAAAAAAYAev6sCa4GzAALAD0ASQBVAIcAkwAAASImNwE2MzIWBwEGAS4BJy4BJz4CNz4BMzIWFwcmIyIGBw4BBx4BFx4BFz4BNz4BMzIWFwcuASMiBgcOARMiJjU0NjMyFhUUBgEiJwEmNjMyFwEWBgEuAScuASMiBgcnPgEzMhYXHgEXPgE3PgE3LgEnLgEjIgcnPgEzMhYXHgIXDgEHDgEBIiY1NDYzMhYVFAYDmhQpDAKnEh8VKgv9WRP9tSU5GB9AIWp6WDdum0waXE8UcUA+hVpUjl8gLxMULBw0cmF7xmImQBwJHDkkUqtofa3XTGtrTExrawOuIRP9WQkfHCESAqcMKQIWTa19Z6tTJDkcCR0/JmLGe2FyNBwsFBQvH1+OVFqFPkBxFE9cGkycbTdYemohQB8YOf63TGtrTExra/6sISMHqjIhIPhWNQOQXspkgMVMJDAzJk1CESJPMjhBPEgfUKVSVaROEUlMYVYDBVAFA0lTZGIBqmtMTGtrTExr+rw1B6oaJzL4ViMhA5AKYmRTSQMFUAUDVmFMSRFOpFVSpVAfSDxBODJPIhFBTicyMCRMxYBkygFWa0xMa2tMTGsAAAAAEwKe/qwHigbMAE0AZAB0AIIAkgCWAJoAqgC2ALoAvgDCANIA3gDuAPoA/gEIARIAACUuAicuAjU0NhcmNTQ2MzIWFycmNjMyFhc+ARcRHgEXPgEzMh4BFz4BMzIWFxM+ATMyFRQGBz4BMzIWBz4BMzIWFRQGBzYWFRQOAgMiJCY9ATQ2NxceAjY/AR4BHQEUBgQnMj4BPQEOASMiJicVFB4BNyImJzceATMyNjcXDgEHIi4BNREeATMyNjcRFA4BAScRFxMRNxEDIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWARE3EQERFxEXNRcHNyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFiciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBY3NTcVASI9ATQzMh0BFBciNRE0MzIVERQFGnWGWzY/bkMcJykbGggeGhYPHxwRJhQCPCgbKhALJh8bOCoFFFAzIzkHASw1ECYPCxcjDSQcAhUeDRcbPDYtK22y0mWc/vegdmINOqrFx1YEYXqg/vidWJNZMatoa6cwWJNXabY9BiGtiIyiIQo8tWhptG4o1Y6N1ShutP6wRETLRKoqTTIyTSoqTjIyTiowNjYvMDY1AaVE/e5EfEQBZipNMjJNKipNMjJNKjA1NDAwNjWQKk0yMk0qKk0yMk0qMDU1MDA1NZVE/ukaGhvuGhobiQUPGxUZV10hEBIFMSgZHggOVzs7FhsyKgP+rgc4PTUrMEgjQE0tNgGRRSwvFjwZCwczOA4LIBoobzoQBREvVEQq/h4oQCNkHDgUbBkcBRYadxM5HWQjQCjWCx0b2xQTFBPbGx0LYRgWPgohGw09FhapGikWAYQnLy8n/nwWKRoCP0YCLw79TAK0Dv0+AfcuWkNDWi4tWkRDWi5ATT4+TUw/PU797wN/Dvy6AtUBkw7+qUyPDuMmLlpDQ1ouLVpEQ1ouQE0+Pk1MPz1O4i5aQ0RaLS1aRENaLkBNPj5NTT49TgV4Dnz8iRqrGxurGgIaAaQbG/5cGgAAKQCA/qwJqAbMABYAGgAeACIAJgAqADYAQQBFAFEAVQBZAF0AZABoAHUAeQCBAJEAngCqAK4AtgDOAN4A4gD4AQQBCwEZASEBKQEzAUMBVwFjAXoBigGWAaIBuQAABSImNTQ2Nz4BNz4CNyUeAhcDDgEjBTUzFTM1MxUFNSEVJTUzFTM1MxUlIScOASMiJicjDgE3PgE1NCYjIgcUBgE1MxUBMjY3LgEnDgEVFBYBNTMVATM1IwE1MxUBIiY1NDYzATUhFQEyPgE3DgEHDgEVFBYFNTMVASI1NDMyFRQnIiY1NDMyFjMyNjMyFRQGFzI2Jy4BNSEUBgcGFhMiJjU0NjMyFhUUBgE1MxUlIS4BJyMOAQEiLgE1ETQ2MzU0NjMyFh0BMhYVERQOARMiJjU0MzIWMzI2MzIVFAYBNTMVJSImNTQ+AjcFHgEXHgEXHgEVFAYjASImNTQ2MzIWFRQGFzcyFhUUBgEyNjU0JicuASceAwElLgEjIgYHATUzNSEVMxUBIiY1NDMyFRQGJyImNTQzMhYzMjYzMhUUBhMyNjU0LgEnDgEjIiYnDgIVFBYTIiY1NDYzMhYVFAYDLgI1ND4BNz4BMzIWFx4CFRQOAQcTIiY1NDMyFjMyNjMyFRQGJyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJy4BNTQzMhYXNDYzMhYVPgEzMhUUBgcBIEZaJyswXSUfOk48AU5SjWcZAggqIPxjVnxQ/t4Div4TUHtQ/ckC0E8oVSUnPhT4GDx9T2MtIxkcEwICVv7fG0AiESAOPWU8AghW/Kh8fAPUUPtOJDQoIgOeA4r8bESCbCIwbzZNeSUByVD7vlFRUcggLxkKHw0OHgoZL1aUdgEfIP5sHyABdi8QGx0QDxgaBRRQ/h0BpTNTIGweT/yvbZhPX4IzQEAzgl9QmAkgLxkKHw0OHgoZLwT1VvxzTCg1YYNOAVlWficnTTErKFpH+nQPGhgPEB0axA4iKDQEfCopcVlDg0MLVHV7/kMBIieTaGiTJ/uj8wFA8wJZKiZQUCarIC8ZCh8NDh4KGS9hdZIjMhcmTicnTiYWMyOSDxAbHRAPGBoed51NTIVUEVVLS1URU4ROTZx4CSAvGQofDQ4eChkvOg8aGA8QHRp1KDc3KCg3N0sLECoNGwwaFhYaDBsNKhALh1xEKk4lK35jUXpYHgQoodJx/q8ZGISgoKCgSV1dSaCgoKDziRISExMmSs4FRjciKQo0Zv37oKABqQsMIEolATctHyL+V6CgAuXl/DagoATeNiYrM/ofXV0BI1uKRiIvFBw8NBkh2qCgBH4yHBwypB0XGAwMGBcd/aOkFlYvL1YWpKMBgw8KCg0MCwoP+ligoPosaElOaAK6WZphAQ5QOqUpQkIppTpQ/vJhmlkBRx0XGAwMGBcd+t6goIRqdl/IuJIoAi6fYWGAKyVNKUVdBSQPCgsMDQoKD8q6MysmNvwAIRw2NRkTMyUxaVo4AT3YWXFxWQPJUFBQUP3DHBAbGxAcox0XGQwMGRcd/uqje05sSRgVFxcVGElsTnujAacPCgsNDQsKD/4PRXFwQWGVeTVDTU1DMHmZYkFwcUUBYB0XGQwMGRcdkQ8KCw0NCwoPnzknKDg4KCc53RArEy8QFCItLSIUEC8TKxAAKQCa/qwJjgbMADQARQBWAF8AbgB/AI0AmQClALYAwgDOANoBDwFFAVQBXAFkAWwBdAF8AYQBjAGUAaIBqgG2AcIBzgHWAgwCFAIcAiQCLAI0AjwCRAJMAlQCXAAAASIuATU0Njc+ASQzMhYXHgEzMjY3PgEzMhYVFAYHDgEVFBYfAR4BFRQHDgEjIg4CBw4CASImNTQ3HgEzPgI3Fw4CJTI2NTQnLgEjIgYVFBYXHgEBIiYnAzcTFgYBNjQ1NC4BJzceARUUBgcBIiY1NDceATM+AjcXDgIBPgE1NDMyFx4BFRQGByUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEyNjU0Jy4BIyIGFRQWFx4BASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWFyImNTQ2MzIWFRQGASIuATU0Njc+ASQzMhYXHgEzMjY3PgEzMhYVFAYHDgEVFBYfAR4BFRQHDgEjIg4CBw4CJzc+Ajc+AzMyNjc+ATU0LwEmNTQ2Nz4BNTQjIgcOASMiJicuASMiBAYHJzYzMh4BFRQGEzwBNTQuASc3HgEVHAEHASc2MzIWFRQXJzYzMhYVFC8BNjMyFhUUFyc2MzIWFRQXJzYzMhYVFC8BNjMyFhUUASc2MzIWFRQvATYzMhYVFAE+ATU0MzIXHgEVFAYHASc2MzIWFRQBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYBJzYzMhYVFAE3PgI3PgMzMjY3PgE1NC8BJjU0Njc+ATU0IyIHDgEjIiYnLgEjIgQGByc2MzIeARUUBgEnNjMyFhUUFyc2MzIWFRQvATYzMhYVFBcnNjMyFhUUFyc2MzIWFRQvATYzMhYVFAEnNjMyFhUULwE2MzIWFRQXJzYzMhYVFC8BNjMyFhUUA0VCcEMSE1D8ATqtKV8wOH85OlkiGisTPTQ3HwQECwk6NTNohPd3VXBXXEIwm7D+YSZFPQgcHyFwfDMiOIiEAVoQEBwYLBcUEA4QFy3+yhwVA+dk5gMaAlIBQZmEM8uuAQL8oyZEPAgcHyFwfTMiOImEA7U4PBcPDBQRAgL+6kBaSjtBWUo/JS43KSUuOP4gEQ8bGC0XFBAOEBcuAhoTGRQSEhoV+94hKyESHC0aSERhYUREYWECK0NvQxITT/wBO60pXy84gDk5WiIaKxM9NDYgBAQKCjo1MmeE+HZVcFdcQjCbsEIEP4SQUUVlYHFRcd92JCUvWDsXEhcpHRctKG44M4Y7MWAjnv7c5kMGCQouVjgTXEGZhDTLrQICByMIDh4bZiMIDh4b7CMIDh4bZiMIDh4bcSMIDh4b+CMIDh4bATIjCA4eG+wjCA4eG/2XMzcVDAwTEAMCAhkjCA4eG/ypQFpLOkFaSz8lLjcpJS03IhMZFRESGxYC9iMIDh4b+2kDP4SQUUVmX3JQceF1IyUuWDwXEhcpHRctKG44M4Y7MGEjnv7d5kQGCQovVjcTAq8iCA0eHGUiCA0eHO0iCA0eHGUiCA0eHHAiCA0eHPkiCA0eHAExIggNHhztIggNHhxkIggNHhxbIggNHhwDEGKYUSVGI5DNbQQDBAILCwgILio3eiwFCwUHDAIQDjglUE5jMwUPHRcRMCX87RkuPRIxGAMYKRxFHi8bCRsTJUtAOh8TGUAhMDz+phQVBu8J+REWHAFPFhYLXYJiLEBFwZ4MGA4DbRkuPRIxGAMYKRxFHi8b/KlGkkY0FyRRLRgxF95kRj5UZEY9VTY4KC9BNykuQgITGxMoSEA6HxMZQSAwPP4rHBQRGBwUEhcEWTccFx0xIBYggWFERGFhRERh+hVimFElRiOPzW4EAwQCCwsICC4qN3osBQsFBwsDEA44JVFNYzMGDxwXETAlMh0CGy0dGBwNBC9YGywTHg0YEC4UMRwlVxobDAoQAwQDA2e6fhYDXotEHz0DlhYWC12CYixARcGeDBgO/beBAiweKWKBAiweKeqBAiweKWeBAiweKWOBAiweKeuBAiweKf6kgQIsHinqgQIsHikBt0CFPzAVIUopFiwV/a6BAiweKQMWZEY+VGRGPVU2OCgvQTcpLkI+HBQRGBwUEhf9DoECLB4pAQEdAhstHRgcDQQuWRssEx4NGBEtFDEcJVcaGwwKEAMEAwNnun4WA16LRB89AVuBAiweKWKBAiweKeqBAiweKWeBAiweKWOBAiweKeuBAiweKf6kgQIsHinqgQIsHilngQIsHimYgQIsHikAAAAADgHx/qwINwbQAA4AGgAvAEgAVABgAGgAeQCIAJEAuQDDANEA8AAAASAmNTQSJDMyBBYVFAYEASImNTQ2MzIWFRQGAyYkJz4DNz4CJyUWDgEHDgIjPgI3PgI1FwU3DgEHDgMHJx4CFxMiJjU0NjMyFhUUBjciJjU0NjMyFhUUBjciNRE3ERQGAS4BNz4BNzYWFxYGBwYHDgEBMj4BNTQuASMiDgEVFBYTJyY2NzYWHwEDBiYnLgE3IicuATc+ARcWFzY3PgEXHgEHBgc2Fx4BBw4BJy4BJxQGNzY3BiYnFgcyFgE+ARcmNjciJw4BBx4BFwYmNQ4BIicmNjcuATc2Fhc+ARcWFAc2FgcOASMWBgWt/v/7mQEGpaYBBZeW/t79+xEZGRERGRkZl/6vmRxsjZ5OXHs6BgIeCSt8cnuXX18fbYRAhIgwI/4/JAd4XEGcl3QZK0fGxUbLERkZEREZGYERGRkRERkZQh9IFv5VEBAGGnZSEiIJCBIWiCwHGgEnz/twguGPjuODzJYgBwoTGhoFHkwZMQoIAhgJDxkRCwklHxUKAwUONA8QDgwGChUcEAEIBzAZBwoDDQQDGBMgBwIUERkBSQsdEA0CByEPAhEREA9DISsGLjYUFSUfNA8QGlYRAUMULhUnMAIELiMeJwIt8/igAP+UlP+huNZc/Z0ZEREZGRERGf7iPTAKQ2NLQiIpUW1RE3nGki0wSFg3WUUWLmuddyANIGqELB9CR08uLQMZKx8BFRkRERkZEREZbxkRERkZEREZrSMBEgT+6hMQAwEEHxVajzALBxAOHg1PkxYY/kdStJSL235+24rWxQOwaRYaBAYWEWb8qREPEQ4tFgYKNRQRHQsIDwkLGwILCi0UCgcBFAssDQ0SDQQOBQ8hUiAIAxENGhQOAQIWBQcMHAoWDRYFCR2IBDElDx0cH0QKEVIUIBkjMSIIE08VDSkXJBksPwARAQT+rAkkBswADwAgACgAMwA3AEsAVgBkAIUAogCtALsAyQDVAOEA9wFNAAABIiY1ETQ2MyEyFhURFAYjAT4BNz4DNycOAxUUFgEzNyEXMwMhJzM2NTQmIyIGFRQHITUhATY3PgEnJicmIgcGBwYUFxYXFjIBMzY1NCYjIgYVFCc+ATc1NCYjIgYdAR4BATUzLgE1NDY3NTQ2NzU0NjMyFh0BHgEdAR4BFRQGBzMVKQE1Iz4BNTQmJzU0JzY1NAImJCMiBAYCFRQSBBclMzY1NCYjIgYVFCc+ATc1NCYjIgYdAR4BJz4BNzU0JiMiBh0BHgEBMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYDNjc2NCcmJyYiBw4BBw4BFx4BFx4BATM+AjMyHgEXHgEXNSYnLgIjIg4BBz4BNycOAgc+Ajc+AzcnDgEHJz4BNycOAgcnPgI3Jw4BByc+ATcnDgEKAgcmGgI3Jw4BCgEeAQGyR2dmRwbGR2ZmR/jdCBwTAUBjay0mMHZtRgUEFYMRAUIRgx390IbZB0QwL0QSA278kvzVEjQGAQY0DwIMAhA2BgU1DwIMBHbZB0QwL0QlFDgnRC8wRCY6/rMWAgJWQ1ZDaktMakRVQ1UCAhb8DgPyFgICVUMZOHLJ/vaYmP72ynKcAQ2rAr7ZB0QvMEQlEzonRDAwRCc6hhQ6JkQwL0QmOgIAHSkpHR0pKSoVHh4VFR4eChpJBwdLEwIPAgs0IwcBByIzCQIP+XizJFdTHiguLygmaUVjPSE8SzkuZGApF21OMiRPRxkONEUmJXuTkjwOMGEsBi6DSgs6j4o1CVS1xWsPc71lCFSdQQ6M6biIWhURCUeVeit7mE4WDh/+rGZGBsdHZmZH+TpHZgNVLmUvd9aygSE3I43F74QlW/y8s7MBIuMTFC9ERC8UtWEEjjUOAgwBETYGBjQPAQ0CEDYG+7kTFC9ERC8Udh0qCQswREQwCwkp/nbjDhEIQ2QNCUNlDApMampMCgxlQwkNZEMIEQ7j4w4RCENkDQkyKoSYmAEKynJyyv72mLL+0M4hdRMUL0RELxR2HSoJCzBERDALCSqhHikIDDBERDAMCCkBWykdHSkpHR0p0R4VFR4eFRUeAQxLEwIPAhhLCAciNAkCDwILNCMHAfldXItOLU0xLj0KQhFMKVs/TINQZudeLCp3lFaT1qZKR146HQVEAxMTFCM5EzgMP1k1CWd5RhpIGFNIC15dHT0uvP7//tH+vZ6OASsBIQEFaTNr//7w/vTywwANAQT+rAkkBswAGwBVAGQAegCXAKQArwC7AMMAxwDLANUA7gAAASImJy4DNTQaATYkMzIEFhoBFRQOAQcOAgEiLgE1NDY3Fw4BFRQeATMyNjcXLgE1MxQWMzI2NTQmIyIGBw4CIyEiJjU0NjMhMh4BFRQOAQcOARMyNjc+ATcXISIGFRQWMwEyPgI1EAAhIg4BAhUUHgIXHgIFJz4BNz4CNTQKAS4BIyIOAQ8BPgEzIAARFA4BASUiJj0BNDMFMh0BFAE/AT4BNxc3DgIBLgE1NDYzMhYXDgEBBi8BNxcWByUDJRMlNycHAS8CDwE/ATMXATQKASYnDgIHJT4BMzIeARceARIVFAYHBNF//36NtmUpJ2CtAQq9vAEXwnc2BAsMH6n4/ki40FUDBEgDAUSuoCtuWRpKOEweKC4tHSgWFgUIIz8z/kxNSoNqAfBQWCMxcmM4YEAnJggFIy4Z/d9OVSsjAnJ+jkAQ/rH+pbbecygcUZx/Wr2nAUUvgpUbCggCMGyx/6xlv50zQmDUhAF4AYAXQf3n/vQQEiEBDCYCqCM3MUAmFMdEgZv60BsXn4I+TzCfygZHFwUqfDQGGP7IFQFqFf7b0wvT/VJ8GI4gcCtvhXACzyRHaUUgLSwf/vVftlU5fWoaP35TJSb+rAoOEEiF1p+1AWMBOPCJi/H+zv6vpCp5dSZkmVUBATuQgBciHhwZGwxlbSoDBy8IjbOac3lweWIhKD1JIEU/WGw2hnh0jEAEAgMBfzBAKUAJL0A5FyP90DVsp3MCGQIRhv7+muGTvW83DgkKAwcZLIJYIHJ0IpgBOwEg4oQ/c08OXE/9vP3KdaV2BAsEFBCJIwIijSP8Ukq5MEw0RARwjVYFOCxNJGuMP2QeffrfBRjXDcQYBqYBHBn+5DcRhRED9iqkApQJwkBc+0tyAQYBBeJNHS49Mt+Hhyc4G0Dv/qzYXYImAAAABgBf/qwJyQbMAAUANgBHAE0AUQBfAAAlATUJARUBIiYnDgEjIjU0PgI3LgE1NDY3NTQ2NwEXAQ4BDwEeARUUBgceAxUUIyImJw4BASIkJzcWBDMyJDcRNxEOAgMBNQkBFQkDJSImNTQ+ATMyFhUUDgEFE/tMBLUEtfieGycFBSARIxUiKRUXHRsZHisCGkr98ykTBQgaGxwaFSojFSQRIAUEKAKau/6SjzOEAVStsQE8eFBc3feRBGj7mPuABIAEYPui+6MEEig7MkchKjgxRrcCra8Cuf1HsftKLCIcJzU6obOuRhEuGR0xC3lBPxwBUzP+sBoxOGIKMR4cMglHrrOgOzUnHCIsAT+Nfzx1gnRtASMw/ohXeD4BEAJ/Lv2BApEu/eICegKI/XozMyIeMx8wIh41IAAACwKg/qYHiQbMACsALwAzADcAWQCBAIUAiQCbAK0AsQAAAQYuATcTNi8BLgE2NyU2PwE+ATMyFh8BFhcFHgEGDwEGFxMWDgEvASYjIgcFJwEXJyU3BQkBNwkBIjU0PwEnJjU0OwE3NjMyHwEzMhUUDwEXFhUUIyIvAQcGATc2MzIfARY2JwMmPwE2JiclJi8BLgEjIgYPAQYHBQ4BHwEWBwMGFgERMxEXJyUXCQEuATURNDYzITIWFREUBgcBJSEBPgE1ETQmIyEiBhURFBYXExEhEQQAKkclCTUHHMojBjEuASEbDmkRMh8gMxBpDhoBIi8wBiTKGwc1CSVHKvUQEBAP/sopAQIoWv5XEQGqAfL+/ycBAv5LEAQPJBcdNAoFDw8FCzQdFyQPAw8LERwcEf729S4UFS71FBYFNg0k3hQJGf7QNBhvBxAMCw8Ibxg1/tEZCRPeJw83BBcBMTKVEgGrEfzf/t8oHVI6A0Y6Uh0n/t7+iAFeAQ0REiMZ/LoZIxMQ6wGi/r4YD0AvARcmGbohTTwFIQMe6iUpKSXqHwIhBTxNIboZJv7pL0APGI0JCXUeAUofyJswnf3BAUkf/rYBaxUIDCwVDQsPMRcXMQ8LDRUsCQsVER0dEf6bjhoajgsRFgEdSiHKEiADIwY1+BETExH4NQYjAyASyiJJ/uMWEQJ6Abv+RYIunTABpwEQJToqAX46UlI6/oIqOiX+8FABARAlEwF+GSMjGf6CEyUQ/ucDOPzIAAQB4/6sCEUGzAANAB0AKwBjAAABBy4BIyIGByc+ATMyFgMGBAcBNiQ3Fw4BBxM+ATcRNhI1NCYnNx4BFRQCBxc2EjU0LgIjIg4CFRQSCAEXEyYIAQI1NDY3Fw4BFRQSCAEXASYIAQI1ND4CMzIeAhUUAgcF/iImZT49ZSYjL3dFRnekcP8Aj/62jwELcydk4nfket5hbHMZF08UHYN62n2JUIy1ZWS1jVCLAQIBZtrkt/6k/umkHhNQFhuqASEBasD+tvD+d/7kmV2i0nV10qJdk4cFEEgaGhoaSB8dHfsLbc5TAXxfzWlEXLRQ/vpMuF8CYpEBOq5TnjcSNaZfwf6pn+W2AXWaaLmPUlKPuWiq/oz+j/6vhwEGfwEbAUUBet9fpjUSN55T2/6O/sH+5oP+hIwBZQGNAZS8fdejW1uj132p/nLDAAAVAmf+rAfBBswAQwBZAGUAaQBtAHEAdQB5AIMAhwCLAI8AkwCXAJsAnwCjAKcAqwCvALkAAAEnLgEvASU+AzU0JicDLgIjIg4BByc+ATMyFhcTFhUUDgEjIi4BJwMmNTQ+AjMyBBcTHgEVFAYHNxceARUUBxcBMjY1NCYnAy4BIyIOARUUFhcTHgITMjY1NCYjIgYVFBYBJzcXLwE3Fy8BNxcvATcXASc3FwUOAgcnPgI3ASc3FwUvARclJzcXBS8BFyUnNxcBLwEXAS8BFwEvARcBLwEXAS8BFy8CFyUuAic3Mh4BFwU8HWRWHkUCCVmGWi0aGLoec655XKGOQA4ycixtlB/DF1egblJtSx+rHmCp3n/NAQI0uhIldW4hJQgJrRn9t4GWCwu5GXFYSnlHDwuvGzZNzhslJRsbJiX+pRR1FbYUeBW4FHoVuhZ+FQFsFeAVAW8KWI1aMEt8Uw79xRXeFgELuxW7/e4V3RUBC7gVuP3vFd0VAtOQFZD+S7UWtgGilBWU/ki1FrYBppgWmCqZFpn+sBRWdUMiUYhiF/6sfAU8ULdODixCXD0vjlECc2aFQSxWQC8iJnl0/S9VVXWsXjeHeQKYd1FmsIZLs7D9jjurPnCUIC9/GjQZmjZ8Ae2njyJMKgLHXl9Fd0woVyz9X2huKP72Kx8gKSkgICoBeVFKUJ9RTFKfUU1RnFBRUv2aUZFQqEV0TQsgCURoPAEDUJBQ5wJQAvJQkFHmAlAC8lGPUP1EAk8CAYcCTwL+xwJPAgGGAk8C/sQCUAKdAlACZzZSMAIkNWRFAAAAABACWP6sB9AGzAAPABMAFwAbAB8AIwAnADcARQBJAE0AUQBhAGUAaQBtAAABIiY1ETQ2MyEyFhURFAYjATUhFQE1IRUBNSEVATUhFQE1IRUBNSEVASEyNjURNCYjISIGFREUFiUiJjURNDYzMhYVERQGATUhFQE1IRUBNSEVAyImPQE0NjMhMhYdARQGIwc1IRUBNSEVATUhFQNbeYqKeQNyeYqKefxyAT7+wgE+/sIBPgEuAT78VgE+AS4BPvxyA3JYW1tY/I5YW1sCEREXFxERFxf+GgE+AS4BPvxWAT4jGSUlGQF0GiQkGiMBPv7CAT7+wgE+/qyEcwYydIODdPnOc4QBLFBQARhQUAEYUFD90FBQA0hQUP3QUFD+DFVSBjJSVVVS+c5SVXQYEQZGERgYEfm6ERgEyFBQ/dBQUANIUFD+sCQZRBokJBpEGSTgUFABGFBQARhQUAAAAA4BBP6sCSQGzAAPAB8ALwBEAFQAZAB4AIgAmACoALwAzADcAPAAAAEiJjURNDYzITIWFREUBiMlIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIWFwcXNx4BFRQOAQMiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyIuATU0PgEzMhYXBxc3FhUUDgEBITI2NRE0JiMhIgYVERQWJSIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3Ii4BNTQ+ATMyFhcHFzcWFRQOAQMiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyIuATU0Nxc3Jz4BMzIeARUUDgEBqkRiYkMG1kRhYUT6yV+fX16fYGGeX1+eYVCEUE+FUE+FUE+FUD5oPT5nPkZzGNQM2AEBP2c9XpxcXJxeX5tcXZteToJNTYJOToFNTYFOPmc+PWg+KkwdnS6aJT1n/iMG1SMyMiP5KiIzMwVZYJ5fX55gYZ5fX59gUYRPUIVPUIVPUIVPPmc+PWg+KkwdnS6aJT1nP1+fX16fYGGeX1+eYVCEUE+FUE+FUE+FUD5oPSWbLZ0dTCo/Zz0+Z/6sYUMG10RhYUT5KkNi8F+gYWCfX1+eYWGgXztPhFBRhk9QhVFPhFBAPmg/Pmc9Tj4sPywIEQg8ZDsDD12cX1+bXF2bXl+cXTpNgk9Ogk1NgU9Pgk06PWc+P2g+HxqZLpc6Qj1nPvtiMyIG1iMyMiP5KSIyoF+gYWGeX1+fYGGgXztQhE9RhVBPhlFQhE9APWc+P2g+HhqaLpc6Qj1nPgMIX59hYJ9fX55hYZ9fOk+EUFGGT1CFUU+EUEE+Zz1COpcumRofPmg/Pmc9ABIBT//YCNkFoAADAAcACwAPABMAFwAbAB8AIwAnACsALwAzADcAOwA/AEMARwAABREhESUzNSMFMzUjBTM1IyURMxEFMzUjBTM1IwEzNSMBMzUjJSERISUzNSMBMzUjATM1IwUzNSMBETMRATM1IwUzNSMFMzUjAU8HivjCiIgBFYeHAQ+Hh/58UAJEh4cBD4eH+72IiAVSh4f6sQbs+RQBEoeHBVSIiPu7h4cBEIeHAs5Q/fGHhwEPh4cBF4iIKAXI+jh4UFBQUFBEA7D8UJRQUFAEOFD7KFBaA4RaUPsoUAQ4UFBQ+7wDsPxQA/RQUFBQUAAKAJYACgmSBW4ADwATABcAGwBHAEsATwBTAFcAWwAAJTQmIxEyNjUhFBYzESIGFQEhESETETMRJTUhFQEhPgE3NS4BNTQ2NzUuATU0Njc1LgEnIQ4BBxUeARUUBgcVHgEVFAYHFR4BNxEhESUhESETNSEVEyERIRMRMxEBET49PT4IBj49PT75EgEY/uhnSwGhATD7qQd+EDknIi8vIiIvLyInORD4ghA5JyIvLyIiLy8iJzmeBmL7QgMa/OaRAfjXARj+6GdLCj0+BG4+PT0++5I+PQFTAr79pgH2/go3goL+Yik6DNQFNiIjNQXKBTYiIjYF1Aw7KCg7DNQFNiIiNgXKBTUjIjYF1Aw6lANK/LZGAr7+44KC/l8Cvv2mAfb+CgAAFAEO/qwJGgbMAIkAmwCfAKcAqwCzAQ8BGwEwAUEBcAGEAYgBmAGgAaQBtAHJAc4B0gAAASIvAS4BJyUnBgQjDgEHBQ4BDwEeARUUBg8BDgEjIiYnJjU0Nj8CLgE1ND4BNTQmJwcUDgEjIiYnBw4BIyImNTQ/ASY1NDY3LgE1NDYzMhYfAT4BMzIeAhUUIyInHgIVFAcWMzIeATMyPgEzMhYXMh4BFRQGFRQWHwEeARceAhceARcHDgEBLgE3PgE3PgE3PgE3PgE3FwcBJzUXBxE3ETMRNxEDJzUXASI1NDMyFRQBNy4BJy4BJy4BLwEuATU0PgE1NC4BJxEGIyInDgEjIiYnDgEjEQ4BBx4BFw4BBw4BBw4BBw4BDwEOARUUFhc3Jzc+ATclPgE3MjY3PgEzHgEXHgEXHgIfAR4BASImNSInNjMWFRQGEyc+AjcvARc8ATU0JiceARUUDgEBLgEnLgInLgInJic3BRMBPgE3Jy4CIycOARUUFhcUBg8BDgEVFBYzPgE3HgEzPgE1NCYnNx4BFRQOAQcGBT4BNxYzMjY3HgEXEQ4CIyImJwEnNRcBIicuAScmNjMyFx4BFxYGJREjESMRMxEDJzUXATI2Jy4BJyYjIgYXHgEXFhciLgEvAjYzMhYfAR4BFx4BFRQGASc1MxcRJzUXCIYREUcsNg/+xWZJ/vinEDcW/vwhJw4iEhgMCDIdLBoiJRoSFSJnrxsTLy8CBDYkMBMOGBESCRwMQVkdCQweHwsNHBUOHQ5fGjUXNnJjPT0JCjhQLBQPESk5QjUwVV47DBYIaJhUMBwVagIXEBEXEgkVOSEyBhv4tw0JDA8qDRIMIx9QJh0gBxCfA1WpqcxQRlAaqan8JBkZGAagIAcaIAkUDAwTBkonLhgYQnRLEhRLPx9MJiVHHB5QTDqrRgggFhVLLiYmCAcLBAgQFB0aEwgGZgsyGDs0AQIYMQtisHAwVCgUNSUlTiM4PicUCA4j+cYKECIPIDEVDQc1Gi8jBpILnyceNz0fMgXTGSoNLTIjGCdWXTNbCHMBM9P6pGKqQxFblY1SiwEBGRAkHQsODjQmCx0WDhkUDxYCAYMeIigsBgEBfx4wJEBKIEgqFTcdKVFaOE1sMgFAqakBhxkEBA4ICBQPEwkLDwQDFP42RlDmGqmpAv4PEgwWKA4IFA0TBhEqGgozPnBKBQxJNT8+XSUNETgnFBVO/KOpPmupqf6tDj8VPjfycwQuHSYBBwEaFzYSLhENGwtEKC5OZCwYIzspyTcdeEJAfno6DhwMOjJNKwgQKAcGYEM7M90mJSlJFho1FyktDw1RBwYaKzAXFgEcYHdCQDwGIiIcGwQDVJRhRoMlHB0HIjRUHh8aGyIFExHUGhkBXxApHycsHyw/IR0CCQcOEFgw/ghuSG7LAkAJ/gIB+An9tAGHbkhuAu0lJCQl+8deIDEmCx4YGT8uGQ45MCdKTy5JdkcC/hIFKxwcFxMaFgFBLnAhKUQeDhgFBAkICRoULCcZJCEqFAkeCUQrUSYgAQYBKhkREQgFMTwVFRMDBCZUSh0wKgUuEg0ZJBMhEBj+2Qgpip5FXEJlAgYCKVQpClViQbGl+3YKFQwrQzwfNTErK04kAuT+7wM1L4ZKJcfrZ3gEDAYhVhYgWB3vGikXIz8mJgMeFQ8xHwURBJokWSs5dmwrB9MEGSI7ISUVHQMBL1NmLl5yAVtuSG79zRkWLRUUGhQZNBoRE8oDjPx1A9v8JAIlbkhu/CocEyNLJhYXES1QJg6CSHdFn2kvdnEoMlkjEh4OGyUFFG4gRvysbkhuAAAdAUf+rAjiBswAJQAxAD8ARgBMAFoAZgBsAHAAegCAAIYAigCRAJUAoQCvAL8AzwDtAPMA+QD9AQEBDwEdASMBKQE3AAAlLgECNTQSNiQzMgQWEhUUAgYHJz4BEjU0AiYkIyIEBgIVFBIWFwUiJj8BNjsBMh8BBwEiJjU0NjMhMhYVFAYjJQETMxcHASczATcnAwEiJj8BNjsBMh8BFgYjASImJzcWMzI2NxcGARMnNRcDFyclBxciJzcWMzI3FwYBMwEDBxcBJzcnMxcHNTMVCQEnNzMTAQMvAQUDJzc2OwEyHwEWBiMBIiY/ATY7ATIfARYGIwEnIzUnNzUzNxczFRcHFSMnNzM1Nyc1IycHIxUHFxUzAy4BNTQ+ATMyHgEVFAYHJz4BNTQuASMiDgEVFBYXBQM3FQcTASU3BTczEzUzFSU1MxUBIiY/ATY7ATIfARYGIwEiJj8BNjsBMh8BFgYjFyczFyUXEyc3MwcXAyImPwE2OwEyHwEWBiMDm4XLcYDkASurqwEr5IBxyoYoebhodM3+8pua/vHNdGi4ef7oISsEHAo/rD8KGEz+7QcICAcFPAcICAf64QGfgzJHTf753ZwBEl8uc/0qISsEHAo/rD8KHAUsIQKbN2s0I1pZL1orIGr9aFGl7VpYDwEJIb4iKBsXGBkWGygBWZz+lHMuX/0LHcY9Pkcb9QH7/vlNRzKDAZ/q2SEBCRtMGAo/rD8KHAUsIfroISsEHAo/rD8KHAUsIQHJT3FPT3BQUHBPT3FPN003N0w4OEw3N02HiK2H4oqK4oetiB1xkXG+dHS+cZFxApBa7aVR/TH+3QYA/05D7/X+LDwCfSErBBwKP6w/ChwFLCH8DCErBBwKP6w/ChwFLCEuc0NOAP8GyPFHPj3G4CErBBwKP6w/ChwFLCFPRd4BHKCrASvkgIDk/tWroP7k3kVFPskBApGbAQ7NdHTN/vKbkf7+yT6DMCLCRESmbv6bGhwcGhocHBpGAmIBRLPN/dogAiH9OP7NARswIsJERMIiMP2kDw1KFgwKShwBbgENVUN6/tVVOkpJDwVOAwNOBf3ZAiMBMzj9Aho1YN7+sjw8++ICJs2z/rz9ngIbO0lK/spupkREwiIwBIAwIsJERMIiMP2OT3FPT3FOTnFPT3EFN003N002Nk03N03+tzj5nIrih4fiipz5OEov0oJ0vnFxvnSC0i9JASt6Q1X+8wNhWD1NmP1tPDzo+fn+WDAiwkREwiIwAyQwIsJERMIiMLHgmE09/jJ1/t5gAQ8wIsJERMIiMAATAOL+rAlGBswAEAAUACkALQA5AEQAWwBnAHMAdwCOAJYA0ADcAOcA6wD3AP8BCwAAEwgBIToBMxEuASMiDAEIAQc3JzcXEzUuASc3HgEXFTM1PgE3EzcDBgcVAyc3FwMiJjU0NjMyFhUUBgEzEggBJDc1BAgBAREuAS8BNxceARcRMxE+AT8CAwYHEQE+ATcnDgEHDgEVFCUiJjU0NjMyFhUUBhcnNxcBES4BLwE3Fx4BFxEzET4BPwIHBgcRAT4BNycOAQcBLgE1NDY3PgE3JyY1NDYzMhYfAT4BNycmNTQ2MzIWHwE+ATc1NDYzMhYfATY/AT4BMzIWHQEzFQQAJSImNTQ2MzIWFRQGJz4CNycOAwcBJzcXJyImNTQ2MzIWFRQGNz4BNzUOAQcFIiY1NDYzMhYVFAbiAegEGQI7CxMKChMLpv6X/pL+pP7MeTDWKtY9ChAHRgQRFloXEQQraEUJIUW3OLeBGCEhGBghIf29+JsBjwHAAczY/qz9dv2LAtEQFgUERwwFDxhaFxAEI1svCiD89zucTyxOfzQEBwGPGCEhGBghIeaTQpMBoBAWBRZLGgUPGFoXEAQjUycKIPwQTbBAKVekRP6YHxMSDyRKKCcPJBkUKxMjO3Y5EwgdHhUjECNLmUwiJhQiChOFjA0JKxsfHhr+gvz2AZQYISEYGCEhEiJ3gzEOKGttVREB7idPJ5sYISEYGCEhCESOO0SJTQEqGCEhGBghIf6sAzUDPP7IAQGC8P60/mrnvoFEgf7+9goVDUAYKxa+wRQgGwEdlv5AOSLzAjmqOaoBLyEZGCEhGBkh/K8BHAHfAWbODJYJ/rT9cv3CAzwQKhwXOkQbIhX8/gMCFSIbyjb+8zoc/MQEPTiIOlA9ajMRJhEdfCEZGCEhGBkhqcotyvu4BD4QKhyCIJUbIhX7/AQEFSIbygngOhz7wgVlOGshWC5nMf31FCUhF3dEI0AiUSAaICYaHTYtUSNFHhciLB0dPidBGUowQCckRR8LPSouNyE50gf+fHchGRghIRgZIaIRMS4LWQchJyIJ/pf2C/bpIRkYISEYGSGqDxQCTQEPDdUhGRghIRgZIQAAAAAJASL+rAkGBswAOACEAJEAnQDGANkA9gETAScAAAEnNhI1NC4BIyIGBw4BFRQzMjc+ATMyHgEVFAIHJzYSNTQuASMiBgcOASMiJjU0Nz4BMzIWEhUUAgEiJi8CLgE1NDY/ATQuAScuASc+ATc+ATMyFwcuASMiBgciDgEHHgEXHgIVBwYVFDMfARYzMj0BPgI1NCYnNx4BFRQOAQcVFAYTIjU0PgEzMhYVFA4BEyImNTQ2MzIWFRQGAScmNTQ/AS4BJwcOASMiJicmNTQ2MzIWFz8BPgEzMhceARUUDwEOASMBBiYvASY2MzIWHwE3NhYVFAYHASInJjU0NjcBPgEzMh4BFRQGBw4CBw4CBw4BJzI2Nz4BNz4CNz4BNTQuASMiBgcBBhUUFhceAQEnPgE1NCY1NDY3Fw4BFRQWFRQGCFcwTFdlypZt3EQUFxQTGmSmT3WpW01JPEpMSo5mSJBZFjEUHik7SvR5puV2XfneIjEUGHI8OCksjQsWEhkzGjlzQzO2W0Y6FBs2G02eKh5KQxYTKxQZGgnFHxizMAsOGJDaeRAOShAUe9mPQXQJEyEUGhooNkYYIyMYGSMjAstbHAgfDQwCUhMmFBIhDjEqHxczEn8iFzsqJDUwMhM4Ej8r/Z4VIwIJARgQDhkBBlwcHxARAhMwMmkKBwEfGDkoNlUyBAUGIzgkKD4sDhI5Iw4SBxdMOSQ3JAUCAxsuGxAaC/7dChgiEyD9fx46OAlSTyNERAlCAhkjlAEwiZnqhExBEx4LERA9NFqwg3z+1ZgOmAEfeXKWSjA0DRIrGTk5RliT/vyrlP7A/IwrLDYDAjciIy8TOx88PyM1dlsnMgxKVRBNBwZOThEbDz1gJi9WWjdODQgPAnQaLZ8Wk9h8LE0kHihgOIPqqSRdRTgBtxFJeUkrIyZhRwF4IxkXJCQXGSP9ISgMGQkWUhEZFC0KCgcGFiseKB0XRVU6NBQSPiomKoIpFwKtBxcWmBgZFxpmHQkaEgwXBfvAFy9SESESAqA4MShBJw0eExdvmlpjilgYHiJQDgsnnI5amGoVChQIER4TFhn9WhgNEBkQCQcD9jAyaTQsVDFdojQ6LnxRKVwqQ4AAAAYBBP6sCSQGzAAOABoALABAAFEAXQAAAS4DNQEXAR4CFwEXBSImNTQ2MzIWFRQGJSIuAScuAjU0PwEeAhcHBjciLgE1ND4CMzIWFx4BFRQOAicyPgE1NCYnLgEjIg4BFRQWJS4DJzceAxcCXD56ZDwD8Tj8KwlIZTQEMjr+QSAvLyAgLi4BgBNLYTczXDsKcS6q0WemE0KDw2tNjb5wYrRFRUpdotBxg+KLPTo6llKCx3C8AiVNu7yfMT4vnru4Sf6sBEBldzoEWzv7xDFiSg0DyjhMLyAgLy8gIC86LlAyL2FPExENlWS8kyVxDFtrw4Nyz6JdSkVFsmJyv4xMT3HHgFOYODk+jOKCprxnK5GtsEkzR6+sjiYAAAAAEwDm/qwJQgbMABMAFwAlADMANwBDAE8AXwCDAJMAowCzAMMAzwDbAOsA+wELARcAAAEiLgI1ND4CMzIeAhUUDgIBETMRByImNRE0NjsBEzMRIwMnMxMzESMDIyIGFREUFiURMxElIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYXIiY9ATQ2MyEyFh0BFAYjASImNRE0NjMhFSEiBhURFBYzITI2NRE0JisBNTMyFhURFAYjATI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEnIzUzFzUHIzUzNyUiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgPrdtCeWVmd0Hd3z55ZWZ3Q/X5QnUhlZkeZyMHByJlxyLS0yHEnNjYBWEkBaxchIRcXIiIXFyEhFxciIqwbJicaAdsaJyYb/RdHZmZHArH9Tyc2NyYDYic3Nye5uUhmZkj8XIjghYXgiIjghYXgiGyxaWmya2yxaWmxbFuXWlqWXFuXWlqXW0JtQUFtQkNsQUFtQj1XVz09V1cFlLZsflRUfmy2/h9wuW5uuXBxuG5uuHFalVhYlFtalFlYlVo9Zjw8Zj0+ZTw8ZT48VFU7PFRVAlJZndB3d9CdWVmd0Hd30J1Z/IYDr/xRLGVIAq9HZv70/g/+9FABDAFRAQw2J/1RJzbiAaP+XQ4iFxciIhcXIqkiFxciIhcXIp8mG4UaJycahRsm/shmRwKKR2ZQNif9diY3NyYCiic2UGVI/XZHZgPkheCIiOCFheCIiOCFaGmxa2yxaWmxa2uyaTpal1tbllpal1tbllpcQG1CQm1BQG1CQm1BXFc9PVZXPT1W/INUUCjJKFBUEm64cHG4bm64cHC5blBYlVpalFhYlVpalFhoPGY9PmU8PGU+PWY8UFQ7O1RUOztUAAAABAEE/qwJJAbMAA8AIwAzAD8AAAEiJjURNDYzITIWFREUBiMBITI2NRE0JiMhIgYdAQERARUUFhMyPgE1NC4BIyIOARUUHgEFMjY1NCYjIgYVFBYBqkRiYkMG1kRhYUT7zgMKICssH/z2Hyz+agGWLIZViVJSilRTiVFRiQKmVnd3Vld4eP6sYUMG10RhYUT5KkNiAWMpHwIxHystH78BB/1FAQTAHykDU1GJVFSIUVGJU1OKUQJ5VlZ3d1ZXeAAADgFj/qwIxQbMAB0AKAA4AEIAVgBuAIMAmACoALwA1ADfAP8BCQAAASImNTQSLAEzMgwBEhUUBiMiJicuAiMiBAYHDgEDIiY1NDY3HgMFLgECNTQ2PwEOARUUHgEXAS4CNTMUHgEXATI2PwE+ATU0LgEnBw4CFRQeARciLgE1ND4BPwE2HgQVFA4BDwEOATciLgEnLgE1ND4BMzIeARceARUUBiEiJjU0Njc+AjMyHgEVFAYHDgIXJz4CNTQmJxceARUUAgYHMj4BNTQuAS8BDgIVFBYfAR4BFSImLwEuAjU0PgQfAR4CFRQOATc+AzceARUUBgEyNjc+AzMyHgIXHgEzMjY1NAImJCMiBAYCFRQWASc+AjUzFA4BAgtJX40BAAFYzMwBWAEAjV5KT1sLE6L/oJ//AKEUClw0T08yNAILERIBVjxdNQwNTw0MMVk9/i0LDARPAwcEAV0TIxRiDxIvVDlpTXpFWaF9jMtsUZFgWzZWQjAeDxUtJlkTIJcZPzsWDQ4LFg8ZQD0UCw8ZAYsXGRAKFTxAGRAVCw0OFTw+tUg9WTELDk8OCzVcUWugWUV5Tmk4VS8SD2IUIxEfFFklLhUPHjBCVjZbYZBRbMroCBIRDAE0Mk75uzIvBxBzs+aDg+azcxAILjIwKn7m/sPAwP7D5n4qBmJCBQYDTwQMAo9hVMcBS/KEhPL+tcdUYV5bqu17e+2qW179DmpJN14KHmFpVuVC4gEKfjZQPgg5XjV39uNZAfRksqBIPIaBNv2uBAMQEl9AgPTHPhINbKVjgcFsSnninXfCfxIRCkuIp6aHJFJsOgYOAwNGb710Sos6NFMxcLxzO5pFUV1dUUWaO3O8cDFTNDqLSnS9byYDWeP2dzVeOQg+UDZ+/vbiGGzBgWOlbA0SPsf0gEBfEhADBEoDAw4GOmxSJIemp4hLChESf8J3neJ58RRWaWEeCl43SWoDPjo/jN6bUVGb3ow/OjM3swEt3Xp63f7Tszcz/eiFNoGGPEigsgAOALT+rAl0BswAKQA5AEYAVgBkAHQAggCsALoAyADYAOYA9AEHAAABIiQnJgI1NBIkITIMAhoBFRQOASMiJicuASMiBhUUHgEXHgIVFA4BATI3Njc+ATU0JiMiBhUUFhciLgE1NDYzMhYVFAYBMjc2Nz4BNTQmIyIGFRQWFyIuATU0NjMyHgEVFAYDMjc2Nz4BNTQmIyIGFRQWFyIuATU0NjMyHgEVFAYBMj4BNTQmJy4CNTQ2MzIWFx4BMzI+ATU0CgEsAiMiBAIVFBoBFxYEASIuATU0NjMyHgEVFAYnMjY1NC4BIyIGFRQeAQEyNzY3PgE1NCYjIgYVFBYXIi4BNTQ2MzIeARUUBgUyNzY3NjU0IyIGFRQWFyImJyYnLgE1NDYzMhceARUUBgXL2f5etPnvuwFrAQepAVQBQAETz3RfoGJRlkI3YiwgFjdXMDZkQXLI/bUVBAQbCwwSESUtFpM1bktJSV59RP2kFQQEGwsMEhElLRaVN21HSTo5Z0JInxUEBBsLDBIRJS0WbCxXOko0MVw8TwK3aqVeZEI4cUpHPzpwOT+DSUx8SW/F/vz+0v7Ane7+uKhlzZ2pAYYBukWDVFdFRoFUV0QjKD5dMCQoPl/+FhUEBBsLDBIRJS0WcTVcOEk6M1s6SgFnEQQEFxQeICgUfhwsEhkiGB85LCk5LzM6/qy9qOgB/+fSAVTHbLz2/uv+44Vaj1M+Ih0qGhclPDQZGz5MMkp0QgH3ICQQBw0KCQsrJBcgjTxkPTs8c1ZBSgJbICQQBw0KCQsrJBcglENlMzJBPWA0NEkCuCAkEAcNCgkLKyQXIHM4VCkvRC1GJT1T+toxUC8pQSIdRFo8PEcwHiE4PmxEegEIAQPmsmay/tC+jv7J/seTnrEDBk96QkRUUHxDQVNQJCAtWDolIytXOQKUICQQBw0KCQsrJBcgcDBOLDRANFItLj1RHB0QDgsSJiATG24UFB4KCDAeKzcZFEAnK0kABQBk/qwJxAbMAC8APwBTAIUAlQAAASAkADU0NjMyFhc+ATU0LgEnLgE1NDYkISAEFhUUBgcOAhUUFhc+ATMyFhUUAAQBIiQnPwEWBDMyJDcfAQYEASImNTQuAScmNjc2FhceAhUUBgEgLAE1NCYjIg4BBy4BNTQ+ATc+ATczBgQhICQnMx4BFx4CFRQGBy4CIyIGFRQMAQEyJDY1NCYkIyIEBhUUFgQFEv6W/eX+13dgO4Y6BgoUHhAQFb4BbwEIAQgBbr8VEA8fFAoGO4U7YHf+1v3k/pTJ/nqoE0eTAViytQFZk0cTqP55/XURGAgPCwISEhIaAgoPCRYBrgFUAfgBFkk+J1lyTQoSFR8PCRIIJUz+cf7S/tL+ck0lCBIJEB4VEgpNclknPUoBFQH3AVTaAU69uf6z397+srm9AU7+rJMBC7RuizkfQIxHa8m4UFKHMUheLi5eSDGHUlC4yWtHjEAfOYtutP71kwG6MjOobQ4ODg5tqDMyAhMXEz+AjE8RGgMDFBJRkYQ/Ehj8g4LnmU5bHTkrTtFtX8nDVTJZJUNGRkMlWTJVw8lfbdFOKzkdW06Z54IGbStCIiQ8JCQ8JCJCKwAADQE7/qwI7QbMAEsAbACCAI4AogC4AMkA6gEoATkBTQFRAWQAAAEuASMiBgcuASMiBy4BIyoBBy4BIyIGBzU0Njc+Az8BPgEzMhYfAR4DFx4BHQEuASMiBgcmIiMiBgcmIyIGBy4BIyIGByYjIgEiLgEnPgI3ExcDDgIHHgIzMjY3NhI1MxUUAgcOASc0LgInPgM3Fw4DBx4DFTcbATcXGwEuASMiBgEnLgE1NDc+ATcXDgIHDgEVFBYBND4CNy4DJzceAxcOAxUBJzQ2Nz4DNxcUDgEHDgEBIiYnJgI9ATMUEhceATMyPgE3LgInAzcTHgIXDgIBNjMyFz4BMzIWFz4BMzIWFzY3PgEzNTQmJy4DJw4BIyImJw4DBw4BHQEyFhcWFz4BMzIWFz4BMzIWBTQmJy4CNTceAxceARU3PgE1NCYnLgInNx4BFxYVHAEHAREzETciJiMiBgcnMzIeAjMyFhUUBgSPD0AqHTEXEz4mJxwVQiwFCwUWQCANGhA5SjSSl34gby8wFhYxLnEgfZeRNEo5EBoNH0EWBQsFK0MVHCcmPhMXMR0qQA8oXV3+lUvDvkUQKSkPYU5hCyAhD0Gblzo4OiY9NFA/QjBbOCpIXjNdglxDHEIdSFhpPitOPiQ4ehGgoBN6V4FVU4H+uW4BAQuc7GEnKGmcdwUGAgOAJD5OKz5pWEgdQh1CXIJdM15IKv2osAsQIUhCMgsqJTccBAECbUxcMEI/UDQ9Jjo4O5acQA8hHwxhTmEQKCkQRL/C/VY4Xl44GTEeFzgWGzkjCxwKOFYYRhscNzCCin8uJnI+PXMmLn+KgjA3HBtGGFY4CxwKIzkbFjkWHjEBVAEEHDclKgsyQkghEAvGAgIGBXecaCknYeycCwL9XjLBLk0tDRUPDksuNiw8NSQcXgFVDiEVERogESMqARQXBAX4MjwhF05aWCFzMCYmMHMhV1tOFyE8MvgFBBcUASojESAaERUhDkL9FTFSMSJxhDwBdhT+ii1oZCclPCIfM1IBGfQi8P7eW0IwMRdJV1clVX1gUyssLVleZjofUFVQH0wBAQFWODj+qv7/DQwMAolBESIQVEJkx2kcPXSPaCVLIxYs/QkfUFVQHzpmXlktLCtTYH1VJVdXSRcCrAw7hDoqeoV1JAk7oqlGP3j86DBCWwEi8CL0/udSMx8iPCUnZGgtAXYU/oo8hHEiMVIxAwoxMQ4QCQoTFAICPQMUFKEUGRgVSVZWIxYXFxYjVlZJFRgZFKEUFAM9AgIUEwoJEDs7eD9GqaI7CSR1hXoqOoQ7KhUsFiNLJWiPdD0cacdkQlQQIhEDMQGb/mXGFQMDxiApIAwOGjgAAAASAKoACgl+BW4AAwAHAAsADwATABcAGwAfACMAJwAzADcAQwBHAFMAVwBjAGcAADcRIREBNTMVMzUzFTM1MxUlNSEVJTUhFRM1MxUzNTMVATUhFQM1MxUBIiY1NDYzMhYVFAYFIREhASImNTQ2MzIWFRQGFzUhFQEiJjU0NjMyFhUUBhM1IRUBIiY1NDYzMhYVFAYTESERqgjU+EVcRI5Ojv32Aev+FQHrY1xEXPy2AtpaygFTJjY2JiY2Nvp0CDT3zAVmJjY2JiY2NtkBTf20JjY2JiY2NtkBTf20JjY2JiY2NtkBTQoFZPqcAQigoKCgoKD0WlqrWlr+YaCgoKACcGRk/u2goP5nNyUmNjYmJTd8BMT8vzclJjY2JiU31mRkAdw3JSY2NiYlN/7sZGQCGzclJjY2JiU3/rwBGP7oABMBLP6sCPwGzAADAAcACwAPABMAFwAbAB8AIwAnACsALwAzADcAOwA/AEMARwBLAAABIREhAREzEQE1IRUBMzcjAREzEQE1IRUBNyUHATM3Iyc3JQcBMzcjASERIRM1IRUFMzcjJTclBwkBAwEXJwEXATM3IyU3JQcFNyUHAagHDPj0AjBQ/lQFZPnJdOd0A6VQ++8Fc/qodf7hdQGedOd0BnX+4XUBo3TndPv/B6P4XUoHD/0mdOd0/pB1/uF1/S4Hjjb4dnAcBvkc/qh053P+inX+4XUCf3b+4HX+rASu/BwBIf7fASFQUALU+fsSASH+3wKJUFACqg/WD/3s+YEP1g/9sPn+2wFU/va/vx75vQ/WD/5jASIBUP7e/L0BC7z9sfn5D9YPmg/WDwAAAAANAGT+rAnEBswAIAAwAEkAWQByAIUApwDAANEBDwEiATIBQQAAJSImJy4BNTQ+Azc+AjMyHgEXHgEVFAYHBgoBBw4BBSY1NDY3DgEHND4BNxcOAQEiJic+ATcuASceATMyNjc+ATMXIgYHDgEBLgI1ND4BNwcOARUUFhcBIi4BNTQ2MzIWFx4CMzI2NzYzMhUUDgEDIicuASMiBwYjIjU0NjMyFhUUAzI2Nz4CEjc+ATU0JicuAiMiDgEHDgQVFBYXHgEBIjU0PgIzMh4BFRQjIiYnLgEjIg4BBwYDIiY1NDc+ATc2MzIeARUUBgEiJicuAycuASc3HgEXHgMXHgEzMj4BNz4BNTQuAycuAiMiBzc2MzIeARceBBUUBgcOAgEiJy4BIyIGIyI1NDYzMhYVFAYBIi4BNTQzMhceATMyFRQGASc+ATU0Ji8BHgIVFAYDCV2XOFNZGjFFVzIudoA7f+3AOhITAgUwb7qjR539iAQPDShFFFaERUhKgQJpH1oiLF4aKGkYIFEcPD4bHlRaPEFGHiJt/ZdVbzZJjGYYZGdJSwH7Z6tnEA4LGx8iYoZYUKMtGAkMeLtxBxAiSSk1IAwIC10+QE0+O4tAdJReQSAEBA4ONKnRcDVyZygsSzspFk5JMXoDRhM0X4BMToFMCgYPBzFeO111WTUMRyM9FzxvGwgMCw4HYQF3NHo+cKBzVSQVJhJJEikWIUpjj2c4by5DXEcjIzUdNENLJiFab0J2bxJpb0h7ZScvWEw6IDcmKGN6/SQGDiVbQRMVCw09RkhZCgKWLU8xDQgLNoU+HFkBTxIyMVVTLWCGRlLQW0Bf7IJVy8+5iBwaHw9NjmMePBUPIxXp/pv++lsoMTwYHCVDHR4/GE6OaxmXIYf+PRAaAhcQBDgjDA87JyxKkjwoLUwDaA9VeEFMk2oPmhB5QjdbD/7/arFpFRoUIyVYQCkcDxE/dk0CWw0eHQwFCCRFUzce/LkvIj+r2QEFmBQeDRgnFlV8QwwZFhiBssa9SnHDUzdI/r8lNXdrQzpdMw4IBCEbMWJLEQGzIhQMCyBZPhUhLRJXYv0aDw0YRGaWaj55PiRAf0Fjhlc4FgwQNWBAQYtANrbTyZUbGBkKI1YdDR4aH6DW5cpDRpZGS3VDBTMPLCwHDBo2VDoSHP4+MUsnEwciEhIuO/7KdiZbLD1cBqEMaZNOU5QADQDD/3QJZQXSABUALgA6AEYAbgB6AIYAlwCjAK8AuwDHAP0AACUGJicuATU0Njc+ARceAQcOARUUFxYBIiY9ASMiNTQ7ATU0MzIdATMyFRQrARUUASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWATI+Ajc+ATMyFhceAzMyNjU0AicuAyQjIgQOAgcGAhUUFgEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEGJicuAScmNjc2FhceARcWASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGATQ+ATc+ATc+ATMyFhc+ATMyFhc+ATMyFhceARceAhUUBiMiLgInLgEjIgYHDgMjIiYBwxEdBAYGAgQDGRAPEQIEAQoHATcZHDo2Njs3Njk3NzoBEDpUUzs7U1Q6GSUkGhokJf2ZOU9EUTpi9YaG9WI7UERPOW9eLiwgWYjJ/uXCwf7kyYhZICwuXgRXOlRUOjtTUzsaJCQaGSUlAmcNIQkgNw0FDhIQGAQOMRsV/tocJygbHCYmqBonJxocJycBABooJxscJyenGicnGhsnJ/mYGisXJnJXC4t2OzMKU79wcMBSCzM6d4oLV3ImGCoajJFRbVJNMlPRgYHRUzFOUm1RkYxvBhARGkMoGjUWERQDAxkPFi8XSSwhApMcGzs2Nzk3ODo3Njo2/vNTOjtTUzs6U1AlGBokJBoZJP11G1Oniw4PDw6Lp1Mbc4ZgAUfFjbdqMg0NMmq3jcX+uWCGcwI7Uzo7U1M7OlNQJBkaJCQaGCX+GwoFDS9qLhMdBAQPDi5jJh4CZycaGygnHBsmkSccGicnGhwnDigaGycnGxsnkicbGigoGhsn/MJQ2+pnp9I8cXM1QQYEBAZBNXNxPNKnZ+rbUKajKmCkeQsLCwt5pGAqowAAAAAJANL+rAlWBswAFwAvAEMAVwBnAHcAgwCHAJoAAAEiLAEKATU0EjYsATMyDAEWEhUUAgYMAScyJD4BEjU0Ai4BJCMiBA4BAhUUEh4BBDciJCYCNTQSNiQzMgQWEhUUAgYEJzI+AjU0LgIjIg4CFRQeAjciLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGLwEBFwEiLgEvAT4DMzIWFwcfARQGBM+H/uL+99N8fNMBCQEeh4cBHgEJ03x80/73/uKHgAEJ88FwcMD0/veAgP739MBwcMHzAQp/mv7w0Xd40QEQmZkBENF4d9H+8JqJ9Ltqa7zziIjzvGtqu/SJit6Bgt6Jid6Cgd2LdblrbLl0c7psa7l1Q1tbQ0NbWyYiBGoi/vQ1d2ojDgs2U2w/KVAVGQ54gv6sXrIA/wFDv78BQ/6yXV2y/v69v7/+vf+yXlBVo+sBLLKzASvqolVVour+1bOy/tTro1XLd9EBEpqaARLSeHjS/u6amv7u0XdQarz0ior1vGtrvPWKivS8asCA3IqI24CA24iK3IBQarh0crZra7ZydLhq9VhJSldXSklYfkgCEEj+txgnFyI8hXRJHxeDIE1bdQAAEQDM/qwJXAbMAB0AIQAlAFQAWABcAGAAjwCTAJcAmwCpAK0AuQDAAMwA+wAABSc3ETQSNiQzMgQWEhURFwcnETQuASQjIgQOARURAxEhESUhNSEBNDY3DgEjIiYnJiMiBw4BIyImNTQ2MzIXFjMyNzYzMhceATMyNzYzMhYXBw4BFRcRMxEFESERJSERIQE0NjcOASMiJicmIyIHDgEjIiY1NDYzMhcWMzI3NjMyFx4BMzI3NjMyFhcHDgEVFxEzEQkBNwEHETMRBScSACEgABMHJiQjIgQBJwEXATUzMjY1ETMRFAYjATQ2MzIWFQEiJjU0NjMyFhUUBgE0NjcOASMiJicmIyIHDgEjIiY1NDYzMhcWMzI3NjMyFx4BMzI3NjMyFhcHDgEVARRATI75AUe4ugFH+YxMQFyA4v7Wqqj+1+SBpAe0+JwHFPjsAZMiKQUMBQkRCQ8NCwoICwgLCggLCAkFBQwQFBANEgsjDRESDQcHCwEZIhWQLv30BaT6rAUE+vwCTSIpBQwFCREJDw0LCggLCAsKCAsICQUFDBAUEA0SCyMNERINBwcLARkjFIgu/uf+TDIBtDVQ/VJMXgF0AQABAQFzXkxV/rbn5/62AlYyAbQyAZCnCwlQLjT7JlttbloDhyw9PSwrPDz9CSIpBQwFCREJDw0LCggLCAsKCAsICQUFDBAUEA0SCyMNERINBwcLARkiFSguagLqlAEAwWxtwf8Ak/0Wai5+AwSC4qxhYKzig/z8/lYBa/6VUMsBhj5aKQEBBQUIBRoSKCohJg0JDhIMBw0FBBMLMENZQsICp/1ZIwLu/RJQAk7+Rz5aKQEBBQUIBRoSKCohJg0JDhIMBw0FBBMLMENZQsICp/1ZApQBZD7+nCEB+v4GAhwBAAEI/vj/ABzp6+v+/D4BZD78TlAKCwFN/rE2LQUqWXh4WfxcPCssPDwsKzz+9j5aKQEBBQUIBRoSKCohJg0JDhIMBw0FBBMLMENZQgAGAQT+rAkkBswAFwAsAD0ATQBxAIEAAAEiLAEKATU0GgEsATMyDAEaARUUCgEMASU2LAE2NzYmJyYHDgMHDgEVFBYDMjc2NTQmJw4BBwYVFBYXFhMyPgE1NC4BIyIOARUUHgE3IicuATU0Nz4BNy4BNTQ3PgEzMhceARUUBw4BBx4BFRQHDgEDPgE3NjU0JyYjIgcGFRQWBRSr/sr++8BqasABBQE2q6sBNgEFwGpqwP77/sr+2YkBHgEDxzEGDBAkEjy45f2AExkafTANAiQUIzEIAx0dDx2CznhsvXh/2YN1xnkfIUdKBg5MLhYgBQ1LLhsgOEwFDUUuHi8EDVAhGSsHAi0GDSkKAxj+rGvCAQUBNqioATYBBcJra8L++/7KqKj+yv77wmv3Blad4I4RIgUMJn3Kk1QHARcREhYDyzEKBRoyEwchHgoLFiIIBP77fdeGdbJjfdOAerZkrwkTTDMTFTU0Chk6Ig8UMCwIDkYyDxQvLggdRCkRDzM3AVIGGRwGCigMAigKChYfAAAACgE7/qwI7QbMAB8ALQBBAE8AXQBxAH8AmwCnALUAAAEiJicBLgE1ETQ+ATcBPgEzMhYXAR4CFREUBgcBDgEBIi4BNTQ2MzIeARUUBhcyNjURNCYnASYjIgYVERQWFwEWASIuATU0NjMyHgEVFAYBIiY1ND4BMzIWFRQOAQcyNwE+ATURNCYjIgcBDgEVERQWASImNTQ+ATMyFhUUDgEBMjY3AT4BNTQmJwEuASMiBgcBDgEVFBYXAR4BEyImNTQ2MzIWFRQGASImNTQ+ATMyFhUUDgEFFGCbRP3ePjozbFUCWiRIHyBHJAJaVmszOj793kSb/qUkQiomIiZFLCo7L0EpNP2MMR0hHSQuAio8/lQkQiomIiZFLCoDUiUqLEYlIiYqQoQ1PAIqLyMdIR0x/Yw0KUEBUyUqLEYlIiYqQv4dFy4cAnAkJC0v/aYcMBcXMBz9pi4uJCQCcBwuF1mAf1paf4ACIyUqLEYlIiYqQv6sJisBWih5XgKxY5JrKAEdEQ8PEf7jKGuSY/1PXnko/qYrJgE3Mk4qKS4yTyooLs5ETwKdO0YfAXEdSEz9d01SHf6hJgOOMk4qKS4yTyooLv1ALigqTzIuKSpOMs4mAV8dUk0CiUxIHf6PH0Y7/WNPRAIxLigqTzIuKSpOMgHFEBABbhUrFRcuFgEfDgsLDv7hFi4XFSsV/pIQEAFDW0BAWlpAQFv+VS4oKk8yLikqTjIAAAANAWP+rAjFBswAEwAfACsANwA7AHEAdQDMANAA1AEtATEBNQAAASIuAjU0PgIzMh4CFRQOAgEyNjU0JiMiBhUUFhMyNjU0JiMiBhUUFgUyNjU0JiMiBhUUFgM1IRUBJz4CNTQmJy4BNTQ+ATMyFhUUBgcOARUUFhcHLgI1NDY3PgE1NCYjIgYVFBYXHgEVFA4BEzUzFQEiJicuASc3HgEXHgEzMjY3PgM1NCYnLgE1NDY3PgE1NCYjIgYVFBYXHgEVFA4BByc+AjU0JicuATU0PgEzMhYVFAYHDgEVFBYXHgEVFA4CBw4BAzUhFSU1MxUBIiYnLgEnNx4BFx4BMzI2Nz4DNTQmJy4BNTQ2Nz4BNTQmIyIGFRQWFx4BFRQOAgcnPgM1NCYnLgE1ND4BMzIWFRQGBw4BFRQWFx4BFRQOAgcOAQM1IRUnNTMVA5N0y5pXV5rLdHTKmVdXmcr+fiEuLiEhLi5WJjY2Jic2NgEZJTIyJSUyMq0BBf6sSzA1FQ0JCQ01YUBiahALCQwwMEsgLRgOCQoPPj49SQwICQ8XNyP+AZErWioKGQ0/ChQKF0MiIDgRCjY8K0AnJj0QCgkLPz8+PQsICxAPLS1GJikQEAoIDC5bQmVpDAkKEDklKUQxRD4NIlS1AQ7+/PABgStZKhU4DjkUKxoXQiIgOREKNTsrPSUiNhAKCQw+PjpBDAgJDw0gOCs9JTEcCw4JCA0xWz9iag0JCg8vHyZGMEQ9DSJUowEG//D+rFeZy3V0yppWV5nKdHPLmlgBTC4hIS4uISEuATo2JyY2NiYnNp4yJSUyMiUlMgNFUFD+fB18qX05LVstLFcpT3hEi307YiwmSCVZvIMcWZWHQypPKCtaM1xbZVYiUSwwYy8+h7MBzFBQ+iwICA0lFi4RHQwDAwMDCmGfzXV1rE5NoWtIaSskRCdfZ29mGUQnMnI4P3WDViVKcGtDMGgxK0wdW4RJmYAuSSQpYEZdl0tSuHx94LBvDQcJBMtQUMhQUPq3CAgaYCpRQlodAwMDAwpdmMl1d6pMR5NeRG0wKUwqXFtiWSdVLTFpNTldZ4hkNlJzWlo6MmAwLlouUXhCin0xVCouZT9Pez5NvZJ926pqDQcJBL5QUMhQUAAEAhL+rAgWBswADwAfACwAPQAAASImNRE0NjMhMhYVERQGIwEiLgE1ND4BMzIeARUUDgEnMj4BNTQmIyIGFRQWATYsATMyHgEXETQmIyEiBhUCr01QUEwEzE1PUE38/G2rYV+sdG2oYGOsbFaHTqKDjKOm/nB/ARwBLJRUv7RCICz7NCsh/qxNSQb1SktMSvkMSU0EJmCpbXizYmSvcWyuZVBPiVeJq6qTgqT96FWBSCpFKwSoJx8eJwAAAAEBn/6sCIkGzAAZAAABIiY1ND4BNxElERQGIyImNTQ+ATcRBREUBgJ9YH5isHQFZLSUYH5isHT73LT+rHhlWZVbAgU7vfoEsNN4ZVmVWwIDmZH7srDTAAADAJ7/EAmKBmgAHAA1AE4AAAUiJjU0PgIzExceARceAhUUBgcnLgEnAw4CASImNTQ+ATcDMx4BFx4CFSMuAScTFg4BBSImNTQ+ATcDNx4BFx4CFQcuASMTFg4BA3daYEp7l04gKhpEPDhdOAICLA6FWxcDY6L9iltsc7lnEiomYzRCWy8sFI9cEgNfnQVyV3FvtGcoKilTRjxfNyYXkV8kBV2d8GpeR3teNQM6Az1LLSpWfGQTJRcCd50K/VRbo2YB9WpVY6RkAgM3SFIgKVuVgH6SA/1NXKlrl21TZaJjBQM+AkdMJyFfmHcCdpL9U2CvcAAACQC8/qwJbAbMADUATABYAGQAoQCtALkAxQDaAAABIgIRNDY3PgE1NCYnLgE1NCQzMh4BFRQGBw4CBwE+ATMyHgEXHgEXHgEVFAYjIiYnAQ4CAQYmJy4BNTQ3PgEzMhYHDgEVFBYXFgYTIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBMj4BNwEzHgEzMjY1NCYnLgEnLgEjIgYHASMuATU0PgE3PgE1NC4CIyIOAhUUFhceARUUBgcOARUQEgEiJjU0NjMyFhUUBjciJjU0NjMyFhUUBjciJjU0NjMyFhUUBgUiLgEnPgE1NCYnMhYXHgEXFhUUBgMA3+gIBwgGHCAzKwEE1o/YeiUkESAYBgJDOlxGQ1U5Fxg9NBMTUzg9djX+F0qhyP7vERwFEBEJAhgRERYCBAUPEQURE3WmpnV3pqYBliU0NCUlNTX+NXSrjUUB/FgtXzAUJQMFNUIXIEFFLjou/XhMBgMcLBYaJDtskldYkWk5ICsqJQcHBwi6AtglNDQlJjQ0UCQxMiMjMzJRIjAwIiMvLwMsTZRpDzowFQ85VB8TMycRDP6sATEBKDFmMS9MIRo8KUNbKneNQXRMKG1EIFJXJwQqak4wTSwuXSMNIBQmOEFB+0e322EBNAQREUC2Z2xpERUaEzdyOFukOREaA0hCMTBERDAxQv7TNSUlNDUkJTX8+lXJrAToRkQUCAQEBCdbKjxKOFP7WR4pHDl7dC41ViEnQzAbGzBDKBpBNzZVKCNQLzNiLf73/v4D6TUlJjM0JSU18DEkJDIzIyMy7zAiIy8vIyIwSA41OgUpFBUtECkuHDYZCxEOFwAADgD6/qwJLgbMAEoATgBaAGYAagCZAJ0AvADYAOMA7gD5AQQBDwAAASIuAicuATU0Njc+ATc+ATc+ATc+ATMyFhUUBgcOARUUFjMyNjcHFzcOARUUFxYzMjY3PgEzMhYVFAYHDgEHDgEHDgEHDgEHDgEDNycHBSImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGLwE3FxMyNz4BNz4BNz4BNzY3NjU0Jy4CNQcnLgEjIgYHDgEHDgEVFBceARceAhceARMnNxc3JwEHJjU0NjclPgEzMhYVFA4BIyIGDwEOASMiJic3CQEeATMyNj8BPgEzMjY1NCYjIgcFDgEVFBYXCQEiJjU0NjMyFhUUNyImNTQ2MzIWFRQ3IiY1NDYzMhYVFDciJjU0NjMyFhUUNyImNTQ2MzIWFRQDgDSBiIE1UUKCcDhsKzkoDQsnKyqLOR8iGyMgODksCzIkm5WTDg8hLCwgLBYOGBAWHikzKFYpKzYTISALDCs1MXnVbNxsAfQTGRoSEhkaBhYeHxUVHh5rjziPCh8THhYEBBYiIUUoHR0OEB0sGC6pFRwTJi4IBBgsQVAIBygiJUw3AwIjYo84j1XQAucUHiMiAVAULRM+VB9CNB8eDC4ZPycNOhdb/SwCmg4aEBcoES8TNi4tKjAmFiH+whYSBwL9WwKyFiMRDRQjOhYjEQ0UIz8WIxENFCM9FiMRDRQjPBYjEQ0UI/6sMFVxQWOAOmKrMhk3ICtcNCxmQD5ZGhcQJiMgTS4kLwsLpYiZKEcbNxsjIioaFiMZMU8yJygNDRsRH1s2P4Y9OUABUWzObLUZEhIaGhIRGoceFRUfHhYVHpmHOIf+aBQgWzIwXRwbIwYECwUJCQUIL0kuLKAUECsrGCwGCUQvFBYTJh0eTGxQKjMB3oc4hw3HAu9SFScdLA6ICAlUPyYwFg4USygrERUc/U0C0hAPHBtLHhoPIiYtDYQJEw4HEwX9UQMkJBcOECUVHyYkFw0QJBUfIiQXDRAkFR8kJBcNECQVHyMkFw0QJBUfAAAJAQ7+rAkaBswADwAZACMALQA3AEEASwBVAFkAAAEiJjURNDYzITIWFREUBiMlMzI2NREhERQWITMyNjURIREUFgMiJjURNxEUBiMBMzI2NREhERQWAyImNRE3ERQGIwEzMjY1ESERFBYDIiY1ERcRFAYjASE1IQGBMkEsIgdwIytCMvkL9SMw/mUxAg39IzD+XTGyExr2GhMCK/4jMP5cM6kTGvcaEwIg9CMw/mYxnBMa9hoT+f0HbPiU/qxCMgdeIysrI/iiMkI+MSIGKfnXIjExIgYp+dciMQKkFxADsQH8ThAX/VwxIgYp+dciMQKkFxADsQH8ThAX/VwxIgYp+dciMQKkFxADsgH8TxAXBBhQAAALANz+rAlMBswAawCAAIQAkQCmALgAvADJAM0A2gDtAAABIiYnLgInLgE1NDYzMhYXHgEzMjY3ARcBDgEjIiYnLgEjIgceAhceAhceATMyNjU0JicuATU0NjceARceATMyNjcBPgE1NC4BJwEXBSceAhUUBgcBDgEjIi4BJzMOARUUFhceARUUBiciLgInLgI1NDMyHgUVFAkBNwkBIjU0NzYzMhYVFAcGASImJy4BNTQ3ATYzMhceARUUBwEGJzI3ATY1NCcmIyIHAQYVFBcWBQE3CQEiNTQ3NjMyFhUUBwYJATcJASI1NDc2MzIWFRQHBiUiJi8BNDY3NjMyFhceARUUBwYD4TJvKlmymTQyMDMuF04rRYBAd9FWA9ky/Chf74ZIgj0oShoTDgMaKRkplLNYKF4ZExoBBAUIRkgIGRAhXzRJckcBrzgyQ3ZOATcy/v8DQ21APkX+TVSDXj9rSQwfIiEIBQQCPx85e4OJRVJtNw8VZouclXpJAtf9gDgCgf04GioqHw4NKiYBHCZFGBYYNgHXNERQMxcYN/4pM0UmHgHXIBofLicd/ikfGR0CQP1+OAKC/TcaKiofDg0qJgMt/X84AoL9NxoqKh8ODSomAv8QJhWHCQ4RGh1IKSwqDxT+rDkcPqW3V1WENTg+DgwTE1JQA5M7/G9YXRESDA4GHlJcLkmzqz8cKywgCyoaJlIldN1jNUMWKzA1QwGVNV00RnJJCAEmPPAxClmCSkd5Qf5pTzwtTTFDklcoTyMZKA9LUCo3YoROXKyWOiJPhKOsnngeDwICAqU2/VoCTBklJSUODCMnJP4LHhoYPyJNMwG6MTkZPyFNMv5FMEsbAbsdLCkcIhz+RR4rKxsgIwKmNv1ZAk0ZJSUlDgwjJyT+MgKmNv1ZAk0ZJSUlDgwjJyTfAwOOQzUOESssL04eHgwPAAANANz+rAlMBswAIABDAE8AiwCtAM4BBgEvAU8BYwF3AYsBnwAAATQ3ARcnARcHJwE+ATc2FxYGBw4BBzUXFhUUBwEGIyImJSInLgI1ND4BMzIeARUUBgcOARUUFhcHPgE3Fw4CBw4BASc3NjMyHwEWFRQHAS4BNTQ2Nz4BNx4BMzI3NjU0Jic+ATc+ATMyFhcHLgEjIgYHDgEHHgEVFAYHDgEjIiYnDgEHDgEVFBYXEyImNTQ2MzIWFRYzMjY3PgEzMhYVFAYjIiYnDgEHDgEHBgEiJjU0Nz4BNzY3LgE1NDMyFhUUBgcOAQcOARUeARUUBgMiJic3HgEzMjY3PgE3LgE1NDYzMhYXPgE3PgE1NCYnNx4BFRQGBw4BBy4BIyIGFRQWFw4BBw4BAS4BJwEXJy4BNTQ3NjMyFh8BJzYzMhcWFRQGBycXFhUUBwYjIiYvARcJARcWMzI2NTQvATc2NTQmIyIPAScmIyIGFRQfAQEeAQEmIyIGIyImNTQ2MzIXHgEVFBYfASInLgE1NCYnNxYzMjYzMhYVFAYDJiMiBiMiJjU0NjMyFx4BFRQWHwEiJy4BNTQmJzcWMzI2MzIWFRQGBYUGA4cGWPyiZhqQA3gPLBoWCQQHCQceEXMRBvyBDBUOE/wmEA0yUS8tQBwgQy4ZEBAVHSUgHVQ8jilnYCAWJQGNjDMICg0KUwoH/jFMWG52HjAdMDIOOiIYBQo9Qigsd0YtWS84JUIfL1cpJTwhAgIVFhpFKRUrFw44I11bR0niJToXEREXDAYXKhMdMhkbKhYREBUCCx0SDhcMIgEMGyYYCBsTLgYSGCcZJS4aExkIBwUXHxecas9yOWC5VVt/JxQ3EyEkaE8PMxELLycgHyYsNzYwJS8tLwccPiU0QC4yLT0XLqIBCS5iMgPCECEUExcaJhQpESc4QjUhHSIgIwcUJRccJRIiEx4u/G8DeCsQDw0RECAyEhgRExMyMRAPDREQLvxdGi8CRyIRBw4JEBIvHBMIBAENE6sSCAQCDBMXIxAHDwgQEi9jIxAHDwgQEi8cEggFAQwTqBIIBAIMExcjEAcPCBASL/7PDQkFJR08+xJAJVoFExcdCwkVCREEAxALG0gLFAoJ+uQTFd4ON4yMNk1zQENhLyYyFhUtHxApIwhQgz2SG1JTHxYWAUSQJQYKVAoMCgr+xFK0TGOSQxE0MAwHJRopEiUdFyYfI0cnKDgeHjUjHyIKCRcQHjYaHx4GBhw2FDN8SjuGTwGpKRsSGB8XAiUZJSImGRAWFhMCGBcTGwgY/sM1JSwkCxkNIBoCFRAlKRwiMxINFg0LGw4BGREQFv5yZWozXFtMTylGESBPKExlCAQsTyojQiMhSTExPF8wMVoyL2A4DAs5LiNRLBxMMGNhA1g7YiYDIzMfEyETIxoeDxAlCEIZHicYMiEuFignIBkdDxIcAv0AAz4mDRENERAfLxESEBUQLCoNEQwRDyv89hY2AqQjAhINGCwNBxcPDhMT/g0HFw8OExMWIwIRDhgsAVYjAhINGCwNBxcPDhMT+w0HFw8OExMWIwIRDhgsAAAACAEO/qwJGgbMAAcACwAPAHUAeQB9AIEAhQAAJREhFSERIRUBNSEVATUhFRMiJjU0NjMyFhUUBiMiJiceATMyNjU0JwMuATU0NjMyFhUUDgEHDgIVFB4BMzI+ATU0LgEjIgYVFBYXByY1ND4BMzIeARUUDgEjIi4BNTQ+ATc+AjU0JiMiBhUUFhcTFhUUDgEBNSEVATUhFQEnIRUBNSEVAQ4D3/11Brj5KgGa/mYBx/RqekkzLTU2KhAgCw1IOmuCDtIeHHtqXmVWh0pKildPjl1SjVc0XT9ObwEBWAhNgU1Xi1JruXaAv2lil09Hfk8tMjpHFB/UEU+OAVcCZPkqBtb8XBADtP0cAuRXBSNH+2tHATdHRwE3R0f753JSQko3KSs1CwooMKN8ND0Df4DGQJWphHVspolCQoypb2WoZEl/Tz5nPV5HBwoLFCUgSHVGWJZdZ59bbcSAgr+WQz16kFtMV3pnNKOG/HlKQmunYALiR0cCbkdH/slHRwJuR0cABQHq/qwIPgbMAC0AQQBvAIMAkQAAATI+AjcuAjU0EjcuAQI1LgIjDgEjIiYnIg4BBxQCBgcWEhUUDgEHHgMBNiwDNy4CJwYIAQQHFA4CBSIkJic+AjU0Aic+AzU+AjceATMyNjceAhcUHgIXBgIVFB4BFw4BBAMyPgE3Jw4DIyIuAicHHgI3Mj4BNw4BIyImJx4CBRRj5uTAPQsTCw4PKToeLZGSMU54VlV5TjCTkC4eOSoPDgsTCz3A5Ob9gXoBKgFBAUABJXcXLB8Gh/6z/pT+lKYBAQMC4HT+9fhYCQ0IEQ4kMR4NKWdkJDemW1umNyRkZykNHjEkDhEIDQlY+P71dJjVdQY8BzRknXBwnWQ0BzwHdNWYb49LCUuca2ucSwpKj/6sDBQaDje40FqkAUqmP+0BMaUMEgtBMzNBCxIMpf7P7T+m/rakWtC4Nw4aFAwBAkKy0+jyd0OHk1SW/uL+9/BoLHB5ceAOGRA9oa5OogE5ozutys1ZBwsGATUrKzUBBgsHXc7Iqjuj/seiTq6hPRAZDgWjd+epBWyseEBAeKxsBannd6RiqGo2Pz82aqhiABEBHf6sCQsGzAAgAC4APABKAFUAWQBpAHkAhwCLAKoArgCyALYAugC+AMIAACU3PgI3PgI3PgM1NCYnLgEjIgQGBw4CBw4BDwEBIi8BJjU0NjMBFwEUBgcyNjUBJwEiBhUUHwEWAz4BNTQmJwceARUUBgcBNyIuAjUHHgI/AQEHJTI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEXNy4BNTQ2NycOARUUFgE3AQcDJz4CNz4CNz4CMzIWFx4BFRQOAQcOAgcOAjcBJwEFAScJAicBBTcBBwE3AQcBNwEHA4E1J3OWWnisiEJtsH1DQkRJpXSa/v3QTSo4JA0MQDYz/t4MDmENNysBPFD+wBYLLEIBXbr+pUNRJWomBzM2NjI7Ky0tKwQIXWGle0RMC3e+yjH+FiP+ZGKhYGChYmKhYGChYkx9Skp9TEx9Skp9YDorLS0rOzI2NgQAOf1eMboDJTQkCg4kMyRIu+qNVoZBPjFnwIg7gqZyU5V62gPdMPwiASEDZCv8gf7EA342/JoD3y39EzEDkir9MzEDMBv93zGlMyYyIAsQIS4gNpi/3HlonEVKP2/JiEqfwn98tzk2/fkOXw0NERUBQU/+xC02T09DAVy4/qJDLCokZyQFpkGTRkeSQTM2dzo6dzX85kxHfJ9YVmq3fA4xAgBBi2ChYWKgYGCgYmGhYFBKfUtMfEpKfExLfUoGNDV3Ojp3NjNBkkdGk/1OKQKmMfymAy1uj117sYs/f7ZiLEA9gE6Z/cVHHywhDwsiMq8D1zH8KaUDZTf8ggE6A3or/KGzNgLrMf3MOQLHMf4wSAIWMQAAAAATALT/pgl0BdIADwAjADMARQBOAFYAXgBnAG8AfgCIAJQAogCyAM8A2AD+AQcBDwAABSIuATU0NjMyFhceATMFEQE+ATMyHwEWMzI/ATYzMhYVHAEHBSE1JSImJy4BIyIGFRQeATc0PgE3PgI1Fw4CBw4CFSUGJi8BNxcWBicuASc3HgEfAT4BMzIeARclBiYvATcXFgYnLgEnNx4BFxMiJi8BFjMyPgE3Fw4CAT4BMz4BMzIHAwEiJjU0NjMyFhUUBhMnPgE1NCYnNx4BFRQGASImLwEeATMyPgE3Fw4CATI2Nz4BNTQnAy4BIyIGBw4BIyImJzcTHgEXHgEvATc2FhUUBgcDIiYnLgEvAQMmNjcHJjU0NjMyFhc+AjMyHgEXEx4BFRQGBw4BAyc3NhYVFAYHJSc2JDcXBgQCrozmiDkrHT8sTnVLBsb5AilqOCQYQBMYHBMGERAaHgL+OgZ7+YVYj1kiJwsLEHTE8Dl4XXubSUEWY55xTF4qAcMXJAoaYhwLE1EYNxlBIjkTNx1qQi1UPQz+7RclChlhHAsTUxZFHzckSxknIkEcCz1OOWtkLBQrZHQBHwVVWyxxIBUMZv6qExsbExMbG9k8BQQKDDgODAT9mRMiDwoSKBRBf3MuFC93hwEyKUIZDhMCSAcqJiReOy5vNCUvEB9RU38xHzoXDkIdJB8YBTlSIDt2UxpRBBofDSwqHyM9Did0gjw9SSgMRwIBGA8ja6MOQh0lIBj+TwuYAUaUFJT+slpjqGY4SCIqSjIC/tkBA2dkFjwTGggWPzYJFQu4kQI8VCAYHBdRhlH+RGtUHihHQh49J0lHJhk+TDE0BxgWOig+GSswQWASKSNvM8tGUC1EJcMHFxc6KD4ZLDY4axsuH3RAARoEA0sLBxAMRQwRCP3RXFFEZCX+0AGbGhMUGxsUExr+wQYtYCk1XigZK2hAKWMCRgEBSgECChINRQ4VCv6COjkdOBwJEAHqMy0oKB85EBEf/ekRQDEfJ9loCwUfGhQdBP7NOR85MREhAhMbJw04Py4mJioQHT4qNWlP/icMFQslRSJPVQHYZwsFIBgVHgORUAI3NE40OQAAAAYBBP6sCSQGzAAWACQAPgBQAGQAeAAAAT4BNz4CNz4CNycOAQcOAgcOAQcBNyYkCAECJwcWEggBBAE3LgI1ND4BJDMyBBc3JiQjIgQOARUUHgElNhoBNzYsATcnBgwBBwYKAQcBMiQAEjU0AgAkIyIEAAIVFBIABDciJAACNTQSACQzMgQAEhUUAgAEAUM5YiuHoFwgGS9ALypeXCcgVJB5KFs1BvQc0P5o/oz+yOM6SED1AUgBfwGZ/a9NZ4VBX7cBCapxAQORCZH++HS9/tnNakGI/dYGabJxewEfAS6QMJX+zv7efHO0cAwC99UBeAEfo6P+4f6I1db+h/7ho6MBHwF51sX+pP73l5cBCQFcxcUBWwEIl5f++P6lAk8aNx5e1tphSXpdHj06u3Nfy8NUHDMX/XZMTNsBBAETAQ11JIL+4v7i/vnZ/noffObQWmute0EdIE8gHE2PyX1g2/CwjQEyATCKl/ilF0kfrfyYjP7N/smS/oSjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aNQlwEJAVvFxQFbAQmXl/73/qXFxf6l/veXAAAAEQEV/qwJEAbMADEAPwBHAFEAWQBmAG4AdAB+AIYAjgCWAJwAogCqALIAuAAAASc+AjMyHgIzMjY3Aw4BIyIuAiMiBgcnPgEzMh4CMzI2NwEOAiMiLgEjIg4BAyImJwMmNjMyFhcTFgYDJz4BNxcOAQUnPgEzMhYfAScBJz4BNxcOAQUnPgEzMhYfASYjIgYFLgEvAR4BFwElJx4BMwEnNx8BLgEjIgYFLgEvAR4BFwEiJi8BHgEzEycyNjcXDgEFJz4BNxcBIiYvAQUTJz4BNxcOARcnPgE3Fw4BAyc3Fw4BAggxftbLblujnqRbYeB25ljvk2expapgYtx6DW7idWmwoqljlPKCARI5psdrft3SbmO3xksRHwTsBCIVERsE7AUgeBdalEgiWJABDycybzgXMh0gov3THFOLSiFYiAEBIS1sPBU6HSA0J0dzAk5djC8hPoxJAXb+1yc+jVX8JSJ/xCIoSx8wWgJJSYBFHzx+UAFmRp46JTqXSlAoOIZJLEWGAP80OXxVNP1CWYs1HQEYQyVDgTkrNozuLDN8PjU4epsc2SVBawElPmV6NyUvJUlWA5hMYDhJOG56XmlxOEk4cYD7tTFhPzw9MnL9JxYfBzMiHxUd+M0lHwOR40RKGNYfU4X3ERQCAsgIAZnTRUoXzxxQYs4ODwQDywYS+RYdBM4HHRH+FUnSDxUCrdktJdYHBw75ERoKxAoeFf5UFw7LDRj+Zs8UGc4WGMf1FDo33QKAGA2eK/6svAIgGMYVG57OFUgy4CU+AXqDnZA1QQAAAAAGAZD+hAiYBswAbACHAKEAsADIAOgAAAUiJjU0PgE1NC4CNTQ2Nw4CFRQGIyImNTQ2NyY1NDY3LgE1ND4BMzIeARUUBgceAjMyNjMyFhUUBiMiLgEjIgYjIiYnFRQeAx8BHgEVFAYjIiYvAS4CIyIVFB4BFRQOARUUHgEVFAYBIiY1NDY3PgI3PgEzMhYVFAYHDgIHDgInMj4BNzYkNz4BNTQmIyIGBw4CBw4BFRQWJSc+ATc+AjcXDgEHDgEBMzI+ATMyHgE7ATI2NQ4BIyImJwYVFBYBJz4BNTQ2MzIXPgEzMhcHJiMiBhUUFhcuASMiBhUUBgQXN04iIjtNOxYQSVEgRTgwQjcoEKKGKypRiFJTh1EgHidAWEkzgTFFUkQsHyEgHyZPNSleOD1aXEEECzJPS0M5RwcfBT9cMTUVFBsbERFI/qhnj5yJWr29WXrTTF+FiWqI7eJ4Rl9KKB86UD+2AWbZU2NaRD++d1rGymFwdmQDMy4ieHaEp18WOifc22Ri/TslIRkMDAwQGRZQLR9CdDYyVykFJQNkDAgMTzMWFgRdQk4zMCEwLD8CBCAtESIwKDhDMyRHWDtEXlp2WyZ+MRg8cGg+TzYoJkEINzeAvDIubDlTh1FRh1MyYCIcQC4kLzU3PRkZLSw0ZjxKNDZNP7cRQyMmODonvCBBLTobSkMSNEgxFBkaGBcpSf68hW1gfBELS2Y0R2t5ZV+BDhJLeFg0OxlBFTUviZccC19DRFlhRjRsTwwNWkVLZlwmJSUKCzZkUA+NhhIIGgXQMzMyMVF0AwQEBBcYOmD9Hj0FFw07UwdGVzwkJD4sCh4eDgwvIyE8AAEBHf6sCQsGzABoAAABIiY1NDY3NjU0LgIjIg4BIyIuATU0NjMyFx4BMzI+ATcXLgI1ND4BMzIeARUUBgcnPgEzMh4BFRQGIyImNTQjIgYVFBYXHgEzMj4CMzIeARUUBiMiJiMiDgIjIi4CIyIGFRQGBMBJZDgrGCxKXzMnUF48VJ5mRDxtDQUtLDhpRwVDUoBKVpFYWJFWHiAagOlLbrVrTDYxPnxFV0tIQXpLJDIsNikmTjUbIxY5Ih0xOU87O1hHQiQuMHD+rEUzJ0QOMoaF5atgKipXjlJBRXEoMEiCVT4KWItTWJJXV5JYMWM5KSQoVItVQFRHMllJNSuPZluEIy8jL1EzNzcZJzInJjEmUEr37QAAAAAHAVb+rAjSBswAYAB0AIgAlQD7AQcBEwAABSImNTQ2NycuATU0NjU0LgM1NDYzMhYXHgEXLgE1ND4BMzIeARUUDgEHPgI3PgEzMhYVFAYHBhUUFhceARUUDgEHHgEVFAYjIiY1ND4BNTQmIyIVFB4BDwEeARUUBgEiJjU0PgIsATMyFhUUDgIMAScyLAE+AjU0JiMiDAEOAhUUFgUiLgEnPgEzMhYVFAY3NT4BNTQmJzceATMyNjU0Jic+AjU0JiMiBgcnPgE1NCMiBgcnPgE1NCYjIgYHIyYjIgYHJz4BMzIXJz4BMzIWFRQGByc+ATMyFhUUBgcnHgEVFA4BByceARUUBiMiJic3HgEVFAEuATU0NjMyFhUUBhcmNz4BMzIWFRQOAQQ/QFYsJIBbVhlQdXZQOzUmMwoPwZMZGVCGUVGGTyAxGThPPyAMOjEyNcKutjZIQikRGQ0hKkM3PUwgIDkwOyEaCUAbHzD+ZJ62b8H5ARYBG4Cdtm7B+P7p/uaBcwEEAQTsuGqKeXP+/P777LhqhwQmIBsQEQgOByVIGUNAPgQDByM+GSkzIyklV0AkGhAiEQglHjAWSC8JFRcOCRlULQkYHhAwHDsyRyE3HCAyWCQdJgYGCBUoEDU0FxgMPkA+VCMEJSRSQCE5FB8CA/6cGR8fFBQaKc0RBwgiFRggKzQSQyoyi0xUO66KOWEuLkA7Sm5UQ1kxNUl/GytVK1GGT0+GUSVbThQZKCobQkhEMFWXQ0aGNk4sKDsnFE9WIActHiAnJSIWS1AbNTgtGElKHMEUKxcaJv6+cFtFlpODZTplW0WYloVoO0s3X3mEhDk2PzZddoOBODVLOC83DAIBISMVHLQ8ASY0DB0RBwsKFhMSMyUmKiQcEhEFBQ05VRkiEBAJIDcQDA03KjUeIRc3LUEBMjYmIgoYDQYIBS0pG0skDgEzJjEvKCUmHDodLDgKByAJGQyIA4EUPBgYHR0UHDEbLS0nIR4YIh4WAAcCgP6sB6gGzAAjAEMATQBYAGQAbABxAAABIi4CNTQ+ATcXDgIVFB4BMzI+ATU0LgEnNx4CFRQOAgMHBiMiJj8BJyY1ND8CNjMyHwIWFRQPARcWBiMiJwMyPQE0IyIdARQXIic1NDsBMh0BBiclNSEVBSc3NSEVFycBIQEHASEBBQMTIQEFP3XOnll40oUJcrFlhd+Gh9+GZrJzC4XSeVmez3qjCAYIDQIlgRAWt04HDg0ITrcWEIElAg0IBgjEHh4eREw5IcghObP+2AMc/tcR5P2Q4+3+gwJWATVS/ur+ZAFLAZe6lgHj/nr+rFeZyHGB4pwZTheFv26B2IGB2IFuv4YWThic4oJxyJlXAYxZBA4NuHQPCxADFasREawVAxALD3S4DQ4EAtsgRR8fRSAxG8ceHscbYo/Ly49Tb0hIb9cCtv1RDgJt/aYRAaQBGf1DAAAKAOH+rAlHBswAKgAyAD4AaQCCAI0AoAC5ANEA4wAAASImNTQ2Nz4BNTQmIyIOAQcOASMnPgEzMhYVFA4BBw4BFRQWMzI2NTMUBgE1MzUhFTMVJTMyPQE0KwEiHQEUASImNTMUFjMyNjU0JicuAjU0NjMyFhcHIiYnLgIjIgYVFBYXHgEVFAYTPgE3LgICNTQ2PwEOARUUEh4BHwEUBgcTJzYzMhYXByYjIicGJicuAicmNjMyFx4CFxYGAS4BNTc+AhI1NCYnFx4BFRQCDgEHHgEXAQYmJyY2Nz4BMzIWFx4BBw4BJy4BIyIGJSc+AjMyHgEXBy4CIyIOAQdISl+JrqGAd2IrKxIGBxckHyFsO4epPo95nHYvKigvUF77SYwDXIz9TPQsLPQs/nJJXlAvKCovdpx5jz6phztsIR8kFwcFEysrYXiAoa6JX7M+PQdkpnlCAwROBAQ3bJxlHjs4PRhcXC9dLhhRUU95DR8KLT4kBQEUDyQDBhw3LgoDAZo4Ox5lnGw3AwVOBANCeaZkCDw+/ScPHQcHDBBg6Hh46GAQDAcHHQ9Z2XBw2f79OD/J+ISF98o+ODe343t65LYBtFtJT5ZqY55iZ34lNx0jL6s0PKyJUoeCS2F1NictNCpKZPz42vHx2skkNSUlNSQCP2RKKjQtJzZ1YUuCh1KJrDw0qy8jHTclfmdinmNqlk9JW/6oV7F2G6DwASqkJkslByhPKJP+6uWVFCF+xVoBckQiERFEHvUJCRBIioI7EholPHR5Rw8e/XJaxX4hFJXlARaTKE8oByVLJqT+1vCgG3axVwT/BwgODh0HLi8vLgcdDg4IByksLCc6R2g4OGhHOkBdMzNdAAAYAMz+rAlcBswAYQB9AI8AnQClAKsAtQC5AMUAzwDdAOUA/QEHARoBIgFaAaoB5gILAhICJAI3AlIAAAEiJicuAScmNTQ3PgE1PAEnJgMXDgEHDgEjIiY1NDY3PgE3Fw4BBw4BFRQWMzI2Nz4BNxcWEhceARUUBgcGFRQXHgEXHgEzMjY3LgEnDgEHJz4BNxcOAQcXNjMyFRQWFRQGJS4BJy4BJy4BLwEuATU0Nz4BNxcOAQceAR8CBSIuATU0Nz4BMzIeAhUUBiMBIjU0NjU0JjU0MzIVFBc0Jic3HgEVLwE2NxcGBzU+AjcXDgI3JxMXByImNTQ2MzIWFRQGAQY1NDY7AQcOAQEiJicWMzI+AjMyFwYXJic3Fhc3FwEuATU0Nj8BPgE1NxYVFAYHDgEHFRQOAQEiNTQ2NxYVFAYXJzY1NCYjIgYPAT4BMzIWFRQGAS4BJzceARcBIi4DJzc2MzIWFwcyFjMyNw4BIx4BMzI3DgEHPgEzMhYzMjcGBx4BFw4BBx4BMzI3FhQVFAYBIiY1NDY/ASYjIgYHDgIjNTI2Nz4BMzIWFw4BBw4BBx4BMzI2Nz4BNz4BNTQmJz4BNTQuASMqAQcnPgEzMh4BFRQGBxYVFA4BBw4BBw4BASImNTQ2NwcuAzU0NjcuAScmJwcOAQcGIyImNTQ2MzI2NzU0NjMyHgIVFA4DFRQeARUUBg8BBiUqAS8BHgEzMjY1NC4BIyIOASMiJic3HgEzMj4BMzIeAhUUBgEiJiclDgElIiY1NDY3PgEzMhYVFAYjBwYnMjY3MzI2NTQmIyIGBw4BFRQWASc+ATU0JicuATU0NjMyHgIfAR4CFRQOAQTTHU9BGS4NWAsDAgGdNyU7bTUsSx5DWVJBDmpDNUtuFS5BMyMZQi01ckUeHGhQAgEDBAo6ES8WOD4NEB4KBxICBxgMnjVQHzocQy5gFw8uJVT+7R4+KQ0+DRAdFDglGkZBWyZeMWk6IEEjOBEBcw4bEAkcMA0PLCodDQz7vwoFDxIbRTVHFFVFFw6FXCFlkFypkzskQJ+1iDIhMoIUFxcUFBgYA8oaJxacJQhI+1UyTgsYHiQvJy4kHyc8aE56D21RYCEDBwEDIRmPMTGlFBcUQpVRMUL8Wg0ODggNUCoFDQsRMAc2CVIsIiAHA71MaB89G1Q7/bFKc1tHOhoYCw8UJRA3L0IrEA0DMSwXIxIrIgESEBEiEhAeDhANBicRJBkNHhIXLxZEPQFwAdk+XDAuViwlGjIdI2WdeKesMx48IixdPDdfIBMPBQssHA8cCAs2MVA9FhxAP02ATRQjDyUXMyFgoGA3MRs3WDIlKwMIOv3THBdMZRcPIR4Sdm0WLRoyIQ0EY4wjMis7OysvVkNHM1KznGFIa2tIHBsnO3kSAQwQHQ4NECQUmYIYIg8RMEw6J0MUERU4IDlBMiAhNCMSrP2nRGYKAWsHaP7MK0M3PTGAQF9wLinvO0EdOx3cGSFWSDRsLDEoIgU6EyYwP1xtXBkQCQQXQ0ZALmJEMFr+tDI6FyYHM1AgHx07HREiEaoBZhYTGQgREExCNVwqCX1dI2iEDRxBJSEsDxEIGhYNxP7+UhYrFyJDIxcaLiIKJhU0KQoGDS8UAQkJs0bFgg52v0ZsByomLxodKq0DKycDFwkLMxQ3JSwcRxQTIA+aDRcKJTsVD23LKTgVFQYUGyY3NhEKEAQ7CgULBQgEAgobHF5RVR8tJW1gNDAnUiZZajIEPWVBI0VtQDQFARsFUhwTFBwcFBMc++0DNyw2XBQcBHVEMQkiLSIQzTprKC8jV1Yl+kUIEwo3dRJoJDYZUB0gEyYQNHA5Ug8oHwYAFAsaBQwPDhUjGBkWIycyMAtHXEU6FST8TRiHZARSahgB+UlvdFgMXAQKCB0ZAxkZCgkcFyYRDA0GBkIRBAgDChAIBAYXBAsFT3P8/iMmGiQXLBYPDA4iGEEuFg4RJSwrNRAKCAUECQMCEh0SHS0XESUfL3JGTX9MAj0EAl+dXUR/LyEpJjcqEw4UBxIOAUUdGh0rISIWWW5tKTCTRRcfBw4NfiU7Mis7Kyo8CgvoMkg8Y3U5PEgsJzYuYJNlHCUcCBEDYAFCAQE3OipwVB8fEAdFCA4fH0NkaCVdVQNyWUIKRl9kNh4dNhM7SntbIicCHjcSCw8LQVlHOQ4bCQoV/IkmCC8rKkc/SoBPJjwfOEgpJRtGYkQsVzoAAAAACAEi/qwJBgbMABUAIAArAEAApQDAAMsA1QAAASAkCAESETQmJCMiDAEHBgoBFRQeASc+AjcnDgMHBTcuAycHFgQSByIuATU0GgE3NiQhMh4BFRQKAQAEAS4BNz4BNycmNz4BHwE+ATcnLgE3PgEfAT4BNycuATc2HwE+ATcnLgE3PgEfAT4BNzYWFxYGBw4BBxceAQcOAS8BDgEHFxYHDgEvAQ4BBxceAQcOAS8BDgEHFxYHDgEvAQ4BBwYXMj4BNz4BNz4BNTQmJy4BIyIOAQcOAhUUFgETLgInBx4DAT4CNycOAgcDNQEAAcQBcgELkHn++tO7/o7+sYmAsVxl6cchVXROQT9hSzsZAsjhUsvp/oUrhQEA6pCvxU9Xp3nFAf0BCb7hY4j9/qP+VP7JDgkHECEVPBwWCh4LOxQsFzUMBQsLHQs4GDMaMQwDChccNxw4HCgNAwoKHgszHDEaDh4ICAUNFioXQg0DCgocDU4cOBxJHRcKHA5PGzMZRw0BCQoeC0gWKxY/HBcKHws7Eh4PEig3WVUwXKZVX00WGSZWLk2MeDKFqlBxBdAqe+HsjM+H9d7H/alY4+9pEnH/61P+rJcBFgGAAdYBCsnoYnDSlIr+o/5r3bfaYLOG7uh7LWO0sLlpm0N/++CxNuM72v73Zkq2odMBgQFMgtPqTcSy/f5D/pP++Y8DUQgdDR0yHTIXHAwECjAaNhssCh0MDAMKLhs1GSgKHgwbFywaMxgiCx4LCwQKLRYjEgkEDg0dCA4fEjkKHwsLBQtDFjIbOhccDAQKQBo1GzkKHgsMBAo8GTUcMxccDQMKMRkwGR5MKU01Z7NQWmQnFzQaKSRBXy57w5c7YW0BeQD/ouOHFywlnNHtAVI6US0FSAE0WDcACQEY/qwJEAbMABUAIgAvAD8AUwBzAJIAnwCsAAABIiQCNTQaAjc2LAEzIAAREAIHBgQDJyY3NjIfAR4BBw4BNycmNzYyHwEeAQcOAQEnNhoBCAEkNxcGDAEACgEBMiQ3NhI1EAAhIgwBBwYKARUQABMyPgE3PgI3PgE1NC4BIyIGBw4DBw4BFRQWFx4BFyImJy4BNTQ2Nz4DNz4BMzIeARUUBgcOAgcOAQEnJjc2Mh8BHgEHDgE3JyY3NjIfAR4BBw4BA4zE/ueXUJXOfosBJAEljAEvATjZ09P+BdinFhIIGQqnCwEICBmJpxYSCBkKpwsBCAgZ/YREMKLhAR4BWwGU5jzo/m3+qP7l3qABe/oB2srJzf72/vOD/u7+7YSf8IYBH/YvSE03PIyJNUMjPlwuOopNM3l3YBoQDhYVG08YJGklJSYTExxnf380VKdGRYBTRTszhIw/UoEBEacWEggZCqcLAQgIGZOnFhIIGQqnCwEICBn+rJMBFMGMASkBJAEHaHOlWP6//rz+9f4R29zqA9qPExcLCI8JFgsKAaCPExcLCI8JFgsKAfxfMqABYAFfAUEBBqsZTBOg+/7F/qP+nP7h3NLRAdD8ASMBElSdbYP+ov6Gr/8A/ugDIyNLPEKTiDA8MyEhRS49OydvgH42ITkeJzcQFB9QJxwcWjgmTSc7h4h2KEFHQ2k4QVY1LoSSRFlqAfSPExcLCI8JFgsKAZmPExcLCI8JFgsKAQADAMP+rAllBswATAB8ALIAACUiJic3FjMyPgI3LgI1ND4BMzIeARcWMzI2NTQSPgIzMhYVFAYnJg4BFRQWFxYAFx4BMzI3FwYjIi4BIyIOAiMiLgIjIg4CAyInNxYzMj4CMzIeAjMyPgIzMh4BMzI3FwYjIi4BIyIOAiMiLgIjIg4CEzI2Nz4BNTQmNTQ2MzIWMzI2Nz4BNTQ2PwEmJwcOAQcOAQcOARUUFhUUBiMiJiMiBgcGFRQWAgRnqTFHUKosR0FGK365ZXTEd1CWeSUKGA4Ya7DU11uRq42ekb9eCA2tAQtSChMJIR8kMDQ/coJXU3NhbExGXVFlTk1rW2Qln01HNm87XV1wTk9qVFtARW1od05GaVgrJigiOTc/V1lDRmtld1JQZ1BcRUdkWGcNFjAZFxMKGA8FDwcULxweCgQKUgsTZAwWDhMwHxcSCRoRBAkEEzYdKTg4XlMmhxUhIg0Pe7xwd8R0On5lHB0bvwEk0oZAT2NdWAoKZLVyOk8xcP65yQEDDkgWNDQrOSwlMCUlMCX+dIokXiUwJSUwJSw5KycnEkcbJycrOSwlMCUlMCUC0BoeHC0SDhQKDxkEGSEjMhMOGg5yCw9mDAcCAhMlHC8SEBIIDxcBFCMwKiQxAAAABgCC/qwJpgbMAFMAYQBvAHMAgQCPAAABIiY1NDc+ATU0PgE3JgI1NDMyFhUUHgEXNy4BNTQ+ATMyHgEVFAYHFz4CNTQ2MzIVFAIHHgIVFBYXFhUUBiMiNTQ2NTQuAiMiDgIVFBYVFAEiJj0BNDYzMhYdARQGFyImNRE0NjMyFhURFAYlNSEVBSImNRE0NjMyFhURFAY3IiY9ATQ2MzIWHQEUBgP/MC04EQwbIQjRuWMrKUR6UC9GQkNwREVwQkJGMFB5RCoqY7nRCCEbDRE3LDGACR4wNxkZNzAeCfyQHCUlHB0kJLonMzMnKDIy/nQJJP6cJzMzJygyMq8cJSUcHSQk/qwaHSsvDpmvZqOqb7wBRqa1VVBpvYkcBip3PUVwQkJwRT13KgYcib1pUFW1pv66vG+qo2awmA4uLB0aWCFNJTBtYj09Ym0wJU0hWAZqJh3PHSUmHc8cJmI0KAFgKTMzKf6gKDT2LS32NCgBYCkzMyn+oCg0YiYczx0mJR3PHSYAAAUB9P6sCDQGzABZAF0AagBuAHoAAAEiJjU0JicuATU0Njc+ATU0JiMiJjU0NjMyFhUUBhUUFjMyPgEzLgE1ND4BMzIeARUUBgceARUUBgcOARUUHgEzMhUUBiMiLgInLgInLgEjIgYVFBYVFAYBJzcfAS4BNTQ2MzIWFRQWFwElNQUDIiY1NDYzMhYVFAYELzc+EQ0PGAkMEhJfYnSFRT8sPSs7NC9OaVYrLlGIU1SIUH9nKTwLCQ0XI1VKiTwsHB8WIB9rczMNBxITFRIlRv7SwxGyNCciNiUmNAsSA+j9nwJyBiEpKSEhKSn+rDw6P5ZPX7paSGgsRFsiP0OQi2aAOCwnPSMkNhYXLm9CVIhQUIhUYqAnD2M+JEAlNZJ1vdlbmEdqJDItCSFqgUAjK0Q0Vq1HOUcGUE0wSbIpVzcmNDQmKDsr/qHiNej++kk7O0hIOztJAAAAEQAq/3QJ/gYEAE0AagB5AIEAjQCwAMkA5wD8AR0BMgE9AUIBUQFmAXwBgAAABSIuATU0NjcnJjU0PgE3JiMiJjU0PgIzMhYXDgIHFx4BFz8BFjMyNjclBw4EBxcOAQcXPgIzMhUUBw4CDwEUDgEjISYnDgEnMj4BNTQnBgcWFRQGIyImNTQ2NzQmJw4BFRQeATcyNjU0JxMuAScDBhUUFgMnPwEjNTMHJyImJzc2MzIVFxYGASEyNjU0LwEjJic3LgMjPgI3LgEjIg4CFRQWMzIWEiUyNjcWMzI2NTQmIyIGFRQXJiIjIgYVFBYBND4CNz4BOwEyFhUUBg8BJzc2NTQrASIGBw4BBwUnNxcuATU0NjMyFzU+ATceARcHFxMnNyU+AScuAicOAQcGByc2Nz4BNx4CFx4BFRQGBwUBIiYnNx4BMzI2NTQmJzceARUUDgEtAS4BNTQ3AR4BFwUBJicBNzQ+ATMyFhcHJiMiBg8BEyIvATUXFjMyNjU0LgEnNxcWFRQGLwE+ATc+ATU0Jg8BJzc2FhUUBgcOAQUnNxcBoGmpZFZDJgdSbSYSEk5dSoCiWCBWIjZMPiJKpP1eiZ96W12QLAFwZy9XWWV4SjoiLxo/H2JyNxIIIk1BEFQdTkn9IREVH8GHPWQ8PCsbHUYyMUYqIgYLSFw9Zj0UGwRnChkYbhgcqxt+F3/DMwojXxqlCQsTCQIiAewCthEPE/PWUzH0WJOi3KIQM1E8Bw0HVYxlNjAxacOjAYIXIwMVEyg4OScnOQIBBAIZJib8b0l7mE8XKhinIhYuL5o+tBEWYAobFmSnMwF48UClAQEcHwoFRYdGDQ4C/Rr3L4gBGQkCCCxvcTFEhEJBg4jPR0yhVTqOiDEWEx8f/tQDKHG1KJQeYjplhAECfwYHZKj+8f7nHB4hA0E1QAj9ZQJDER79NApjo2BPiDOOOERRdwpcSCUheJ8NEQsSFjIqK3QUNwwcjeV2ChQYD40QtTIvODti2QFMuHVqjGSnZlqZNAYCBQ0mIAMPW0lcqIRNFxA+W1Q3BAlQOVo9M1pSO10qHQwbS1BcHjsyJzVWMwsIBhtOUyPxIEs0PTR8pIo+Zj1YQR0tIysxR0cxJTwNLCsQFXdKPWY+shwTCgkBKQ8UCv7BDhwTHAIdKUdIMZzKPyjCChHOJDD8jSEIEwhrRVuyRVkyEzdpcUIBAU97hjgqKpr+8DEfFgg4KCc4OCcGDAEkGhklApkkd46OOhEUEBMVQTOqHsUTDBMREUytRNQYYwkJEgkjKgEwIzoSCyQSdlb+3EFjOwIRBBkzMBETNiFXOCY5bidAFxM8QBoLJhYcKgc//DuDZxU0QYViChMKOhcwGmanZLEMAicWIBABlSR5TtcBBz0j/qJda6pjOTNJInBXHgF1GltdhAoNDwkpSTg3rR4gKDdxTD1xQAUTCAgEBCFMIQkmICJQIDZrHpwwigAAEQB4AG4JsAUKADAANAA9AE0AWgBmAHIAeQB9AIQAjQCdAKoAtgDCANMA1wAAAScTIyIHAyU2NTQmKwERIg4BBy4BIyIGByc+ATMyFhc+AjMRMzIWHwETNjMhAw4BBTUhFyU0NjcXDgIVBSIuATU0PgEzMh4BFRQOAScyNjU0LgEjIgYVFBY3IiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFNTIWFRQGBzUhFQUiJj8BIRcBNz4CMzIdAQEiLgE1ND4BMzIeARUUDgEnMjY1NC4BIyIGFRQWNyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWATUuATU0MzIWFxYVFAYPARUBNTMVCPoJYoccBkP+7gNXQxtdZkEmSb5iMVgjUyyCUlesQyhCUkBsM2wwnDIPPQEIcgQs92oBUVr+kIaoD15nKAGxUodRUIhSUYhSUYdTVns5XzlWentWKj09Kis8OywSGRkSEhkaATApPDxYA1b9CQcGBDoC3En9AAIDOUkaIQLKUodRUYdSUYhSUYdTVns5XzlWentWKj09Kis8OywSGRkSEhka/rIoKysoVyYiEw4bAcCHAZpYAsog/nI8FBA1Nf7HCRweEQgEBTwNDhIJHR0KATwrHmEBM1n81yIl6ri4iICAIU4TMk8/ylGIUlSJUVGJVFKIUVp7VjpgOntZVntrPSosOzssKj08GRISGRkSERpYyzwpKzsDUFBkDAdgcwHtIDBBIRac/dFRiFJUiVFRiVRSiFFae1Y6YDp8WFZ7az0qLDs7LCo9PBkSEhkZEhEaAqk4BRUYKQoNDB0KDwEBOP3yYmIAAAgA3P6sCUwGzAAbACoANwBCAFwAZQBpAG0AAAkBLgE1NDY3AT4BNzQmJw4BBwEOASMiJicBBxcDIi4BNTQ+ATMyFhUUDgEnMjY1NCYjIgYVFB4BLwE+AzcXDgIBLwE3ARYzMjY3AT4BNx4BFw4BBwEOARUUFwUBJwEGFRQzMgE3JwclNycHAtQEdhITO0EBEjpDHHpsCjEm/vNHbjcZNh37vQzqOVCGUE2EUImjT4ZSWn10aFh5O2GgAzt1Z00RTByMtwEtXLUIBAovKEeNUgEMHzAQHTMKGT0n/u5CUBX98gJ5cP3gHwYPAwU5dzkBHDl3Of6sBHomOxorVkIBFzstAluJAy1RJ/7xSEINDfuipe0ERVOLUlKETqeNUINNUHhYbHh7WT1mPT1QAixKXzQYVpFZ+3AIvGYEJA5QUwEPH0IiCTAdDjQn/ulDdEctOP8CG3L9kCUOBwKpOHs4Izh6NwAACgEE/qwJJAbMABMAJQArAEUAVQBpAHMAggCQAJoAAAEyJAASNTQCACQjIgQAAhUUEgAEATI2NycOASMmLAEmJwcWDAIBNyYnBxYlMj8BNhI1NAInBx4BFRQCBw4BIyIkJwcWBAE3LgEsAS4BJwceAQwCFgEiJAACNTQSACQzMgQAEhUUAgAEAT4CNycOAgcFNzYkMzciBAcsASUHDAEBNhI1NAInBxYSFRQCBwE+AjcnBgQGBwUV1QF4AR+jo/7h/ojV1v6H/uGjowEfAXkBeTFgLgYtXjCf/rj+0PtTKlgBBQE7AVQBcTtfR0RK/qqfnBhXWE1NPERDT09Fiked/qTUIt0BbQJ7Bljx/vD+7PnBNTI5ygEDARwBGPb+z8X+pP73l5cBCQFcxcUBWwEIl5f++P6l/UcolrhZHGTLpCwDLCNdAQuMBJ3+2Gj++v34/u0aAQECIQLNSkl+fThxck5P/Ow6yfBzBIP+9N1A/qyjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aMCDQMEUAQDASM/VzREN1xDJP5UPiJxKnU0LhKWAVCflQEEWzRP6YaR/suLExNiZEhoZgKPUAYdKzhETio+LlNHPC0d/PSXAQkBW8XFAVsBCZeX/vf+pcXF/qX+95cFhmzQnyJKJqzid7ARiI1QlZAOa2FMWnf7sLgBZ6TZAWh4Omz+tcil/pW6BJ2G24gHUAiU8JQABwEO/qwJGgbMACgALAA8AEwAUAB5AH0AAAEyPgE3ARYzMj4BNTQnJiMiDgEVFBYXAQ4BIyI1NDY1NCYjIgYVFB4BATcnBwEiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BCQEnCQEiLgE1NDYzMhYVFAYVFBYzMjY3AS4BNTQ2MzIXFhUUBiMiJicBDgIBNycHApNWh4NPBE4OCxk0JFJDMyI9JgIF+x4RGwwSBmlJZIppsQI2M/gzA7Nhn19fn2Fhn19fn2FLe0lJe0tLe0lJe/4EAZuw/kz+i1qMUFJKMDQHNiUcPh8E/wcKJBsZKTAdGAgRC/uMRW1uA/UzuTP+rjN6awXRAy5BHUA8MCk/IQoTCfpkFBkdFTEYR1WbfHfAbwFiPtI9/clen2Fhn15en2Fhn15QSXpLS3tISHtLS3pJAd8CHpX9+P14XZxcY2U4LhgfHjQtJiQFxwsVBxYwHSIdEi0FBvoCXWkrBG09nT0AAAYA1/6sCVEGzAArAC8APwBTAGcAawAAASImNTQ2MzIeATMyPgI3ASY1NDY3PgEzMhYXHgEVFAYHDgEjIiYnAQ4BBAEnNxcBMjY3NRcOASMiJic3FR4BFyImJzU0Njc+ATMyFhceAR0BDgElMiQ2NwEnAQ4CIyImIyIGFRQWASc3FwJertlDOjVskGlch2VUKANtCxoQES0WFi8mJi4ODhwlEQMIAvygXOL+3wJtlDCTAbRSji8FOoZUUoo6By+OUmu7ORQcNZ5cXJw3HRM5u/qNsQEJyVIDIDb81TyMuYOIxUoaF6QEdIYuh/78mIc+UAwNEixLOQTXDA8SKhUXIBMaGi8dECIWLh4BAfrbjKxOAfRmQWf9zCMhnAUmJyQqBZ0hI1A5NMgnMBkvMjQtGDEnyDQ5oEmdfQTHJfuJVV8mDyEfW3ICvl9BXgAABAGV/qwIkwbMAGYAhACUAKEAAAEiJi8BJjU0NwE+ATU0Ji8BLgE1NDY3Fw4BFRQWHwEWFRQGBwEGFRQfARYzMjcTPgIzOgEfARYyMzI+AzU0JicuAiMiByc+ATMyHgEXHgEVFAIOAiMqAS8BLgEjIgYHAQ4BCQEuATU0NjceATMyPgE1NCYnPgEzMh4CFRQCDgEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIOARUUFgLFDRwR0CYUARQsKgwNJxsVQ0FDOT4WGScdMzL+/QgLqQ0MDw74LVxtRAsVC2UIEAhju6N7RRobNKrScoN7H0WQSYDwwToeHU6JttBtBxAIbwkSCE90Pv73EiYC6P0fAgQrQzh4OUh5SSksOH9qZ9e2cGm7+P3UWI5TVpJaWYxQVJBaZoiAZURuQIb+rA8MlxwhGRoBZzpUKBcwG1U7bDtnxWEsWK1cNWQ2VUA1NGpB/q8JCQkIhAoTAUw9TygBCAFans3qeERvOGyZUTdHICBYqXg+kEqI/v3iq2ABCAEBQlL+nhgTAkACEx9EJV7CRjkyRHVHYFwqJRdXoNyGq/7O7o4Da1KNWFiNU1KOW1eMUVCDYWeEPWlCYoUAAAsAWv7eCc4GmgBHAE0AXgBmAIgAlwCfAMEAyQDQAOAAAAEiLAEuATU0Nj8BPgEzMhYXBy4BIyIOAQcOAhU+AjMyNjc+ATc+AT8BPgI/Az4BMzIWFxMeARceARcyHgEVFA4BDAEBJzcXNxcFJzcXNxc/ATIWFwcmJw8BJwM+AjMyFhclMiwBNjcuAicuAicDLgEjIgYPAQUHDgEPAQ4CBxYEEzQmJy4BJzceAhceARUBPgEzMh4BFwEnNhI3PgI/AT4BMzIeARIXByYCLgEjIgYPAQ4CBwYCAT8BFzcXBycBJzYzMh4BJQUnPgIzMhYXPgEzMh4BBRS3/qD+zOqFX1USWn4qJJRqHWGUEQ1FVywrOx0ZYXtBIGBWHlUxLFsuoygsHhMj6i8fLR8dNDzCIEM4GTMWFj8wie/+yv6k/B6GLGPZLQJuxyGfzdiMWRFHGAUdKUrA0YAYIxsNHT8Y/vqfATYBD802GEpNHSUyJBHIECEOERsOJf7yMAwqKa5ao405bwFkDhIULUwlPRE7Qx0XFQL0CyYRDSMhC/oQRV6MPRUmMyl0M101Hz9hoX9DdphYLAoHPz59JyweE0CQAaITvp5tOJ+lBFqYKxcNISD6d/73KxMvLAwLGhEOHgwJHR3+3hoyRVYxJIpjFWmCZVBUS29FaTY2UjcMBgoFNjoUHAcSHQywKysRBQmohVZBK0f+vxRfZSxIHk5kIjJWRjEbAbWCNV6dMY5mQFGZckuWEg9KFAh9Z2/9xX+QPLSXExouPiQmdH80RFAnBQFeExlBLXPDDwQgLb0UMk4/WlMDXmmkTTJoOTMbU1YjV69z/MykyGGgYQJYKKEBJZ83SD0ocmKOM5H+5+ct1QEJjzRZd3smNTwxpf7UAUdxjYJ9M7aK/BSkzHKqEXoCYKNkVVpDSz1eAAAAAA8A5v6sCUIGzAAoAEcAWQBiAH8AgwCHAIsApQDKANkBAAElAUYBaAAAJSYkLgE1ND4BPwE+Azc+AjMhMhYXARcOAQcOASMiJicOAQ8BDgETIiwBJjU0NjcHBhUUFgwBMzIsATY1NCc3FhUUBgwBCQEuASIjIg4BBw4CBwMeAQQlMjY3LgEnHgEFMj4BNxM+ATMyHgEXHgEXPgI3LgMnDgICBSc3FwcnNxclJzUzEzI2NTQuATU0NjcOARUUFhUUIyInDgEVFBYXIiY1NDY3DgEVFBYXND4BNTQnNjMyFhUUBhUUFjMyNx4BFRQGAT4BPwE+ATUzFAYHDgEHASImLwIXHgEzMjY1NCYnHgEzMjY1NCYnLgEnMx4BFx4BFRQGIwYBIi8BFjMyNjceATMyNjU0JicuASczHgEfAR4BFRQGIyImJw4BEzI2Nx4BMzI2NTQmJy4CIyIOAQcOAhUUFjMyNjceARciJicOASMiJjU0PgE3PgIzMh4BFx4CFRQGIyImJw4BBIKP/uXpjClFKgo2SC0dCx2XymgBHxYhGAGiHCJZNhFHLhouEhxEHQU8nBXS/n/+065lWhRbpgEaAWK8vAFiARqmRSNyrv7T/n/+YwFcFShUVlrCnSUiNDEejTTaAQ0C7BEmDCpxUCBT/hQ1e1kDSggJBQYSMzU8WRYhPi0FNlhggV8bUF5jA7OrPo3XFNMp/sdFRdQmNSEhCAUlNA0KEgELDTQnUWokHQECDgopKBoLEzA/CBQNHQgOEG78DgcyNB5EQkVJZTQjBAKqH1kmDhdAIEkaICkBAREeEk5kHzA+UBpQFCgvSS+GeBT+ag0HGhQaLG0ZJHwzPVUnMjZdEVALLiMfODZ2WC1nKSNwSiMhBTdGISM1Xk4xPSgSDzZCISZQNjk0IDkkGEIlMU0XHjUeRFs7VSclSUgjJTpFNC5UNlo+IzoUBzYjDCw2NRUOb6ZgF32cVCICBgkGGiX9gJUOEQQeJw8NAQgFIBMX/olKgaZcPnwraD8+RohuQUFuiEY1OEpUY1ymgUoBwwNrAwMFCAVGc3VK/qYbOC0aEgwdpJ3Ori0HExABvSwXF1hjbmgRAwwRCFKFk8iUN73t/v7BixF2Ey5ZIf14U/5OKSIeJioiDygKE0EgExILCiIKJxEiLDFvUi9NEgoTDBYdAykrKCMjGwdIPBkgDBAWHA0yHkNhA4YfMRYNHSwmMEgsFh4K/jcPEAZKGg0MHCIGDQcCAxwbEhcUGjwwHB4THTYjNj1TARUBTBFNLhEaKRwPHBYYQiUVIREPGzIdM00QDi1CATpKPRAHHRMaR0YtUTNBWiUrOigSExYJDkBHPEE8CAU5LiI2PSspa09AYDIrRDsgK0MHBTFLAAAACQFA/qwI6AbMACYAPQBSAHkAggCaAL4A0QDVAAABLgEjIgYHLgEjIgYHNhIsATMyDAEXLgEjIg4BByYjIgYHLgEjIgYBJz4CNz4BNz4BNxcOAQcOAgcOAgUiLAEmNTQ2LAEzMgQeAhUUBgwBJzIkPgE1NC4DIw4BBycOAwcOASMiDgEVFBcOARUUHgEXHgETIiYnAzMTFgYFIicGIyI1NDcmNTQzNjMyFxYVFAcWFRQBPgEzMhYXPgEzMhYXPgE3LgEkIyIMAQYHPgEzMhYXPgEzMhYFNhoBPwEEEwUHJyYCJicGAhUnASc3FwQcFoBOQGYRFG1KGDcnIcABGwFWuM4BbwEYSQoTCzl8Wwo3Q1WRLyV9SluU/hZGClPJunJuGRQvIysZKg8TS39gpqs/Ar3P/pz+9pWVAQsBZM6kASf1smKW/vT+nM62AUX6j2apyclSCxYLQ0VHKSonGU9chIkxFjAyk/WSQo2sEg8CXVFbAhcB0iFNYSYXN06fNR4fBottCPyqNYVNNmouK6NiFisUJYNQTfr+x6ym/sv+/rgpChULQWsiJl0xQ4H+ZwmR+KVGAlV6/viQPQ1PdEVKR+sBTxRPFAKbKUQsFyZKBQ2/ASzQbYb3qgIBKlI9IGFZGCBD/IEKRFAvEgtVWEZeHDYWRztLYjYKESM3zz9xl1lWlHA+KUple0VZl3E/UDVcekU6ZFA3HggRCzEaQD4yDAcGFCgeJxgLLRojTkARBwkBNAwNAun9HAsTVEIjDhY2IBQeO0MQGxkfJRQnAxctMhkXUGIGBUJMD4K5Y1uq8JYBATUtGhswFJYBJwECXQO3/kgSsBuAAQfsVqP+jeNMAu2jDaIAAAAAIwBG/qwJ4gbMABkAHAAfACIAJQAtADAAMwA2ADkAPAA/AEIARQBIAEsATgBaAF4AcgCMAI8AmwCeAKQAvQDAAMMAxwDLAM4A2ADbAN4A4QAAAREzESERITc+ATMyFh8BIQEWFRQGIyERMxElNxclNR8BJzcHJzMBIjURIREUIwE3FyU1HwEnNwcnMwE1MwE3FyU1FyU3FzcnMwEnNwcnMwE1MzUjNSEVIxUzFSUhNSETIiY1ETcXERQGIyImNREnBxEUBgUhNSMRITI2NTQnASEnLgEjIgYPASERIREjEzUzASImJxEhHgEVFA4BATcVAT4BNSMVASImNTQ/ATUzFQ4BFRQWMzI2NzYzMhUUBgE3FxM1FwERIREnMzUjASchATUjJzUhFQcjFQE3FzcnIQc3FwGSXf5XAfeDIzMiIjMjgwQ3AUQ0RTf7AWD9/Gho/vxj1WNjnGjQ/Sw7AQk7AXFoaP78Y9VjY5xo0P1YhwFRaGj+/GP+OXR0OH5+AXxjY5xo0AHwU1QDxFRT/NcCkP1wjw8U3NwUDw8UlpYU+x4CqWAFRRsbFP7G+8SdFhoNDRkXnf4uAaldw/IBAQ0wDQFUAwNHev4I+gEbLy+4AsQ3RjEpRiYvHR0SHQQFFxlB+zB1dYeSAhcBDsiCgv3voQFQAYUvPwEYPy/95q2xU64BZV/Ezf6sASgD9gIToiwhISyi/s0yPTI//Ar+2NlwcDnZbWxsbThxAdg7AQr+9jv+f3BwOdltbGxtOHECIK39inBwOdlt/JWVNaD9w2xtOHH7elVkVVVkVUaC/twUEAE+wsL+whAUFBABI39//t0QFECcBIIWFR4UASrBHBISHMH+eft+BQOu/SgCAgF+FygRWYpPAgO0tP5jIWw5b/2qRTI4MSlObBk+GBokFxgdKSg5BMaNjf7Wp6f9oQEU/uxGiAGtuf29VjxfXzxWAW62th+21cLCAAAXAEb+rAniBswAFQAdACYAMgA6AEMAWgBqAG4AdgB/AIsAjwCYAKQArQDEANYA3gDnAOsA/QEFAAABIiY1NDcBPgEzMhcBHgEVFAYrAQkCETMRIREzESURNDYzMhYVEScyNjU0JiMiBhUUFgE1IzUzFSMVFzU0NjMyFh0BBSImNTQ3AT4BMzIWFwEeARUUBisBCQElAS4BIyIGBwEGFjsBCQEzAScRMwERMxEhETMRJRE0NjMyFhURJzI2NTQmIyIGFRQWASchByURNDYzMhYVEScyNjU0JiMiBhUUFgE1NDYzMhYdAQUiJjU0NwE+ATMyFhcBHgEVFAYrAQkBJzMJATMyNicBLgEjIgYHAQYWAREjNTMVIxUXNTQ2MzIWHQEBETMRATMJATMyNicBLgEjIgYHAQYWASc1IzUzFSMCzxUjEwILGi4aLzMCCwkKIxWD/jv+O/1nSAN9SP15TDM0TUoPFhYPDxcW/kgTmBPaJyAgJ/13FSMTAgsaLBoaKRoCDQgQIxaD/jz+OwQC/fMUEwsMFhP+FgcGCjkB3wHeaf5LUFACAUgDfUj9fkwzNE1MDxYWDw8XFvxQVgMqUf4+TDM0TUwPFhYPDxcWAeEnICAn/XIVIxMCCRouGhorGgILCAwjFoP+Pv49UzkB3QHcNQoHB/4ZFRQLDBcU/hgHBv5BE5gT3CcgICcBdlD72DkB3wHfOQoGB/4WExgMDBcU/hYHBgYGchOYEwQaGRYWEwImGxk0/doJFgoWGQHb/iX6kgIS/jYBu/39OQFvMEhIMP6RyhcPDxYWDxAWAgz6d3eD9U0oLy8oTaYZFhYTAiYbGBgb/doIFgsWGQHb/iUuAiYWCw0U/f0HDgH2/goB1VsBPvprAhL+NgG7/f05AW8wSEgw/pHKFw8PFhYPEBYCiUhIOAFvMEhIMP6RyxcPDxYWDxAW/gJNKC8vKE2mGRYWEwImGxkZG/3aCBYLFhkB2/4lPAH2/goRBwIAFgwOFP39Bw4EawEEd3eN7U0oLy8oTf3kAYb+3QFHAfb+Cg4HAgMUDg4U/f0HDv1ld4N3dwAAAAA0AMr+rAleBtEAKQAtADEANQA5AD0AQQBFAEkAUQBVAFkAXQBhAGUAaQBtAHEAdQB5AH0AgQCFAIkAjQCRAJUAmQCdAKEApQCpAK0AsQC1AL0AwQDFAMkA0gDWANoA3gDiAOYA6gDuAPIA+gD+AQ4BHgAAASImNREhETMRIzUzETM3MxczETMVIxEzETM1MzUzFTMVMxEhETMRFAYjJSE1ITUhNSE1ITUhNSE1ITUhNSE3NTMVATM1IwE1MxUDESERIxEjEQEzNSMBMzUjATM1IwE1MxUBMzUjJzM1IyUzNSMnMzUjATUzFQEzNSMnMzUjATUzFQEzNSMlMzUjJzM1IwE1MxUBNTMVATM1IyczNSMnMzUjJTM1IwE1MxUBMzUjJzM1IwE1MxUBESERIzUhEQEzNSMBNTMVJTUzFQEzNTQmIyIGFQEzNSMBNTMVATM1IxczNSMBNTMVMzUzFQE1MxUnNTMVBTUzESEVIxE3NTMVASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEBcERiArpWKCgoRp5GKCgoWVxadFpcAV5zYUT4VwIu/dICLv3SAi790gIu/dICLv3SRjICklpa/TwyvgFKMuYDvFpaAUoyMv4YWlr9PDIE/DIygjIy/rZaWp5aWv08MgV+MjKCMjL8dCgC4jIy/rZaWp5aWgEcmv2WKAN4MjKCMjKCMjL+tlpa/kAoA+YyMoIyMvziKP7oAnYy/e4EXjIy/M4o/vwoATGKJSAfJgHsICD9KSgC/yAgUCAg/PcoRigD+jIyMv7acgEQ3lAy/vpPgk1Ngk9PgU1NgU9Baz8/a0FBa0BAa/6sYUMDQf2NAtiCARbc3P7qgv0oAlZ4bm54/m8CrPvCQ2LUPGQ8ZDxkPGQ8q0ZG/YxaArpGRv7nAyD84ALu/RL+BVr+gEYBiloCsEZG+yZGWkbqWlBaAqZGRvqGRlpGAziCgv0iRvRaUFr+vDIyAeSCgvyCRlpGWkb+WgGGgoL8PEZaRgLegoL+HwPf/tH9/FP+vUYC3oKC5oKC/muBJicnJv37mAKBgoL855iYmAKBgoKCgvwBRkaMRkY9MgFdMP6hyUZGAkdNgk5PgU1NgU9Ogk0yP2tBQWs/P2tBQWs/AAAAABgA9P6sCTQGzAAbADMAOQBLAFYAYQBmAHYAfACEAJQAoQCtALEAugDCANcA3ADlAOkA+QELAR0BNQAAASImNTQ3AT8CPgEzMhYXARYVFAYrAQEHFycBAy4BNTQzMhYXJjU0MzIWFyY1NDMyFhcVJScTAzcTFyInJjU0Nz4BMzIWFxYVFAcGEzcnNSEVBxUjJwcnMzcXMzUnNSEHFwE/AScPASImPQE0NjsBMhYdARQGIyc3JzcHFxMvATclFw8BASInJjU0NzYzMhcWFRQHBgERNDYzMhYVESMRIxETMjY1NCYjIgYVFBYBETcVATM1NCYjIgYVBSUnPwEfAhM1PgMzMhUUBgc+AjMyFRQGBwEnARcPAScDNwUeARURJTM1IwERBxcPAT8BJzcRFxEHFxEBIicmNTQ3PgEzMhYXFhUUBwYXIiYnJjU0NzYzMhcWFRQHDgElMwE/AgEzMjYnAS4BIyIGDwMBBhYBSSIzHwIFbi3OK0EnJ0ErA24fMyLQ/QW/MaL+NSVJUDMjdU8wGxldSRIRHGc0/f9PhEVPSJYjHAUFEB8QEB8QBQUdjSAFArQF626Sa5qvMYYP/ioyF/7EXwteDAMQFxcQ/RAVFRBrYQYHXAShDwx0AYUJfpf+LDQtBwczLi0zCAgtARVySkpyRuz0CxERCwsREfxp0wHb7EguLkgBVP7RmRAYbLaZPCp0dFwSCicfU4tfDww3K/3ZSAFNQLF7MAkZAQwQF/7zz88BjEwHtEsznwd5UCcn/c80LgcHGTEYFzEZCAgudxgwFwcHMi0rMggIFy/6jYQBnn0X6gMchAgGBvyzJCUSEiUkzCxy/h0GBgKaHCIiHQH+JXXNKiYmKvybHSIiHAL4v64//jb8rio2DQ8RDk8XEyAfOBYbZlBKXRABUQGyDf44gwQNDxEMAgICAgwRDw0E/jKUZFRcUZ80NE5JSU0lPic8AeED7AOqfxgQ/REXFxH9EBgrA0mlA1/+ajA5Fz9fCSkCVAcSGRcUCAgWFRYVB/1WAg9GaGhG/fEBF/7pAS4RDAsREQsMEQKjAVBb4/znjyhCQii8lVM9JTdpU/2xVBgzKxoIE1EyIjQeCxpiMwGIIgFkOp+OJwEAKgwBFhD+4kDS/YkBOhg8CiNDDyh8AbMl/ptQK/62A58HFBYXFAMEBAMWFRQWB5gCAxQWFhQICBYUFBYDAkQBnyJw6vzlEAYDRSMWFSTMeSP+IwYQAAAZAQj+rAkgBswAHQAlACkALQA1ADkAQQBFAE0AUQBVAF0AYQBlAG0AdQB5AH0AhgCJAI0AlQCaAJ4AogAAATUzNTM0NjcRLgE9ATMVITUzFRQGBxEeARUzFTMVASE0JichDgE3MxEjAyE1ISUhNCYnIQ4BBSE1IRMhPgE1IRQWATMRIwEhNCYnIQ4BATM1IxczNSMBIT4BNSEUFgEzESMBMzUjASE0JichDgEBIT4BNSEUFgEhNSEBMxEjATUjNQkBFSMVASUFAzM1IxMhPgE1IRQWASE1CQEFMzUjFzM1IwEIUDkRExYPUAZoUA8WFBA5UPjDAUEJCv7lCgki+vqtB3j4iAJBAUEJCv7lCgn+DwbY+ShNARwKCP6/CQHS+PgBkQFBCQr+5QoJ/JKRkcaGhgEFARwKCP6/CQHS+Pj9/YaGA5QBQQkK/uUKCf5dARwKCf6/CP7hAbj+SALx+vr6Z00D0QPRTfrDAbkBuZuGhuUBHAoJ/r8I+qMGyPyc/JwFTIaGu5GR/qzDkTdLGQH1HVVgWlNTWmBVHf4LGUs3kcMBVCk0ExM0jQG8/IhDwyk0ExM0ukMDBhQyJSUy/eoBvP2OKTQTEzQDx1BQUP54FDIlJTL96gG8AX5Q+8ApNBMTNAKPFDIlJTIBJFD8dgG8ATuTgwIJ/feDkwFO6+v+9VD+eBQyJSUyAcUSAc7+MrNQUFAAGgEE/qwJJAbMAA8AHQAvAGQAeACHAJcApQC7AMcAzQDdAOsA+QE2AX0BiwGfAbUBvQHDAckB3QHxAf8CDQAAASImNRE0NjMhMhYVERQGIyUiJjU0PgEzMh4BFRQGJSImJzUeATMyNjMyFhUUDgI3IiYnNx4BMzoBMy4BJy4BJy4BPQEOAgcOAgcnPgE3PgE3PgEzMh4BFx4BHwIiBgcOAQUiJyY0NTQ2MzIVFAYHNjMyFRQGEy4BNTQ2MxczNx4CFwclIiY1NDcyFhUUIyInFhUUJyI1NDY3LgE1NDMyFwYDIiY1NDMyFhcuATU0MzIWFRwBFQYiASImNTQ2MzIWFRQGASceARcVASEyNjURNCYjISIGFREUFgEiNTQ2Ny4BNTQzMhcGBSInNjMyFRQGBx4BFRQDIiY1LgI1NDYzMhYVFA4BFRQWFzU0LgE1NDYzMhYVFA4CFRYzMjY1NC4BNTQ2MzIWFRQOASMiJxUUBicyNjURFjMyPgE1NCYjIgYVFB4CFRQGIyImJzQ+AzU0JiMiBhUUHgIdAQ4BIyImNTQ+ATU0JiMiBhUUHgE7ARUUHgEBJjU0MzIWFz4BMzIVFBMiJzwBNTQ2MzIVFAc+ATMyFRQGASImNTQzMhYXLgE1NDMyFhUcARUGIhcuATU0PgEzJTcyFhcHFzceATMVJyInPAE1NDYzMhUUBz4BMzIVFAYBKgEnJjU0NjMyFRQHPgEzMhUUBgMmNTQzMhYXPgEzMhUUASY1NDMyFhc+ATMyFRQBskZoZ0YGxkdmZ0f6ZFh/PGI5OmE8f/7kMG02QGI7g9pYZWptuepKf9daHFLJczJjMSczDhcvEA4NM0E5Jx0wOCgfRkMrJWsbGy8OEFVwOiB5KjMeOWNBT6QCLwwFARAKBwQHFQ8KHvZLWFRAI7EeOJmZNjD+SgoRAh0nDAsXCp0QFRMRFxAeFRbxEyAKCBILBgUGCw8ECP0gVXl5VVV4eALHESIzG/t3BsQmODcm+TolODkD8BAVERMTEB4VFwFmHRcZGxAUFBEXR1RMYqNhX0s4OgMDJygSE2VhWWMJDAkODxAfBAQ5QEY9RXpPHQ9RUzgyLjg7Yz0nKR8pAgQCMiwXKREEBwcERD5DSQkLCQQIBFpHAwMtFTE/VpNdIBct/rghCAUPBAgPBAfhDAYQCgYLCxMHCh8BdhMgCggSCwYFBgsPBAjsP1c8SBL+cQQZNBoHsxodQh23CwYQCgYLCxMHCiD+nAQJBAIRCgcMDhAHCh5oJQgHDwcFEQYJASwhCAYOBAYPBgj+rGdGBsVHZ2dH+TtGZ/wdEQsVDQ0VCxEdsgIBXgYHHBoICBoaEukMC0AJBiAnChElFBIpFhQfGhMTDh4cDD4RMxMRJg8PDyQuEAkSCgzxAwIDAooCAwYEFiALBREPDAYKEf4iEz4rKziZfgQPEAeBuiMUBwgSCwYKGAoLtggGDwYDEAUIISIBGhEKBgUJDhEICh8WBAcDAQKLeVVVeHhVVXn9WqgBCgeW/Zk4JQbFJjg4Jvk7JTgDVggFDQcHDwQIIiHwIiEHBQ8IBA8FCP2If50KkfGYiZVsaxBPTQ5APwlrNqqsN5mtmogadot7HgomGxVSUxRTYIaKhNB4Bq+ShDphewEFIlqzhXldNkMOPUQ3CC5HGBMQWXd3XRNweImDL3F5djWmAQF0UhRKShJgPXlrhOKLM19hIgQPFR4RFxEUFBEe/vsCAwYEFiALDhkJBQYKEf65EQoGBQkOEQgKHxYEBwMBqAMeFQ0XD/0nAgUgaVsHC0mvAgMGBBcfCw4ZCQUGChEBbQEKBhMgCwwZCQMFChEBIRYcEhYUExcSHP6+FR4QFRMTFRAfAAANAZD+rAiYBswAIwAyAF4AcAB8AIQAigCuALUAzQDZAR8BTwAAASAkJjU0NiQ3Bw4CFRQeAQQzMiQ+ATU0LgEnNxYEFhUUBgQlJicuAScuASc3HgEXFhcBLgE1PAE3ByY1NDY3JyY1ND4BMzIXJjQ1NDYzMhcHPgEzMhYXBx4BFRQHJRMnPgEzMj4CNxcOAyMiBhMiJic3FjMyNxcOASc1MjY3Fw4BJzUyNxcGAyImNTQ2Nz4BNTQmJzceARUUBgcOARUUFjMyNjUQJzcSERQGAzUyNxcOAS8BJjU0MzIfAScmNTQzMh8BNzYzMhYPAQMiJjU0NjMyFhUUBhciLgEjIgcGJicuAic+AjMyFhcHJiMiDgEHHgEXHgE3PgEzMh4BMzI+ATMyHgE3PgE3LgEnFx4BFw4CBwYuASMiDgEDEwU2NTQmIyIGByc3JiMiBgcnNxciBhUUFhcHLgEjIgYVJyEVDgEVFBc3Fw4BFRQFFf7y/mrhpAEXq0mC0Xp53QEss7QBLNt4huaQA6wBB5bk/mv9RDZIHSAXFREHLxY2LjwsASNIVQG/OE1G1ARWi006NgGdgxkSFjJuOE19HNmGlhn+BV0DDyUQX2I0MS4gJTRCdGUNJiAlQx8WNTooKQkWLXk2TREfIWwtRCsoPgtZUQ4JDhYnLj0xLRoOCgkbSUEbmzylUsxCKygcUkeAFRgLC1AwBxcQCzYNBhYLDQQWsSUyMiUkMjIEKUJDKyErPUcgDBYzOULF5nMhRCMqKzNuspA+JyEQEyIrGiYULk5DGh05SDIPQ0UQJz4gHFA1hi5FEzM6ODEYTkkSKz09v+AB7QFraBMmEzPxMUcfZjlxFixhbwIERyM/HF2BDQEieFgF1EETEf6sabVzWJZmDloNU285QnVYMjFYdUM3cFYQTBJoj1B2tWbPFE0gGA0MDgogExc0QxECnhR0WAsUCr9XbFqTMwMQE1B4QhIGDQZ+mQPUKStOQZsFl3pRK5L7NT0FAxosNhw1FDYzIgQCaQsLOBIHPAMEozwKCDUQCZ08Hi8r/igpPBoyGCRYQEqHTyNVm1NJZiYbIg4SDQkFAZ76Jf70/k8zIQJgPB8vExmkKwgTFwQdVwsLFxNdQyAWEW/8XjIkJDIyJCQy1SAgBAYXJQ4VKy1ZhEkEBUoDMlw+Hx4TFQsFAwEgICIhCAQEC0QXIEwgGCNIKxA3OBEIAwkhIgLpAcGOCBFfbQQGV6wrHzscywZuXRIYEzkRDmRWKmIqmUsZHNQ3IkcsSwAAAAAPAQT+rAkkBswADwAnAD8ATwBjAHEAiACkALcA6AD4AQYBJgE4AYoAAAEiJjURNDYzITIWFREUBiMlLgIvAS4BNTQ2PwEOARUUFh8BHgIXAS4BLwEuAiMiByc+ATMyHgEfAR4CFwEhMjY1ETQmIyEiBhURFBYBIi4BNTQ2PwEXDgEVFBYzMjcXBgEnEz4BMzIXByYjIgYHAyImNTQ3DgEjIiY1NDYzMhYXHgEVFAYnMjY1NCYjKgEHNjU0JiMiBhUUFjMyNjcGFRQWAS4BJxM+ATMyFh8BNz4BMzIfAQMiJjU0Njc+AT8BPgE3PgEzMhYXHgEXBy4BLwEuASMiDgEPAQ4CFRQWMzI2NxcOASUnGgE2MzIWFwcuASMiBgIFJz4BNzQmIzUyEhEOAQEiLgIjIiY1NDY3Fw4BFRQWMzIeATMyPgE3FSIOAiU3PgE3HgEzMjcXDgEjIicOAQcnPgE3PgE1NCYnIy4BNRYzMjU0JicDNjMyFh8BNz4BMzIfATc+ATMyFh8BMzc+ATMyFh8BMzc+ATMyFh8BMxchDgMVFBYXHgEVFA4BBw4BAbJHZ2ZHBsZHZmdH/sQEUa+TUbu2FRxUEyKbl1OhxWEK/HotYlccZJNuLxMVGBEgD0GFo20cOkw4Gv19BsQmODcm+TomNzgGQDhuSC8rGVZHMlo6GBwKFfx0R3dBhlsxOR0qIztlO6tZXwMdHwuFjIyFg4gHS2FdZUpGYT4FCwUJfGVpdnZpETU1Di4DcFCONHoZHgcHHBIyTggPAgYQKiZEciklFCcRChcmEBwpGiYvFgomHDYXJgsLExQLDR0nHgkXPSxDHxcvFRgZOv2vSy2f651jsFsyVJZSicyLAWFMBo58Z059hXeVAQQoLyUvKD1dMiswHiMyMDE6MiIxQkEtMDgnLfjZGCZVFSMuEzIUSBBRLR8pIm4TKyNqOIxzHCkaWmseJBoMEeQUDyI0I3saCQgBAxEdKgwLAwIKEFaEMBQQAgIMEzphUw0KAgUMCUnfFP12RZqHVCI5PEBij0M4Xf6sZkYGx0dmZkf5OUZmCoCnZx4RJ4dYGlcWDBJZHkBlHxEhdb6PA3YmgXwokKlKBkwFBVG4nChTaUEX/H43JQbHJjc3Jvk5JTcBYCQ+KCEuHxIWKC0WFSYFTwQCChsBOKyYF0YRepkBcR4cCwkCATMxMTMyLwI6KiYmMgsPESoBDhQYISASEiABAxUWChr8awIMBwE1Pjo/O6KNDxQcSf6dPjQdNx8RJxQMGzoaLyZDTSJGIzYUOyAfNSkwSSULHDAnEBIQBQZBCw3fCQFpAb/QTk85SUHH/l3rAqrFItXcPP7q/usNr/w+GSEZRzUfRSIhHzsLESIoKCEiAU0UGxRxTANJKwoIKhgrMww3NqE/FycRK0slCxcYOqNVGSIRKh8BtQlLRO5BFg4kO2odFBEgr4M4IRUpfr0dEBIXwUMGL0FDGRYjHR47LT9VORYSIQAAIAEM/qwJHAbMABcAIAApAC0ANgBMAFAAVABgAHUAfgCCAJAAlACYAKwAuAC8AMUAyQDNANEA1QDZAN0A4QDlAPEA9QD5AQUBEQAAASIsASY1ETQ+ASwBMzIMAR4BFREUBgwBAScRNDYzMhYVAScRNDYzMhYVAyU1CQE1NDYzMhYdAScyJD4CNREGDAEjIiwBJxEUHgIEASc3HwEnNxcBNS4CNT4BMzIdAQE6ATc1MxU+ATcRIREeARc1MxUWMgERNDYzMhYVEQEDNwkBLQE+AzMyHgIXBQEnNx8BJzcXEzIsATY1NCYsASMiDAEGFRQWDAEBNS4CNT4BMzIdARcnNxcBETQ2MzIWFREBETMRAyc3FQEnNxcvATUXASc3FwUnARcDJwEVASc3FyU1IzUhFSMVJzUhFSchNSEBJzcXLwE1NDMyFhcUDgEHBSc1NDMyFhcUDgEHBRTV/or+5KF50AEKASWQkAElAQrQeaH+5P6K/EWCGhciLwFCgx8YHi7V/rQBcwF+fVdXfdR9AQr4xXRP/uH+idPT/on+4U90xfgBCv2BOC82eC42Lv73H0s3R24UFALuCREJ+hEhEf1AESER+ggTAawuHhgf/Fj+QAECATz+hv7bBXW/7Ht77L91Bf7S/RcdPBxqGzoYm8wBWwECj5T++/6nxsb+p/77lI8BAgFb/r0fSzdHbhQUuxc6FgPFLyIXGvx0RroJQgGKPyVBrD9IAeQsSS7+o0QBAkAGJwFz/ZpBEEf9fkgCqkhQ/oZSAh794gO5Mjkv0TwUFG9GN0sfARs8FBRvRjdLH/6sW6PXfAJQcbmNYDExYI25cf2wfNejWwEAdwFCHR9CMP3uKwFmISpAKQGi71r+9fx7/ld9fVf+DytWfqdmAVltnFRUnG3+p2anflYrBKg9KTuKRiRCAUFpEyEdDQs7G8X8fAHo0AIGBAES/u4EBgLQ6AH9yAFzKUAqIf6aA8UBwhz+N/3lO3ZxnmEtLWGecXYC4koUS6lOEFD9tE6LuWtototPT4u2aGu5i04D7W4TIR0NCzsb7bVSEFL7CgGDMEIfHf6+Ay4CAP4AAWJSBFT+4RpcG3MCaAT+IihGJicVAckc/WM+AQtaAV8MYBCZae7uaQxdXaNi/W0mTiH3Cu0bOwsNHSET/y3FGzsLDR0hEwAAAAASAPT+rAk0BswAFQAqADEANQA5AEAARwBOAF4AZwBzAIgAjwCXAJ4ApQCsAL4AAAEiJjU0NwE+ATMyFhcBFhUUBisBCQETIiYjIiY1NDYzMhYzMjYzMh4BHQEBIiY9ATMVEyE1ITchNSEDNTMVFAYjJTU0NjsBFTM1MzIWHQEDNTM1IRE3ESERFxEhFTMVARE0NjMyFhURAzI2NTQmIyIGFRQWEzU0PgEzMhYzMjYzMhYVFAYjIgYjASImPQEzFQERIzU3FSMVATUzFRQGIyU1NDY7ARUzNTMyFh0BATMJATMyNicBLgEjIgYHAQYWAUoiNB8DbitBJydBKwNuHzMjx/z9/P27HTYYakVdRiYyHx8wJyxeQv6oEBeW6QIM/fQPAe7+ErSWFxD+txcQb0RvEBdBD/39UAX0UP39D/3vcklKcVEPFRUPDxUVq0JfKycwHyAxJkdcRGsYNh3+9BAXlvt8HvoeBAqWFxD+txcQb0RvEBf51IMDJAMkgwgCB/yxIyUTEyUj/LEHAgKbHCIiHQNkKyUlK/ycHSIiHAL4/Qj8rAMgLVxuFxYmNhemAZgXEG+W/hs5OjcBO5ZvEBfcbxAXlpYXEG/88Z5aAyQ9/O0DEz383FqeATICH0dlZUf94QE2FQ8PFRUPDxX+M6YXNiYWF25cLSADAZgXEG+WAyABmMcCydL8GpZvEBfcbxAXlpYXEG8BLgMb/OUOBwNFIxgYI/y7Bw4AAAAAGgDy/qwJNgbMABcAIwAtADcAQwBPAFkAXQBkAGgAbwB2AH0AqQC1AL4A3gDpAPUBAQEIAQ8BFgEdAS8BTwAAASImNTQ2NwE+ATMyFhcBHgEVFAYrAQkBEzI2NTQmIyIGFRQWJSImNTQ3PgEzESUzNSIGBw4BFRQFMjY1NCYjIgYVFBYXMjY1NCYjIgYVFBY3MjY1NCYjIhUUFyE1IQEiJj0BMxUTITUhJzUzFRQGIyc1NDY7ARUzNTMyFh0BAzUhIiY1NDY3ETMRMzIWMzI2MzIWFyE+ATMyFjMyNjsBETMRHgEVFAYjIRU3MjY1NCYjIgYVFBYlETQ2MzIWFREBIi4BAjU0Ej4BMzIWEhcHJgImIyIGAhUUEhYzMjcXBgUyNjU0JiMiFRQWATI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWASImPQEzFTM1MxUUBiMnNTQ2OwEVMzUzMhYdASUzCQEzMjYnAS4BIyIGBwEGFgE1MzI2NTQmJzQmIy4BIyIHJzYzMhYXHgEXHgEVFAYjAjgfMBENAtAmOSIgOiUC0g0QLyCr/Yz9jBUOFBQODhQU/tIqNpIaXV//ALEZNhEuQQGuDRISDQ0SEnEOExMODRQUXAsQEAscoAGW/mr+6goPZNcBfv6Cm2QQCesPCks8SwoPJf7fSEgQDVAcICgaGikfGy8WAj4WLxwgKRgaKR8cUA0QR0n+3zYOExMODhQU/iNdPj5d/JlXlXA+PnCVV2ercAtQCl2JTViXW1uWWQ8ZFB4DFQ0SEg0eEgFjDhQUDg4UFKQOFRUODxUW/soJEGQ8ZA8K6w8KSzxLCg/6+noCkQKReQYFBf0+HSEQESEe/T8EBAWS8BEUIiA+KQoiFA4NKCYcGigLOk0LLCc6MwISHh4RGw0CzCUfHyX9NA0bER4eAm79kv1xFA4OFBQODhSWNSlVMDYx/rZOsSspDy8QD4wSDA0SEg0MEk0UDQ4UFA4NFDURCwsRHBzJQwGDDwpLZP7DRvdkSwkQoEsKD2RkDwpL/UyULjgcShQCL/3xExIUFBQUEhMCD/3RFEocOC6U0hUNDhQUDg4UeQGeOlVVOv5iAS5wxwEGl5cBBsZwrf7TwQWqAQubrf7ds7P+3K0FTQhQEg0MEh4NEv7+FA4OFBQODhQ7FQ4OFhUPDhUBKBAJS2RkSwoPoEsKD2RkDwpL+AKL/XULBAK6HRMTHf1GBAv9wU4SDhMcBj0uERsHPBofFwRBPg0zIipEAB0Alf6sCZMGzAALAA8AEwAXABwAIAAkADAANAA4ADwAQABEAEwAUABUAFgAXABgAGQAaABsAHAAdAB5AH0AgQCFAIkAAAERJyY2MyEyFg8BEQE1MxUDNTMVEzUzFQUhESEXEzUzFRM1MxUTMxEzETMRMxEzESEBNTMVEzUzFQE1MxUBNTMVATUzFQMhESERIREhATUhFRM1MxUBNTMVATUzFQE1IRUTNTMVEzUzFQE1IRUTNTMVEzUzFQMhETchBTUhFRM1MxUTNTMVAzUzFQECYQwUFwioFxQMYfiCgoKC8IL9tgEo/o1LVoLwgqFQY0hjUP5S/WuC8IL+DIIEYoL8DILcATcCOgE3+1gBrgFM0oL8DIIEYoL77gFM0oLwgvvuAUzSgvCC0gEoS/6N/DICaESC8IKCgv6sBr+jFCQkFKP5QQFZgoIBLIKC/tSCgsQGt3L814KC/tSCgv4QATX+ywE1/ssBfALMgoL+1IKCAliCgvtQgoIDhIKC+7gCb/2RBmb8toKC/tSCggOEgoL7UIKCA4SCgv7UgoL+1IKCA4SCgv7UgoL+1IKC/OQGRXIH29v+xIKC/tSCggEsgoIAAAAAFgBn/t4JwQaaAAMABwALAA8AEwAXACAAJAAwADwAQABEAFAAVABYAFwAYABkAHAAdACAAIQAAAERIREhESERASERIQERMxEFNTMVATUzFQEiNREzESchFQE1MxUBIjURNDMhMhURFCMnMzI9ATQrASIdARQBNTMVATUzFQEiNRE0OwEyFREUKwEzESMBETMRATUhFQEhESEBETMRASI1ETQ7ATIVERQrATMRIwEiNRE0OwEyFREUKwEzESMDGQZ89tICEv4+AXL+jgRHRgEYZPqSPAJjH0YYA3n5jtIEHxQUAScUFPnLEBDLEPrx0gRRRv2aHx/yHx+cRkYC9kb7UQbU+agF3PokBS1G/QIfH/IfH5xGRgF+Hx/yHx+cRkb+3gXM+jQHvPhEAl4FDvmYAZT+bNa2tgVFtrb7cx8Bk/52FDwFMDw8+p4UAQcUFP75FH0RXhERXhEFezw8+yXHxwGUHwERHx/+7x8BT/t6Amr9lgIvpKT98wTI+xYCav2WAzcfAREfH/7vHwFP/rEfAREfH/7vHwFPAAAAABAA2f8QCU8GaAAPABsAHwAtADEAOQA9AEEATQBRAF0AiQCVAJkApwCxAAAXETcFFSU3ESERFwU1JRcRASI9ATQ7ATIdARQrATMRIwciJj8BNjsBMh8BFgYjExE3ERcRIREjESEREzUzFQE1IRUlIj0BNDsBMh0BFCMBERcRATI2NTQmIyIGFRQWFyImJyY1NDYzMhYVHgEXLgE1NDYzMh4BFRQGBz4BNz4CMzIeARUUBiMOAQEiPQE0OwEyHQEUKwEzESMHIiY/ATY7ATIfARYGIwEnCQEHJzcJARfZSgIx/bAlB9Yl/bACMUr4bx8f3h8fkkZGcQsNAx8HHsoeBx8DDQtmUNcBjEb/ALVj/aoDfP3pCwtzCwsBg1D98y9BQS8uQUFDU5k3IigQCQcTGxMBAmNIJ041BREUHgcHBgwQEDowJjA7jgJGHx/eHx+SRkZxCw0DHwceyh4HHwMNC/qqawJGAkZrPjr+Kf4pOvAEMKwC3AJd+/MEDV0C3AKs+9ABJh/zHx/zHwExJhELfB0dfAsR/f8Eugr7PAgCa/2VAiX92wEYMjIBxlpazwplCwtlCvxbBMQK+0YD9kIuLkFBLi5CRWleAhEOIxQaHB8QCxcFRGUlSTcWKRUOHhAQMSguRiMTDCgw/UUf8x8f8x8BMSYRC3wdHXwLEQKQeQIe/eJ5M0ABt/5JQAAAFgD5/qwJLwbMAAsADwATABcAGwAfACMAJwArAC8AMwA3ADsAQwBLAE8AWwBfAGMAZwBrAG8AABMRIRUhESERITUhESURMxEBNTMVAREzEQE1MxUBNTMVAREzEQE1MxUBETMRATUzFQE1IRUBNTMVATUhFQERIREhESERJSE1IREhESElNTMVATUjNTM1MxUzFSMVATUzFQE1MxUzNTMVATUzFTM1MxX5AoD90AeW/dACgPn7tP3FeAITvv2TeP6seAMhvvyFeANTtPqleAH0Agr8ZngBGAIK/CIBFgOGARb6ngUS/ur9Gv7qBKZ4/RawsKqwsAKkeP6seGR4/qx4ZHj+rAanUPn5BgdQ+VkoASz+1ALTeHj9LQEs/tQC03h4ATZ4ePv3ASz+1AQJeHj79wEs/tQFP3h4/NW0tAMreHj+KbS0/ZwBLAXI+jj+1FCMBcj6OPN4eAI5yKjIyKjI/cd4eAE2eHh4eAE2eHh4eAATAQj+rAkgBswAGQAdAC0AMQA1ADkASQBNAFEAVQBZAGkAeQB9AKgAuADIANYA2gAAATUzNTM+ATcRLgE9ASEVFAYHER4BFzMVMxUBNSEVBSE0JicRPgE1IRQWFxEOAQMhNSE3ITUhAzUzFQEhNCYnET4BNSEUFhcRDgEBNSEVExEzESczESMBNSEVBSE0JicRPgE1IRQWFxEOAQUhNCYnET4BNSEUFhcRDgEBNSEVATUuASc1HgEzMjY1NCYnLgE1NDY3NTMVHgEXBy4BIyIVFBYXHgEVFAYHFQciLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BJTUJARUhNyE1CQEVIRcFNTMVAQhQPAITDRETBwQTEQ0UATxQ+MsCdf2BAS4RFBQR/tMRExMSiQd4+IhQBtj5KBZQAVwBLREUFBH+0xETExH+rQJ2mjKC0tIBHQJ1/YABLRETExH+0xITExIBXAEuEhMTEf7TEhMTEv6uAnb8tCE9GiJIJCYfNichUD02UBs1HCEhNBs7LS02Pjk1LXXBc3PBdXXBcnLBdV+cXV2cX1+dXV2d/MEDngOe/YU+Ae38s/yxAe0+BFVQ/qzklB8/FgGHH08sWlosTx/+eRY/H5TkAck8PH8vQQ8Bzw9CLi5DDv4xDkP+zkY8RgMp8PD9Ey9BDwHPD0IuLkMO/jEOQwHuPDz9zQFP/rEhAX7+9zw8fy5DDgHPDkMuLkIP/jEPQS8uQw4Bzw5DLi5CD/4xD0EB7Tw8AUw7Ag4NXg8YHBYbIhEPP0A2RApAPgMQDU4ODjAZHhUZPjgyRA5CaHPBdXXBcnLBdXXBc1BdnV9fnF1dnF9fnV18iAKC/X6IUA4CSv22DlDf8PAAAAAFAQT+rAkkBswADwAXABoAIgAvAAABIiY1ETQ2MyEyFhURFAYjATM3MxczAyMDGwEBMxEzNSEVMwEzERMzExEzESMLASMBqkRiYkMG1kRhYUT5EktQ9U9L70REZWEBW0fE/jHEAYlDyjfLRVjT0Fn+rGFDBtdEYWFE+SpDYgLW1dUCgf6UARb+6v7rAj5BQf3CAgj9+AIH/fkCf/3nAhkAGAB1/qwJswbMAB0AIQAvADMANwA7AD8AQwBHAEsATwBTAFcAWwBfAG0AeQCXAJsAnwCjAKcAqwCvAAATEScmNjMhFSEXESERIREhESERIRE3ITUhMhYPARElNTMVJyImNTQ+ATMyHgEVFAYXETMRATUzFQEzESMBNTMVFzUzFQEzESMBNSEVFzUzFQMhNSETNTMVAREzETM1MxUnIiY1ND4BMzIeARUUBgERMxEhETMRIxEhEQURJTYkMzIEFwURIxEnESMRNC4BIyIOARURIxEHESU1MxUnNTMVFzUzFQE1MxUXNTMVJzUhFd1dCwoUAY/+zT4Ctv3gBqL94AK2Pv7NAY8UCgtd+FRwOB0mFR8PDx8WJ8hQ/mw8An+5uf1FPNw8AnC5ufvDASNuPLkGAvn+fTwEUFCtcDgdJxYgDg8fFSb7cqQBIKSk/uD9dgEgKQEQwcIBECgBIFDIUHHEfXzFcVDIBRI8PDzcPP6sPNw8qgEj/qwFLKIUG1Bq+w0BgQEO/vL+fwTzalAbFKL61CiQkIIwJh0/LCw/HSYwggHR/i8DBYyM/SMBgQJMjIzkjIz9FwGBA0FQUOmMjP34bgKKjIz7DwHR/i+QkIIwJh0/LCw/HSYwAssDJf6/AUH82wFg/qC+BBMCobOzoQL77QPDAvw7A7tsnVVVnWz8RQPFAvw9goyM8IyM/IyMAeyMjPyMjPVQUAAZAHX+rAm0BswAIwAnADUAOQA9AEEARQBJAE0AUQBVAFkAXQBhAGUAcwCHAJkAtwC7AL8AwwDHAMsAzwAAExEnJjYzIRUhIgYfAREhESERIREhESERNzYmIyE1ITIWDwERJTUzFSciJjU0PgEzMh4BFRQGFxEzEQE1MxUBMxEjATUzFRc1MxUBMxEjATUhFRc1MxUDITUhEzUzFQERMxEzNTMVJyImNTQ+ATMyHgEVFAYBLgI1NDYzMhYXPgEzMhYVFA4BJz4CNTQjIgYHLgEjIhUUHgEBESU2JDMyBBcFESMRJxEjETQuASMiDgEVESMRBxElNTMVJzUzFRc1MxUBNTMVFzUzFSc1IRXdXQsKFAGP/uwKCwUvArb94Aai/eACti8FCgv+7AGPFAsMXfhUcDgdJhUfDw8fFifIUP5sPAJ/ubn9RTzcPAJwubn7wwEjbjy5BgL5/n08BFBQrXA4HScWIA4PHxUm/KVUjFVYTSlOGRlPKE1YVI1UQGc+VSZQGhpQJlU+aP0mASApARDBwgEQKAEgUMhQccR9fMVxUMgFEjw8PNw8/qw83DyqASP+rAUsohQbThIKUPsLAYMBDf7z/n0E9VAKEk4bFKL61CiQkIIwJh0/LCw/HSYwggHR/i8DBYyM/SEBgwJMjIzkjIz9FQGDAy1OTtWMjP4KXQKJjIz7DwHR/i+QkIIwJh0/LCw/HSYwA00uj6BGT1shGxshW09GoI8vKnN4MVosICAsWjF4c/45BBMCobOzoQL77QPFAvw5A7tsnlZWnmz8RQPHAvw7goyM8IyM/IyMAeyMjPyMjOFOTgAAAA0BEv6sCRYGzAALAA8AEwAbAB8AIwAnAEEARQBJAE0AVgBhAAABNTcRIxEhESMRFxUBNSEVEzMRIwEhESERIREhATMRIwE1MxUDITUhEyE1IzU3PgE1NCYjIgYHFz4BMzIWFRQGDwEBNSEVATUzFSURIREBNzY3Mw4BHQEXMzUzNSMRIwMVMwElQ1YIBFZD+RkBVOuWlv1dAl0B/gJd+UgDf5aW/MhQ7Qdk+Jy4AR2oRjIoTD4qQiAwFyQUGhoeMGQEngFU/JtQ/IoD8v5QQgoMAgEBAWA0NGGnqP6sjhYCoQGa/mb9XxaOAev29v6hAhT97AJa/aYCuf1HAhQCF5SU/t76ASNWBFxBWTRBTCAmQRwVIBwkR0OK+/L29gLMlJSHAuL9HgEsjRYiCDsLd7hoUAFM/rJOABcAaf6sCb8GzAAHABsAHwAjACcAKwAvADMANwA7AD8AQwBHAFsAXwBlAHUAhQCJAI0AoQClAKkAABMRMxEhETMRISImNTQ+ATMyFhc+ATMyFhUUBiMBESERJTM1IwEzNSMFETMRAREhESUzNSMBMzUjEzM1IwURIREBMzUjJyE1IQEiJjU0PgEzMhc+ATMyHgEVFAYjJREzEQEnNzUzFQciLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BAREhESUzNSMBEyEBNjMyFwEhEyE1ASYjIgcBFQERIRElMzUjxVAH/lD3bzwtRHNGNIInIC4RQ0slRv6gAVT+8sjIApK0tP7MRv4WAVT+8sjIApK0tPq0tP63Akz+/bS0+gGu/lIDK0MvPmtBPDQdSSg+Zj0uRv2ORv2kLlxGI1SIUVGIVFSJUFCJVD9mPDxmPz5nPDxnApkBVP7yyMj4wpcCIgHOCgwNCQHOAiKX/Sj+SgYJCQb+SgQgAVT+8sjI/qwElvu4BEj7ahkkOmQ/JyEKBl1JJBgBZgEi/t5Glv5jZM0EWvumAroBIv7eRpb9fdz+emTRAuL9HgEX3EZk/SsYJjRYNh0YHDpiPCUaPARa+6YEFDFVmLj+UIdRUoZQUIZSUYdQTDtkPT1kOztkPT1kO/1iASL+3kaWAigB0wHZCgr+J/4t9AG2Bgb+SvT+jAEi/t5GlgAAKQBA/qwJ6AbMAB0AIQAlAC8AMwA3ADsARwBLAE8AUwBXAFsAXwBjAG4AcgB2AIAAhACIAIwAkACUAJgAnACgAKoArgCyAL4AwgDGANMA1wDbAN8A8QD1APkBEAAAASImNREuATU0NjMhMhYVFAYHESEyFhUUBgcRFAYjJREzESczNSMHIiY/ATMXFgYjATMRIwERMxEnMzUjEzMRMxEzETMRMxEhATMRIwERMxEnMzUjAREzESczNSMBETMRJzMRIwEhESERIREhERQWExEzESczNSMBIiY/ATMXFgYjAREzESczESMBETMRJzM1IwERIREBETMRJzMRIwEzNSMHIiY/ASEXFgYjAREzESczNSMBITI2NRE+ATU0IyETNSEVJTM1IwEhPgE1NCYjISIVFBYBETMRJzM1IwE1IRUBNSMiNTQzITIVFCsBFSM1IxUnIREhAxEhESU1PgEzMh4BMzI2NxUOASMiLgIjIgYBCTdGIylGOAYiODwqIgJiOEYpI0Y3+BebaTc3MQ8PBiV/JQYPDwEoeHj+V7SCUFDrWtxQ3Fr9RAG4eHj9K7SCUFAEQptpNzf8d7SCUFD+awEdA0gBSvokGFu0glBQBEMPDwYlfyUGDw/9E7SCUFAB77SCUFABygE6+620glBQAxnW1jAPDwYkAR4kBg8P/My0glBQAUUCFxUYISsq/ZpzAV7+1Pr6+S8F3CAsDQ35yiQuBNO0glBQASICkP4xIigoAeMoKCJQ/1YBq/5VMgIP/hMnWx8hIBkUHG86R1soHhsOExYfWf6sRjcGfiddKDZDQjcrWyb+JkM2KFon/H43Ro4BDf7zMsIEGhV+fhUa/tIBHQEiAQT+/DKg/O8BT/6xAU/+sQGV/msBHQKKAQT+/DKg+8UBDf7zMsIBDQPU/CwyA3D6HwHb/iUGfPmxFRgFDwEE/vwyoPtJGhWCghUaARUD1PwsMgNw/F4BBP78MqD9LQEN/vMCAQPU/CwyA3D6j8IEGhV+fhUaAnkBBP78MqD7hxgVA6YZTx0p/cjm5jKCA88ZVR0PGikfVP4rAQT+/DKg/bdQUAEkYR4eHh5hYWGPASf+xAFu/pJDVCYwLC1YN0JHQBojGj8AEwCw/qwJeAbMABkAHwAjACcAKwAvADMANwBZAF0AYQCDAIcAswDDAMcAywD1APkAABMiJjURNDYzMhYXBTc+ATMyFwERIzUhFSMRJSERIREUNxEhESczNSMBIREhExEhESczNSMBNSEVFwM3PgE1NCYjISIGFRQWHwEDJxMuATU0NjMhMhYVFAYHEwE1IRUBNSEVFwM3PgE1NCYjISIGFRQWHwEDJxMuATU0NjMhMhYVFAYHEwE1IRUBLgE1ECEyNjc+ATMyFhUUBgcOAQcOAQcnPgE3PgM3NiYHDgEjIgYVFBcBMxE0MyEyFREzESMRIREjEyE1ITUhNSElLgE1NDYzMjY3NjMyFhUUBgcOAQ8BJzc+ATc+ATc2JgcOASMiBhUUFhcFITUh+iIoJBwMHQ8B4jIHIRkaHgJPKgOeLPfDAhv91oABKuSengG0Aor9drABKuSenv0EAZcHXBYLAwoI/tsJCwQJFzlMMw8TOioBJSg6FA5Z/icBXQETAZcLXBYLAwoI/tsJCwQJFzlMMw8TOioBJSg6FA5Z/i0BXfwADAoCBlFSGQ0aCBchY1QndCATFwVPCysRH0pRUygFBAcbUjzk0g8EmHYZAYoZdmH+GmGxAUb+ugFG/rr8/gMD+/BJOxQhFxokXFtcSAgNTQwOZmYVKxQGAggnRR3QyQMCArMBRv66/qwoIgPsICIJCPrUHhkP/tADZ1BQ+WBOAqf9aA/bAR/+4UaT/kwCp/4zAR/+4UeTAhpOTvwC5B4ODQMIDAsIBQwMH/4tJQGfDicWKTo6KhYmDv00AglOTv7pTk78AuQeDg0DCAwLCAUMDB/+LSUBnw4nFik6OioWJg79NAIJTk4BMCY7GQEgDwgFBx8XMmkkECcjFS8dDCtREiEiGiYlBQcCBgdqaCg0+c0COBkZ/cgGUvyYA2j85tJOzuodKRCepA8JDh0XM1syMkAhMhQyOV03CxgNBAoBBQZ9dw4dDbreAAAAAAkCWP6sB9AGzAApADcARQBXAGkAewCJAI8AogAABSIuAjURND4BMxUiDgEVERQeAjMyPgI1ETQuASM1Mh4BFREUDgIHIiYnJj0BBSUVFAcOAQMiJCc3FgQzMiQ3FwYEAyIkJic3HgEEMzIkNjcXDgEEAyIkJic3HgEEMzIkNjcXDgEEAyIkJic3HgEEMzIkNjcXDgEEAyIkJzcWBDMyJDcXBgQBNSMVHgEXIiYnJj0BNDYzITIWHQEUBw4BBRSR/sBth+aMdsFyYavhf4Dgq2FywHeN5YdtwP6RX4kpKAE5ATkoKIpfrv7IphagAS2pqQEtoBam/siutf7psyAYIKwBDK+wAQusIBggs/7qtrX+6bMgGCCsAQyvsAELrCAYILP+6raz/uyzIBggrAEJra0BCqsgGCCy/uuzsf7LhxaDASisrAEpghaH/sv+6lAONHNekSQmGRMCGhMZJiSR4T1/yIsDNo3nilB0w3f8ynqrajAwaqt6AzZ3w3RQiueN/MqLyH89cwoNDSRpHh5pJA0NCgGOKS1OLCgoLE4tKQEdJi4KTAosJCQsCkwKLiYBHSYtCkwKKyQkKwpMCi0mAR0lLQpMCisjIysKTAotJQEdKChMJiYmJkwoKAF5aWUCAjQLDQ0jaxAWFhBrIw0NCwA/AQ7+rAkaBswAEwAgACsANgBGAE4AWwBwAHwAgwCQAJ8AqgC2AMUA1gDoAO8A8wEBARIBJAEoATkBRgFVAWIBaQF6AYoBjgGeAagBrgG1AbkB1wHpAfUCBAIUAioCNAI4AjwCSQJVAmICdAJ4AoUCiQKNApYCrgLiAuYC6gMFAwkDMQNRA2wAAAEiJjU0Njc+ATUhFBYXHgEVFAYjJTMyNjU0IyIOARUUFjcyNjc0JiMiFRQWFzI2NTQmIyIGFRQnMjY1NCcuAScOAQcGFRQWJzI2NTQmLwEBMzI1NC4BIyIGFRQWJzI2MzIWMzI+ATU0IyIGBw4BFRQWJzI3NjU0JiMiFRQWJzI2NyMeAQEyPgE1NCYjIgYVFBYXMzI1NCYnLgEjIg4BFRQnMjY1NCYjIhUUFicyNjc+ATUjFBceARcyNjcyNjU0JiMiBhUUFicyNTQmNTQ2NTQjIgYVFB4BFzI3NjU0JicuASMiBgcGFRQWFzMnJiMiBgE1MxUFMjY3NjU0JiMiBhUUFhcyNjUuASMiBhUUFjM2MzIWFzI2NTQmJy4BIyIHBhUUFx4BATUzFQEyNjc+ATU0JiMiBw4BFRQWFzI+ATU0JiMiBhUUFicyNjU0LgEjIgYVFBceAScyNjU0KwEiFRQXHgEBMy4BIyIGJzI2NTQmIyIOARUUFjsBMhYXMjY1NCYjIgcOARUUFhcWATUzFQEyNjU0JicuASMiBhUUHgEDMjU0IyIGFRQWATMmIyIGATI2NyMeASc1MxUFNScuATU0NjMyNj8BIRceATMyFhUUBg8BFSM1IRUFMjY1NCYnLgEjIgYHDgEVFBYBMzI1NCYjIgYVFBYnMjY1NCYjIiYnIgYVFBYXMj4BNTQmIyIGBw4BFRQWASEyNjc2JicuAS8BIQcOASMiBhceAQEyNjU0JiMiFRQBNTMVATUzFQEyNjcuAScOAQcGFRQDMjY1NCYjIg4BFRQFMjY3JyYiIyIGFRQWJz4BNTQmJy4BIw4BFRQWFx4BATUzFQEyNjcnLgEjIgYVFBYBNTMVATUzFQEyNjU0KwEUFgE+AT8BPgEzMhYfAR4BFyMuAS8BBw4BDwE1Jy4BNTQ2MzI2NyEeATMyFhUUBg8BFSM1ITUhMjY3NiYnLgEnIQ4BBw4BFx4BMyEVIRUBNTMVMzUzFQEiJjU0NjU0Jic+ATMyFzYzMhYXBhUUFhUUBgE1MxUFNScuATU0NjMyNj8BIRceATMyFhUUBg8BFSM1IyImLwEjBw4BKwEVJzMyNj8BIRceATsBMjY3NiYnLgEvASEHDgEHDgEXHgElIiY1NDY1NCc+ATMyFzYzMhYXDgEVFBYVFAYBUx8mFhlbXgY8XlsaFSUg+O8REwoYCCslI6MXHAYnETMghBotJg4NGmYsGgIEIAcZNQsBFxUeRREHJgEfWyMqNA8WHg5HDxUHBhcJFRsOPB8pChErKx8cCAMiGB4fFw0aBFABFwE4CBkVJhINJypAqRENDhMgERQyJCkKFSMREhdjKh8GBQScBwMh9gUbCB0YJg0WNhoKDwMRIRQ3HibkCgYqDwgPIw8NFQEKMTdqIQYQCiH+GkIBFwwRBA0qBRAuK4MVGgQoEB02DAUTEAsVwAwUIgwLHgsHBwkMDjT+F0IBSwkWCggYFA4ZBwoYDuMJGxUWCBAsFBgKDhwkDQokLwgf7xQ0C3AIBwUbAWFYARoLCx2WBilOKAgjHScUFhIjgxcmHBQMCQooFAcK/pdCAekaMx8gCi8MEyMkM7IbDAsfFAELZRAhCx/+5BcdDJkKOLZC/Hp/Kic9LiU8DTsFujsOOyUvPCcqf1D6XgRNDSkqCQYPCAgLBQMTNgE4MiEjDw81FY0aMRkRGiAMFhc0fQsrIx0LDiwJCg4h+o4GPhQ3GQkECSVMFUf6iDgcUyYJBAkYRAUBDSQkFxD93iYBaEIBvR9EHwQQCBFFDgnnEScbDAcfGQEXDzwNJQoLBRA8IVULEQcEDScGDRMPCA4W/UUoAt4OKg4eAhcHDyEY/shC/lomAlwOGglwN/uZbps+HiEiEREiIR4+m258KoBBUlJBgCr9hCUnPC47SCMD9CNJOi87JiaEUP63AY0VNxwOAw45bRb8UhZtOQ4DDhw3FQGN/rcBTz88QP6bHCYDFAwCGhMbDg0aExsBIxUmAYY//c2SICM9LiAvD04CrE4PMB8vPCMgklA5GBkXUO5QFhoYOUlOIBoKZQE0ZQsZIE4VOxsOAhAxRhRB/ahBFEUyEAIOGzsC7BsmFSMCGhMaDQ4bExsBDBQDJv6sHhwOJyaJyi8wyYkmJw4cHkckIE80OwsMDQQXDx8lJBguBBcOCxsrEQ+OGCcIDAgeBAITCwgKMRqXGg4JCQcn/m0bCR0WJhELFV8TCy8+GEELDBVSFxAprzMGCAwOHxYmbhANCxL+0yEoChAhQRILJk8OCBcUGxkkMRMN5B4NDBYiEhlrBAMIIxkdCREUxwsFCQ0UPjIVCieHGQwVBgUXChImDwogGekBIxELKgsKEBUMERAaMyYaEB0B+0tL8QcHFg4bIjwUChVRJBoNDSMTCwsGErsaDQwrDAsOBAcVFhETKQH9S0v+lxMQBRcKCAYEBCQKDhOfISkMBhk7FA8XZBEMDicfGgkSHQgX6S4SDQkGCgct/rMRKCHrGRUaLyAiBA4bA3c7EBEZAwESDQcfCSMBd0tL/gc7HxobAQshKBYZOyoBBB4VHQsFBv7tMx4BRigXEi2tS0tZlmIgMRkjIR0NODgNHSEjGTEgYpbY2J8rDAgrBwEBAgIELw4NIf7wFxMuMA4KELEpFQ0SDQccERkraBwjCBE5HQsWKgkHGQKMEwoEEAEDERI8MBgaEAUMEf5yIAwKChYqAlVYWP5sS0v9/wIFChkKAw8IBwoJASgpEggRGR0IFusOBkACGw4QHbcOHAQHEQMHCwcYCA8cBgECAqFYWP0FIRY4BQctFBYkAWdLSwGUWFj9yRwOCxMiAjpQfEQhJRgYJSFEfFAZa0BRUUBrGQdZXhswGSMrNjIyNisjGTAbXlmVThEMBhIBBkAkJEAGARIGDBFOlQIEPDw8PAFHKR8kLQ0SGAQRFxgYFRAMLhYoFx8p/rk8PGVvXRQpGSMrFhZ3dxYWKyMZKRRdb6MME0REEwyj7gUJWFgJBQ8IBRoDChodXV0dGgoDGgUID74pHxcoFi4MEBUYGBcRBBgSDS0kHykAGAEJ/qwJHwbMABEAFQAeACIAKwAyADYATABTAGUAeQB9AIEAjgCdAKYAqgCzALoAxQDMAN4A6wDvAAABESYRNxQWFxEhET4BNRcQBxEBNTMVExE+ATUXEAcREzUzFRM1NDYzMhYdAQEiPQEzFRQBNTMVAzU0Nj8BFx4BHQEjNTQmLwEHDgEdAQEiPQEzFRQlPgE3PgEzMhYXHgEXLgEjIgYBNzMyHQEzNTQ7ATIdATM1NDsBFwU1MxUBNTMVAREyHgIzFA4CBxUBLgEjNSEVIgYHLgEjIgYBESYRNxQWFxEBERcRATU0NjMyFh0BBSI9ATMVFAE3PgIzMh4BHwEBIj0BMxUUJT4BNz4BMzIWFx4BFy4BIyIGExEyHgIzFA4CBxUBETcRAUA3UBwbBwAbHFA3+SNuQxscUDdKbtlCOTlC/FAZMgHHblI/SLKySD9QLzt/fzow/kIZMv6HKEAZOkMbG0M6Gj8oU4JEQ4MBlh7jGYwZvhmMGfEe/v9uASJu+dAsOztTRUBbVhcCOihTMgKQMVQoGlEwMFECjTdQHBv+xFD+NTMoKDMCTBky+9CCP1I+Hx8+Uz6CAcUZMv6HKEAZOkMbG0M6Gj8oU4JEQ4OtLDs7U0VAW1YX+4lQ/qwCsbcBBSic7lX9mgJmVe6cKP77t/1PAhAyMv4YAo5U7p0o/vu3/XcBnTIy/mPGNUpKNcYDjB3Ozh3+iTIy/eu4U3s5jY05e1O4uENYLmVlLlhDuAOMHc7OHblBbjd9aGh9N25BBQMD/j/IGT49GRk9PhnIsDIy/tQyMgTzAVwTGBMPIiUmFI7+QTo4V1c4Oio0NPv1Aom3AQUone5U/XICpAOAFPyUAd/xLDk5LPH3Hc7OHQKE3Gp0Li50atz9fB3Ozh25QW43fWhofTduQQUDAwFWAVwTGBMPIiUmFI79BANsFPyAAAAAAAIBZf6sCMAGzABNAFsAAAEnPgEzMh4BMzI+ATc+AjMyFhcmAiYnLgEjIgYHDgIjIi4BIyIHJzYzMhYzMj4BNz4BMzIWFx4DFy4CIyIOAQcOAiMiJiMiBhMiJicDJjYzMhYXExYGAl9CL49fG0U9Dk+WtXtnlnw/MVEsGzM2IkB2NUiISlOHeD8jbWQY0Xo6kvM1j0g4antOU5xRTolVHzItLRo7Vk0wOm+IYYDCpFUsWiVNbgQRHgTnBCIVERsE5gUgAUQuQ0ICAiFOQjhAGwYHpAEJ94cUEygqLzoaCAeBOJkPFzUtLy0cIXfV3P6gCw0GGTs1RVIkBDL9NxYfBuMiHxUd+R0lHwAAAAACAWX+rAjABswAJwA1AAABAz4BMzIWMzI+ATc+ATMyFhceAxcuAiMiDgEHDgIjIiYjIgYTIiYnAyY2MzIWFxMWBgJfzErBejWPSDhqe05TnFFOiVUfMi0tGjtWTTA6b4hhgMKkVSxaJU1uBBEeBOcEIhURGwTmBSABRAQpTUwPFzUtLy0cIXfV3P6gCw0GGTs1RVIkBDL9NxYfBuMiHxUd+R0lHwAAAAAPAPX+rAkzBswAZwB7AI8AnACqALcA3QEJARUBqgHAAdAB3gHyAggAAAEiJicuAicuAicuATU0PwEmJy4BNTQ2Nz4CNzYmNjc+ATMyFhcmNTQ+ATMyHgEzMj4BMzIeARUUBz4BMzIWFx4BBhceAhceARUUBgcGBxcWFRQGBw4CBw4CBw4BIyImJw4BASIuAjU0PgIzMh4CFRQOAgEiLgI1ND4CMzIeAhUUDgIBIiY1NDY/AhcHDgEDBi4BNTQ2MzIWHwIHASImLwE3HwEeARUUBiUiJicOASMiJjU0NjcmNTQ2MzIXNjMyFhUUBx4BFRQGIyImJw4BJzI2PQEeATMyNjU0Jic+ATU0JiMiBgcuASMiBhUUFhcOARUUFjMyNjcVFBY3IiY1NDYzMhYVFAYBMj4BNTQ2NzMeARUUHgEzMjY3PgI3PgI3PgE1NCYnLgEnLgEnNx4BFx4BMzI+ATU0JicuAicmNicuASMiBgcOAQcnPgE3PgE1NC4BIyIGIyImIyIOARUUFhceARcHLgEnLgEjIgYHBhYHDgIHDgEVFB4BMzI2Nz4BNxcOAQcOAQcOARUUFhceAhceAhceAQMiLgInLgE1NDYzMh4CFx4BFRQGAS8BLgE1NDYzMhYVFAYPAQEvAT8BPgEzMhYVFA4BASIuAjU0PgIzMh4CFRQOAgEiJjU0Njc+AzMyFhUUBgcOAwPjMV8pJiEYGxgzOyY0MkEgHyVYZwoIECglCgoBAxEemVksSSMJT4RPND8wHh4wPzRQg08JI0orWZkeEQMBCgsjKRAICmdYJR8gQTI0JTwyGRsYICcoYDF2pBcWpf18C0dSPCY0MAoLRlM8JTUvAzQLLTEiIjEtCwstMSIiMS3+uEFTMi+bQCYlD2PDMFY1Y0MgPxlFE0ECjDdjDyUmQJsvMlP+gktwDAcOCFN2NDEVdFVTQUFTVXQVMTR2UwcOCAxwSzNGIDcUMkdYQyojSDMyThQTTzIzSCMqQ1hHMhQ4H0YzT3JyT1Bxcf5/TmEtDxNmFA4tYU4iRR0hHB4iIDc3HikfEx0pVllGYyk8LFw8OD4cOWxFAwgLJScOFAUSF284VXYsIC4aZxEyMjosN105MFY7O1YwOV03LDoyMhFnGi4gK3ZWOG8XEgUUDSglCwcERms5HT04PF0rPCljRlhXKRwUICgeNzgfIx0dIB1FaAtCTT0GBgYJCgxCTT0GBQUJAbJPPQgIWUNEWAgIPQF6ekETRRk/IENjNVUBRQowNSU8U0cKCjA0JjxSR/5xCQkFBQY8TkIMCgkGBgY9TUL+2CAiIDUuFxUSGh4qczxnVisEDiGXWhkxFy4zKh8dM0ExWWUWFCcrUINOFBQUFE6DUCsnFBZlWTFBMx0fKjMuFzEZWpYiDgQrVmc8cyoeGhIVFy41ICIgqn9/qgJYFB0fDAk8RjIUHh8LCj1EMv18MEQ7Cgs7QzAwQzsLCjtEMAHRWkEvVxZHBn+JN0UCRAUtUC5CVBoaR1Nh/a9FN4l/BkcWVy9BWpVgSwIBdlM1Xh8qMFR0Pj50VDAqH141U3YBAktgUEYzTBMKRzI3TQUmOyIzRzsyMjtHMyI7JgVNNzJHChNMM0aocVFQcXFQUXH9HFaQVk5yMzNyTlaQVhcZHDIzHBoYFhYeVyghQCAvKg0KHBZxBBcXFhE0XT0RIhUgLTElOV0zQkhsUDs/HEgpSzY+Wz07XzkoKDlfOz1bPjZLKUgcPztQbEhCM105JTEtIBUiET1dNBEWFxcEcRYcCg0qLyBAIShXHhYWGBocMzIcGRcGBRAYGAgIRCYsShAYGAgHPiQuUf6zHn8RJRNBampBEyURf/7FDWFTRxoaVEIuUC3+dDJEPQoLHx4UMkY8CQwfHRQD+1EuJD4HCRgXEEosJkQICBgYEAAAAAAEAOn+rAk/BswABAAJACkANQAACQETJQkDBQMBPgE1NC4BIyIOARUUHgEXBy4CNTQ+ATMyHgEVFAYPASImNTQ2MzIWFRQGBgv8EYgCrAPv/MwCw/xo/bJ1ATIgI12bX1+cXVeWXBNusWdzwHV1wHIyLQwrPj4rLD09/qwD7wKrivwQ/T0CwwOZd/2zAaMsaThfm11dm19cmV4ETwl1um51wHJywHVLiDdjPisrPj4rKz4AAAARAPr+rAkuBswAGQA4ADwAQABEAEgATABmAGoAbgByAHYAjgCXAJ8AqgC2AAABMjY3PgE3PgE1NCYnLgEjIgQOARUUFhceAQEWMzI2NTQnARYzMjY1NC4BIyIGFRQXASYjIgYVFBcJAScJATcnBwU3AQcBNwEHEwEnARciJicuATU0PgIzMhYXHgEVFAYHDgEHDgEJAScBFwEnASU3AQcBNwEHBTQ2NyU2FhUUBgcBDgEjIiYnLgE1NDcmNxQXJTY3BQ4BFxQWFwEnBQYXHgEzMjY3JS4BJzcUFjMyNjU0JiMiBgZ2SZpKPnIzUFg8OEKkXIn/AMp2QzpBp/uaDg8QFxABXQgIERIuQR0QGQb+oA8TEBgLAdQCNDX9zQJBfnl8AjIq/gAeAvkq/W8q4wL2K/0LiU2KPy44a7XleU2KOC0vUUcsZzpJg/5CAukq/ReYA04q/LEDQCr9cCoDAir95ir6K2BDAhM+Ux4X/rQlPyQvUxE6TQ8zPCIBywMX/mArPCQrJgGDA/4+D4ELMx8XKh8BABQlDwo0JCQ0NSMjNQJEKiYgYDpc7nZhoDdBRXbJ/olSpj5FR/x2DhcSFBQBYQMVESBCLRIQCgn+mw8YDw4LARoCODX9xwGgfXZ4WSoCFTb+aSoCkir9DQLvKv0RAjs8LItHeeS3azo3K4dQatZSM1gdJCMBFwLfKv0h8wM6KvzGeioCiSr+ZCoCESr/Q10BCgJWOiE3Fv7EIh9AMQpbPCMhNUMuIHUlIQgBOuYmMgkBAwhzIZ0hLhYc8AUTDmckNDQkIzQ0AAAACAEY/qwJEAbMADcAQwBMAFAAVABYAGEAawAAASIuATU0PgE1NAIuASQjIg4CIyIuAjU0NjMyFx4BMzI+AjMyDAEaARUUDgEVFBYXHgEVFAYJAT4CMzIeARUUBic2NTQmIyIGBycBNwkCNwElJwEfARMFHgEfAR4BFy4CLwEuATUlCMkiVkAEBV6o4/7ykjaKlI88O3pmPxcTFiksh31AioV2K6wBOgEGwmsIByQSCwwa+pv+w06EdTU2XTiGgLZLMTSJUBL+xkwBOQXG+wMiBO/57DcFKDiNRv7bBBQYERhHfVFlQR0RKiAB4v6sdcd8N3p2MJABEeyyZQcIBxsxQygXHBMUKQsPC2/I/vX+xqlSfnNDX5AzIC0RFhsBJQE8Xng6O2E4VL0Gl3M1UGBcJwR1FPuT/Y0BSkr+udg5BUQ4DQEhSUBBFxAXFlYCDR4bECdxeXgAAAAJAor+rAeeBswAQQBOAFwAaAB+AJAAnACyAMYAAAUiJicKATU0Njc+ATU0LgEnFx4CFRQGBw4BFRQSEx4BMzI2NxoBNTQmJy4BNTQ+AT8BDgIVFBYXHgEVFAIDDgEHIiY1NDY3IR4BFRQGAyImJzceATMyNjcXDgEnIiYnNxcHHgEzNTMlLgI1NDYzMhYXBy4CIyIGFRQWFwUiLgEnNx4CMzI+ATcXDgIDNTMVMjY3JzcTDgEBJz4BNTQmIyIOAQcnPgEzMhYVFA4BAQYuATU0NjMyFhUUDgEnLgEjIgYFFFhvL8a8b3dWUQUQEVIRDwRrc2FOtr4lS0RESyW+tk1ic2sEEBBSEBEFUlV3b7zGL29YbYc5HgE6HjmHbXvxaQ9k6Xl66GQPafHEU5g9CVAEE1UbUP33EBoOXkxTlTFQGERKIysvGRQCDW7hy0wSScXcamvbxUkSTMvhJVAbVRMQUBU9mAG2RRQZLysiS0MZUDKUU01dDhn8thQyI7Cgoa8jMRU0fzQ0f9QwRgElAbCge5YoHVxTETh0aQdlazcYa4cmIGpjl/5j/uw1Hh41ARQBnZdjaiAmh2sYN2tlB2l0OBFTXB0olnug/lD+20YwgCoZFkISEkIWGSoCaBwfUB8cHB9QHxzkCQyOBkUEBeNyLXN4MoKQt6IbWINJaVlCnzzGDBsVThUZDAwZFU4VGwz+9ZtMBQTjBv7UDAkBpC08n0JZaUmDWBuit5CCMnhzAmMFFykVJioqJhUpFwUODQ0AAAAAQwEE/qwJJAbMAA8AEwAXABsAHwAjACcAKwAvADMANwA7AD8AQwBHAEsATwBTAFcAWwBfAGMAZwBrAG8AcwB3AHsAfwCDAIcAiwCPAJMAowCnAKsArwCzALcAuwC/AMMAxwDLAM8A0wDXANsA3wDjAOcA6wDvAPMA9wD7AP8BAwEHAQsBDwETARcBGwEfASMAAAEiJjURNDYzITIWFREUBiMlETMRMzUzFTMRMxEDNTMVJxEzEQE1MxUzETMRATUzFQE1MxUnETMRATUzFQERMxE3NTMVAREzEQE1MxUBNTMVJxEzEQE1MxUBETMRAREzERc1MxUBNTMVAREzEQE1MxUBNTMVJxEzEQE1MxUBETMRATUzFRcRMxEXNTMVATUzFQERMxEDITI2NRE0JiMhIgYVERQWBREzEQE1MxUBNTMVJxEzEQERMxEBNTMVATUzFRcRMxEXNTMVATUzFQERMxEBNTMVFxEzEQERMxEBNTMVATUzFRcRMxEXNTMVATUzFQERMxEBETMRATUzFQE1MxUXETMRFzUzFQERMxE3NTMVATUzFRcRMxEBETMRNzUzFRcRMxEBqkRiYkMG1kRhYUT5I0BqQGpA6kDqQAG+QGpA/cJAARRA6kABvkD8bkBqQAMSQP3CQAEUQOpAAb5A/G5A/mxAakABFEADEkD9wkABFEDqQAG+QPxuQP3CQGpAakABFED8bkA4BtUjMjIj+SoiMzMGv0D9wkABFEDqQP5sQPxuQAEUQGpAakABFED8bkAEZkBqQP5sQPxuQAEUQGpAakABFED8bkADvED8bkABFEBqQGpA/cJAakABFEBqQP5sQGpAakD+rGFDBtdEYWFE+SpDYigBQP7AtLQBQP7AARjIyIwBQP7A/ly0tAFA/sACRMjI/tTIyIwBQP7A/ly0tANIAUD+wCjIyPyQAUD+wAJEyMj+1MjIjAFA/sD+XLS0A0gBQP7AAaQBQP7AUMjI/tTIyPyQAUD+wAJEyMj+1MjIjAFA/sD+XLS0A0gBQP7AAoDIyNwBQP7AUMjI/tTIyAMgAUD+wPmYMyIG1iMyMiP5KSIyKAFA/sACRMjI/tTIyIwBQP7AAaQBQP7AA6zc3P7UyMjcAUD+wFDIyP7UyMgDIAFA/sD7tMjIoAFA/sABpAFA/sADrNzc/tTIyNwBQP7AUMjI/tTIyAMgAUD+wPy4AUD+wAOs3Nz+1MjI3AFA/sBQyMgB9AFA/sBk3Nz+1MjI3AFA/sABpAFA/sBk3NxkAUD+wAAAAABPAQT+rAkkBswADwATABcAGwAfACMAJwArAC8AMwA3ADsAPwBDAEcASwBPAFMAVwBbAF8AYwBnAGsAbwBzAHcAewB/AIMAhwCLAI8AkwCXAJsAnwCjAKcAqwCvALMAwwDHAMsAzwDTANcA2wDfAOMA5wDrAO8A8wD3APsA/wEDAQcBCwEPARMBFwEbAR8BIwEnASsBLwEzATcBOwE/AUMBRwFLAU8BUwAAASImNRE0NjMhMhYVERQGIyU1MxUzNTMVAzUzFQE1MxUnNTMVBTUzFQE1MxUBNTMVJzUzFQE1MxUnNTMVBTUzFQE1MxUBNTMVJzUzFQE1MxUnNTMVATUzFSc1MxUFNTMVATUzFQE1MxUnNTMVATUzFSc1MxUBNTMVJzUzFQE1MxUnNTMVBTUzFQE1MxUBNTMVJzUzFQE1MxUnNTMVATUzFSc1MxUBNTMVJzUzFQE1MxUnNTMVBSEyNjURNCYjISIGFREUFhM1MxUBNTMVJzUzFQE1MxUnNTMVATUzFSc1MxUBNTMVJzUzFQE1MxUnNTMVATUzFQE1MxUnNTMVATUzFSc1MxUBNTMVJzUzFQE1MxUnNTMVATUzFQE1MxUnNTMVATUzFSc1MxUBNTMVJzUzFQE1MxUBNTMVJzUzFQE1MxUnNTMVAzUzFQE1MxUnNTMVNzUzFQGqRGJiQwbWRGFhRPkjQGpA6kABFEDqQAEUQP3CQAEUQOpAAb5A6kABFED8bkABFEDqQAG+QOpAAb5A6kABFED7GkABFEDqQAG+QOpAAb5A6kABvkDqQAEUQPnGQAEUQOpAAb5A6kABvkDqQAG+QOpAAb5A6kD5zgbVIzIyI/kqIjMzG0ABFEDqQAG+QOpAAb5A6kABvkDqQAG+QOpA+xpAARRA6kABvkDqQAG+QOpAAb5A6kD8bkABFEDqQAG+QOpAAb5A6kD9wkABFEDqQAG+QOpA6kABFEDqQGpA/qxhQwbXRGFhRPkqQ2IotLRQUAEstLT+1LS0yLS0yFBQAli0tP7UtLTItLT+DLS0yLS0yFBQA4S0tP7UtLTItLT+DLS0yLS0/gy0tMi0tMhQUASwtLT+1LS0yLS0/gy0tMi0tP4MtLTItLT+DLS0yLS0yFBQBdy0tP7UtLTItLT+DLS0yLS0/gy0tMi0tP4MtLTItLT+DLS0yLS0oDMiBtYjMjIj+SkiMgbgyMj+1LS0yLS0/gy0tMi0tP4MtLTItLT+DLS0yLS0/gy0tMi0tAUUyMj+1LS0yLS0/gy0tMi0tP4MtLTItLT+DLS0yLS0A+jIyP7UtLTItLT+DLS0yLS0/gy0tMi0tAK8yMj+1LS0yLS0/gy0tMi0tAGQyMj+1LS0yLS0ZMjIAA4BBP6sCSQGzAAPABMAFwAbAB8AIwAnADcAOwA/AEMARwBLAE8AAAEhMjY1ETQmIyEiBhURFBYlNwEVATcBFQEzESMBNwEVATMRIwE3AQcTIiY1ETQ2MyEyFhURFAYjBTMRIwEzESMBNQEHATMRIwE1AQcBNQEHAaoG1URhYUT5KkNiYgH4OP2eA/w4+8sBJVBQBKs4+fgCb1BQBSY4+GA4giMzMyIG1iMyMiP8bVBQAUpQUAK6+jQ4BJRQUAFw/Ak4BDT91zj+rGJDBtZEYWFE+SlDYQw4AmFw/dg4BDNw/CEHzvgWOAYHcPpNB874LTgHnzj4jTIiBtcjMjIj+SoiMycHzvgyB8754XAFyzj4TgfO+7RwA/k4/Z9wAig4ABcBBP6sCSQGzAAPABMAFwAbAB8AIwAnACsALwAzADcARwBLAE8AUwBXAFsAXwBjAGcAawBvAHMAAAEiJjURNDYzITIWFREUBiMlATUBMwE1ATMBNQElETMRATUhFQkBNQElETMRATUhFQkBNQE3ATcBBSEyNjURNCYjISIGFREUFgM1IRUBETMRJQEzCQERMxEBNSEVEwEzCQERMxEBNSEVEwEzATUBMwEnATMBAapEYmJDBtZEYWFE+cX+yAGo5P10Avze/CYES/z/QP6FB/X9JvrWBZr8/0D9Ngf1/nT5iAbo1fhgOAeg+KkG1SMyMiP5KiIzM2wH9fvkQAPo+RhwBnj9J0D6mAf1DPpmcAUq/nZA+UkH9Qz7tXED2v0EcAKMAf5ZcAE3/qxhQwbXRGFhRPkqQ2IZAThw/lgCjHD9BAPacPu2EgfN+DMBJ0BA/scFKXD6ZxIHzfgzAnZAQP14Bndw+RkLB584+GEMMyIG1iMyMiP5KSIyA6BAQPw7B834M/UG5/mJ/psHzfgzBRRAQP0vBZn61/1NB834MwZjQED9LwRK/CbeAvz9dPsBkf7JAAAMAQT+rAkkBswADwATABcAGwAfAC8AMwA3ADsAPwBDAEcAAAEhMjY1ETQmIyEiBhURFBY3MxEjASE1IQEzESMBITUhEyImNRE0NjMhMhYVERQGIwEhNSEBMxEjATMRIwEhNSEBMxEjASE1IQGqBtVEYWFE+SpDYmLwQED+xQf1+AsCikBA/XYH9fgLjyMzMyIG1iMyMiP4nAf1+AsD2UBAAU9AQPrYB/X4CwZ3QED5iQf1+Av+rGJDBtZEYWFE+SlDYSsHzflaQP6ZB836qUD9bzIiBtcjMjIj+SoiMwOgQPv7B834MwfN/UdA+qwHzf6WQAAACwBQ/t4J2AaaAIMAiwCTAKoAsgC7AN4A6gD9AQoBFgAAJSImNTQ+ATcuAScuAjU0PgE3PgMzMhc+ATMyHgEVFAc2MzIEEhUUDgEjIi4CNTQ2NxcOARUUHgIzMj4BNTQuASMiBgcnPgE1NCYjIgYHLgEjIgYHDgEHDgIVFB4BMx4BFxQGBw4BFRQWMzI+AjceATMyNxcOASMiJicOAgEnPgE3Fw4BLwE+ATcXDgEBIiY1BiMiJjU0Njc0PgE9ARcPARcOAQEuASM1MhYfASc3MhYVFA4BASIuAiMiDgIjIjU0PgEzMh4CMzI2NTQmJzceARUUDgEBIiY1NDYzMhYVFAYBIiYjIgYjIiY1ND4BPwEfARQGASY1ND4CMzIWFwcjBSImNTQ2MzIWFRQGBCdCbC8zBkt1IJj0jhVFRi1ne5heNS0dhFVEbD8kjXqsAQOSYKhuW6yJUG5eH0hTRHOPSlmESX3glGWzUx0zIlxDSmobMjscV59wIkYhJSgPjOeIFoNhIikWESobNGpdQQwqaDEzKwsXOB4xTC8jbHj8TSgsWSwgK1VvFDVmMQ4xYgLeHhsMFhUdIBcoJ59INHwNZf13L1wrLWIyKhEWKUchNgZ6b8azo0tGbE4wCgdjpmVRq6+yWKq3ZVwniZ144fqSEBQpGRETKQRuNG9QKE8hHicdW1xhfm8c+vYIFztnT0FcCWd7ASsiJ0gwIihIWEQ2LD1HODiDQwVjo2QXISQdE0lONxBPX0VzR0ZDLJz+7rGR2nlQiaxbarQrQyKTUUqPdEVktnyg7YQqKyQ/ZjFNamJQDgQ9UhknDhAWFA1JfkxEmD83ZjEbHQoQHiQ5QR4PEAVMBAMKDTBQLwK8LCZBHDMcPGY4FBwKOgob/HkWDgYXDQ4qExYfMTH1eNJDVhUhA/4IBzwICKVGShUXDzAl+yAyQjIqNyoMNmdEKDUojGBDfTCSN8B0ZLJwBSMdEx8yHBQeM/w3DwYLDw4fJhcYMQYkSgT1MC4YWV1BYE2TwzEkMlYvIzNYAAANAO3+rAk7BswADAAcACQALAA0AD8AaACHAJYAogCvALsBBgAAAR4BMzI3Fw4BIyImJwEiJicOASMiJjU0Nxc3FAYBJz4BNxcOAS8BPgE3Fw4BNy4BIzUyFh8BJjU0NzIWFRQOAQEiJicuATU0PgE1NC4BJy4BJzMeARceARUUBhUUFhceATMyNjczFyEGAyImNTQ+ATMyFjMyNjU0Jic3HgEVFAYjIiQjIg4CASImNTQ2NxclFAYrASIGASImNTQ2MzIWFRQGAy4BNTQ+ATMyFhcPAQUiJjU0NjMyFhUUBgEOASMiLgE1ND4CNz4CMzIeARUUBgcEABUUDgEjIiY1ND4BMxUiBhUUFjMyNjU0JCUnPgI1NC4BIyIOAQcOAxUUFjMyNjcCxzFaNM6QPU/IeSt7OwHFJVQSDToXJzCFddxM/IYmLV0tHC1XbRQ7dDcDNWqVNGg1OnM6CQgNNVkkQQJPLTkWMUsZGAcLBhYsCEwOKRELEjA2EwgvKEdnIrhb/vxJtQkIZKNfJ+y2pKRJVh2Di+DOev7wd3N2MhYBcRANKR/VAQA5Mv8tUf2QFh0rHBcdK40lK0h6Skx1HXA9AUo0S0s0NUpK/fAzezU3ZkBqrc9kD2GOU16bXDozASUBLW6/eo6mWJdedIl7aZfA/sn+vQgtRylHdkhRdUIHZsqnZVQ5I1c1AuwRFKszXGwQH/07Ih4JEh4XPgtPIjNDArkuKUIcNxw7ZTgYHgs8CxxwCwg9CwugGyAjMBQXDy8l/MoNDAVHKSEoHxEHNUIaJIIwNmUaMHEOHEAXJRYCCAwpIU5J/pwPCT9qQA5cdD9fIKEpuXihrisyQDIBVxIKFCoNDUU9RxsDwB4WHCseFxsrAUkiXjVKeUhKN2mCnUs0NEpKNDRL/kM2PUFpPFCsmWsNT31JYp9eQnc1Ff7g9Zbfe7OMXpNVToxscIDcxfjtBDMUTGU3THtKRHdNBF6Nm0I6XiwzAAAMAJv+rAmNBswAZAB9AIwAmQCyARQBIAEwAT0BUAFkAX0AAAEiJjU0PgE1NCYnLgEnLgEnLgI1NDY/AT4BNz4CNz4BMzIeATMyFhcFHgEzMj4BMzIeAhUUBgcOARUUFhceARUUDgEVFAYVFAYjIiY1ND4BNTQuAScOAQcOAhUUHgEVFAYlIiY1NDY3PgI1NC4BJwUOARUUHgEVFAYBIjU0Njc2MzIWFRQHDgEBLgE1NDcXDgEVFBYXASImNTQ2NTQuAScHLgEjJQ4BFRQeARUUBgUyNjU0LgI1ND4BNzI+ATceAhUUDgEVFBYzMjY1NDY1NDY/AS4BNTQ2Nz4BNTQuAiMiDgEjIiYnJS4BIyImIyIGBw4CBwYPAQ4BFRQeATMeARceARceARUUDgEVFBYBIiY1NDYzMhYVFAYnLgE1NDYzMhYVFAYVFBYXASc+ATU0JzceARUUBgMiJjU0JicuATU0NjMyHgEVFAYXIic3HgEzNCYnNR4CFRQGBwYiASImJy4BNTQ2Ny4CNTcUHgEXHgEVFA4BBMBQURMSDAvO0wwtWxpbklZEKFUFFxQYLScOGjouKU9EFip3KAEJHrRrHWFZEDx+a0IXIh4XDRkUFg0OAnRDQEUTEjQ+EFWjaQ0YDxAQU/4mNEEPCAwRCg8YDgEKDQ0FBUr9aRApGxQOCw4XDy4DFx8gQUYcGxscAhI7LyMJDggzO0gjAb4MDw0MWv4jPCIKDAoXJBFako1UDk1DEhMzFCE1AQoHDSUuGR8fFzVWYCwaVVkfesUp/vcfYB8sbzcRGhQTMy4NGwlsHTBQeTwgeEILxs0UGBITGv3fFyIdFBchHOxqVTooGiwXZFUBJhA3OwNPAgJiWjRQRjsoIF8uTYdTNb17ZBEuUihRNzljPAMDCRIFNQoeDjIfFQcZRDNHIzgfMjEMEv6sNDsWbHknGGUcKOfFCjojBENpOzVqGVcRLBccFBEWJy4ZGSYaqxMaCgs9ZHU4Mn1yZHAsJTUgGCUTFEVIF0VgGiAvMiUkOT4qMXqCPSUqAyloXhsUXlwROjxyGBkMGQkNQE4hJ3yKO5w2ZDAkYU8LGyMExw4OAiAYEQkXDQkP/Qw9f0F/eyY1aDc2Zjb+MA0NHXdDHUtBDickIV8yUSkocHEtIiFQFRUJPElADSWHiCUXOTJirJZFKkMxDhIOGxQXSS8RRSVBMlc9Mn1oZ3MwJ1hOMQsKHxurFB8yFB0cIBYOHCxuDkweKUcrLUoaw9AhJHU6MnVoHxAPBYMnHBgiJxsZIpdefUYoOxMMDQ0aJFcm/bJICBsSb1oXMXE+LkUB50A1OWYPCw8LFyRKd0QsUr8cSg0NSGQGTANGbT4XKxMB+6MwED0+Jzc/DRJNcUfEQquiNRiENSBQOwAAAA0AVP6sCdQGzABDAFkAZQB1AIEAjQCVAK8AvQDJARQBMgFEAAABIiY1ND4BNTQnLgInIyIuATU0PgI1EAAlPgEzMgQXBBIRFA4CFREUBiMiJjU0NjU0JiMiDgIHDgEVFB4BFRQGJSImNTQ+ATU0LgEnBQ4BFRQOARUUBgEyNjU0JiMiBhUUFhciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYDIiY1NDYzMhYVFAYBJz4BNxcOAQEiJjU0NjMyFRQOARUUFjMyPgIzMhcFAwYBIiY1NDY1NCYnNxEUBgEiJjU0NjMyFhUUBgEyNjU0LgE1ND4CNzI+AjMyFhUUDgEVFBYzMjY1ETQ+ATU0LgEnLgIjIgYHIgQVFA4CFRQWMzI2Nx4DMx4CFRQGFRQWEyIuAjU0NjMyHgMzMjY1NC4BNTQzMh4BFRQGASImJxM2MzIWFRQGFRQeARUUBTNUTgcGE2nOqDIPc7FmJS8lAS0BFVmFRbIBS74BDdsQFhBhQT1YDzwqE0ZummcEBAUFX/4EKEYdHQwgHwEvDw8EBEz+CBMWQiMTFkPlZrp2XZZYZ7NvV5AxKUcdGSlIHrITHh4TFB0dAaQCeoQlSy6s/RxqiV9IKCEiLiczQ0FfT18x/ux+LAWDJDkmAwXLTvxeFiAgFhYgIAGbICwFBQIEBwZ1rnxTG0psCAcoHR8zGxtUwaOD285vQ3xZ/P7/JS8lrI4OHA0OZZm2XQ0UDAo8dHTRoV1nUUhoVVJjQ1hkDxAaHjwo4wNMMUQUOQYDIzcfHBz+rEEWEmVsHGRMBkJqQVGSYkRhTU8yAQ0BHwMjHbXOI/7V/uIocnZlHf7NIjQvKC5QNic5LDwyBixZDhdMSRI+UrAYFhA2SS1HUz0lWS1GJRtMPQccLgMlGRMmSBgUJUnDSnQ/QG5ER3RCQm5CqjUfExU0HxMWAaIyIiMxMSMiMv4vTgVVYxl7cgKMknFlgA4HHDInHyxCVkI5of76DfspExASMTEKLhZy/vYfLgPcNyYmNzcmJjf7LSAXH0xHFQs4RkMVMUAxZkoSPjsQEQ8OFgEVMYiWQ7XidhKMqEwdJO/vRlhFUT9uhwEDJldNMBBSaDMmZk8WFQVURneWUVNNP15eP2Y/HEQ6DRZGeU2ewvzuJx8BHgI2KylRHxseEQoYAAAACwAy/qwJ9gbMAJYAoACsAR4BKwE9AU0BVwFjAW8BfgAAASImNTQ+ATU0JicUDgEVFB4BFRQGIyImNTQ+ATU0LgMnJQ4BIyIuATU0Njc+Ajc+ATMyFhc+ATMyFhUUBgceATMhMh4BFRQOARUUFhceAhUUDgEjIiYnLgE1NDY3LgInDgIVFAYjIiY1DgEjIiY1NDY1NC4BNTMUFhUUBhUUFjMyNjU0JicOASMOAQcUFhUUBgEvAT8BHgEVFAYnMjY1NCYjIgYVFBYBMjY1NC4BNT4BNzI+ATceAhUUDgEVFBYzMjY1ND4BNy4BNTQ2Ny4CIw4BFRQGIyIuAycjIiYnHgEVFA4CIyIuAicuAjU0PgEzLgEjIg4BDwEOARUUHgEzMjY3BR4BFzIeARceARUUBhUUFgEiJjUiJjU3HgEVFAYBIiY1LgEnPwEXFAYjIiYnFAYBIiY1ND4BMzIWFx4BFRQGAT4BNzYzMhUUBwUyPgI1Ig4BFRQWLwE2Nz4BMzIWFRQGASImNTQ2Nz4BMzIWFRQGBctAPAQFHikbHAMCOUgkMwoKL0hMOgn+YRg1FjNoRiUlKj86IH/TVEJUKDpxRi83UzgULRcDaW2wZwMDBAQPHRQKDwoNHg4uGw8KAQYGAkBPI1RwNkgKFwk0QwQGBi4kBR4fLhcPCCuCJxAhFBlc+0OlcFGwLyojhBonGyYmGycE8CwxDQ0aLRUsbmcgFhsNFBQmGEkrJ1RFPyw8NRlWXycdJmRcOYyMd0wFRxo1FhoeKDs7FA8+RTgLBg0IIj0oFEc1MWWFY2NMQDFEHBQ0EAHjCB0Lg8SHJhkYCxr8uxkmFg9kGiUlBJ4QHDJEFyD8Jg8UDyQJF/5xK0oUIxYZLxYRKkj8UBYgCiUZHhgBIRpDPilBdEkhFYgOHhk1Dw4NDgR0HzUgEA0iFBkgN/6sPi0RPUQbRuaaMXh/PBVbVAsxLBUhFllfH2SfhHl7RpwMBUxoKiM+GBsvNCOJiB0mIR4uKjWAKQUGQIZoFlRkLz5eMApBTiEiTjcvEDg6IzI7CwguNxaS4rxchY41LQECPS4bWB4PR1MhJHUxJ0AZFB5wYT6FNxAQOWsvYbU0SEgE3ROZg3Yyizs5ZZgnGREKChEZJ/rMICAWbpFIPn1SChUONIaBLjZdRREUGFxnW8Pyny5YOj2PQxogDyhbLqe2QW+JkUIPCi9IDhZDRC4aJigOCUhbJUN3SxQcK2tgYBhTGh1DLgoQtiFOGkiWdUy+cx9gGxsTBekpHC4MCgEnHBwp+4w6IhI7IUQskkxKLh8jPAGVTjcbPSowHBYbHiZGBAQhOBZTNzYt7yc8QRooQCMWHdA9Gg0lMCUdHUD70jUcFxYUESJDHio6ABgAX/7eCckGmgBdAG8AdgB/AIcAmACkAL8AzQDVAOAA5gFMAVQBXAFmAW4BdgGCAZABngGpAbIBvAAAASImNTQ2Nz4BNTQmJy4CKwEiLgE1ND4CNz4BMzoBFz4BMzIWFRQHHgEXPgEzMh4CFx4BMzI+AjMyFhUUDgEjIiYnBgcVFAYjIiY1NDY/AS4BJyIGBw4BBw4BJSImNTQ+ATc+ATcfAQcWFRQGJSc+ATMVIgEnNzIWFRQOAQEnPgEzFSIGASImNTQ+ATU0LgE1NxMHDgEBIiY1NDYzMhYVFAYBJz4BMzoBFwcmNDU0NjcXBhUUFhcHLgEjIgYBJz4BNTQmJzceARUUBgEnPgE3Fw4BASc+AjU3FA4CASYnNxYXATI+ATc+ATc+AjMeARcVFAYHDgEVFBYzMjY1ET4BNx4CMzI+ATcuAScGIyImJy4DIyIGBy4DJz4BNTQmIyIGBy4BIyIGBw4DFRQeATsBMh4BFx4CFRQGBw4BFRQWASc+ATcXDgEvAT4BNxcOAQE0LgEnNx4CFSU0NjMyFhcHATQmJzceARUBLgEnPgEzMhYVFAYBJz4BNTQmJzceARUUBhcnPgE1NCYnNx4BFRQGASInNCYnNx4BFwYnJic+ATUXDgEvAT4CNTMUDgEDnnN0LSMCAgsHKkFGM1Flol4yRj4MNaduDBoNHX88X2IHH0EaTYQxnNmTYSMXNyUdJyMuJDIzSn1NN30vERVwdmh2JCEEKDwfXlUmCQ0GEIf9tEZRHEc/PUUNf0POCkUBIygpWypF/R8zOUdmOlMCeikpWyogQgI1PkgjIiAgsXEfHjH8SxgkJBgYJCQBUDYjZTMHDQcSAQcISwsDAjIIEwolTv7oMT4tBARQBAQ9Ai1AIDYFTwRA/fkrPz4UUAchS/6ACTI8RAoBaj9TMAkKGA0vUW1YM0IqFg4PGVNDTkgaLxUZVWEsLU44CyBDIB8mS1kcH1B+wpBBm08QKi8vFAsHPDU3ZhQPMRpRfjUNPEEuSn5NUUlkVjMDBwYFBR4sTALBDVBoJDIrfopGJigGUAcv/K8VIBBCFSYY/opLRjNRE4sCojYdPik8/nohSCYQMBkgGgICUU8FBQgITggKBqhMFBEGBk4GCBQB6hMUCQ5IEBADF60mFRMXQgkY8Do0MxFQFj3+3lM+I0kXGz8iU6EdZXMxZadkOUQuLCGVnQI2RI1uOxwWQyUGBSliq4NXTCMuI15QZaFeNys8IeeIkmhBJkovYilpPhMRFHdGzLr3T0cmTmxSToM8jZfaHRxBXdNFFxhOAqR2WxsXEj89/ddGFxdOEv3wFB8aM0U0LEZTQCH+6PULBwS/LB8gKysgHyz+LTojIQEVCA8IIkMZGiQ0Dh0OLwICGQEjQC02LhEqGw0cMRVFUf2TMSiKNQVAoQGARChEX08GSGNKRQHtRTg1T1n6CT2LdXh+EBgXCG9lJpEQIxITKBUnMl1tAQIUbTokPyg1XTwZIAgRd2dzlVQiBwgcNi8lCyQ6GlVWSzQEA4GJIzEpMCNQg00/j3cQX3s7OVIdBjwVGyYBzE4PJyA1KjRuKS1lOAhAeQNhGU5MFiwcW10hlnSESjkj/St0rTowQ8iAAjgZJwwjLD0mEB79uQgsTyUvYTgOPGk1JlI8FE5wMhw4Hg4hPx84fP5jEB0/IR4oTSYQUxIaQnFSnSxIoTU9WFU2QWpoABMAVf7eCdMGmgBzAIYAlACbAKMAugDJANcA7AD9AQwBhwGVAaEBqgGzAcEByAHVAAABIiY1NDY3PgE1NCcuAicuAScuAScuAycGIyImNTQmNTQ+Ajc+AjMyFz4BMzIVFAYHHgEzMj4BMzIeAR8BHgEzMj4CMzIWFRQOASMiLgEnBx4BFRQOARUUIyI1ND4CNTQmJy4CJwcOAgcOAQEiJjU0Njc+ATUfASIOAhUUBgEuATc2HgEXFjYWBw4BASc+ARceAQEnMzIVFA4BASImNTQ2MzIVFA4BFRQWMzI2MzIVFAYBIjU0Njc+ATU0Jx8BBwYBBiYnJjYWNz4CFxYGASImNTQ3JjU0NjMyFhU2MzIVFA4BBSImNTQzMhYzMjYzMhYVFAYXIiY1NDc2HgEXHgIHBgMyNjc+AjclHgMXHgEVFA4BFRQWMzI2NTQ+ATU0Jic+ATceATMyPgE3Jw4BIyImLwEuAiMiDgIjIi4BJz4BNTQmIyIGBy4BIyIGBw4BBw4CFRQeARUUFjMyNjceAxceARceARceAhceARUUBgcOARUUFgEGJicmPgE3PgIXFgYnJjc2FhcWDgEHDgEBJz4BMzIVFAYlND4BMzIWFQcBBiYnJj4BNz4CFxYGAQYmJzcWBgUGJicmFjc+AhcWBgOYUVxGLwUIDDlCJA4dKwwHBgIGKDItDCMocoElOFBKExVCYkMpJkdbKYALCR6STxVpdCd+8LosNw4nHB4sKTAjKTRbikYhVlIdFggMCQnlpBUcFQMDCS85GM8IHiIPE5/92jZKTVImNlh0FURELz4Bfx8kBgUUIBQVIxQEBTX+elMUMxYXA/5HHpgeLkYCdx8tISIlIyMdDhccCg0oAnVfKyEEAgNakDkq/mkeNQYDEyQUFR8VBAgl/RAQFBkMKBsMFBUVEy5AAUEfLw4LHxEVIQoLBCrvHycMDBEWEhMlEgoa41BzDQ8kJhEBDhVCQzMGBQMjIyA0T0YJCQgRHywKPJgoIEg/FDwaOiM3Thc3JJzSdxJOXE0QTopkFQsLHiEiUzMnIhpJXx8RGBQNRTsTEk9UGjIVCzpFOAkFCwUSJBAQJjwuFBUTCyc9LwJAGj8PCxEmEhMWEwsQEZMULBUoCwoOHA0UFf3wXB4rExIK/sklOR0hIzoEcRs/DgoRJRITFhMLDxD+SyQ8Bq4HLAFZFDALDCYVDhAOCQwN/t5JNzRQDBo4EFEKMT4pEyiRNB4XAww4QjcLBWNbJFdYNjgbGBYZQDENVC/GKVYqZ3QHBlekdI8kKiMvI0AsQodbFycYFg4rFhdaZSb5fCIxN1NDFSEVEzY1D0UTa45KYHkBIUE9NplzNWEZynsnODYPO0sBXwY4IRgEFQQDCQQYICoBgHQpFw4NSQEPmhgWPi7+ZjAoJToXCwcLEw0IEBggM/1ILh1PJBRJKDANCYLtCAHxBisjFgIJAwQVBhYkOQK0EAsUDgkQFy4PEhcRGDwsyTQfDA0kGgogMvgtHxkUEwwfCgkCBxMy/F1XREuWfydaBDBEQhUiLhpMXUUpFRVOWyhiWBoYKRQWNSE0MB84Jz0fH0g6jl6OUAQFBEyGVzFVJUE1O1wVDEYmFRQLBxIcFi9NQB02OAYFBz9TTRQKKBhSZhcWKjYoEVA9I0wgCy8jFB4DRw8YHhYJAQoKHwoWHkBnLBkMAhMQBwEIDCYCczU1KSkVM3sqVDhBLEn77w4XHBUKAgkKHwoWHEEBxwUzKRgrP8gLEhYYAgoHFwcQFjEACAG6/qwIbgbMAEkAWgBvAH0AjwCbASABLgAAASInBiMiJjU0NjU0LgE1NDcuATU0Njc2Ny4BNTQ+ATMyFhUcAQc+ATMyFhUUDgEHHgEVHgEXNjMyFhUUBiMOAQcOAiMiJicOAQEnPgE3IgYHJzYzMhYfAQ4BBSImJzcGIyInNxYzMjUzFDMyNxcGJy4BNTQzMhYXNjMyFRQXLgEnNz4BMzIXBy4BIzceARcnIiY1NDYzMhYVFAYDMjY3PgE/ASY1NDY3Fw4BFRQWFw4BFRQWMzI+ATc+ATceATMyNjU0JiMiBx4BFSM0JicuAiM0Jic+AzU0JiMiDgIHJz4BNTQmIyIGFRQWFw4BBw4BFRQWMzI3HgEzMjcXBiMiJw4BIw4BFRQWFx4BFRQGFRQWMzI+ATcXDgEVFBYBIjU0PgIzMhUUDgIEhWceKy8/UCIrLApMVjw3VZESHTtjO1R6AmDeZVJrgMpwEQpXnTUqL3ebnngNIxQfbYRCQFkTHEP9JSIUTigmQBQMTUwOHQ0GM1kBRRQhBRECIR4cGgwOGBkeDA8YFk0aFA0OFgcjGRD4L180CRQmE0pBDBkwGgQfNxwcFiAgFhceHgUkNREVGygmGmBbDj4+Dg06NjJFMm5dFw0kEBEhEFhtbVUeHRoXRiIgG2d/PxMdSKCOWT0wM4KKgjQtFhtMMjZUHiFRgTAxNlJPJiopVjFsYiRygFxVECYaBAMeDg4bISEfHCYrITkZHSgBKCFBX10cIUFfXf6sQRM3KyJANzJleVEtOBhxTD57MtE8PoNAaqBZv6AQIBF5lXNZYMapOC5KLBZiTRGWcXSSP10ZJkIpIx8rJwN8LA8pEAYENg8CAjwOPSgeFgEmIhsLIjAJKBRQHiESEBsPHQ8gpyZBDy8CAg08BQcMECQUqS0gHywsHyAt/DEeIypGHRw9MU5+DU4HUEAeQiMhOyUWIiA1HxFhaQUEZVFQZwdHeC81ekA2WzdLhz8SZYqXRDhEQHuxcQ1IqmF2mZ12OIpoE4J/KGIxP1sLEA47PkMkAwUZJyM0YiYlVywrTBEOEiNXThg0UyMbGQUWHR9lZ0cdH2VnRwAAAAARAUD+rAjoBswAXwBrAHMAewCLAJkAoQCuALYAvgDKANIBQgFLAVQBYAFxAAABIiY1NDY9AS4BNTQ2NycuAT8BPgM3PgIzOgEXPgEzMh4CFx4BFRQGBz4BMzIWFz4BNTQuAjU0NjMyHgEVFA4BBxYVFA4BFREUBiMiJjU0PgE1NCYnDgEHERQGJSImNTQ+ATURFwMGASc+ATcXDgEvAT4BNxcOAQEiJjU0PgE1NCYnNxcHDgEBLgEjKgEHNTYyMzIWFxMnMjY3Fw4BJyY1NDY3HgEVFA4CBS4BJzceARc3LgEnNx4BFyUiJjU0NjMyFhUUBhcnPgEzFyIGEzI2NREWMjMyNjceARUUDgEVFBYzMjY1ETQ+ATU0Jic+AjU0LgEjIgYVFB4CFRQOAQcuASMiBgcOASMiJjU0Njc+AjU0Jic0LgIjIg4CBy4BIyIGBw4CDwEGFh8BDgEVFB4BHwEWBhUUFgEiJj0BMxUUBjciJj0BMxUUBgEuATU0PgEzMhYXBwUiJicuATU0PgIzMh4BFRQEjU1SH2d2BQeqSUsEEgMnMiwIJG2RWgkRCj6IMStGNR8DCw08KTJKKjR1K0dPNEM0RERPlWFSilYIICBkUkZOFhUTDDR8TVL+rS8mHBu5Eif9kyAsXDAQLVRnEzVxPww8bgR1HiUZGQcFajQtDSr8BiVLJhAeCQkeECZmJRACOE0dKyJvMgwPFS5OLTotAdEVPikdK0clQjF4QBBHeTr+wRYZMR4WGTA5EzmILgM3fIo9KQgSDXa7LhUXFRYuICw6ICAJC2CPT0RtPB8hNEM0PWxIJHI1NFwpIisTGB4XGTU/HAkOGSYrEgo0PjgOGDMTa5kvDj01BA8ETU6hBQU0WzsVBC8oAXUTFVAVqxMVUBX8awoJGSsbH206mAG4DCsXFiYaJSEHDBkR/qw1MSNcHpRDwY8WVDN6NV8wvyAdDw8QS2YzAnSbZKXHZB1QJ0x7NhIRGhQKTjEkLio5Li9CVJloWqZ3Fi4lO1c/Gf6FQEM1NyMtMSgdWSkPDAL+3z1JYhIZFTYyDwEZp/74IQQ7MhgoEzsRJWEzERoKNwcZ+0wSFhEoMh9WWxgXscMOEAUoBQQBNwEGBf7bPRofKSglayMmHioaCyYXDxYVGN4zaTQvKm1QQyY5EDUQNyqkIRYhOyEWIzlnNBMYPBP7MBkcAXIBGxY7hDI3PyYSGBAVFAGPGj1XQBs+JBBij1ROdkEYDxUmL0IxN2E+BRQcIBIPDxsWEyATKFJYMR1ALkapmmQ4Vl4mAgNdYh0QFiWXI0U4cy5+HF53TSDlJUgXGhUC7hkT1NQTGRQZE9TUExkDLw43Iz6MY5WQJbgmFBQbCgw4PyxIZCtLAAAAEgGD/qwIpQbMAC0AMQA1ADkAdAB4AHwAgACuALYBCwETARwBjAGwAcwCNQKEAAAFIiY1NDcGIyImJyIOASMiJjU0NjU0IyIGIyI1ND4BNTQuATU0MzIeATMXFRQGNyc3FyUnNxcvATUXLwEOASMiJjU0MzI2NTQmNTQ+ATU0LgE1NDMyHgEzMjU0LgE1NDYzMh4BFRQzMjU0JjU0MzIWFRQGBx8BJzcXNyc3FzcnNxcBIi4BIyIOASMiNTQ2NTQjIg4BIyI1NDY3JzcXMhYVFCMiJiMiBgcOARUUFhUUASI1NDMyFRQTMjY7ATI2Nz4BNTQmIyIGIyI1NDY1NC4BNTQzMjU0IyIGIyI1NDY1NCMiBiMiNT4BNTQjIg4BByMuASMiBhUUFjMyPgEzMhYVFAYjIgYHDgEjIicWATI1NCMiFRQXIiY1NDsBDgEBIi4BJyMiBiMiJjU0NjMyFhc+ATMyNTQmIyIGIyImNTQ2MzIWFz4BMzIeATMyNjMyFhUUDgEVFBYzMjYzMhUUDgIVFBYzMjYzMhUUDgIVFBYzMjYzMhUUDgEVFB4BFRQGIyIuAScHFB4CFRQGAS4BNTQ2MzIeATMyNTQjIgYVIzQ2MzIWFRQGIyImIyIGFRQXJSc+ATc+AjMyFRQOARUUMzI+AjMyFhUUDgEBHgEVFA4BIyIuASMiBgcOASMOAQceARUUBiMiLgEjIg4BIyImNiMiDgEjIiY1NDcuAjU0PgI3PgE1JR4BFRQGDwEOARUUFjMyNj8BPgEzMh4BMzI2NTQmJy4BNTQ+ATMyFhUUBhUUAzI2NTQmJy4BNTQ+ATcOAhUUFhceARUUBiMiJiMiBg8BDgEjIiY1NDY/AT4BNTQmJyIOAQcOAQcOAhUUHgEzPgEzMhYXMjY3PgEzMhYC7hQaAgwUGSIQHR0VEwkOHwoIEBMcIiIgIS8xRD4lWBF8LVst/wAUjhQclparcxYoDzEnJx8lAx8eMDAlJikZDA0eHw8KEycbDQ4fEhgxPTU+noQhhD5bL1xbRjVGAvMPCAYMCwgLEBYFCgsJCg8TTlsNdREgQhQLGBINFCAiHA/7OBkZGDYrTCRCXFoRJTESDggLBQcDHh8hIDYGDAUFFCcnMg0HASUaFz8/GFkTOBANGzU4Djk0Bi48NigWJw4OGRMaEhIBEBgYGRUXIUFfBkABLzGCcx5MHVYzQUYjHhQbCRpKIhgPEAxbH1hlRjIjSxxBdUYuPUk+N4ZYKSYtLhcQGCMZKzA/MBYPHUkeIjVHNRELFC8YKTU2NDMyHhdHRRWMICsgPP0WFxVDNCEtLR5AKBEYMjYlJzM/MzNEIiIjHQImWQgKAgkdJBMcIiITEiYpKxYODTpZAxtFNFWPVxtPShQZIgoUg18KMBsJFA4RFRQKCAcDDRcZCQILCgsPDw0QBnrCcC5joHJxYAETIyRoc/A+TEs9NUYiIzCIWyprXBMPFhUaMS9DYi4dIBmCY4kpOC4nBgwJJzUaJyYqFkQqNJc+UV0pGyluSl95XVHtX1sDAxpRTRQZcmp5n09psWw1XjQSKBY6TRYUPDo0dp0jHAsKBSIqJygLChEiCwsSGhQUDQsLBgoRHC4ve0APExAnaiddOTI5qQI8Ag5ICgsREx0UEAcSBxckHg4RHiAUGissDRslHQ8KDCQxFA8UHiQTEUMfIGU/KjZOMk5PbiVvQHsefPzuHh0ZGRoLDgoLGBklK0ooPRRBKx8hHBgUFQoODRcOGAVyGBgYGP6WKCYxFDoVDhUHCQUWDhoiGQwMFx4DAwUDCxMXBQgTCQsqQycjIjUoKisEAyonJTAcEBAVEDQBVhgYGBgfIBYzJkP+eg0XDSZSOiMsFRMlJxIJCRFOTUhbLSRaShQVGA4LEw8PEwsMDRYVFQwQEQ0LFBYWFgwPEAkKDBsZEAkQEAIIGhIcDBEFLQ4PDRUUGBwCMRc3HDdFFhYuKRQPJDE1Jis1LCogKiAcKAgOCCAwHCAQHRwRESo3KhQOIT0r/S1tezlTi1QHBi85e48NEwUOLw8QEiEgISIlJBscGhYSEg6O3oVWlYqFRURgK1gZbUxrr0OMJG48OkY9S01pXg4ODBILNClNfDE/hFomKSs8KE39loZhLmNYSWUuEi8yFhZASCMrYz1DNyEuOBxYWzxbUnVXVJIvijiIXBYrEA8VCi5dPkaarGJ3xnYgHQMEZmhfQg0AAAASAZD+rAiYBswAVABcAGQAkQCkALAAugDOANgA6gFQAVoBZAFuAYcBkQGbAacAAAEiJicuATU0NjMyNjc+ATMyFhcTLgI1NDY3NjU0IyIOAyMiJjU0Njc+AT8BPgIzMh4CFR4BFRQGIyInFAYHHgEVFA4BIyImJw4BBw4BIw4BAyI1NDMyFRQXIjU0MzIVFAciJy4BIyIGBy4BNTI2Nx4BMzI2Nz4BMzIVFAYHJiMiDwEOAQcuASMiBgcOARMuATU0PgI/AT4BMzIWFwcnBwUiJjU0NjMyFhUUBhMmNTQ3FwYVFBcBIiY1NDY1NC4CJyU3HgEdARQGASY1NDcXBhUUFwEiJjU0NjU0JjU0NjMfAQcOAQEyNjcyPgE3PgE3JjUzFB4BMzI+ATU0JiMiBgc+ATU0JiczFBYzMjY1NC4BJzQuAiMiDgEPAQ4BBw4BFRQWMzI+AzMyFhUUBw4BFRQWMzI2NwMuASMiBhUOASMiBhUUFhcUFgEmNTQ3FwYVFB8BJjU0NxcGFRQXAyY1NDcXBhUUFwEiJjU0NyImNTcXNx4BFRQGFRQeARUUDgEBJjU0NxcGFRQXASYjIgcnNjMyHwEnNjQ1NCc3FhUcAQLMcX8IHyVXVjVgSAVtVhomH3ktTS6XgB1tPWRfZ39TO042STg4DzQof7p/iPC4aEtRT1IrHhwaVW1GbjwgPxwodVQ+pY9NwvQZGRliGhoaKxAIBBsMDCQIDRdVrmMIIg4SGwM/ZB0kICUcFx4LNSZXLwEcCw0gBA8aflpbIC8xEQwXUz4sZzEhgXEBUholJhkaJCQSC0MgKAgCHS41KDBANQUBOUkPGlv+MAtDICgI/j4lHSQkKQwsejgfMP5wULhSXXhTI1BiIiNMMEonJk0zYU0PIRI1JwcHTioxLSQhQjNcotZ6cqFtJiIZUz04Fx4ZRW5jZXVJWmNHa4I/IxczF8AdPSAtWF+DRzQuKBpLAuoLQyAoCLgLQyAoCLQYMCkeEAIfKjEEJEoRpFAEAwQfHic6/nUYMCkeEP50HyAWGiEpKTUz/DsBOxNj/qxaUxhQK0FIMD9hdQcOAYUCJ0EnSnoiHDFmO1ZWOywiIEAmHTIXUj98U2y++Y0foGZdYw85dEQHOzkwWDgNCytKI0s9LjgBIBkZGRkNGhoaGpcBHSofFgwgFiYnEhkrKh4dFAsZDiBNHhYrExIfLx0EAwFgDi4gGREQKjMkRD8YFJYuRtYmGRokJBoaJQEBHSBILTMbJxAY/ZsUFRc3Hx0pHxkMCqcHEgiug38B9h0gSC0zGycQGAFMDxITHg4OWTUxKmEivwwJ/II4LhY1LyA/IiIjDhoQGisZIB8BAm2XSRpoRTpXMj43a1ANiOuwY0NtPjgoTB4cEwcFBztWVjthVWA2GlgrGyYIBP2xGBtZVFVDHB0kRhE6OwPCHSBILTMbJxAYbh0gSC0zGycQGAFrKig6LS0cHxUe/XczKBEQPSwbE7EUKxQeLgUOJS0cHzolAiUqKDotLRwfFR4CIB4RMhou6AcFBQQ9FDklZgUKAAAHAH3+rAmrBswAZwDEAM4A2gDrAPkBBQAAASIkJw4BIyImNTQ2Nz4BNy4BJy4BJy4CNTQ2MzIeARc2MzIXNjMyHgIzMjY3JjU0Njc0JicGIyImNTQ2Nz4BNz4BMzoBFz4BNz4CNz4BMzIWFRQHFhIVFAIHHgEVFA4BIyInBgQnMiQ3FjMyPgE1NCYnPgM1NAInPgE1NCYjIgYHDgEHLgEjIgYHDgIVFB4BMzI2Nx4CFQ4BFRQWFw4BIyIuAiMiBgcmIyIGBy4CIyIGFRQeARceARcWDAEHLgI1NxQeAR8BLgMnNx4DFwEiJicuAiM1Mh4BFx4CMwEuBCc3HgQXASImNTQ2MzIWFRQGBWym/tN6MZFZb6BWTydQIyVYJSI1EUZLHMOnMYWLOFFkXmMnOU16bXJGFBwNAyggJy9WT1aFGiIgJhYXQy4GDQYDCwcYOjUQEhkWK0c6v7BbQ1RaZalnVkV2/t+YpAEYaUdeTYZSeHQoTkAmv8svJgkMECQiOy4CBw4IIEMpFDkqOUMNLGguMz4cIjEKBx9JLFB+b25BIScbalQsVTIziIo2ipAVQkEUOyJ0AQUBSFF7vGo9W6dw/EB2ZE8aQRFWdIA8/slYz2xWsrdfasq9VkiBcTACoDp0cm5oMD0qYmtydjv+Wx0pKR0dKSn+rFROKzFEQywzFQsaFTB3OzhSEk1iUTGRnA0WDkI+FUxkTAcHEg4hPxJYiEgaTTQXHAoJFRERJwERHQslLigcIBthTWBepf6jxZ7+52MNUTM4YDoUREBQSEQcKDweIj4CIHiftV3GAVCiP1xGFCQ6GCsyLwICJh8PFhAICw8HEhREgo5WCDYiDRwMGRxMZEwOE0okIw4YEHJrJDxTSBZaOL78fSIep/qaBpPhkRtIQVVTdWEQUnNeYEECk2pANF89UENkNCtILP1BPEArNVxTIUpSLyxFQQI0KR0dKCgdHSkAAAgAlv6sCZIGzABTAGkAxADMAPcBDgEWAScAAAEiJAIRLgE1NDY3PgI3AyY2MzIWFz4BMzIWBwMeARceARceARUUDgEjKgEnHgIzMj4BNz4CNzQ2MzIWFRQGBw4CBw4CBw4CBw4BBw4CAyInBiMiJic3HgEzMjcWMzI2NxcOARMyPgI3PgI3PgI3PgI3PgI3PgE1NCYjIgYHDgEEIyIuATUeATMyNjU0LgIvARM2LgEjIg4BBwMuASMDNCYjIg4BFxMOAwcGFRQWMzI3DgEVEBIWAyI1NDMyFRQBNSIuATU0PgEzMhYVFAYjIiY1NDY3Jw4BFRQWMzI2NTQuASMiDgEVFB4BBycDFz8BLwETPgEzMgQWEhUUDgIPAQEiNTQzMhUUBTI2MzIWMzI2NTQjIgYVFBYDyOH+6n9WZkU/NDgsHyEGc10uSBYeTTFfXws8FCkTFCojOEM5WjEIEQgHMFtFgryELBcYHR+RemSTOSMxJyErF0lBCxgyRThHfzeIxav9MSQhLB86ETIPGxIpJiQnERkQIxEugUJ1fpxoMUtNMy9CNx0QOz4SJCAtNRolXUoaQhVG3/7erGiCOxEzKy1HK0NLIFA6BRMvJyYzGQEPECAQATMyKzgZAiMgJypHQUQ5NCYtAQNp8oglJSUENGunYEV5TW6OTD4uQhsWNyEpc1FeeFeWX2SdWnbM+eVHbmEFo3E1I7ZsnAEOy3I4WmYubvzhJSUlASQSRisjLA4RF4VRWhj+rKMBbwEyAllGOVEVET5KJAH9YoAnIyYkhmL9/Rk7JiUlCQ48Oi5MLQGQpUQVPz4hU2c/PlpLRipXHSg+PCUUIBcHD0tSGyIbGT1IHwOrJx4hHCATDiYvChAnFBv8pQ4jPS8WFBQXFU1NFgwUGBAgOUMtFzYTGyYIBtz+anj7wwkKOSEdIB4zMXkCJitBJBszJf35AgECBTg6JEAr/d4fQ0E2ExQ9JywIFiwW/ub+t44GoENDQ0P7WU5ruXZlnVqifVl+UjEgSRQ8IWUzV3qlgGulXWzAfo7dfbpoAX8EGIVnwAGUHzV30f7umy2Ono0tOAUSQ0NDQ5IUChYRMyMdDxUABwDm/qwJQgbMAG0AdQCFAIwAkwCzAL8AAAEiJAI1NBI3PgE1NCcuATU0PgEzMh4BFRQOAQcOAhUUFjMyNjcuATU0NjMyFhUUBiMiLgE1ND4BNz4DNTQuASMiDgEVFBYXHgEVFA4BBw4BFRQWBDMyPgE1NC4BIyIGBzc+ATMyHgEVFAYEATUyNjcXDgEBPgE3DgEjIiYnPgE3Fw4BAS4BJzcWFzcmJzceARcBNzI+ATU0IyIGBw4BIyImJzceATMyNjc+ATMyFhUUBAEiJjU0NjMyFhUUBgUx3/6hyl9eQCk3cZeL5oiM44Y1dGFCSx9xVREiEB8iRTEzRo1sUHpEIks/UGg6GG+/d3TBdGxYNkUaNSdYWLABOs6w/YhyzothfTtTO10ukvWUr/7b/Y0oZSgQLG79ly1JNx9AIR5AGoqrQFdTxQLIL1wvK0pFnFteMChOLAHeRY7JawkGCQUkXTshSygWJT4bJDQeFiYaKSr+wPv9HidBKB4nQP6smgEUt3kBD41gSA8kCBKic3K7b3nRg1u20oVbelcnVWUGBBE1HzJHRThYYERzSC9ohVlxpoN0QGuuZl2YWVJ6Dgk7NRk9UzqC+W6d8YlitXyHyG8jHHEODnjqqqLVagJDTwwHTQgNAqopRzoHCAUGJkszd0lr/jUCHh1CLQOIIEI/HSkR/BhcVKR2Eg0LSjQMC00KCiAtICc/LdnlBighGSM5IBojOQAJAGn+rAm/BswAcwCTAJ0AugDGAUABZwF7AZcAAAEiLgE1ND4BNzQ2PwE0Njc+ATU0NjcOAQcOAQcXPgEzMh4BFRQGIyImJy4BNTQ2PwEuATU0NycOAQ8BFAYjIiY1NDY3NT4BNy4BNTQ+ATMyHgEdAR4BFxYXHgEzMj4BMzIeARUUBgcOAQcUDgIHDgEHFAYBIiYnLgE1NDY3PgI3PgE3PgE3HwEjIgYdATIWFRQGAyImNTQzMhYVFAEiJjU0NjcmNTQ/AT4BNTcVFA4CBw4BIyIVFAYBIiY1NDYzMhYVFAYBNjU+ATc+ATc+ATU+ATc+ATU0LgEjIg4BIyInJicuASc+ATU0JicOARUUFw4BBxUOARUUFjMyNjU3PgE1NCc3HgEVFAYHFw4BFRQWFwcOARUUFhceATM2NTQnDgEjIiYnPgI3PgI3Fw4BFRQGBw4BFQcOARUGBxYDLwMyPgIzMhYVFAYVFBYzMjYzMhYVFA4BFRQzMjYzMhYVFAYBIiYnNzUyHgMzMjYzMhUUDgEBMhcVDwEiJjU0PgE3PgE3NjcmNTQ2MzIWFz4BBREoWDwrRSZWPTEvPQsFAgFx5YxblzUWDjwLJUcua0twphUFKi8uYD1GTQ4XMxk0cE1deTosYZQYBQUnNRUVNieF3FxSRBQkEUBlZD56zXtVbiJOGhU0XUcZGidO/AAUOxQtPSkuEQMJGCVvSQotMARu7D9KIx4kcBAfFxEeAxARChkXBH8mQC/NOE9JEg06FBZn/VMRGRkRERgYA54LIxMWYWYUEREjYCNROWKnaTJkbkM5QTxbYeR/AgEjHRkcCBd+Xy04TjkyQ1dbZR1CEBEgGyInLmE6niIiJwQOeYYEMg8mBxQhGDVjdVFy27Y4OxgmCRYyOkM0RRgaUolTh/VrJz02OSIlLiAQDBFAIiIzHx8hDy4VICMnA+I8cSNJIiISFisqQ0YaGT9u+LYaGWqtMkAfJggJDAcVOQgPDRU2FgoV/qwPFwwYS0oVKVcLMDJUKilOJRQpHGphBk9uHiUGCThaNTccXXkeRjYqUTBjKXlPeFxQDA8DO0Bfg2M3hTFkFGlfEiAOJFc/Q10nATe0gBpEAgMhIXfNg2vWWRtCHDFJRFE7FDQNLiUBKDIYIGEnKF1DGD49FyMJBgEYLHuRRjxcJTRFUwOSKBQdKBQd/H8YFjgrEgsTWRcHDEM0g8cwNyIeGBIZJzQyBKgZEREYGBERGfpvEhwILhJNWRwYPjEqXR1Eq2NqqWQgIAxEG4rDKQkSCS9EHCU7LCAbWX0jQCt7Nj5TRDNjAk1JNlQYLlEjJ0EctxxkMkKIIKUlNR0mNxteUhUYSy8ECjg6GkFgRwVcnGUeLX5KOXcpJWQ4OwM8KwYTFATeQaizOSg0KC8iIjcdCgwpMiIbNSwPGQopHBw6/P0yMNmyO1ZWOyMnKl1ABOQGfodzGhYSDAMEBR8ldDYoICIwOiwBAQAAAAAMAKD+rAmIBswAdAB9AIcAkACyAMQA4ADsAPYBAgEuAT0AAAUiJwYjIiYnLgI1NDcmNTQ2NyY1ND4BMz4BMzIWFwcuAiMiDgEHLgEjIgYVFBYXDgEVFBYXBhUUHgEzMjceAjMyNjceATMyNjceATMyPgE3PgI1NCYnNjU0LgEvAR4CFRQHHgEVFAYHDgEjIiYnDgEFIiYvARcVFAYFIiY9ATcVFA4BJSImNTcXFRQGATI3JwYjIic+ATU0IyIGBy4BIyIVFBYXBiMiJwcWMzI3FiUuAjU0PgIzMhYVJw8BFwcBIiY1ND4BNTQmJzY3HgEzMjY3FjMOAgcOAgMyNjU0JiMiBhUUFgEiJj0BPwERFAYBMjY1NCYjIgYVFBYBIi4BNTQ+ATMyFhUUBiMiLgEjIgYVFBYzMjY1NCYjIiY1NDYzMh4BFRQOASUiJic3Mh4CMzIWFRQGBX5URU5afdk6XZZXGl9LQD9WlF0ypV5xxik5E1p5QTloUhgPHg5pfScsQ1w5MCRKdkAaFBRrkE0yWyocRydLeRoqRCJFa0MIQV8zREATQmo8CVqSVQk7P3JrFrd0ID0dIoX9jio1AxPUMAEvOi3LDSoBczRLbnYw/OojJR4XFCUDLD0TDS0mFjcODzIdEBcXGR8nKhoRG/4KLlIzOWqQV1FhdnRnOFACAp2THh0HClU1E3FILlEjLS8SFhILElZtwBsnIRobKCME2TE5d2hI/FQdKiUdHSomAiZalllEZzRHXCYdGRkPDg0SPys9T5aSTFOVeYXReGu2An80cyorHDg5Ox4NFj2iMCKEbwdgml1JPlyFUIorVWlYj1VOWntcTUVfMCpNNQUDi2U2Wi8plEdAdxlCVkh8SwRMbjwWGyIdX0QXEEBwSBVYekZQkzY9KUh5TglRBmigWyYnPp9VdMc0d48NC0NRYSgm6o9cIitRRBaID5cJKyZePEN+CbQRLwM3GSkNLwcuFxEQEBglERY/DxoWJScRKukBXJZYWrKSV0s+FCjbw4v+LXB8N1dZOhlCKRM3QFUjHzpFp5YsR0UUAcguHh0nLSAcJ/t1LBqhUm7+nBwnBFMxISAqMSEfK/78U4lQXHM2SzckMh8gHRgkL1dLX2pDPVtuf92Nhtd+kUsyqDhLOA8RHiwABwIL/qwIHQbMAIEAoQDHANMBBQE4AVQAAAEiNQYjIiY1NDYvAS4DNTMUHgIfARYGFRQWMzI/AT4BMzIWFRQOARUUFjMyNjU0PgEzMhYVFAYVFBYzMjY1ETQuAic+ATU0JiMiBhUUBgciDgIHNCYnPgEzPgE1NDYzMhYVFAYHHgIVERQGIyImNTQ2NTQmIyIOAhUUBgEiLgEjIgYjIjU0LwEuATU0NzMUHgEVFAYjIiYjIg4BEyInBiMiJzcWMzI/AScmNTQzMh8BNzYzMhYVFA8CBhYzMjcXBjciJjU0NjMyFhUUBgMiJi8BIi4BNTQ+ATcuATU0NjsBMjY3HgEXPgEzMhczMjYzMhYVFA4BIyInHgEVFA4BJzI+ATU0JiceATMyNjU0IyIGKwEuASMiBgc0JicOASMiBhUUHgEXDgMVFB4BMxceAQMnND4CMzIVFA4CBxc+ATMyFhUUDgIPAScF2LMuVVFBCQMDAxshGVAYHxsDAwIIJS1iCQ8DEREUDgUFNjcxNg43OzE4DigwMi4KHTguIzQqKQ8RQzUncXRbEQEFULpTISgpN1BjKSA2NhNcX05QDxEJChINB1X82woGBwwTAw8SEAcWDwOpHyAGCgsJDwwHBQM0IBMWJRYlCQwUAgUtExkMCi9ECQgKDQ1LBQEiFhoOGh7CFh4eFhYeHjI3cDoXR2c2NTsKJjMnLTIhQUAUJw0nVTCMl14RPx8cIyhXSSEZAgNtt3NilVUHBxciFlZuChM+EHRGiD9DfC4JCC5KMxMQICwSAygxJT1VJAw6YSo7J050TSAcMDseP0SpaDg6NVJYIyC9/qyjNFRhL0MoJB86TnZaWHFJOiMkGDoVIR5LeRseN0APTVMYFhscI7vaXUw/MkUXGyAqQAE0bpBhSykwczQ0PhEXRIMwCRIaERohIBocKFMxPjprVzdvKTB3r4X+m3Z0WU0sczMdFR9gvJ5YUwLKFhYkGiEeDis3JBcfHT5TPhAnHxQTAWUgDSAbCxEwLRMMFwotJAUQCA0ILTENEAgmE64eFhYeHhYWHv5dGRs6SG05PFhRLhpbJB0mGSQKLCEVFlgXHiI3bUkHFiwWebpqS12rdRs5HwcFTk8KFjAmLSonPxQYHA8MDSomCS1KREUoO08mMBsWArhmIXyEXA8OGz2BdQuVjRsPERksV1BIHgAAAAAKAR/+rAkJBswAPQBGAFAAcgB7AIcAvADGANIBJQAABSInBiMiJicuAjU0NyY1NDY3JjU0PgEzPgEzMhYXNjMyFhc2MzIWFzYzMh4BFRQHHgEVFAYHDgEjIicOAQUiJicDFxUUBgUiJj0BNxUUDgEBMjcnBiMiJz4BNTQjIgYHLgEjIhUUFhcGIyInBxYzMjcWASImNTcXFRQGARY2NzYmJyYGBwYWEyImNTQ2NTQmJw4BIyIuATU0MzIWMzI2Nx4BMzI2Nx4BMzI2Nx4BFxYVFAYjIgYHDgEHDgEBIiY9AT8BERQGARY2NzYmJyYGBwYWATI2Nx4BMzI2Nz4CNTQmJz4BNTQuASMiBgcuAiMiBgcuASMiBgcuAiMiDgEHLgEjIg4BFRQWFw4BFRQWFw4BFRQeATMyNjceAjMyNjceAQV9VUROWX7WO12WVxtgSz8+VpRcM6xYbrUtBw42XBwmLUNsFxcXXptcBzlAc2oWtnQ+PSSC/ZMsOAMV1y8BLT0rzA4r/nYjJR4XFCUDLD0TDS0mFjcODzIdEBcXGR8nKhoRGwMoN0ZweDb8OhoqBgYdGhkrBgYdvYWsKAoIDhwQLlY2HR5dKDxsKBNwSTxlGQxQNCI6FBxlIil1jCFIERcVEh+UA9ctOXZpSfxWHC8GBh8dHC8GBiABcEd1HSlGJ2WRCj1cNERCDQdGd0gOMyABK0IlGT0cDlIvCCkXE1VzQjZnUhcNGAtHcEAyLExeOTERFEt2QQ8TCRxqikwyWCgdSKEuIYNuB2GbXkc/XYVQiStXZ1qOU05bd2EBNSwQSToDXZteKSQ9n1ZzxzR4kBZBT2IoJwEBj3MiLFFEFqEPsAkrJgOVGSkNLwcuFxEQEBglERY/DxoWJScRKvzJOzp9CagRMASaBCMdHTEEBSQdHTD+J4ZnNHQxESAJBQY0RxwdHS0mQFU/MS09HBcpLwICGxY3Kh8pgCxMVf0+LRq7QnT+jBwoBFQFJx8gNAUFJiAfNfxGWkkVFIttE1R8TVCZMBwvG0h4SAcKK0ElFRE1QgQIRmY3LE81BQI+a0Q4aTEgg00+axovSytLfEsCAUpvPBkZHyAAAAwBFP6sCRQGzABGAFsAZABwAIEAqgDSAN0BJgEyAZQBnwAAASImNTQ2Ny4BNTQ2NyU+ATMyHgEXPgE1NAIuATU0PgEzMh4BFRQGIyIuAiMiFRQeAhUQAAUOASMiJicOASMiLgE1DwEVFyImNTQ2NwcOAhUUFjMyNjcXDgEBIiY1NDY3HgElIiY1NDYzMhYVFAYXIiY1ND4CMzIWFRQGBw4BByImNTQ2NTQuATU0NjMyFjMyNj8BPgEzMhYXFgYXHgEfAR4BFRQOAicyPgI1NCYvAS4BJyY2Jy4BIyIPAQ4BIyImIyIGFRQeARUUBhUUFhMiJjU0NjMyFRQGAyImJy4BNTQ2Nz4BJDMyFhc6ATMyHgEVFAcOAQcnPgE1PAEnNjU0JiMiBgcuASMiDgEVHAEXDgEVFBYzMjY3HgIzMjY3Bw4BEyImNTQ2MzIWFRQGATI2NyAAETQuAjU0NjMyHgIzMjU0LgEjIg4BFRQeARIVFAYjIiYnNC4CIyIGFRQWFyMiBhUUFhcHLgE1NDY3Ig4BFRQWMzI2PwE+ATMyFhcHJiMiDgEHHgEzMjY3HgETLgEnNjMyFhUUBgKSQ1qEUhomSTQBvwVaJU18UAt9bkRaRFuYWVWZYlA7MDkkIhodRFpE/uL+5hd5RDpfLxs0JSZrUEFhrFl0gWcOI1E6TV5FWxA6IHj+Rik2HR0HDwEdGiohGBwoIG4uWFB2eiohK3JSHDchgZsGJyhsTCteGBQnHBIeRSQ1XQ8KAQcDEhALGRJcla1SRZeFUxIRCg8VBwwDCAk5JTMzECI4ICVbITRIKCcGdaATIDcZFyBDhdtGYn8/NAeUAP+pku9RBAcEPWA3bgVLPkg+SgFtSzkHHxdA1JCV4X4BND9ZRAcNCSBjk2dfrkgVSKVpGiohGBwoIAEJMmEZAQsBBURaRDk3LTQjJB47THdBQ3FERFpEs60KEwodN1E0JSYGCKYhGwwKMw8UBgkwWDcYGxcoHxIZVENZokZDeXspQE9AJVMbHTcqR1ByBRQRFwcdICD+0CUxL1kbQqE0R1kMaEBWiPOiDZ+iigEI89dYX59fVYhPP0wvPy9YZb/S/6f+x/7DCjA+MzkxLzVNIwhGYyQcNzRQJSUIIiYOFBcSETkdGwQqNCUaGgUvPmEyHxwlLyEcJuUeGhgxKRkSFiJVFwcGp3pgFzUNIEJOMEpnGBgcEh4fSjsnYxgLIBcQJTUlSnNQKjwkQlw5FDAWDhQrFilXJSgyMxAiHhhJLCM7STkXLBZQTgE+FQ0MGBUTHv5GSWoJhF5AZxmn+ImNg0NqO3hKXZY4LzKIVQcNBzZeOV8HBoeWeNuWChYLBEs1QF0BAT9PJSgnYh8eAiMyHxwlLyEcJvtrPDEBDgElmvvYyGdPVy8/Lz43ZUFLe0lXz+3+9JXPzgEBWrqeYC0qDx4XHhISGwsvDDEXESANUHpAHyouPSMxS3R4Kcc2mZczODY8SDYEuSk+KwczGBoqAAAAAAkBbv6sCLoGzAAbADkAUQBpAHQAkQCqALYBEQAABSImNTQ+Az0BFxUUDgIVFAYjIi4BIyIOAQUiNTQ2Nz4BNTQmJzcXFg4BFRQeARUUBiMiJiMiBgEiJjU0PgE3NCYnPgEzMhYVFA4BIw4CASImNTQ+ATcXHgEVFAYHFhUUBxYVFA4BATI2NTQmIyIHHgEBLwEuAScuASMiBgciBhUzFSE0NjM2MzIWFx4BFwEuATU0NjMyFzQ2MzIVPgEzMhYVFAYHLwEHIiY1NDYzMhYVFAYlMh4BFRQGIyInFhUUBiMiJx4BFRQGIyIuAScCACMiLgI1NDcXNxcHJwcnDgEVFB4CMzI2EjceAjMyNjU0JiceATMyNjU0LgEnHgEzMjU0LgEjIgYHJxoBAnAUID9dXj97MkAyDQ0VGBQPDyQpAXhGVmQUMCUOii0HDRIvLi0qGkAkOVP91yU3KGpjDxIeazZdbEuDVh9VUAK1l69jol6POVweF0JDHFOG/cFgdEQ7PTELDgKWgDEoIhEVhE1AaS92Y9v+z3aUbo9qph8WGiL9iRISPC4hHWI+SSxOJS8zdlZQjR0RGBgRERgYA9t+vmssIw0LFicpERwDBCElJUM1EWr+x9577L5wgXl0jxZ4bHscHGSoz2qS47FGKkIwDwsECgcWJhIfGQcNCRYuExZXmmWptA5QEOLMJSIvMxoSGhkoMTwZGxASEi0jISEmJ4ghGCQUBD86JkwTNYQVS0MKEA4TGRwRBgYEVTcxKFpUHT5THSoyalpJcT88SiL+HqR/YI5tMJsBNSESLhEaIzYoEyIpRysC2V1PNkItK4j+7DlURZQ0Q1MrQT9QQZWBdGlaP4U5AScyUh5BShNBZFgvKT0vRKEyJAL4IhgXIiIXGCLlYqpsNDEFUzYsNwUWLBU2TjBDHP7V/uJmrdZwp4p1aXVgbmlhK1wvYLqXWocBH+JAWzEYETFfHwQGJB8TUVMVCxAVVIVM6/kFARkBFAAACQEE/qwJJAbMAEIATQBYAGAAZwCMAJQAnACoAAABJwcjJwcjLgE1NDY3LgE1NDY/ATI+ATU0JiMiDgEHLgE1NDY3PgE3PgEzMh4BMzI+AjMyFhUUBgcEABMHJw8BJwcBND4BNx4BFRQGIyUhPgE1NCYnIg4BAS4BJzceAR8BJic3HgEXAzcXNxcKAQAkIyIGBx4CFRQOAQceARUUDgEHDgEVFBYXNxc3AS4BJzceARclLgEnNx4BFyUiJjU0NjMyFhUUBgZL4aoyt6JAGxkDAUBdEhO+oOR6fVg5cFsbc2x2YlQ7CBR1PUBLNx8dKC5FOVt9U1oBKAFSQijKUjeki/qKduyxJh0yOP5lAaMKCQkKZbV6A3gMGg5GERsM/R4oQxQjFBGevFXGIa3/AP7CsTRvHEV1R2mjVwIELWVVAgMMDbPXvQG3EikdQRosFf7HGTIcQB0zGf2jIisrIiIrK/6sqJXhl023bho0GQxpXjZQKR5GfFFdZS1MMCyQUltqCgkyKmhILy8qNip8b1WKR6n9e/4VJjO2Cne1A5dpun0LLmFHamtLH0MoKEMfS33+YzZbKxYsXzeGZFEgJlk//hbPiMYyARYB0AFUuhIPAkh5T1qAUBMRKxRJglUIHDgdVYY4q/mlAc8pUjYiLVcy9TFSKCgpVjJ+KyIiKysiIisAAAAAEgFb/qwIzQbMAJQAngCqAK4AsgC5AMQAzwDeAPMA/wELARcBKAE3AUQBUAFfAAABIiY1NDY9ATQmIyIGHQEUBiMiJjU0PgE9AS4BNTQ2NxcOARUUFhcRFA4BFRQzMjY9ATQ2MzIWHQEUBhUUFjMyNjU0Jj8BPgE3FRQGFRQWMzI2NTQuATU0PgE3Mj4BNTQjIgYjIiYnLgInNx4EMzI+ATMyFhUUBgcOARUUFhUUDgEjIiY1NDY9AQYPAQYWFRQGJScmNTQ3FwYVFBcmNTQ2NxcGFBUUFwUnNx8BJzcXASImJyEOAQEnLgE1NDcXBhUUFycuATU0NxcGFRQBIhE0PgEzMhYXDgEHDgEBIic3FjMyNjUzFBYzMjcXBiMiJwYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYDIi4CNRAAITIEFhUUDgInMjYSNTQuASMiBhUUEhYFIiY1PgI1HgEVFAYBIiY1NDYzMhYVFAYlIiYnLgEnPgEzMh4BFRQFKlh5DgwQDw5uclRiHx8gKREQSAwNKh8fH2ZQQDowNDsOSDkoSB0LLD54UTMpIUdYBAQFCgc7cUkPEVMnK0UXH0xoSwhmgEsuKB4iOjYbHiCOdgYKCD5sRUFWMDQ/Iggcd/3PMgMHMQY3CgEBMQEKAV4yCDIzCDII/ttHYQUBUgdbAigxAQIKMgteMAECCzAL+t2TT4NOQEUMGiINHHQB1Ec+KjArFRs2GxUrMCo+RysgIAGIGCIiGBgiIv2DHCgoHBwoKOE0QUE0NUBAP3nQm1YBGAEAswEKlFWYy3eI2H9+5p3f6YHeAvVYfA8pH4GPT/4/HCgoHBwoKAEzSW8zGDEeDnM6eHgo/qxGPyk0G/QmHRwg7W1qRz4gOSsN90a6TDFZHyQWRilMsD7+9xsxLRg1PEvtQkpRQvQfMCkVICAcIXM85AwvLu0cOB4SGlhGDlNaFhVWYiYjOB4VJjgoN0YnCEQOPEhEKxwbJiZbfhEhTzs1fh5FbD05NSBNE24dELErcCU4VGsFDxQdGwoZFxQSGh4IEAgFBwwGHBk0BWsFa2sFawKnak1TZP4zBQgSCB0dDB4ZDBsFCBMHGSEMHhkMBBgB0TZeOiYfF2hTuND+9WAbSSgmJihJG2AoKP7AIhgYIiIYGCICTy8iIi8vIiIvoSgiISgoISIo/sBlt/SPAQQBHo3/qortsWNQlgEDopTaeO/jqP70mxB4Vwg+SBMLdF1EUAG/LyIiLy8iIi8+lq1RYhM1J1mqeugAAAAKAKD+3gmIBpoAPwBLAFkAZQBxAHsAhwDJAOIBBAAAASImLwEiJicVFAYjIiYnAy4BNTQ3LgE1ND4CMzIWFz4DMzIEHgEVFA4CHQEUBiMiJj0BNCYjIgYHERQGAT4BJy4BBw4BFx4BFyIuATU0NjMyHgEVFAYnMjY1NCYjIgYVFBYDIiY1NDYzMhYVFAYBIiY9ASUWFRQGASImNTQ2MzIWFRQGEzI2NRE+AzMyFh0BFDMyNj0BND4CNTQCJCMiDgIHLgEjIg4CFRQWFw4CFRQWFxMeATMyNjURHgEzEx4BASIuATU0NxcGFRQeATMyNjU0JzceARUUBgEiJjU0PgEzFSIOARUUFjMyNjU0JiMiBgcnPgEzMhYVFAYES0doAgggOx1sREReAg2IkY8WHD1hbTAjOxRCvdreY6oBH9R1KDQocltKXhkwUr+Abv2MEhMFBCERExMEBCKOQIJWe0lBgVZ7MxEaGhESGhqWHCoqHB0pKQO6PT4BFQZN/eocKiocHSkpDyw8J32Ngy1TRlg8QSg0KLf+ws1p6OC6OhsuHiBQSjAdKS5LK4+IDwErKCY6UHtKCwE1AT0+c0hhKDkzTiglMAtNCAZaA1U/T0x/TjhcNyEfGh1cQUFeFkIgglVmhkv+3kM40QQErjVBQTcBIlDukdesES4aNn5vRxwaKEY2HmW395JfpZeVUcFDT0lARzEXVyz+/DpJAu0EKxwaIwMDLBsbJGsxVDZAQTBVNkBBVCYcGyYmGxwmAUYxIiMwMCMiMfy9NSyLeEU0f2wC0jEiIzAwIyIx/KkhEgE4DDQ4J0VTRzkmHMFhm4+ZXa0BDpojPEkmJB46WWAnFDELLYCTTIXVRP6wERocCgENEAb+4RAeA91KdT9sOUYhPilRNEY7KiIXGTMXWHkB/FZEQ3FFTjBNLiIqIRcsNj87MElPZ084SAAACwDz/t4JNQaaAKAArwC8AMgA4gDyAP8BCwEXASQBRQAAASIuAScuAycuAyc3HgEXHgEXHgMXHgEzMjY/AR4CMzI2NTQmJx4BMzI2NTQuASceATMyNTQmJx4BMzI2NTQuAScDNjU0JzY1NCMiDgIHIg4CDwEOAQ8BJzc+AT8BPgMzPgIzMhYVFAcWFRQGBxMeARUUBiMqASceARUUBiMiJiceARUUBiMiJiceARUUBiMiJicHDgEBIi4BNTQ2MzIeARUUDgEnMjY1NCYjIgYVFB4BNyImNTQ2MzIWFRQGEyImJzceATMyNjcuATU0NjMyFx4BHwEOAgEuATU0PgEzMh4BFx4BFwcBIi4BNTQ2MzIeARUUASImNTQ2MzIWFRQGASImNTQ2MzIeARUUJyImNTQ2MzIeARUUBgMiJjU0PgI1NCYjIg4CIyImNTQ+AzMyFRQOAwXJHUNfSBxDSk4nD1xuVwuSGS8VKDwOJFNSShxHZRYTEgMSSo5tGBcRCxFNfSQcGRUfEC9KFBhyZ01QDhUMRmEr0QspGCooaG1dHnybb3RVIkl9LVAtbRxnQCJYgnybciqXpz84PRImAwW3ZoI3JwMFBD09MCINGgwOEz1CJEMpBQM+LCeiXAwHNfukLUssWk05Xzg0XyonRlAwKywYMCANFRQODhQU4H++FFUNfXYwYi4KDyodJx4JHRo9MZGk/usKCgwYEhQbFAYIHAcyBCgePikhExUwIv5vIC4uICAuLgJ5KlMdExQuIcI3RhwWGDsrFhIZIDtMOyYgKUhDQyMZKFeYwtlsM0FuiZT+3h5DOBYyNDMXCR4kIwwUBw8HDRcIFjY6NxY4SSIn3itHKjEcM2M4MTYkJyd/hC4VFg4psHkLCQ0HE0hLFwFCISQ+ICIaJzJWbTsSPH1sK11vCRBJFQVjUCtviEcYTotXOiwfIyY8DR8P/uQ+gjMoOgFQhDUeKgICOHkvUkoXFhomFDdSOS5kO1YCQ01/SmmESXxPR2w8UFRLVHBcQS5cPIQmGholJRoaJv67WFgNKkMRECJuKEZigCcyHUItRScCTgwyKRpEMykzEBMuB0P+Wh4tFhQkKzwaGAF8PisrPT0rKz7+kDAfEyElNBgS/CUiFyAjLxQMDAEHGRMVKCoyIBoiNEU0IiExamNPLyg9jopyRAALAG7+rAm6BswARABYAGEAbgB6AIgAoQDoAPQBUwFmAAAFIi4BNTQ+ATU0JjU0Njc0PgE/AT4DMzIeAxUUDgIHDgEHDgIjIiYnDgEjIiYnDgEHDgEVFDMyPgEzMhYVFAYBLgE1NDYzMhYXBy4CIyIVFBYXAS4BNTQ2Nx8BJyImNTQ+ATMyFhUUBicyNjU0JiMiBhUUFgEiJjU0Nj0BBQ4BFRQGASImNTQ+ATU0LgE1ND4BNz4BMzIWFQ8CEzI2NTQmIyIOASMiJjU0Njc+ATcfATcyNj0BMxQeATMyPgE3PgE3PgM1NC4CIyIOAg8BDgEVDgEVFB4BFRQOARUUFgEiJjU0NjMyFhUUBhMiJjU0NjcTJzcXAwYVFBYzMj4BNz4BNz4CNx4BMzI2Nx4CFx4BMzI+ATU0JicuATU0Njc0Aic3FhIVDgEVFBYXHgEVFA4BIyImJy4BJw4BIyImJw4BBw4BBw4CASIuATUuASc3HgEXMhYXHgEVFAIkTXtIHx4RGRN62Y15I0ZdiGQ7Z1Q9ISg5MgkNSVAgJzAwKkMXHnNaGk0aBCcoMBoJBxEWDTFEgv7YfngsKhdjLw8SPzsMFl1XAnxPRBMMbSzKOlAwSiU5PVI5HCcYFxZAJQLYMy4OARglJjP7Dz8cGBgJCT5QGhFsOlFcrtM8xkdTGRQUFhweGSIxPyZBEDFGNklYTR4yHhsgJiJDOg0FLDQnK0phNmF5TTsknbvVFBgJCB4fawGHGiYmGhomJn1WVxANgHBKfYsZLTAzNx4NCBsMFS0nCyNbSkRjKxQ2Mg0YIRUXQzQQERYwKSa+syDN1CItJxcPGkZnMTlGHQo5HR9QPjdJFxktFAgWCBI1WQVPNnFNHjYULhxCFz1CIRc3D1GKU0B6dTdx53YmQBxxqF8CAiYwGwpGb3tsH0laOzUkNFMkDkM5NDpXYRIPEjgyOzYLCAcIaEhlhQJjR3s8IzIbF0MLFQ8dHVMt/g9JaDEqei5QmLtROShPNmxBOlBFKRwgSEUjHCn8rR0nJVsh/QJerHM0LwQjOC4qbmsjGWhxJCZTPwcFEGFJDsfy++pVRSk4JCUpKS5lTC5YKlUPN5tw/o3GaDc/DBdNPBkqM0o5IHh9VwgZMSkCArGSFzMjRaSfQDV6fTphfQOKJxoaJiYaGif64VtPKlErAZ7MJOn+QVMzMi4RODkkZiQ+b1UWBwoDAhRheztrQCc5GRVBIi+KPUavUMIBHE9KW/6x4D+mTSx2MB9YJS9dPWp/Lo4wAgIEAytvQBxOIlFeKQJ9N1cuFTomRyxRFCk/KzUNEgAAGABQ/qwJ2AbMAHIAfgCKAJYAogCuALoA9wEDAQ8BGwEnATMBPwFLAVcBYwF3AYMBjwHzAf8CCwIYAAABLgE1ND4BMzIWFRQGFRQWMzI2NwcuAScuAScuAjU0PgEzMh4BFyM+ATMyFz4BMzIWFwcuASMiBgcuASMiDgEVFBYXBiMiJicmJy4BIyIGFRQeARceARceARceARcOAiMiJjU0NjU0JiMiDgEVFB4BMwMyNjU0JiMiBhUUFgM2NCcuAQcOARceAQE+AScuAQcOARceAQE+AScuAQcOARceAQE+AScuAQcOARceARcyNjU0JiMiBhUUFhciLgEnDgEjIi4BNTQ+ATMyFhUUBgcnPgE1NCYjIgYVFBYzMjY3EBIzMjY1NCYjIgYVIzQ2MzIeARUUDgEBFjY3NiYnJgYHBhYBFjY3NiYnJgYHBhYBPgEnLgEHDgEXHgEBFjY3NiYnJgYHBhYBMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYBMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYFJjU0PgEzMhYXBy4BIyIOARUUFwE+AScuAQcOARceAQMWNjc2JicmBgcGFgMiJic1HgEzMj4BNTQmIyIGBw4BIyImJzI2PQE0Njc+ATc+ATU0JiMiBgcOAhUOASM+ATU0Jic3HgEXNBI2Nz4BMzIeARUUBw4BBw4BFRQWFRQCBx4BMzI2Nz4BMzIWFRQOARMyNjU0JiMiBhUUFhMWNjc2JicmBgcGFhM3PgE1NCc3HgEVFAYBe42eQm9FKywMUU8bHA8kQ0kNBQ8LHFNBRGczX5VaAw4skmZZRoP1elaxXiRVpU998n0dUy1KazoiHRcTQyQLBhQYjlEoMD5RGxESBAUbJRlUQBRldC1kew8RCxowHV6iZTUVHR0VFB0dswwODCMLDAENDiQBzBEOCAclExAOBwgl/cQQEgUEGw4QEgQFGgNgDg0IByAPEAsHByD3FR0dFRQdHRteoWkKTKtVWIxRZpVEOUc+MiQiIyIeR2xjVVHSkpB5UWw3JSIrTl1KOF86VpD7VBAbAwMRDhAdAgIQBSEMHwkKBA0MIQgIBPyQDxEDAxoQEBIEBBoEtBQgBgcUFBIiBgcV+0AQFhYQEBUVGhEOHhEOER4GORUdHRUUHR3+ThoiLCEdITH++CIxMSIjLy/+zRVQiFMXMBcXEyQTPGI6DwSVERAJCCUREQ8JCCOLDSAKCwYODSAKCgapY/iRl/Rher9uEhINGRkrgUpalDXF1wEEBkY3DRMXF0t8LBkZCQGadBAOJh0iLE9HCx4bNqBkKF1DNyo5CAUCA7etEycVMl40Jj8dLjWA4nwQFhYQEBUVDA8aBAQREQ4cAgIPRwU9OL8ta3dmAYQo4IZgmltFPBlWGDw5AQENU+usR2ATNDszJiY6IXjAa1tjJUQ6FxRKERQ9ThoYR3lMNFEhCnZ8Q2Bymh4UEyQ4Mh51RlqRWz1mHggUDlVXJF4RFBNBYjJYhUr95RcQDxcXDxAXAfkLJA8OBggKJA8PCP5SCiIPDgMKCSEODwUCaAIgFBIXAgIfFBMX/PcFIxMUEwUFIxMTFacXEA8XFw8QFyluwn5LTUqBUlmGS0U5MVkWNRA0FyQcaFZFW4aQ/u7+5WhSQE48KU9lOmI7X51eBKkDGRMTHgMDGBMTH/v4BwsQESIHBw0QECAEYQMfFBIYAwMeFBMY/BgHDA4RHQgIDA4QIATTHBQUGxsUFBzVFw0XIBYPFiD6MBcQDxcXDxAXAk4lHCI1KBkkMwF9OykpOzoqKjoJODpUiVEHCEgGBDxmPy0o/IAKIw8OBAsKIg8NBQHhCA4QESQHCA0RESP9lzU3nzg3R3pMExcYHTQyWFX83LNndTRRnTALFg0NEHRwPaH8xnyCIz0ZL0APORgVAs4BBqtDhIscNCU2MiaBQSxkXCtsRsH+8UMICBs3KB5JP3S5awPCHBQUGxsUFBwBWQIXExQfAgIXEhQg/mBqMXpI2mtBPsl/ba4AAAgA6v6sCT4GzAA5AEIASwCFAIsAnwClAK8AAAEiLgIjIg4BIyIkAicuAjUuATU0Njc+ATMyFhc2MzIWFx4CFz4BMzIEEhUUDgEHDgEVFBYVFAYBJzQaATcXAgADJz4BNxcOAgEyNjU0JjU0Njc+ATU0AiQjIgc2NTQuASMuASMiBgcmIyIOARUUHgEXFB4BHwEWEgQzMj4BMzIeAgEmIzUyFwEkABE0NjcXDgEHJzYzMhIRFA4BASYnNxYXBSYjIgcnNjMyFwgWPV9VWTk5m7Rhwf7RxiZBUCQRHg0UFV0xMG0zMjhWozlhrHwZOnc8ywEoohEmIA8RJH75sD1/5pw86/75yS41iFtDQ2xYBo46SyQSER42jP77tI2aB3S2Yy6WUB43GmphNjENChUQIEk8DyS1AQ2nXq2bQ0RnV1P7KixDXUQEg/6Y/o5HTkI2Pw0Qdm/f6wQL/PZKWhJzVgJ3fmY0NRQ9PniN/qwxPzEtLcMBYOtYwvKgQ6NZRE0aHBkUEQo0LANBakAYGrH+ut49e6F2NlkhImFEW3MC51C5AYYBfq41/vr9twFaZKT7aSlQr8v6XUo2OmIrJGI/buhkyQEinF0UFz5sRCw0CAcoFz47LV9qQJrltFIj3/7ArC0tMUExBqoiUDL6iVYBlwEVeOyALlmkUAwv/qP+uS9HTwRSRBZOHVDfNA5OEDoAABcBT/6sCNkGzAAgACwAOABEAFAAXABoAHQAfgCKAJIAngCqALEAuQDFANEA2QD5AQUBEQEdAScAAAEiLgEjIAARNTQuAzU0PgEzMhIVERQWFwUeARUUDgEBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBNT4CNxcOAjUiJjU0NjMyFhUUBgEnPgE1MxQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATUyNjcXBgEnPgE1MxQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFyc+ATUzFAYXMjY1NCYnJS4BNRE0JiMiDgEVFB4DHQEQACEyHgE3IiY1NDYzMhYVFAYBIiY1NDYzMhYVFAY3JzY1NCYnNx4BFRQXJzY1NCc3FhUUB7FJhHc3/gP+AzBGRzBquXXI0VVnAie0wlGH+w8gLi4gIC4utiAuLiAgLi4BhCAuLiAgLi797CIsLiAgLi4DKCAuLiAgLi7+lhMdHRMUHBz95CAuLiAgLi4BBihmYiIuKHF2Ex0dExQcHAEZJ0dEPFABviAuLiAgLi7+oBMdHRMUHBz9aWWbRiKWAkUwKCw8M/0cEx0dExQcHANFEx0dExQcHGwwKCw8M1xXgZ+b/dmCdqSlYJRUMEdGMAHNAd1Cgn1dEx0dExQcHPr0FiEhFhYgIO45BmVeG213TzA1PTRF/q09PQHlAd7FDhQcMlVDZptX/vv6/pVwcBqKLb6GSXVFAQsuICAuLiAgLvouICAuLiAgLv5mLiAgLi4gIC4CpS4gIC4uICAu/QsuICAuLiAgLgH4HRMUHBwUEx0CCy4gIC4uICAu/nE8AixIKyYxUjKuHRMUHBwUEx3+Pi8+ilJepP47LiAgLi4gIC4BiB0TFBwcFBMdAmU8KzAyZf1HJDufWGCzAwkdExQcHBQTHfyuHRMUHBwUEx1RJDugWWG1zmdMapIniiCdiwFr2tVCd082PiIbIyDZ/kT+ST09eR0TFBwcFBMdBVkhFhYgIBYWIdASFRIyYSU2K3xHG3skREtgWR5ob2AADABu/qwJugbMACkANQBBAE0AVQBiAG4AhQCaAKUAsgC+AAAFIAEOASMiJicOASMiLgE1ND4BMzIeARc2MzIWFz4BMzIeARIVFAYHDgElJz4BNxM3FwcDDgEXJz4BNxM3FwcDDgEFLgEnEwMfAQMeARcBJjU0NjMyFwEuAS8BAic3FhMeARcBMjY1NCYjIgYVFBYTPgE1NC4BJw4BIyImNTQ2MzIeARUUBwUnPgE1NCYnDgEjIiY1NDYzMhYVFAE2ADcuAScGAAcWBT4CNy4BJw4BBx4BAzI2NTQmIyIGFRQWCEX+N/7zQJk4ZLREH1Qsi+CDe9B/dcKBEjQzQHIpR+yFh/nFchwWUaf44ho2XStcqUGkYjJurCo0Wic9ZENbQypmAfMkNiALCVAJCRozH/vWQjsnKBwFHjdEGRU7nUmbPh1HM/u3Lz4xKi4/MQMDAixNMwQ1IxwkTDpSe0UEASM+HSIqJAswHR0oOC5fdgMQtAD/Pg0gEjj+/8IfASxYkHMqBhILSd2pGza2WVFjR0ZkUkkBohkeW1ELDHC/d3zJeGCobRM8Nm+Agdz+6JdYtDsVFg1MExsKAUKHMoP+qAoe5UQfMxIBIvAu2v67DjlxOz8XASoBBAf9/vsZQTIFCB4+LEQp+lg3OQwcASPPJNL+3hE9NARWRzUsMkc1KzMBjA4gEFWRXQUeLCMcKTVsunUiHHw1L4BARmkWExklHCIooYOg+255AU7EEyIQzf6oexlxPYiZVB04GaX5agkLAugmKDFCQjEoJgAAEgCm/qwJggbMAB8AJwAuADUAQABNAFYAXgBuAH4AigCTAJ8AqQCwAMIA6wDuAAAFIiYnBiMiJic3HgEzMjceATMyPgE1NCYnNx4BFRQGBAUnPgE3Fw4BJSc+ATcXBgEnPgE3FwYBIic3FjMyNjcXBgEnNjU0Jic3HgEVFAYBLgE1NDYzMhcBJz8CFhIVJSIuATU0EjYzMh4BFRQCBicyPgE1NC4BIyIOARUUHgETIiY1NDYzMhYVFAYBJgInNx4BEhUBLgMnNx4DHwE0LgEnNx4CFQECJzcWEhUBMiQ+AjU0LgIjIg4CAg8BET4DNTQmIyIOARcTJwMmPgEzMh4BFRQGByc+ATMyHgIVFAYMAQUnFwaTcsBBT1GN1ilMIK1zWlY3u3Gj9ImBezeFkKL+5/slH3ufKkUxtv68BHK6UhywAU5CNkIPTx79Hic5FDIZFSggJEkDmVADBwhQCAcB+74pNUg2JyACZamWgEhUY/1zjNl7f+aajuyNjvigh9R7dMZ9f8NtZLSqQl5eQkFeXgMAB3FXtDpeOPt3LklSdVoIbIpgUTPdKm9pDoKMNwPiE+mqfXz8b44BE/K5aShASyQRNV+c8K0Obr+SUnpfXKNlAhBSDgN5yHRRhk8fIwFGYCsxZ1g3qP7d/ogDbV3yZTYuGI55GV9xIjQ6ccuGf60nOi3Nk6DuhGVIMHRHLVGDulAHJB9KRP6IKlanVQ62AmIQTAwOEUMs/NwGMjQ9gkMMSIdAHDUEYQZHMzhNHvwM3j5syKb+vHOwguueowECl4ftmaD+/phQgN6Mf8l1fd2ShchuAY5eQkFeXkFCXv0fpAFdizhQ6v7+cwTnfJNLHwhQCihZooMzr8BYEk8YcN6/+1QByshOfP7KvgH+N2OEmlMyeGxFIl6w/ubOnQELdeLJnjAqQUVuPf5CRQF1VJNbME8uHEVBCk9HT4CURnjZqGFI6hcAAAATAO3+rAk7BswAHwAnAC8AOwBHAFMAWwBjAG8AfwCLAJcAtwDDAMkA1QDmAO4A9gAABSIkJgI1NDcXBhUUEh4BMzIkEjU0AiYnNx4BEhUUAgQFJzcnNxcHFwEnNxEXByMRASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGASc3JzcXBxcBJgIDNxoBFxMiJjU0NjMyFhUUBgEuBDU0NxcUHgMVBzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASYkIz4BNy4BNTQ+Ajc+ATMyFhceARc2MzIWFw4CAzI2NTQmIyIGFRQWAScDNxMXASImNTQ2MzIWFRQGATQ+AjU0JzceARUUDgIVFyc3JzcXBxcBJwcnNxM3FwVKnf7wzXNaSFJnt/OMswEPmXPQjhye6H+u/sz8ODqospw3bLP97SHj0TNOApcvQj4tMERB/gwlMzMlJjQ0ATE3T083N05O/kz2E2QsihHWAxZLtm1HbrpKSis5QissOEH8fQZDXFk8AkM+W1s+CR0sGxUcLx0CwDJHRzIyR0f+eoX+4IwIODYEAy5FRhgUPyIzTBkZNRYLFDJuHDKFfUsZIiYbGSImBHzmdUdsyf2lKzsvIio8MP12JzMnDzIRDyYxJvhAjGdhNDRhAaCuTzufurwV8HrZASCmy7kjqreW/v3DbaQBJMChARfPNEs65v7Lsdb+uLpkN77qnztr6AEuS14BmgNN/oL+4UYwLkVCMDNEAeY5Kyk8PCkrOY1PNzdOTjc3TwHEmuo9RFjsgvvw+wIHAQ0m/vH99P4BS0YvLz1HLy49A/Y0OCAfMS4FDA8YHx0qQjZyJxkUGCgZExj9rkcyMkdHMjJHATYQDC5WHCZLEBxCPy0HBgUJCAc4JAMhGiN8jgFJHBUVHhwUFh77nHcBohH+iGoCgEEnIzNBKyYsAg09W0c7HQ8QKxUoFCVFSE8vxDC+wlQ6L7j98/01QWP+8TFNAAAGAEj/dAngBgQARABbAGcAbQB3AH8AAAUiLgEnDgEjICQnNxYEISAANyYAJCMiBAAHJzYSJDc+AjcWCAEXPgMzMhUUDgEHHgEVFCMiLgInDgIHHgEVFAYBIiY1NDY3LgI1NDYzMh4CFRQOAgEiJjU0NjMyFhUUBhMnNyc3FwEiLgE1Mh4BFwYBJiQlNQwBFwaMOn1uJS1gNP6T/hhzSnQBvQFNAVgB5nWH/tT+mOHF/rL+/VdNUfMBOLkgVFklnQFQAUCEJHB2XxQNRXFBbIQNGWR0Zx0ygpJJODtK+bwRHUNtWmQpGRITVV5CLUNGAbggLS0gIC0tlUB3ClAMAgJgrm9kzLNATgIz5P4C/uwBGgIL6YwOGREECNDGHbOwARXl6AEojon+9sMYuwEVpRJDfF8VP/7r/n3lNH1ySRZSrZEqRb5xJD9iay1Qi2ohIDodHBgBpxQSFS4vIi0kEw4aJzg3EBE1NiQBJS0gIC0tIB8u/uoxo4oGp/7WUIpWQ3hQJQECRV0EUARfRwAHAOD/EAlIBmgARABQAF0AZwC3AMMAzgAABSIsAS4BJzcuATU0Nj8BEgAkITIeARUUDgMVFB4BFRQGBz4BNz4BMzIeARUUDgEjIiYnLgEjHgEVFAYjIiYnFhUUBgEyNjU0JiMiBhUUFhciJgI1Ex4CFxQOAQUnNjUQAzcAERQTJyY2Fx4CMzI2NTQmJx4CFx4BMzI+AjU0LgIjIgYHDgIjIic+ATU0LgE1ND4BNzY1NCcuASMgBAADBw4BFRQXHgEVFAYHHgQ3JzYRNAInNxYSFRAXJxI1NCc3FhEUAgVXhv7f/uzrpSAvHh0zPDVqAZ0CSgFrWa1yQ2RjQykpAwYdNBMcSig1SCUPMzUfOxsVKBEOGPPZNHlBDhz9YRwnJxwcJyc2O1w1zgkgNScnPQENNDjCPwEJoScFDBEjZ3U2uMQcI0RaOhQRGw4FDw8KEhscCwsxGRYxPiwjIwsKKSlHe04VDCF6Wf6k/dT+e2Q9EjoJFR0XHSqi1fH0ETKKXldHfohgNHtmP5xj8Ed8obddIBQmGxk1JY0BGQGGzBEtKh8cDA8lJhVmiEgWKxUWWSk7XYrWcojbfzshGikpYyrP6gEEFRYWHgLUJxwcJyccHCerpgEfswEToPrOYCVRQOcMzrgBYAEtMP7P/rzo/g1PCwwCAgUDva4vpVgGMD4aFRw0ZZRfSotuQUkxK1I0DyhDG0x+Zic2QSEHAgUFAQUIwf6Q/viiCSYOCQgQIg4UHw9OmYdoO+YV1wEzsAFpnyWT/p+z/ql/DAEw796yML/++pH+3gAAAAAVAG7+rAm6BswAMQA0ADcAOgA9AE0AUwBZAFwAdQB7AIMAjwCbAJ4ApACpAK4AugDIANYAAAUiJCYCNTQ2NwMFPgE3Exc+ATcbATIWFzcTFhc3Ax4BFzceARU3EwMnHgEVFAcnDgEEJTcXGwEXASU3AQMhASImNTQ3JjU0NjMyFhUUBgETNh4BFyU3HgIVASc3BTIkPgE1JiQnNCYnIg4BBwYEBwYVFB4BBCUnPgIXIQM+ATMyFhcBMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYBJTcvATQ+ATMDNQceAQE3Bx4BATI1NC4BIyIVFB4BJzI+ATU0JiMiDgEVFBYnMj4CNTQjIg4CFRQEjrf+v/WKRDFVARoTJRQX4BMpFHqDFCsTxCMvJdEiFzISpSAZuaupkgsKTmtN+P66++iIiUIY5/3p/vvKA1ibAQb8NiU7JhM1IixQTwHeHCFSQAX+IZIfLBgDSMa5/iOoASTdfHz+0acrH0aFXxCf/sGVA33dASUCI9QFQFMg/q9yEkEjI0AT/co6Sko6OkpKOh0mJh0dJycE2f8AioTmL0Ia04UZQAEzSdIUQgJnLktsMihJamtDe04sJkN7Ti0mHFRSOA4bUlI4SHjUARafd9BFARtbDhoNATHGBQkEARX+9gUE0/7qDxqO/vYWNhrCKXFKZP6//s9WGi8XYmNerex5nsqP/ooBSGYBuCyr/CABNAM7NCUnGBobISI2Nk5W/aUBDAwcOSLVwgQ7Sx79GJdXTmm6941phRtIhBhMZScQZFQfIZD8vWvCoSI5HAwBDhcWFhUBH0MyMkNDMjJDOiIZGiEhGhki/BFMnNFYID4qAem6fRkf/szgYyc//v4PECYcCw8pHpIaJREICxolEQgLZR8vMBEHIC8xEQUAAAYAgv7eCaYGrgCaAK8AuwDHAPYBCAAAASImJy4BNSUWFRQGIyIuATU0NjcuATU0PgEzMgQfAR4BMzIkPgE1NC4BJCMgBA8BEgAhMgQWEhUUDgEEIyImLwEuASMiDgEVFBYXDgEVFBYzMjY1NCYnBRQWFx4BMzI2NTQmJz4CNx4BMzI2NTQmJy4BNT4DNTQmIyIGByc+ATMyFhUUBgceAhUUBiMiJicOAQceARUUBgEiLgE1NDYzMh4BMzI2NzYWBw4CJyImNTQ2MzIWFRQGISImNTQ2MzIWFRQGBSYCJy4BJw4BByc+ATcuASc3HgMXPgE3PgE3Fw4BBx4BFwcuAicOAQcWEhcHIiYnNx4BMzI+AjcXDgMFk0dSIxUO/p8Dbn1BckUkEY2ZkPuhxgEQPScXZ2fCAQ6nTHPP/uem/vD+jmthdwGjATSpATHuiV/B/tfKeZQjKDfnqYrXe6WaKyNfSV0+AwQCAgcGFzc3YV0RFCB4gi4dRD1HVw0JDQ4xTzkeBQgbSSMmLF8lJzN0ZAMZFohmQ1MZL3wvDQuO/GYYRzcNBw00NQwSLDcRGQkPOTy3JDMzJCMzMwExJDMzJCMzMwJZEDUaQbOSHCUSVBw0CworFEUYP2qviGW6TwwWBFEGEg5AmFFDPmRbMliLUBQ0IFNKjDsnKHxGcd3DkiVDKKTY8v7eJCkZf1UWFhJiXSZLNzZjJVD+mZnyjNfJgUxubqatQIbttWfo8gkBGAEZaML+8KhUyrd1fXOBs7V2zYST7URXYSknMTI9HkAfI1V3LxwbRjYrdlQJNEcmNDs4KSBgKDtjIjFZSzsTBQYVE0YYGjonNqBnJnl8LU9iMCEfPRE+YiRccAMTLDgTCA0oKBooDBkPGC0dzjspKTs7KSk7OykpOzspKTtNpAEiXhoqHB1HKickWSUUNRM4KjksKhomUicYUiMoIj4da99gWmiYfDwcOzaP/vCHMhwfRRkZRn2oYSdvt4VIAAAHAM7+rAlaBswAPABRAGMAdQCBAJ0AqQAAAScyPgE1NCYnLgEnPgE1NC4BIyIGAhUOAQcOARUUFjMVIiY1NDY3PgE3NBIkMzIEEhUUBgceARceARUUBgEiJicuATU0NjMyFx4BFxYXFhUUBhcyJD4BNycHJQUlBycHFhIWBBciJCYCNTcXNwUlBTcXFAIGBAEiJjU0NjMyFhUUBhciJi8BLgEnPgE/AT4BMzIWHwEeARcOAQ8BDgElIiY1NDYzMhYVFAYIiEgyXDwoL0CsXA4Ok/+jrPiFgs1NTCNfXnKbQlZHvnKfARy6uAEkqQoLR6EyQD50+8ozdjdJZhMPGAwXSy5bZSEXdKABFdSACnmS/vv+6P7y+qJ/BoLhASmsw/609onYnPcBDwEbAQCXxoXs/sT+fRwoKBwcKCi/ChUTDAkVDBcjDxgZHQcLFxMMCBUNFyURFxkbAUYcIy0eHCMtAaNGIzIWDR4cJ4V5Gl82le6MmP7nw5WhKyspERomTkRIK0wxKZCCzQExqZ7+7q0rUyVVeR8nNy07Yv4SMiYzgjcNEh0xWiNFDgUeDxPPZ7r4kV5ruKarpHlOmv71ynJOg+oBOLWBdaGtp7JuoKj+39p6BhI0JCQ0NCQkNP8cHxUPIRILEgoPDwsZIhUOIBEKFAsODw2RMh4lOzIeJTsAAAcAw/6sCWUGzAAXACQAMQA6AEYAVgBqAAAlIiQCNTQuATU0EiQzMgQXARYUFRQCDAEBIiY1NDY/ATUzFRQGFyImNTQ/ARE3ERQOAQEuAjU0PgE3BSImNTQ2MzIWFRQGASImJzceATMyNjclNwUGBAUyLAESNwEmJCMiABUUHgEVFBIEBT///oDVFRaMAP+uzgEoTwMmAaj+2f6B/fUuMRocjV9yvSslO4tfPmH8nHmAMDCAeQE+IjExIiIwMAKmZOp4KHHWV4LIPf4dHAIwQP77/qLDAVwBD6AH/OtC/vu/4v75FhW/AVxhzgFz9ylDUT6tAP+MzsX+wAkLCLX+vviN/tcgHhsbBBLM9Sg5jBgZLg8kAUIM/okbMB4FQjE5Iw8PIzkxtTEiIjAwIiIx/TpLSUVERZCAsEvMu9T6fNoBHJ8BOrzE/vnhME1NMeH+sbgAAAAHAMP+rAllBswAUwBgAG0AfwCLAJkApQAAJSIuATU0Njc+ATcuATU0PgMzMh4DFRQGBx4BFx4BFRQOASMgAzceATMyNjU0JicuASc2NTQuAyMiDgMVFBcOAQcOARUUFjMyNjcXAhMiJjU0Nj8BNTMVFAYhIiY9ATMVFx4BFRQGJSIkJic3HgIzMj4BNxcOAQQBIiY1NDYzMhYVFAYFIi4BNTQ2MzIWFRQOASUiJjU0NjMyFhUUBgHGQ3ZKbUpJlCsEAypemuCXl+CaXioDBCuUSUptSnZD/sGfSUfFiUtoQFF8kSYMJFGIxYeHxYhRJAwmkH1RQGhLicVHSZ+xLTscI4VudQJnVXVuhSMcO/51mf7s1TtJNL/4iYr3vzRJOtb+7P4/Hy0tHx8sLAEJGEs6Yzo6YzpKAQ8fLCwfICws+DJZOjhtOzuKVxMuGUq5upxgYJy6uUoZLhNXijs7bTg6WTIBZCGgl0cwFEZBZZheGkZGp6SIUlKIpKdGRhpemWRBRhQwR5egIf6c/bQhHRklBBCn2iU4OCXapxAEJRkdIeRtxoQgdrFiYrF2IITGbQSxNiYmNTUmJjbdNkYXJEBAJBdGNt02JiY1NSYmNgAAAAYAWP6sCdAGzAAuAEAAUgBiAG4ApQAAJSIkJy4BJwMuATU0PgEzMh4BHwEeATMyNjcgBBcBHgEVFAYHDgEPAQ4BIyInDgEDIiY1NDc+ATU0Jic3HgEVFAYXIjU0PgI1NC4BJzcTFg4CASIuATU0PgIzMh4BFRQGJSImNTQ2MzIWFRQGATI2Ny4BJzceAjMyNj8BPgE3PgE1NC4BJwEuASQnDgEjIiYvAS4CIyIOARUUFhcTHgEXFgQEA9/+oE4nExRCCwqI44pywZQuJixxNzd1XgElAX1v/X0vJy0tGkg3Hy92Sjs4S5f3KyZAUEYPElgRE3KBND9RPwgNCF0iAzRSWPyfKFA2L0VCExw8KloBayIwMCIiMDABLTFjMWXFYURfvrRQOFYlNjo0FyoZDzo/ApIlt/8Ak1uMUlGXNCYpfqNjdr9wCQpCERciRAE3dbuvWLFPAQ4vTyGO3H5YoW5bZ2GFsaGr/kUXMyYrNxAxMQYkNzQRFh7+yBIWKAcJOC4WRDoQLmojVVqRJRYwO0wwEktcKRv+zRdOUDcFKhUgDxI/QS5DYSwWHpc2JyY2NiYnNvxYDgw+36MondVtKCg8AiU3ChITCx0uJAHCRGg9AqmNenxbY4xKaLh4HEUs/vJDuU6ZoQAABwJd/qwHywbMACsAPwBaAIkAngC0AMAAAAUiLgEnDgEjIi4BNTQ+Ajc0Nj8CJzYzMhIdARYSER4BFRQGIyInDgMFIiY1BiMiNQYjIjU0Nj8BFw4CBSI1NDcOASMiNTQ3DgEjIjU0Nj8CFhUUDgEnMj4BNy4CJw4BIyIuAjU0PgE3FjMyNjU0JiMiBhUUFhcGIyImJw4BFRQSHgEBIiYjIgYjIiY1ND4CMzIWFRQOAScyNjU0JiMiDgEHBhY3PgEzMhYXHgEFMjY1NCYjIgYVFBYFZ23TpysHEw4rOx0ZMUctBQV7PWdmyszjhn4TEiIaJBoMYI2i/rsMFSQkJRMOHx8XnJ0PPUABUBIDEDQRGQcGGgwaGBNwyAQ9UXA9gW4eJkQwCgQhFCJGOyUUIBAmOEFZWUFAWwEBY3E9Uzw9Olum4f7IJ10mFT0UIjVAZnIzQWgrQSEWJzEoIVlVHQcGCxcuCRs7FRwfATUdKiodHyoqpF+kZSUbbrduZ9rKnSkjQB4We0SO/uP1K8/91f52ESUNFhkZBBwfF4cTEBkpBhQOHAxSNB9GMCkRBwcKDQ8JCgIDEAoaDlQfCBMiWkP9ERgMJF1gJyMtZaK9WECUfRoocE9ObnNQBQoFRCYvZ/SSp/7h1ngFkSMEIyAhTEMqWEAmTDJQLhwkLh8uGQYRAQIBDgcJBRoxIiEwLyIiMQAACgA5/t4J7waaAA8AHQAqADYAfACJAJMAowCvAPUAAAEgABE0GgEkMzIEGgEVEAABIiYnNx4BMzI2NxcOAQMyNTQmJy4BIyIVFBYBIiY1NDYzMhYVFAYFLgEjIgYjIi4DIyIGIyImNTQ2NTQjIgYjIjU0PgI1NCY1ND4BMzIWMzI1NCY1NDYzMh4CFQUiLgEjIg4BFRQXDgEBMjY1NCMiBgcOARUUByImNRAzMhEUBgMgABE0CgEkIyIECgEVEAABIiY1NDYzMhYVFAYFNCYnNjU0LgEjIg4BIyU0PgIzMhYVFAYVFDMyNjMyHgEVFAYVFB4CFRQjIiYjIhUUFhUUBiMiJiMiDgMjIiYjIgYFFP5E/iiO/AFMvr4BTPyO/ij+RDpsLCEdXDg4XRwhK2xwFCERFhUICkP+rjFGRjExRUX+FwocDh4ZFxohFBAUEA0YCxQdLhYLFAoNM0IzDENmMzVeGRcQQTcuaFs5/u4gIyYlTXM+hxwWA4wYQwoIFRYRISFqcdvbcGsBnQGoguf+0a2t/tHnggGpAzsxRUUxMkVFAYYWHIc+ck4lJiIh/u45W2guOEAQFxleNTRlQwwzQjMNChQLFi4dFAsYDRAUEBQhGhYaHg0d/t4BigFy7AGcATmwsP7H/mTs/o7+dgElERVCChAQCkIVEQESDQYXCg4SDBM1AQRZPj5ZWT4+WUwnNhs4UlI4CkYySmgZHAUaNFZEMRAIFw0aMSAXEgslDBUbIDI2F6YJCU18R557UKH+yDUTDBIOChcGDV6EfAGD/n18hP51AV8BT9sBgAEjpaX+3f6A2/6x/qEC7Vk+PllZPj5ZTIChUHueR3xNCQmmFzYyIBsVDCULEhcgMRoNFwgQMURWNBoFHBloSjJGCjhSUjgbNgAAAAAVAV7+rAjKBswAaAB7AJYAqAC4ANAA4QDrAPABEQEeASoBQwFjAXQBggGSAaEBqgG6AcYAACUiJicGIyIuATU0NyY1NDY3LgE1ND4BMzIWHwEuAiMiBhUUFhcOARUUFhcOARUUFjMyNjceATMyNjU0Jic3HgEzMjY1NCc2NTQuASMiBgcnPgEzMh4BFRQHFhUUDgEjIiYnBxYUFRQGASImNTQ2NxcGFRQWMzI2NTMUBiciJjU0NjcXDgEVFBYzMjY1NCYnNR4BFRQOAQUiJjU0NjcXBhUUMzI2NxcOAQEiJi8BNxcWMzI/ARcHDgEFIiY1NDY3FwYVFBYzMjY1NC8BHgEVFAYnIiYvATcXFjMyNj8BFwcOAQEiJjU0PwEXBwYvATcUBgEuAScuAScuATU0NjMyPgE3Fw4CIyIGFRQWFx4BFRQHASI1MxQWMzI2NTMUBgEiJjU0NjMyFhUUBgEiJjU0NxcOARUUFjMyNjU0Ji8BHgEVFAYBLgQnFx4DFz4BNy4DJzceAzMyNxQOAQEiJi8BNxcWMzI2LwE3FxYGAS4EJxceBBcBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIgYVFB4BASc+ATUXFA4BNyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgUgNWIpT3s+dUwQOBgXFxhGdEMrUCpYOEdFNkxkIhkdHiQfDwxhTkNsHihgNVhsBARlFjYiPlwMDT5pQDtpI0EsilJXjVMKCT9qQRw2FxMBo/4RNDIJB0AMFBAiIERHIVVzSkUDKCRHOzlGHCBEPzBZAQY9IwYEQwkkJyIKQw5L/nslNAUbRxsCFRoBFUgXAzgBOlRvPzsDN0k0NUtECEROcVslMAUaRxoCEQ4NARhHGQM4/GQXIhVCXkgeGBl+JgE9AQcHDjUmr59RXD15Wg1IFnWVRTwrgpROagED82BEDw0XE0Q1+4IUHh4UFB4eBDVVcTQ6FRNINTNGOzIlYHhp/K47QiQdKilbLSQcP0lEZgk5Nh4oKjgoLCQ3MgsMXpQCgBAnGmQ9aQgHCQcCOkY9ETX9r0hMJRkmKUkmIhYgRUP+0FuWWVmWW1uWWlqWW0VyRERxRmmRQ3IDeU8jJGIbKXVCbkFBbkJDbUFBbUNDXl5DQ15eoSklQzFVNSEgM0MdKRcULR45Uy0UF3kjJA04NRw4CQw4Fxk/Cw4kFDBJLiUtMV9LEhsQZR0bf1suKC4jQGk/PDUuQlFVjVYmKyguUodREg4VCBILc4f+CzMoHScTFh0aExI1OVNbdG1UOmUIPwtAHTBMSTAcOhhCE181MVw6c0EWDScWDSQOIjFBC1hPAT0iIa8Lpg8OtQjEGiXKb1U5VRE8LDozSEc0RCxBDV5BU3PKIiGtC6UOBQa4CcMaJQOuHRYbFkNBSB7+hA1CSf7kCBIHDhAGHJCCNS4EBwM2DQ0EGCNPYhgNNzMKBfxdljYhJj5WTQSCHhQUHh4UFB777GpTUEw3GjcXNz1BNyxIFD8GdVZHbQKeLnqGgm4kIS+Ei3kkFGguGUdYYTIoK2pfPgJPjFj+MQ8igy2KCwwGih2RKEwCRQpKZ3BiHgkoXlxRNwkBWkBtQkNsQEBsQ0JtQE4uSikqSi1hQCpKLf7XTg5CNiIfRz1ZQW1CQm1BQW1CQm1BUF5CQl5eQkJeAAAABwCq/qwJfgbMAH8AlgClALkBOwFeAYYAAAEiJjU0PgE/ATYuAScOASMgABE1LgEnDgEjIi4BNTQ2PwE+Ajc+ATMyFhcWFzYzMhYVFAYHDgEHDgEVFBYXPgE3PgMzMh4CFx4BFRQeARUUBiMiJiceAgcOAgcOASMiJjU0PgE/ATYuAScOAQcVFBYVFAYPAQYWFRQGJSImNTQ2PwE2LgEnFx4BFA8BBhYHDgEBLgE1NDMyFhc2MzIVFAYBIjU0Njc+AjU0Jic3HgEPAQ4BBTI2NTQmPwE+ATU0Jj0BMzI2Nx4CDwEOAhUUFjMyNjc+AzU0Jic3HgIzMjU0LgE1NC4BJy4CIyIOAQcOAgcuATU0Njc+AjU+ATU0JiMiByYnLgEjIgYHDgEHDgEPAQ4BFRQWMzI3HgEXFRAWMzI2Nx4CDwEOARUUFgEiNTQ2NyInDgEjIjU0NjcmJwYjIjU0NjcmNTQzMhUUBw4BJSImJy4BIyIGBw4BIyI1NDY1NCYjIg4BIz8BHwEiLgEjIgYVFBYVFAVqTFkYHAUyBQQOChpFQ/79/vouORkVODI2WjWIZJUJQmxFDzUiJzQJIiMXFDRIKyYEOiwFBSUrDmVGHEJYdlBLcFhLJYmDKSkvMCxWHQoTDQEBFRsMGVJON0kgIgMkBRIgEjeXUwoJDRoHAk7+UzRDOAYsAwQLB8cHCAZKBAEHBTT9Bx85Dgs2EzoSEjoFQVYcCwYSDg4MoxEUBS8QLf6HJjADBSILBgklZcdPHC8bBSgFIR0oGR0vCQcWFQ8kPEYYTE8aGiUlMnFfKFpwS1F2UhwyVjYEaHYLCh4qFykoJiMaHxgxAx4UEyULOVQnHCcUlUtlSDc6TCFTS9fiNHosExkJCDUEKir91A4eBwsGCycOEScLBgYeGxUkFQU8WhsHIwPTHBsHBBgTExkEBBMaLxINCxgoIA1V66krDhkhGw0PCf6sLygbKSUU1RVERhcEBgEnASWHEh0SCRA7YzxdmxUfAjo/CSMjKyYMHgZNOilKHFiWLxgoFzw+CUqIKZvTfjc4hOKqIvjoK25kHBsmNCMkWEsTEWJrIEY2NCYiMiYPmhNGTBoTGAInGUkUDiwvYBklET04Ph4XGi0WqQtQbzcFPnlXDrsMKw8LDwXqCDgVDx0RFxETIfpWLBg0DwhARg8SXTYkSWwRukIrOxgSGCMTeygbDSBDEnYcHDB1YhWvFxkVEhAZGxYRR1FACjvBsiU6b0gfDU1gJ5S9axfK72pp47gPV3U7Al55I0ElFFFxRBI0Gh0hDisNGiolHAYjIxkdBR8QbkE7TyMeLRTD/v35CQcpbmgh4BEiEhEUBesLChwPAhAaDwkQDQMEGQ4OBBMKBRYlEREfLQ8mMCIaHicpITEVKhELECkq2Th3pDY1FA8TLxcxAAAACQCq/qwJfgbMAIIAmQC0AMMA1wFaAX0BjgG5AAABIiY1ND4BPwE2LgEnDgEjIAARNS4BJw4BIyImNTQ2PwI+ATMyFhcWFzYzMhYVFAYHDgEHDgEVFBYXPgE3LgE1ND4BMzIWFz4BMzIWEhceARUUHgEVFAYjIiYnHgIHDgIHDgEjIiY1ND4BPwE2LgEnDgEHFRQWFRQGDwEGFhUUBiUiJjU0Nj8BNi4BJxceARQPAQYWBw4BAyImJyIuATUuATU0PgE1NCY1NxcTHwEFFA4BAS4BNTQzMhYXNjMyFRQGASI1NDY3PgI1NCYnNx4BDwEOAQUyNjU0Jj8BPgE1NCY9ATMyNjceAg8BDgIVFBYzMjY3PgM1NCYnNx4CMzI1NC4BNTQuASc0LgEjIgYHJy4BIyIOARUUFhcOAQcuATU0Njc+ATU+ATU0JiMiBy4BIwUOAQ8BDgEVFBYzMjceARcVEBYzMjY3HgIPAQ4BFRQWASI1NDY3IicOASMiNTQ2NyYnBiMiNTQ2NyY1NDMyFRQHDgEnIiY1BiMiJjU0NjMyFhcOAQEiLgIjIg4BIyIuAiMiDgEjEzcXNx8BIi4BIyIGFRQGIyIuASMiDgIFakxZGBwFMgUEDgoaRUP+/f76LjkZFTgyUnOAbJX8DzUiJzQJIiMXFDRIKyYEOiwFBSUrDD80BwdGeUw1WyIfWzVSe0kGYmkpKS8wLFYdChMNAQEVGwwZUk43SSAiAyQFEiASN5dTCgkNGgcCTv5TNEM4BiwDBAsHxwcIBkoEAQcFNBkxZC5Ik2JNOjU1JB2iDWX4AQ5EcPzoHzkOCzYTOhISOgU3VhwLBhIODgyjERQFLxAt/ocmMAMFIgsGCSVlx08cLxsFKAUhHSgZHS8JBxYVDyQ8RxhMThoaJSUrWkY9XjEmSBZRHkklKlc6DQZCTwVodgsKLDMpKCYjIR8ILyb+7xwnFJVTXUg3OkwhU0vX4jR6LBMZCQg1BCoq/dQOHgcLBgsnDhEnCwYGHhsVJBUFPFobByOsKC8WFyU2fWRinx9MmQPnHRoPFxoYExUcFxMJEhUZIyAWXbOahcMvFRwcFQ4QCxIaHSQkGREJFv6sLygbKSUU1RVERhcEBgEnASWHEh0SCBGAWl2aFh+EIyMrJgweBk06KUocWJYvGCgXPD4JP1clKEkjgtiCSjs2SpP+9bZI7ckrbmQcGyY0IyRYSxMRYmsgRjY0JiIyJg+aE0ZMGhMYAicZSRQOLC9gGSURPTg+HhcaLRapC1BvNwU+eVcOuwwrDwsPAZYjJy11bTRuMjtnRAUQYjYMVP6T1nYTKk8zBFQIOBUPHREXERMh+lYsGDQPCEBGDxJdNiRJbBG6Qis7GBIYIxN7KBsNIEMSdhwcMHViFa8XGRUSEBkbFhFHUUAKO8GyIzluSB8NTWAnhLJ7MKL5jF9MBk9bdLVjNGAjIXtSAl55I0ElHpZmEjQaHSEODxI9FhUFHxFtQTtPIx4tFMP+/fkJByluaCHgESISERQF6wsKHA8CEBoPCRANAwQZDg4EEwoFFiURER8tmDgvDDktPk5LPV5n/sI3Rzc0NCcyJycnAT9WtbyU6ysrJTUlIDEwNkg2AAAABgE2/qwI8gbMAFIAWgBnALsAxwDhAAABIiY1NDY1NDY3LgEnLgE1NDYzMhYXPgE3PgE1NCYjIgYHDgEjIiY1ND4CNTQuATU0PgEkMzIEFz4BMzIeARUUBgcOARUUFhceARUUAgQHDgIBJz4BNxcOAQUiLgEnIRQWFx4BFRQDMj4CNzYkEjU0JicuATU0Njc2NTQuASMiBgcmJCMiDgIVFB4BFRQOAhUUFjMyNjc+AjMyFhUUBgcOAgcuASMiFRQWFx4CFw4BFRQGFRQBIiY1NDYzMhYVFAYFJz4BNz4BNTQuASMiByc+ATMyFhUUBgcOAQSGJjMZGhgZLhgZLU0/Z6UuHTwVBwe4vStVOrz5R0tpKTUpHR182QEYm54BR5cdTCBbomU1KTYvCwcHCZ7+48Aga4H8sReW9Wkqbf8DPEePZgwBKwkKDiXXIUtGNAvCARWVCQgHClFOJFJ+QiBKKqD+zJ2K+8NwHR0pNSk5KzzuwxxMShfd6AkOE1FbIhyUXjEkEBIhKR0bKhP+zCMzLR8jMisCFBk7h1Q9MEBgL8WMNE3Na3qlP1ZXjP6sMicgQTw2YCoeSTI1SSMkL2xgDy8eJjoag4MEBHBrYUYoRzopCg83Vjt416dgYFoHBjpeNic/Cw81JS9FJCJRPLz+vvFCZ5hUA884NZpqKm6hmU56QCpKGSUqFRf87jhbbjY74AErqzhNJCFLMkFbGQsaGzopCQphX1SRumcwUD8YHzY0NR4kM2twAgQCr6ccRD0jRTIHa3kXFC8jJD85GydiQCM2FyoFTjQkIS40JCItlEcWQDAjJQ0QHxV7PERLVT8oQjExQQAAAAAPALD+3gl4BpoALQAxADUAOQBPAFsAdACAAIwAxgDKANYA2gDeAOoAAAEiJCYCNTQ2Ny4CNTQ+ATMyHgEVPgEzMhYXND4BMzIeARUUDgEHHgEVFAIGBAEnJRclNSEVJyU3BQEiJjUXFBYzMjcWMzI2NTcUBiMiJwYBIiY1NDYzMhYVFAYXIic3HgEzMjY1MxQWMzI2NxcGIyImJw4BNyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATIkPgE1NCYnOgEzMj4BNTQuASMiDgEVFBYXLgEjIgYHPgE1NC4BIyIOARUUHgEzOgEzDgEVFB4BBC0BNwUBIiY1NDYzMhYVFAYXNSEVJSclFwEiJjU0NjMyFhUUBgUUu/7L4HkjH2WeWn7WhIrVeSpfKyxeKnnWiYXVflqdZh8jeeD+zPvFFwFNGP5gAXYE/ogRAXgCJ0MxRBEfFBMTFB8RRDBEEhUV/rolNjYlJTU120g8LRUlHR8mLCYfHSUVLTxIGy4SEi5AKDk5KCk4OP1KT29vT09vbwI+pQEWzXE5LQIGAninWGaxcXS2aAUHWHg2NndZBwVotXVwsmZYqHcCBgItOXHNARYEJP6yGAFN/cUlNTUlJjU12gF2/o4RAXgR/rZPb29PT29v/t5swQEAlEu3URV+v3WJ2n581oYODQ0OhtZ8ftqJdb9+FVG3S5T/AMFsAStKbUx/Tk6GSk1K/gmNcANJbQoKbUkDcI0ICAGyRC8vQ0MvL0TwPDETFBceHhcUEzE8FBkZFHJDMC9DQy8wQwL5b09Pb25QT2/7Ml2o5Ihf31lrsWdxtWtrt3EZMhohGhohGjIZcbdra7VxZ7FrWd9fiOSoXdtrTG0BLkQvL0NDLy9Ejk5Ohk1KTQI5b09Qbm9PT28AAAAADADG/t4JYgaaAC8AQABYAGUAdgCCAJIAwgDOANkA5ADxAAABIiQmNTQ+ATcTBiIjIi4BJz4BMzIXPgEzMhYXNjMyFhcOAiMqAScTHgIVFAYEASIuAScuAjU0NjMyHgEVFBMyJDY1NC4BIyIOASMiLgEjIg4BFRQWBAEiLgEnPgEzMhYVFAYBIjU0PgEzMhYVFA4BBw4CATI2NTQmIyIGFRQWBRM+AzMyHgEVFA4BIw8BPgEzMh4BMzI+ATMyFhcuAScDFjMyNjcmIyIGBy4BIyIGBy4BIyIHHgEzMjcDDgElIiY1NDYzMhYVFAYBLgE1NDYzMh4BFwUnPgIzMhYVFAYBIiY1NDYzMhYXDgIFFPH+oL8pKwMWBw4HZKVwFjyeVb6eVu5/f+5Wnr5WnTwVcaRlBw0IFgQqKb/+of5LGxwYGBY1JikmMVw8g9wBO6lVlWE7c31KSn1yPGKVVKkBPP4tLVc+CBo5HVFsNwNFQDxdMCYpJjQXFxkb/hMlNDQlJTQ0/pQpCDJWfVNgkVBorWq9YjSBSUF7ej9AeXtBSYE0BAUBHUIxb6YiXXpdskdM9ImI9UxHsl16XSKmbzFCHQEFA30lNDQlJTQ0/TUPDiQkG0lHFwJD7RhGSRskJA4BBys4bFEdORoIPlb+3nznn2CWeDMBRwFtx4c4O4A2PT02gDs4h8dtAf65M3iWYJ/nfAGfGCQQEBIeISAnN1MqQP6xacOGaKFcHR0dHV2hZ4bDaQVIMVU1CQtANSU1/AdAKlM3JyAhHhIQECQYAm1IMzJISDIzSPIBnD6glWFtsGd6rFofCCkvHR0dHS8pDiAQAbEVsZpDTklBSUlBSU5DmrEV/k8QIJ9IMzJISDIzSAJoJlsqQ1o3Xjx3dzxeN1pDKlv+/jUlNUALCTVVMQAAABQBBP7eCSQGmgAxAEEAYgBzAH8AiwCeALAAvADsAPkBDQEeAS4BTAFYAXEBkgGkAbEAAAEiLgIvAS4BNTQSNy4BNTQ+ATMyFhc+ATMyFhc+ATMyHgEVFAYHFhIVFAYPAQ4DASIuATU0MzIeARceAhUUJyImJy4CNTQ+ATMyFhUUBhUUHgEXNjMyFRQGFRQWFRQBLgI1ND4BMxUiBhUUHgEXBSc2NTQnNxcGFRQXJzI2Ny4BJw4BBx4BFyImJzc+Aj0BMxUUHgEfAQ4BASImNTQ2MzIWFRQGFRQeARUUFyImNTQ2MzIWFRQGATI+Aj8BPgE1NAInNjU0JiMiBgcuAiMiDgEHLgEjIgYVFBcGAhUUFh8BHgMBLgE1ND4BMzIXDgIBIi4BNTQzMh4BMzI+ATMyFRQOAQE1PgI1NCYjNTIeARUUDgE3IjU0PgE3PgIzMhUUDgEBIiY1NDY/AT4CMzIeAR8BHgEVFAYjIi4BIyIOAQUiJjU0NjMyFhUUBgEiNTQ3PgE1MxQWFxYVFCMiLgIjIg4CASI1NDY1NCY1NDMyFz4CNTQmNTQ2MzIeARUUDgEHDgEDIjU0PgE1NCY1NDYzMhYVFAY3LgInNjMyHgEVFAYFFHOuhGku1oB+Uk4pLFqgaUeBLUfKXFzKRy2BR2qfWiwpTlJ+gNYuaYSu/PYyXTsaBhInJxQ3KycbLgonPSMYKhkJDBgUJxoWFxYgHgESPV82UY5baIIhOyYBbKEYGKGhGBiha7U6e7kmJ7h7O7RrnudHInatX1BfrXYiR+f9Cyk3KxwLCxIhIZspOTkpKTk5AWZrlXJpP9ZrZVlWZJZ9SXkdJoKVRkWWgScdeUl8l2RWWWVr1j9pcpX9ihAZMlEuSC8uYlUCx0yYZEIgXGIoKWFcIEJklwEfJzohgmhcjVE2X+4sKjgUKCcRBho7XPytJTEbIyQfLiMNDSMvHiQjGzAmKjkgBgUhOQHuKTk5KSk5Of1sSzBeQbBBXjBLM0s0IQkJITRLAzsUHiAWFxYbJhQYDAkaKRgjPCgKLlYtISESDAodKjdhGlViLi9IL1AyGP7eO1RQFWI73KWGASSOPotGaaBaKiYWGxsWJipaoGlGiz6O/tyGpdw7YhVQVDsCgUFoOzEQNjgcLCUSGMBLJSFQUyMkVT0QCxA+Ihs4MRMmFQ84KSNPBhT+txVbekNRhU9QfFksVUMT+TVBODg4bGw4ODhBAVdHCkY4OEYKR1dQioIsAzBKKOvrKEowAyyCigPcNiwmOw8JDSARFhISFh0oOikpOTkpKTr7YTNMUB1iMbWOhwEkkXyPfZYyKxIcEBAcEisyln2PfJH+3IeOtTFiHVBMMwWWC0cjLk4xOBtQWP2LPFktLxMUFBMvLVk8/mBWE0NVLFl8UE+FUUN6W3QYEiUsHDg1ETE7aEEDbR0ZERcJCQgoIyMoCAkJFxEZHSkoKCn/OikpOTkpKToBnzUsCRJJHx9JEgksNSUxJSUxJfyzFAZPIyk4DxUmEzE4GyI+EAsQPVUkI1NQISVLAdYdFhISFhEgDQkPOyYsNs8nWFAbODFOLiNHAAAADwHw/qwIOAbMADcAQQBNAFMAbQCHAJMAoQCrAOEA7QD5AP8BFAEpAAABIiQmNTQ2Nz4BNTQuAjU0PgEzMhYXHgEXOgEzOgEzPgE3PgEzMh4BFRQOAhUUFhceARUUBgQlJz4CNxcOAi8BPgEzMhcHJiMiBjcmIzUyFwEiJjU0NxceATMyNxYzMjY/ARYVFAYjIicGJyImJzcWMzI2NTMUFjMyNxcOASMiJiczDgEDIiY1NDYzMhYVFAYXLgE1NDMyFzYzMhUUBgEuAic3HgIXBSAkNTQmJy4BNTQ+AjU0JiMiBgcOAgcuASMiBgcuAicuASMiBhUUHgIVFAYHDgEVFAQBLgEjIgcnNjMyFhcBIiY1NDYzMhYVFAYXJzYzFSIBIi4CNTQ2MzIWFRQeAhceARUUISI1NDY3PgM1NDYzMhYVFA4CBRTR/setVk8gJTBAMEqAUGl4CgkmIgULBwgKBSMlCQt3aVF/SjBAMCUgUFWt/sj8rDcVSVIgCxhBO5YcL389PiYVHTM0cu1msb12Aa9DWgFIAzUfDhcXDiA0A0gBWUQTFRV+GTQdHCsjNT1CPTUjKxwcNRk3Uh0mHVKHHCkpHB0oKMY5PB4vKCgvHjwCSRA7QRgLIVFJFf1HASUBQkdPKCwwQDB0VkJQCQcbLCEWIhERIRcgLRsHCVBCVnQwQDAsKE9HAUMELChxNTMdFSY+PX8v/b8cKSkcHSgo8xx2vbH8pxw+NSEyKSMmCxAOBAUMAc4yDQQEDhALJyIpMiE1Pf6sbM+WYslyL04gK3uizX1zrmK+uJzHT0/HnLi+Yq5zfc2ieysgTi9yyWKWz2yzJSA+LQY6BCg2pzoXFg49ChJ4MEI4/nuNZA4JKEBaCwtaQCgJDmSNBgbADA5IETc6OjcRSA4MMS4uMQFiPissPT0sKz6tCUAlGUxMGSVA/oAaNigEOgYtPiCIzLVQsG84ZS48f5nBfYmqkpl5t5JDBQMDBUOSt3mZkqqJfcGZfzwuZThvsFC1zAEkFBIKPQ4WFwEpPissPT0sKz7XOjhCAoFblKxQTWJtYSNlZUwLDTYYLS0YNg0LTGVlI2FtYk1QrJRbAAAQAKD+3gmIBpoAJQAvAD0ARQBRAGoAeACFAK0AtwDBAM0A2wDlAO0A+gAAASIkJgI1NDcmNTQ2MzIeARc+ATMyFhc+AjMyFhUUBxYVFAIGBCUnPgIzFSIOAS8BPgEzMhYXBy4BIyIGJS4BJzUeARcFIiY1NDYzMhYVFAYBIiYnNx4BMzI2NTMUFjMyNjcXDgEjIicGNyIuATU0NjMyFhUUDgEBLgE1NDYzMh4BFw4BASAkEjU0Jz4CNTQmIyIOAQcuASMiBgcuAiMiBhUUHgEXBhUUEgQlLgIjNTIeARcBIiYnJR4BFRQGASImNTQ2MzIWFRQGBS4BIyIGByc+ATMyFhcBIiY1NDY3BQ4BASc+ATcVDgEDLgEnPgIzMhYVFAYFFNH+qveGK09qYTqTn0tMpFZWpExLn5Q5YWpPK4b3/qr7Uz4ugpNFO3tumxxBmkYlQhoVFjQdQI8BGUa+c3zQTQEUM0hIMzNISAEBNGEjORpDIjs3Qjg6IkQZOSNhNFs4ODgjRy9SR0dSL0b9ExgYEhIRS2AuOHoCnQEBAX/ULx0kEkU2LYuZRlKzYWGzUkWbiS42RRIlHC/UAX8E3SZueztGkoMt+2EkWC8BAQIBLwIiM0hIMzNISAJXOo9BHTQWFRpCJUaaQfwYKi8BAgEBL1gCVCJN0HxzvXssejguYEwQEhIY/t563wE0upOB7NW85FqeZhYVFRZmnlrkvNXsgZO6/szfevY0M04tUCZC40saHQkISgYGG7IdHgFQASIhQFg/P1hYPz9Y/rkpIjgZGjo9PToaGTgiKUBApSk7GyMoKCMbOykCxj6pST9VRXFBH3b7H8ABVuGVf1KWkUiYuGGkZhwcHBxmpGG4mEiRllJ/leH+qsCmKkImUC1OMwPndJwnGC4VY3n9xFg/P1hYPz9Y0hgbBgZKCAkdGgLDeWMVLhgnnHT9vEghIgFQAR4CDzh2H0FxRVU/SakAAAAACgBw/t4JuAaaABQAKQA5AEUAUAB9AKEAvgFaAbkAAAEyPgEzLgEjIgYHDgEHJiMiBgceATcyNjc+ATMUFjMyNy4BIyIOASMUFgMiNTQ2NTQmNTQzMhYVFAYlMjY1NCYjIgYVFBYXIiY1NDY7AQ4CAS4CNTQ2MzIWFx4BMzI2NTQmIyIGFSM0NjMyFhUUBiMiJicuASMiBhUUFhcBMj4BNTQuAzU0PgM1NCYjIg4BIx4BFTIWFRQGBzIeAQEnPgE3PgEzMhYVFA4BFRQzMj4CMzIWFRQOAgEUDgMVFBYzMjYzMhUUDgIVFB4CFRQGIyIuASMiDgEVFB4CFRQGBx4BFRQGIyIuAiMiBhUUHgIVFAYjIi4BIyIGFRQeAhUUBiMiLgInLgE1NCMiDgEjIiY1ND4DPQEiJjU0PgEzMhYXPgEzMh4CMzIkMzIWFRQOAhUUFjMyNjMyFRQOAxUUFjMyNjMyFgEUHgEzMj4CMzI2Nz4BNTQmIyIGIyI1NDY1NC4BNTQ2MzI2NTQmIyIGIyI1NDY1NCYjIgYjIjU0PgE1NCYjIgYHLgEjIgYVFBYzMj4BMzIWFRQGIyIOASMiLgEjIgYCFCNJWz0GIxEKEgMpQiYLGw8UAwgeLQsdBChQLxQQKBkWRyUsW0cPFGAUHi0eHCsoAfMWICAWFyEhCi48QjvACUFa/YAVJxmAXyZMLR1HIzRLNCQiNU9iREdheVYuWSskOBhATy0cBdUoUThGZ2dGNlBQNjUjJJe5Vw0NLEMGBUtmWv52rRMkBBRjNxoZPj8iIElNUikZGURvhAOvQmJjQhMWJnIlRD1QPTpMOlE5LHOKT0BvQzpLOig4OT0bHTFLTGRLK0ArOCsqJ42+cRwPEy89LyUkQKKZawpadBwQHiUbGxhLb25Lg5Y4WjJBfDl34o5AXlt2WGcBD6ZXNjNEMxsiLVMwSjxYWTwdGzePNyAk98U0VTI6VFZ0W66rIEhXHBYQHwgNBjs6ISgXHDMpDiAKCygdIUleIAwjIxwaStN0RIo1Nj5xex9vYwtWX09QOEpFMiAmHhYTFQFEMDAjMhMUDCEdIR8fDxizEg8IBRAaUw8QCwsxLwEQDgsUEBMXEBYpHRwrDyAWFh8fFhYgMjouMTQ0XjsBNA1LYCpkhRgZEBIwLikzKxg7WGJKUF4YFhMSWUAvehv9rg4kICIhDAUNEhEQCQ8eHSYiEhIcPxtWNBAkEAwNArc5ES4TVHYcGSA8OBsgT2ZPJSAoWE84/oMqLBUMFBYODxcyKCUREhQWCgUWISg+ISAdKhMVFhcpJx8tCy5eJhkjLTwtFh4ZDwMMFxEWMjEQDRQYEA8LDAszWHE+FpNaNiorJyU5SS4hIxkFfW5MdkU4LoeCDRENMiIaHCEWGRULERcwJisXEhgXDxIlHP3RMFEyGiEab10nZS8bJggRCjEbMTgoFxELFhAWHQQGCgwRDhMoCgobIBEPEJKNO0V2QVJMCgplRktgLi4fHx0ADQBs/qwJvAbMAIwAlACcAKgAsADeAOoA9gECAQ4BRAFPAVsAAAUiLAImNTQ2MzIeATMyPgEzMhYXNjMyHgIzMjY1NCcuAicuATU0Nj8BNhYXPgE/ATYzMhYVFA4BBxYSFRQCBAcnPgI1NAInPgI1NCYjIg8BBgcuAQ8BBhUUFhceAxceARUUBiMiLgMjIgYHJiMiDgEjIi4BIyIGFRQeAQwBMzI2NxcOAQMiJjUFFA4BAy4BJzceARcDIi4CIzUyHgIzAS4BJzceARcBIi4BJxcmLAInNxYMAhceAjMyNjU0LgEnMzI+AjcXDgMHNx4BFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGASIuAicuAjU0MzIWFzQmLwEuATU0NjMyFhc+ATMyFhUUBg8BDgEVPgEzMhUUDgEHDgMBIjU0NjMyFhUUBiciJjU0NjMyFhUUBgVytP6S/rX+/Za/pliddBkgMjgnJUMbVEZRqqigRkc3CzCIjTgpKiIlxCNcLg8rG6EgIzJMKUImMziX/uu8FcL2dUA2LEYqGhEPC6FAFztiHcQVEA4vd3llHAsTZGo7hoyJfTMmQipNQCw0LSUXfJ5MipCN9AE3AVenHT4fMypX/GJzAU8LM3pNiR9BGmtDQmjU3e6Df/bn01sBCk2FIkAdbj0Bx0uspEETpf6q/sT+/lEkWgERAUQBUZsyk5c4EQgxXUMpZ861hBwdF3+z0Gk0X0A6/VAdKiodHSoq/nIPFhYPDhYWbxEYGBERFxccFR4eFRQeHgGBExMMCwoRPjIkFDAZEjQ3IjAvJTVeLy9fNCYuLyM3NBIZMRMkMj4RCgsMEwFuIRQNDRMTBhIZGRIRGRlGW5/M5HKRnRESGRgOCzdMYkwrQzMfCyUrEw47IB03DkwOAgskORNwFUc3KIOWRWr+/nG7/vuqM0s1ouSXeAEEY0ubgyUQFghwLGcYCwtMBxAIEAUQJSIaBQ9bLGRaM0pLMiAhJhgZERF0bmHLuZJVAgJKBAT+8smhLXKMPwEnF4pVF0puFAHXTmVOUE5lTv2DF4NdF05qFP7PjPmjFg40RlApRS1SQi8Llu2KCAw2n75jDRomGT8ZKx8TAhuq2T0wNAODKh0dKSkdHSoC3RYPDhYWDg8WrRgRERcXEREYjR0VFB0dFBUd/d87UkgMFRwhHSEXEyMnDxAKJCQfI0I/P0IjHyQkChAPJyMTFyEdIRsWDUdSOwF2IA0TEw0NE6kZEhEZGRESGQAFAT7+rAjqBswAaQB5AIUAoADJAAABIi4BNTQ+AjcOASMiJicOASMiJjU0Njc+ATcXDgIHDgEVFBYzMjceATMyPgI3Fw4BBw4DFRQeATMyPgE1NAoCJic+ATU0LgIjIg4BByM+AjMyHgIVFAYHHgEaAhUUDgEBIicuAScuATU0MzIWFRQGASImNTQ2MzIWFRQGAyIuATU0MzIWMzI+AjMyFhcOARUUFhcOAgEDJwsBLwEXHgMVFA4BFRQeAxUUDgEVFB4CFRQOARUUFhUUBgZameyHEBsiETtsORgwGkyaSHCOcG5iomFbS3x6R21ZXlCHjCA+H4S5fFEbTC6ZdRMkHBBgxZehzmJIeZmlTgICGysvFBIrKA5VE0hQHh1KRC0BAVqrlXFAjPb7oQ4FAwMHCgskGSQbAeofLS0fHywsvkuIVxIXNyctXF1eMA8VBQoJFRkLSXUEABorh76yHlVQm31KISI0TEw0MDAwPjApKhpB/qwWPz0MZpWnTAgHAQI9Q45zYpxJeK5YGkJ8illGe0lSX4MEAh1CcFMaiZIfVq+WZAoQHhQTHA6nAXkBcQE82iIKGwwtbWVANk8mO3hSVYGLNgcPCD7u/sf+nP6UqT08FAMFFAwdDRQcCh8tIR82AUQ3JyY3NyYnNwFKS3ZBGjI6TToGAiI/HTlEHRZCM/rKAarYAYgBVrV2HhwVFjpDMU09GxwoJTFKOTpXQBgYJyk2JytQTygfQSc5VgAAAAoAh/7oCaEGmgAdACkANwBDAE0AgQCzANMA3wDrAAABIiQmJy4BNTQ+ATc2EiQzMgQSFx4CFRQGBw4BBAEuATU0NjMOARUUFgEiLgE1NDYzMhYVFA4BASImNTQ2MzIWFRQGFyImNTQzMhUUBgMiJCY1NDY3PgE1NCYnLgE1ND4BMzIWFx4BMzI2Nz4BMzIeARUUBgcOARUUFhceARUUBgQnMiQ2NTQmJy4BNTQ2Nz4BNTQmIyIGBw4BIyImJy4BIyIGFRQWFx4BFRQGBw4BFRQWBBcgABM+ATU0JiMqAQcmAiQjIgQCByYiIyIGFRQWFxIAASImNTQ2MzIWFRQGBT4BNTQmJzIWFRQGBRTk/pb3OnySSH1RPv4BZNfYAWP+PlF+R5F9Ofj+lvvOOElLNQcMCgNYarlx08HC0nG4/m8wQ0MwMEND9iM+YWE+I83+zaocEA4SDgoKE0uCVEd0LihCHyBBKC90RlSDShILCg4SDhAcqv7NzbcBD5QXDw0ZEAoLEHRdN10vKFgvL1goL103XXQRCgoQGA4PF5QBD7cBSwGxRHWIhmcGDAYz6P6xzs7+segzBgwGZ4aIdUQBsQJxMENDMDBDQwH4CgoJCjVLSf7ogvixJr19WI9bCeUBR7Cw/rnlCVuPWH29JrH4ggK+C3NMS2srYTU2X/7PMU4sOD8/OCxOMQHXUzk6UVE6OVNqMhwkJBwy/bZrwH85WiUiOB8bPiQnVSpUg0ozGhYeHhYaM0qDVCpVJyQ+Gx84IiVaOX/Aa1BWnGgsSSUiSyojSyQmSSJddCgbFigoFhsodF0iSSYkSyMqSyIlSSxonFbaARsBAxeba26PAeUBR6+v/rnlAY9ua5sX/v3+5QM+Uzk6UVE6OVPQKl82NWAsa0tMcwALAG7+3gm6BpoAEQAZADIAPgBQAFwAagB2AIIAkgCkAAABIiQKATUQEiQhIAQSERQKAQQnIiY1NxcUBgMzFBYzMjcXDgEjIiYnDgEjIiYnNxYzMjYlIiY1NDYzMhYVFAYFIgIRND4CMzIWFwYDBgIOAQUiJjU0NjMyFhUUBgMyJBIREAAhIAAREBIEATI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGByImNTQ2MzIeAhUUDgIlIi4BAicCJz4BMzIeAhUQAgUUyv627X/QAZABIAEgAZDQf+3+t8tNQY6OQXJKMzpUNjkhaTkuSRsbSS45aSE5NlQ6M/6bMUZGMTFGRv3aoYZXlLxkYGsXUScWQ1dmA0c7V1M/P1NXO/cBb8r+Xv5y/nP+XcoBbwKBR3FxR0dxcUcxRkYxMUZGKHyboq07Z00sQWh1Abc4ZldDFidRF2tgZbuUV4b+3pUBFgGC7QEqAZ/Z2f5h/tbt/n7+6pXCbndcXHduAZ1DND84JzAkHx8kMCc4PzT6WD4+WFg+PlgFAbABmT1zXTcvNkn+9pX++chxz0YqKDIyKCpG/g7wAbMBJwGeAbT+TP5i/tn+TfACg3ZjY3Z2Y2N2Q1g+PlhYPj5YnsazrbhPfpFDUXdOJ5lxyAEHlQEKSTYvN11zPf5n/lAAAAoAvv7eCWoGmgAtADsARwBTAGYAdACAALYAwgDVAAABICQCNTQ+ATcuATU0PgMzMhYXPgEzMhYXPgEzMh4DFRQGBx4CFRQCBAEiJCc3HgEzMjY3FwYEASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWATcDNjMyHgIzNjMyFRQOAiMBIiY1ND4BMzIeARUUBicyNjU0JiMiBhUUFgMgJBI1NC4CJz4BNTQuAyMiDgEHLgMjIg4CBy4CIyIOAxUUFhcOAxUUEgQBIiY1NDYzMhYVFAYBIi4CNTQzMhcyPgIzMhcDFwUU/rX+Jv4TNjJbU0VvfnUoNXMkROSTk+REJHM1KHV+b0VTWzM1E/7+Jv61iP8AaC9g5Xx95GAvZ/7//ZQxR0cxMkZGATYcIiIcHCIi/Ns4sxseIUZPWDJZOCJLdoc8A5CszGCqbm+pYMsxHCIiHBwiImABNQG26AocNixhWT5galwaIUs5BhtpiI9BQJCIaRsGOUshGV1qYD5ZYSw2HAroAbYDGTFHRzEyRkYBejyHdksiOFkyWE9GIR4bszj+3rgBWPBxoqBugI8jIFtjVTZHOxo0NBo7RzZVY1sgI4+AbqCicfD+qLgBDllTQUxRUUxBU1kCKVI6O1FROzpS/vlMOjpMTDo6TAJfdQE8Dyo2KsBGQpWFVP0kjHlTf0hIf1N5jH1MOjpMTDo6TP4gpAE02Fd9cIZgg5UREUNPSC4yRR8SIxwRERwjEh9FMi5IT0MREZWDYIZwfVfY/sykAudSOjtRUTs6UgFYVIWVQkbAKjYqD/7EdQAAAAAIAJb+3gmSBpoAKwA3AEMAcQB9AIkApQC1AAABIiwBAjU0NjcuATU0PgEzMh4BFx4BMzI2Nz4CMzIeARUUBgceARUUAgwBASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATIsARI1NCYnPgI1NC4BIyIOAQcOASMiJicuAiMiDgEVFB4BFw4BFRQSDAEBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYTMhYVFA4DIyIuAzU0NjMyHgIzMj4CBRYEMzIkNyYnBgQjIiQnBgUU8P5e/sWxW1MKDmm1cVunhicfXS4vXB8oh6hYdLRnDQtTW7H+xf5e/gcbJycbGycn/sc4T084OE5OAe/gAYQBJaVZWwgOCFKPXlGYdBsKiE9PiAobcphTW5FTCA4IW1mlASUBhQHoGycnGxsnJwEDN09PNzhPT1EvRWGl0eJra+LRpWFGLiBwp+SVleSncPsKewFIo6MBSHsvQXr/AHx8/wB6Qf7ehu0BPLWA/novdi10s2dCdE0DBAQDTXVBZ7N0LXYvev6Atf7E7YYEDy0fICwsIB8tAR1eQ0JeXkJDXvskedgBHqV47oUbUFMhXo9RQnFJBQkJBUlxQlGPXiFTUBuF7nil/uLYeQO/LR8gLCwgHy0BHV5DQl5eQkNe/qJPLDdrYEoqKkpgazcsTycyJycyJ/5JWlpJRy0iJCQiLQAAABAA+v7eCS4GmgAbACMAKwBDAFwAaAB0AJMAuwDTAN8A5wDvAPsBBwEfAAABIiQCNTQaAT4CMzIeAxIVFAIEIyImJw4BJSc+ATcXDgEvAT4BNxcOAQEiJjUXFBYzMjY3HgEzMjY1NxQGIyInBgMiJic3HgEzMjY1MxQWMzI2NxcOASMiJwY3IiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYTMjY3Mx4BMzI+ATU0Ji8BETQmIyIGFREHDgEVFB4BJy4BNTQ2PwEREDMyGQEXHgEVFAYHPgI1NAoBLgEjIg4BCgEVFB4BAy4CNTQ+ATMyHgEXBy4BIyIOARUUFhc3IiY1NDYzMhYVFAYBLgEnNx4BFzcuASc3HgEXASImNTQ2MzIWFRQGEyImNTQ2MzIWFRQGFyc+ATU0LgEjIgYHJz4CMzIeARUUDgED2r7+2qdUk8DY3mho3tjAk1Sn/tu/YpRERJT9cz4qd0krRGypM2O0VhVNowNJQDBSFg4LIQ0OIQoOFlIvQSMcHHU3ZSA3F0klOEIuQjglSRc3H2U4Vzo6OjdlVkZHVWX+ViIvLyIhLy9JN24lfiVuNzxhOWtxhz0/Pz2HcWs5YXszPIGCYMzMYIOAPDOFxGxvu+j0b2/06LtvbMV7WY9Ta7JqWZ5wFE4YrGlUjlWObTk8VVU8PFVVBZ8nbEQrSXcqRF+jTRVWtGP9WSEvLyEiLy/hPFVVPDxVVQ0QbY5VjVVprBhOFW+eWWuxa1OO/t6iASK/ewEGAP/irWNjreL//vp7v/7eohsdHRtCLjhvNUAyZqI+VGkWTRNh/umhtyR8eRoSEhp5fCS3oRYWAR0uJDIbG0U8PEUbGzIkLkBAgTopISkpISk6AXNCLi5BQS4uQvzyGhERGlOITmuqQk8BYXZkZHb+n09CqmtOiFMLMpVXgc5MOAE0ASj+2P7MOEzOgVeVMhqW5pCGASUBFd+Fhd/+6/7bhpDmlgRUEmqbWmmvaE6HVRNmh1OKU2ikF5hVPDxVVTw8VfqRMmYyQDVvOKZQYRNNFmlUAgxCLi5BQS4uQgJRVTw8VVU8PFXmThekaFOKU4dmE1WHTmivaVqbagAACAEV/t4JEwaaAGUAfgCKAJYBOgFHAVMBYAAAASADJy4BIyIGBw4BIyImNTQ2Nw4BIyImNTQ2Ny4BNTQ2PwE+ATU0LgI1NDMyHgEXPgEzMhYXPgIzMhUUDgIVFBYfAR4BFRQGBx4BFRQGIyImJx4BFRQGIyImJy4BIyIGDwECJSImJzcWMzI2NTMUFjMyNxcOASMiJicOATciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNj8BPgI1NCYjIgYHJz4BMzIeARUUBx4BFx4BMzI2NTQmNTQ2MzIWMzI1NCYnLgE1NDYzMhYzMjU0Ji8BLgE1ND4CNTQmIyIOAgcuAiMiDgEHLgMjIgYVFB4CFRQGDwEOARUUMzI2MzIWFRQGBw4BFRQzMjYzMhYVFAYVFBYzMjY3PgE3JjU0PgEzMhYXBy4BIyIGFRQeAR8BHgEBLgI1NDMyHgEXDgEBIiY1NDYzMhYVFAYTLgEnPgIzMhUUDgEFFP6/lRsQDw4KHSMnPRssNwwIDRoMJTkMCSIrQUgzLzQ6TTrPNnqsgTGRMzORMYGsejbPOk06NC8zSEEqIwkMOSUMGQ4IDDcsGz0nIxwLDRAQG5X+RShIHjEwKygvSi8oKzAxHkcpIjsdHTpXRFZSSEhSVv50Kz09Kys8PAEdiMFDIRwoFlc3UnoaSiCjbTxlPSARJRsmKBEMBysbFSAzFw4ECRMkIBURHgkPND0zNUY6TTo7RCVPaZJoGVxjIyNjXBlnk2lPJUM8Ok06RjUzPTQPCR4RFSAjFAkEDhc0HxUbKwcMESklGyURID1lPG6iIEoaelI3VxYoHCFEwP5VJ0csJSZ0cB46UwNVKzw8Kys9PL8lUzsfb3QmJSxG/t4BaEEmFw4ZGxo2JhEhEgQGMycSIA8HNiUqakgzL1gfI26Mo1jSIE9FEBgYEEVPINJYo4xuIx9YLzNIaiolNgcPIBInMwYEEiERJjYaGxkOFyZB/pjEISI6L0A3N0AvOiIhHyMjH5VGMCsmJiswRgJhRDEwREQwMUT8lpifTkM8GxAdKnduIIGUKUQqIycDFRQcEwYGKTIiGRklCgUSChU0FhQRCg8RTj0zNXgyMHiJmE9GPhEqSTgMFg4OFgw4SSoRPkZPmIl4MDJ4NTM9ThEPChEUFjQVChIFCiUZGSIyKQYGExwUFQMnIypEKZSBIG53Kh0QGzxDTp+YBUEkdHwwHik+H0Jm/fVEMTBERDAxRAHXNGZCHz4pHjB8dAAAAAAIAPr+3gkuBpoAEwAhAC0APQBJAF4AagB/AAABICQCNTQaASwBMzIMARoBFRQCBAEiJic3HgEzMjY3Fw4BATI2NTQmIyIGFRQWATI2NTQuAiMiDgIVFBYTIiY1NDYzMhYVFAYBLgE1ND4BMzIWFwcuASMiBhUUFhcBMjY1NCYjIgYVFBYBJz4BNTQmIyIGByc+ATMyHgEVFAYFFP6v/iv0asEBBgE7rq4BOwEGwWr0/iv+r0R+LDseYTQ0YR47LH7+EDA6OjAwOzsB3NHeRnmbVVWbeUbe0U9bVVVWVFr8aElZWphcWpcsahxfOFh+MysEwDA7OzAwOjoBzDQrM31ZOF4daiyXWlyYWln+3rsBZP63AVIBHtV2dtX+4v6ut/7+nLsBezcrNx8qKh83KzcCNUc6O0ZHOjpH/UupoF2qhUxMhapdoKkBcEpAPz4+P0BKAuMsmVtcmFpYRzosNX1ZN14d/fRHOjpHRjs6RwGebh1eN1l9NSw6R1hamFxbmQAMAJz+3gmMBpoAEwAuAEMATwBbAGkAdACIAJQAoAC1AMAAAAEgJAA1NBoBLAEzMgwBGgEVFAAEASImJzceATMyNjUzFBYzMjY3Fw4BIyImJw4BJSImNTQ+ATc+ATMyFhUUDgEHDgI3MjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYBIi4BNTQ2MzIWFRQOAQEuATU0PgEzMhcFASAkADU0CgEsASMiDAEKARUUAAQBMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYTIi4BJy4CNTQ2MzIWFx4CFRQGEwMlNjMyHgEVFAYFFP6j/f7+54XmAScBRqCgAUYBJ+aF/uf9//4RN2YgOxpEJDQ8Qjw0JEUZOyBlOC1IHBxI/iZlfDtbL0SKSE93PUwZJEdjQz9cXD8/XFw/KDc3KCc3NwGEMWBAcGFhcEBg/DM2M1GVZ6F3/vUCqwFIAd0BA33Y/u7+0pOT/tL+7th9AQMB3QLzP1xcPz9cXD8nNzcnKDc3a09kRiUYTT13T0iLQzBaO3z58f71d6FnlVEz/t7AAWDwqAFUATPvi4vv/s3+rKjw/qDAAU0tJTkcH0M8PEMfHDklLSUlJSX4iXNBYGE/W15oTDh+byIydlP0YElKX19KSWA8QC0sQEAsLUD+aTdQJS81NS8lUDcDejuGQ1ygZJTG+e6sATzYmgE8AR/hg4Ph/uH+xZvY/sSsAulgSUpfX0pJYDxALSxAQCwtQP7QU3YyIm9+OExoXls/YWBBc4kDEwEKxpRkoFxDhgAABACF/t4JowaaACEALQBPAFsAAAEiJAI1NBIAJT4DMzIeAhcEABIVFAIEIyIuAScOAgMiJjU0NjMyFhUUBgMyPgE3HgIzMiQSNTQCACcuAyMiDgIHBgACFRQSBAEiJjU0NjMyFhUUBgNH3P7EqpcBRAEDS2paYUFBYltqSQEEAUOXqv7E3FSumDMyma5Bfnd3fn53d5FYrJQ1NpWsVsYBGJSL/tH4VWhKTDo6R0VqXff+0IuUARkETH53d35+d3f+3sQBZPHZAVYBGn8lTUEoKUFNJH/+5v6q2fH+nMQbLx0dLxsCXJWenpSUnp6V/fQcNCQlNBuuAUDbyAE7AQV4KUw7IyA5TS14/vv+xcjb/sCuAgyVnp6UlJ6elQAKAUn/QgjgBjYAEgAgAC4AQABOAFsAZwBzAH8AiwAABSImNTQ+ATMyHgEVFAYjIg4CJSIuATU0NjMyHgEVFAYBIi4BNTQ2MzIeARUUBhMiJjU0PgEzMh4BFRQjIg4CASIuATU0NjMyHgEVFAYBIiY1NDYzMh4BFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBro2R1aSWEyFU1JHQ15IQf6XKkovMCssSy40/EQnRiw4KyZJLzrfPTNYkFRCiV2zS1o8OAMcKUgsOy0qRyw5/GU1VDwtJD8nPQRPNUQ4MjZDOPx7NEk/LDRJP+ovQEgxL0BHAzs1REExNEA+vk89UolSPGI5ODoiLCLrNlQsLDo1Uy4uOAPLMlEsMT8wUC8wQP7kSDRIjFw6Yjt3HCYc/kY0UiszQTRRLDBEA6NuSTxPNFQwOlD8zmc9N1loPTdYA3JcQj1WXEE9V15QOj5aUDo+WvzAWzk4U1s5N1QAAAoAZP6sCcQGzAALACsAOQBFAL0AxQDNAUIBTgFdAAATNDYzMhYVFAYjIiYFIi4CNTQ2MzIWFwcmIyIGFRQeAjMyNjU3HgEVFAYDFAYHJz4BNTQmJzceATciJjU0NjMyFhUUBgEyPgIzMj4BNTQmJx4CMzI+ATU0JicuATU0PgE3PgE1NCYjIg4BFRQWFx4BFRQGIyInPgE1NC4CIyImNT4BNTQmIyIOARUiDgMPARQeATMyNjceAhcHIyIGFRQWMzI2NxcOARUUFhcGIyIuAScOARUUFgEuASc3HgEXJy4BJzceARcBMhYXPgEzMhYVFAYHFBYzMh4CFRQGBz4BNTQmJy4BNTQ+ATMyHgEVFAYHDgEVFBYXHgEVFA4BIyImJx4BFRQOASMiDgIjIiYnDgEjIiY1NDY3PgEzMjY3JicuATU0NjM+ATcOASMiLgE1ND4CNTQ+AgEiJjU0NjceARUUBgEyFhcHLgEjIgYVBzQ+AbIaGiU1HRclNQF5LmlcOlc8HjwuOi4fIzYxS1IgIzUzBQVW8yUgQxsdChMtHCTjKDg4KCc3NwFlDl93bh1OVSEHBVBxXTOIznQkLSQcLD8dNCV3U2OYViUwMiiMdBgYCwpPh6pcgpURHiYaH2NPi6teLRYQfVSBRCx1QQ0dKyEi0S4shqyAqyVODQ5KUCkzO2xXGzo3TAKEHiwjNSQyH6cdLCM1JDIf/PISJRMpcS5HSR4RbFtsyJ1bAwU9RiQvNChsvHlOgEw3RDktGCUuJonznkOINQIBNHJdJ2ptWhdwWRgpWiZJUiQeHFJYITARWQ2ZqWtUCCAZJ2gsVaZuGSIZVJXFASQWETguCAUr/r8ySAdLBxsaIS5GKkYBcB0qVikeKFT6OVllLT5bGiIcHDglH09KMDQoKQkVDzxYAsw2WR8vGTklFzchXCtoRTgoKDg4KCg4+28GCAYOHxkSOBUSEANux4ZKk3BZaC1DUzIRHygaMFJmp2I7gXF2kEF6iQMtlo5ow5xcm4scbjlWWUSPcViEhmEHOiRKMhoeKkRGMDohHBYwcpAULVwtdcpoEyM1HDBSLDQuAqEnLiA6ITcn4yYuIToiNycDWwIDOkyHfDl4I2BhaLLheFd8LQtYTDh9bXiVRXjLfDlfODJLKyNALyVXWnClUpzsgxEIDRcRLCsNBggGIzkDBCEuHT4eHBMDAmJuCENIOEcZOyIPE0ZuPCEqJjIoe9ahWv7PJRMsdSETKxc9aAHDXEoNNTNOPiNFcUQAAAAGAG7/Qgm6BjYAEwArAD8AUwBrAH8AAAUiLgECNTQSPgEzMh4BEhUUAg4BASIuATU0PgEzMhcOARUUFjMyNxYVFA4BEyIuAQI1NBI+ATMyHgESFRQCDgEnMj4BEjU0Ai4BIyIOAQIVFBIeAQEiLgE1ND4BMzIXDgEVFBYzMjcWFRQOARMyPgESNTQCLgEjIg4BAhUUEh4BB1h73KphYarce3vcqmFhqtz6ST5oPT1oPiooGx83KzQoDT1ndXvcqmFhqtx7e9yqYWGq3Htpv5RWVpS/aWm/lFZWlL8EPT5oPT1oPiooGx83KzQoDT1ndWm/lFZWlL9pab+UVlaUv76P+AFBsrIBQfiPj/j+v7Ky/r/4jwI2U41VVoxTFRNBIzFBMS46VY1T/cqP+AFBsrIBQfiPj/j+v7Ky/r/4j1CC4wEkoaEBJOOCguP+3KGh/tzjggHmU41VVoxTFRNBIzFBMS46VY1T/hqC4wEkoaEBJOOCguP+3KGh/tzjggAAAAAFAIz/dAmcBgQADwAfADMARwBXAAAFIiQAAxIAJDMyBAATAgAEJzIkADcmACQjIgQABxYABDciLgI1ND4CMzIeAhUUDgInMj4CNTQuAiMiDgIVFB4CEyIuATU0PgEzMh4BFRQOAQUU9P5C/ppwcQFlAb319gG8AWVxcP6a/kL04AGcAU1nqf6w/pjPz/6X/rKqaAFLAZ3givG3Z2i38YmJ8bdoZ7fxinnUoVtbodR5edShW1ug1XlNfkpKfk1NfUpKfYzNAXoBAQEDAXnMy/6H/vz+/v6HzVC6AVbo3AETgoL+7dzo/qq6X2e38YqK8bdnaLfxiYrxt2dQW6HUeXnUoVtbodR5edWgWwE0Sn5NTX1KSn1NTX5KAAAAAAMCSf6sB98GzAAsAGMAgQAAASImJzceATMyPgE3PgM1NC4CIyIOAhUjNBI+ATMyBBYSFRQKAQcOAgMiJjU0Njc+ATU0JicuATUzFBYXHgEVFAYHDgEVFBYzMj4BNz4CNTQuASM1Mh4BFRQGBw4CASc+ATU0LgEjIg4BFRQWFwcuATU0PgEzMh4BFRQGA/V4nzVMLHhcQoetfHijYitmtO+Jgt6nXVBpvfySmgEMynJUwqSDvp1LRlYuFR0RFyYvLlAUIjQwLxYbESclFzBIOklTJE+CTGOmZF50QFhHAn1IJCRswH5spl5obBSGinTLgZXkgSn+rIqUGnxsRqyZlOvEslqP9rloXafihpYBAL1pdND+7Z+C/v7+z8yiuk0B3U1DLz8VHSATEhkWHTcuExcUHzktMUEWGx4SIR8cTUlbhGk0T4dSUGirZVvBklFbJAHqIkuVSYrRdlWXYmeQHE4jvIJ5umuM9p9RqQACAcn+rAhfBswAIABPAAABIiclLgE/AT4CNzYaAjchFhoCFx4CHwEWBgcFBicyPgMzMhYXPgEvAS4CKwEmCgInIQYKAgcjIg4BDwEGFhc+ATMyHgMFFL5m/siDbAcIBm+3cgsdKjooAdQoOykdC3O2bwYIB2yD/shmvjdnYl5bLTo5Clk9BQgEYJtfPgsbJzUm/rAlNicbCz5enF8FCAQ9WAs4Oi1bXmJn/qxTUCJzZHdViFMEiAEEAR4BVtnZ/qr+4v78iARTiFV3ZHMiUFNaO1dXO1guGkc9d0JqP44BDQEeAU/Q0P6x/uL+844/akJ3PUcaLlg7V1c7AAAFAI//2AmZBaAAJQA9AGMAdwCDAAAFIiwBJy4BJyY1ND4BNxIAMzIWFz4BMzIAEx4CFRQHDgEHBgwBAyImJy4BNTQ2Fx4BMzI2NzYWFRQGBw4BBzIkNjc+ATc2NTQuAScCACMiBgcuASMiAAMOAhUUFx4BFx4BBBMiLgInPgMzMh4CFw4DAzI2Ny4BIyIGBx4BBRSy/uH++40wbj5GFDUx1wF/q0CNPT2NQKoBgNcyNBRGPW8wjf77/uKzOHVHERAaFzd2Nzd2NxcaEBFGdjioAQ/1gTJ0QCISLyvQ/qWUQY86Oo9Bk/6k0CsvEiJAdDKC9AEPqG389MIyTcvm6Wpq6ebMTDLC9Pxtj+NPgdtlZNyBT+QoRJyCLFgmK0MWMVNHATcBNiklJSn+yv7JR1MxFkMrJlgsgpxEARoMDAMWDREcBQoMDAoFHBENFgMMDMpBknkvXScVFgokSD0BKQEiMiwsMv7e/tc9SCQKFhUnXS95kkEBqBorNxxhpXpERHqlYRw3KxoBITIwRkNDRjAyAAAAAAIAwP6sCWgGzAAnAEMAAAEiJCYCNTQSNy4DNTQzMh4BBCEgJD4BMzIVFA4CBxYSFRQCBgQnICQSETQCJiMiAhEUBiMiJjUQAiMiBgIVEBIEBRTo/qnhbmZbQIl1SSYolvkBcwEEAQQBc/mWKCZJdYlAXGVu4f6q6QEhAW6vX7N+w8MRFxYSw8N+s1+vAW/+rGnWAUjf+QFQYCqCkIIrKDlMOTlMOSgsgpCBKmD+sPnf/rjWaVCmAV4BEuwBQKT+hv6kUD89UgFdAXmk/sDs/u7+oqYAAgH0/q4INAbMAC4AaQAAAS4CJy4DLwEuATU0NjMyHgEXETQ2MzIWFRE2MzIWFzYzMhYXNjMyEhUQAgclITYSNTQuASMiHQEjNTQmIyIGHQEjNTQmIyIGHQEjETQmIyIGFREHLgIjIgYVFB4BHwEeAxceAQQTDChENSQ3N0YzCRxCV0MuSk4wbkxMaSowNVAWL0U0UxYpOWhxe4b9JQKwdGgkPidKUDksKDRQNywnM1A6Kys/Uj5TQCMiKCAqDgkxQTMxIVJW/q5ZfmIvIENjn3wWRo0/QVMsb2UDWFFwcFH+tRo8Myk5Lxv+3/3+8v5VwlCxAYP3jNByOHp6OksvJqGhR1Q7KdACtTFAQDH8DCOTnz0kICJYVyMWeJZbPB5KmwAAAAIB9P6uCDQGzAAuAGkAAAEiJjURBiMiJicGIyImJwYjIgI1EBI3IR4CFx4DHwEeARUUBiMiLgEnERQGJzI2NRE3HgIzMjY1NC4BLwEuAycuASchBgIVFB4BMzI9ATMVFBYzMjY9ATMVFBYzMjY9ATMRFBYF6kxpKjA0UBcvRTRSFyk5aHF8hQMgDChENSQ3N0YzCR1BV0MtTEwxbkwrP1I+U0AjIiggKg4JMUEzMSFSVhT9UHNpJD8mSlA6KykzUDgrJzNQOv6ucFEBSxo8Myk5LxsBIf0BDgGswVl+YTAgQ2OefRZGjT9AVCxwZPyoUXBQQDED9COTnz0lHyNXWCIWeJZbPB5Km2+x/n74jNByOHp6OkswJaGhRlU7KdD9SzFAAAACAF7/EAnKBmgAMABuAAAFICQ1NDcuATU0Ny4BNTQ3ISImNTQ2MyUnLgE1NDYzMh4BFx4BFx4CFx4CFxEGBCUyLAE3ES4CJy4BJy4BJy4CIyIGFRQWHwEHBSIGFRQWMyEVIyIOARUUFjsBFSMiBhUUFjsBFSMiBhUUBAW8/tz+sSM4RTU/Ryj+clt/f1sEPXGCfWpRNGxrNCNHKmCefS02ZYlr4v4Q/sTEAUoBJYtegWY2PcOKK0olKmdkJi88Z2jvGvs/OlBQOgMazjBDI2JFx589QV1GhIQiJwEp8IB2RTAaXj1TOBldPEI0d1ZWdwIxOHpOUGgvQBoRHxEmTlUyPEosD/xXmo9QNnNaAzoRMlE8RWs3ESASFT0vOS80VC5pYgJINTRJUBs1JjdDUEEyNkdQMC1HXwACAF7/EAnKBmgAMABuAAAFICQnET4CNz4CNz4BNz4CMzIWFRQGDwEFMhYVFAYjIRYVFAYHFhUUBgcWFRQEJTIkNTQmKwE1MzI2NTQmKwE1MzI2NTQuASsBNSEyNjU0JiMlJzc+ATU0JiMiDgEHDgEHDgEHDgIHERYMAQRs/sT+EOJsiWU1LX2eYCpHIzRsazRRan2CcQQ9XH5+XP5yKEc/NUU4I/6y/tv7ASgmI4SER1xAPp/HRWIjQzDOAxo7T087+z8a72hnPC8lZWcqJUksisI+NWeBXowBJAFL8I+aA6kPLEo8MlVOJhEfERpAL2hQTno4MQJ3VlZ3NEI8XRk4Uz1eGjBFdoBQX0ctMFBHNjJBUEM3JjUbUEk0NUgCYmkuVDQvOS89FRIgETdrRTxRMhH8xlpzNgAEANz/EAlMBmgAfgCRAK0AwwAABSIuATU0NxcGFRQeATMyPgEzMhYzMj4CNTQuAScDLgEjIg4BIyIuAiMiDgIjIiYjIg4BIyImIyIOAxUUFjMyNjcXDgEjIiY1ND4DMzIWMzI+ATMyHgEzMj4CMzIeAjMyPgEzMhYXEx4CFRQOAiMiJiMiDgEBIiY1NDY3FwIVFBYzMjY3Fw4BBSICETQ2NxcOARUQFjMyNjU0LgEnNx4CFRQGJSImNTMUFjMyNjU0LgEnNx4CFRQGBaRQjlcMTAhCaTo/bWs7SoZAK1dILBY5NVYqf1ciQUAiITU3RTE4RjY7LSRGNTBQRB8QOycjT0s9JGhcIjQiMixPL4KSKUldajUyNAwIRmIzMDklEhozPlQ8OVA4LBYfNkEvdKcxVjY7FzdddD5NiDsyZHP9bY6HHx9OPF5nS20WRh+TAbu7qQ0NUA0NgZNrcBIkHE4cJROeAXOBpFB1YGlrEh8SRhUjFZnwT4VRMSIaFCU7YTkpKTJMgJpOT5/aqQEShnoSEig1KC8+LyoyMgpbncfYaJyHFRpAIh25unz02KdgCjIyFRUvPi8oNSgSEpqe/u6s4qdUYLeVWDIpKQFYur5f9ZQQ/uC4n4lBOSJOWnMBDAEnWdiACH/UVv732nhzlfXkeRJ76vyYlKc6i3ZUXXRvNHtyJCEnfYg6kKMAAAYBE/6sCRUGzAA3AD8ARwCWAJ4ApgAAASIkJwEmNTQ2NycmNTQ2NycmNTQ2MzIfAT4BMzIWFwEuATU0PgEzMhYVFAYVFBYfAR4BFRQOAgEuASc3HgEXNy4BJzceARcBMj4CNTQmLwEuATU0NjU0JiMiDgEVFBYfAQYVFBYXByY1NDcBJiMiBhUUFwEHASYjIgYVFBcBBwEuASMiBhUUFwEHASYjIgYVFBcBFgQDLgEjNTIWFzcuASM1MhYXBsKQ/tuP/cQwTz8rNEs9IDRoREczJg5fOiFBGQHxCgpAaj04URJISR0gKVui2frfYZIYThJvSlVFbRJOC0kuBDRtvI5PJR0eTkgPIhcrQiUDAhllODg9gVX91RwlKDQbAa04/cYbJiY2GwI5OP5ODyERJDkcAbE4/t8dJCY9GAI7gwEJNBJQL0d4HEYffkxjqCj+rI2JAicvRj9rDCs0RzxdDx8zR0pkMyU+Shoa/hAsVCNGf1JNNhw8KVDcpEFHiEGP9LZlAUoRi2MSTGkOZwtgQxQsQAb+AVqh2H44dj5Cq+tbKEcRFhw8XjIQJhXIi5lNkz80kriXmgIqGzkjJR3+UDgCOxs2JyYb/cU5AbQPDTMpJhz+SzkBIx0+LyQY/dp+gQZkKzVQT0FiR1NQblwAAAACAjj+rAfwBswAjgCiAAABIiQuATU0NjMyFh8BHgEzMj4BNTQuASMiBg8BDgEjIiY1NDY/AT4BMzIeARceAh8BBycuAScuAiMiBg8BDgEVFBYzMjY/AT4BMzIeARUUDgEjIiYvAS4BIyIGFRQeAjMyPgE3PgE1NAInAS4BIyIGFRQWFwUXByclLgE1NDYzMhYXARYSFRQCBw4CAScuATU0NjMyFwcmIyIGFRQWHwEFEpf+98lxYk86YDobKmNBS3RDLlpDIkwsZDRgNVViPk1ocbBILGONaSAyNSNmRmcrMiBmhFonPZllajYxNzAnSyxhNWMwWX5EWZhhV4Y1Gy5BIS8yZbLsh3PLlyRPRoSQ/iYeNB0iMD06ATpbTU7+0UxGX0MpUyUB55iNTFMsreX+rGs3OFpJEhkSDQwnLCwrjf6sa7vwhFVyUF4sRD9CelJEeEsZHUEiJVs/LWIxQkg7FSwlCyZKQbkovFA6CyQrEzNBRCI7ICIoHR1AIyFgnVponlhUVSxMPEQzc9OlXzdhQIv1jMEBcNYBYxcbMyMlSSzq0hyv7jxmM0FlJxz+jt/+dc2V/vOSTXQ/BTVmNVs0RWMFTgMxJyVEJnoACQFo/qwIwAbMAEEAXgBoAHYAhACSAJ8ArQC6AAABIC8BLgEjIREyNjc+ATc+Aj0BNDMyFhUUDgEPATQ+ATU0JiMiBh0BFA4BBw4CBw4BBxEzMhYfARYzMjY3Fw4BBScuATU0NjcXIyIGFRQfARY2NTQnNxYVFAYjIiYBJz4CNxcOAgElLgE1NDY7ATIWFRQGJxY2NTQmKwEiBhUUFhc3IiY1NDY3JTYWFRQGIyUhMjY1NAcFDgEVFBY3BiY1NDY/ATYWFRQGBy0BPgE1NA8BDgEVFBYFdf8AsCBWbDf+vF/dZw5pdWh0L4tsgiQoB1MrK1dHHxw5hnRQViEDYtph9EKDXiCd6TVzNlh1kAGPvEpVVk+MdToyWdQnNUNcN1xEBRL9Vx5blV4GSQRnqwKs/vJbYYNo3nV9hGNJTk5W3kZTOT0IZXlXbgE1bnp6cP7oARpNS5D+y0k0TTyLjoR53Wt/UUT+4gEUJSqQ3VleY/6+bxQ2KQNVCxlTdkM8eJ50J7rCn1iWikcqVJmgXH6TLD4ngrmOQy5KUjseFQL9SzA7FGMGB0kMCAwcC2BKSlMETSctVw4hBkk3TA4sLlhVdgICY0saeqZcM1Wviv6LIQtyUWJjcmlvd10JSEpHRDY/MUUI8nBYU2oMIQxxbm1yUkFMkxAhBz8zOT3zDm1lWHQQHA5rblh1BzMdBEc5jRIcC0k4Pz8AAAAJAWj+rAjABswAQQBeAGgAdgCEAJIAnwCtALoAAAEyFhcHLgEjIg8BDgErAREeARceAhceAh0BFBYzMjY1NC4BNRceAhUUBiMiPQE0LgEnLgEnLgEjESEyNj8BNiU+ATMyFhUUByc2NTQmDwEGFRQWOwEHLgE1NDY3AR4CFwcuAicBNhYVFAYrASImNTQ2Nw0BDgEVFBY7ATI2NTQmASEyFhUUBiclLgE1NDYXIgYVFBYXBRY1NCYjDQEeARUUBi8BLgE1NDYXJgYVFBYfARY1NCYnBXUxkHVYNnM16Z0gXoNC9GHaYgMhVlB0hjkcH0dXKytTBygkgmyLL3RodWkOZ91fAUQ3bFYgsALAFxIFRFw3XEM1J9RZMjp1jE9WVUr+KmmrZwRJBl6VWwMzbYR9dd5og2FbARj+8j05U0beVk5O/rEBGnB6em7+y25XeWdDTTRJATWQS03+3wEWRFF/a915hI6DXmNeWd2QKiUGuggMSQcGYxQ6Mf1LARYeO1JJL0OOuYInPS2Tfl2fmVQqRouWWJ/Cuid0nng8RHVTGgoDVSk2FG8MBAJ2VVguLA5MOEgGIQ5XLSdNBVJKSmAL/b0fi69VM1ymexkBoA54b2lyZGFRcgsvIQdFMj82REdKSP7kcm1ucQwhDGtSWHBSPTkzPgghEJNNQPMdB3RZbWsNHBB0WGVtXgo/PzhJCxwSjTlHBAAAAAkBT/6sCNkGzABhAHMAhwC1AMQA1wDbAN8A4wAAASImJwEuATU0NjMyFwcmIyIGFRQWFwEWMzI+AzU0LwEuATU0NjU0JiMiBhUUFhceARUUBiMiJwEmIyIGFRQXByY1NDYzMhcBLgE1ND4BMzIWFRQGFRQWHwEWFRQOAwkBJjU0NjMyFwcmIyIGFRQXATcBJjU0NjMyFwEHASYjIgYVFBcJATcyPgI1NC4BNTQ2Nz4BNTQmIyIGDwEnPgEzMhYVFAYHDgEVFB4CFRQOAQQLASYjIgYVIzQ2MzIWFxM3JyYjIgYVFBcHJjU0NjMyFh8BEyc3FwUnNxclJzcXBXxPmkr9OBkZYkVGMTgbJCQzDA0CyHuESJyRdEU3HElHDCAUNEgMBwYJIB4aGP3wGiQkNBs6MWNFRTIB9QoWN104NU8MREYcPU6Ep7P9gf5XMmJFRTE4GSUjNBoBqnv91TJkREYwAis5/dUZJCM1GwIrATsIj/zAbAgHIiIODSshQ1EXEU0deHRDWRUTHBsFBQV31f7jvPIYNiQ0UGNFMVAV8lBUGTYlMwlKD2JGMFIVVA0UUBQBQRzjG/7AR3JH/qxHRwKwFz8gRWMxOBk0JBEeDf1QeEp9m6NLZn1AqPBSIDcREx5fOyFEIhs0FiIxGAIQGjMkJBs4NENFYjL+CidyPD9qQU00HC8dSt+hQIx3Wbyvi1EC1QGpMkRFYjE4GTQjJBr+V3wCKjBHRGQy/dQ4AiwaNSMkG/3W/EJKWJvMdTRibUKPpzUWHgoWGHCbdyjowko0GTQdKpGEIWBkUBCG6K5iBPQB+TIzJEViNCz+B+G0NDMlFBIgISVGYjUttAEO8QXw0EtSS2ol1yUAAAAIAF7/2AnLBaAATQCbAK4AtgDLANMA6AD7AAAFIiYnASY+ATMyFhcHJiMiBhcBHgEzMj4CNRE0JiMiBg8BDgEHDgIVIzQ2NwMmIyIGFRQXByY1NDYzMhYXEzY1Nz4BMzIWFREUDgIhIi4CNRE0NjMyFh8BFBcTPgEzMhYVFAcnNjU0JiMiBwMeARUjNC4BJy4BLwEuASMiBhURFB4CMzI2NwE2JiMiByc+ATMyHgEHAQ4BAQMmNTQ2MzIWFwcmIyIGFRQXEwcnPgE3Fw4BNwEmNTQ2MzIWFwEHASYjIgYVFBcBBS4BJzceARcvAQE2NTQmIyIHAScBPgEzMhYVFAcDJxM2NTQmIyIHJz4BMzIWFRQHAup2lDD+wxUXRjEoQBNKECEeIA0BPSZwXFm1l10aFiMvAgUBLR4oOR5GRzTtDyQYHgZKDEw6KEMQ4wgFBFtFOEhprtID/3LbsWhJN0VbBAUI4xFCKDtLDEoGHhgkD+00R0YeOSgeLAIFAi8jFhpcm75hSm4mAT0OIR4gEUoTQCgxRhgW/sMwlPog+xNPNylGFkcbIxYgC/s8KF/ecw1szzj+2g5SNyhCEAEbSv7lDyEWIwYBJgWOWs9sDXPfXrpIASYGIhchD/7lSgEbEUEoOFEOiEj7Cx8XIxtHF0UpOE4TKGdkApkuWTwsJSAhNB39Z09OP2mBQgJkFhk+M2YlMgsPYZFXir8pAfkhIxYLDh8bHDdTKyT+GQgQZlNqRzj9nFOef0tLfp5UAmQ4R2pTZhAIAeckK1M3HBsfDgsWIyH+Bym/ileRYQ8LMiVmMz4ZFv2cQoBqP01QApkdNCEgJSw8WS79Z2RnAlAB6yUqOFA2MCE3IRcWFf4VUyxYeBk6GHA8AlgeHDdPKyT9nCACZB8hFQwM/aqzU3AYOhl4WGMkAlYMDBUhH/2cIAJkJCtPNxwe/UgkAesVFhchNyEwNlA4KiUAABMAgv6sCaYGzAARAB8AKwA1AEEAUQBdAG8AfwCLAJcApwCzAMUA0wDjAO8A/wELAAABIiQnAzcTFgQzMiQ3ExcDBgQBIi4BNTQ2MzIeARUUBgUiJjU0NjMyFhUUBgEgJTcEISAlFwQlIiY1NDYzMhYVFAYBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWASIAAzcaATMyPgI3Fw4DJyImJz4CNTceAhcOAgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBIi4CJzceAzMyEhMXAgAFIiY1ND4BMzIWFRQOAQEiLgEnPgI3FxQeARcOAQMiJjU0NjMyFhUUBgUiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYFFOL+cJL9T/aJAWnKywFpiPZP/ZH+cPuZJDUcKh8eKxgZAZAtRS8kJy8dAb7+M/6hHgFLAcMBwwFLHv6h/jNIY2JJSWJj+/I4XTc3XTg5XDc3XDk8VFQ8O1VVAmmt/vVKTUTkjUppRykJSwozWIVxcrktSnNCexhNb0oKWooDMhodLyckL0X8I0VhYUVFYmIBkzhdNzddODhdNzddODtVVTs7VVUB012FWDILSwkpR2lKjeRETUr+9QE/HBkYLB0gKRw0/gNSilkLSm9NGHtCdEktuUZFYmJFRWFhAak4XTc3XTg4XTc3XTg7VVU7PFRU/qw9OQWjDvqKLzIyLwV2DvpdOT0C1TdeOzU9Q25DLx92VDgqNlRGKCr+0YhMg4NMiNtuUlFvb1FSbgPyN104OVw3N1w5OF03PFU7PFRUPDtV/ZEBNgErDv71/uxfl6lJI0+4pWktqocOfcZ5CHenbSFkm1j+aCooRlQ2KjhUBHRhRUViYkVFYf7aN104OVw3N1w5OF03PFU7PFRUPDtV/eFppbhPI0mpl18BFAELDv7V/sr1Hy9DbkM9NTteNwEiWJtkIW2ndwh5xn0Oh6oC3GFFRWJiRUVh1jddODlcNzdcOThdNzxVOzxUVDw7VQAADwBf/3QJyQY2ACgAMAA4AEYAUgBaAHIAegCEAKEAqQCxALkAxwDUAAAlLAIAAjU0PgEzMhYXPgEzMgQSFwcmAiYjIgYHLgEjIgYVFBIADAEXJS4BJzceARcnLgEnNx4BFzcuAjU0PwEGFRQeARcTNy4BNTQ3JwYVFBYBJz4BNxcOAQU0PgE3JRYEFwcXLgInNw4CFRQWFycBLgEnNx4BFwE3JjU0NycGFRQDIi4CNTQ2MzIWFzc0NjMyHgEVFAYjIiYnBw4BAyImJzceARcnLgEnNx4BHwEiJic3HgEXATcuATU0NjcnDgEVFBYBJz4BNTQnNR4BFRQGBkb+/f42/on+8JNan2ZQumNuynmaAQS1IkEjqeiAebdzd7lKeZeMAQIBZAGz9v3LFCkMNwoaDCIUKQw3ChoM2Z31iz9PFGi9fkZBDg4hOC8RAaYKbrVJRWbN/qkXKx4BMIgBIJCFBnLUsT8iCxIJBASO/l0TKAs+CRkMAY43DAk1EdQ7UDAVRT44gGZxWkxNc0BFPzt1N0o5owkUKw4kCxsN2hMoCz4JGQzJFCsOJAsbDQE7Pg4OGRYzHyIRAetIIxHBjYQWLQyJ3wEgAUaqbJdPLjJPRI3+7sZc5wESeEdWOTKGfZz+0f700YELvgQSCVoFCgRPBBIJWgUKBClBvdprY1UOJy9MqaJC/s0TI00lWTwkS24qVf3uUAw0KDQ8Otd279hRYGCnQFCWQ5KZSw9SnplLK1gsQAR/BRUKVgYMBf3DFhsfHhIbIiks/tJhj48uZmlQUBmBjIDXhEJOLBoaWGsCoQkHYwQEAn0FFQpWBgwFrQkHYwQEAv3BGh9BIC9THCQkaDgnTv5XJDVBGpxbXUapZSJWAAAAAwCHARgJoQRgADcASgBdAAABIi4BLwEuAS8BNTYkMzIeARc+ATMyFhc+AjMyBBcVBw4BDwEOAiMiLgEvAS4BIyIGDwEOAicyPgE1NC4BIyIOARUUFhceAiEyPgE3PgE1NC4BIyIOARUUHgEC7p+7YhogBxwkKpUBHJaTyXUUFDEcHTAUFHXKkpYBHJUqJBwHIBpiu5+YvmENDgQtIyMtBA4NYb6UlaRBZLmCmqxFEQoUTaIE1pOhTRQLEEWsmoG6ZEGkARg1gHKOICAUGNgoJy1cRxQSEhRHXC0nKNgYFCAgjnKANUujg4snLi4ni4OjS1BPwq5nYx8iUUdBcDhocisrcmg4cEFHUSIfY2euwk8AAAAACAET/qwJFQbMACMAKwAzAFIAWgBiAI0A1QAAASImNRE0Nj8BFQcOARURFBYzITI2NRE0Ji8BNRceARURFAYjJTQmJyUOARUFLgEnJQ4BBwM0PgI3PgE3LgEnPgIzMh4BFw4BBx4BFx4DFQMuASclDgEHNz4BNycOAQcFIiYnAy4BNTQ2Nz4BNz4BMzIWFx4BFx4BFRQGBwMOASMiLgInIw4DJzI3PgM3LgEnLgE1NDY3PgIzMh4BFx4BFRQGBw4BBx4DFxYzMjY3Ez4BNTQmJy4BJy4BIyIGBw4BBw4BFRQWFxMeAQGrTUtZY5J2TDwjLwa+LyM7TXeTY1lLTf11AQL+VQEBAaYBAwL+fwQFAW0DBgkFEE8tHyMLIFRMFBRNVCAKIyAtUA8FCQYDcgEHBf70BRAF6QUPBOoGFAj/ACcyFcYRHiwpL3s3QNmZmdlAOHovKSweEcYVMicjT1RZLnAuWVRPIBQaIlxdTBI9hkElITYuGlpkKSlkWhovNSAmQIY+EkxeWyIaFA0SCMURGCchJmUuMMubm8swLmUmIScZEMUIEv6sS08FGk1jJDVWKhs6NfrrLSEhLQUVNTobKlY1JGNN+uZPS3YRJhD9ECQRExAmEuQPJQ797SSDlogpeKovPWpILVQ2NlQtSGo9L6p4KYiWgyQCFBItD6MKIgvpCh4LjQgaCc8lLAGoJFIuL3E5QWkYHBYWHBhpQTlxLy5SJP5YLCUuUWs9PWtRLlAUGl1sYB0ycUEmMhUZJQkFCAUFCAUJJRkVMiZBcTIdYGteGhQWEgGmI0AfJ1YuNVYXGBUVGBdWNS5WJx9AI/5aEhYAAAYAff6sCasGzAAlAC0AUwBlAG8AdwAAATIkNxEXNhI3LgInLgMnBiMiJw4DBw4CBxYSFzcRFgQBNy4BJwceAQEiJCcRJwcuASc+ATc+AjceATMyNjceAhceARcOAQcnBxEGBAMyPgE3Jw4CIyIuAScHHgI3Mj4BNwUlHgIBPgE3Jw4BBwUUrwFMg8Z0syx8waFNE1NkXR+fh4efH11kUhRMocF9LLN0xoMBTP4AOG+cLEQvowMglf7edyzlVYQgo+xhGmd0LEKXTk6XQi1zZxph7KMgg1blLHb+3ZWC04AFTARpsXBvsmkETAWA04JQhVQG/tH+0QdThQL/caMvRCudb/6sODQEa4hZAQCHapdsKAocHBYENzcEFhwcCihsl2qH/wBZiPuVNDgE3Dlb2XkqfOD7FCwoBIErnUq8XomqMg4fHQkaHBwaCR0fDjKqiV68Sp0r+38oLAXZc8d+Fm+tYmKtbxZ+x3O5THtFKChFe0z9+mDgfCp52VsABwLa/qwHTgbMAC4AOwBIAHsAhACWAJ8AAAEyNjc0GgE+ATcjHgIaARUeATMyNjc2GgE1NAoBJwYEIyIkJwYKARUUGgEXHgE3MjY3Jw4BIyImJwcWITI3Jw4BIyImJwceAQUiJicuAzU0PgM3HgEzMjY3HgQVFA4CBw4BIyImJzQKASYnIw4BCgEVDgEBPgI1IxQGByUyPgE3Jw4CIyIuAScHHgIBNS4BNSMUHgED4TttPAsUGh0PLA8dGhQLPG46N4o3BQYEAgYIdf7mm5v+5nUHBwIEBwQ4iStHcycRI2pDQ2ciEFIDCIpSECJnQ0NqIxEndP3UK10iAwQEAgECAwYEdvJycvJ2BAYDAgECBAQDIl0rJ0kkEh4mFWgVJh4SJEn+/1yOUUuFawINa82oMgMyp8xqasynMgMyqM4Cd2qGS1GO/qwIB9ABcgE49agpKaj1/sj+j9EHCAoIbQEMAU7OmQFgAZfpBAUFBOn+af6gmc7+sv70bQgK5AgIUAcJCQdQEBBQBwkJB1AICJQEBEiw0viRVsLU4Od1BAMDBHXn4NTCVpH40rBIBAQDBOkBpgFb+Ds7+P6l/lrpBAMF1gNQjVxtgAO3AwYESwQGAwMGBEsEBgP+/UwDgG1cjVAABQHR/qwIVwbMADkARQBNAIsAmQAAASImJy4BJy4CJz4DNz4BNy4DJz4BNxceARc+AT8BHgEXDgMHHgIXHgEXDgEHDgEHDgElJz4DNxcOAwUmAic3FhIXBTI2Nz4BNz4BNy4BJy4BJz4DNy4BJwcOAQcOASMiJicuAS8BDgEHHgMXDgEHDgMHHgEXHgEXHgETIiYnNx4BMzI2NxcOAQTiZ3o1NmRBMXNiGiBRV1IfNU0ZESEcEgJBhUEnFDkbGzkUJ0GGQAISHCERHTtKM0S5eCDZqUFkKy9y/odQDBohKRtPGykgGgJAQ1UIUAhRP/6DTmcrMnBMebIjda1CSWcyDyAcFQQcOR0aBCIlKC0XFi4oJSIEGh05HAQVHCAPFlM/Ik9QSBslazk/fTYvdUxhmyILI5dZWpcjCyKb/qwwHR4eCwkdKx5i4Nu3OV+SMU3DybA7ERUE/BAzGhozEPwEFRE7sMnDTSxqlW+R+GSeggwEJRcZJocIdL+4yn4Rfsi2vHuXAUOOBYj+y5BOHhYaLAUIS2xo8pCgx0s+qbmtQQYJBLAaKiEkGxskISoasAQJBkGtuak+MaFwPLHJxE8VGwoKJR0ZMASHEQeRBQ4OBZEHEQAAEgEE/qwJJAbMAA8ALQBLAGkAhwCbAMUA4wEBARMBIQEuAVABbgGZAcMB4QH/AAABIiYnET4CMzIeARcRDgEBLgE3BiYnJjY3JjQ3NhYXPgEXFgYHHgEHBiInDgEDLgE3BiYnJjY3JjQ3NhYXPgEXFgYHHgEHDgEnDgEBLgE3LgE3PgEXJjY3NhYXNhYXFgYHHgEHBiYnDgEDLgE3LgE3PgEXJjYzMhYXNhYXFgYHHgEHBiYnDgETMj4BNxEXLgIjIg4BBzcRHgIBIiYnLgECNTQ2Nz4DNwcOAwcOARUUEhYXHgIzND4CNxcOAQIDLgE3BiYnJjY3JjQ3NhYXPgEXFgYHHgEHBiInDgEBLgE3LgE3PgEXJjY3NhYXNjIXFgYHHgEHBiYnDgEBJz4CMzIeARcHES4BIyIGDwE1PgEzMhYXFS4BIyIGBSImNTQ2MzIWFTMUBiUmNTQ2MzIWFz4BMzIWFRQHJzY1NCYjIgYHLgEjIgYVFBcBBiYnBiInJjY3LgE3NhYXPgEXFhQHHgEHDgEnFgYBJzc2NTQmLwEzASc3ByczBw4BFRQfAQcnJjU0Nj8BPgEzMhYfAR4BFRQHEzQCJic3HgMVMj4BNz4BEjU0JicuAy8BHgMXHgEVFAIGBw4BEwYmJwYmJyY2Ny4BNzYWFz4BFxYUBx4BBw4BJxYGAwYmJwYiJyY2Ny4BNzYWFz4BFxYUBx4BBw4BJxYGBRR/3FBJhotRUYuGSVDb/KUQCAEOIQQEHA0HCgwbBwodCgsLBwwVBgceDQEQdg4IAQwdAwMYCwcKCxcGCBsICAgGCxIFBRwLAQ8DLRIBDRYyBgY8GQEPGxkfARc3CgkiFw4UExM1EQwwigoBBwsYAgIfDQEJDgwRAQseBAUSDAcKCgobCAcZc0SFcCITO4p+Kyp/ijsTI2+G/kyU5lQZIhAPEErB0MpTA0KsvLhNCgsNGxQoaXQ2Fy9IMBMpOR28Gg8BGTsFBS8WCxEUMQwRMhMSFA0XIAgJNxUCHgK0CgEHDRwDAyMPAQkQDhMBDSAGBRQOCAwLCh8KBxz+fhg5hoMyMoOHOBhCpnRzp0IOObp1d7c8PbZ2drgBNB4sJRscHRor/k42a1MvmEBBly9TazY6JD40Q5A0PJY1ND4kBDAOEAENHgcGFQwHCgoKHQoHGwwLCA0cBAQhDgIJ/U9Q9AoQETFH/pNHzQzQUjMREAqUN5scKBwkKGFHR2IoJBsoHNsdOSkTMEgvFzdzaicUGw0KC024vKxCA1PK0MFKEA8QIRpU5bcLDwELHAUEEgoGBwcIGwgGGAoKBwsYAwMdDAEInhceAhU3CQghFg0UEhMzEAwxFBELFi8FBTsZAhD+rB8dBY4MDAQEDAz6ch0fAxECIw0DCA0NFQINHgYHEwoKDAoKHgkHGAwNBA4eAP8CHwsDBwwLEgILGgYGEQgICwkIGwgGFQoLAQQNGfzYCjcXBCUYGA0FFz8DAzQaCAEXFiwLEDoQEBUSEiEBSwUdDAITDQ4FAwwiGQ4FAQwLFwUKHQgICgkJEP4xCxIMA4cbAwQCAgQDG/x5DBILAXkTEFX2AR+QjPRjAyc/TitZIEQ8KwhV1nOC/v7dTAcLB2jw79VNmFP3/tECtQI/FgYOFhckAxc1Cw4jEREUDw84EQorFBcHGTL9twYgDQIWDg4IAw4lAQIfDwUODRoGCiEKCg4KChQBOhwCBAICBAIcAX0LCAgLvzECBAQCMQIFBSImHBsnJR0cJto5PkFTFxoaF1JBPzkxIyMgKB8cHxwoICIk/VgBHQ4EDQwYBwkeCgoMCgoTBwYeDQIVDQ0IAw0kAyUf+AsLDR4QMf55JNla5DERHQ4KC5g2nh4mHTwcJRETExElHDwdJh76q6oBL/dTmE3V7/BoBwsHTN0BAoJz1lUIKzxEIFkrTj8nA2P0jJD+4fZVEBMCRQEZDQQBCwoVBggbCAkLCAgRBgYaCwISCwwHAwsfARgCMhkHFxQrChE4Dw8UEREjDgs1FwMkFxYOBhY/AAAAGgIX/qwIEQbMABYAIgAuADoARgBSAGUAeACEAJAAnACoALQAwADMANgA6wD3AQMBDwEbATMBWwFjAW8BhgAAASwBJT4CPwEeBBc+AjcXHgIBIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAY3IiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYTMjc+AzcnBgwCBiMVAR4BFyImJwERMjYsAjcTDgMHBhMiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgE0LgEnBgAHJy4CJw4CBwwBFyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ+ATc+ATU0IyIGFRQWFx4BFRQGBSc+ATU0JiMiBiMiLgEjIgYVFBcHLgE1NDYzMh4CMzI2MzIWFRQGJS4BJzcUFhcBIiY1NDYzMhYVFAYBMjY1NCYnLgE1NDYzMhYVFAYHDgEVFAgR/iz9Gf7BLXeYYDMpUUpAMA46nrddMVJYIvr1HCgoHBwoKLQcKCgcHCgo1RwoKBwcKCiTHCgoHBwoKP6bHCgoHBwoKM1fTRVmgYIxCWP/AP7t/vvTPgGSJ1QtN28v/k9V/gEpAS8BD2QQLIiOcBViTxwoKBwbKSjSHCgoHBwoJ/3fHCgoHBwoKAOtHCgoHBwoKLUcKCgcHCgo/MscKCgcHCgnATUcKCgcHCgovBwoKBwcKCgDriRKOoL++2IrHVh3TFF/XyMBEQKlRRwoKBwcKCiyHCkpHBwnJ8scKCgcHCgorRwoKBwcKCj9RTA/LFY9TVYmJCgFBgcDVAIZSwUEUk07Xj5QZlc6LjcSRgwMY0w2TURONjZnQGd9Bv7XYIAGSGhKAP8cKCgcHCgo/ZogLQQFBgVRRi88bWJGTgH0Al9kmuO3Vwg+io2IfDRlwZ8wDJ/vxf3eKBwcJyccHCi4KBwcKCgcHCgoKBwcKCgcHCijKBwcJyccHCgBUSccHCgoHBwn/qZNFVdpZCOqEBgRDAWb/s4eHksoIwFIAQwFDBQeFf7XHmdyXhVkATkoHBwoKBwcKM8nHBwoKBwcJwJCJxwcKCgcHCf9LSccHCgoHBwnrSccHCgoHBwnAyUnHBwoKBwcJ/7IJxwcKCgcHCe1JxwcKCgcHCf+zzSn0nRN/t2yBXDf5XhNma9wUVUcJxwcKCgcHCe8KBwcJyccHCgnJxwcKCgcHCeMJxwcKCgcHCcCDTosLFFIHCROIB83NREoGBwuFWB8DQ4VKhZfZBMlJDcuIywWGDMaTGQXHxcWlXoXMD4Zd0UOK1wU/pQnHBwoKBwcJwEfVj8UKhQaLxZTXzcrNnAtIFQqJQAABgCW/qwJkgbMACsAMwBjAIsAlwCfAAABMiQ3JgI1NDY3Fz4BNy4DJw4CIyIuAScOAwceARc3HgEVFAIHFgQBNy4BJwceAQEiJCc2GgE1NCYvAQcuASc+AzceAjMyPgE3HgMXDgEHJwcOARUUGgEXBgQBMjY3PgEzMhYXHgEzMj4BNycOASMiJicuASMiBgcOASMiJicHHgIBMjY3DgEjIiYnHgEBPgE3Jw4BBwUUzgFVjS0vAwStdcBBP7rj+n4yVGBERGFTMn7647o/QcB1rQQDLy2NAVb+Jyxlo0sySqoDC7r+33gaIxEGCELDS4kyMJvH64EpTGNISWJNKIHrx5swMYpLw0IHBxEjGnj+3/5RNUYcFywbGy0WHUY0RHhdGUojf0YlMhcZPTExPBoWMiZGfyNKGlx4ATlwpRZSmUBAmFMXpAMWZapKMkujZf6sKivhAfHcPHI0xDuZWG7bxJosFBUICBYTLJrE225YmTvENHI83P4P4SsqBMU9PnxHPUR/+00fIIoBKgEpiVqmSCjiKW05TLW1mDARFAcHFBEwmLW1TDltKeIoSKZaif7X/taKIB8FkDUdFyQkFx01aL+CDqbGKBkdLy8dGSjGpg6Cv2gBI3h1GBcXGHV4/cI+f0Q9R3w+AAAMAOH+rAlHBswAIQAlACkAPwBXAFsAXwBrAHcAewCIAJQAAAEiLgI1NDY3Fw4BFRQeATMhMj4BNTQmJzceARUUDgIjAScBFwMRMxElETQ2MyEyFhURIiYnLgEjISIGBw4BJz4CNz4BMyEyFhceAhcRNCYjISIGFQkBNwkBJzcXJyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBTcXBzciJjU0PgEzMhYVFAYnMjY1NCYjIgYVFBYCtF2og0tETkpMQG2xZQTAZrBtP01KTkRLg6hd/HNBASBBG1D8D5aZBTSZloyqEgUpLfu0LSkFEqo8MUMqCgtVSgROSlULCipDMWd4+sx4ZwSm/uBBASD+FDJQNHlNbm5NTm5tTy4+Py0tPj4BAjVPMiRObjVWMU9sbU4tPj0uKUM+/qxRjrZla9+aH5bNYnDDd3fDcGLNlh+a32tlto5RA4ctAZgu/icB/v4CRgGCm5eXm/5+mpksJCQsmZpaDThdQ0pKSkpDXTgNASh6aGh6/noBly7+aAJcyQnSmW1PTW5uTU9tUD4uLD8+LS0/6dULypltTzFVNW1OT21QPi4uPUIpLj4AAAAGASL+rAkGBswAKQBHAGMAjQCZANsAAAEiJCcuAzU0GgE3PgM3PgIzMh4BFx4DFxYaARUUDgIHBgQnIiYnLgInNhI2Nz4CMzIeARceARIXDgIHDgEnMjY3PgI3LgInJiQjIgQHDgIHHgIXHgEXMiQ3PgM1NAoBJy4DJy4CIyIOAQcOAwcGCgEVFB4CFxYEEycmPwE2HwEWDwEGBScuAT8BNjc+AT8BNhI2MzIWEh8BHgEXFh8BFgYPAQYmLwEmNjc+ATU0Ji8BLgIjIg4BDwEOARUUFhceAQ8BDgEFFMr+un1ujE0eFywdFCtGeWM9nM+Jis+cPGN5RyoUHSsYHk2Mbnz+ucps7XQESHxSBhgmGmDT4XV14dRfGyYYBVF9SARz7mxry1AJTXdHBhUdE2f+1Ly8/tRnEx0VBkh2TQlQzGrCAUZ/YHE4EhYqHxMiNV9QPJrLiYjMmT1QXzUiEx8qFhI4cmB+AUe2UwoKUwsLUwsLUwv+mWkaEAEKAxgYEAkUHWKcdHScYxwUCRAYGAMKARAaaRUSAQYBBwcHCgMCFBlPe1tbe08ZFAIDCgcHBwEGARL+rAYHBhg/fGl7ATUBPoZcgVQtCAUGAwMGBQgtVIFchv7C/st7aXw/GAYGB9cOCmCQUwOeAQzaUggLBgYLCFLa/vSeA1OQYAoOTAsGVIlZCnDgwEAIDAwIQMDgcApZiVQGC9MHBgUPLF5UdwEtATmJU2xAHwYFBgMDBgUGH0BsU4n+x/7Td1ReLA8FBgcDT1MLClMLC1MKC1MLdgUCERXSKxMTPUqg5gEfhob+4eagSj0TEyvSFRECBQETFtISLRAQKhsMHRGgyvt1dfvKoBEdDBsqEBAtEtIWEwAAAAYAPv/YCeIFoAAUAB4AKgA2AEsAWQAABSInAyY1NBIsATMyDAESFRQHAwYjJScuAT8BFwcOATciJjU0NjMyFhUUBicyNjU0JiMiBhUUFgUhMjY3EzY1NAIkISAEAhUUFxMeAQEnEgAhIAATBwIAISAAAxl6MtsqnAEgAY/y8gGPASCcKtsyevihVSsUJplFDwM6VDFGRjEyRkYyGCQjGRkiIwHnBRgsLA7bIPz+PP7T/tP+PPwg2w4t/tBIngIiAW8BcAIinUiU/gb+p/6n/gYoVQF7SUzFAT/ke3vk/sHFTEn+hVU0KBRAIIEmyyYX6kcxMkZGMjFHPCQYGSMjGRkj+RQZAXs2N+8BYcPD/p/vNzb+hRkUAakiAVgBXP6k/qgiAUMBQ/69AAAAAAcBDgBzCRoFBQAuADsAVgCDAI4AmQCkAAAlMj4CNz4BNTQmJy4BJy4CLwEuASMiBgcOASMiJicuASMiBhUUFh8BHgEXFgQlNycVLgEvASMXHgIlPgI1NC4BJwceARUUBgcuASMiBxc+ATMyFgEiJCcuAi8BLgE1NDY3HgEzMjY3PgEzMhYfAR4CFx4BFx4BFRQGBw4DAT4DNycOAgcnPgM3Jw4CByc+AzcnDgIHBmpBoqqbOisjKiAcdmV4x6lNNDFjTTldFxYeGTxmLzpSKHmJiqxnbKJYgAEp/QONv2h9JgpPCAJcsAKSNU8rYJ5fNpizNTdegEdbQRkZSSJBhAH/qf75d0Z1ek9zeXUVGSOpbGWWUB88JiNGKjRSrNqWVGsXFhkRGDGRopn+LRhTYVgcJCd9eiU2GFNfWB4jKH56JDMYU2BYHSMrf3gjcw8hNCQbNic7iyIdOBwiUn1kREBgPjUIBSMWHBfyxHqFLBobZUNhX+aKRX0CHiLj4jFCIbMoWlsnP5WJKy5JulYuVC9CMhtECww2/mxSWjVROhMcHWtVUIYzQU1UWCIxMjhEapJmKBYwGhlgLBEbECEuHQ0CBxQ0NSsJMgxASx9DFDQ1KwoxDEBLH0EUNDUrCjEMQUwdAAAEAQQAPAkkBaAAVwCEAJ8A0gAAJSIkJy4DJy4BNTQ2Nx4CFx4CFxYEMzIkNjU0LgEnAS4BIyIGBw4BIyIuASczDgEVFBYXIy4BNTQ+AjMyFhceATMyNjcHPgEzMhYXAR4BFRQOAgEiJi8BLgEjIgYHDgEHNTI2Nz4BMzIWHwEeATMyNjc+ATMyHwEuASMiBgcOARciJjU0NxcGFRQWMzI+AjU0Jic3FhUUDgIBJz4BNxcOAQcnPgE3Fw4BByc+ATcXDgEHJz4CNxcOAQcnPgI3Fw4CByc+ATcXDgEGhY7+8YVvoIiUY19YHR4OOnBgSI+rcpIBFnygAQugG0xK/KAkZDdMbQ88Uy1De1YMMiEdHS5WJSASLE49KUchKUIiFSsrYiOTW0uGKwNDaXdquvL+tidULcBbazYuTiYrYD8wTiYqXkBNhlnAIjsbKFIyJmA4IxYZCxMMKlgpK3Kk2cwOTAietUmUfUwQFjU+U46z/uo/IEUvJFKYPzcXUSkpWK08MhtPKSE+oTUzHXmHMTMnWxwiKm13NzEaPTcSJUqoUzM6WDw3Mys1HxQJCUlBN0ghIC4dBwUqVEVYV1mTVxUoOS4CHWVbgHklITpiPDqshUioioCwSVGpkFkoGyIeCg1fg4htdv31QWNBUZFwPwHCICCIQTsgFRclAlEgFRcmTECIGBY1OixKCUYKAz4sLl3gb3YpOCEmGU9HJDtFIRQbDR0qOzJfTCwBnx88djogJlQpJUKfPR4pWykjR509HiNkJDEVTVAaIzirRyIbPDwaIiZpbS0eMlskI0aQAAAAAAIBO/6sCO0GzAA1AHcAAAEiJC4CJy4CJzcOAhUOASMiJic0Ai4BJy4BNTQ+ATc+ATMyHgIXHgQXHgEVFA4BJzI+ATU0JicuASczDgIjIi4CJy4BJy4BJxcuASMiBgcOARUUFhcWEhEeATMyNjc0PgE3Fy4BJzceAhceAgQHGKz++ceUcS8VLi0WGxATBxZUHh04FAcVKSIeJBo4LUqFNzWVqKVFSXh4jbuAaGh10o96r11VYGeiQRorZ2YpOWtiWighczsvQgYvDB8ILVpBQDIiGkQmCAwGBicKCxoYEREtKSNGYFMyOYrDARb+rBdDg9afSYBtKRdM5/1tCwsLCqUA/9G5XlN3ODl3gEVzgFei3oeQ4rqlo1tJk0Q/XzVQHjorLXRDSYhEEiMYKnrqwZ/2YVCTQigIB2tkYp5KLG9Huv5g/u0BAgIBbO7iWC0UIxNLJG3FqL7YZRsAAAQBGAC+CRAEpgAmADQAWQB0AAAlIi4CJy4DJy4DNTQ+ATMyDAEXHgEXHgEXHgIVFAYHDgEBLgInERcRHgEXBzUXATI2Nz4BNTQuAScuAScuAScuAiMiBhUUHgEXHgMXHgMXLgInJjU0PgEzMhYfAR4BFRQGByUOARUUFgcJhsKUhEhFcG6CVzZ0ZD9ZjlB8AQ4BC3cmTSls5nJlmVdURFLK+6lxtY45UD3GchaxA5FUtEYzNkyDU3z1ZiRQI3T9/HRtdUR1R1+Md3tMRICNrxU6gnkuEWm7fB5IItojHAQE/t5QVwK+K1BvREFbQjIWDiU4UTg6RiBHfVIZMRU3NBIQN2NUQFQeJCIBNAEjQC4BghX+vjA7AiLvUP5PHB8XNSg4QCUPFzw1EzIYT3dCLywnNygTGDZGYkY+Z0opFQMeMR5SPXu6aA8QZBAqIw0hFDM3r3IMIwAABQIm/qwIAgbMADgARwBVAJcAoQAAASIuAScuAicuAjU0Njc+AScDJjYzMh4CFRQGBw4BBw4CFRQeARceAhceARceAhUUDgIlJy4CPQEXFRQWHwE1FwMnPgM1ETMRFA4CATI+AjU0LgEnLgEnLgInLgI1ND4BNz4CNxcOASMiJiMiBgcGIyImJy4BJy4BJzcTFgYHDgEVFBYXHgEXHgEBBiYvASY2PwEXBg9mmYJEO01QQEx5RyIUFB4CHwGSfG/PpmEPCwoQBAgMBgkbGi9gWiUaPCI5XzlemK389KwwMBBQGit+x09KERMIAlACChUCOUKSgFAxRSAuQB8vaWcuGh8NBwwIBRQWBikEaT8ZXQ8dNh4VFRAQBQ1KQyxBAiQbAiIUEx1qaEmIX2a6/eQMHQkeCBEQaBT+rDZcNzA2Kx0kSF1DOnAwL1w3A6QsMR4zQyQZSCcjSSBJl4w6Q1hKLVKIYBUOFgkPNGBSUHFIIoZVGCxANsFHfykyFDuxVwHfGztRSlxFAiv91kljUFn88xcyVT1CQxsHCxgRG3WZTy5LZFM9lZhBKWBTEgkvHQYSGhIWEDArFg8sIgj8cUBuMy9eNENhLB9GUFVbBi4LARI8EB0BBzoAAAwBLP6sCPwGzAAXAC8AOwBHAFMAXwBrAHcAgwCPAJsApwAAASImNTQ+ATU0LgI1ND4BMzIWFRQCDgEBIi4BAjU0NjMyHgEVFA4CFRQeARUUBgEiJjU0NjMyFhUUBjciLgE1NDYzMhYVFDciLgE1NDYzMhUUBgEiLgE1NDYzMhYVFAEiJjU0MzIWFRQOARciNTQ2MzIWFRQOAQEiLgE1NDYzMhUUBjciJjU0MzIWFRQOAQUiJjU0NjMyFhUUBiciNTQ2MzIWFRQOAQavU3g6OSYxJlaUXaDEUIen/HJYp4dQxZ9elFUmMSY6OXf9vyI+GhMZNw9fFTEjLhYeJ4kRLyI2JDgZAxknUTdZMjk4/VEZJE8mLCAv0Uw4OTJZN1ECOhUuIS0lTyS2Fhs5IzYiLgEEDRA4GRQYPY8gJh4XLiMw/qxzWEF9ejwxUlRkQ2KXV/Pfmv7a7o0CCY3uASaa3/NXl2JDZFRSMTx6fUFXdASiKRwRIjUeDxZwIS8UGSpJLDI+KDgXHSVMJ0b9gjRNJTJFW0p4AnNJMVgnIxw/LWp4SltFMiVNNP5hLT8cIydYMUkLRidMJR0XOCiuFg8eNSIRHClwMixJKhkULyEAAAAAAgGa/qwIjgbMACAAQQAAAS4BNTQ2JDcXLgECNTQSJDMyBBIVFAIGBzcWBBYVFAYHJSE+ATU0JiQnNT4BEjU0AiQjIgQCFRQSFhcVBgQGFRQWAbQNDbcBOMMDic1xogEmxMUBJaJxzIkCxAE4tgsO+XcGUAQDrf7JzovIbI3+/66t/v6NbMmKzf7JrgT+rClKGW+vbwwjNOYBQrzjAV3Gxv6j47z+vuY0Iwxvr28ZSilQDSAPWZNeDFUt0AEuuNMBOKur/sjTuP7S0C1VDF6TWQ8gAAADAHP/EAm1BmgAIABBAF8AABcuATU0NiQ3FS4BAjU0EiQzMgQSFRQCBgc1FgQWFRQGByUhPgE1NCYkJzU+ARI1NAImIyIGAhUUEhYXFQYEBhUUFgUvASU3LgEnEwsBPgEzMgQSFRQCBgc1FgQWFRQGB4sNC6IBF7B5tWOUAQqwsAEKlGe1dbABF6ILDfohBaIEAZz+6bt9tmN/5ZqZ5n9nuHfB/umWAQXNBjb+l7ArSB+sBrRNz3ewAQqUY6prrAELmQsN8Co9F2WfZhAmMNMBIqbQATqxsf7G0Kv+19AoJxBmn2UXPSpQEhMJToBWDFknwAEQn7oBFpub/uq6pP7pvB5ZEFd+TAkTYoCvli8bRScBZwGhAStOXLH+xtCn/tvRLCgSaqBiFz0qAAAIAdH+rAhXBswAKQA1AEMAZwBzAH0AjgCYAAABICQnLgQ1MxQeAxcWBCEyJDY1NCYnLgE1ETMRFBYXHgEVFAYEASImNTQ2MzIWFRQGEyImJzceATMyNjcXDgElIiYnESUHDgEvAQcGJj0BBwYmPQEBLgE1NiQzMgQeAhUUBiUiJjU0NjMyFhUUBgE2EjYzFSIGAgcFEAIkIyAAEQc0EiQzMgQSESUmAiYjNTIWEhcEhP7X/q8SBgkFAwFQAQMFCQYOASwBAssBJJ0QDQ8XUBYODRKt/rj+FCYyMiYmMzPrVI43NC5xRkdwLjM2jgKuJUAj/vUDARwRmsoOGN0PF/6fCQaWAWy7gAEP/Mh2cv2iJjIyJiYzM/1CCmy3eFyUXQkD0JL+5c3+1P65UKsBPdvgAUCq/o0JXZRdebdsCv6stJ03kKvE2XRy18OrjDV5k0J2TRoxGh9HLAJ//YErQh4aNB5lmlYDsTkoKDg4KCg5/vpCQiw4NDQ4LEJCJAkHAXGqKRYMEJN2CAsWZogJDBZq/u9FehBNVDBdiLBrUmTiOSgoODgoKDkBr8wBMqo2oP7muIABAgFOov6b/qkC/AFctLf+jv7ng7gBGaA2qv7OywAAAAAJANL+rAlWBscAJwA1AFIAYABsAHgAsgDAAN0AAAEgJCcuAgI1MxQSHgEXFgQhMiQ2NTQmJy4BNREzERQWFx4BFRQGBAEiJic+AzcHJREOASc3JzcVLgE1NDY3PgEzFSIGBw4BFRQWFwcXByUXASImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYlLgI1ND4BJDMyBB4BFRQOAQciLgEnBw4BIyImLwEHDgEjIiYvAQcOASMiJi8BBw4BIyImLwEOAgEiJicRBSceAxcOATclNwUnNyc+ATU0JicuASM1MhYXHgEVFAYHNRcHBRX+1/6rEQcKBQJQAgUJCA4BMAEBywEnoBENDxdQFw4NErD+tfvOW4oLISAUGhoHATkqbbEHgqwiGx8cIV48MUUaFBcfJ4RJBQETHAJjVI42My5xRkdxLTQ3jv6oJjMzJiYyMgHkJjMzJiYyMvw8JC0Vb8sBGaqqARnLbxQtJTRLLQcjFywVFSoZIiMXLBQVLRccHBctFBQsGCIiGSoWFCwXIwctSwWtNG0qATgGGhoUICELiiL+mxwBEwRJhCceFxQZRjA8XSEcHxsirYP+rLmdRZvNASDJx/7hz5lCeZNKfU0aMRofRywCkf1vK0IeGjQeZaJdAr9ZUwMnOTsWkKT+wxkes6tKUhwkOiMoSR8mLjskHRc0HRwzJ0QrdZMv/m9CQiw4NDQ4LEJCATg4KCg5OSgoODgoKDk5KCg4WjaOjDF64LBnZ7DgejGMjjZUfT0YEBQTERgYEBQRExgYExEUEBgYERMUEBg9fVT+lh4ZAT2kkBY7OScDU1mzti+TdStEJzMcHTMYHSQ7LiYfSSgjOiQcUkoABQJO/qwH2gbMACUAMwA/AEsAbwAAASAkJyYKATUzFBoBFxYEITIkNjU0JicuATURMxEUFhceARUUBgQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBiUiLgE1NBIkMzIEEhUUDgEjIi4DIyIOASMiLgEjIg4DBQr+3/64DwsPBlAGDgwNARYBBckBHpkJDRQWUBUSDguv/r3jVIs2LS9xSElyLi43i/6XJTIyJSUxMQHsJTExJSYwMPxuFiASowE4394BNqISIBYlIRIbOzsweI5TUY12MTo8GxIh/qy1m3UBCgFR3Nv+sP74cnmOQ3VMEyUaKVAsAsL9PipGJhwrGmWZVgKqQUInOTQ0OSdCQQExNycnNzcnJzc3Jyc3NycnNxpSjVfoAVS5uf6s6FeNUk91dU8VFhYVT3V1TwAAAAAFAcf+rAhhBswAJQBJAFcAYwBvAAABLgECNTQSNiQzMgQWEhUUAgYHPgE1NCYnLgInBgQHDgEVFB4BASAkJyYCNTMUEhcWBDMyJDY1NCYnLgE9ATMVFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYDRnStXoPqATSxsAEx5oFgrHQqLwICOn1vJpL+f9EODBoqAdn+2/6vExAJUAcSEAEs/b0BGJkQDQ8XUBcODRGq/sXeVI42My5xRkdxLTQ3jv6bJjIyJiYzMwHiJjIyJiYzMwEdCpwBBKS5ATvqg4Lr/sW5pP78nApo/n4YMRYfb4pFY4IbMmE0V7Ga/Vi5no4BG46N/uGGdpZHeUoaMRofRyyAgCtCHho0HmWcWQKrQUIsODQ0OCxCQQFCOCgoOTkoKDg4KCg5OSgoOP//ADcACgnxBW4QJwX7AWQAABAnBfQD0gAAECcF+P7GAAAQBwX2/FkAAAAA//8AUP90CdgE2BIGBhkAAP//AFD/dAnYBNgSBgYZAAD//wBQ/3QJ2ATYEgYGGQAAAAoCP/6sB+kGzAAmADQAQwBZAHkAkgCsALoAxgDSAAABICQnLgICNRcUEhYXFgQhMiQ2NTQmJy4BNRE3ERQWFx4BFRQGBAEWNjU0Jy4BJyYHBhcWBTI2Nz4BJyYHDgEjIhUUFyIuAjU0PgE3HwE/AR4CFRQOAgEnPgE1NCYkIyIEBhUUFhcHLgE1ND4BJDMyBB4BFRQGBSImNTQ3FxYzMjc2MzIXHgEzMj8BFhUUBicyNjU0JwYjIiYnLgEjIgYHDgEjIicGFRQWEyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYFF/7e/qkPCQ0JBVAIEQsMASMBCccBIJsMDRMXUBQSDg+v/r3+iBAUIkeIQyANDR2OATQWLhgREwIDIxQtGCIXi/K4aH3ej01sYTWV6IVoufMB/k0jHKf+47Oz/uOmHCJNJiFswwEFmJgBBMRtIf1VU2wmOggICxcUGBkTDg4GCQc6JmtSN0gHERsRFQgHDQsKDgcIFREbEQdJN1WLNzMvbkdIby4zN4z+qyYyMiYmMzMB1iYyMiYmMzP+rLSdWbvkASrHWtz+wfpzdpJFd0kUJxooTysCyCb9EipGJBstG2aZVgSYARQOIQIDIRwOHh8OQQcDAgIVDyMEAgQiIngtTmY6P29RENAJEM0PUnFBOmZOLQFCIT9TKHG3bGy3cShTPiFEZTFksIVLTIWwYzFmXXxkTz4kBhMPDwsIBiQ+T2R8Pl1FFxwOCwgHCAgHCAsOHBdFXfzRQ0MsOTMzOSxDQwExOCgoOTkoKDg4KCg5OSgoOAAAAAoCU/6sB9UG/gAxAD8ASwBXAGcAdACFAJAAnQCuAAABICQnLgI1NBI3FwYCFRQeARcWBCEyJDY1NCYnLgE1ETQCJzcWEhURFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYBJz4CMzIeARcHLgEjIgY3PgE1NC4BJw4BFRQSFy4CNTQmNTQ2MzIeAh0BASYjIgYHJzYzMhcTNhI1NCYnDgIVFBYXJzU0PgIzMhYVFAYVFA4BBQH+3P6pDwsRCHRnNFplCBELDAEkAQrIASGbDA0TF2BWNGJwFBIOD6/+vO5VjDczL29HSHAuMzeN/qYmMjImJjMzAeQmMjImJjMz/XklNYiLOTqLiDQlTrpUU7srBARAfl0EAYxzaJ9ZKD0lRZWBUQEnVFo0YCMOX2ZlWiONiwEEXX5ABR2HUYKVRCY9KVme/qy0nXfRpzjFAURuPWT+3bM3p89zdpJFd0kUJxooTysBYJoBCl89av7WrP6gKkYkGy0bZplWAdxDQyw5MzM5LENDATU4KCg5OSgoODgoKDk5KCg4AbMyLEAkJEAsMi41NYIWNRZovpIjGC8Rm/79qi2W3pksXistJmiqxl/eAQ4dEg9SHx7+2kYBA5sRLxgjkr5oFjV6Ld5fxqpoJi0rXiyZ3pYAAAAADAEx/qwI9wbMACEARgBUAG0AeQCFAJsAtADWAPQBGAEkAAAlLgE1NDY1NC4BNTQ2NxoBJDcHBgQCAwYVFB4BFRQGFRQXASAkJy4BJzceARcWBCEyJDY1NCYnLgE1ERcRFB4BFx4BFRQGBAMiJic3HgEzMjY3Fw4BBS4BNTQ2OwEaATY3Fw4CAgcjIgYVFBYXASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGEy4BJw4CIyI1NDY/AQ4BBz8CHwEBJz4BNTQmKwEmAi4BJzceARITMzIWFRQGByc2NTQmNTQ+ATU0JwoBJC8BFgQSEx4BFRQOARUUFhUUBgEiJjU0NjcmNTQ2MzIXNjMyFhUUBx4BFRQGIyInBicyNjceATMyNjU0Jic+ATU0JiMiBgcuASMiBhUUFhcOARUUFjciJjU0NjMyFhUUBgKnm4YLMDADAUTWAUXoDs3+6L5HAzAwC8ICgf7c/qkPCw8FTwYPCwwBJAEKyAEhmwwNExdQCREMDg+v/rzmVYw3My9vR0hwLjM3jf0wQEltUl0jVHZVNj5bRjgbozM8LCUBcSYyMiYmMzMBpSYyMiYmMzNzNEYSQpV5GBEHClthokNsZ7HEggEbFyYsPDOjGzhFXD43VnVUI1xSbUotEMILMDADR77+6M0O6AFF10MCAjAwC4X8qTRIEBEhSDQsIiIsNUchERBINCwiIi4QHiIiHhAbIxQhIhMhHRAeIiIeEBwiEyIhFCNrERgYEREYGDMYaUYSIw0dN0YzCRQIAXMB3fgbUh3j/kX+nA8MIzY8LBYgEVgg/ie0nXT0nQqg9nJ2kkV3SRQnGihPKwEjDP7pHDEvGBstG2aZVgJ7Q0MsOTMzOSxDQx0aVzNBUwERAVu+JEMVa8b+yt8mHhguEQEHOCgoOTkoKDg4KCg5OSgoOAFMM2Y2OFcwEAgcFtMuWi/5QA0y3PyxTREvGB4m3wE2xmsVQyS+/qX+71NBNFfqTCBYESAWLDw2IwwPAWQBu+MdUhv4/iP+jQgUCTNGNx0NIxJJZATrRzMXJRIhMDVGISFGNTAhEiUXM0chIT4VISEVIhoQHCIjHBIcIRUhIRUhHBIcIyIcEBoiYxgRERgYEREYAAAAAAYBpP6sCIQGzAB5AIcAkwCzANIA3gAAJSImJz4BNTQmJy4BNTQ2NyY1NDY3JjU0NjcmNTQ2Nx4BMzI2Nz4BMzIeARceAxUUBx4BFRQGBw4BFRQWFw4BIzU0Njc+ATU0Jic+ATU0LgEnLgIjIgYHDgEjIiYnBhUUFhcOARUUFhcOARUUFhcOARUUFhceARUFIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBhMyJDY1NCYnLgE1ETQuASM0JiMiBgcOAQc3FBoBFxYEBSAkJyYKATU+ATc+ATMyHgEXHgEVERQWFx4BFRQGBBMiJjU0NjMyFhUUBgKoRk4LLSElKTcuFhMYIyoLYV4KMS4WSzEkRCg8o3hwunkNQnVaMxwTFSY2IywhLQpQRTgmKSQWGxQRUopWA2akZHCLOChYNi1QGgUNEW5nCgw1Iw8PGxQrKyY3AnRVijcuL3BJSXEvLTaL/pYlMTElJjAw7s0BI5sMDRQWLmlZVE9nolB94W4aCBELDQEiAQP+4P6sDwwQCHfff1C/eD5jPQWAgBQSDg+x/rkbJTExJSYwMO4gKAgnIhpJNUl1UCpJKjAxL08bJypUahMdICpKGTcwHBMdNzlkQQVJdpFNRD4oSitRdEkwSR8iJwgoIJUyZDU5YEYpQTMkPx9dn2MCPl00MRwUIh0bERYYJR4KSUciNB4WOiYYLBo9QCNGXzo0ZDMtQUEoOjM0OShBQQE5OCYnODgnJjj8bUN1TBMlGilQLAIrY4JASk1iPmFoCxfA/r7+9HB5jlC1m34BEQFP2wVjYz5wKEYtBLmr/cwqRyUcKxplmVYD4zgmJzg4JyY4AAAACQI//qwH6QbMACUAMwA/AEsAVwBfAHcAhQCNAAABICQnLgECNTMUEhYXFgQhMiQ2NTQmJy4BNREzERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGATI2NTQmIyIGFRQWJyM0EjcXBgIBLgE1NBI2JDMyBBYSFRQGByMmJCMiBAcTNiQzMgQXJgIkIyIEAgU0Aic3FhIVBRn+3P6pDwsRCFAIEQsMASQBCsgBH5kMDRMXUBQSDg+t/r7rVYw3My9vR0hwLjM3jf6oJjIyJiYzMwHfJjIyJiYzM/7kKTY3KCg4OPJGX1w8V1r+dyMWbMUBCp2WAQHAbBsjFIP+v7u0/r2GBJYBPqewAUGNErD+6a6j/vGtA3VaVzxcX/6stJ13+wFA3dz+wfpzdpJFd0kUJxooTysCyP04KkYkGy0bZplWAldDQyw5MzM5LENDATE4KCg5OSgoODgoKDk5KCg4AYhBLS5AQC4uQMWvAStNKj7+6/3jMm43ngEPynBwyv7xnjVzLzpAPzsBLEdFSESqAQeWlv75Y6oBFT4qTf7VrwAAAAAJAgj+rAggBswAJQAzAD8ASwBZAHEAggCLAJMAAAEgJCcuAQI1NxQSFhcWBCEyJDY1NCYnLgE1ERcRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYBJywBITIWFwcmIiMgBAMuAjU0PgEkMzIEHgEVFA4BByYkJwYEBzYsASU0LgIjIg4CFRQWAycsASUXBgwBAT4BNyIEBxYFGf7c/qsRCxAJUAkQCwwBJAEKyAEhmwwNExdQFBIOD6/+vOZVjDczL29HSHAuMzeN/pUmMjImJjMzAewmMjImJjMz/A0hARkCjgGNGS8cBBkzGf59/YjgLDASeNYBG6OkARvVeBQ2M3T+wbbh/qRopgGRAeMBIG3A/ZGS/sBsGTkbASQCFwEgJsL+kv6RBI8iHAOF/v5x7v6stJ1p4QEPrC67/uHoanaSRXdJFCcaKE8rAjAS/eIqRiQbLRtmmVYCpkNDLDkzMzksQ0MBMzgoKDk5KCg4OCgoOTkoKDgBS0XMxQECSgLB/iRTjplkd8yYVVSXyXVnnY9TgrUtMa8GhaBJAmCpg0pKhLFmcp8BM0e+tgpKAlKm/ftGhVsTEVEAAAgCA/6sCCUGzAArADMAQQBNAFUAYQB+AJoAAAEgJCcuAzUzFB4CFxYEMyAkNTQmJy4BNTQ+ATczDgIVFBYXHgEVFAQBNDY3Fw4BFQUiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGATQmJzceARUDIiY1NDYzMhYVFAYFLgE1NBI2JDMyBBYSFRQGByMuAicOAQcOAgcnPgI3PgI3HgIXPgE1NC4BJCMiBA4BFRQWBOL+2/6tEAgLBQJQAQYKCQ4BLf0BYwF1EA0PFxgeB08HHRgXDg0R/mX8/TYzHSkrAW1UjjYzLXJGR3AuNDeO/p0mMjImJjMzAlYqKh4yNogmMzMmJjIy+/scJHTTAR6rqgEf1HUYFzlQmnccZNVsaseqPhRGrcBiU5+iVhZni0oNCWm+/v6Zmf7/vmgR/qyvnVObseOameSxmU91jY1zGjEaH0csUMDEV1nBvlMrQh4aNB6atgMcRGEiJx1LODhCQiw4NDQ4LEJCAU84KCg5OSgoOP7pOEsdJyJhRAEXOCgoOTkoKDgiSpRJnAEOy3NyzP7ym0CDRC634WxPTR4dT5uSeniHSxwYN1pJdOvCNy1WKYzytWZltPKNK1sAAAAIAWj+rAjABswATQB3AH8AjQCZAKEArQD8AAABIiY1NDY3PgE3PgE3PgI3PgI3PgEzMh4BMzI2MzIWFx4CFx4BFRQWFx4BFRQGIyI1NDY1NCcmJwYjIiYjIgYHDgEHDgEVFBYVFAYBICQnLgInMx4BFx4CMzIkNjU0JicuATU0NjczDgEVFBYXHgEVFAYEATQ2NxcOARUFIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBgU0Jic3HgEVJyImNTQ2MzIWFRQGBTI1NCY1NDc2Nz4BMzIWMzI2Nx4BFx4BFRQGFRQWMzI1NCYnLgE1NCYnLgInLgEjIg4BIyIuASMiBgcOAgcOAgcOAQcOAQcOARUUFgJocY8vIhETAgYcHxstKRQUJDw4RHlHPko3HiZWSFORPygxMSk7NB8cIiiKefsURXgwYWkaQhYiHwkRYEQvJwWBAkH+uf69EAgKBgFQAgoNCYH+wr8BIKAQDQ8XDwpPCg4XDg0Rsf69/ZI2Mh4qKgFZTYQ1MitpQEFoKzI0hP6jJjIyJiYzMwJDKykdMzaJJjMzJiYyMvwqqgV/dBsRRD0XSBM0blEXTTc4PRRRXrghICEjJC4tOzMhNHRELj01JCM9SDU9Yz4rMSIYGDIxFRETBQIdEB0pZAHAkXxEhDUbOxxJaSQfIiAbG1BWJCwqERElSUMqVlAhL1k5R1grM3RdaXb0J1sxix0xhjsHFR86YyMYVkYWOR1qdfzstJ1Pk6RpntpxTnZDQ3ZMGjEaH0csO4pHRog+K0IeGjQeZ5lVAupEYSInHUs4ODc3LCwqKiwsNzcBMTgoKDk5KCg4+ThLHSciYUT5OCgoOTkoKDiElBo2HLZCPVU2MwcoM1dvFhZ+WjNmGlpOk0ZhMDJtWCg5JSRZWCM4PRITERElJxtJTCAhIyEfGVhMIUIbMW82XGYAAAAJAof+rAehBswAFwAfADYAPgBcAHcAhACRALEAAAEgABE0PgE3PgE3NiQzMhYSFRQOAQcCAAEuASc3HgEXEyAAEz4CNRACIyIGBw4BBw4CFRQEATUsATcXBgQTIiY1NDYzMhYVFAYjIiYjIgYVFBYzMjYzMhYVFAYXIiYnFx4BMzI2NTQmIyIHJz4BMzIeARUUDgEDIiYnNx4BMzI2NxcGBSImJzceATMyNjcXBgMiJjU0NzY1NCceARceARcOASMiJicuASMiFRQWFw4BBOz+2v7BGy8dKEsnVgETr5zmfwUMCy3+v/5QWatOIlO2YEwBCgEbKQsMBezKlu1QJkwnGi0bARb+2wGPAkrHN9L9mUhVdXVVMyMQCwocGjhQUDgaHAoLECMXQHwbOBVXM1NzdVNsNC4jbUBHdUZEdWQoTBEzCy4ZGCANJiIBCilMEDMLLhkXIgwnJdRMP6leAR4SBAQVHgssHRMfDw0aDiIUGAcV/qwBIAEDS7S/W37YXtHxkv7wv2exrmT+Y/52AvRQtmFYbMVW/SQBYgF5ZbGvYgEHAQnNwlvWf1e3rEbi8QJjUQfr5jnx+AGRS0lJSxgODQcDKzIyLAMHDA0ZaVNJAi41cVJQbmATREFDb0RGckICMS8mFhceDg0mK1ovJhcYHQ0NJisBPFUpZg8JJQcDAyYVEzoVLykKBwYIHQsYDAIEAAAABgH0/qwINAbMACUAMwA/AEsAfwCjAAABICQnLgECNRcUEhYXFgQhMiQ2NTQmJy4BNRE3ERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGASIkLgE1NDc0EiQ3FQ4CFRwBFw4BFRQWBCEgJDY1NCYnNjQ1NC4BJzUWBBIVFhUUDgEEAS4BJzceARcjNTQ2OwEyFh0BIz4BNxcOAQcnETQmKwEiBhURBRn+3P6rEQsRCFAJEQoMASQBCsgBIZsMDRMXUBQSDg+v/rzmVYw3My9vR0hwLjM3jf6VJjIyJiYzMwHsJjIyJiYzM/7e6v7LtUw1lwEDopPbeQEcH4gBPAEMAQ0BO4gfHAF525OiAQOXNUy1/sv+Pw0xI0MSHgwcRjK6MkYcDB4SQyIyDUwdFbIVHf6stJ1w6wEkxBu5/ubkanaSRXdJFCcaKE8rAhsb/coqRiQbLRtmmVYBq0NDLDkzMzksQ0MBNDgoKDk5KCg4OCgoOTkoKDgBRRUwUj07IJcBA7gjUySg4YgHCwYHGxcyOhcXOjIXGwcGCweI4aAkUyO4/v2XIDs9UjAVAjBljC4sFzkiezJGRjJ7IjkXLC6MZQQBRhQeHhT+ugD//wHg/qwISAbMEgYFdwAAABgBGP6sCRAGzABXAGQAewCXAKMArwC9APcBGwEsATkBRQFTAV8BdgGHAZABngGoAbMBvwHIAdIB4AAAASIkJw4BBy4CPQEmAjU0NjceARcuASceARc0Ji8BLgE1HgEzMjYzMhYXNCYnMhYXPgIzMjY3FAYHPgE3HgEVFA4BBz4BNx4BFRQCBxUUDgEHLgEnBgQBIi4BNTQzMh4BFRQGJT4BNz4BNTQuAScmIyIVFAYHDgEVFBYBIi4CNTQ2Nx4BMzI2Nx4BFRQOAiMiJiMiBgMiJjU0NjMyFhUUBgcyNjU0JiMiBhUUFhciLgE1NDYzMhYVFA4BBSImLwEuASMiBhUUFwYjIiY1NDYzMhYzMjY/ATYzMh8BHgEzMjYzMhYVFAYjIic2NTQmIyIGDwEOAQMyPgESNTQCJw4BIyIuATUOASMiJicUDgEjIiYnBgIVFBIeAQEyNjcuAScuASMiBhUUFhcWASImNTQ+ATMyFRQOAQMiJjU0NjMyFhUUBgciLgE1NDYzMhYVFA4BJzI2NTQmIyIGFRQWBT4BNTQmJy4BNTQjIgcOAhUUFhceAQEyNz4BNTQmIyIGBw4BBx4BATI2NzU0IyIVJzI+ATcuAScWFRQGFRQ3Mj8BLgEnBwYWFzYzMhYXNTQjIhU3Mj0BBiIjKgEnFRQXNTQjIh0BHgEnMjYvAQ4BBxcWFzI1NCY1NDcOAQceAgUOvf7NdAYNClNkLElJDhIgSykZPkREcj0YJg0/Kh4+H0iBRl25SBciqtpFJG25lCtBHwsPNVsmBQY1Uiw1ZisDAlVJLGNUCg0GdP7N/XYdSTZBHUo3Jf6jAg4JCw0gLBILCAsFBQYLNQJxLmhaOQIDjO52d+2MAwI5WmcvQFU3N1S+HCcnHBwnJx5EYGBEQ2BgQUJpPXpxa3s9aQEKICMUDgoYDwwUEAsQHCYlHBYaEBAiEgUeGxseBRIiEBAaFh0kJhwQCxAUDA8XCw4UIyCV+LZkNy8PMCJAYzhBfkZEgEE4Y0AiMA8vN2S2+f64Mk4HSlAOBA4KEB8oHB0DtB4lN0odQTZJoRwnJxwcJycYQmo9e2txej1pRERfX0REYGACBTI0CwYEBgsICxEtIA4KCQ7+0gwcHSceEQoOBA1RSghN/YgUKh4uLpwZNiYBHjkdBB3oIAUJFi0XCQQfhRQaCxgLLi4uLgsYCwsXDPwuLh4rIhofBAkWLRcJBfEXHQQdOR4BJjb+rKanMVs1XqSraSpkASerVqxlJC4IUJRPFjw1HlArD0g8HAkHFmGJRIE8VYZDSx8UFjhwMhZDOCRCHlCJbSkEGREuTCrr/rFkKmmrpF41WzGnpgKwHjEeNx4xHhgfUDViLTVbKSJYURgPGRM5JDF2O1R+/Z1JdIY8DRkLLCsrLAsZDTyGdEkWFgLzJxwcJyccHCdJWkBAWlpAQFoySXVBSlpXVT9xR70VHxUQEBQMFQYFKxwaJBIpKwxHRwwrKRIkGhwrBQYVDBQQEBUfFf3GdNQBIaxuAQ+UHBxAbEIWHR0WQmxAHByU/vFurP7f1HQFMktJPqh2ISJ2Smm/SAP9Lh8YHjEeNx4xHgESJxwcJyccHCd7R3E/VVdaSkF1STJaQEBaWkBAWnkyflQ7djEkORMZDxhRWCIpWzUtYgJNA0i/aUp2IiF2qD5JS/uDBAQ7JSVGJTcZBQ0HCRMkKhAUDx42AgYEMRUahgQCAjIlJUslNgEBNiWPQyUlOwQEmBoVMQQGAjYeDxQQKiQTCQcNBRk3JQAAAA4BLv6sCPoGzAA2AFMAbACBAI8AnQCpALcAygDuAPoBCAEWAScAAAEiJCYCNRE0NjMyHgEzMj4BMzIWFREHETQmIyIOASMiLgEjIgYVERQeAjMyJBI9ATcVFAIGBAEiLgE1NDceATMuATU0Nx4BHwEeAhciBg8BDgETIjU0PgIzMh4BFRQGIyImJy4BIyIGBwY3Mj4BMzIeATMyNTQuASMiDgIVFBMiJi8BJjYfAR4BFRQGJzI2NTQmLwEmBh8BHgE3IiY1NDYzMhYVFAYBIiYvAS4BJzY3FyUUBgEiLgInMhYXJx4BFzceARUUBgEiJic3HgEzMiQ2NTQjIg4CIyImJzcWMzI+AjMyFhUUBgQBIiY1NDYzMhYVFAYHIiY1NDY/ATYWDwEOAScyNj8BNiYPAQ4BFRQWAyImNTQ2Nxc+ATcHPgEzDgEEN5v+6Nl9zNNTlZpZVZSEPKqtUIGGM4qdT1qglUyvoHHD+4r0AWjFUH3o/rz9wUdxQRs/bkMBAgk0YEkgZ2UkAyZmZR1GhEAXSYCnXnCpXw0UCyYeQXZDVbttMj8QbZ5YQ21KDQ9MglBMh2k8K1B6ER8GLCK2WXV8Vj5YV0OsCAcBHw1YOiIzMyIiMjIC7SFVUw0lWywRJfgBGnP9TkCSj3YkQoAuCy1YMy0mLBECA5TqQy011IujAQabYjR/lKRYRnY0LFJyXZyIgEJQYq7+1v7uIjMzIiIyMiJWfHVZtiIsBh8Qe1A7Vw0fAggIrENXWWEWGS4gJSdPKg40bTZz3P6se9YBFZkDPvXuHR4eHc3G/esiAjennB0eHh2+1fzCiffAb68BP9ggEjKz/t3QcAI7Sn9NTk9nVQgQCCMfJSYLBRAWGRUkMQ4iJf7JHDeBdUpllEkQGQ4QIx41OBppMjIiIxAbW0kzS0oXDwK8cluuIy4FGg17U1Z8PFk9O1oKGQIHCKZFVkEzIiIyMiIiM/2TIDMIFyoNLB8lJWyIA1NJfaFXKiZKD2dgVyZ+RCYr/VQ+OEMxOEl5Rlg8TjwlJUM9PE48XUtinFoBxjMiIjIyIiIzfXxWU3sNGgUuI65bcjxWRaYIBwIZClo7PVkBIyYiPYYnW0xmHEwtL9ThAAcBVP6sCNQGzAApAEMAXgCLAK0AtwDNAAABIiwBAicOAiMiJjU0PgEzMhYXNhIkMzIEFhIVFAYHDgIVFBYXDgIBMjY/AT4BNy4BIyIGByc+ATcuASMiBhUUFhciJjU0NjcuATU0NjceATMUDgIjIgYPAQ4BATI2NyY1ND4BNz4BNTQCLgEjIgQCBy4BIyIOARUUFjMyNjc+ATMyFhcWEgwBEyImNTQ+ATMyFwcmIyIOARUUFjMyPgIzMhcHJiMiDgIBJic+ATMyFhUUAS4BIyIHJz4BMzIXBy4BIyIGBx4BFwaJyP6d/uquFRM6RCQ6QlOKUAcNBzv5AVrLoQENxWxLWiQpEV9dEZPe/RwmOQoFDDUsBywaHDIPNBFAJQ8gFEVdPzNSZjgxAQEWIFL7ozpUURcNGAgFEF8CJIHZNpgTLSdWRmCv8JDD/rfkLR8nETllPxcVGzQtGSUTGBsBDJwBBAFOMzpBU4lQOkAiLio5ZT4WFRsyNkMrHBccDAscMDRD/nVBaxFQMy4+AaY1kUkZHB9KolsqMw8QIBElSCFCcyn+rIj0AUjAESoeUEVhpWUBAeYBVbx63v7RtIL+sEZeQx5GaR5DZzkC6Ds0GTtEBhYcIRwcIDEHBwZ1W01mRopvVnQfBw0HKVs1bGQ0UjkeJCkYT1X9rj0xV5slUGpLp+t5pAESyG3B/qPrCwlPgUslIBgoFxsiGLj+xOyDAaVQRWGlZR9IF0+BSyUgKjgqCkoEKjgqA51eJVBeSTVX/ro/RgUyPj8ITgMCDg4USC8AAAAACADS/qwJVgbMAIAAugDGANQA3gDvAPsBRgAAASIuAicuAycXDgEjIiY1ND4CNzYSNjcXDgECBw4DFRQWMzI2NxceAhceAzMyNjU0Jic2Nx4CMzI2NTQmJzY1NCYnNx4BMzI2NTQuAScmAic3HgESFx4BFRQGIyInNx4BFRQGByceARUUBiMiLgEnDgEHFhQVFAYBIiYnBiMiJiciJjU0Nj8BNhYfAQcnLgEPAQ4BBx4BMzI2NxcOAQceATMyNjcXDgEPAR4BMzI2NwcGBSImJzcWMzI3Fw4BFyImJzceATMyNjcXDgE3Iic3FjMyNxcGASIuATU0PgEzMh4CFRQOAScyNjU0JiMiBhUUFgEiJi8BHgEzMjY3LgEnNx4BFzI2NycuASc3HgEzMjY3LgEnNx4BMzI2Ny4BLwEmBg8BJzc+AR8BHgEVFAYjDgEjIicOASMiJicOAQULOzwnNDM7h31eFB4aTiUySTxQPgELYZ5mTGedYAoCPU87HBUeRSgeFn+kTEJCIiUmLC8DBX9cQU82HRkiNkQoDBIeMDYZFx03Wzcf0ZNBZqNvFlV3QTZAIx0IAxQSFEM7SzIqQUQwJEopAlT9DiI3CRgdL0EFOEwYH9cvdS2AKIIdRxzXCg8ICCARMmU0KilPOwkkFDNVKCoYNRkMCBwNESQNCh4BQCZRGjMnNzQbOBRKvy1fGTIRQx8gQxAyGV6gWy04GjY1KTE7/umK5oqK5opKrp1liuWLhrS0hoW1tQMTERsMFBkdEwkWCg0mFSgeQCsJFwcMGTUYKylSNBQkBTdPKSszaS4SIQcJDgrOI0od6yPkLng1zh4YTDgEQTAbGgg3IwoVCAs1/qw3TUgQE16Jq2AOISRINjtmVEAVlwEU20EoM87+7JwgREtWMxgbJiwQf8+MGhdHSDE9OREnFSRcJkguMCgsUT1UZR9HNBZDKiUYIF1pM+0BXkswPMr++ZhRpUo1UjwEGBgKLmIvLD1nOENdM0MXHioQChIKUmkFLh0XCSchKyQTIBq2JxMsfC5/HQ8YtggMBwsKQEIiNj4bDQ0/MiAiMxEICQgPE00OZSghKTEtISMq4ikfKRQcHBQpHyniTSEtMSpIAecyUjEyVTQYL0YuMVIygjEkJTAwJSQx/dUFBEwNCgYHCSIcICcmAQYHCBEzIiI0PwsLHz81IkJACgsHCwmuHg0d5DHeLBEtrhogEyQrIScJFx0CBBQZAAAAAAUBSv6sCN4GzAAZAC0AOwBTAGEAAAEiLgIKATU0Ej4BJDMyBB4BEhUUCgEOAgMiLgE1NDMyHgEzMj4BMzIVFA4BASIuATU0NjMyHgEVFAYTMj4ENTQCJiQjIgQGAhUUHgQBIiY1ND4BMzIWFRQOAQUUY9vaw5hXZrb0AR+bmwEf9LZmV5jD2ttjQYdbIhFBZklJZkERIluG/o+Bz3hFV4fPdkfWWMfHtY1Sj/r+wLGx/sD6j1KNtcfHAYdZR3bQhldFeM7+rGq57QEIAQp3jwEL5KpfX6rk/vWPd/72/vjtuWoBbTFJJSUcHBwcJSVJMQFceM+CWEd1zIVaSP2HZa7f9vVsogEo54aG5/7Yomz19t+uZQJ5SFqFzHVHWILPeAAAAAAKAFr+rAnOBswAMwA3ADsAPwBDAF8AYwBnAGsAbwAAAREhNSE1IREhESERMxEhNSERIREhFTM1IREhESEVIREzESERIREhFSEVIREhESE1IxUhESUzNSMBMxEjATM1IwE1MxUDMzUhFTM1ITUhNSERITUjFSE1IxUhESEVIRUhATM1IwE1MxUlMxEjATM1IwJeAQj++P78/wABULQBCP74AVgBBLQBBAFY/vgBCLQBUP8A/vz++AEI/qj+/LT+/P74uLj9/LCwBhi4uPzW7tC0AVS0AQgBBP78/vi0/qy0/vj+/AEEAQj++Li4AvTuAj6wsP30uLj+rAFWlv0BBAJJ/gcB+YwBXv7y3NwBDv6ijP4HAfn9t/78/Zb+qgEG5ub++lC2AzcBqfpqtgMW7e39Oubm5v20Afnc3Nzc/ge0/QTWvvxM7e0hAakBLL4AAAAFAL7+rAlqBv4AKwA1AEkAdQCJAAABIiQAAjU0NjcmAjU0NjMyFx4BFzYkMzIEFz4BNzYzMhYVFAIHHgEVFAIABAEnNjMyFwcmIyIDIiY1NDY3LgEnNx4BFwcOAQcOAQEyJAASNTQmJzYSNTQmIyIHDgEHJiQjIgQHLgEnJiMiBhUUEhcOARUUEgAEASImJy4BLwE+ATcXDgEHHgEVFAYFFNj+h/7ioSEfRUEuKDU5NY5PhAFHtbUBR4RQjjQ5NSguQUUfIaL+4v6H/eIyxLW1xDKumZmhNUofGTRJIxpqwVg3AQECCkQBDccBXAEIlSYjRUoHCQ0cPbBufv7BtbX+wX5tsD4cDQkHSkUjJpUBCAFcAgEtQwsBAgE3WMFqGiJJNRoeSv6soQEeAXnYX7dXpwEfiTtLRUBmImd0dGciZkBFSzuJ/uGnV7df2P6H/uKhAYo+oaE+jwEGVTwmQBMdIAtMI21HQQcNBy49/TGVAQgBXMdiu1icASCLERshRXwvbXx8bS98RSEbEYv+4JxYu2LH/qT++JUCzz0uBw0HQUdtI0wLIB0TQCY8VQAAAAAIAbT+rAh0BswAMwA7AEQATABaAGwApgC0AAABIicGIyIuATU0Ji8BJjU0Ny4BNTQSNiQzMgQWEhUUBgcWFRQPAQ4BFRQOASMiJwYjIicGLwE3NjMyFgcXNTQ2MzIWHQE3JyY2MzIfAQEiJjU0PgEzMhYVFA4BBSImNTQ+ATMyHgEVFAYjIicGAzI2Nx4BMzI2Nx4BMzI2NTQ2PwE+ATU0Jz4BNTQCJiQjIgQGAhUUFhcGFRQWHwEeARUUFjMyNjceAQEiLgE1NDYzMh4BFRQGBIRuQggRO2M6LU0alRcQDX7nATy+vgE9538MEReVGk0tOmI8EQhCblE/P8lLHAckFBUDvhcRERfgIgMWEyQHHP0XTWs1XDhNbDZbARcWHB82IyQ2HhwWHigoaClRFhdRKC5MEBUYEjhQRF4aOjMaEg5y0v7hrq7+4dByDhIaMzoaX0NQOBIYFRFLAlQ5WzZtTDlbNWv+rFoBPGU9LjYsD1XAOz1TqEbDAUfvg4Pv/rnDRqhTPTvAVQ8sNi49ZTwBWjQ0YyiwLh0U8/YXFxcX9h7VFB0usAKxdFQ7Yzx0VTljPeMhIShvVVVvKCEhICD99yEZGSE5LwoFUztHWTYPIGFOOTdVrUezASnZd3fZ/tezR61VNzlOYSAPNllHO1MFCi85Auw9YzlVdDxjO1R0AAQBkP6sCJgGzAB/AI0AmQClAAABIiQCNTMUHgIzICQ1NCYnLgE1NDY3HgEzMjY3PgE3PgE1NCYjIgYHDgEjIiY1EAImIyIAEQ4CFRQWHwEWMzI2NTQvATcXHgEVFAYjIi8BLgE1NDY3EBIkMzIEEhEUMzI2Nz4BMzIWFRQGBw4BBw4BIyInDgEVFBYXHgEVFAQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgRb4f78b0YydsyaAQ0BGA0LDRUJCSY6GTtRKBpDJyghSDMuMB8YQTMxLGXjvvf+6DQ6GC8uwR8aGyApsSCyJidFOCszwT5DRz+RAQy41QECdSAVJBYkTUBRcDI7KDgVLnQ+HCUEBRANCxL+v/tGdy0tJl06O10mLC12/tEfKysfICoqAZsgKiogICkp/qxsAQHgmcZxLYJ/FioXHUYrNWE1BwgpLx8sERIgFR8hJjAlNUAxAVMBuNf+MP4yVHNVKCs/GWcRJBgpF2M7YxVCJTRNG2giXz1Rn2UBQgG54u7+Jf6bLx8iODdFQSs7HBMnGjoxBR88IB83Hhk3IaOuBA43NycuKysuJzc3AQgxICIvLyIgMTEgIi8vIiAxAAYCVv6sB9IGzAASADgARgBYAGQAcAAAARE0EjYkMzIEEhkBLgIjIg4BASAkJy4CNTcUEhceAQQzMiQ2NTQmJy4BNREXERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BByIkAic3FhIWMzI2EjcXBgIGASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGAlZEmQEBvf0BJH1459plZNrlAjD+1P6mDggJA04KDAeQAP+uyAEhmwwNExdQFRENEK/+vO5UjjYzLnFGR3EuMzeOVJn+/7owOy2q6YmK56ksOzC5//5RJjIyJiYzMwIGJjIyJiYzMwIeAbHWASayT5H+sv7i/k8BICAgIPyNtJ1bvrhQufT+qolOd0NFd0kUJxooTysB/Tz+PypGJBstG2aZVgHLQUItODU1OC1CQfupATbTDMb+4JycASDGDNP+yqkCLTgoKDk5KCg4OCgoOTkoKDgAAAkCEv6sCBYGzABOAFkAcwB7AOAA7QEOATYBVQAAASImNTQ2NyIuAjU0NjcuATU0PgI1NCY1ND4CMzIWFy4BNTQ2MzIeARUUDgEHNx4CFRQOARUUHgIVFAYjIi4BJy4BIyIVFBYVFAYBIic3FjMyNxcOARMiJjU0NyY1NDY3FwYVFBYXBhUUFjMyNxcGLwE+ATcXDgETMjY1NCY1NDYzMhYXHgEzMjY1NC4CNTQ+AjU0LgEnPgE1NC4BIyIGFRQeAhUUBg8BLgIjIg4BFRQeARUUDgIVFBYXHgMzMjY1NCYnNx4BFRQGIyImJx4BFw4BFRQWAyImJzcWMzI2NxcOAQEiJicuATU0Ny4BNTQ2OwE2MzIWFx4BFRQHFRQGIyInBicyNjcWMzI2NTQnPgE1NCYjLgEjIgYHLgEjIgYVFBYXDgEVFBYXHgE3Iic3FjMyNjU0JiMiBzIWFRQGIyImNTQ2MzIWFRQGBPZbZgQDNXhqQwIBWHswPjAFU5K+azhwMRARbFhsqWETMi4DKTwiMzM4SjhuVUV4XyEeNRIfHVT+Sz4mLBQkLxQzEkHFKDsGJTQsCTEfGRkZEhgUJyTnC1mzaxdku7w1Nhk1LShaKS1/Ujo5OEo4HygfHzclNixLhFU3NzVGNQYGKB9/nk56y3kDAzA/MFQ6ICggIhomOmdTIWaDY00iJxALyY4HCzclGTARMA4dGC0ENwdOAQctQwQZIyEEBTkoCCQ+KEIMJzIrPSoTDSQqFSQLExQYHgMTGiIlATAiGigICg4FExwIBxEWHRgEH0QsIRgaGxkaIREVAQ4REA0VFiEeJTYw/qxMQxIrECpTek8LFgsEa15LX01dSCNsKGu5jE4cFxEqEz9ae899TI+JQ1UzkaNPb7B7IiUvLT81Q1kxTSkmJxsZOBwoSASbMiIdLhcmKP7VOCcRDh8sIzQHOAgeEB4HHBQRGxQoJEUyDT8zLi9F/IwaFhI9Gik2ODM4USshHy0vQzUjVmuGVEaPgzFZx2Rrp2AqJCo0LT4zDSESDEVlOHHDehI4PBhbclNWPzo6CQUjKB5ELj9bJUkugVlOdBgTcXYCG0EfKC8EghkaHBgqIgc5Q/72MCULMR4qHgoUCik4NTIpBUYyQiYFJzYEFzUQDAgaFAoMByofKScdNiAXAgIcFBAVCg0eEhYaCR0mMiEjHCciISkiEQ0NECEYHjBANDFAAAUCgP6sB6gGzAAbADcAPgBGAFAAAAERND4CMzIWFx4CFREjETQmJyYjIg4CFREBIi4BJy4BNRE3NTceATMyNjcXFRcRFAYHDgI3Njc1DgEHJz4BNzUOAQcTLgInMx4CFwNQJU13UkqlTFN7RVCBcYmDNlY+IQF0cNmwNTguhWI+7oGB7z1ihS44NLHZbIVfNHM9Ly5IKSdJL09+144SURJ4smgBcAMdbc2kYTw2O5agSvzRAxhq1VJjRoO2cfzk/TwRHBARLyMBVT/ULygqKigv1D/+qyMvERAcEYULGecPFgeMBAwKnQoOBgKcBGSrbleHTwQAAAAACgDw/qwJOAbMABcAJQA7AEsAWwBrAHoAlwCmAKwAAAEnAT4BNTQuASMiBwEnATYzMh4BFRQGBxMnAT4BNTQnNxYVFAYHASc2NTQuASMiDwEnNz4BMzIeARUUBiciJjU0PgIzMh4BFRQOAQEiJjU0PgIzMh4BFRQOAQEiJjU0PgIzMh4BFRQOASUiJjU0Nz4BNzIWFRQOATc0Nj8BNiYjIg8BFhUUBgcjPgE1NCcTFwMOAhU3IiYnNycHLgE3EyEDDgE3EyEDMgQBJDQDDn5qOFQsIRz9KSoC1y84QXlOeownPAE5QC8BRA07SP0tNIg8XDErI+Qm5Bs7HkaBUlTsQ2dDaHEuJEUsXo8Cj0BjOVllLCNHMFSB/qdDX0NocC4kRSxgkgJLWksjPmsbPiU3TUgwHVYHFxAWClkCExFHEx4Gdq1wDx8V8yZBKzN3OIhuHb4CUG0KXhtZ/kKgpAEA/qw9AoZojDoxUTIQ/kVEAbscRnZIUad0/YA0AV9HZz0PCEUkOEyCUQJ4PHZfLksuE3xGfA8OQnBFQYyMTjQjV1A0NVErMF9A/WlENyJbVzktSCgvbk4Bf1I6I1dQMzVQKjFlREtMJjINGDYnOB0uYULNH0gT6RMbGuYOBxgrFA02GQ0JAS9C/s8EHiMO3woKiSqLPXg4AWz9yTIsdwHO/s5PAAAACwDI/qwJYAbMAEUAaABsAK4AvADKANgA5gDuAPIBBAAAJSImNTQ+ATU0JiMiJjU0Njc+AjURMxEUDgIHDgEVFBYzMh4BFRQOARUUMzI+ATU0LgE1NDY3ExcDDgEVFB4BFRQOAgEgJCcuASc3HgEXHgIzMiQ2NTQmJy4BJxceARceARUUBgQBJzU3AyIuAjU0PgE1NCYnAzcTHgEVFA4BFRQeATMyNTQuATU0NjMyNjU0JicuATURMxEUFhceARUUBiMiBhUUHgEVFAYlIiYnNx4BMzI2NxcOAQEiJic3HgEzMjY3Fw4BISImJzceATMyNjcXDgEBJz4BMzIWFwcuASMiBjcuASc3HgEXAREXEQEnPgEkMzIEFhcHLgIjIg4BB9lSVz09XV9bclRLRmI1RipJYTg5N0o7VXM7PD1jUY5YICAGBSVNJQQEICA/boz85P7b/q0RBAcCTQMIBQqO+KnHASCcEA8LFgRbBRIIDgyt/r3811BQd06MbT8gIAQEJU0lBQYgIFiOUGQ8PYR/Q0IyPo5+RmJ6V0ltYV9cPT1XAnNUjjYzLnFGR3EtNDeO/qsxUBE7CTAeHjIHPBBRAdAxURA8CDAeHzAJOxFQ/YM8a71eX71qPFqgUFCgyILbc0Fx0XcCSVD6yBJP3AEBg4QBAN1OEkvW+4GA+9eCYU9EdW44OzJGRERCFhQ1VkMBjv5yS2ZDKg8PIh8lICBNRkZ4azZlfMp0TYOOXTh8LgE0CP7MH34+VYyJUGe6kVP+KrefKVYzID1jLE15Rkh5SRg1HRc+GSgQKhEcLhtnm1gC+YDFJf1zU5G6Z1GJjFQ+fh8BNAj+zC58OF2Pgk10ynxlNmx3RmJRISIcJhAmjnkBjv5yWGUlGk01R0MyOzludERPYbJBQiw4NDQ4LEJBASQuJhsUGhoTGiUvLyUaExoaFBsmLgFrNjEuLjE2JiQkLGXpniqb31/9KQGfH/76AzBiYZJSUpJhYm6ZUFCZAAAMAJH+rAmSBv4AKgA9AGIAcAB8AIoAtgDJAPkBBQERAR0AADcGJjc2EjcaASQzIAATHgMXFgYjIAIRLgEnBgQHBiY3PgE3DgEHDgIHIiY1NDc+AT8BDgEHPgE3Fw4BBSAkJy4BJzceAhcWBCEyJDY1NCYnLgE9ARcVFBYXHgEVFAYEASImJzceATMyNjcXDgETIiYnNxYzMjcXDgETIiYnNx4BMzI2NxcOAQU+Ajc+ATc+ATc2MzIWFRQGBz4CNx4BFxQeARcuAicCACEiBAIDDgIBIiYvAR4BFy4BJxceARcWFRQGEyImNTQmLwEFBiMiJictATYzMhYXBTc+ATU0NjMyFhUUBiMiBg8BFx4BMzIWFRQGATI2NTQmIyIGFRQWATI2NTQmIyIGFRQWEzI2NTQmIyIGFRQWvxwSDDNtNkbWAT7fAVYBokkXIyYxJRARG/768ytSEZb+tpgPDggYHQoygjMSa9gNQzUUKToPVgosJUFSGR4iZwL3/tz+rRMHCQRLBAcJBQsBJQEKyAEhmwwNExdQFBIOD6/+vP4OMlESPgovHh0xCT4PU9tKdTIxTHR0TDEydaoyUhE+CTEdHi8KPhJR+zmDnVEOTHIqHiwSKBAJBxcXQbfTahpkSUGSeiY0JRA9/n3+z9D+3r88FzdDBuo6WSEIF1lDHCcMWxM4KBE5hEhoGhIb/oNFHRATCgFg/qoSHxEuHwFwFBEbaEhGYWdIOSsMND4LLjdHaWL+sRAXFxAQFxcBGSk8QisqO0MYKkM8KSpDO2oBIBVZARXZARcBVJv+l/5+eKd7aDgYHwEsATACLytYaggBFw0mQB8rTxG68XvVFRMSEyZcNStJZjECGx9SHB3ztJ1AgEZJPW9pM3aSRXdJFCcaKE8rfUozKkYkGy0bZplWAsUvJx0WGRoUHCcv/uYtMTNLSzMxLQEaLyccFBoZFh0nL7kVet+sH0EdFSAQJBIXGnMtBDZiRElAAsjvdhRUsbVZAVUBSpP+w/7/YrKp/sITE2UhGQImSysTLE4fDg4SEQQCYEMuNRIbdBUOEtDJIQsKcRcUNC5CYFlBQ2AIDj1KDQlgQkBbAW8YEBAXFxAQGP7TMicrNTImKzYB7zcrJjM3KigyAAALAxb+rAcSBswAEAAjACcAKwAvADMANwA7AEwAXwBtAAABIiYnJjU0NjchHgEVFAcOAScyNjc+ATU0JichDgEVFBYXHgElNSEVAREzERcBFQclEQERJTU3IRMRMxEBLgE1NDc+ATMyFhcWFRQGByUhPgE1NCYnLgEjIgYHDgEVFBYvAT4BMzIWFwcuASMiBgUUte4XRDc8AxY8N0QW7ramxgUgHSAd/R4cIR0gBcb+/QNS/MtQdgIn6/4pAsL9PrMBQKpQ/O5AOEQX7rW27hZENzz9CQLdHSAdIAXGpqbGBSAdIiYKbt5wcN5uCmzZbW3Z/qx+bD5cM1oxMVozXD5sflBsXRI6Hxo7GRk7Gh86El1snlBQARQEHPvkCwGD5J+hAQ8B4f75LOtm/AQEHPvkA9wyWTNcPmx+fmw+XDNZMlAaOhofOhJdbGxdEjofGjp6UA8QEA9QDxAQAAAJAU3/CQjUBmgAEgAkACgALAAzADoASwBSAFYAACUuAicuAic3PgEXCQIWBgcBBi4BJy4CPwE2HgEXHgIHJwkEJwkBNycHHgIXLgInARcDNiYnCQIuAQceAhceAgEnNzYXFgcvATczBTYZaYlKSn9WDTYiakwCqgG6/VYaCCL9eApHZTY2USUKMQpIZDU2UCYKWv7nAeABGf4ZAYuo/nUC4bCKsBE3NQoVSk8fASDN3SACIQKR/rX9cEpgIBNPZjY2bVwCUF9SPy8wPwcw+1tuDVZ/SkqJaRk3IggaAqr+Rv1WTGoi/m8KJlA2N2RHCjEKJlE1NWVIChwBGQHb/uf+jgGHqP56AbGviq8NNDdYHk5LFgEgzf3SIGBKApEBSf1wIQIgGlxtNjVnTwPiX1I/LzA/KTD5AAADAQT+rAkkBswAFQAiADgAAAEiJicBLgE1ND4BMzIWFwEeARUUDgEJAi4BIyIOARUUFhcBMjY1NCcBLgEHBhYXAR4BFRQGBwYWBxxtwVD8GltZiOiPbsdbA+5OVYzs/DUCa/4QUalfecRyS00GdBgVgP7MDiMMDAINATwrNwICAxT+rFJRA/ZdzGuN4oRZXfwCT8ZoiuGEAtYCZQH4U0xuvnlcr0/8zDMufYMBPA4DDAwiDv68K2IlDh4OGB4AAAAFARj+rAkQBswAWQBqAJgA6QD9AAABIiYnLgI1NDY3Fw4BIyIuATU0Njc+ATU0JicuATU0Njc+ATc+ATc+ATc+ATc+ATMyFhceATMyNjc+ATMyFhUUBgcOAQcnPgEzMhYXHgEVFAYHDgIHBgwBJyImNTQ2MzI2NzYWFxYHDgEHMiwBNz4CNz4BNTQmJy4BIyIGBw4CBw4BBw4BBw4BBw4CBw4BFRQWFx4BJTI2Nz4CNz4BNz4BNz4BNz4BNz4CNz4BNz4CNz4BNTQjIgYHDgEjIiYnLgEjIg4BBw4BBw4BBw4BBw4BBw4BFRQWFx4BFRQGBw4BFRQWASY2Nz4CMzIWFRQGBw4CBwYmBF1k319WXCIWGRc3VyUgLBYHBwoPBAMEAykmObCLLiUJDgkECiI0ROuVMWtAKmQ0KWIoKkUdOT4XHBlDIB0RNx49RQkFAwMCBidkY3X+1f6kohUZGRVtnVgRIAQKIFu5ibMBSAEbbVtaIQUCAwMFBCMaGDEVRWdWLShfWEzXkitVKjtdVDA0HjBXYt79fw4cGjx8cCkUKxMdVDBBfSstSBcPHyMWGVJPM46iTxcmMRg5Iy5pKC5nNTpoMlaYdyUhIwgEGxcQODd/kDIiIAQEBAIJDgcGDAL1DQENI22ITBIZFRFGdVkcDSH+rBMMCx0rHxoqEyQyMBw2Jhk3JzSwUCxPKzJWJVyfPlxfCwQHCA0rLWKJO09VBwgFCQgICQsuLB9BIB5EIBYTFV5oPXxIL2I4j/7lbYG0XvMVExEXIB8GDhEjDysZo1mremXS5oE5ZjBAfj41PRoZUZKjaWCtU0iDQxMrGSM9PycrJhASEgoLEmwOFTCbuVstVhYhJxEXSiosbT0oST4UFywgFUpxTxc1ER0KCQwFBwcIByI+KyZ4XjpKFA4OBQpMTTSEVitUKypVKlKtPh8vExcUBcMMIQ0jNyAWExAXAQMaKRwNAQAAAAAIALT/pgl0BdIADwATABcAKwA5AE0AUQBVAAAFIiY1ETQ2MyEyFhURFAYjJScBFycBNwkBLgI1NDYzMhYXPgEzMhYVFA4BASEyNRE0JiMhIgYVERQBPgI1NCYjIgYHLgEjIgYVFB4BCQE3CQEnARcBR0FSVj0Hmj1WUkH4Nj0CjSJJ/ZMzAlcBt6/eaZh2THYmJ3ZLdphp3vuFB5lDJxz4ZxwoBBCZuVRrU0l5JiV6SFRrVLoElf2OIgKN/ZodAlczWlJBBQg8VVU8+vhBUhszAxFUjgImPP3r/VKL5MVeeZtCPz9Cm3lexeT+jUMFCBsmJhv6+EMBS33Dok1WbltaWVxuVk2iw/4DAvBU/O8DS00CFTwAAAAACQHd/qwISwbMABYAPABMAE8AUgBWAFkAXQBhAAABIiQmAjU0EjY3JzchFwceARIVFAIGBCcyJDYSNTQCJicHHgIVFA4CIyIuAjU0PgE3Jw4BAhUUEhYENzI+ATU0LgEjIg4BFRQeARMDIwETISczNyMJASMlIScjBTMnIwUUqv7V4oCG8J/EpgKApsSg74aA4v7VqpoBDcx0gOSYc4TQeVqg03h406BaedGDc5flgHTMAQ2aiuOIh+OLiuSHiONFk6kBgZf+0vKvLXMBZQE8qf6NATYt3AFIr2lz/qyA5AErq6wBMug86/n56zzo/s6sq/7V5IBQdM0BD5qgARvTM4oco+2MeNOgW1ug03iM7aMcijPT/uWgmv7xzXTziOSKiuOHh+OKiuSIBE4Bev56AYY8nf2tAXo8nZ2dAAwAbv6sCboGzAAGAAkADAAPABIAFQAYABsAHgAlACgAKwAACQIlIQUJAwUDBQkBIQElJwkBJRMhARMJAScTBSclEyUhBRMJASUFAQcFFPtaAYABnwMOAZ8BgPr4/tP9owJCg/4dBBABN/2S/SMBx7sBpwEc/mPEAj3+4WIDiv2jLoH+Y0UB+dj+oP0e/qHXA6MCZv4dAej+9Lv+rAT7Aknc3P23++UCswEQswHVxvuwAtsBwrve/RcBaWL+DQFq+6IDw/7waQHLYjp5AQO8vP79/dgBD8Z5AZneAAAMAEv+rAndBswAEwAhAC8AOgBSAF0AdQCAAI4AnACnALkAAAEkADU0PgEzMhYXPgEzMh4BFRQAASAkNTQSJDMyBBIVFAQlIDY1NAImIyIGAhUUFhMiJzcWMzI3Fw4BASc2NTQmIyc+ATU0JiM1MhYVFAYHFhUUAyInNxYzMjcXDgEBJjU0Ny4BNTQ2MxUiBhUUFhcHIgYVFBcTIiYnNxYzMjcXBhMgJDU0EiQzMgQSFRQEJSA2NTQCJiMiBgIVFBYBIiYnNxYzMjcXBgEkADU0JiMiBgcuASMiBhUUAAUU/sf+01WRW1uYMjKYW1uRVf7T/FL+0P7clAELtbUBC5T+3P7QAQr6f+eeneh/+59bLjIcO0sVOg9UAXodQB8gER8RJxw1SgwOOpFNNC4jMDUSOQ5GAmJfOg4MSjUcJxEfESAfQBUsRg45EjUwIy40yP7Q/tyUAQy0tQELlP7d/s8BCvp/556d6H/7AXM3VA86FUs7HDIu/MYBFgEKj2xanywtnlpsjwEJAmX3AYCnXZVXWFNTWFeVXaf+gPtQjJL7AWK7u/6e+5KMUGJs5gE+pKT+wuZsYgJSRyEsSRA1QP5uNiIyFBkyEhsNDxU8NSkRHhIfOlcBnEEmKzQTKzL+MDRXOh8SHhEpNTwVDw0bEjIZFDIiAZoyKxM0KyZB/SCMkvsBYru7/p77koxQYmzmAT6kpP7C5mxiAlJANRBJLCFHAXDgAVeOcJN7ZWV7k3CO/qkAAAAJASL+rAkGBswANgBCAHoAigCOAK4AxAD9AQkAAAEDLgIjIg4BBzYkNz4BMyYkJzcWBBcmAic3HgIXLgE1NDY3Fw4BFRQWFzYkNw4CFRQWHwEBLgEnPgE3FwYHFhcBIi4BIyIGBz4CNxcOAQc2MzIeATMyNjU0JicuAicuASceARcHLgE1NDY3HgEXFjIXHgEVFAYBNy4CIyIOAQc+ATMyHgETNycHASInLgEnLgEnPgEzMhYXLgE1NDY3HgEXHgEXFhUUDgEBLgE1NDY3NjIzMhYXBy4BIw4BFRQXASIuATU0PgE1NCYnHgIXBy4BJxYVFA4BFRQWMzI2Nz4CNz4BNw4CByc+ATMyFw4BBwYWBw4BEyYnBgcnPgE3HgEXCBPkKXOZY1ynsWtcAUX8DBgNiP7bZgZmAQODXs9vPEqjmToKEAoGTAQGDw8sARXESG4+Li+9+NA/WRwveEYGVTYnSQE2SXh4SR86GxVMj3sTZnQwDxFCeHI5ZXdsYhxbWh0ZMBcjq6Aa6r0CAyJdQCyJN32SqQPIkTyrtEyR1I4nT81tcbCM2JF1kfxje18mQSAaUEs9ZStHdj8TGSgxBiIZHWUlSU18/qEuIQgGCBIIWow9ODBiNQECQAOFW4RIJiYLC0xzURhHEDNABCUldGRRchEGAwMHBRANO1pNJkxTvXMeIRYhCwkBCxadBgYnNiNIH1k6MTYF/qwBEDE9Hhs7MdHKDQEBR0gGUAc8On4BCno2UcjJVSxpNjhtKxYeTyw9gzqq3xNEvMdYRmo54gJ3H1k6MTYFUAYnNST+6icmCgtMclEYRxQ4NgMlJnxeUHIRBQUEBQUQDVh3OUxTvnMPHxAWIAwICxmaboSk/qJ5R2w8Rmo3HSUoVv79eox6BAVtLHIlHjATGhcxIzVhMzh8S0xXICZVLFZmR31MAVdDazAdOR0BPD04LzEJEQlTX/4oT4pXT3JxTx46GxRMj3sUUYQ4Exk7cnE9YXxtYSJVVSIaMBcYWpFsGuq+BiJdPzJ8Pn6RAkhSOilHJD5ZHC54RwAAAAwARv6sCeIGzAATACAALAA6AEgAVABgAG0AewCJAJUApwAAAQgBNTQ+ATMyFhc+ATMyHgEVFAABIiYnNx4BMzI3Fw4BASImNTQ2MzIWFRQGEyAkNTQSJDMyBBIVFAQlMiQ1NAImIyIGAhUUBAEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBhciJic3FjMyNjcXDgEDICQ1NBIkMzIEEhUUBCUyJDU0AiYjIgYCFRQEASImNTQ2MzIWFRQGASQANTQmIyIGBy4BIyIGFRQABRT+rP7OWJlhX6MyMqReYZlY/s78T1uSHjsXcEl9ODYjff7sHyUpHx8lKYv+3/7PmAELr68BDJf+0P7e/gEEg+iXluiEAQUB7R8lKR8fJSkC/h8pJR8fKSWxS30jNjh9SXEWOx6RQP7f/s6XAQ2vrgEMl/7Q/t7+AQSE55eX6IMBBQGsHyklHx8pJfy2ASQBEpJwWKQ4N6VYcJIBEgInAQoBk69inFtdUlJdW5xir/5t/JRTRRozPVEkNDsBBDUhJjc1ISU4/eOonOMBXsjH/qLknKhQfHjMATuys/7GzHh8Aa81ISY3NSElODglITU3JiE15js0JFE9MxpFU/7nqJzkAV7HyP6i45yoUHx4zAE6s7L+xcx4fAHNOCUhNTcmITUBwuwBZ5V0lXtmZnuVdJX+mQAAIwCQ/qwJmAbMAAcAGgAeACYAKgAyADsARABIAFAAWQBqAIIAigCSAKoAsgC6AL4AxgDeAOYA7AD1AP4BHAEsATUBOQE9AVEBWgGEAZYBqQAAExEzESERMxEhIiY1NDYzMhYXPgEzMhYVFAYjJxEzETcmNTQ3FhUUFzUzFScmNzY3FgcGEzU0NjMyFh0BJTM1NCYjIgYVFzUzFSUmNzY3FgcGJzY3NhcOAQcGASImNTQ2MzIXNjMyFhUUBiMBIjU0NyY1NDMyFzYzMhUUBxYVFCMiJwY3MjU0IyIVFAUmNTQ3FhUUJSI1NDcmNTQzMhc2MzIVFAcWFRQjIicGNzI1NCMiFRQXJicmNxYXFhMRMxEDJicmNxYXFiciNTQ3JjU0MzIXNjMyFRQHFhUUIyInBjcyNTQjIhUUBScJAQcBEwYnLgEnNhcWARE0NjMyFhURATI2NTwBJzMyNjU0JicGIyImJw4BFRQWFwYUFRQWAScTIRMHISchNychBxchBxM1NDY3HgEdAQUhESEDESERATI3PgE1NCYnJiMiBw4BBw4BBxYBETQ2MzIWFREBIiY1NDY3PgE3Ez4BMzIWFxMeARceARUUBiM1LgEnAy4BIyIGBwMOAQcBJjU0NjMyFhc+ATMyFhUUDgEBAjU0NjMyFhc+AjMyFhUUDgH7UAevUPeYJxxiRiNZGxYeCyo3HixAPGMdGR18Mf4EFRMkBRUWTmBGRmD+6ORCMDFBijH+7hcFBB4YBQRSBx4aIwQRDh4BxDAgXkMpIi03O1UcKv0+IRoaIRMNDRMhGRkgEw4NDRsbGwFqHRkd/uchGhohEw0NEyEZGSATDg0NGxsbxh8EBRgeBAV+PHMkFBUFJxAVwiEaGiETDQ0TIRkZIBMODQ0bGxv+EjUB0wHSNf5j9iEeDRIEIRwdAYw8Kyo8/LARFwEOMDMODiAmMl0jCgw6MQEY/apy6Qc26XL7x1AEaCil+RilKAE2WrpqTEpo/iwCR/25UALn/rwjHAEBIRwDHhkIIjQDAQICPgQCPCsqPPoYMU4qIhcWCLUjQiwsQyK1CBcWIylOMRohDLUfIgsKIx+1DCEaA9OcPSspPQIKNh8qOUJvATf8ZEZCYwQIJT4tRF1rtf6sAqv9owJd/VUPGDlbGxcFBD0vFw9KAiH93/gbIhwbGiEgllVV2iYbFwUrFhj+pedHYGFG5yfAMUJBMmpVVf4fIhwXIB8cPicRDwkUHAcO/e0PGDNNFCJSOxkPAhwgEw0OEyEaGiESDw0TIBoaJRsbGxv+GyEfGRohIPIgEw0OEyEaGiESDw0TIBoaJRsbGxumGRwfIBgbIv5eAiH93wFbBRcYKQUWHlMgEw0OEyEaGiESDw0TIBoaJRsbGxsxPAGd/mM8AW7+nAcOBxwUCQ8P/nUBCys8PCv+9QObGBACAgENDQgQCgQPDwgQDQ0WCAIGAxAY/h1yASn+13JOKtPTKk4BjvpUhRUVhVT6DgHJ/hkCN/3JASIEESEKHzQNIRkHPigKEgcY+8QBCys8PCv+9QTLLx8dLBoRGA4BMztHRzv+zQ4YERosHR8vcRUlFQEzNSUlNf7NFSUV/mCrXCs8OCogJzkpLV5PASYBFJdGY1hDFjQlXERJmoEAAAALAKr+rAl+BswAFwAhAC0APwBVAGYAcgB+AIgAmQClAAABJAACNTQ+ATMyHgEXPgIzMh4BFRQCAAEuAic3HgIXNy4DJzceAxcDLgI3PgE3NhcWBgcOAQcOAQEkABI1NC4BIyIGBy4BIyIOARUUEgABJz4DMzIXBy4BIyIOAgMnPgM3FQ4DASc+AzcXDgMXJz4CNxcOAhMuAyMiBgcnNjMyHgIXEy4DJzUeAxcFFP7Z/o+rb8N9UpuAJyh/m1J+wm+r/pD78D6JdyNHIHCBOdVBkYtyIUYfbYWMPY4MEgkDEmY8JBMHBg4wUA4EGQIyAQYBTp9bnmZ72j8/2ntln1ufAU79WVAGZaTNbi4qDBMlFF6wj1h0Tg1chJdIOn1vTgX1MD6LhW0fRiFyi5HEMDqAcCBHI3eJhwVYj7BeEyYTDCoubs2kZQYfCk5vfTpIl4RcDf7p5wF8AUyggchyPGxISGw8csiBoP60/oT+3C+OmkAlPI+FLDAwipyZPiU6kZWELQOAAQ4WDEmNHxMlDR8IHG04EBD8dNABWwEvjGqlXp6Ojp5epWqM/tH+pQPwA2GrgkoGUAIDPm2OAR8QO21ZNwRQBC1IVvlvQS2ElZE6JT6ZnIqgQCyFjzwlQJqOBTVRjm0+AwJQBkqCq2EBbS1WSC0EUAQ3WW07AAAABACq/qwJfgbMAAsAGwAqADcAAAEDEwETNjMyFhIVEAEIARE0EiQzMh4CFwMBAxMDEwMTLgIjIg4BFRAAAQARNC4BIyIGBwMBAwWLhMz+9vSt4aX+kPt8/dT93JQBAKBwtIRPC88A/7kbca/5zx1zqW+K238BuQMIA3N72o5hn0zcARDW/voCEgFOAXoCZZOb/vGu/ab8kgGtAucBRaUBCJpDX1kW/gr+j/7R/lgBtAEhAWkB+CVeRoXjj/7s/YH+lQLYAhWY64U3Pf3W/oD+oAAAAAAEAQT+rAkkBswAGAAwAEYAWwAAAQoBNTQSNjMyHgIVHAEVPgEzMh4BFRAAJSQANTQuASMiBgc+ATU0LgEjIg4BFRQSAS4DNTQ+ATMyFhc+ATMyHgEVFAIHNhI1NCYjIg4BFS4BIyIGFRQeAgHmdmxzzIRgnHE9MXk6esFw/X/9ngJRAkJbnGRIn0cCA1uhaW2nX2MGFJD2uGZGek02bCganF5PfEelyJuMcFxCbkEehEtZblif1v6sAUABxqyuAQ2ZToOfUAQIBB0da7l0/t/+nQNRATz0XpRWMDIUJxN6wHCE6Jid/lkCxEGIladhTntGKCNUcFGNWoH+uJfOASNvbIZIdkY7UG9aUY6BdwAAAAgAqv6sCX4GzAAZADcAQwBVAG0AcQB9AJsAAAEIARI1NC4CIyIOAQcuAiMiDgIVFBIAEwMmBgcDDgEPAQ4BHwEeARcTFxM+AT8BNjQvAS4BASImNTQ2MzIWFRQGARQGIyImNTQ+ATc2FhUUBw4BAQgBAjU0PgEzMh4BFz4CMzIeARUUAgATJzcXASImNTQ2MzIWFRQGBRY2PwE+AT8BNjQvAS4BLwEjBw4BDwEGFB8BHgEXBRQBiwHz7FWZzXd54q8uLbDieXfNmVXsAfOBOQISAjkPUEGCCQEKg0NODjYYOg5PQoIKCoJBTwGiFiAgFhcgIPxbFBQbDUJ6UhgaIGRsAuf+k/4w3X/aiYDaqTU1qdt/idp/3f4wRWxsbP7FGyYmGxsnJwE2AhABIgo+PGoICGFNLwsoFBwIQy5vBwdwMT8I/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AgMIARYLAQr+6khbFSoDFQQtF1pF/voPARVEXBYtBBYDKhVa/lMgFhcgIBcWIAL9GR0vIGKtehQGGRQeCBrG+pcBGwHjAafAk+2MasSGhsRqjO2TwP5Z/h0BgGttbQGyJxsbJycbGycaCQEItjVCEyMCDwIfGUM4zMo7PhIrAg0CJBBIMgAEAPX+rAkzBswAFwArAFUAgwAAAQgBAjU0EjYzMh4BFz4CMzIWEhUUAgAFCAE1NCYjIg4BBy4CIyIGFRQAASY1ND4BMzIWFz4BMzIeARUUByc2EjU0LgEjIg4BBy4CIyIOARUUEhcBLgE1ND4BMzIeARc+AjMyHgEVFAYHJz4BNTQuASMiDgEHLgIjIg4BFRQWFwUT/o7+LtqN+aFwwZcwMZfBb6H5jdr+Lv6NAVgBNKSCS5ZxFBRxlkuCpAE1/u5uX6draMU5OcZna6dfbi+fjnC/dly8jxsbj7tddr9wjp/+rBEThOGLVauTLzCSq1WM4IQTEQ4tJ3nWjXvPkR0dkc97jNd5Jy3+rAE4AgQBvcyuARCdTXpERHpNnf7wrsz+Q/382gEVAaOviq5EcEREcESuiq/+XQEBrqNxrmRqVlZqZK5xo64SogENinrEdFGGUFCGUXTEeor+86IBfytiLZDmhz1oQ0NoPYfmkC1iK09guFma7ohnmEpKmGeI7ppZuGAACAEE/qwJJAbMABcAKQAtAD4AUQBsAHAAhgAABSQAAjU0PgEzMh4BFz4CMzIeARUUAgABPgE3NjMyFhUUBw4BBwYjIiYJATcJAS4BNz4BNzYWFxYHDgEHDgEBIiYvARceARUUBiMiJwcWFRQGASIuATU0Njc+ATMyHgEVFAYjIiYnBx4BFRQGCQE3CQEkABI1NC4BIyIGBy4BIyIOARUUEgAFXP7Z/o+rbsJ9U52AJid/nVN9wm6r/pD8ghBZLw8MEBQSKEQPCRwXEgWp/IE4A3/8IhEQBxpdNQ8gBw8fLkcUBxn8ci01CBjiR05CLQ8UFAQwBkc1cU0QEyhWKmGeXTEsNGwLDQceIPqX/rA4AVACeQEJAU2dWZ1nhdFAQNCGZ51ZnQFNc+sBfwFNnYHIcT5vSkpvPnHIgZ3+s/6BA19Ach4JGgwTDRxbLx8g+zEDXzj8oQK5BSARPWkdCAwQHhMcUi4PDQNzS0niFQc0LiI2BBMPFC1B+VZenmEsUygSFE5xNSUgHQYMD2g1LDAGQQFNOP60+s3TAV0BL41rpF2poaGpXaRrjf7R/qMAAAAACgCq/qwJfgbMABkAHQAhACUAKQBBAEUASQBNAFEAAAEIARI1NC4CIyIOAQcuAiMiDgIVFBIAFyE3ISUhNyElITUhJyE1IQEIAQI1ND4BMzIeARc+AjMyHgEVFAIAASEnIQMhNSEnITUhJSE1IQUUAYsB8+xVmc13eeKvLi2w4nl3zZlV7AHz4QFUKP5c/vMDvRT8G/77Be/6EcYHe/iFA77+k/4w3X/aiYDaqTU1qdt/idp/3f4w+sMDXhT8tl8IX/ehCghy944EqwNe/Lb+rAEvAf4BwtV+26ZdXaFnZ6FdXabbftX+Pv4CjVC/UL9QvlD8QQEbAeMBp8CT7YxqxIaGxGqM7ZPA/ln+HQWAUP2TUMlQtFAAAAoAqv6sCX4GzAAZAB0AIQAlAD0AQQBFAEkATQBRAAABCAESNTQuAiMiDgEHLgIjIg4CFRQSAAU3AQcBNwEHATcBBwEIAQI1ND4BMzIeARc+AjMyHgEVFAIAPwEBBwE3AQcBNwEHATcBBwE1AQcFFAGLAfPsVZnNd3niry4tsOJ5d82ZVewB8wHdNvuPCgT8NvqkEAX3Nvo6NgP8/pP+MN1/2omA2qk1Nanbf4naf93+MP02+kU2Bl02+t1ZBdE2/Jc2A902/NQ2A1X+EmT+rAEvAf4BwtV+26ZdXaFnZ6FdXabbftX+Pv4CzDoEGGP8sDoE71z7wzoFVzr5dgEbAeMBp8CT7YxqxIaGxGqM7ZPA/ln+Hc86BUo6+2g6BL4a++I6Ayg6/cA6Auw6/jJrAccQAAAAPACq/qwJfgbMABgAJAAwADwASABUAGAAbAB4AIQAkACcAKgAtADAAMwA2ADkAPAA/AEIARQBIAEsATgBRAFQAWgBdAGAAYwBmAGkAbABvAHIAdQB4AHsAfgCBAIQAhwCKAI0AkACTAJYAmQCcAJ8AogClAKgAqwCuALEAtAC3ALoAAABCAESNTQuAiMiDgEHLgIjIgYCFRQSAAMyNjU0JiMiBhUUFiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBhMIAQI1ND4BMzIeARc+AjMyHgEVFAIAAyImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGATI2NTQmIyIGFRQWJyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBRQBiwHz7FWZzXd54q8uLbXneZ/5kOwB848UGhoUER0dXRMbGxMSGxsCeRMbGxMTGxvGExoaExQaGv2IExwcExQaGgHDEhwcEhMbG/25EhsbEhQaGgGsExkZExIbGwGiExsbExMbG/vpFBsbFBMaGgHjFBsbFBIbGwG+ExsbExQaGv26ExsbExMbGwM2ExoaExMaGv5hExwcExIcHP2nExsbExQbGwG5ER0dERQaGv2gExsbExMbGwQEExsbExQaGv27ExsbExIaGgGnExsbExMbG/2zFBsbFBMbGwG3ExsbExIbGwGzExsbExEdHfwEExsbExMbGwGmExwcExMcHMf+k/4w3X/aiYDaqTU1qdt/idp/3f4wkRIcHBIUGxv7/BIcHBITHBwB1BEdHREUGxsBsxMbGxMTGhoBrhEcHBETHBz94RMbGxMTGxv+YBMbGxMRGxsDMBIbGxITGRn8HBMbGxMUGhoBmBMbGxMSGxsBshMbGxMRHR2HExwcExQbGwGaEhsbEhQaGvzcExwcExMbG7EUGhoUExsbAacSGxsSFBoaAa8SGxsSFBsbjhEbGxEUGhr+uBMcHBMSHBy/ExsbExEdHQGvExoaExQaGpQTHBwTEhsbbxMbGxMUGxvAEhsbEhMaGgHTExwcExMaGv2NEhwcEhMaGgIfFBsbFBMbG5wTHBwTEhsbmxMbGxMUGxsB4xMaGhMTHBxSExwcExIbG6kUGhoUExwc/qwBLwH+AcLVftumXV2hZ2ehXaL+7qjV/j7+AgERGhMTGxsTExrPGhMTGxsTExr9oRsTExsbExMbuxsTExoaExMbAnkbExQbGxQTG/5cGhMTGxsTExoCbRsTFBoaFBMb/mIaExMbGxMTGv5cGxMTGhoTExsEGBsTEhoaEhMb/mEbExQbGxQTG/5cGhMTGxsTExoCbRsTFBoaFBMb/L4bExMaGhMTGwGkGhMTGxsTExoCdBsTEhoaEhMb/mEbExQbGxQTGwJlGxMUGxsUExv79xoTExsbExMaAm0bExQaGhQTG/5iGhMTGxsTExoCdBsTEhoaEhMb/mEbExQbGxQTG/5cGhMTGxsTExoECRsTFBsbFBMb/mQbExQaGhQTG/uyARsB4wGnwJPtjGrEhobEaoztk8D+Wf4dAZUaExMbGxMTGgQCGxMUGhoUExv+chsTEhoaEhMb/mEbExQbGxQTG/5cGhMTGxsTExoCbRsTFBoaFBMbAZ0bExQaGhQTG/zFGhMTGxsTExoEAhsTFBoaFBMb/nIbExIaGhITG/5hGxMUGxsUExvJGxMUGhoUExv+YhoTExsbExMaAzsbExQaGhQTG8cbExQaGhQTG/5yGxMSGhoSExv+YRsTFBsbFBMbyRsTFBoaFBMbAZ0bExQaGhQTG8cbExIaGhITG/5hGxMUGxsUExvJGxMUGhoUExvWGxMSGhoSExvHGxMUGhoUExv+YxsTFBoaFBMbAmQbExQaGhQTG/5yGxMSGhoSExvGGxMUGxsUExvIGxMUGhoUExv+chsTEhoaEhMbxhsTFBsbFBMbyBsTFBoaFBMbAAAACgCq/qwJfgbMABkAHQAhACUAPQBBAEUASQBNAFEAAAEIAQI1ND4CMzIeARc+AjMyHgIVFAIAAScBFwEnARcBJwEXAQgBEjU0LgEjIg4BBy4CIyIOARUUEgABJwEXAScBFwEnARcBJwEXAScBFwUU/nX+DexVmc13eeKwLS6v4nl3zZlV7P4N+ugwA1Ew/EYwAvQw/OUwAhswAgIBbQHQ3X/aiX/bqTU1qdqAidp/3QHQAQowBHgw+OMwBR4w+4AwBbsw+uUwBc0w+ugwBWsw/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AgKsNAMSNP3gNAK4NP5lNAHyNPiDARsB4wGnwJPtjGrEhobEaoztk8D+Wf4d/vA0BB00/o40BLo0+pE0BUo0+f80BV00+gg0BP00AAAACACl/qwJgwbMADUAPwBLAFUAXwB+AIwAkAAAASQAJzcWAAUIARI1NC4BIyIOAQcuAiMiDgEVFBYXBy4BNTQSJDMyHgEXPgIzMgQSFRQCACUnBz4CNTcUAgE3LgE1NDcnDgEVFAEuASc3HgIXBwE3JjU0NycGFRQDIi4CNTQ2MzIWFzc+AjMyHgIVFAYjIiYnBw4BATcuATU0NjcnDgEVFBYXESEDBSL+wv4yikV9AaQBMAFnAczefduNfOKoJiWp4X2M3H0DBE0FBZMBAKJz1640Na3YcqMA/5Pu/hH74FmNL0wsuTf+WDUPDygvGBcDdXj7aKMwjZxEdv4lMgsNMhL+PFMyF0Y+O5J/YCFCUTc1ZlIxbV82d0VUPbYBkDQQDxwbLSIgE9MFGVX+rPUBx88luP5U6wEVAeUBtMyP4oRpvoCAvmmE4o8WMBolJUIepQEHmVOYZ2eYU5n++aXd/i/9/a+ZDD6iqksJtv66AegPKVQoX0UaKGM1Wv3UM+SfYkBwVBVOAWAUGRsbHBYkKCX+tl+Snz9pdVNdE12TVV+XrE5cXyQiHF91AY0UJkojL1YiICZoOCtV5gEY/ugAAAYA9f6sCTMGzAAXACkAQwBeAHIAhAAAASYAAjU0PgEzMh4BFz4CMzIeARUUAgAHJAA1NCYjIgYHLgEjIgYVFAABLgEjIgQHIz4CJDcVIgQOAQcnNiQzMhYXEzU6ATMyJBoBNTMGAgYHNT4BEjczEAIAISoBASQCNTQ+ATMyFhc+ATMyHgEVFAIFNhI1NCYjIgYHLgEjIgYVFBIDhuj+3odYmmJAeGQfIGR6QGOZWIj+3uYBLwERk3RfpzU2ol91kwERApgWMBnx/oZiPAyP6wEysJv+6d+QExV0AYTyGjAVRwUIA84BQ990Gii394l+5a4qOd7+Zv7lBAcB/f7y70V5TUeFJiaFR014RfL+9uPObFdMfiQlfktWbs7+rLYBKgEEemafWy5TNzdTLlufZn7+/P7YW/EBcqJ4mH9rb3uYeKL+jwT/AwKsnpD3uGkCMlqj2oEQp6UCA/pjMZkBFgF84qv++JcCMwKNAQCu/qL+Cf7zA4/UATuPUH1HSTw8SUh8UJH+xHW0ARR5W29oVVlkcVl5/u0AAAIBBP6sCSQGzAAXACcAACU2JBoBNTQuASMiBgcuASMiDgEVFBoBBAEiJjURNDYzITIWFREUBiMFFIQBDeGKZa1siMQyMsSIbK1liuEBDf0ZQ2JiQwbWRGFhRAJb5AEDARCHf7pljHl5jGW6f4f+8P795P5PYkMG1kRhYUT5KkNiAAAAAA0BBP6sCSQGzAAPABgAKAA4AEgAWABhAH0AhgCWAKYAtgC/AAABIi4BNTQ+ATMyFh8BBw4BBSc+ATMyFRQGAScuATU0PgEzMh4BFRQGDwE3PgE1NC4BIyIOARUUFhcBIiYvATc+ATMyHgEVFA4BJzI+ATU0LgEjIgYPARceAQEuATU0MzIWFyUnPgE1NCYnNx4BMzI2NxcOARUUFhcHLgEjIgYDIiYnNx4BFRQBMjY/AScuASMiDgEVFB4BATI+ATU0Ji8BBw4BFRQeARciLgE1NDY/ARceARUUDgE3IjU0NjcXDgEHKk+FUVGFT3CiTJycTKL73X4tcCIhNgFxpE9+ZqhjZKdmfVCkbk9kUINOTYRQZE/+WHCiTJycTKJwT4VRUYVPOGE8PGE4WIFLaGhLgQQLKzchI28t/ScQEjU1EhAXYUZGYhYQEjU1EhAWYkZGYbYicC1+LDYDUliBS2hoS4FYOGE8PGH+Ik6DUGRPbm5PZFCETWOoZn5PpKRQfWan+SE3K34tbwFLZqhjZKdmfVCkpE9+sXIyQSMib/3hnEydYU+FUVGFT2GdTC5oS3xJOGE8PGE4SXxLAcl+T6SkUH1mp2RjqGZQUIRNToNQZE9ubk9k/v8xbyIjQTLjEBRkRUVkFBASMTESEBRkRUVkFBASMTEB+EIxcjFuIyP9omRPbm5PZFCDTk2EUAJ2PGE4SXxLaGhLfEk4YTxQUYVPYZ1MnJxMnWFPhVE4IyNuMXIxQgAAAAALAnD+rAe4BswANQA/AEMARwBlAGkAhQDxAP0BBwETAAABLgE1NC4CNTQ+AjMyHgIVFA4CFRQGByc+ATU0PgI1NC4CIyIOAhUUHgIVFBYXASImJx4BNjcOASc1JRUlNSUVASImLwEuATcXBhYXEx4BMzI2NxM+ASc3FgYPAQ4BATUlFSUiJicuATU0NjMyFx4BMzI2NzYzMhYVFAYHDgElPgE1NCYnLgE1NDY/AS4BNTQ2MzIVFAYHHgEzMjY3LgE1NDMyFhUUBgceATMyNjcuATU0MzIWFRQGBxceARUUBgcOARUUFhcjLgE1NDY3PgE1NCYnNw4BIyInBiMiJicXDgEVFBYXHgEVFAcDPgE1NCYjIhUUFh8BPgE1NCMiFRQWFyc+ATU0IyIGFRQWA4AUFEZcRmm69YyM9bppRlxGExVeHxdGXEZcpNh8fNikXEZcRhgfATVbYQI2iYk1AWJcAP/9+QJH/sFrphI2JRgBUQMTJDoTg0BBghM6JRICUQIZJTYTpv5bApT+ppHSPgoPEA8LBTLIkZLENQYKDxAOCz3S/tMODAcRLkIPDRQaLCslThUSEzINCyANFyJXLyghFw0gCg4yExIWTiYqKxoTDBBBLhAJDQ0xDA0SHTIlEwsEHzIWLigoLhUzHwUMEyUyHhEZZA8ODhAgHBq5DxkoKBndFRocIBAODgFCH0YwSoSOs3iE4qlfX6nihHizjoRKMEYfBiY4MViTkKRoc8WUUlKUxXNppJCTVzE4Jv1kX0MhFRcfQ1+4PCg8QTxcPP7cPTT6Kk5DATk1Jv7rFiIiFgEVJjU5AUNOKvo0PQFfPGc8CyssCBgUDhYFMScsLAUWDhQYCCssJWCFKy8cCyA5Ixg/KUJAkUEtNIQ3bkYrRy8gNpk4iks/OJk2IC9HK0ZuN4Q0LUGRQEIqPhgjOSALHC8rhWBShTE/NhIfJhYXOysBNC5SUi40ASs7FxYnHhI2P2igAtM+WyUoLjErckEkL4ArWlorgBAFQXIrMS4oJVsAAAAABAEO/qwJGgbMAB8APwBfAH8AAAEiLgEnLgE1NDYzMhYXFgQzMiQ3PgEzMhYVFAYHDgIBIiY1NDY3PgIzMh4BFx4BFRQGIyImJyYkIyIEBw4BASImNTQ2NzYSNTQCJy4BNTQ2MzIWFx4CFRQOAQcOASEiJicuAjU0PgE3PgEzMhYVFAYHBgIVFBIXHgEVFAYFFJLyvEINDREQFSIgVQEVuroBFVUgIhUQEQwOQ7zx/PMQEQ0NQrzykpLxvEMODBEQFSIgVf7rurr+61UgIv6YGR8hNo+Xl482IR8ZFTQchsBmZr+HHDQHhxU0HIbAZmbAhhw0FRkfITaOmJiONiEfBINmv4YbNBUaICI2jpeXjjYiIBoVNBuFwGb6KSAaFTQbhr9mZr+GGzQVGiAiNo+Wlo82IgF0ERAVISBWARS7uwEVVSAhFRARDA5CvPGTkvK8Qg0NDQ1CvPKSk/G8Qg4MERAVISBV/uu7u/7sViAhFRARAAAABgGz/qwIdQbMACUAOgBMAFgAewCNAAABIiQmAjU0EjYkMzIWFxYzMjY/ATYzMh4CFRQGBw4BHQEUAgYEATI2Nz4BNzY1NCYjIgcOAQcGFRQWATI3PgE3NjU0JiMiBgcGFRQWBTI1NC4BIyIVFB4BNyImNTQ3PgI1NCYnLgEnLgE1NDYzMhceARceAhUUDgIlJwUlAxc3AwUHJzcHJxcHNxcEf5T+/MVvb8YBBJV53U4gKRw2FSkaGipOPyUbFTlVcMb++v1aFSIFCSoZDyIXHhEnMQsCIQEGFRILGQ0oIhcQOBQeHgROMik9HzIpPgwSGg8oUTdVa0CIHQQGHA4UCQRdW09zPi9JT/64Sf5AAX9X+PZCAUys+CV8dSyuy0T+rHDGAQWVlAEExnBKPxoXCxYOOFtpMR8wDCBbQyuU/vvGcQLzGRwwVCcYExUiFjF0QQwFGRwBbQsHDAQPKRscFw0THxYlW0sqSy9NKUovWiASFgMINVMzPz4ZD0MdBQwNDhsMBEAUETRYSDRiTS74wwXVATa8uf79IkEdjF5ZnGEDsAAAAwFA/6YI6AXSAAkAEwAfAAAFJxMFJyUXAyUXAycBBSclFwElHwEnARcFJyUXASclFwIwEuD+WxkCDRLfAccZAwkBeP5CDQIvCP6IAeQMtgIBNwr+xwIBawL+yw8BUgNaNAMtlka7NPzTpEcB0jYDAEZLVzj9AU1K0TgBzSEKPQ04/jcdDT8AAAMA3P6sCUwGzAATACcAOwAAAQMBEwUJASUJARMJAQMlAQ0BEyUHEwUDLQEBBRMJAQMJAQUJASUDJTcnBzcFNy0BAwEbASUDNwMXBxcnBezT/hRL/bIBsf4BAiX+JQN8bAEzAmbqAXv+kQGD/nD4/cqbeQHbzQFE/r4BPf6/zf37/vle/PsBn/4UAbv+oAHuQQGxkWLeRf7Lwv74AR71AbdDlwEAjsDfkpFXvf6sAX3++wFJMQGBAYoHAz/96QJW/d8B8P0nZP3/e63+MuTdASvBAXmJaAG4TwKE/l0B2P3sAdD9LQf+sP7HKP7l5UuvkbJMs4gIAa3+7wFR/vDq/nsS/vQ2J3tqAAkBJ/6sCQEGzAAUACcAPQBOAF8AbwB/AJAAogAAASIuAScuAic+ASQzMh4CFRQOAQEyPgE1NC4DJw4BBw4BFRQWFyIuATU0PgE3NhI1HgUVFA4BEyImNzYmJyY2MzIXHgEHDgEBIi4CJy4CJwwBEhUUDgEnMjY1NCYkJx4CFx4DEwYmJy4BJyY3PgEXHgEXFgMyNjU0JiQjIgQHHgEXHgITLgEnLgE3PgEXHgEXHgEHDgEHJYbOoEI2dpZmV/kBI5WQ97poddL7MIfHbkBqf381EFYzRmrBqYfHbDZVLUVUN4aOg2k+hOs+ExMBAwoFARgTIAUGCQIBGQPYb5RcOBQPIzQqARQBneZWnGp9j7H+v9cXIhsMFDBLdakPHQgXPh0YFwwjDxpIGxT4sNOf/vCqnP6zjHGiQkCRstc4jzoTEwQEFxY8oj8QBgoLHgLHba5hUJeWTDJYNlqg1nuEx2/8bXLQi17Ev6qGKnjaXH/rea/IUHDNilyvqVN9ARWhI3idt8fMYqH0iAGxHA86ljoUGiM2o0ETE/4XWJK0XEaMlFECmf71r2qcVlCPfYnaixEzcHM5W6F6RgE+BwsPKlUgGxoOAhEcYTElAsrGpI7mh0Q8Y8NjYJ5eAhUjOw0FGBMREwUMRCcKIA4QAwAAAAADAmz+rAe8BswADwAiADIAAAEiJAI1NBI3CQEWEhUUAgQnIi4BNTQ2MzIWFRQWFx4BFRQGBzIkEjU0AicJAQYCFRQSBAUU0P7Pp5CBAZcBl4GQp/7PwYLPdxYSERfYpBEWGCK6AQ2RiHz+rP6sfIiRAQ3+rKQBLcy2AXvNAoX9e83+hbbM/tOk/XHIhBMYFxGmvwsBFhERF62OAQm2rAFhxQIe/eLF/p+stv73jgAAAAsAh/6sCaEGzAAXACwAPgBUAFgAagB/AJEApwC5AMsAAAEnPgE1NC4BIyIOAQcnPgIzMh4BFRQGASImNTQ2Nz4BNTQmJzYzMh4BFRQGJzI2NTQuASceARUUBw4BFRQWBSIuATU0NjclNQUOARUUHgEzMjcXBgE1IRUBIi4BJzceAjMyPgE1MxQOAQEiJz4BNTQmJy4BNTQ2MzIWFRQOASc+AjU0JiMiBhUUFhcWFRQGAzUlLgE1ND4BMzIXByYjIg4BFRQWFwEuAjU0PgE3FQ4CFRQeARcBNT4DNTQCJzcWEhUUDgIHhCdfaXXFeGKudg9PFIzPdY7pi4D51EhjBAYFAztEL0RomFNiTCw3O2Q+FhcJBAY3AuBur2UpKP04A1tMSE+LWExAKVP8MgNcAgN20I0SUA51r2N6xXNQien6IUQvRDsDBQYEY0hMYlOYPT5kOzcsKTcGBAkX3gLIKCllr25gVClCSViLT0hMAfRvtmxstm9ZklZWklkBSXXMmlefiiictWOx6AMVRjvBcXjGdlGHUg5mpWGM6o6F5/vhZkoWKhcRHgwuTioTYJVPT2hLPDA+bEoJGTohIykTIBErOl5fpWhBgUEcUCFepkpSgEogRSsDaVBQ/BljqGgNU4tSecx6kPCPBZQTKk4uDB4RFyoWSmZnUE+VYEcKSWw+MDw5LBAhEygkITr+zlAcQYFBaKVfK0UgSoBSSqVf/Y8GcbhwcbdwBlAGW5JbWpRbBv7GUANZm8x2nQELS0ZV/s2xhumxZgAABgEY/qwJEAbMACkAPwBPAFsAawB3AAABIiwBJjU0NjcmNTQ2NzwBNTQ+ATcUHgEfAR4BFRQGBx4BFx4BFRQGDAEDMj4CNTQmBw4BIyImJyYGFRQeAgMyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYFMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGBRTe/ov+7peklAeOh0+/qB9RSjOwnQkHYmsGeIeX/u3+i91HiW5BGR1nklBPk2cdGUFuidY+ZT09ZT49Zj09Zj0rPT0rKz0+AhA+ZT09ZT49Zj09Zj0qPj0rKz09/qxktfeTksEyLiuQwSgFCgSNwIo8b4NBDwoijnoWOBonk3E6wniT97VkAQExUmUzGyAEDQwMDQQgGzNlUjEB0D1mPT5lPT1lPj1mPXg9Kys9PSsrPXg9Zj0+ZT09ZT49Zj14PSsrPT0rKz0AAAAEAQT+rAkkBswAbQB/AJgAqwAAASAkLgE1NBoCPgEzMhYfARYVFAYjIiY1NDYzMhYXBy4BIyIGFRQWMzI2NTQmLwEuASMiDgEKAhUUHgEEKQEyJDY1NC4CIyIOAQcuASMiBhUUFhcHLgE1ND4BMzoBFz4CMzIeAhUUBgQhNyIuASc3HgIzMj4BNxcOAgE+ATU0Jy4BNTQ2NxcOARUUFhceARUUBgcBIiYnNx4BMzI2NTQjNTIWFRQGBOL+0/592FZPj8Dm/IIsTxRuG4F3cHlXQA4dEAoPGAooH09KWU8JCGUMLxd159SzhUpLwwFlARsBM+8BOJhYnM52atWyNxktE2+FCApOCwlSkmAKGBJMs9R6h+uyZK/+pP78QYPZixBQDXS3b1WZbxdLHIa3/IIUGwMEBEA6PTA3BAQCARIPARyLtRpKEYxzUEwMJjaB/qwvdtamtAFuAVgBKN9+KSK5LzNMQ049OjsDAlADAhYOGyEdIhEcDasVHHjV/ub+uv6nqZG2ZCZkz55psIBGT4lYAgOKbCFEMBAzTSVek1UBW4dKUpbMe7fyeNJco2oKVYRKL1EyG0NoPAHyM5tDHhkoQh13vzU0KKRrGz4mDyAQOII4Ar1ZUiA6QRoUD0kwKEQ6AAAAAwEs/qwI/AbMADwAcgChAAABIiwBJzcWDAEzMj4CNQ4CIyIkJzcWBDMyPgE1NAoCLAIjIgYVFBYXLgE1NDYzMgwBABoCFRQOASUiJicDLgEHBQYmNTQ3EzY1NCcDJjU0NjMyFwUWMzI/ATYzMhYHAwYXBR4BFRQGBwUGBwMOAScyNxM2NyU2NTQnJSY3EzQjIg8BBiMiJyUmIyIVFBcTFhUUDwEGFRQ3JTYWHwEWB0eC/tf+6Wc+XAEBARV5Z4lRIxRYfEuI/sTLUqkBG3lWcjhireL+/v70/wBvVWggG0pBl3WAAR8BJgEZ87lpYcL8DxUpEK8HEAz+zTA5GMcJBH4JMiQSEQEkCQYLCvQeIyIxAgsBEwELGBciIP7REgVQCC4hCwNMEEABHAwI/v43AgsLBQjsHygVEf7mBgMNA3gKFsMGEgElKDIXqAb+rHTJfzJyvHA3ZIpTMT8dnKskjo0mVUVqAP8BDwEI6rRnSk4fTx0RaTJdanLJ/vj+0/7G/tKDk8pothcXAQUKCAEYBDIkIB8A/wwLCAgBGBQUIzIHcAMI0BozLP7CFgyhDioXGi4ITgUR/rkiJF4OATRAEEkDCggFmyFCATQRBsgaB2sCDAQG/vQVGiUd+QcHDAEYAxQj+gkAAAAFAZX/dAiTBgQAGwAnAEMATwBbAAAFPgE1NCYnLgI1NBIkISAAERQOAQQjIiYnDgEDIiY1NDYzMhYVFAYDPgE3HgIzMiQSNRAAISAEAhUUHgEXHgEVFAYBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYCoy8vK0M2dlLYAZIBFgGsAdKC7v65xRBUIkneFis9PSsrOztjdZJDGTxAHPEBbc7+Xf51/wD+ksJDZzZPPRsB5Cs7OyssOzsBmyo8PCosPDyMeqIkIjoyKXa/mN8BQaz+fv6ck/SyYAIEfoIDTzwrKzs7Kys8/QAUeHwEBgOVAQisAUEBVZj+5MiEomYqPVk4KHECvzwrKzs7Kys8PCsrOzsrKzwAAAAABgES/qwJFgbMAC4AOgBGAFIAXgCPAAAlIiYnDgEjIicuATU0NjcmNTQ+ATMyFzYzMhc2MzIeARUUBxYVFAYHDgIjIicGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJTI2NxYzMjY3PgE1NCc2NTQuASMiByYjIgYHJiMiDgEVFBYXDgEVFBceATMyNjceAQVEdLg4CxULvHcuMDYzJHC7ckxDeZyAcEVCid+FHydyXBdpkldUUGv73EBaWkBAWlpAHysrHx8rKwFgUnJyUlFyclEwQ0MwMUNDAohEeitWXG6fFlZuLydvu3NHUGZ6SogzR1hcl1oaHD0+TC9+WhInFDWThId9AQGROItLTYc7VVZzu3AaaUsShN+JX1FVWmq/NVuJSyhf/ihaQEBaWkBAWlArHx8rKx8fK6tyUlFyclFSclBDMTBDQzAxQ909OD6XfySnXFZXUmBzum8bVD87K1qXXTFbLTh8UHxdOjgCAoWCAAAADgD0/qwJNAbMAFUAXwBpAHUAgQCNAJkA+QEFAREBGwEnATEBOwAAASImJw4BIyImNTQ+ATcuAjU0PgE3LgE1ND4BMzIWFz4DMzIWFz4BMzIeAhc+ATMyHgEVFAYHHgIVFA4BBx4CFRQGIyImJw4BIyIuAScOAgElNyc3FwcXBxcBJzcXNxc3FwcnESImNTQ2MzIWFRQGASImNTQ2MzIWFRQGMyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGAzI+AjceAzMyNjceATMyNjU0LgInPgM1NC4BJz4CNTQuASMiBgcuAyMiDgEHLgIjIg4CBy4BIyIOARUUHgEXDgIVFB4CFw4DFRQWMzI2Nx4BASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGAREXNQUHJxUnFQEiJjU0NjMyFhUUBgEnNyc3JzcXBxcBNQc1ByclFTcRA2snRgsWMxpPORYpG1ygYipDIxkfbdCSDhoMEEFRUR8XYykpZBYgUFFBEAwbDZPPbR8ZJEIqYp9dGygXOU8ZNBYKRychi6tSUayL/qX+9HChm0BjoW6yAjeDQk9+fk9Cg4weKyseHisr/vIeKyseHisr0h4rKx4eKyv+8h4rKx4eKyvREV9/gTMzgX9gEBcfCxlhKCEYFSIoEzmBcUcwUDEVKx1uuG4WMBENPEk/EAg2Qx4dRDUJED9JPA0RLxduuG4dLBQwUTBHcYE5EygiFRghKGEZCyACqR4rKx4eKyv+8h4rKx4eKyv9BLMBHhC+swN+HisrHh4rKwHVILJuoWNAm6Fw/p+zvhABHrP+/WlVBAU6TzmLkkE1i4ctHjcrDC1iFzFEJAEBR5qIVEApKUBUiJpHAQEkRDEXYi0MKzceLYeLNUGSizlPOgUEVWlKeUhIeUoBdnebUdcui1GXT/3vvS1ydnZyLb2AAfYrHh4rKx4eKwEEKx4eKyseHisrHh4rKx4eKwEEKx4eKyseHiv8IzdZZi8vZlk3cFUGDREXL4WMdB0YV2RZGxYuJQgbSkMOHC0cBAIukpNkIzceHjcjZJOSLgIEHC0cDkNKGwglLhYbWmNXGB10jIUvFxENBlVwAtkrHh4rKx4eKwEEKx4eKyseHisBqgEJHr48Tii6Hqv+ViseHisrHh4r/UlKT5dRiy7XUZsD6qseuihOPL4e/vcAAAAGAOb+rAlCBswAGwA0AFYAfACbAKsAAAEiJjU0Njc2LAQzMhYVFAcGDAMHBQ4BASImNTQ3NiwCNjMyFhUUDwEGDAIHDgElIiY1ND4BNzYSNwUGIyImNTQ2NyU+ATMyFhUUBgcKAQcGJSImNTQSPgEzMhUUBgcOAxUUFjMyPgI1NCYnNx4BFRQCDgEFIiY1NBI2NwcOAQcGIyImNTQ2Nz4CMzIWFRQCDgEnMj4CNTQmIyIOAhUUFgEqHyVHdJQBYgF5AXEBTQEIUQwPG67+4v7//vz+3bL+DyIxAWscKVlYAQQBKwEo+1AUERSHbf7u/tz+6nEvLv7IDRQaLhw4e0/+qh4aGRwiIwH8GiMNDhEFCKz8WAkCgnCBToq1ZiMVH2GETiNBOEFuUi4DAosEBDp0rwKbboZLj2cUosJBKiAbHy0mP7bJW6+lPnesXTxtVjE+OjxtVjE+/qwjHCUrHiZXV08+JA8LFAQdOTtFUzSRCggBtCgbORgXLikgEgwOFAMWEjA6PR8NCOsaFCeNrVaoAUi+jQ0XEhcpEfcMCxQRChUS/mD9i/oct7yliQER4YkRChQUPbDGwk9meGzB/pMcNhojH0kpov7X6ocJwqKgAR/dPRoZQhoRFxIZMREdOCW2wZD+5OuNgHDB9odjcHDC9odjbwAAAAAHAXz+rAisBswAGwAjAE4AZwBvAIMApQAAASAAETQSNiQ3NDYzMh4CFRQHHgEXHgEVFAYEASc+ATcXDgE3Ii4BNTMUFjMyNjU0Ji8BLgE1NDYzMh4BFwcnLgEjIgYVFBYfAR4BFRQGAyAkNjU0LgEnNx4BFyYkIyIGBw4BAhUQAAEnPgE3Fw4BAy4BNTQ2MzIWFwcuASMiBhUUFhcFJz4BNTQmJz4BNTQmIyIOAQcnPgIzMhYVFAYHHgEVFAYFEP5E/ih85gFEx11bR4BjOQtZXgpni97+Yv40bA0bEGwNGl1cllh4fFM/SkJQF2BLhHNUilkJdQUNaUpASj1KPkxDhTYBBAF6zmzCghMwUiUk/vbycutviMFlAa4CHWsMGQ5oChiQGB5ZYjJZIjYWPyNALxsUAYEPjYwrJQgLTUlLY0AVSBVShV9ihAkIKSWc/qwBMAEwpAEn8aUgNTggOUsrFhJT35RM4oOQ2HgBBSApVS8hI1A4SHtLRGY9NC1MMQ47Xj5ebTllQhQWOEIzLSJDLycwZ0Ric/7XZbV5bMGTJkMOIxXx5UI/Tdz+/Iv+9/72BBYgJUEhJRk+AY43cjxZiDUjLhgoZDc0ZC+vShpTPiJCChgvFUFMTYFPFFuaXWRSFTQQHE0sV3UAAAAGAYv+rAidBswAFgAmAC0ATgBVAGUAAAU1IzUzNSM1MwEzGwEzATMVIxUzFSMVASImJwcTBQcWITI2Nw4CAT4BNTQmJwM1LgEnNR4BFxEuATU0Njc1MxUWFwcuAScRHgEVFAYHFQM1DgEVFBYtATcmISIGBz4CMzIWFzcGjcvLy6H+6+i/wub+5qTJycn9X47xXJUpAbfJuQEVMGY5EmSG/fUtKSosZ0OGODaJQoaClXNoenIyLF4wg32Fe2cuLCwFjP5Jybr+6SxlOxNjh0eP8VuVPaKCZYMCJP5HAbn93INlgqL+6XBtqQGrCI3TDAsmQScEEA49KCg3Fv3FlwMhGsEiOAIBIjaNdXyQDnl4Bj+gGR4F/ugzgXF1oBedAyHmCjwrKzFKCI3TDAwnQSdvbqkAAAMDLf6sBvsGzAAjACoAMQAAATUuAScRHgEXES4CNTQ2NzUzFR4BFwcuAScRHgIVFAYHGQE+ATU0JicDEQ4BFRQWBMpo1FdT2WeMuFnluKBcvldNRZVKirFW0MFFQ0REoEtCQv6s/QQ0KgEtN1UFAcY4hbF5weIXvrwGNjD7Ji0J/k01e6V3tP0k/vsCEBVgPkFYIgFtAWoPXkZAUQAAAAAGALn/pglvBdIAEwAjACcAKwAvAI0AAAUiLgE1ETQ+ATMhMh4BFREUDgEjJSEyNjURNCYjISIGFREUFgMRIREBESERJSERIRcuASMiBgcnPgEzMhYVFCMiNTQ2MzIWFxYzMjc+ATMyFhcWMzI2Nz4BMzIWFx4BMzI2Nz4BMzIXByYjIgYHDgEjIiYnLgEjIgcOASMiJicmIyIHDgEjIiYnLgEjIgcBtkdzQ0NzRwa8SHNCQ3JI+UQGvEpjY0r5REpjY5MIZ/iQBoj5sgYV+evUBRMLEhMGIwklICAsHSVFJRggCw8MDRQLGRALGAwaFQwaDREcDxcaCggWDw8dERQwHh0nCR4dHCUSEyUUGR4LCBIMDxoOIRcWHQsUDxITCRYOFRsIBxQLHxpaQ3NHBDJIc0JDckj7zkdzQ1BjSgQySmNjSvvOSmMDPgE2/sr96QF8/oQ6AQmPFx0lIwUxNUw3JiQsVCMZIBQLEQkIDwoJCwwXDwsUCQkLEAoiCQ0KCgwaDwsREgoODAcNFgoQIRMTFS8AAAkAeP9CCbAGNgADAAcAGwA5AD0ASQBNAFEAZQAAFxEhESU1IRUBLgEnET4BNyEVIQ4BBxEeARchFSU1IzUzNSM1MwMzFx4BFzM+AT8BMwMzFSMVMxUjFRMRMxElIREhNSERIREhFSEFNSEVBREzEQM1IT4BNxEuASchNSEeARcRDgEHeAk49vUDhf3lA3FRUXEDAiP+DAdtRkZtBwH0/p6Kiop3ilFADRgNBA0ZDUBPjHiLi4vqRvx7CJj8owNd92gDX/yhBTsDgPxYRisB9AhtRUVtCP4MAiQDcVFRcQO+BvT5DM9GRgGTUGUDAlQDZk87PmQI/gYHZT470IYsNisBEI4cOx4fOR2O/vArNiyG/PwGoflfIgFEUATA+0BQxUZGoQah+V8CNDs+ZQcB+ghkPjtPZgP9rANlUAAJAHj/QgmwBjYAAwAHABsARwBLAFcAWwBfAHMAABcRIRElNSEVAS4BJxE+ATchFSEOAQcRHgEXIRUlNS4BJzceATMyNjU0JicuATU0Njc1MxUeARcHLgEjIgYVFBYXHgEVFAYHFRMRMxElIREhNSERIREhFSEFNSEVBREzEQM1IT4BNxEuASchNSEeARcRDgEHeAk49vUDhf3lA3FRUXEDAiP+DAdtRkZtBwH0/rooTxsjHUAmLy44MTxJRTg4KToXKRcuIicsMi8/TUY+40b8ewiY/KMDXfdoA1/8oQU7A4D8WEYrAfQIbUVFbQj+DAIkA3FRUXEDvgb0+QzPRkYBk1BlAwJUA2ZPOz5kCP4GB2U+O3NVBCUZNRggLScrMRkeQzo7TQhVVAQkGC4XGSskJCsWHUlEPVEJVv1ZBqH5XyIBRFAEwPtAUMVGRqEGoflfAjQ7PmUHAfoIZD47T2YD/awDZVAAAAAJAHj/QgmwBjYAAwAHABsATABQAFwAYABkAHgAABchESETITUhASE1IS4BJxE+ATchNSEOAQcRHgElIiYnIzU3JjQ1PAE3IzU3PgEzMhYXBy4BIyIGBzMVIwYUFRwBFzMVIx4BMzI3Fw4BEzMRIwERITUhESERIRUhESUhNSEHMxEjEyE+ATcRLgEnIRUhHgEXEQ4BByF4CTj2yC0Dhfx7AWoCI/4MB21GRm0HAfT93QNxUVFxARhOaxA3MgEBMjcQcVMnRBctEiobNUML19sBAbeyC0EyOCstHEq0Rkb8wQNf/KEImPyjA138owOA/IAoRkYbAiQDcVFRcQP93AH0CG1FRW0I/gy+BvT520YBTTs+ZQcB+ghkPjtPZgP9rANldm1kKAQIDgcIDAcoBGVxJh0sFxlPRy0GDAYIDwgtRU46KSUq/QYGofmBAURQBMD7QFD+vH9G5wah+5NQZQMCVANmTzs+ZAj+BgdlPgAAAAkAeP9CCbAGNgADAAcAGwBFAEkAVQBZAF0AcQAAFxEhESU1IRUBLgEnET4BNyEVIQ4BBxEeARchFSU1PgE1NCYnIzU3My4BNTQ2MzIWFwcuASMiBhUUFhczFSMWFRQGBxUzFRMRMxElIREhNSERIREhFSEFNSEVBREzEQM1IT4BNxEuASchNSEeARcRDgEHeAk49vUDhf3lA3FRUXEDAiP+DAdtRkZtBwH0/iMsLwIDVTkOCA5aSS5BGC0QKBwtMQ0Hh3wFGhnvVUb8ewiY/KMDXfdoA1/8oQU7A4D8WEYrAfQIbUVFbQj+DAIkA3FRUXEDvgb0+QzPRkYBk1BlAwJUA2ZPOz5kCP4GB2U+O9AvF1EvCxcLMQMaMxpJViQdKxQYNi0ZMRk0GRUrOhoEQvz8BqH5XyIBRFAEwPtAUMVGRqEGoflfAjQ7PmUHAfoIZD47T2YD/awDZVAAAAwAfP6sCboGzAADAC4AUACGAIwAvwDQAQEBYQGDAdQB2gAAAREzERMnPgE3PgEnJgYHDgEnLgE3JzcXPgEzFw4BBwYUFxY2Nz4BFx4BBxcHJwYXJiMiBwM2NTQnPgE3Fw4BBxYVFAYHFzYzMhYXPgE3Fw4BARY+ATcuAScuAicmIyIGBw4CBwYVFBYzMjY3Fw4CFxY2NxcOARcWNjcXDgEXFjY3Fw4BAScBNwEXASY2NxcOAicmPgE3Fw4BJy4BNz4BPwEOAhcWNjcXDgEHBhY3NjcXDgEXFjY3Fw4CAT4CNxIlAQ4DBw4CBwE3DgEnLgEnBicuATUXDgEnJicXBicuATU0Njc+AjMyFhceARUUBhUUFhcWBiMiJhMiJic3DgEjIi4BPwEWBicuATY3Fw4BFxY2NxcOARceATc+ATcXBh4BMzI2NTQmJyYjIgYHDgEVFBcWNjcXBhYXFjY3FwYWFxY2NxcGFhcWNj8BHgIzMjYnLgEnFw4BASc+ATcmNTQ3JwYjIicOAQcnPgE3HgEzMjcBBhUUFw4CATQ2Nz4CNzYzMhceARceAhc+AjcBEQ4BDwE2NzUEAw4CBwEVAT4CNxcOAgcBET4CNwYiJy4BNwYnLgEnBicmNQ4BJy4BNwYnLgEBAwE3ARcD+koPCRcmEBMBDhAtGyJBGhkGFSUdJRQpFQMTHw4PDQ4pGSNDHhoHFyYeJCoXHEwiJfw0I0xyNyIzaDoNEw7EHyEjQRM7czUeQIv+YhpaazMfHxUkGhcgKC4iWUAidZhXJSYVIFIpFxYyGBEaZz8dHw4QDkZBHSINEw9FNyMgIwO5Hf22KAJhIvvnDwoOCBk+OBIOBhYJDjBPFA0RICpjK0VKZSoPElcoGRAcCA0yNx4bER0ZEwszGRASOjgBAH3NyXTZAWL9voC9lIBCTKWzYgaVHBlGKRQYBTYwFBIaFjIXNwcfODYdHoiOM0Q9JxMsG09RBDAhFEc1OUoaKDACEQUjKSAdBgIFCzEkHA4QDhoLBBQUJwMcAgIBBC4TCw0HHgEIFxQcGx84KyY9Xzx5WhYbKRYlDQIVFyEPMA8DExEmEDgKCg4dHQcxBBowIxMSCxwsCBQHMP2pIGaQNhUP1iEcRSxPkUQgR6lhDTYhKhoBBxkmJ1t4+Zc0MUqUeyOJUkg/JSELDRcoJUOfz4kCmHCvS2ah5f6xz3/d6JH93wI1h9CuUi5cw+iV/Zh7r4M3HDUXFhQDNioREQI7KT0iPhsvGRA6LSIjBcBa/ccyAkdL/tYBJf7bAogvAg0QEyQPEQcJCwgbGkEdJh0lEAkuAQgODyIODgcJDAkgG0IhJR0kIaBKHwEjHC4mFzhpRBs+aCwYGBYuEeMRHhorckEeT4UDJRctdVQbIR81aVocIx8gEVBZHQwODhAWESUKJyYKDh0iHh8xBQQjMhwoNgsJHismHzj+E1gCOjr9tWMCtQwwFw8MFwIRDzAsBwQcEg0JOio3RAoIHFNIDhEvHxQVKhYhFiESGBIiNw4ICgsREBgE+zI8nuuvAUafAfgkg6vCYnGVZSr9SAE0FyYTOyUlLRNBLg0XDg0fTgdAIxNLMZqmCwQRDwUFD4ZrDzYRQuFyQ1VVAVhbLwIdPS9AFwoWLRANR08XDyREDg0kLgoQHg9FChwQIhEJGEAwUDdHcA0KIAQHf4Q5DhE9UBBUUA4POjUXQGUMCiUsET1eDhs6RQUwYUEiIlzJSwckIAIeG4mOJR0lIB/UDC8zomAgYroyHCAW/vwaJzAgF0qBAfIdNhAZVVISSDYfWywwPzUiXqd/IP26/q4fXkgBsUzUlf7Lvv6qPwJPvP2bJ5jPeECE2ZgjApkBUDNbZUEKCwsnHBIZCx4THQ0TOQ0HBww4JAYSDir7HwEDAkY4/araAAADAQT+rAkkBswADwAtAEEAAAEiJjURNDYzITIWFREUBiMBMzUzNSM1MzUjEyMHDgEHIy4BLwEjEyMVMxUjFTMBNxcTNxsCARMnCwQFBycDAbJHZ2ZHBsZHZmZH+r962dnZutl9YxQoFAUTJxRjgde519fX/r6o3IOr1arEAQeMT4nE0Kap/vpnyNf+rGZGBsdHZmZH+TpHZgO30UNVRAGn3SxaLy9aLN3+WURVQ/xq1p4BQ2f+pgHI/uoB7wJ3Ef2U/o0BKf5CARKd/o/+7gAACgHl/qwIQwbMAC0APgBCAE0AWwBzAHcAsgC2AMcAACUiLgEnJicmAhE0Njc+ATc2JDMyFhceARUUBgcXHgEVMhYXHgIVFAYHDgMDIiclJj0BNDMyHgIdARQGJREzEQE0LgEnJTcFHgEVBSUmLwE3FBYXFh0BFAYBJz4BNTQmJzY1NCYnNx4BFRQHHgEVFAYFJyUXAT4DNz4BNTQuAScuASMnNC4BJwM+ATU0JicuASMGBAcGBw4BFRQWFxYEFxYVFAYnJRceARceAhcBNyUXAScDMgQXHgEVFAYnJSYGFRQE+z3I1lQ4E0pSBhAIRT+kAUuDOzsRHR4dGxhERWOoYysxFR4tTs3QqD0JBf4BLoRQqY9YGP6XZAFGJFlQ/mMJAZ2UdgJi/okkAgOtfYQwJfsmUAgIGREkGxtMHR0iERcIAYVDAcBK/pQ9rLuvQAsNDR0ZQc5eHCpGKSAjICcXBx4Um/7Im0AHCgcNEI0BNZFSJSD+JhELb39dcTcG/eAIAoUIAUGYJaIBDW0hIC0q/uMjHAYjOiAWOuUB1QEJYsNxN0QFDhIpIDZtMi9ZL8ZstWwZGgs8fm4kMxQjSD0l/qYBWwkkCC0dLjUXCAwTgAEq/tYBGmNwNgozRTMSma2cQwcuTC8/NRUIKwgZGgLrCi5eLGKrOXVpQYRJHlGRSWRzOrFlL2KwOU06/fcLLDg9HAUWDVldKAYRJiZCg4ZFAQsaQy8uZC8OCAIRDQY4UtJqX8mbCioiEz8bIwEbZUE5CgclUkwEQ08+Tv2JDwESFhcHJBUaKgELAiYaJAAAAAAkALf/QglxBjYAAwAHAAsADwATABcAGwAfACcAKwAvADMANwA7AD8AQwBHAEsATwBTAFcAWwBfAGMAZwBrAG8AcwB3AHsAgQCFAIkAjQCRAJUAAAERIREpAREhExEhEQEzNyM3MzcjJzM3IyczNyMXMzcjATMVITUzFSEBMzcjFzM3IzczNyMXMzcjFzMnIwUhJyElMycjFzMnIxczJyMnMycjFzMnIxczJyMnMycjFzMnIxczJyMnMycjFzMnIxchJyEFMycjJzMnIxczJyMBNRMhExUlIQMhAzM3IzchNyE3MzcjNzM3IwGeBuz5ZAZM+bSFBUL603QNcVhyEnM1dRF0LnMOdaNzD3EFrVT3RlQIEvp+cw1uIHQIbDFwDm40cwhwQnMDZ/7dAxsS/QgBIXYLXzpxDWB9cA5tCnAQbUdwE2mfdBNzCnIUc1tyEnPjchZwVXUVclxxFnECAZoX/msBIbIYr4DTFNFsoRie+PvnBuzn96cH+Lz5gGqyDKYPAR4S/ucO1BLOEIoOhAHRBGX7mwQV/GsDEPzw/hIqGyoZKxwkJCT+tsrKegFZK24qYCRrK24qbyqlJGsrbipgJGsrbipgJGsrsyqlJGsrbipvKqUkayv+0U0Bnf5jTVABUP7cKhsqGSscJAAIAIL+rAmmBswAGwAfACMAUQBVAFkAbwBzAAABIiYnLgI1NBI3PgEzITIWFxYSFRQOAQcOASMBITUhBxEhEQEhMjc+AjU0JicOAQQFNTYkPgE1NCYjISIGFRQeAQQXFSwBJicOARUUHgEXFgEhNSEDNTMVJyImNTQ2MzIWFRQGIyInLgEjIgYHBgU1MxUBo26IEAgNBg0NC4dxBupxiAoMDgcMCA6KbvvgAV7+olAB/vuQBuKgFwkMBQQEKMD+nP7g6wFIyl1hUvkWUmFdywFH6v7h/pzAKAQEBgsJFwNiAV7+optQMBceyZeXxx4XDhRAdFNVc0EUAhZQ/qx0ajvJ8XatAU6IeoWFeoj+sq128ck7anQCXar6AkT9vP5Dmj7P62dZrlJpoWIOTwpLjNeXWltbWpfYjEoKTw5ioWlSrlln688+mgMHqgKy4+OOIhtFXV1FGyIKIBsbIAqO4+MABgEE/qwJJAbMAA8AHwAvAD8AQwBXAAABIiY1ETQ2MyEyFhURFAYjASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3Ii4BNTQ+ATMyHgEVFA4BJREhEQEyJAASNTQCACQjIgQAAhUUEgAEAapDY2JDBtZEYWFE/JVzvXFxvnJzvXFxvXNhnl9fn2Bgn19fn2A+Zz4+Zz4+Zz4+ZwGzAfP8HMcBXAEIlZX++P6kx8f+pP74lZUBCAFc/qxhQwbXRGFhRPkqQ2ICb3G+cnO9cXG9c3O9cUNfn2Bhnl9fn2Bgn197Pmc+Pmc+Pmc+Pmc+OQFU/qz86pUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQAABgEC/qwJJgbMABEAFQAfACMAJwArAAABIiY1ETQ2MyEyHwEWFREUBiMBNSEVASERNCYjISIGFRM1IRUBIREhAREhEQG7TG1tTAXVc0anNmxN+rsD2PtMBZA0KPsoKDTcA9j7fgS0+0wCygEE/qxtTAauTWxWy0BY+lJMbQFeUFD+8gM8KDQ0KP7+UFACYgLk/bQB1P4sAAAGAQT+rAkkBswAEwAZAC0APQBJAE8AAAEiJAACNTQSACQzMgQAEhUUAgAEEwM2NwUGATIkABI1NAIAJCMiBAACFRQSAAQTIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWASU2NxMGBRTX/of+4qKhAR4BedjXAXkBHqKh/uL+h66wXEMBY4j9sMcBXAEIlZX++P6kx8f+pP74lZUBCAFcx2yyamqybGyzamqzbFyBgVxbgoL+5v6diMqwXP6soQEeAXnY1wF5AR6iof7i/ofY1/6H/uKiAQABeTVV7bX+75UBCAFcx8cBXAEIlZX++P6kx8f+pP74lQI4arJsbLNqarNsbLJqq4JbXIGBXFuCAerttWH+hzUABQEE/qwJJAbMABMAGQApADUAOwAAASIkAAI1NBIAJDMyBAASFRQCAAQ3NjcBBgcnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGATY3AwYHBRTX/of+4qKhAR4BedjXAXkBHqKh/uL+h8vciv5sQ1zWbLNqarNsbLJqarJsW4KCW1yBgf4vQ1zN24v+rKEBHgF52NcBeQEeoqH+4v6H2Nf+h/7iosRoygEOVzMOarJsbLNqarNsbLJqq4JbXIGBXFuCAepVNQG1aMkAAwDG/qwJYgbMAA8AFQAbAAATAz8BJRclAwc1BScFDwETBxMlNyUDCQETBQcF3RebGgJhLQR3AU/7my3+JRqSFlDRAhZEBVre+LQHBsP7R0T98P6sBr8a2m3Rxv7fENLD0VbZGfnpZQT6Wf32+pL+jwG0BMjY/lcAAgBq/qwJtwbMABQAGgAAEwM/ASUXJQMHEQUnBQ8BEwElEyUJAwUDBX8VbBoCYi0EFwFP+/st/iQaYxIBsAIGWATc/gr5VAZyAav76Vj98P6sBsES2nPWq/3yEAG/qdZa2RP6HgONVgEH0Pts/rUBjwPnrP74WAAABgE7/qwI7QbMACMAJwArAC8AMwA3AAABIi4BNREhESMRIREUHgEzMjY3IRYVFAYjITUhMjY1NCchDgETNSEVJTUhFSU1IRUlNSEVJTUhFQI6X3AwBtRQ+cwgTUJcYgYFxCuWc/pMBbRRaA/6uROKLAGy/k4DqvxWA6r8VgOq/FYDqv6sZ+vFBgn5QgZu+keuxlOUjlFIXntQTTwiJ4uXAmxQUPRQUPNQUPRQUPNQUAAIAeD+rAhIBswABAAIAAwAEAAVABkAHQAjAAABESEBEQE1IRUlNSEVJTUhFQEhEQEhATUhFSU1IRUnETMRIRUB4ASyAbb67QHG/joDvvxCA777PQXI/nr7vgEFA778QgO+s1ABkf6sCCD+Yvl+AX9LS/NMTPRLS/zqBg8BcfyJTEz0S0vhAcv+hVAAAAgBNv6sCPIGzAAlADIANgBDAFEAZABxAIkAAAERIRUUBwYVFBYzMjY1NCcmPQEhFRQHBhUUFjMyNjU0JyY9ASERATUzESM1PgE3MxEzFQUhESEBPgI3ITUhFQ4CBwEyNjURIxEUBiMiJwcWITI2NzMXMxEjFQYjIj0BIxUUFiEyNycGIyI1ESMRFBYXMjY3EyMHDgEHIy4BLwEjEwcGIyInBxYBNgESDzI7KCk6Mg8FEA8yOygpOjIPARL6KaCDNE0gWI78xwcc+OQEWgYoVEb+qQHZVlYhBv0IOjQ9HBwlGSokAWUdLRMCBTI8IiIvPCgBVxUMBwYEDzwbjy0zEGk7LQYLBQMGDQczPnEGDywNCAwP/qwIIF0TCBs8Kjs7KjwbCBNdXRMIGzwqOzsqPBsIE1334AEwYAH6SgobE/2EYOAEkvxOhtS+YmJGa8LajwSgSDMBBv7/KSMqHz8bFioBHscqQ661NjoFLQEWAVj+qyIobDYuAS2SEygVFSgTkv7lEzIDLgYADQD1/qwJMwbMAAkADwAcACkAMgA+AEwAXwBjAHAAiACMAJgAAAE1MxUhESM1MxElETcRIRUBNTMRIzU+ATczETMVIT4CNyE1IRUOAgcDNSERIREzEQkBMjY1NCYjIgYVFBYBMjY1ESMRFAYjIicHFiEyNjczFzMRIxUGIyI9ASMVFBYFESERJTI3JwYjIjURIxEUFhcyNjcTIwcOAQcjLgEvASMTBwYjIicHFgERMxEBMjY1NCYjIgYVFBYBs1AG4IXV98JQA7n925N4L0ceUYMBCgYkTUH+xAG0T08eBvkBxAGGUP52+xwuQUEuLkJCASg6ND0cHCUZKiQBZR0tEwIFMjwiIi88KP0HB4D80BUMBwYEDzwbjy0zEGk7LQYLBQMGDQczPnEGDywNCAwPAoZQ/u4vQUEvLkFB/qzZiQbWUPiKqgSTCPu1UAEjWgHSQwkaEv22WnvEr1pcQmKzyIX+3VABcwGl/gz+jAYsQi4uQUEuLkL++kgzAQb+/ykjKh8/GxYqAR7HKkOutTY6vAMM/PS8BS0BFgFY/qsiKGw2LgEtkhMoFRUoE5L+5RMyAy4G/kMBlf5rAy9CLi5BQS4uQgAQAIf+rAmhBswAEQAqAC4ATABQAFQAYgBmAH8AgwCRAJUAmQCdALsAvwAABTUjNyM3IwERIREBIxcjFyMVBSImNTQ2NxMXAw4BFRQeATMyNjclFwUOASUhNSEDLgE1NDYzMhcVBhUUFwcmNTQ+ATcHLgEjIgYVFBcTISchJyEnIQEiJj0BNDYzMhYdARQGASEDIQEiJiclNwUeATMyPgE1NCYnAzcTHgEVFAYBESERASImPQE0NjMyFh0BFAYBNTMVBSERIQE1IRUBJzY1NCYjIgYHJx4CFRQHJzY1NCc1NjMyFhUUBgE1IRUCl65XhUbrAVMFVgFT60aFV675pk5iKyrPULQeIhEjGhEoIQEELv7sHkUBfQRa+6buWmJ+cEdCShRLGRIpIQ0SHQ9MUnxgBVYw+wpcBa8h+pIBfxIaGRMUGhr9xAbA+/s2BkIzRR7+7C4BBCEpEBsiESIetFDPKiti+hUBMgHGExsbExMZGv6+3vy/BLb7SgJjAUIB0RB8UU0PHRINIigSGUsUSkJHcX1i/JMBpsewsIQB2gPV/Cv+JoSwsI24nkmDQAE6T/7cMV01Q2k8FBrPZd8ZHt1gAgoTmHmLnRhfMYBAMx1GSipUSxoRBAJta7wa/fhgSDwBWRsTphQZGRSmExv+6QFw+90eGd9lzxoUPGlDNV0xASRP/sZAg0meuAW0AXz+hP4WGxOmFBkZFKYTGwGGUFDdA13+SFBQ/S9OGrxrbQIEERpLVCpKRh0zQIAxXxidi3mYA4ZQUAAAAA0BBP6sCSQGzAADAAcACwAPABMAGwAfACMAJwArAC8AMwA3AAABESERATUhFQERMxEBNSEVAREzEQEXCQInCQIhESEBETMRATUhFQE1IRUBETMRIREzEQE1IRUBBAgg9/YH9PlINf6PB/T6mjUFBTn7eP5S/mM+AcUBufyxB7f4SQPBNfvrB/T4DAf0/T41AR01+UgH9P6sCCD34AFSNTX+xQf0+AwCjTU1/XIH9PgMB+tF+dUBnfzqRgNg/lb+IAe3+CsH9PgMA+A0NAFRNTX6zwf0+AwH9PgMBoM1NQAADQEE/qwJJAbMAAMABwALAA8AEwAbAB8AIwAnACsALwAzADcAAAERIREBNSEVAREzEQE1IRUBETMRJQkCNwkCBSERIQERMxEBNSEVATUhFQERMxEhETMRATUhFQEECCD39gf0+Ug1/o8H9PqaNQUF+6b+R/47PgGdAa4EiPgeB7f4SQPBNfvrB/T4DAf0/T41AR01+UgH9P6sCCD34AFSNTX+xQf0+AwCjTU1/XIH9PgMAgXt/lYDYEb86gGd+dUpB7f4Kwf0+AwD4DQ0AVE1NfrPB/T4DAf0+AwGgzU1AAAKAQT+rAkkBswAAwAHAAsADwATABcAGwAfACMAJwAAAREhESURIREBNSEVAREhEQE1IRUBIREhAzUhFQE1IRUBESERATUhFQEECCD5FgEn/bkH9PtzASf7cgf0+CsHtvhKHwf0+AwH9P25ASf5LQf0/qwIIPfgHQSV+2sBNTU1/ssDS/y1Aoc1Nf2RB7b8CzQ0AVE1NfrWBqH5XwZ8NTUACQIa/qwIDgbMAAMABwALAA8AEwAXABsAOgBGAAABESERATUhFSU1IRUBIREhEzUhFSU1IRUlNSEVASImPQE0NjsBMjY9ATQ2MzIWHQEUFjsBMhYdARQGIyUyNjU0JiMiBhUUFgIaBfT7NgHG/joDoPuGBVT6rNoDoPxgA6D8YAOg/K4PFWBEJCIuVDo6VC4iJERgFQ/+fh0pKR0dKSr+rAbx+Q8BVFBQ81FR/gkGUfyaUFDzUVH0UFABMRUQIURhMSIBOlRUOgEiMWFEIRAV+CkcHSkpHRwpAAAAAAUBCP6sCSAGzAAkADQAQABXAGkAAAEXByYjIgYVFBYXFgQzMjY1NCc3FwcWFRQjIiQnLgE1NDYzMhcFNCYnLgEjIhUUFhceATMyARMBFwEDFyUBFwEFATQ/ATYzMhYXHgEVFAYPAQYjIiYnLgE3FBYXHgEzMj8BLgEnLgEnBwYFkjjsZchcUoF5kAEaYjw2Yec4tkjCdv7MnoSKgnyxdQP5fGNm0EI1fGZi00Iz+Dj+AaU4/l/QCQEWAaI4/lz+rQPHJbkkPFPqc3GGEBK6JjpU7HFxh1B9ZWLTQhoOYVLPYGN/EWENBOU47mM2PVLjg5u2UlzJZug4uHax/sGqj/tkYWJJBkTQY2Z8NUHQaGR/+y0BUwGkOP5e/uoJ0AGhOP5b/gbhPSW5JIdxbu1WHDISvCaKcXPrU0LPaGR/DmERg2JlzFFhDQAEAwn+rAcgBswADwAbADAARQAAASIuATU0PgEzMh4BFRQOAQsBETMREzMTETMRAwEyNjc+ATc2NTQmJyYjIgcOAQcGFhMyNz4BNzY1NCYjIgcOAQcGFRQXFgUVkO6Oje6RkO6Nje7bPVA0CDRQPf5kFBsDBhoTCQsICxEXER4fBwMcwhAPCRMKIhoTCwgOHg4ZCQwCtY3ukZDujY3tkZHujfv3AZ8DC/z5/q0BUwMH/PX+YQX1GxQnRSIQDA4UBwsXKGI2Fx8BFwkFCgQQHhYaAwYPCA8ZDQ8WAAAAAgCw/qwJeAbMAEgAlwAAARYzMjc2NTQnASYjIgcGFRQXARYzMjY3PgE1NCYnATcBHgEVFAYHDgEjIiYnAS4BNTQ2Nz4BMzIWFwEeARUUBgcOASMiJicBNwkBBwEeATMyNjc+ATU0JicBLgEjIgYHDgEVFBYXAR4BMzI2Nz4BNTQmJwEHAR4BFRQGBw4BIyImJwEuATU0Njc+ATMyFhcBFhUUBwYjIiYFohAZFA8QEP0oNUlJNTQ0BB1bfTtxLC0uLiz8x9sDOVlcW1pa4nh441n740ZISEZHtF9gtEYC2DU2NjU0h0dHhjX+DtsBu/5FagG6KWk3N2kpKSoqKf0oOpdQT5c7Oz08PAQdTcZoaMVOTlBRTf0AagMBODo7ODePS0yNOPvjJiYnJSZfMjJfJgLYJycmNhozAjURDw8XFw8C4jU1NEpKNPvYWy8sLXE8O3AsA0Pb/L1b4nd44lpaW1taBChItF5ftUZHSEdI/R41hkdHhjU0NjU2Af3c/csBxGv+OyoqKykpaTc4aCkC4js9PTs7llBPlzv72E5QUE5Nx2doxE8DC2r89jmNSkyOOTc6OjcEKCZfMjJgJSYmJib9Hic4OCcmFAAAAAsBAv6sCSYGzAADAAcACwAPABMAFwAbAB8AIwAnACsAAAkHJSc3FwMnNxcTJzcXAyc3FxMnNxcDJzcXEyc3FwMnNxcTJzcXB2H5oQHGBl7+OwFU+hP+qwGxLHIsCjOgMyIucywKM6AzISxyLAozoDMhLHIsCjOgNCAsciz+rAZcAcT5pf6rAVUF6v6tNyxyLP7GM6Az/wArciz+xzOgM/7+LHIs/sYzoDL+/yxxLP7HMqAz/v8tcSwAAAAADQD4/qwJMAbMAAIABQAIAAsADwATABcAGwAfACMAJwArAC8AABMRASUhCQERIQkBIQMnNxcDJzcXEyc3FwMnNxcTJzcXAyc3FxMnNxcDJzcXEyc3F/gIOPgYByX42wG/ARz+lAIt/dOCLHEsCjKgMiItciwKMqAyIixxLQsynzMiLHEsCTShMyEscSz+rAgg9+BQBxH7yv7kAd390wP9LHIs/sYzoDP/ACtyLP7HM6Az/v4sciz+xjOgMv7/LHEs/scyoDP+/i1yLAAADAGB/qwIpwbMAAkADQARABUAGQAdACEAJQApAC4AMgA3AAABETMVIREjNSERATUhFSU1IRUlNSEVAREhESUhESETNSEVATUhFQE1IRUTJzchFQE1IRUBJzchFQJdUAU8sAEA+mEBxv46A2T8nANk+4MF3Pp1BTv6xcgDZAEuAXv58wNkxGhoAeX+hQF7/htoaAHl/qwBC7sGzFD4lAJsUFDwUFDwUFD8pAcw+NBQBpD9bFBQ/K7Q0ARCUFD9Amho0AFD0NABRGho0AAADgGZ/qwIjwbMABgAKwA+AEoAXQBpAHwAiACbAKcAsQDCAM4A2gAAASImPQEXLgE1ETQ2MyEyFhczMhYVERQGIyUuATU0NjMyFwcuASMiBhUUFhcnLgE1NDYzMhcHLgEjIgYVFBYfASImNTQ2MzIWFRQGAy4BNTQ2MzIXBy4BIyIGFRQWHwEiJjU0NjMyFhUUBgMuATU0NjMyFwcuASMiBhUUFh8BIiY1NDYzMhYVFAYDLgE1NDYzMhcHLgEjIgYVFBYfASImNTQ2MzIWFRQGAS4CJzcUHgEXBSEyNREuAScWFBURFAYjIRY3ITI1ETQjISIVERQTIiY1NDYzMhYVFAYDFDdJGjc8XlQEIz9LFFs6TGpi+v2XkJVuOzAWEysXTm9UallWVZVuOzAWEysXTm8zMtAfKyweICsr8FZVlW47MBYTKxdObzMy0B8rLB4gKyvwVlWVbjswFhMrF05vMzLQHyssHiArK/BWVZVuOzAWEysXTm8zMtAfKyweICsrBRIzXDsCTCtFJ/rUBJJ8FkcdAmpi+9gkAgQCfG37722IHyssHiArK/6sTDqmNQ5WSAXKW1gqL0k3+YZpZNwPclVXcBFDBQlJOSRUBe4aX0NXcBFDBQlJOSI7CHssHx8sLB8fLAFRGl9DV3ARQwUJSTkiOwh7LB8fLCwfHywBURpfQ1dwEUMFCUk5IjsIeywfHywsHx8sAVEaX0NXcBFDBQlJOSI7CHssHx8sLB8fLPrjCzlpUlRiaiwHaHsGcwQhEwcTDfpuaWRRoXsFqWxs+khsBW0sHx8sLB8fLAAAAABiAbj+rAhwBswAHwAzAF4AbAB1AHwAkgCqAMMAzwDaAOkBBQFMAYABhAG5Ac8B6AH4AgUCNgJPAloCYgJwAocCkgKwAtwDBAM1A08DYAN/A6kDzAPZA+MD7AP2BAEEFgQ8BGEEkwS/BOwE+AUOBRcFNwVsBXUFjAWUBa0FuAXJBdcF6AYVBjIGTwZ6BpkG2gcABwkHFQclBzUHWgdlB20HrAe7B9MH3AfjB/gICwgTCCAIQQhOCFoIZgh8CJUIyQj2CREJPwl3CYsJnwmuAAABIiY1NDYzITI1ETQjIREHETQ2MyEyFhczMhYVERQGIwE1NhYHBhYXHgEXFgYmJyYPAQ4BNy4BJyY2Nz4BJy4BJyYnNCYHDgEHNTY3Nh4BBw4BBwYWHwEWBwYXFhcWBhcmNjc+ATc+ATc2Fg4BFwYmNz4BFx4BATU2FgcOAQEGJjc2JicuAScmNzYXFgYXHgEXHgEnLgEnJgYjIgYjIiY3NhcWNz4BNzYWBwYnIicmBwYnLgE2FxYVFAcOARcWNjMwNzYWFy4BJy4BNzYWFxYGASY2NzYWBwYHDgEBIiYnLgEnJjY3NhYXFgYBBiYnJicmJzU2FxYXFjIzMhcWFxYmJwYWFx4BASImJzU0Jjc+ATc2JgcOAQcGJicmNjc2NzYmJyYGBw4BJyY2NzYXFjIXFj8BPgEXHgEXFjc2FhcWFx4BBw4BFRQXHgEXFgYlBiY3MjYzMjYnJjY3NhYXFjc2JicmNTQnLgEnLgE3NhYXFgYHBhceARceAQcGJyYGIyIGAREzESUuAScmIyInLgE3NjMyNzYnLgEnJjY3PgEzIjc+ARcWBgcOARceARceARUUBgcGFhUUFw4BFz4BNz4BNz4BFgcGFx4BFwcmBjU0BwEGLgE3NiYnJjc2FhUUBw4BBwYWFxYUFxYXBicuATc2FhceARcWFx4BASYnLgE3NhYXFhcWBgEuAScuAScmNDc2MzIWFxY3NjQ1NDY3NhUUBgcGFR4BFxYXFjIXFgYnLgEnJgYXFgYnLgEnLgEnJjY3NhYXHgEXFgcGKwEiBw4BAS4BJyY2FhcWDgEBNDYWMRYGJicGJicmNzYWFx4BFx4BJy4BJyYHBicmNjc2FhceAT8BNhceAQYBLgE3NjMyFgcOAQEuATc+ARceAQcGIyIGBzQXHgEHBicmBhUeARcWBgEGJiMiJyYGIyImJy4BNzYWFx4BNz4BNzYXNTQ2FxYHBhcWFxYHDgErASIGASYnJgcGBw4BJyYjIgcGJicmNhceARcWNzYmNTQnJjYXHgEXFgcOARcuATU0NzYnLgEjIgYjIjY3Njc+ATc2Fx4BFRQWFRQWFRQWBw4BBwYXHgEXHgEVFAYXLgEnJjYXFhcWBgcOARceARcWBgcGFRQXFgE1Fjc+ARcWBgcGJgcOAQcGAQYmJyY3NjUmBwYHBicmNzYnJgYHBgcGJjc+ARceAScuAScmJyYiJyY3Njc2IzI2JyYXLgE3NhceARceARcWBgcOARceARceAQEGJyY2NzYnLgEnJicuATc2Fh0BFBYXFjYzMhcWBw4BBw4BAw4BJjc+ATc2FgcOAQEuATc+ATMyFjcBBiY1NDYXHgEBLgInNxQeARcBIiYnJjYXFgcOAQEhMjURLgEnFhQVERQGIyEiBhUUFgEGJicmNCcuAScuATc+ATU0JyY1NDc2FRQXFhcWFxYHDgEHBhcWAQYmJyY0Jy4BJy4BNzYmMzInLgEnJjY3NhYXFRQXFjMyNjMyFgEGJicuAQcOAQcGJyY2FxY2JyYHBi4BMzIWFxY2Nz4BFRQGFRQGFRQWFx4BBw4BBw4BAS4BNzA2NTQ2By4BJyY2FzMyFxYGBw4BFxY2NzY3NhYHDgEHBh0BFBYHDgEXLgEnJgcGJjc+ARcWNjU0JicmNDc2FxYHDgEXHgEXHgEHDgEHBhYXHgEVFAYBJjc+ARcWBg8BDgEBBiYnLgEnLgEnLgE3PgE3PgE3NhYXAS4BMx4BFxYGAQYmJy4BJyYiJyYGIyImNzYWFx4BMTYWFx4BFx4BFxYBBiYnNDY3NicmNDU0Jy4BJyY2NzYWFx4BNz4BNzYzNhYHDgEVFBcWBwYnLgEnJgYHDgEHBicuATc2FhcWBgEmNicuAScmNTQ3NicuAScmNzYWFxYGPwE+ARcWBiYnJjYnNR4BFxY2Nz4BFxYGJyIHBhUUBw4BAS4BNzY3NhYXFgYBJjc2FhceAQcGIgcOAQcOAQEGJyY2NzY3Mw4BBw4BFwYmJy4BNzYWFxYGBwYVFAYXBiY3NiYHDgEnJjc+ATc+ATc+ARcmNhcWBg8BBhQHBiMiBgceAhcWBgcGIgEuAScuAQc1FiYnNT4BFxYXFgcwBw4BFx4BFxYGAQYmJy4BJyYrASImNz4BNzY1NDc2HgEHDgEHDgEBJjc2JyYnJjc2Fx4BFxY2NzYyMT4BNzY3PgEXFgcOAQcOAQcOAQcOAQcGFyI1NDc2Nz4BNzYWFRQGBw4BHwEeAQcOAQcOAQcOAQEGJjc2NzY1NCYnLgEnJjY3HgEXFjY3PgEXHgEHDgEjIjQxJgcGFhcWNz4BMzIWBwYmBw4BBw4BBw4BFRQWFxQGASY1NCcuAScmJy4BJzQ3NhcWMzI2MzI3Nh4BDwEGFx4BFx4BBwYnJj4BFxYGBwYBBiYnJjY3NhYHDgElIiY9ATQ2MyEyFh0BFAYjJSEyNj0BNCYjISIGHQEUFgUmJyY2NzY1NCYnJjY3PgE1JicuATc2FhceARceARceARcWDgEBBiY3PgE3NhcWBgEuATYfARYGAQYmJyY1NCcmBgcOAScmNTQnJjY3Ni8BLgE3PgE3Njc2Fx4BBw4BBw4BFx4BFxYHBiYnJgcOARceARcWFx4BJyY1NCcuAScmNhcWBgcGASY3PgEXJjcuATc+ARceARcWFx4BBw4BJwYnLgE3NhYGAT4BNzYWFycmNjc+ATc2NzYXFgYHDgEHBhQHBgMGJzU0JicuAScmNTMUFhcWDgEBJicmNz4BFwEGLgI3NhcWHwEeARMuATc+ATc2JjU0JjU0Nh4BBw4BJyYjJh0BFBYHBgcOAScGJj8BPgEXFgYHBiIBLgEnJjY3NhYVFCITJjc+ATc2FA8BDgEnBi4BNz4BNzYnJicmNzYeARcWBw4BAQ4BJyY2NzY3NicmNTQ2FxYGBw4BBwYjIgMuAScmIyInJjQ3NicuAScmNjMyNjMyNjc2FgcOAQcOARcWPwE+ARceAQcOAQcUFx4BBwYnBiYnJjY3NicuATc2NTQ2JyYjIiY3PgE3MzAWBw4BIyIHBhYXHgEVFAcWFxYXNjc2NCcuAScmNjc2Fh8BFgYHBicmBhcWBiYFIiYnLgEnJjY3PgEnLgEnJjY3PgE3NjU0NhceAQcOAQcGFxYXFgcGFx4BFxYGJwYnJjYXFicmNjc+AScmBgcGIwYmNzYnIiYjIiYnJjYzHgEXFjc2HgEHDgEHBhcWBgcGJyYHBiYnJgYnJicmNjc+ATc+ATc2FgcOARcuAScmNjc+ATcwNz4BFxYVFAcGJwYmJy4BJy4BJy4BFx4BAllDXl5DBIN8bfsoW1pRBI4/SxRbOkxqYvsFDS8DCQkKBw4GDhQeAgMFCgkSZAcFAgEDAQIDBAYUBQkCCAwJEwsLDAkjEhAECQEBDQcDHQQGERwCARVKDgEEAQMBBAELFhAGGXEHHQEBCA0OAv60EiQXBxABwAooBQYLCQYLBRATEA8GAgkFDgYPCIgGCgUGCgQEBgQIGwcFFQ4GCA8IER4LCo8GBgwPEwQCAgwRDQICAwYECgUGHQb2BQYFDBcfDxMGCAz+sg0DFhAyDgMGDBgBtgoRCwQIBREIEQ4qCwsN/bYNDwUGBwkIGQwHCgQHBAoFDwUEKAcCBQECBAF9EhADBAMDBwECEwgJDAUMJgQBCgcIAgQMCQUQCAoWBwcIBhUQAgIBCBAJBQcFCwoGEB8WDgQBBwUIAwUiCAIEAgUO/rgRLBgBAQEPFgIEBA8GCwQMBQcCAgECAgkECQgHCCIJBwECAwQBBQIGCQgKEAUJBRYQ/rfLAj8IBQUFCwoEBwUGChQKBQ0EAxgKEQUQBwwHAQYGDwUDAwEBAgECBgMECBEHBwMDAQ1aBwwEBAMDCigfBgMODh0LQwgwCf5wDScQFA0FBw0GCS8DAQECBg4EAgEEWgIKEB8BAhsJBAQDAwIFBP7iIBQJAwoNIA0IARsNAhsEAgMEDwUVEAsKAwQCCwQFAgoSAgEBAQ0ECAUGEgUKJg0JDQkHBAIFCrQHAgQFEgYHBQgSKRALFAcKCgcKCQcMCBABdgoVCxwdOw8ZAiH+1BoaCxwjqBEpBgcaCg4HAwUEDgKtBwwLBgwLCBMHCggJBgUNCgsMCxkIGQIMCAsLBgoSEQIDGvzCHwUYCywQDhoZBAoJEgQDDRQPBxEJEAIMBAUNAhkGDAYDCAYLBg8cCwUCCAgTCAsWCgQFBBEdBA0LAgEEAwQKAgITCgoHDv7lDgkLEgkHBAoLCAUEAgofBwQkDwcNBxQDAQICCh4NCxAKIwsBDekNDgMGBgUTCQEFAh0NFhUKAgMECAkGAwQBBgIBBAIHAQEEAQIFC8YQJwUHFR8EBQIDAgEEAwIJAgUGBAYFCPzqDQoIJQsFBQoDCAQIBQIIBD4FFAICAgENDwkJEQICCQMDChEHBwQXAQgKLBElMNIKDg0FDAQKBQ8CARAEAwQDBQQBBgQMCwoEAwUIFAcJBAIBBAEBAQEFAf4pDwkHBAYMAwEJBAEGBQcIFCoECgIEAQUCEAcHHgkEB8gOKBUNCBgNFBYGAwgDoAwMDAYJBwIJBvv9EBwiDQsCBKkzXDsCTCtFJ/3BBxIFDSwPEgIBFPxPBUt8FkcdAmpi+30hLy4BBAgFBAEBAwoFCQwBAw4BAgoMAgYGEgsPCAMRBAYCAgE+CyQEAQEBDAMEBAUCAgEHBQEIAwUDBBAgAQIBCwEBARQEAkwIDwgHDggEBgUVAgEkDxQWBQskFSYCIBQjEwUJBg4UAQMHAgQIBQcbBwQC/nENDAoBExsQBAMKERUMEQUIAwgLCwQDDwUGBg0cCwQJBQ8CAgISgQYJBhQVDyMGBRUKCxECAgQbFQYCBAEEAQEGBAQHAQEIAQEGAgIGEPzjDAgIMAIBDgYBCREErgsQCgQHBAUJBQ0BDQUMAwYCCAgYBfwrDRUZCg4GCw8C3RQsBQEEBgMGAgEFAhAHDxESAwECCxYICAQHBAcCB/5TCBQBDgIGBgEEAgkEBAYFCQsFBAcEBgYEDgcTHQ4FCQEDAQQNBwQGCQQDAgECCGYMDAkGGQQKDv6wCgELBAgFDAIDAgcNAwEEEi0KBwMbAgQgDQsVIcMIAxELEAkKDwcJEQ0SDhYaCQICBBIEfQwKBwYNEA0BBRj+xhEMDEQPBAIFCRcLAwYDChD+9A8JCA0JBAM0CRgFAgR9BxkCAwEOBxUEBAMCAgN5KwkBAQIJCiUNEBcLFgoCBQMIEg8FIwoCBAIDAwgFCwcNAwUcHwkFAQcIEfzKBwgFBxYKHQkUCBUFCgwGCAMEDAoLHQYEEQQ8BwsHBAcFBQ8HEwsOCRsKAwEFLSYFBRMFBAH8EAUCAQIECgwHCg0FAgQLFQgBAQoZCQcFBAsMCwIDJA4GDAgGDwcECQUKZgsMBQMGGRQJBQMCAgUBAwIDAQMfDQIDAgQHAvwNCwEBCQsMAgIHCwkCFAgMCAYLBgcKBgkHBQUTCQEHAwQBBAgRAwYDFA0UBg4FBAECAQUCAgYGARL8lgIBBA4GBwIDHwILBgMBBAgNBwIBCx4LEwcWAQEQBwoDCQlvEgkdCwgUCwQDBhAjAgEjDREaCgcI/gksPz8sAecsPj4s/hkB5xAXFhH+GRAYGAJ+DQQBBQIGEwgLAgEBAgEGBAcJDRIHAwYDCAgBBSMHBRYj/SoPDQYDAQwUCQgNA3IMCAkPCBUK/TgGEgIBAgUKBwYNBQgCCwcUHgcDAQMFBQ0GDgcMEggQAQEqCAUBCA0aChATCRMLEw0JBwcFCwQIBAQLhgwBAQUBARUNDg0FAgL1FwMCGAoWEA8cBAQgCQMCAwYOEgwIBydgEgoEBQwYFgT+RQIDAQwnBXQRAw4HDwcFCQ4IDgkGBhAEBAQMtREDAgcECwQGMgcPGwEdAxoRHRABBiYP/kAHIh4HFRAIAgYJCgzSCgMJBQsDAgQBKzEXFAcVCgMFBgECAwsJFAMQDQcFCyENDicLAQL+OgQIAxshEBcVH/ACAgQcFRQfAQUaohAZAhAFDQECDgQCDwkLHBkEChMICwHpDBUICBUOEgQLBwEMEBwJBwEEAQMXB5IECQ0ECQ4LBAECBAUVAgEMBwIDAQcKBw4UBwEEAgMIAgQPCwcRCAgIBQQOAQICAwQK3QQdCAcCBgoPDBQNAQQGAw4JDgICBgRZKQgGFAoNBgsHBwUHDQ0HCDIBDQcHBAYECgEJDiINHAcFCBETBQgBDhQdAUMFCAUKIwYCAgEBAwICCwQHDwcECAEEBhEbDxQDBQEBBQYBAQgIAwQTBAIHnA8HDRMQFgMBBwMEBgEBCQICAwcPAQgZAgcDDhwGBA0KDhgNDAYOIhcGAgoCBAMDBhMIBwQIAgUjEiURCwECFwcECgUFCAUPHwIBEKYIEgcNCQ8IEwQDAgQHChMICAkVAQEBAgEFAgcEFg0f/qxfQ0JcewWpbPkbSQbSWFQqL0k3+YZpZAFkUhgJHBUKAgEEBhIWBhcIAwYGCmACDAcCBwIFBwQGBAcQEQoWAgYKAlYJBwYCDw4CBwUJCgcCHSERBgkbCxE5CBALAgUECRAEBx4qGBUQCxAIJwUEKgFSVAsrFAYW/pgKBxMRCQICAwQXExAQBxQIBAIDByB+AgwCAgEBFwoIBgMBAgQBAh4SEVsDBgQIGQkrIAkGFAEGBgoFAwICAi6XAwUDCCQDAhYLDRcBKREfCQYNGAUIEBb+jgsFAgYCCR0EBAMNDSkCKAYPCw4EBAJEAQ8JBAEBAxENAgQGDQYIEP6lIg4BBQoFBQcFCQwDAw8HFAIZDA0HCAUIEQICAgEBAgcHDwUUEAECCAYDAgMBARoKGwMFBxcFCQcLBgsCDAUIAgYDBg/nDRYUARgRDRoGAgYCBgMDFgwGDQcDAwIBBBIHCwMNChYMFBIDCAQKFgoIBQIBMv3/Buf5GaQFEgcDAgQRBgoBBA8KBgUJHAEBBAMDBAoFCwUECgQGCQUGCQYKDAgHEAgDBgQFggcMBwcPBxEHExcMAgUFCAcFBAEPBQHyCAMVEQsOBw0NFBETCAYBBgIIDQcCAwEMQQIDBB8TEgMOBgwGBgIEDwEQAg4JIQoLFAsGARAX/aEECgQFAgEGLAoHAwEEAgMLBggPAQINAwUDAwYKEAgKAwQGEBAFBBADAgkFCxXdBA8HCgIGCAUECg0LBAMJDAYEBgQD/sgEDQcZFAIICiIXATYYAw4ZFgrjByIRFAQCDQcDBgMGGZYHEgQCBwcDBzEIBwcGBQsCAwMBAzQj/f4IJAkFHw8SBgLwFlQbDBIFBCMGAQQJAQYEHAsFBgMCCwUJBwkQ/k4BAwICAgMLBhUEAgUDBAQHAwUCCgUGCRUGBRMJCQYDBgsKAQcBUQEXGQMBBwQDBQQBBQENEhIFAgoCBA0EBQIDAgoYBQQRBQ4tDBf5AhkNAgkPCQgBAisCAgoCBwEECQkVCwkRCAEBAQQHBAIGAgkDBAQDAwQEBQPMAi8QFy0IAQcEBwUEBwUDAwQGCgUIBA0HDALjLAESDg8RBxMCAQECAxEIK/w7CgUMBwYFBw4XDQECFBMJAwMLCwcHAgsqDQ4LAwdEeQgYBQICAQIHFQ0HAgoHBgEGCAUFDgYLBQcDBwcSCQYNBgECAgQSAaUHDwwUCxcOBhIHAgYFCgUNIhUECBIGAQEBCA4NBwkECwEfEgQaGA4XCA0TFwsX/GYLGgwGAQEBA7kEIg0UDRAMKPslCzlpUlRiaiwHAhACBxMZCQsRCwX9iHsGcwQhEwcTDfpuaWQvISIuBTwEDwUCAwEGBwQHDAoKDgoKBAgDEgIDDAcDBgEECAoVCAoJDBAO/voKBhIEBgMFBQMFDQIBAgoDAQEDDQIFHQ8BBAQCASX9kAUIBwYJAgEGAQQVEwsHCRUUKhcKGiIPAwEFAgUBFAIGAwQIBQQMBQkNBwoGCQYQAUgIGg0BARERAgMgDRIYAgIDEAIDGQsJAgUMAgUpCQMDAgURDgUKBQcHUgINBA0PEBQUDwQBAQQPBhAIGS8FBBQHEAQJBQYLBgcNCAYLBwUJBQQJBQkJAxsOEQ8IFwgMBgEGB/udBAkGAgcBAgECBxIGAgYECRcEBAIIA2oFLQEMBw0Z/V8LHhUHEAMCAQEBKwYHHwoCAwECCAcUCAQFBQ0BPwMECgkKBw4NBAYECgUEBQQFDQIECQcECgEBDgMJASMPBgkHBgMIAw4JAxAEAQ8IBQoDC68FHQoFDgUNGAE2BR0GAgMBAwoCBgUCBwgIBAYbGBUPPgYGEwsQFB0DmwseBGcOIwoKBQcJCAkNIwMWBQcMBAgD++cGIA0LAgIaDA8UATQQEREJDAIKAgYCAQQBAgcBLwkNCxgJBAQKDQwGDEoQCw4OHwoFBQgGDggGAwUKlAcqEQkJBwsMEBQMBQEHAgQCBgoFFBAUBQsFCgkSBQMCBxAFAgsFDwMCAzoFDwYIAQQ0CikCKQUBCBYUEgoDBAsFBgMOECD7xwEHAwIGAQEaDAsGCAYNCQQVBhsMDBELDCEDvQQNBQYLDA4KDgsECgMJDAgBBgEHBg0KDgMDDxYWDgYOBQQDBAIIBQg6EAsMBQgSHgcDAgoEBgMECQYLBAgFEAQFAQIBAgf82QEWCggJCwgKFAoSGhAMJQEBCwEBBgICBwICFAgIAwICAgQUAwcEAQIlCAIBBQQNBQMFAwQGBAUIBQsXA9QBDAsBBgEDAw0THRQKBAIDAQkBCw4YBgMLEAoKBggeCQmHDiUTDxAfCAT9CAkYERAdBQcSEg0eQT8ryiw/PyzKLD5CGBDKERgYEcoQGO0GEAYJAwoGCggEBxMKBQgECAsJEgcFEQsEBgMIFgsWBQ8NJxYDFAMWDQwbCA8UEDb8fwMkIAQCBzsCtAUEBwUJDAIFAwICBAMEEwgKFA8JDx8OCBEHBgEECQwUAQEHCRARCwcUBAUBDRYOBwIEBgQDFQUDAgIDDg4iogEVBgIHDAcQFA4OKBEH/QwEEgsBAxYgBRQREAoOBAoEBwgKKhMRFpQDGQsbCRIhMAGhAgcCGxIULAkoCQUFBAMKEQECJQYGBgcGDgYUAQcECwcIDgcFBgUGCgcLAQEbGv0GHxYMDBEKBQGsFwMcIgkHDQMEBQYM/m0EGAcEBQYDBwMBAQEgGwQeGgoCAwEECAgECAUGCQcKmxApDAgKCwgQHQsBAdkCAwEHKwUHFxUf/uICBgsbBwcoDAIIAb0QCx4KAwUGDgQCAQ8OEhMkCBUGBA/95QIBBwsTCAsFDhsECg0TBQo5GgYKBRgBEAoRAwEIBA0HDggKCgoLBwEJAwYREQQFAwcMCA8ECAUJAgIQBwcICAUIBgoFDOgLAgoKGwoNCwwnDQECCBIGAwUMBQkEIA8MBAEFFwcHEQoWCQoJCzoNDQUOAwIFAgYdBwsKCBsHFAUJAQIIBRQXBvsJAwcDDgUKBgUKBAgMBw4QCgUHBAwIChAFBzcUAwQEBwgLAggICAkJCgoFDP0EBgsaAwQVBQkEBQkFCwQFBQQLBxcDAQYPChMCEgUIChUHIRMHDQgNFhEeBwIDAgIBAcwCAQYEBQsKAQEBAQIFAQUVEQkI0wISBQ4YBwUJCAkFCwEBDy4mEJwKCA0FDAUCBwQLDw0HJgAAAAAGAbj+rAhwBswAHwAjAC0AQgBcAHYAAAEiJjU0NjMhMjURNCMhEQcRNDYzITIWFzMyFhURFAYjJREzEQUuAic3FB4BFwUhMjURLgEnFhQVERQGIyEiBhUUFgEiJicmKwERMzI2NzYzMhcWOwERIyIGBw4BJzI3PgE7ATUjIiYnJiMiBw4BKwEVMzIWFxYCWUNeXkMEg3xt+yhbWlEEjj9LFFs6TGpi+lHLBWczXDsCTCtFJ/obBUt8FkcdAmpi+30hLy4C1CU3HkJPenorQyM3Q0I3Q096eilDJh83IzIgNlEyHR0yUTYgMjQdNVIzHR0zUjUd/qxfQ0JcewWpbPkbSQbSWFQqL0k3+YZpZPoG5/kZlgs5aVJUYmosB2h7BnMEIRMHEw36bmlkLyEiLgQzFRc0AXYYHCwrNf6KGRwWFWQXKSCuISgXFiogriAqFgAHAbj+rAhwBswAHwAjACcAMQBGAEoATgAAASImNTQ2MyEyNRE0IyERBxE0NjMhMhYXMzIWFREUBiMlETMRNxEzEQUuAic3FB4BFwUhMjURLgEnFhQVERQGIyEiBhUUFiURMxEzETMRAllDXl5DBIN8bfsoW1pRBI4/SxRbOkxqYvpRy9pdBDAzXDsCTCtFJ/obBUt8FkcdAmpi+30hLy4CrV3tXf6sX0NCXHsFqWz5G0kG0lhUKi9JN/mGaWT6Buf5GRkG5/kZrws5aVJUYmosB2h7BnMEIRMHEw36bmlkLyEiLsMG4/kdBuf5GQAAAAAhAG7/Qgm6BjYABwAPABcAHwAnADUAPQBNAFoAYgBqAKgAsAC4AMYA7QD7AQMBEAEeASYBLgE2AT4BTgFWAWQBbAF0AYIBigGSAawAAAE1PgE3FQ4BJzU+ATcVDgEXNT4BNxUOATc1PgE3FQ4BJTU+ATcVDgEBLgEjIgYHNT4BMzIWFwE1PgE3FQ4BAz4BNz4BMzIWFxEmIyIEBwE1PgEzMhYXFS4BIyInNT4BNxUOASc1PgE3FQ4BASInLgEjIg4CIyImJxE3FwcRHgEzMj4CMzIWFxYzMjc+ATMyHgIzMjY3ESc3FxEOASMiLgIjIgYHBgE1PgE3FQ4BAS4BBzU2FhcBNT4BMzIWFxUuASMiBgMuASMiDgIjKgEnET4DMzIXIzYzMh4CFxEGIiMiLgIjIgYDLgEjIgYHNT4BMzIWFwEuASc1HgEXJyYjIgYHNT4BMzIWFwE1PgEzMhYXFS4BIyIGATU+ARcVJgYFLgEnNR4BFwEuASc1HgEXAS4BJzUeARcBESYkIyIHET4BMzIWFx4BAy4BJzUeARcBNT4BMzIWFxUuASMiBgEuASc1HgEXJy4BJzUeARclNT4BMzIWFxUuASMiBgEuASc1HgEXNS4BJzUeARcBIiYnBRE3DwERJR4BMzI2NwURLwEXESUOAQIDIDocHDogNWUuLmWGRHQxMXYJGjEVFDX+41ukRkakAg4SIhQNHRQUHQ0TIxL9lyZHIiJHn06wV1SJMFZ+LyGgR/6e+wIkJDsXEyMSEiIULmYaMBMTMc01YSkpYAICSBcIPSk2kq7AY2ZVIW4uUyA8HXjMq4w4Q2EQCBERCBBhQziMq8x4HTwgUy5uIVVmXMS3lS0oPQkY/KhktEtKtAIEESYUFCUSAVASIxMNHhMTHg0TI7pAj1kymLG3UgoUCmzgzqQw1zBCMNcwpM7gbAoTC1K3sZgyWJDoEiIUDBwRDx4MEyMSAv5CdjExdUPwSC4TIxISIxMXOyT9OSM5FRMjEhIiFBU5AeYSJRQUJgFSFjYUFTIZAQYfOh0dOh/+cxkwFBQwGQIG+/6eR6AhL35WMIlUV7ArNWQvL2U0/ZcSIxMMHg8QHQwTIwJXW6RGRqRb2TZgKSlhNf5wEiMTFToiIzkVEyMCVyVIIiNHJWS1Sku0ZPzvQVUR/AG2CWQD4wJGMjJGAgPjZAe0/AERVQGtSgULBEoEC8NKChAJSQgSsUoMEgZKBhPLSQQHA0oCCJZKEB0LSwoc/qkEAgICSQMBAQQBxEoICwdKBwv8zQUlFhYbJyUEnVA2Mv03SQUFAgRKBQG6SgQFAUkBBqpKCQ8ESgUP+29OHCYbJRsJCAVIjzt2+xICAhsjG0UzGRkzRRsjGwICBO52O4/6uAgJGyUbJhxOBSpKESALSgog/qcFAgFJAQEE/iZKBAEBA0kCAgL+iUU4Ii0iAQUvFioiFIWFFCIqFvrRASItIjgDhQUBAgJKAgICBP02CxMGSgYSDKMJAQVKBAIFBQIQSQUEAgRKBQED/m1LBAEBSQEC5wMIAkoDBwT+wAULBEoECwUBhwQGAUkBBQT9EgSqMjZQ+2MlJxsWFiUBlgoSCEkJEAoBj0oEAgICSgICAf7qERwKSwsdEKUIDwVKBA8JoEoEAgQFSQUDAf7qCAsHSgcLCH4SIApKCyAR+iszKlkGMRNKDfpkWDc6OjdYBZwNShP5z1kqMwAJAbj+rAhwBswAHwAjACcAKwA1AEoATgBSAFYAAAEiJjU0NjMhMjURNCMhEQcRNDYzITIWFzMyFhURFAYjCQE1AQURMxElATUBBS4CJzcUHgEXBSEyNREuAScWFBURFAYjISIGFRQWCQE1AREBMwERATMBAllDXl5DBIN8bfsoW1pRBI4/SxRbOkxqYv0Y/fQCfPzJywPJ/CcESQEuM1w7AkwrRSf6GwVLfBZHHQJqYvt9IS8uBUX7NQTL++VwA6v9pnAB6v6sX0NCXHsFqWz5G0kG0lhUKi9JN/mGaWQBEAIMcP2EFgbn+RkcA9lw+7eyCzlpUlRiaiwHaHsGcwQhEwcTDfpuaWQvISIuAaYEy3D7NQFiBBv8VQFkAlr+FgAJAbj+rAhwBswAHwAjACcAMQBGAEoATgBSAFYAAAEiJjU0NjMhMjURNCMhEQcRNDYzITIWFzMyFhURFAYjATUhFQE1IRUTLgI1NxQeARcFITI1ES4BJxYUFREUBiMhIgYVFBYTNSEVATUhFQE1IRUBETMRAllDXl5DBIN8bfsoW1pRBI4/SxRbOkxqYvrKBRX66wUVpDNdPEwrRSf6GwVLfBZHHQJqYvt9IS8uNwUV+usFFfrrBRX6csv+rF9DQlx7Bals+RtJBtJYVCovSTf5hmlkAgheXgElXl79Nws5aVJUYmosB2h7BnMEIRMHEw36bmlkLyEiLgQCXl4BJV5eASVeXvpeBuf5GQAADAG4/qwIcAbMAB8AIwAnACsANQBKAE4AUgBWAFoAXgBiAAABIiY1NDYzITI1ETQjIREHETQ2MyEyFhczMhYVERQGIwkBNQEFETMRNxEzEQUuAic3FB4BFwUhMjURLgEnFhQVERQGIyEiBhUUFiURMxEzETMREwEzAREBMwEDATUBNwE1AQJZQ15eQwSDfG37KFtaUQSOP0sUWzpMamL9GP30Anz8ycvgUAQ3M1w7AkwrRSf6GwVLfBZHHQJqYvt9IS8uArNQ+lD4++VwA6v9pnAB6vP8JwRJg/s1BMv+rF9DQlx7Bals+RtJBtJYVCovSTf5hmlkARACDHD9hBYG5/kZHAbd+SOyCzlpUlRiaiwHaHsGcwQhEwcTDfpuaWQvISIuxgb0+QwG3fkjArIEG/xVAWQCWv4W+woD2XD7t+AEy3D7NQAAAAgA+v6sCS4GzAAjACoATABuAH8AgwCPAJ8AAAkBNTc2NTQmJxcWFRQGBwEHNjU0JicBNQE2MzIXAR4BFRQGBwkBNSUXBwkCNTc2NTQmJxceARUUBgcBBzY1NCYnJTcXATYzMhYVFAclIicBJjU0NjcFEyUnNxcVBQ4BFRQWMzI2NyUnNxcVBQ4BCQE+ATU0JiMiBgcBHgEVFAYDCQMmNTQ2PwEGFRQWFyUBPgE1NCYjIgcBHgEVFAYFZPuWWQYTF1IbEA8D1SwkCQv7xALeNS8vKgPhTFJKRPrn/awBGxvbAfkCFvuWWQYTF1IODRAPA9UsJAkL/vNo1QK5NzNBRbf7uIAv/m8oAwEBSfIEeoMzpftAMzBBNB1FJAPbVCp3++goRwFJAsJNSCUjECYW/UYIBg85AoT74P2MBvYrAwRDCRcX/OwC6zY2IiMhMv1GCAUMAY8Cbj0kFBUcRSwrLjkfPx793wVCUBoxEwJKPgFbGRf96yhdSD1eIf3bAUM+iD1q/u79agJsPSQUFRxFLCsXNBwfPx794QVCThoxE5EYcgFIGlg+ellIRgJfO0cLEwqn/n/qgC2iPfgKMCQoIQkI2Xctmz3lCQj+nAFYJkgnIzQKC/60FjAXJkYD7gEwAiz+1vweYEYOGw0HMRgiPyh9AW0aQSYjNRj+tBYtFyZHAAAAAAIBGP6sCRAGzAAVACUAAAEiLAECNTQaATcJAxYaARUUAgwBASEyNjURNCYjISIGFREUFgUU5v6I/vORbMiJASMBHAEdASKKx2yR/vP+iPxnBWgTHBwT+pgUHR7+rIb3AVXP2AGrAXaG/iIB1v4qAd6G/or+VdjP/qv3hgKKHhMBkBQeHhT+cBMeAAAAFgDW/qwJUgbMAA0AGQAlAD8AWQBdAHEAfQCJAI0ApwDBANUA7wEFARUBIwE3AUEBSwFVAWMAACURNC4BIyE1ITIeARURASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWFyImJzceATMyNjU0JiMiBgcnPgEzMhYVFAYXIiYnFxYzMjY1NCYjIgcnPgEzMh4BFRQOAQMRMxETNSEyNjU0JiMlNQUyHgEVFA4BIwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFhc1MxUlIiYnNx4BMzI2NTQmIyIGByc+ATMyFhUUBhciJicXFjMyNjU0JiMiByc+ATMyHgEVFA4BAScHJzcXPwEfATcfAQcvAQcvAQclJzcXNx8BNxczNxczNxcHJwcjJwcjJwcvASUnBycHJwcvAQcjNTM3HwE3FzcXNxclJyMHJzczFzcXNxcHJwcnAy8CByc3HwI3FwcnFycHJw8BJz8BFzcXNxc3FwcnBycBJwcnNxc3FwcnATUzNxc3FwcnBwMnByc3FzcXByclJz8BFz8BFwcnDwEnBwgAK0Eh+skFNzhlQPoRM0hIMzJJSTISGRkSEhkZnzRSEkoKKxkjMjIjGywKRxRQNEZfXxw4XhxjIyw3UFA3HxtfHU4uPGI5OWLFUDkFKzZRUTb61QUrPGE6OmE8+NYzSEgzMklJMhIZGRISGRn+r/7yNFISSgorGSMyMiMbLApHFFA0Rl9fHDheHGMjLDdQUDcfG18dTi48Yjk5YgJuFiUGLxo6OVE8OyclAi0fM0hHM/7dQgY4Oio7mUgiHmA6R2YGYkNAUBw0Rpc/IgKBfk9IPUJuOkYyOzU0UDZuOkFQSYL9rTkUTQhQJTVSTk1MCkJJTkEuKC82Bjo2LR8lXgRQpkJ/XDk4Ai5BZH86QF1OhQZ7Ulj+kUcdFS5LXR0bCgHXKyVNMAI8OR0qSzgOSEtcVQpJ/mgKVFVYNS52BG4oP1xNlgT/N2pGUFqOT/sB/rpINDRJSjMzSVAbERIbGhMSGrBKPR8lMVM5OVM1KSo7SYBcXIBERDcGJXJSUnITDyctSn1NTX1KAdsFMfrP/iVQdFBQcwFQAUt8TEx9SwacSDQ0SUozM0lQGxESGxoTEhr1UFBFSj0fJTFTOTlTNSkqO0mAXFyAREQ3BiVyUlJyEw8nLUp9TU19SvymBgRABAYBEQ0DDwsBQAEJDQMLD7MGQAYLAwIFBg8KBQtACwUIDQYFAgOuCQgUFQkHBQgKQAwKBQcHFxYGCXMWCkAKFAsCCwtACwsCAWsJBAIFQAUCBAcNBUAFzxALFxQBQAEYGwsMGhkUD0ANFBcBYBAJPRASFg85BP3HQBYWAUABEhIBbBUMPhAVFA8+C6pADAEIBAoJQAkKBAgBAAAADwDe/qwJSgbMAAsAKQA8AEUAYwB5AJIArgDAAOUBFgEuATwBVAFiAAATESERBxEhESERNxEBIiYjIgYjIiYjIgcnNjMyFjMyNjMyFjMyNjcXDgEBIiYjIgcnNjMyFjMyNjcVDgIBJzceATMyNjcBJzYzMhYzMjYzMhYzMjY3Fw4BIyImIyIGIyImIyI3IiYjIgcnNjMyFjMyNjMyFwcmIyIGASImNTQ3Ez4BNxcOAQcDFyU+ATcXBgcFBgEiJiMiByc2MzIWMzI2MzIWMzI3FwYjIiYjIgYFIiYjIgcnNjMyFjMyNjcVDgEBIiYjIgYjIiYjIgcnNjMyFjMyNjMyFjMyNjMyFjcXBiYjIg4BASImJw4BIyInJicGJjU0NwEXAQYVFBYzMjcBFwEeATMyNjcBFwEGFRQWMzI3ARcBBgEuAScuASc3FwcnBx4BFx4BFzcuASc3FwcuAScuASc3HgEXHgEXByc3NjU0LwEmIyIPASc3NjMyHwEWFRQHJy4BJy4BJzceARceARfeBlFQ+k8FsVD8tUxTKhsuJhdKFxwZFyUnGksTFzchMlg/Gk4dESVV/tIlTxceGhckKxxQHyBmKhhCQAG2ZC4UUUYTMiH8khclJxcvEBdEIi5dQTeLMwo1kTlIXiYaPyQXKBcbii8iFx4aFyQrICsdFUUfKSoZHB4bOwGnIjICUAUQDTIGCgNBQQE9FSEHMBE7/ooR/iAvIhceGhckKyArHRdMICk1IjczEzdGMSwjHEUCMC8iFx4aFyQrICsdFEQmITv+YzA9IxwnJhkkFxsaFyUnGDELFTQgKUkeI1E9NX0xCzt1PiU1MwJtIzULEBgKJyQxBjc8DAHXN/4vAxkREAwBtzb+OwEiHggUDAHGN/5SBRkREAwBzzf+IicCHE+HWFdfH589ChFzGk1GR2g5cAMCAjsZTT92RExZHS4YUk9MckQgNnQSY1JDMi0bdjZ2L05IUlGFIBM5b0E8UR0tGUs/QGQ0/qwIIP7LUwE4+IACzUT8nwECIxoZDi0TGRojEgouDhIBURgNLRIYIgEyARER/uFF411VAwMBmy0SCyARDAkwCg0RIAvsIA0tEiAaFisPGvzcLCEHCgGMFzEUMQ0bEP68OLELGQkvGSHNCQQaIA0tEiAaFRIvFRUa9iANLRIgGQEyARkCLyUWDQ0tEg0WJS8ZCjANGhcY+6klHQMEFx9GATArGh8Cjyf9eQcHEBcJAmYn/YgiJQQDAnon/acKCxAXCQKIJv1lFAKZAjE5OWhG1gZEA5cuSy4uKwWVBgUCIjYgCTIuM1gzPDdWNTMrAz8pmRgaNj80KySgKKA/NjVWWiwqHgsyKylIJzcnRisrKggAAAAEAQT+rAkkBswAOQBrAIQAngAAASIsAScmCgE1NDY3PgEzMhYXHgEVFAYPAQ4BFRQWFx4BFx4BFx4BMzI2PwE+ATMyFhceARUUBgcOAScyNjc+ATU0JicuASMiBgcOASMiJicuATU0Njc+ATU0JicuASMiBgcOARUUGgEXFgwBASc+ATU0JicuASMiBgcnNjMyFhceARUUBgEnPgE1NCYnLgEjIgYHJz4BMzIWFx4BFRQGBzmi/pj+lain8YBeThxcNESeT1BKPTQVFhYcITFgNTJ2Qy1UHDg2GhofYjdHkFBQUzY3QNBuZYYqDglCTUV2LxYgECBKNVrmiYiRGBYLC0hFTGslEiIQLjp85p+gAVoBU/0GDBYsO0pNfTIsMxEGFBwof1RcQAQE8xImKzxQTHI4MTkPDBQSFiZ0X1hEBf6sgPGoqAFqAWaibtBANzhUUFGQRzdhIBkaNzgbUy1DdzMxYzAgHRcWFTQ9SlBPnUQ0XRxOX1A7LhAiEiVqTUZHCwsWGYyOjd9aNUogECAWMHRGTUMKDiqGZZb+rf6noKDmewV/EQg7MTlxTFA+LCYNDkRYX3UlFxL7AgURMywyfU1KOy4dFQIEQVtUfygNFwAAAAAgAQ7/2AkaBaAAEwAhAC0AMAA+AEwATwBfAG8AfQCJAI8AlQCbAKEApwCtALMAuQC/AMUAywDRANcA3QDjAOkA7wD1APsBAQEHAAAFIi4BNRE0PgEzITIeARURFA4BIyUiJjU0NjsBMhYVFAYjJzI2NTQmIyIGFRQWJTUHFSImNTQ2OwEyFhUUBiMhIiY1NDY7ATIWFRQGIyc3JwEhMjY1ETQmIyEiBhURFBYTIiY1ETQ2MyEyFhURFAYjAyImNTQ2OwEyFhUUBiMnMzI2NTQrASIVFBYDMzcnIw8BFRc3NScXJwcVFzcHMzcnIw8BFRc3NScXJwcVFzcPARczNycBMzcnIw8BFRc3NScXJwcVFzcHMzcnIwcXJwcVFzcPARczNycBMzcnIw8BFRc3NScXJwcVFzcHMzcnIwcXJwcVFzcPARczNycDJwcVFzcVJwcVFzcCRnqINjaIegWce4c2Nod7+nUsMTAtkS0xMixIGyYmGxsnJgHdZywxMC2RLTExLQESLDEwLZEtMTIsZ2ho/H8FnIZiZIT6ZIVjY8I1Sks0BSE1Sko1ZCwxMC2RLTEyLId9Dw8efR4PW0khIUkgOyAiIuAhISEhpUkhIUkgOyAiIuAhISEhpSAgSSEh/ndJISFJIDsgIiLgISEhIaVJISFJIMUhISEhpSAgSSEh/ndJISFJIDsgIiLgISEhIaVJISFJIMUhISEhpSAgSSEh5CEhISEhISEhKEaDXQN8XYRFRYRd/IRdg0brPjEyPj4yLkEtJxsbJiYbHCYDfT5vQS4yPj4yMT4+MTI+PjIuQTA/Pv64W3sDfHtbW3v8hHtbAh5KNAFnNElINf6ZNEr+fT4xMj4+Mi5BTBUOIiIOFQLzICIiNUkgIEkhISEhSSAgViAiIjVJICBJISEhIUkgIBQhISEhASYgIiI1SSAgSSEhISFJICBWICIiNSEhSSAgFCEhISEBJiAiIjVJICBJISEhIUkgIFYgIiI1ISFJICAUISEhIQERISFJICBrISFJICAAIADK/qwJYAbMACMARwBnAI0AmwCnALMAvwDLANcA4wDvAPsBBwETAR8BKwE3ATsBTwFeAWwBegF+AYIBjgGaAaYBsgG+AcoB2AAAATUzMhYXExYGIyEiJjcTPgE7ARUjIgYHAwYWMyEyNicDLgEjARcGFhceAT4BNz4DNDU0Jic1HgEVHAEOAgcOAiMiLgEXMjY3PgEnJicuATU0PgI1NDc2NTQmIyIGBwYCBwYWFyImNz4BNz4BNz4BMzIWFRQGBw4BBw4DFRQmFx4BFxYGBw4BJTI2NTQmKwEiBhUUFjMBFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYXFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYFFBYzMjY1NCYjIgYTIRUhARcGFjMhMjYnNxYOAiMhIi4CAR4CFRQGByE+ATU0JiclIR4BFRQGByE+ATU0JhMUFjMhMjY1NCYjISIGASEXIRchFSETIiY1NDYzMhYVFAYzIiY1NDYzMhYVFAYzIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYzIiY1NDYzMhYVFAYzIiY1NDYzMhYVFAYHMjY1NCYrASIGFRQWMweB2ERNB2QLYWX49GRfCEsHVlRYVzUpBEsFL0EHDEEwBmQDJyD5MEwOITsRVmNOCQgKBAE6PGFlAQUKCQtbfkBecSb4LE0UFAoNAwcLDwkNCRcgNTdJUhQZHhYTTV6FeRgJDwcLEw8afWdUaBwRBAYCAwkKBwYDDQ8GFA4dHnMFLBEaGhHMERoaEf0LIxkZIyMZGSPZIxkYJCMZGSPYJBgZJCQZGSP+QSMZGSMjGRkj5yMZGCQkGBkj5iMZGSMjGRkj/iUkGRgkJBgZJPUjGRgkJBgZI/QjGRkjIxkZI/4KIxkZIyMZGSMBAiMZGSMkGBkjAQEjGRkjIxkYJAE8Kx0dKiodHStZ+/UEC/lJTxMtUgcMUS4TTwkCI1VK+PRLVSMBArwQFAoCAgOsCAgbHPvjBFQpJwwL+7gEAyPdJRsBtBslJRv+TBslArn9SQcCtwf9SQK3ChIZGRISGRlwEhkZEhIZGXASGRkSEhkZ/vQSGRkSEhkZcBIZGRISGRlwEhkZEhIZGTsRGhoRzBEaGhEEPFBGP/yNXWNhXQNZTlNQKS78pzouLzcDcxsk/Y4NamwpCwcXQj06pbWofBc1RwJPBnFWF32quak7S10qXKKDKSIiWiAMBw4WDjSHgFUBIhEYOyxCUWd//viDdXpQs5g4cDdMl0yDdXFNMEkIAgsQE1pycCoGFwQNGg4wfzI0P6saEREaGhESGQFfFR8fFRYeHhYVHx8VFh4eFhUfHxUWHh64FR8fFRYfHxYVHx8VFh8fFhUfHxUWHx+3Fh8fFhUfHxUWHx8WFR8fFRYfHxYVHx+3Fh4eFhUfHxUWHh4WFR8fFRYeHhYVHx8LGSYmGRokJP6uTAFYPqyssLgwYLCJT0yGsAZOP15mTCFQMDlfKk+NUlBktGo6hU88ajCPxPzzHh8fHh8gIAJ6QlRC/i0ZEhIZGRISGRkSEhkZEhIZGRISGRkSEhmCGRISGRkSEhkZEhIZGRISGRkSEhkZEhIZ6RoRERoaERIZAA0BSv6sCN4GzAAWADAAOQBCAE4AVABhAHEAigCOAJIAlgCmAAAlIiwBJyYAAjU0NzYzMgwDEhYVFAYBICc+ATcHDgEHFgQzMj4BNy4BJzUeARcGBCclEz4BMzIWFwsBLgEjIgYHAxMiJjU0NjMyFhUUBhMDPwEXEwEuAgImJxcWGgEWFwEiLgEvAR4CMzI2NxcOATcyNjU0LgEsAyMiBgcGFRQeAhcWDAEBJwEXAycTFwEnARcHJy4BPwE+AR8BHgEPAQ4BB9h4/r7+m6/Q/sKyJ0WfcAEgAT8BPgEd34CQ/En+W+0Cf40CSVUOZAEZtZXWljMPbkqEnwNe/sTc/kgkBlZDQ1oLFTkHLyQiKQQgbg8UFA8OFRXoLoQW5TH9FUWPhGk+AksCTYGhVQPLcvz4bQJq9/twXqAwKDquTVlbd8/+9f7U/s/+5nI9ThcXY7T2k6gBVwEx+zwgBFIgT1CYUP4nQAHNPCM7DQQMdQwgDTsNAgt0DCCwbMOCnAFOATNzTjNaX6fb+v79+Wtrb/38iVR1MVccOCUxMhgrHCpBGVspiFBKQ7ZsAbpJV1pP/kMBrzYxLCr+hwEoHRMUHR0UEx3+MQEEDn0g/vsB0TvA7QEA+GkEbP7r/uP6Uf6GI0ApVC1CIyQgQCcrgEBIW+Dz79WkXx0cHTVMyOLrbn29aQLISQH4SvtmCAShCP3TMAIxNh8zDCINiA4CCzEKIg6KDgIABgDc/qwJTAbMACQAPgBWAGQAcgCGAAAFJiwBIyEiLgE1ND4BMyEyLAE3FwYMASMhIg4BFRQeATMhIAQFASIuAScDMxMeAjMyNjU0Ji8BMxceARUUBgMiJi8BMxceATMyNjU0Ji8BMxceARUUBgEuATU0NjczDgEVFBYXASU+ATU0JiclDgEVFBYBIiYKATU0Ej4BMzIeARIVFAIOAQeOtP6m/pfN/utenV5bnWEBFcABdQFmqSqh/or+bc/+9k53REN3TwEKAUACMgEH/DlkfU0cs1KpFjhhU2JhFRREWTUYFYwNZV4SH08fDDFJNjUPDClVHREPX/5gJSsrJVQnLS0nA3wBIzI1NTL+3QcKCQEER35hNzdgfkhIfmE2NmF+JH2eSYvniZDnh0+ddS58rVptwYB9vGjEy/6hJFpPAfj+Iz5DGT06HTMlgGUuQh9gZgGPQliYjTggHRsLIhlUNiAsFUNFATBg93t792Ff+np6+V8BEDEIWUNEVwgwH3NBQ3L9DpMA/wFKt7cBSf6Skf3+t7m6/rb+kQAAAAYAc/6sCbUGzAAZADQATABiAHAAhQAABQYmJy4BNTQ+ATcBFwEOAhUUFhceATclFwUiLgI1NDYzMhcHJiMiBhUUHgEzMjY3Fw4BBSImLwE3Fx4BMyEyNjU0LwE3FxYVFAYjJSImLwE3FxYzNzI1NC8BNxcWFRQGIwEGJicmNjcBNhYXFgYHASIuAQoCNTQ+ATMyHgEaAhUUBgKke5c5GBkUOTcE0jT7LC0sDRYVLm5fBkoG+RlSknBAfnBAQTcnI01RWpRWOEMbUSZuAtV5kSBLTUQXamEBH0RODzNNMBB5Yv7JJjAJMkwqBBfaDgMnSysEKCD8YA4fCwsGDQJcDiAKCwUOBBdMpqSScUE4Yj9LpqSTckJzFgdmgjZzNTJGRC4EGjz75CYwLycsYjBpTgZgUOVYmclwjZ8jPhFwbH/YgzA6EldRuUpe3QfNRS9OPx0tlgaNMCdefLwbHZ8GhQ0CDAMJiAiQDw8fJgJkCgQNDSEKAdILBA4NIAv8qHPJAQMBIgElhW2qYnXK/vz+3f7dhLLFAAAAAAQBNv6sCPIGzAAPADcAOwA+AAABERMhFSEDESERAyE1IRMRASIuAS8BLgEjITUhMhYfAR4CMyEyPgE/AT4BMyEVISIGDwEOAiMBESERCQIBNucBy/5gxwcmx/5gAcvn+xQ5TDgeFCEsL/7HATlASicUGSg2LwIcLzYoGRQnSkABOv7GLywhFB05Szr+IAGk/Y8BnwGf/qwDVAIHS/5B/PoDBgG/S/35/KwCaRArJhorF0slMhohIAsLICEaMiVLFysaJisQAc8CQv2+AfcB8f4PAAAABAE2/qwI8gbMAA8ANwA6AD4AAAEREyEXIQMRIREDITchExEBIi4BLwEuASMhNSEyFh8BHgIzITI+AT8BPgEzIRUhIgYPAQ4CIwkBIQURIREBNucBhUb+YMcHJsf+YEYBhef7FDlMOB4UISwv/scBOUBKJxQZKDYvAhwvNigZFCdKQAE6/sYvLCEUHTlLOv7y/mEDPv2PAaT+rANUAgdL/kH8+gMGAb9L/fn8rAJpECsmGisXSyUyGiEgCwsgIRoyJUsXKxomKxABzwHxSwJC/b4AAAAMAV7+rAjKBv4ABQAJAA0AEQAVABgAHAAfACYAKgA2AEgAAAkBEQkBEQUnNRcvATUXASc1FyUnNRcvATcBJzUXLwE3FyImNRcUBgERAREJAREFJzcJAjcXBxMRATcBETcXNxcRATcBEScHJwUU/EoDtgO2+eGysn4kJAFysrL+/SQkVVcsAT8kJKVXLPY+VNMhAUv8wgOOAz7+/yT6/MX8xQM78CfvvfyWTgNsL1pNLvyETwN9XEpr/qwCCgQ4AhD98PvIFGIrYm0UfhP+YmMrY7cUfhMiMCb+XReJEYAxJvRxUm8oLP5aA6kBzPxU/jcByQOsj0iLAc3+M/42hUeE/s4B2AIDLf3+/rdBG3MPAUYCCi799v4gHXIfAAMAuf+mCW8F0gADABMAHwAAFxEhEQE1ASEBFQERARcBIQE3AREBIRUhFSEVIREhFSG5CLb89wJv+H8Cbv1HAho+/cwHz/3LPwIZ+ywByv6fASr+1gFt/ipaBiz51AMfcwJK/bZzApP69wMnNPy0A0w0/NkFCf7cWfBa/udZAAAABgCdADwJiwU8AAMABwALAA8AGgAdAAAlASEJATUzByc1IQcnNSEHAyEBNxMJBBcFASEBNwFRBwP+rvhkxxaxAQkW8wFLFgoGGP71RPoBAfwn/YD+/wJOOAEHA436LzwFAPsAArxQUPpQUPpQUPugAqsu/X8D0/1aArP8LgJ4OrYCcgAABgGU/qwIlAbMAAMABgALAA4AEQAYAAABESERJQkBEyEJAgUBIQERCQIzESERMwGUBwD5UAGk/lwjBhr+Sv6p/rMBTQLp+i8GGP5l/mv+2Y8BMJD+rATs+xSpAmoBXPvhApf+5AEVrQJp/BADw/6qAl0BOQFx/o8ACADg/qwJSAU8AAMABwATAB8AKwBFAE4AUgAAATUjFRchESEFNCYjIgYVFBYzMjY3FAYjIiY1NDYzMhYHNSERMxEhNSERIREBETQSMyEyFhcjLgEjIR4BFREhETMRIREhESUhETQmIyIGFQEzESMC5ar6/rYBSgLQOCgoODgoKDhQZ0lJZ2dJSWdGAkue/RcDOf7C+Nbq0ASkvuYTUBK5nPxqU1oEVVD9PP5//HsC1b2urrwD1eHhA3dkZFABBOQvQUEvLkNDLlBxcVBQcHDKUP7ZAYVQ/dsBJ/2KAvzmAQPZwqGqPdCM/VQBJP6M/lUBq1ACrMXU1MX7qQFbAAAAAAgBB/6sCSEGzAALABcAIwAnACsARwBQAFQAAAE0JiMiBhUUFjMyNjcUBiMiJjU0NjMyFicjESE1IREjESERIQE1IxUXIREhARE0EjMhFSEeARURIRE0JiMhNSEyEhURIREhESUhETQmIyIGFQEzESMGLDgoKDg4KCg4UGdJSWdnSUlnMVABJv58UAIk/tr8war6/rYBSv2r6tACp/5nU1oEVb6u/rMBTdDs/Tz+f/x7AtW9rq68A9Xh4QNHL0FBLy5DQy5QcXFQUHBwJwIjm/1CAw7+xf3mZGRQAQT8LAL85gEDUD3QjP1UAqnF11D++ub9B/5VAatQAqzF1NTF+6kBWwAACgEJ/qwJHwbMAAIACAAMABAAEwAfACsANwBTAFcAAAETJxMhNScHJxc3NSEBETMRAyc3BSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJxEhESERIxEhNSERARE0EjMhFSEeARURIRE0JiMhNSEyEhURIREhERMzESMBu336tQJ4XZ7v4uX9OgKtUBUwMAFjSWdnSUlnZ0koODgoKDg4VgIl/tlQASf+e/tq69ACrv5gU1oEULyu/sEBP9Dq/T7+f1Dh4QEaATCs/c31aqifMPdO/VsCyv02AZ03NQxxUFBwcFBQcVBDLi9BQS8uQ+gDDv7C/jACIJ79QvyZAvzmAQNQPdCM/VQCqcjUUP786P0H/lUBq/6lAVsAAAUA4f6sCUcFPAALABcAIwA9AEEAAAE0JiMiBhUUFjMyNjcUBiMiJjU0NjMyFgc1IREzESE1IREhEQERNBIzITIWFyMuASMhHgEVESERMxEhESEREzMRIwYEOCgoODgoKDhQZ0lJZ2dJSWdDAkie/RoDNv7C+Njr0AShvuYTUBK5nPxuU1oEUVD9PP5/UOHhA0cvQUEvLkNDLlBxcVBQcHDLUP7aAYRQ/dwBJv2LAvzmAQPZwqGqPdCM/VQBJP6M/lUBq/6lAVsACwHi/qwIRgbMAAMABwALAA8AFwAdACMAKQAtADEANQAACQEhAQUhASEBNSEVBSERIRMnIQcjNSEVAREhESchBxMhExEhAScJATcBBTcFBwEXBScBNSEVBjUBVvsSAVYCDv4m/vAD+v6U/t4Bcv4+AcJJD/3KD58DkvtVBcR3+yrHlwU2l/mcARQnAl7+xzkBgv7qHAKdG/7LLf7DLP1EBhEE9PziAx5Q/YL81r29UAFdBEtkZMjIAUv6agWW3ckBGf7n+gYCJ0YBWgEsOP6LkEv5SwMGQ9RDAWlQUAAAAAALAM3/dAlbBgQAIgA6AEQAYQB5AJ0ApQC1AMUA1gEQAAABLgM1ND4CMzIeAhUUBg8BPgE1NC4BIyIOARUUHgEXASInJjU0Njc+ATc2MzIWFRQGBw4BBw4BNyc+AjcXDgIDAS4BNTQ2NzYzMhYfAQcnLgEjIgYHBhUUHgEXBQEiJicuAScuATU0NjMyFx4BFx4BFRQHBgEiJjU0NjMyFhc+ATMyFhc+ATMyFhUUBiMiJicOASMiJicOAQUuASc3HgEXASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEBLgE3PgE3NhYXFgcOAQcOAQE1PgI3PgEzMhYXFS4EJzMUDgIHJz4ENz4BMzIWFx4CFRQGIyImJy4BIyIOAQcOAgQkcr+OTl6l2nt716JbDhNPGhCM7JGR8ZB2zYT+iycvIy85IzEZFBYXGxEOEhYNGTaaNiUuJhhCGiwyhP5uOWcWFzhFM0EJVAmOBCAWDSgSHRs0JgETA5wVNhkNFhIOERsXFhQZMSM5LyMv/aQmIyIiFxoJBiIZGiECCB8TJiIhIxYbCAYiGhkhAwcfAXEuNA5EDS0s/rBhnl1dnmFhnl5enmFOf0pKf05OfkpKfv7kCwIMGD8lEBsFCSUdMRQKFwHnL2B6VnW/RjySRyxlY1M4Bg1ZoNiABFicgWA3AwMiLkGpVilILickFDURNHE/LW9/R1mDaQFrDmSeyHJ716JbW6LXeydkNxFAcCOS7IuL7JKE3ZES/cNAMSUUHxALIB4YGRcWFg0QIx88Q/ksLUBPQBhEV0cBTAFOBUA2GDYcRl4zTliFMzkVFyUWDhkQAuH8+UM8HyMQDRYWFxkYHx8LER4UJTFAAXRviIluLCAhKykjJyVuiYhvLCAhKyoiJiZ7Q2hADjlaPgGmXZ5hYZ5dXZ5hYZ5dRkp/TU5+Skp+Tk5+SgIYCRgNGzMTCAIOFxQQKhQLDPy3RgURIx4pNBodDBpujpmNNHbNnFwGRgQzWHiUVU1LpY5Dopc1KjYSBxQXFigbISQRAAAPAOH/QglHBjYADQAXABsAHwAjAC0AMQA1ADkAPQBBAEoAVgBaAF4AAAUuAjURIRUzERQOAQclLgE1ESERFBYXATUhFQE1IRUBNSEVASEuATURIREUFgE1IRUBNSEVEzUhFQE1IRUlNSEVAT4BNREjERQWATI2NTQmIyIGFRQWJSERIQERIREBUzkvCgevtwkwOfkhFgcDoQcU/EYBfALwAXz8SAF8++wG/iUM+PERBQUBfPxIAXzAAXz+hAF8/oQBfAECJgxnDfwxRGVkRUVkZP1SAfb+CgXm/gq+K36FNwWPX/rQN4V+K0wWPh8Brv5SHD4ZAuvc3P24RkYCQ0ZG/RlBmz4FP/rBTJwBEkZGAkNGRv5dRkYBA0ZGoEZG/JIyi0QE5fsbQooEKWVERWVkRkVkFAEX/ukBF/7pAAAAABUCqP6sB4AGzAAPABMAFwAbAB8AIwAnACsAOwA/AEMARwBLAE8AUwBXAFsAXwBjAGcAawAAASImNRE0NjMhMhYVERQGIwE1MxUzNTMVMzUzFTM1MxUBNTMVJzUzFRc1MxUBITI2NRE0JiMhIgYVERQWEzUzFRc1MxUBNTMVFzUzFRc1MxUBNTMVFzUzFRc1MxUBNTMVFzUzFSc1MxUBITUhA2dPcHBPA1pPcHBP/OGMPIw8jDyM/RyMjIw8jP6FAzI2TU02/M42TU1djDyM/qyMPIw8jP6sjDyMPIz+rIw8jIyM/boBqP5Y/qxwTgakTnBvT/lbTXABDYyMjIyMjIyMAoGMjMiMjMiMjPzCTjUF1zVMTDX6KTVOBM6MjMiMjAGQjIzIjIzIjIwBkIyMyIyMyIyMAZCMjMiMjMiMjAGVVQAAABYBGf6sCRAGzAAPABYAGgAeACIAJgAqAC4AMgBCAEYASgBOAFIAVgBaAF4AYgBmAGoAbgByAAABIiY1ETQ2MyEyFhURFAYjATUhESE1CQE1MxUzNTMVMzUzFTM1MxUBNTMVJzUzFRc1MxUBITI2NRE0JiMhIgYVERQWEzUzFRc1MxUBNTMVFzUzFRc1MxUBNTMVFzUzFRc1MxUBNTMVFzUzFSc1MxUBITUhBPdPcHBPA1pPcHBP+fD+2AEoAXEBgIw8jDyMPIz9HIyMjDyM/oUDMjZNTTb8zjZNTV2MPIz+rIw8jDyM/qyMPIw8jP6sjDyMjIz9ugGo/lj+rHBOBqROcG9P+VtNcAKgygE5yv6a/QaMjIyMjIyMjAKBjIzIjIzIjIz8wk41Bdc1TEw1+ik1TgTOjIzIjIwBkIyMyIyMyIyMAZCMjMiMjMiMjAGQjIzIjIzIjIwBlVUAABEBO/6sCO0GzAAPABMAIQAlACkALQAxAEEARQBJAE0AUQBVAFkAXQBhAG8AAAEiJjURNDYzITIWFREUBiMBMzUjBQM3JzcnExcHFwcXBxMlMzUjFzM1IwEzNSMDESERBSEyNjURNCYjISIGFREUFgEzNSMnMzUjFzM1IyczNSMBMzUjJzM1IxczNSMlNSEVAScTJzcnNyc3EwcXBxcDkUpra0oDBUtqakv9cWRk/eizkZKSka1FlZGQkJGaAq9kZNtkZP5KZGRQArr9IAMFKjs7Kvz7KTw8AXpkZNtkZNtkZNtkZAG2ZGTbZGTbZGT+uAE+AoZFmpGQkJGURK6RkpKR/qxsSgazTGtrTPlOTGsBQVqIASzw6enwASMq+fDp6fD+/gRaWloCWlr8lQWU+myUPCsGsis8PCv5TSk9A6VajFpaWoxa/sBajFpaWvc8PPoBKgEC8Onp8Pkq/t3w6enwAAAACQEE/qwJJAbMAA8AGQBDAE8AWwBlAG0AdwCBAAABIiY1ETQ2MyEyFhURFAYjASI1NDsBMhUUIwcyNjc+ATURIxUUIyEiNRE0MyEyHQEzETQmJy4BIyIGBw4BFREUFhceARMyNjU0JiMiBhUUFjciJjU0NjMyFhUUBhczNTM1IzUzNSEBIjU0MzIVFDciNTQ7ATIVFCMBMzUzNSM1MzUhAapEYmJDBtZEYWFE+ywaGuwZGYNhoTk/NF07/eo7OwIWO101Pj2hXVWZNz80NT45mnNuaGhtbWlobTw1NT08NTXzXZiYo/8A/gYdHR17GRnaGhoB2V2YmKP/AP6sYUMG10RhYUT5KkNiAXQZGBgZiQwMDjs9ATB0PDwDljw8dAEvPj4LCwwMCww9PvrzPT0MCw0CPYBnaH5+aGeAUFBHR09PR0dQSrFOc04Bhx0dHR0HGBkZGPyysU5zTgAACAEO/qwJGgbMAAkAIwAvADcAQQBFAFkAbQAAJTMyNTQrASIVFBciJicuATURNDY3PgEzMhYXHgEVERQGBw4BASEyNRE0IyEiFREUEzI1NCMiFRQ3MzI1NCsBIhUUCQE3ARM0AgAkIyIEAAIVFBIABDMyJAASNxQCAAQjIiQAAjU0EgAkMzIEABIEq9UbG9UahEaTNj0yMj02k0ZGkzY9MjI9NpP+zwHWOzv+KjuBHh4dqMQbG8QaAt/6dzEFidmU/vr+qMTE/qj++pSUAQYBWMTEAVgBBpRQof7k/ovU1P6L/uShoQEcAXXU1AF1ARyhVhkaGhmDDQoMOzsEoDs6DQwLCwwNOjv7YDs7DAoNAQs8A0Q8PPy8PAQSHR4eHQYZGhoZ+u8FfTH6gwKmxgFbAQmWlv73/qXGxv6l/veWlgEJAVvG1v6H/uGiogEfAXnW1gF5AR+iov7h/ocABQEE/qwJJAbMAA8AEwAXABsAHwAAASImNRE0NjMhMhYVERQGIwEzESMBMxEjATMRIwEzESMBqkRiYkMG1kRhYUT55MbGAYnGxgGJx8cBisXF/qxhQwbXRGFhRPkqQ2IBhgH7/gUDBPz8BAv79QUSAAgAoP8QCYgGaAAPACMAMwBDAGMAawB7AIsAAAUiJjURNDYzITIWFREUBiMlIi4CNTQ+AjMyHgIVFA4CJzI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEFITI2PQEhNSERITUhETQmIyEiBhURIRUhESEVIRUUFhM1NDMhMh0BASImPQE0NjsBMhYdARQGIwUiJj0BNDY7ATIWHQEUBiMBP0FeXkEHqkFeXkH84n7ep19eqN1/ddquZV6o3X+H34SE34eG34WF34Zdmlxcml1hmVpbmvsVB6ohLv4JAff9PgLCLiH4ViEuBAb7+gNW/KoubVABKVACHRYgIBa0Fx8fFwFiGCIiGN4YIiIY8F9CBYhCX19C+nhCXz1fp95+f92oX2Cp3X1+3qdfeoTehofehITeh4behJNdm11eml1XmmRem1z6LyJCUANNUAFZIi8vIv6nUPyzUEIiLwZKblBQbv60IBZjFx8fF2MWIB4iF3gXIiIXeBciAAAAAAgAoP6sCYgGzAAzAFkAbQB1AIEAjQCbAJ8AAAEiJjURNDYzIRchIgYVESEVIREhFSEVFBYzITI2PQEhNSERITUhETQmKwE3MzIWFREUBiMlIi4CNTQ+ATcXDgIVFB4BMzI+ATU0LgEnNxceAxUUDgIDIi4BNTQ2Nxc3PgEzMh4BFRQOAQE1NDMhMh0BAQMhAQMJARMlARMlBxMFJwEFAwclEwUhJSImPQE3MzIWHQEUBiMBNSEHAT9BXl5BAw0h/NIhLgP2/AoDVvyqLiEHqiEu/g0B8/4PAfEuIbJcVkFeXkH84n7ep19otnYZWoxPhd+Gh9+EeMp9O9g+a08sXqjdf12aXGRPJDwMIxBhmlpbmvthUAEpUAHXTv1MAlHIAeUBEA4ChP3hpv5s1a4BGWgBSf5qCrb+s4P+ngGkAmYYIoKWGCIiGP4iAbR5/qxfQgWDQl9QMCH+oFD8v1BCIi8vIkJQA0FQAWAhMFBfQvp9Ql83X6jefoXmqip6JIezZ4behITehoDUiAo2PSFjfpBNft6oXwEOXJteYaArUGsFCVeaZF6bXAVTa1BQa/wwAd8BKAJL/ocBf/5ipv4d/sp71gE0VMUBIl8BFP/4/n6wNCIXPHUiF3gXIgFKUFAAAAsApf6sCYMGzAARAC0AOQBdAG8AcwB3AIsAoACsALgAAAEiJgIREBI2MyEyFhIREAIGIwEiJicuATU0Njc+ATMhFSEiBw4BFRQWFxY7ARUTIiY1NDYzMhYVFAYBIiY9ASM1IRUUMyEyNRE0IyEiHQEhNTM1NDYzITIWFREUBiMFITI2EjU0AiYjISIGAhUUEhYJARcBISUXBzcuAScuASc3PgEzMhYXHgEVFAYHJzc+ATU0JicuAiMiBg8BHgEXHgEHNDYzMhYVFAYjIiY3NDYzMhYVFAYjIiYCylVpLy9pVQXMVmgvL2hW+H8ZKQgKHBcNCSgYASf+8xoGCA8TCAUb2OEWHR0WFh0dAV1LVcIBElADQVBQ/L9Q/u7CVUsDQUtVVUv7LQXMOkQfH0Q6+jQ5RR8fRQGYAmYw/e8BZAEzMN6oBSQrHzIqRAsoFitrLiAyHB1oNQ4JKRQPLywMBw0FGxcpFhchGSwfHyouHBwuuiwfHysuHBwv/qyXAU4BEQESAU2Xl/6z/u7+7/6ylwHoIRomzcCjtCMZG1AZI5iKnbstGVAC6B0WFh0dFhYd/EhVS11QrVBQAlxQUK1QXUtVVUv9pEtVyIMBKfr7ASmCgv7X+/r+14MFcQHNQP5z5kCmlB1FPCwoE5MZGlE+K3MmGywIOAwDDwoWVBsULyIICzkQKyAfNd0XHx8XCwsLCxcfHxcLCwsADQCv/qwJeQbMAA8AHwA3AEkAWQBlAGkAcgB+AIQAkACWAJoAAAEiJjURNDYzITIWFREUBiMBMjY3PgE3NicmBgcGBwYWASIkLgI1ND4CJDMyBB4CFRQOAgQBPgE3PgE1NCYHDgEHDgEXHgEBITI2NRE0JiMhIgYVERQWJSI1ETQ7ATIVERQjCQE3AQU+AjMyHgEXASImNTQ2MzIWFRQGNTcvAQcXNyImNTQ2MzIWFRQGJzM3JyMHAScBFwExPEZGPAfGPEZGPPlGExgDAwYCByQTHwULAgEXAlbS/u2jThgYUKMBE9DOAQ6hTxgXTqH+8f11NIQ/FBodF0maPBIJCQsi/n8HxhwWFxv4OhwWFwcPWFg8WFj8R/66MgFi/q0DZaxqa6tmAgGkMUVFMTFFRRkzShgzGDFFRTExRUVDIhERIhD9eU4BYjL+rEY8BS88RkY8+tE8RgNSGhUSJBExCAQTEykvFx79gA84e9amptqBPhMTPoHapqbWezgPA4gXIgUCGhMSGAIHKRwIIxARBvv/FxsFLxwWFxv60RwWdFgBGFhY/uhYBZkBli3+YGk0SykpSzT88EUxMUVFMTFFKxhKMxlJ4kUxMUVFMTFFHlhYWAGgIwGgLQAAAAAaAEv+rAndBswADwATABcAGwAfACMAJwA3AEMATABcAGAAhACIAIwAnACoALIAtgDGANIA1gDaAN4A4gDmAAABIiY1ETQ2MyEyFhURFAYjJTUhFSU1IRUlNSEVJTUhFSU1IRUlNSEVASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFjciJj0BMxUUBgEhMjY1ETQmIyEiBhURFBYBMzUjARE0PgE3PgEzITIWFx4CFREjETQuAScuASMhIgYHDgIVEQEzNSMBMzUjASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFjciLwE3FxYVFAYBMzUjBSImNRE0NjMhMhYVERQGIyUzNSE1ITUjFSEVITczNSMBMzUjJzM1IwkBFwkBMzUjASFYfn5YB+ZZfX1Z+EUCa/2VAmv9lQJr/ZUCa/2VAmv9lQJrAf07ZDw8ZDs8ZDs8Yzw/WVk/PlpbPQ8WShb7XgfmN09OOPgaN09PBE5HR/sTH1BLW35EBeRGfltKUB5QFj8/Umo3+hw1aVM/QBcERHBwAU9GRgH8O2Q8PGQ7PGM8PGM8P1lZPz5aWyoPC2YzZgsU/ulGRv28Jzw8JwQEKTo6KfztMgMI/Pgy/ugBGM1wcAFoRUWScHD6ZgWtGfwHBKRwcP6sflgEQ1h8fFj7vVh++VBQtFBQtFBQtFBQtFBQtFBQ/Cc8Yzo8Yzw7ZDw7YztDWT0/WVo+PVmOFg+QkA8W/ttPNwRDNk5ONvu9N08C10L+TwM9VnJcND8zMz8zW3NX/MMDPUpbRyo4LCw4K0dbSfzDAnRC/rlC/Ts8Yzo8Yzw7ZDw7YztDWT0/WVo+PVmGC2YzZgsPDRcBukK5PCgBbCk6Oin+lCg8PMYyw8MyekL+uULDQgJFAW1a/u79eEIAAA0AtAAKCXQFbgAPAB8ALwAzADcAOwA/AEYAVgBwAHcAkQCVAAAlIiY1ETQ2MyEyFhURFAYjATMuATU0NjcjIg4BFRQeASkBMjY1ETQmIyEiBhURFBYDNSEVASE1ITUhNSERFSE1AREOARUUFgUyPgE1NC4BKwEeARUUBgchMzI2PQEXBi4BNTQ+ARcHNTQmKwEOARUUFiU+ATU0JicTPgE1NCYnIyIGHQEnNh4BFRQOASc3FRQWMxsBMwMBl2t4eGsG+mt4eGv5t2w3P0A3bRZCMjJBAckCNBAWFhD9zBAWFioCqPsfBxv45Qcb+OUHG/r3MkNDBHkXQTIyQRdtOD8+OPu9QhAWIEBrQEBrQCAWEEFPYWEDrDJDQzJoTmFhT0EQFiBBakBAakEgFhD1ID4fCnhrA55reHhr/GJreAGjNYtPT400Tn1FRXxOFhAB0hEWFhH+LhAWARGBgf3ZQCxAA1SOjv2YARoJTzU0UItOfEVFfU40jU9PizUWECwpAT5qPz9qPwInKhEWJJNZWJNeCVA0NU8J/mQkk1hZkyQWESonAj9qPz9qPgEpLBAWAQ8BKP7YAAAAKQDI/qwJYAbMACUANgA+AEIAUwBaAGoAegCbALYAwQDHANUA2QDdAOUA9gD/AQoBGwEjAScBPQFJAU4BVQFmAYgBmQGdAaMBsAG0AbgBwAHRAdUB5gHuAfIB+gAAASImNRE0PgEzITIeAR0BIzU0LgEjISIOARURFDMhMjURMxEUBiMBLgEnLgEnJjY/ATYWDwEOAT8BBx4BFx4BNyYnFxMGJicuAT8BNhYfAQcnBxY3JyInNxcOAQEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWAS4CNTQ+AjMyHgIVFAYHIzY1NC4BIyIOARUUHgEXNycuATU0NjMyFh8BBycuASMiBhUUFhceAR8BNyc3LwEXHgEHDgEBJzYzMhcHJyY2NzYyFx4BDwEGIj8BJgcBJzcWBzcuAScuAScHBiY/AT4BFx4BFx4BFxYGBwEhMjY1NCYjIRkBITIeARUUDgEjAS4BJy4BJyY2PwE2Fg8BDgE/AQceARceATcmJxcDJxM+ATMyFRQGDwEnNz4BNTQjIgYHEycWNjcnNxcWBgcGLwEXDgEDJwYHDgEHFycuATc+ATc+ATc2Fh8BFgYBJz4CNTQuASMiDgEVFBYXBy4BNTQ+AjMyHgIVFA4BNwYmLwEmNh8BHgEHDgEHDgEvATcGASc2MzIXBwYiLwEmNjc2Fx4BDwE3JgcBJzcWBzcuAScuAScHBiY/AT4BFx4BFx4BFxYGBwU2Nx8BJy4BNz4BNz4BNzYWHwEWBi8BDgEHDgEHJTY3FwE+ATc+ATcnAzpJUGKrbQKUbatiUFSJUP1yUIlUVgQ8VlBRSPo4EiAODhYGAxANyxoWD3IIGQdOigYMCAgQOSgRcKwcNhoNCgZYCy0LLyUsOyklEyAbPSoOFQGxVW1vUwHuU29tVf4cAdo8QEE7/iY7QUD+XY/qilSVxXBwxZVUCAlFFIDYhIPZgHjMfWtIKUAwJSRFLoAqmiAeDQsQJy4LFgsf7zkReivLDhAEBQz+iz0bICMmalgGCg0yajQOCgZYCy0WPDk+AVNwNyhHigYMCAgQCmsZFw9yCBkJEiENDhYGAw8OAuUBQRkUFBn+vwFSKy4TEy8q/ZkSIA4OFgYDEA3LGhYPcggZB06KBgwICBA5KBFwED6IEjAsYhoWNEAzHBMeDBYQHAgVLBY4HlgGCQ4+JwE5DRzSThIQBw0Gp8sNEAMGFw0OHxMLFwhyDxYBCzhytmqA2ISD2YBhVWFHUFSVxXBwxZVUa7olChgIcg8XGcsODwMGFg4NH1M3cBH+90cmIyAbGgstC1gGCg5sZA4JBnk7PjkBVHA3KEeKBgwICBAKaxkXD3IIGQkSIQ0OFgYDDw75HhEoNwXLDRADBhcNDR8UChgIcg8WN04KEAgIDAYEjhEoNwG2ChAICAwGiv6sS0kCdHi8bGy8eCYjdJZJSZZ0/aZbWwEF/u5JVQPrFSoWFzMZDRMBDwImFqgMBElxCg0cDg0YGi48Ev7OAQYJBRYNtxcBF2IuW3wIAzsGYmUBAvzMbFQBq1Rvb1T+VVRsUEA6AZc7QkI7/mk6QAHqB5XxkXDFlVRUlcVwI0QgQkWE2ICA2IR+04MH7UwsSyohMiYpcTSHHBIQCwsyLwoXCyAXCSYKOQ8BEw0SIQFWYgYKcrcNFwQODgQXDbYXTHwMC/72ElguHgoOHA0NGAupAiYWqAwFCxUqFhcyGg0TAfyDOUBFQv6wAaA5Yjw5WzUDYBUqFhczGQ0TAQ8CJhaoDARJcQoNHA4NGBouPBL+1BkBVC5DaiFtSrESsV9SFSggKP6mNgIDBHU9tw0XBBF0YlwDAgGScRQcDRwOQg8BEw0aMhcXLBIKBAyoFib9vDoRhcl2hNiAgNiEcMNDAUrBbHDFlVRUlcVwf9qY0goEDKgWJgIPARMNGTIYFitQWBI8AUleCgZ2Fhe2DRcEISEEFw2BfQsM/vcSWC4eCg4cDQ0YC6kCJhaoDAULFSoWFzIaDRMB7TwuWCwPARMNGjEYFyoUCgQMqBYmOnELGA0NHA7QPC5Y/r0LGA0OHA0KAAAAADkAFP6sChQGzAAcACgANABAAEwAWABkAHAAfACIAJQAoACsALgAxADQANwA6AD0AQEBDQEZASUBNwFDAU8BXAFoAXYBggGOAZoBpgGyAb4BygHWAeIB7gH6AgYCEgIeAioCNgJCAk4CWgJmAnICfgKKApYCogKuAroCxgAAAS4BJy4BJwYjIiY1NDY3PgEzMhYXHgEXHgEXFAYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIi4BNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ3FwYVFBYzMjY3Fw4BAyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASIuATU0NjMyFhUUBicyNjU0JiMiBhUUFgE1MjY3PgE3Bw4BBw4BJyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWATI2NTQmIyIGFRQWFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWCBkaZDIpShcMCRUXExMXKxIaIwIdSSc5cyxX+Uw9V1c9PVZWPSQzMyQlMzN6PVdXPT1WVj0kMzMkJTMzAXE9V1c9PVZWPSQzMyQlMzMA/z5XWD09VlY9JDMzJCU0NP3APVdXPT1WVj0kMzMkJTMzBj1XVz09VlY9JDMzJCQ0MwOYPVhYPT1WVzwjNDMkJTQ0/Oc9WFg9PFdWPSQzNCMlNDQEHj1XVz0+VlY+JTMzJSUzM/y3KUQoVz49VlY9JDMzJCU0NARwPVdXPT1XVz0kNDQkJTMzAco9UBAuDDUoHUMjHSpT5j1XVz09V1c9JDQ0JCUzM/u1KUMoVz09VlY9JDMzJCUzMwVNO1IiIUw0BiI4HCJghj1WVj0+VlY+JjIzJSQzM/vrPVdXPT9VVz0kNDImJDQ0BTw9VlY9PlZWPiUzMyUkMzP73T1XVz09VlY9JDMzJCUzMwUhPVdXPT5WVz0kNDMlJDQ0/BI9WFg9PlVWPSQzMiUlNDQBDz5XVz49VlY9JDMzJCU0NAPePVZWPT5XVz4lNDQlJDMz/VQlMzMlJTMzJT1XVz0+VlYC0j1XVz0+VlY+JjIzJSUzM/38PVdXPT1XVz0kNDQkJDQ0AQM9VlY9PldXPiU0NCUkMzMBbj1XVz0+VlY+JTMzJSUzM1g9VlU+PlZWPiUzMyUlMjP+rDs5ExAnHwQeFBEmDhEQIyUPCgICFC9TZwEqVj0+VVY9PVY8MyQkMzIlJTJwVj0+VVY9PVY8MyQkMzIlJTL+elY9PlZWPj1WPDMkJTMzJSQzmFY9PlZWPj1WPDMkJTMzJSQzAkpWPT5VVj09VjwzJCQzMiUlMqhXPTxXVj09VzwzJSQzNCMlM/yaVj0+Vlc9PFc8NCMkNDMlJDMD0lc9PVZXPD1XPDQkIzQzJCUz/EVWPT1WVj09VjwzJCQzMyQkMwP/KEMoPVZWPT1WPDMkJDMzJCQz+9pWPT5WVz09VjwzJCQ0MyUkM/56TEAoKhMfHysxGx0oIh8BDVY9PlZXPT1WPDMkJDQzJSQzBHAoQyg+VlY+PVY8MyQlMzMlJDP65TUsGhoiATUBGhccM/NWPT5WVj49VjwyJSUzMyUkMwQ9Vj09V1U/PVY8MyQmMjQkJDP7lVc9PVZWPT1XPDMlJDMzJCUzBGJWPT5VVj09VjwzJCQzMiUlMvu7Vj09V1Y+PVY8MyQlMzQkJDMD71Y9PlZWPj1WPDMkJjIzJSQzMFY9PVZWPT1WPDMkJDMzJCQz/EVWPT1WVj09VjwzJCQzMyQkMwNzMyQkMzMkJDM3Vj09VlY9PVb9aFY9PVZWPT5VPDIlJDMzJCQzAi1WPT1XVz09VjwzJCQ0NCQkM4FWPT5WVj49VjwzJCUzMyUkM/6JVj09VlU+PVY8MiUlMjMkJDOKVz0+VVY9PVc8MyUkMzEmJTMAAAAABAEE/qwJJAbMAA8AGQAkADoAAAEiJjURNDYzITIWFREUBiMBNy4CJxUeAgkCFSImJwceARcFNiQSNz4CMxUJARUOAgcOAwcBqUNiYkMG1URiYUT7Un49ntiUdal8AxUBc/6NXp9Ne1bblPtRpQEP6mw8hpRPAXP+jZ3cp0w/bHqmeP6sYkMG1kRhYET5KUNiBI3NToxcBuAJWIH8TQEnASeuZWjOZHUaRAaEAQ/Wdp9SrgEnASesGoDIiHCvf08RAAAAAAMBBP6sCSQGzAAPACEAMwAAASImNRE0NjMhMhYVERQGIwERITI2NTQmJwcWFRQGIyERARM3JjU0NjMhEQkBESEiBhUUFgGpQ2JiRAbVRGFhRPtIAofG3hMSsQVxYv15/lg8sQVyYQKHAaj+WP15xt4T/qxiQwbXRGBhRPkqQ2IBHwEM2sIzWyKfGRROXAEQ/ocBEZ8ZFE5c/vABeQF5/vTawjNaAAAAAAMBBP6sCSQGzAAPABwASgAAASImNRE0NjMhMhYVERQGIwERNDY3DgEPASc3MxEHMjY3ITI2NTQmJwcWFRQGIyEuASMiByY1NDYzIREJAREhIg4BFRQWFwYVFB4BAalDYmJDBtVEYmFE+vQBAQQXCzw2qVxMecUkAVbG3hMSsQVxYv6pJcV3PzkUa2MCiQGo/lj9d3y+ah0cSGSn/qxiQwbWRGFgRPkpQ2IBeQExEz4YBBgJMEOH/fFVknXawjNbIp8UGkxddJAUMDFia/7wAXkBef70ar19OHI0aHZmp2QAAwEE/qwJJAbMAA8AIQAzAAABIiY1ETQ2MyEyFhURFAYjATI2NycGIyImNREhCQEhERQWBQEhETQmIyIGBxc2MzIWFREhAapEYmJDBtZEYWFE/EwzWyKfGRROXAEQ/of+hwEM2gKDAXn+9NrCM1ojnxkUTlz+8P6sYUMG10RhYUT5KkNiATITErEFcmEChwGo/lj9ecbeFwGoAofG3hMSsQVxYv15AAAAAwEE/qwJJAbMAA8AIQAzAAABIiY1ETQ2MyEyFhURFAYjCQIRISImNTQ3Jw4BFRQWMyEBPgE1NCYjIREJAREhMhYVFAcBqkRiYkMG1kRhYUT94gGo/lj9eWFyBbESE97GAocBbBIT3sb9ef5YAagCh2JxBf6sYUMG10RhYUT5KkNiAR8BeQF5/vBcThQZnyJbM8LaAX4jWjPC2gEM/of+hwEQXE4UGQAACgEE/qwJJAbMABEAHwAtADsASwBZAGcAdQCDAJEAACUiLgI1ND4BMzIeARUUDgIFJjQ/AT4BFxYUDwEGIgMiJjU0NjsBMhYVFAYjASImPQE0NjMyFh0BFAYDMj4BNTQuASMiDgEVFB4BAQYmLwEmNDc2Mh8BFhQBJyY0NzYWHwEWFAcGIhMiJjU0NjsBMhYVFAYjASImPQE0NjMyFh0BFAYFJjY/ATYyFxYUDwEOAQUUb8OUVJH0lZX0kVSUw/y1Hx9PIE8fICBPH0/wLDg4K3AtODgtAz0sODctLTc4LGeiXV2haGeiXV2i/mggTiBPHx8gTx9PIAQtTx8fIE8fTyAgIE/QLTg4LXAsNzgs/FQtNzgsLDg3AdIgAR9PH08gICBPH0+hVJTDb5X0kZH0lW/DlFTCIE8fTiACISBPIE8fApg4LC04OC0tN/xVOCxvLTg4LW8sOAKfYKdpaqZgYKZqaadgA28fAR9OIE8fIB9PH1D7BE8gTyAhAiBOH08gIAKYNy0tODgtLDgDPTgtbyw4OCxvLTjaIFAfTx8gH08gTh8BAAAAAAoBBP6sCSQGzAAPAB0AKwA5AEkAVwBlAHMAgQCPAAAlIi4BNTQ+ATMyHgEVFA4BAS4BPwE+ARcWBg8BDgEBIiY9ATQ2MzIWHQEUBgEiJjU0NjsBMhYVFAYjBTI+ATU0LgEjIg4BFRQeAQEnJjY3PgEfARYGBwYmAScmNDc2Fh8BFgYHBiIBIiY9ATQ2MzIWHQEUBgEiJjU0NjsBMhYVFAYjAS4BPwE2MhcWBg8BBiIFFH/RfHzRf4DQfHzR/KwfAiChIE8hIAEgoSFOArYtODgtLTc4/CgsODgr5S04OC0CyFJ+SEh+UlF/SEh+/h+hIAEfIU0foiEBICBOBFuhIB8hTiChIAEgIE79mS04OC0sODgCnS05OC7kLDc3Lf36IAEhoiBOICABIKAfT/B80X9/0Xx80IB/0Xz+9SJNIKEgASAfUCChIAH+5zct5C04OC3kLDgDqzgsLTg4LS03vUuDVFWCS0uCVVWDSgLHoiFOHyABIKIhTiAgAfukoiFOHyEBIKIgTiAfBVg4LeQtNzgs5C04/Tg4LC04Ny4tNwIKH1AhoR8gH08goSAABgEO/qwJGgbMABMAIwAxAEUASQBRAAABIiQAAjU0EgAkMzIEABIVFAIABAMiJwEjETMBNjMyFhURFAYnMjURNCMiBwEjETMBFgMyJAASNTQCACQjIgQAAhUUEgAEJQE3CQERMhYdARQGBRTU/ov+5KGhARwBddTUAXUBHKGh/uT+ixovM/6+9/cBQjMvKzQ0MhYWERX+qcfHAVcVosQBWAEGlJT++v6oxMT+qP76lJQBBgFYA3D6dzEFif4oLS8v/qyiAR8BedbWAXkBH6Ki/uH+h9bW/of+4aIBbS8BIwKiASMvPTv7qjo+ViMEVCMU/sj9/v7IFP6NlgEJAVvGxgFbAQmWlv73/qXGxv6l/veW6QV9MfqDAhYBIRYmqSYWAAAAAAQBDP6sCRwGzAAWACIAUgBfAAAlIiwBJyYKATU0NzYzMgwBFxYaARUUBgUuAyc3HgMXASImJy4BNTQ2PwE+AzUXFA4CDwEOARUUFhceATMyNj8BPgI3Fw4CDwEOAQETNjU0LgEjIg8BHgEILW/+5f7PlKDpfUNEdXEBGAEpi53rg378ImjUvI8jQRuIu9Vo/m9UumZwcTAuYWaDSh1SIlKLaWAkJWNkXJ9CMVYnYFy/2YQ6jNS2X2MxdAIIugxLbTIdFvxLqIV005CdATwBInR4REVvyYiY/rT+yHtyfrUgd6HCbD1swqFzHf6YW1tkvlk5bDNrcbaho10LZ7GsvXRqKFIrRp1ZUVIrK2pmj14aSxhRhWhsNzcDYgEHERowaUgPrl+qAAAABQDw/qwJOAbMABYAIgBSAF8AdQAAJSIsAScmCgE1NDc2MzIMARcWGgEVFAYFLgMnNx4DFwEiJicuATU0Nj8BPgM1FxQOAg8BDgEVFBYXHgEzMjY/AT4CNxcOAg8BDgEBEzY1NC4BIyIPAR4BASc2NTQmJy4BIyIHJzYzMhYXHgEVFAgRb/7l/s+UoOl9Q0R1cQEYASmLneuDfvwiaNS8jyNBG4i71Wj+b1S6ZnBxMC5hZoNKHVIiUotpYCQlY2Rcn0IxVidgXL/ZhDqM1LZfYzF0Agi6DEttMh0W/EuoA/BMFUtHTdNzPjITQz6E81hQWIV005CdATwBInR4REVvyYiY/rT+yHtyfrUgd6HCbD1swqFzHf6YW1tkvlk5bDNrcbaho10LZ7GsvXRqKFIrRp1ZUVIrK2pmj14aSxhRhWhsNzcDYgEHERowaUgPrl+qATIbRVJnwU1UXAxODmlgV916WAAGANz+rAlMBv4AFgAiAFIAXwB0AIwAACUiLAEnJgoBNTQ3NjMyDAEXFhoBFRQGBS4DJzceAxcBIiYnLgE1NDY/AT4DNRcUDgIPAQ4BFRQWFx4BMzI2PwE+AjcXDgIPAQ4BATc2NTQuASMiDwEeAQEnNjU0LgEjIgYHJz4BMzIeAhUUEyc+ATU0LgIjIgYHJz4BMzIEHgEVFAYHtmv+8P7bjprgeEBBcW0BDQEehZfhfnj8RWPLtYojQxqDtMxk/n1Qs2JsbC0tXWJ+RxxPIU6FZVwjJWJgWJc/L1ElXFm40344hsyvW2AwbgH0sgxIaTAdFPJIogNFSQxrrmYNGg4PDiITXKaBSqNCLCxhr+iHQ5A9G0afSZYBA8NtMXNvy4qXATABF290QUJrwYKT/sH+1HZtebEfcpy6Zz5nu5tvG/6lWFdgt1U3aDFnba+bm1oLY6qmtnBmJ00pQ5RWTlErKmZiiFkZSBdOgGNoNDYDQP0RGC9kRg+nW6QBlhoyH2CmZQICTAMDRnudVzv+wyVTr1aE5KpfGhhIHBtrwP+TYcAAAAAHAvj+rAcwBswAEQAhADEAOwBJAFUAcwAAASIuATURND4BMzIeARURFA4BJzI+ATURDgEjIiYnERQeARMyPgE1NC4BIyIOARUUHgETIic1FjMyNxUGAyImPQE0NjMyFh0BFAYnMjY1NCYjIgYVFBYDNR4BMzUeATMyNjcVMjY3FQ4BIxUOASMiJic1IiYFFJb1kZH2lZb1kZH0l33RfkT0lJP1RH7SfHrSgH7RfXzSfoHSeYFXV4GBV1eBWH1/VlZ/fFk+RUs4N0tFmyJpJQkTDAwTCSZoIiJoJgkTDAwTCSZo/qxJf08FxFyTVlaTXPo8T39JUDhbNAUsQU9PQfrUNFs4BbM4Yj4+cEdHcD4+Yjj7JCZRJiZRJgWmRjgrO0lJOys4RmQoHiElJiAeKPzsUAgIoAEBAQGgCAhQCAilAQEBAaUIAAAACAD//qwJKQbMAAMABwALAA8AKwBVAFkAXQAAJQkDNwEHCQE3AQMBJwkBIiYnJTcFHgEzMj8BNjU0JicDNxMeARUUDwEGJQYmJy4CJzceAzceATc+Azc2Jic2LgInNx4CFx4BBw4DATcBBwkBNwEDIv7yA+EBD/wNVP5gVAGH/gfGAfyfA3Cd/JEFrBcxH/7tNQEOFRoIExVrFA4QxjzKFxcsayv+fFV/RHfFwnM1ZaKNiUtAUT0XWmRNCRg0ZwEPNW5fPGt/OAJmOCEMVW5o/bJV/mBVAYz+AscCAMkBDgPh/vL+F1UBoFX+BwH5x/4E/g8Db5z8kfzVGBbLPMcQDhVqExQIGhUBEDX+6x8xFzcqaivwIThmAjl+azxfbjUPAWc1GQlOZFsWPVFAS4mMomU2c8LFd0R+Vh9ob1YEvlQBoFT+AgH+xv4AAAAHAPX+rAkzBswAEwAtAEEARQBXAGkAfQAAASIkJgI1NBI2JDMyBBYSFRQCBgQBLgE1NDY3NjMyFhUUBw4BFRQWFxYVFAYjIgEyPgI1NC4CIyIOAhUUHgIFJzcXASInASY1ND4BMzIXARYVFA4BJzI+ATU0JwEmIyIOARUUFwEWASImNTQ3PgE3NjMyFhUUBw4BBwYDtpL/AMJtbsIA/5KSAQDCbm7C/wD92iIoXkwKDg4UDz9PIRwIFw4TAYqC46xhYazjgoHjrGFhrOICw5p4mgH1RTn+Gzc9XzNFNwHnNz1fMx06KCH+Gx4mHDsoIQHjIfrWDxIUDBgNCQoPFRsKFAgNAUltwgEAk5IA/8JubcL/AJKS/wDCbgHCO4FEablMChYOEA8/nFo8bywNDQ8R/p9hrOOCgeOsYWGs44GC46xhJ5V7lvzAOQHmN0czXjw3/hk3RjJgPVAoOxwkIQHnHyc6HCMj/hohBp0VDRQMCAsGBBIRFgwECgUHAAcA9f6sCTMGzAATAC0AQQBFAFcAaQB9AAABIiQmAjU0EjYkMzIEHgEVFAIGBAEGIyImNTQ3PgE1NCYnJjU0NjMyFx4BFRQGATI+AjU0LgIjIg4CFRQeAgUnNxcBIi4BNTQ3ATYzMh4BFRQHAQYnMjcBNjU0LgEjIgcBBhUUHgEBIicuAScmNTQ2MzIXHgEXFhUUBgZykv8Awm5uwgEAkpIA/8JubcL/AAECChMOFwgcIU8/DxUNDgpMXij+SoLirGFhrOOBguOsYWGs4/5BeJp4/PkyYD03Aec3RTNfPTf+GzlFJSEB4yEoOh0mHv4bISg7BWsNDQgUChsVDwoJDhcMFBIBSW7CAQCSkgEAwm1uwv+Sk/8Awm0BwhERDw0NLG88Wpw/DxAOFgpMuWlEgf5TYazjgoHjrGFhrOOBguOsYSd6lnv8pT1gMkY3Aec3PF4zRzf+GjlQIQHmIyMcOicf/hkhJBw7KAadBwUKBAwWERIEBgsIDBQNFQAACwEp/qwI/gbIACYAUgBYAG0AeACWAKQAxwDXAPAA/AAAJQE+Azc2Nz4DPwE+ATMyFhceARUUBg8BDgMHBgcOAwEmNjc+Ajc+ATMyNjcXDgIHDgIHPgI3ND4BNxcOARUUBgcOAgcGIgEmNTMUFwEiJj8BLgE1NDYzMhYVFAYHFxYGIwE1ND4BNwcOAR0BASIkJj0BNxUUHgIzMj4CNRE0Jic3HgEVERQGBAEuAScuASc3HgEXHgEXAT4EPwE+Aj8BNjU0JicuASMiDwEOAw8BDgMHJSImJzceATMyJDY1MxQGBDciJicRNCYjIgYdAQcRND4BMzIeARURDgEBJzcmNjMyFhUUBicDl/7/H1SDx5EBFztlbpFn1xcnFRw/KikkEBOnSHRvflEaJpPFhF39fBQBECovFwQEJBgWbkUxKl1THAUXOzxbmm8YL0klMTxOHhgabIRAGTQCf4BQZAG4ExYGRSIfSTo6SR8iRQYVFPzMbLx5V2yOAoDk/r6qUF2r6o6O6qtdfmIBiKeq/r/+9BA1OEE+HFwbRzc+PxD9OSZDUHCjdjlkl49Wrg0dFRMyFA8S4F2Fa2pBFIu0c08nAy4xXCtLGjccrQEjsFCu/r6dIDEJmomJmrR21I2O03YJMfmmK+oEIRkWISYdYAECK2aPzpQiGUNraHhQpxISIyopPh0QKhfTWo58fEgXBZG+d0v+ixQ0GUSDaBsXHk48MCZJLwEXZ5pkOTsaBhtUXikxQ3AVGSQEBBcwKRADgztVKiX9Bh0Rwh46HzZDQzYfOh7CER0CWu8tUEATYBc8HZ78Qz94VZVG2ypGMhwcMkYqA08bORZQIGI4/LFVeD8D/BtBOEExEFsRPDc+Sx79zx84R2qedRNWmKpv4RAPFDEVFB0OrUduY3FKOI26fV0vugMDSwEBKkUoR2c40QwKAVGbrKybqJUBPZXgfHzglf6vCgz8ESrrGyggFxogAwAAAAkBDv6sCRoGzAAnADwAUwBjAIMAhwCeAKoAtgAAASIkJjURND4BJDMyFh8BLgEjIg4CFREUHgIzMj4CPQEXFRQGBAEiJj8BLgE1NDYzMhYVFAYHFxYGIwUBES4BNTQ+ATMyHgEVFAYHFQcXBxcVASIkJjUzFBYEMzIkNxcGBCUiJicRND4BMzIWFwcfARUOASMiJicRNCYjIgYVEQ4BAScRMxM3NSc3Jzc1PgE1NC4BIyIOARUUFhcREyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWA97k/r6qdMkBA5Bx0VgtXvN2buG9dF2r6o6O6qtdUKr+v/63ExYGRSIfSTo6SR8iRQYVFAMB/tl3jYvpjY7oi5N+PWBdOvvV3/69rlCwASOtugE1TyxY/sT9rSAxCXbUja3wKGMFcAkxICAxCZqJiZoJMQSUPDwiglRbaWJ6l3XEeHfFdZFzrUBbW0BBW1tBJDIyJCMyMv6sP3hVA08uU0ElFxVbGSAcLTYa/LEqRjIcHDJGKjspElV4PwESHRHCHjofNkNDNh86HsIRHcoBEQKZQ/CLjuiLi+iOj/NEpT1XfDqkAh44Z0coRSoxJUIvNNEMCgHTleB8up69ssozCgwMCgHTm6ysm/4tCgz8ayEDU/ycs2ZTel9guDHah3jEdXXEeIPYMv1ZA/VcQEFbW0FAXEYxJSUxMSUlMQAAAAQA+/6sCS0GzAAbADoASgBWAAATEQEmNTQ+AjMyHgIVFA4CIyInByMPAyUhNxM/ATM3FjMyPgI1NC4CIyIOAhUUFwEVARclIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQW+wMQI2m59YuM9blpabn0jHFovaU82Q6A/p8BQFQR5j3AynF8e9ekXFyj2Hx716RcMPzjA6kpAdI6YTo6YTo7YDo5YTs4TU82Nk9O/qwBnAMLZnGM9Llpabn0jIv1uWkkvdEN5IFQVAENDdXLMlyk13t72KNcXKTXe31u/OjaA6Mp8zlhOjtgOjpgOzphOVBNNzZPTzY3TQAAAAUCRP6sB+QGzAATACgAPgBQAG4AAAEiJCY1ETQ+ASQzMgQeARURFAYEASImPwEuATU0NjMyFhUUBgcXFgYjBzI+AjURNC4CIyIOAhURFB4CEyIkJjUzFBYEMzIkNjUzFAYEJSImJxE0PgEzMh4BFREOASMiJicRNCYjIgYVEQ4BBRTk/r6qdMkBA5CQAQTJc6r+v/63ExYGRSIfSTo6SR8iRQYVFGSO6qtddL3hbm7hvXRdq+qO3/69rlCwASOtrQEjsFCu/r79oyAxCXbUjY7TdgkxICAxCZqJiZoJMf6sP3hVA08uU0ElJUFTLvyxVXg/ARIdEcIeOh82Q0M2HzoewhEdxBwyRioDTxo2LRwcLTYa/LEqRjIcAyc4Z0coRSoqRShHZzjRDAoB05XgfHzglf4tCgwMCgHTm6ysm/4tCgwAAAYCRP6sB+QGzAATACgAPgBQAFwAegAAASIkJjURND4BJDMyBB4BFREUBgQBIiY/AS4BNTQ2MzIWFRQGBxcWBiMHMj4CNRE0LgIjIg4CFREUHgITIiQmNTMUFgQzMiQ2NTMUBgQ3IiY1NDYzMhYVFAYlIiYnETQ+ATMyHgEdAQ4BIyImJzU0JiMiBhURDgEFFOT+vqp0yQEDkJABBMlzqv6//rcTFgZFIh9JOjpJHyJFBhUUZI7qq110veFubuG9dF2r6o7f/r2uULABI62tASOwUK7+voooPj0pKT09/PAgMQl21I2O03YJMSAgMQmaiYmaCTH+rD94VQNPLlNBJSVBUy78sVV4PwESHRHCHjofNkNDNh86HsIRHcQcMkYqA08aNi0cHC02GvyxKkYyHAMnOGdHKEUqKkUoR2c4th4UFB0dFBQeGwwKAdOV4Hx84JVxCgwMCnGbrKyb/i0KDAAGARj+rAkQBswALwA/AFUAewCMAJgAAAEgJCY1NDY3PgI3PgE3PgE3FS4BNTQ2MzIWFRQGBzUeARceARceAhceARUUBgQlMj4BNTQuASMiDgEVFB4BASc+AiQzMhYXFhUUBicuASMiBA4BByc+ASwBMzIMARYXBy4BJy4CJy4BJyYkIyIEBw4BBw4CBw4BAS4BNz4BNzYWFxYGBw4BBwYBMjY1NCYjIgYVFBYFFP64/jjsUE5ERh8HCSg/RvimOEZ+Wlp+Rjin90Y/KAkIHkZETlDs/jn+tzxhOEFiMjJiQThh/TUPKI7KAQafSn4uLBoVL39Fkf7805HIDD/TAQYBHYmJAR0BBtM/DAc5RExQIggJJDpC/v28u/78QjokCQgiT01DOgIPDw8FF3lMFyQEAwwPPmgXDAF7O01OOjpOTv6sSnxKOHlQRo2TTmDRdYKjEhIXYUFbfHxbQWEXEhKjgnXRYE6TjUZQeThKfEpYP2xBBw4JCQ4HQWw/Abg+GSUZDQMDAyIQEgEDAw0ZIvQOHDAlFRUlMBwOHU5GUJueUV3FbXybm3xtxV1RnptQRk4DDAMbFmCUIwsMEQ0XBhl/US0Cd0o4O1BQOzhKAAAAAAcBDv6sCRoGzAALAC8AWwBnAHsAjwCTAAAlMjY1NCYjIgYVFBYlJz4DMzIeAhcHLgEnLgQnLgEjIgYHDgQHDgEFICQ1NDY3PgQ3PgE3FS4BNTQ2MzIWFRQGBzUeARceBBceARUUBAEyNjU0JiMiBhUUFhMiJAACNTQSACQzMgQAEhUUAgAEJzIkABI1NAIAJCMiBAACFRQSAAQlATcBBRQ6T1gxMVlQ/e4EOp6qmTU1maqeOgQHIB5AOxQJHCcumGZmly8nHAkUOkEeIAJF/sf+oy03ODITCx4lMZJVIyxcQkJcLCNWkTEmHQsTMzc3Lf6j/scmMTEmJTIyJdT+i/7koaEBHAF11NQBdQEcoaH+5P6L1MQBWAEGlJT++v6oxMT+qP76lJQBBgFYA3D6dzEFibpVSAcNDQdIVagDGCEVCgoVIRgDDigfRHJpaXVFU1tbU0V1aWlyRB8o725VHUs6O2xoa3ZEWWIOHxNFLURVVUQtRRMfDmJZRHZraGw7OksdVW4EdC8nJzAwJycv+beiAR8BedbWAXkBH6Ki/uH+h9bW/of+4aJQlgEJAVvGxgFbAQmWlv73/qXGxv6l/veW6QV9MfqDAAgA6v6sCSYG2AANABoAKgA0AEAATABbAGoAAAEkCAECJwEeAQAMARcFAxElJiQAAicBFggCAS4BLwEmNj8BNhYfAR4BFwEvATcnFzcHFwcBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnIiYnLgEnPgE3HgEVFAYnLgEvAS4BPwE2HwEeARcGpv7Z/iT+lfxIAu84ygEOAToBUaj9gFAB/7T+ov7K9Uz9i1kBBQFLAYL8fUyFLREGAwokCxcHEi+FWAK7OnVQGmtlDllz/fI7VFU6OVNSOhwpKRwdKys0DRYKHEo2AzRASlo3oyiQXRgKBAgZEhgXaaMu/qx7AUcBbAFqnwJacP3+/PjZU77+PAIAlmj8ARIBE37+CrH+qv7K/vkE4xlaQBgIGgcaCAQJGkRJC/ysZwpXczA8dk0XAZ1UOzpSUzk6VUcrHRwpKRwdK0QaFkFICC48GCZ6OSRG+mq8PhAGGgsiGREQSdN3AAAABAEE/qwJJAbMAC8AXQCLALcAAAE+ATcBPgE1NCYnJiMiBwEGFRQWFxYXByYnLgE1NDY3AT4BMzIWFx4BFRQGBwEGBwEWFx4BFRQGBwEOASMiJicuATU0NjcBNjcHDgEHAQYVFBYXFjMyNwE2NTQnJicHOgEzMhcWFRQGBwEOASMiJicmNTQ2NwEXAQYVFBceATMyNjcBNjU0JyYjKgEjBQE2NTQnJiMiBwEGFRQXHgEzOgEzFSoBIyImJyY1NDY3ATYzMhcWFRQGBwEGgB85GQFURUpKRY7My5D+qY1KRnCWQJNrUFhWTwFXUNFycdJPUFdXUP6sWn3+2pBpUFZWUP6sT9JxcdFRUFhWTwFXXXQyHTMX/qmNSkaRysuPAVSOjmaSdQYLA4VdXDEs/qorfT44eiljMC4BMQ7++0hLHV0pL18gAVZFRkVjAwsGAgsBCkZHRWNnRf6rSEsdXSkDCQcFCwM4eiljMC4BV1+FhV1dMS3+yQGOESoZAVZGtGJjskWOjv6qi8xktkVvGEMna1DUc3HQTgFWUFZWUFDRcXHTUP6qWi0DPShpT9JxctJQ/qpQV1dQUNRzcdBOAVZbKG4QJhf+qovMZLZFj48BVpDMzI5mH6BfXoY/dS3+qSs0MyhhhT92LgExYv75SmFjSx0mJyABV0VkZEhHUQEMRmNjSUdH/qlKYWNLHSZQMyhhhT92LgFXX19fhT91Lf7JAAMBBP6sCSQGzAATACcAOwAAASIkAAI1NBIAJDMyBAASFRQCAAQnMiQAEjU0AgAkIyIEAAIVFBIABBMiLgI1ND4CMzIeAhUUDgIFFNX+iP7go6MBIAF41dUBeQEfo6P+4f6H1cUBWwEJl5f+9/6lxcX+pf73l5cBCQFcxHLImFVVmMhycsiYVVWYyP6sowEfAXnW1QF4AR+jo/7h/ojV1v6H/uGjUJcBCQFcxcUBWwEJlpb+9/6lxcX+pP73lwGZVZjIc3LHmFVVmMdyc8iYVQAJAQT+rAkkBswADwAYACgAMAA4AEEAWwBpAHAAAAEiJjURNDYzITIWFREUBiMBNTMyFhUUBiMHMzI2NTQmJzU+ATU0JisBFzUzMhUUBiMTMzczFzMDIxM3PgE3HgEfAQUyNjc1DgEjIiY1NDYzMhYXNy4BIyIGFRQWJTM1NxczAzcjBwYHNSMBESE1IREBAapEYmJDBtZEYWFE+bU/LyQjLKawUFwxIyMmYF6TYzZSIivjbCKrImumewEjBQ8GBw8FIwGOJjwfIjkdPTk9ORo2GSEgRyNqcmYBSWMre3GlpG9/FBRj/UYDuPxI/jL+rGFDBtdEYWFE+SpDYgEXeiAaHiJSSEA3MAcDBjcoQjW5aDMbGv7kb28B1/7sbRA0Gxo1EG3KCw1UDA5US0lXEwxQEBGHa22EB6gdxQEGz6AZHtcBIgE67gE6/k8AAAYBBP6sCSQGzAAPABsAKQAyADoAQQAAASImNRE0NjMhMhYVERQGIyUhNSM1MzUjNTM1IQEzNSczEzMRIxUXIwMjATMyNjU0JisBExEzMhYVFCMBESE1IREBAalDYmJEBtVEYWFE+g4BD6ugoKv+8QFzWQYDzn5ZBALNfgIchXqIhG+UZDVBRZD9eAO4/Ej+Mv6sYkMG10RgYUT5KkNiyFN5UmhS/ijeh/6bAdjgggFi/ih5d3J2/nsBM0pOmwKhATruATr+TwAABwEE/qwJJAbMAA8AGwAnADkARQBJAFMAAAEiJjURNDYzITIWFREUBiMlMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYFMzU0JiczEzMRIxUUFhcjAyMBMjY1NCYjIgYVFBYnMxMjAREhEQkBESERAQGpQ2JiRAbVRGFhRPsqdGxsc3NubXM+OTk/Pzg4AQhYAwICzX5ZAgMCzX0CNhchIRcYISEPTxBw/PoCVgHO/jL9qv4y/qxiQwbXRGBhRPkqQ2LAhm1uhIRubYZUVUpKVVVKSlVO3iJDIv6bAdjfIEEiAWL+IBodHhgYHh0apQE7AQsBOv7GAbEBsf7GATr+TwAAAAgBBP6sCSQGzAAPADUAQQBNAFkAZQB3AH4AAAEiJjURNDYzITIWFREUBiMlMjY1NCYnLgE1NDYzMhYXNy4BIyIGFRQWFx4BFRQGIyImJxUeASEyNjU0JiMiBhUUFjciJjU0NjMyFhUUBgUyNjU0JiMiBhUUFjciJjU0NjMyFhUUBhczNTQmJzMTMxEjFRQWFyMDIwMJAREhFSEBqUNiYkQG1URhYUT5lVRbPDgsLB4cGzQhICVDJUlXUCAnNiAlI0giHUQB4HRtbXN0bm5zPjk5P0A4OAG8dG1tdHRtbXRAOTlAQDc34loDAwPNf1kCAgLNf+oBzv4y/EgDuP6sYkMG10RgYUT5KkNiv0s+OD4ZFB8XFhoODk8QEUdAQD0QEyMXFhwYDlwOD4dtboWFbm2HVFVLSlVVSktVVIdtboWFbm2HVFVLSlVVSktVTd4iQyL+mwHY3yFBIQFiAR4BsQGx/sbuAAAAAAcBBP6sCSQGzAAPABcAIwAvADoAQgBJAAABIiY1ETQ2MyEyFhURFAYjJTMRMzUhFTMBMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYFMzUzMjY1NCYrARc1MzIVFAYjATMRIQkBIQGpQ2JiRAbVRGFhRPqbY4H+m4EB7XRtbXR0bm50QDg4QEA4OAECZCtoT1RclmQtUTMq/c/uAT7+R/5OAT/+rGJDBtdEYGFE+SpDYsYBhVRU/nSHbW6FhG5uh1RVS0tVVUtLVU2oXz5GTt6MRSYhAcUBowIq/dYAAAAOAQ7+rAkaBswAEwAgAC0AQQBFAF8AbwB7AIsAkwCaAKYAswC6AAABIiQAAjU0EgAkMzIEABIVFAIABAERNDY3DgEPASclMxElMjY1NCYvAQ4BFRQWAzIkABI1NAIAJCMiBAACFRQSAAQlATcBJSImNTQ2Ny4BNTQ+ATMyHgEVFAYHHgEVFAYBIiY9ATMVFDMyPQEzFRQGAT4BNTQmIyIGFRQWATUzFyY0PQEzFSMnFhQdATM1MzIWFRQjJzMyNTQrARc1MxUjFTMVIxUzFTM1MzIVFAYHFyMnIxU1MzI1NCsBBRTU/ov+5KGhARwBddTUAXUBHKGh/uT+i/27AgMWJR1rQgETaAHnaG52YBZdYmiExAFYAQaUlP76/qjExP6o/vqUlAEGAVgDcPp3MQWJ/hejr35US2ZPiFZZiU5yT12FtfzqJSkqJSUqKgJZSmZkUk9ja/5TL10BJy5eAcM9LjJlDg08ORCfcUZBQUYtPEoQETYxKxUSICIQ/qyiAR8BedbWAXkBH6Ki/uH+h9bW/of+4aIBgwLIPUkoFiAXWVTV/AdVZ05JXycJKGdOSWf+eJYBCQFbxsYBWwEJlpb+9/6lxsb+pf73lukFfTH6gwuTgWiBJit4Xk1rODdrT1t1KS58Z3+aBGQnJHx7Jyd7eyQo/fYfWU1GS0tGT1UB7MSLBw0HcMSKBg8HbsQzLWQlPjuexCYmJi0lxDwSGQhVSUltGhcAAAAGAQT+rAkkBswADwAcACwAOwBJAFcAAAEiJjURNDYzITIWFREUBiMBMxEjBRc3PgE3DgEVASEyNjURNCYjISIGFREUFgcBITI2NREBHgEVERQGIwEyEhE0AiYjIgYCFRASNyImNTQ+ATMyHgEVFAYBqkRiYkMG1kRhYUT6n4p1/stKeSArGQQD/owG1SMyMiP5KiIzMwkBAgULKTkBAhAFQS39TM2wVKmAiaZLub+Cay5pVlZoMG7+rGFDBtdEYWFE+SpDYgIWBHbvX2MaJRktU0T7GzMiBtYjMjIj+SkiMhoBAzoqBQgBAhQuLvluLkEBzwE4ARW6AQaLjP76uf7r/sh46uuc0Gdn0Jzs6QAAAAkBBP6sCSQGzAAZACIAKgAyADUAPgBOAFcAZwAAJTI2NzUOASMiJjU0NjMyFhc3LgEjIgYVFBYlMzI2NTQmKwETETMyFhUUIwEzNzMXMwMjAzcXBTUzMhYVFAYjBzMyNjU0Jic1PgE1NCYrARc1MzIWFRQGIwEiJjURNDYzITIWFREUBiMDui5BHx9BJF9eZlglPxkbH04qgIh9Al2aiZeTfapHWWNu4PyERkLZQ0jXPjhWWAHrakw7OUm0wVlmRzQyNmlnnUVbRkA0R/tfRGJiQwbWRGFhRDQLCzwJDHhmZ3cTCzoQEZ19gpoIjYuFif4VAbBnbtsC4aqqAij+wPn5rsg0LC85OlFMQDoJBAlAMEw967AoLiwu+hlhQwbXRGFhRPkqQ2IACAEE/qwJJAbMABkAJAAxAEwAYgBuAIQAlAAABTI2NzUOASMiJjU0NjMyFhc3LgEjIgYVFBYTIiY1NDY/ARUUBgEiJjU0NjMyFh0BFAYBMjY3MxczETQmIyIGBxc+ATMyFh0BBwYVFBYBMjY3MxczESMVFBYXIy4BIyIGFRQWEyImPQE0NjMyFRQGBzI2NTQmIyIGByM+AT0BIxEzNzMeAQEiJjURNDYzITIWFREUBiMDeiw8GRo/KUZISEsaPBcYFkcmZIaAKCkyR19IUwMfQ0JCQlM+QfxAPkkgBRA8WVwxVyIaHUcnMjZV7lkDqDtLFgMNQlIEAQUXSjpdcXByVDw9UIdCNlxxcVw9SxQFAgNSOhEHFEv7NkRiYkMG1kRhYUQZDw1IDBBfW19eDwhCDBF8ioV8A8ImKjA2AwItSEb8gmNZWWlkXQ9XVwM7KChGAVNZUBoRPhAWMD8dAgabTEj8gS0fQwLFyA0xCx8qg4GAggPEYF4EX1u8XmJFgoKBgSsgEDcerv08QB4s+0ZhQwbXRGFhRPkqQ2IAAAYBBP6sCSQGzAAmACkANAA7AFUAZQAAJTI2NTQmJz4BNTQmIyIGBxc+ATMyFRQGKwEVMzIWFRQGIyImJxUWJTcdATM1MzUjESMBFSEBMxEjBxc3ASE1IzU3PgE1NCYjIgYHFz4BMzIWFRQGDwEBIiY1ETQ2MyEyFhURFAYjA3JdbC8sIydZTTJbKSYkRSVgPz1ISEdDQj8oWB9MAs+kSVJSQv76AP/9Akk4pitqAhIBZ/tnPEJaSC5WJigeQSErLzA4n/wHRGJiQwbWRGFhRB9ZTTFDEBNDKEFNICE5HRxTLTBDKy8yNBgTSiPL7e3CgEIBYv6PMwKwAiV9NFP+OUQFZDpkR0ZVIyM2HB0vLDRMOKD7HWFDBtdEYWFE+SpDYgAAAAAMAQT+rAkkBswADwAZADkARQBNAFkAZQBpAHUAgQCFAJYAAAEiJjURNDYzITIWFREUBiMBIiY1NDY3Fw4BBzI2NxczJz4BNyMOAQcnPgE1NCYjIgYVFBYXDgEVFBYTLgE1NDYzMhYVFAYDMxEzNSEVMwEyNjU0JiMiBhUUFjciJjU0NjMyFhUUBgMzASMTMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYBITUhATI2NRE3NQcRLgEjIgYVFBYBqkRiYkMG1kRhYUT6yCUxGBZ9EiohMFEhK45xIywMeAcXEGsvP1dDRloYHjA1aVMQEyMTER8jCHSV/mGWAok+WVk+PVpaPRghIRgYISEzZAF2ZEg+WVk+PVpaPRghIRgYISH7JgGf/mEDpzVLkOoJEgs1TEz+rGFDBtdEYWFE+SpDYgHYJiEXJRB8CwxgGxcrbixiKx06GmgbSDU5PkQ7ITojG0U7RlYBZRIkExoUFBcXJAGxAS5hYfyyVUBAVVVAQFVaIRoaISEaGiH+pgIm/dZVQEBVVUBAVVohGhohIRoaIQSPYf3HOyoBVi+VQ/6NAgI7Kys8AAAABgEE/qwJJAbMAAoAJQAxAEcAYQBxAAABIiY1NDY/ARUUBgcyNjczFzMRNCYjIgYHFz4BMzIWHQEHBhUUFiUiJj0BNDYzMhUUBgcyNjU0JiMiBgcjPgE9ASMRMzczHgEhMjY3NQ4BIyImNTQ2MzIWFzcuASMiBhUUFgEiJjURNDYzITIWFREUBiMCuykyR19IU1I+SSAFEDxZXDFXIhodRycyNlXuWQLYVDw9UIdCNlxxcVw9SxQFAgNSOhEHFEsChCw8GRo/KUZISEsaPBcYFkcmZIaA+n5EYmJDBtZEYWFEAewmKjA2AwItSEZDKChGAVNZUBoRPhAWMD8dAgabTEhFYF4EX1u8XmJFgoKBgSsgEDcerv08QB4sDw1IDBBfW19eDwhCDBF8ioV8/QNhQwbXRGFhRPkqQ2IAAAIB9P6sCDQGzAAxAFUAAAEiJCYCNTQ+ATcOARUUFhc0PgM1NCYnPgEzMh4CFRQGFRQWMzI2Nx4CFRQCBgQnMj4BNTQuAzU0PgE3DgIVFB4BFRQGIyImJw4CFRQeAQUUsf7b1nRJhFkHCjI3Q2JiQzk7FzcgZrKHTSVMQDBVFC1CI3ra/t2pd75vPltcPhMgFYC7ZiEhGRkoLwgcMh9qvv6set8BMLaL+r4yJXAoWG4tcKF/eIteU4NACwpfqeGCaos6Rlw3MCx+kkyU/wDCbWxWnWhScl9miWQ0enAlOq7GYD1XPhoTHVZPGFx0PGyjXAAAAAAHAQb+rAkiBswAJQAvADsATwBbAHAAgQAAASInASYkJzcWBBcBFjMyNjc+ATU0JwEmAic3FhIXARYVFAYHDgEBPgI3Jw4CBwEnNjc+ATUzFAYHBiUiJyY1NDY3PgEzMhcWFRQGBw4BBTI2NTQmIyIGFRQWFyIvASY1ND8BPgEzMh8BFhUUDwEGARQXPgE3PgE3LgEjIgYHDgEHnV83/HOn/tdlRVkBG6ADoSE9OHArLjQb/JYck2Mub50iA1oxPjg4kPogGlhfIxk4dmIcAdgEo5hKPVBKVa79nWU/P4FwcPdnZT8/gHFw9gNzGCUlGBojJMQeF9kXFx4LHA8gFc8WFhYU+5AdTahOTW4PEy0dRaNKSFP+rDQDWRqfdixqkRT8lR42MDJ0NT8cA5uUAR5mQnL+2Zv8dTRdRJI7PEQF80JuThJZGmOBSf13UAqYSoNSYqFUreQ/P2Vo93BwgT8/ZWj2cXCB3iUYGCUjGhkkxxXDFB8fGSELChXPFh8cGBcVAlg0IxVqTk2uQA4OVEhGpQAAAAMBHf6sCQsGzAAlAEgAVAAAASIuAScBBiMiLgE1NDcFPgE1PAEnJT4BMzIeARUUBwEeARUUDgEnMjY1NCYnATY1NC4BIyIGBwUWFRQGByUeAjMyNjcBHgI3MjY1NCYjIgYVFBYIG0tjSSX8qVReh9Z8DwFVQk4C/r0gq3CI3YQuA8lFO0JtQUBgLjj8B0RwwnslYhoBBAuAaP71AWexbzlcNAN8JTpICiEvLyEhLy/+rClFKgPSHH7Yhj0/xR13RggOB7NNSIXeiG5f/IQ/cUNDcUVQZkMyUTQDqWF7c7puGBqTJylqqh2ZbrFmFBf8Ayo3G3YvISEvLyEhLwAAAAAEANv+rAlNBswACwAXAGgAtAAACQEWMzI/ATY1NCcBBzcBFhUUDwEGIyInASImJy4BJy4BNTQ2PwE2MzIWHwEWMzI/ATY1NCYvASY1NDY/AT4CMzIWFRQGBw4CFRQXHgEVFA8BDgEjIi8BJiMiDwEGFRQWHwEWBg8BBicyPwE2Ji8BJjY/AT4BMzIWHwEWMzI/ATY1NCcmNTQ2Nz4BNTQmIyIOAQ8BDgEVFBYfAR4BFRQPAQ4BLwEuASMiDwEGFRQXHgEXHgEEGwQDEh0WFHAWD/ur4u8EgiUzbyg2RCn6RBk2HzNrJAwNEhZzMScRIxYVDQoKDAsRBAQFBjAtrFGNrX5NREtZNFw5HCAlQckZKRcQGx0kCQsPDwsDAgkTByVyJywOD2cXBw8ICA4RJRIjFQ4gFB0LCA8ayyMhQJB1QiYZKHSafkqsHiICAQUFBSAmGC0XFRQaDhQScw0OJ1coFB4D6PsrFxFgExwZDwSRcdf7QSg4PS5iIzMDaxYTIHpKGSsUGCkSXSgLDAwHDAsRDgcTDRQaDClLJpJFSh0uNSwrGQ4oKBAUFRg6Ikc5rhUWCQoNDA0KDQQKBRYuSR5dIFAMUhIxJxUWJw8gDw4IBgkDFq4fJRoWK0g5VSASEg0LCBtGP5MaKh0FDQUUFR8MIB0jFg0ODQ0JD10MERIZRWgaDRAAAAAADwEB/qwJJwbMAAcADwAXABsAHwA3AEsAUwBXAFsAcwCFAJcAqQC7AAABAwEFARMBJRMnBQEDFyUBAxcDAQUnJQEXNxcHBTcXBz8BARY+ATc+AicBNwEWFRQGBw4BIyIvAQcDFyUBEycFByc3JRcDAQUnEzcBFwMBBSclARc3FwcFNxcHPwEFFj4BNz4CJwE3ARYVFAYHDgEjIicBDgEHDgEHBicuATc+ATc+AS8BDgEHDgEHBicuATc+ATc+ATcBDgEHDgEHBicuATc+ATc+AS8BDgEHDgEHBicuATc+ATc+ATcFvzr+E/5w/vk6Ae4Bj7HN/rL+OTDNAU8BxrdONf4T/oYLAWABxgk65zn9PjrnOSQ2AToUS1ooIzUWDv7jOQEeG0E6P4g4MSAZECy4ATcBpiy4/soMNBsBd/I2/jP+iPI2HgLxTzP+M/6gDAFHAaYJOtM6/XM60zoZMwEfEEFPIx0vFQv+/DkBBRg5NTp4My0d/mIBIhwMHhETGw0DCgwYCx0eAVIFIh0MHhETGw0DCgwZChsiCgN/ARwZDR4SEhkNAgoLFwscGgI7BCEdDBwREBsNAwoOFQoRGgkFxP5w/hI5AQgBkQHtOf7czi/+Ov6wzi8BxwJHDP6L/hI1TzIBxy446TjxOOk4IDr+7REWPismVkcOATM1/s4cMDN+P0RLHEER/si5KwGnATe5Kww+GjXz/oj+MjXzAXkfAbkM/qL+MjJPLwGnLjjVOOU41jg5O/wOFDUlHks+DAEVNf7rGSsudDg9QxoEkTVmORktFhgRCB8QEyYWOHE3VUBpOxktFhgRCB8QEyYWOHZS/IooWzIbLBcYEQgeDxEmFTVnIVY0ZDgXLBYUDwgdDhQlEyFHKgAAAAQA1P6sCVQGzAAwAEMATwBbAAABNxYIAhcOASMiLAInLgInNzY1NC8BNxcWFRQGDwEeAhcWDAIzMjY3ByYIASUBLgE1ND4DMzIWFwkBBiMiATI2NTQmIyIGFRQWATI2NTQmIyIGFRQWBEI3qAFbAUkBIW4cTTFn/uf+zf7ecTZ1YhyMIR0+Nz04Fx1lG1NfKm4BGQEmAQleDRoKDYz+hP5M/fT93hIPMk9XThYUHBQCSf7/Fhom/qkVHh4VFh4eAdAVHh4VFh4eBAI7m/6o/pf+l6sTDleVuWIvcGolsiomJRo6Ojk0RCI8JoAeVVomYbOMUQEBF9gBuwG3JQIMEhcQFkpUTDASFf2w/uwYAnoeFhYeHhYWHv5dHhYWHh4WFh4AAAAMAE7/EAnaBmgAOABMAFMAWgBgAHYAxgDUAOcA9QD6ARgAAAUiJi8BIyIuATUuASchIiY1ETQ2OwEuATU0PgEzITIWFzM0NjsBMhYVERQHFhURFAYHDgEHExYGIwEiLgErASImPQE0NjsBMj4BOwEVBSI1ETMRFDMiNREzERQFIj0BIRcnMj0BMxUUOwEnIyIdASM1NCMiHQEUASEyNi8BIyImNTQ2OwEnIyImNTQ2OwEnIyImNTQ2OwEyNj0BMzI2NRE0Jic+ATURNCYrASIGFREjBiMhIgYVERQWMyEVFBY7ARUUFjMhExYBIiY1NDYzITIWFRQGIwEhMjY3MzUjLgEjISIOARUUHgETIiY1NDYzITIWFRQGIwEzNSMGASImPQEjDgEjKgEjEToBMzIWFzM1NDYzMhYVERQGBuYwSw5M4Up6R0ZhC/4qQFdXQHc0PVKJUwMQXpohM1dAmEFWICBVRANMObUWPzv4uhMTExQZEBkZEBkUExMTMQFsHz9iHz8CQaQBOznRGDgjKCEIIjgYGQGjAT0YFgg56RMZGRPIHN4TGRkTvRzJExkZE8Q7TUMmLxojIxovJpglMOpMWPu8JTAwJQIVTTstdFUBElsQ/bEXHx8XAxAXHx8X+2MDEFaDDWZoFX9Q/PBBa0A/bIAWHBwWAoAXGxwWAT1gMBACwBQZLwo4JAECAgECASQ5Ci8ZFBQZGfA2LvRIeUkGWUJXQAEOQVYpe0hTiVFqVkBVVkH+8DcoKDf+7kJTAkJhEf4nOFoDsBQTGRNWExkUE/zTIAIs/dQgIAIs/dQg+ZskvycZDgsbbxoJChkZPhn+NyEWlBgTExhKGBMTGEoYExMYTTs2MCUBEiUvCw0tJQEQJi8vJv6YMS8m/vIlMBo7TTZXfP7eNgLHHhcXHR0XFx4CNnBVWFZkQGpBQWw/ATcXEhEWFhESF/76WC798BoUSSEpAQ4qIEkUGhoU/vQTGwAAABIBf/6sCKkGzAA4AEMAVQBbAGcAcwB5AIEAigCXAKoArgC6AMYA3ADgAOQA/gAAAREhMj4BNz4BNzYzMhYXBz4BNTQnNx4BFRQHJgYHDgMjIRUhNSMnPgI1ECUnBBEUBgcnFzMRJS4BNTQ2NxceARc3IicuAT8BNjMyHgIVFA8BBiUBNwEHFwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEGJic3FyUuAT8BHgEHEyc+ARYfAQ4BJzI2Ny4CBwYVFB4BFyIuATU0Nz4BNzYeARcWBgcOATcnNx8BIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYlAT4BFhceAg8BJzc2LgEnLgEGBwkBJxMXEycTFwc3Ni4BJy4BDwEuATU0NjMyHgIVFAYjIiYBfwIzO0kxFxs/K2NvCA4HGSwuj2E7PXc3bzYtQUVkT/4FBpaShRkkE/7uMQGNKiACVb75/BIOCwldATAvHDtuTGULFAYbIG9yTgIPCQEI/b07AeEYYQEOPVVVPT1VVT0gKSkgHyoq/iQcMgtTgP7EFw4HvykSHOhTDTU5EysRQD8rRBMIcJhEHURuPVKPWBcLIRJYuY4VBQkIGmqEGltALExra0xMa2pNLj09Li49Pf2bASkiYntGPmQhJSRAKA8kSCktXUcO/vwBpEKMQ1RCkUM6CQYgNBgiSBoXEBcqHi1oXTsgFwkU/qwBEzFGHyZNHkUBARBKhjyNbA04h0eQuw8ZJiBnZ0d/f35DgqJxAUvJeef+WqPVWRRP/u36Hi4XGC4WJjBFHF0oG0UXLQ4gMDMTBwUiFj0BTGT+6ik6/s1VPT1VVT09VUkqHyApKSAfKgIZAyQYnlRiEDsZTBNdHv7cvRwbBRO8GRPDHh48aUABGjA3Yj1KUYRLMikTIwoDR4NXCCMPLTZjY5MlLWtMTGtqTUxrTD0uLj09Li49KAIDOhonKCNUZj48JUMYQEAXGR8CGP46AesfAP8g/ogfAQEgNA4GKi8NExYBFgIfExcfIzxKJxYeBwAAAAAOAJb+rAmSBswAGwAhADQATQBRAFUAWQBdAGUAdwCFAJEAnQCmAAABFjY3Nh8BNycmJy4BJzceARcWFwUHJyYHDgEnJTcnFw8BDQEWPgE3PgEnATcBHgEHDgEvAQE3BRY3PgMnJiclNwUWFxYOAgcOAScFAQcBJzMRIwMXAScBJTcFNz4BNxcOAQcBPgEzMhceAQcOASMiJy4BNTQ3Bh4BFz4BNz4BJyYOAQE0JiMiBhUUFjMyNic0NjMyFhUUBiMiJic0Nx8CIyImBtwiWRw7Pb9W7TsaDT0gFTxRFAsaAWPQ8RweLn44AbgsCdtEK/zWAP8MIygRHQwV/FkeA6c+BysqaT39+0MjAa4QGiQ/LRIKBw7+SBYBwTYOCxU1TC0cOhoC4gHLSv41OVZWH0n+KUoByv4ZHAHnmhAuFEsWMxz64SiQRhQOTSYsK4pGFRIxMY4WAyYgIkETDw4EFktKBHwpGxwoKBwcKM9YMzRXWDM0V34OlgxZfTNZArAHBg4cFD9bUhVAIkIQTxlaNBwJd95PCg4WCRPxc1tPQW8XXQQnRytKZQgBe0n+hhmWbmtwFl0BfUiNBRIYYHZ0Kx8FvE7AFkg3i4tyIBMOCPH8pSoDWhX8AwQvKvyJKgOus0uyQwxJMR03VBgCSH2gBRzLhYKdBxNjSFNFM29OAiNsPzBcJhIfTP1OJisrJiUsLCVMVlZMTlRUUSchMlhjWQAABgHM/qwIXAbMABMAKQA9AE8AYAB4AAAlIiQmAjU0EjYkMzIEFhIVFAIGBAMiLgEnExcDHgIzMj4BNwM3Ew4CAzM+Ajc1LgInIw4CBxUeAgEyNjc+ATc+AScmBgcOARUUFgE+ATc+ATU0JgcGBw4BFx4BATM+Azc1LgMnIw4DBxUeAwUUrv7Q54OD5wEwrq4BMeeCguf+z6546bEkdEhlLpi6X2C5mS1lSXQkseqCCg0rV01NVysNCgwsVk5OViz93REYAQZHNw4GDAslDkFdFQGBGDUcFBkcGEs6FQ4JCSEB/woPJ0R0XFx0RCcPCg8mRXRcXHRFJjyD5wEwrq4BMeeCguf+z66u/tDng/5wQW1BAYYl/qwzTi0tTjMBVCT+ekFsQQJiWGEyDwoPMmJXV2IyDwoPMmECIRYVWKc8ECMNDAEQSMBoFxoB8AsOBAMYEREWAwkcCiMPDwb9OG6LUzETChMxU4tubotTMRMKEzFTiwAACgEE/qwJJAbMAA8AEgAVABgAJAAqADYAOQA8AD8AAAEiJjURNDYzITIWFREUBiMBNxcBJyEBJyEBEyEDEyELASETAyE3AxMhEwMnMjY1NCYjIgYVFBYFNxcBNxcBJyEBqkRiYkMG1kRhYUT6XJCPARqMARj9y5ABHwEa6QHe7+/+Iunp/iLv7wHeLb+/AXi/v7wmNTUmJTY2AT+PkP07jIwBHY8BH/6sYUMG10RhYUT5KkNiAtfs7P7K5gHW7Pu+AYABiQGJAYD+gP53/ndQATkBOf7H/sffNiUmNTUmJTbf7OwCwubm/sTsAAACAZX+rAiTBswABQAJAAAJAREJAREBEQERBRT8gQN/A3/8Sv0I/qwCLwXx/aQCXPoQ/lEFCAIB+tIAAAACATv+rAjtBswANwBzAAABIiYnNSQANTQ2NwcBHgIVFAYHDgEVFBYXEwcJAScTPgE1NCYnLgE1ND4BNwEnHgEVFAAFFQ4BJzI2NzUkADU0LgInFwMOAhUUFhceARUUBgUDFwsBNwMkJjU0Njc+ATU0LgEnAzcOAxUUAAUVHgEFFGl4N/6y/o1UY6UBNjNcOzIcFR6lu1ChATkBOaFQu6UeFRwyO10yATalY1T+jv6xN3hpR1koAU8Bcho6YUjCyx4xHS4aFyLx/vliebe3eWL++vIjFhouHTAfy8JIYToaAXMBTiha/qwgH7ovASbaaeCfCQLtP9DqaFWfRjRcJ216HALZDgK2/UoO/Sccem0nXDRGn1Vo6tA//RMJn+Bp2/7bL7ofIFAPEdEjAQDEN3GEpWsJAgE+oqZDU4w/Nmg1m6YbA4cMAbT+TAz8eRummzVoNj+MU0Smoj39/wlrpYRxN8T/ACPREQ8AAAAAAgEE/qwJJAbMAA8AHwAAJSEyNjURNCYjISIGFREUFgEiJjURNDYzITIWFREUBiMC3gRsKjo6KvuUKjo6/vZEYmJDBtZEYWFEKToqBF4qOjoq+6IqOv6DYUMG10RhYUT5KkNiAAMBBP6sCSQGzAAPAB8ALwAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYBIiY1ETQ2MyEyFhURFAYjAapEYmJDBtZEYWFE+SsG1SMyMiP5KiIzMwFXExoaEwRsExoaE/6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMgFkGhMEXhMaGhP7ohMaAAcBBP6sCSQGzAATABcAGwAvADMANwA7AAABMiQAEjU0AgAkIyIEAAIVFBIABAEzESMBMxEjASIkAAI1NBIAJDMyBAASFRQCAAQHMxEjATMRIwEzESMFFNUBeQEfo6P+4f6H1dX+h/7ho6MBHwF5/hlQUAFKUFABcsX+pf73l5cBCQFbxcUBWwEJl5f+9/6l7VBQAUpQUAFKUFD+rKMBHwF51tUBeAEfo6P+4f6I1db+h/7howEhBdn5bwdY+I+XAQkBXMXFAVsBCJeX/vj+pcXF/qT+95cjB8b4dgdY+WAF2QAAAAgBBP6sCSQGzAATACcAKwAvADMANwA7AD8AAAEiJAACNTQSACQzMgQAEhUUAgAEJzIkABI1NAIAJCMiBAACFRQSAAQBByEnARUhNQEHIScBFyE3ARUhNQEXITcFFdb+h/7ho6MBHwF51tUBeAEfo6P+4f6I1cUBWwEIl5f++P6lxcX+pP73l5cBCQFcA4YU+p8UBqD4WAdYCvkCCgY3FPp3FAaM+FgHTgr47gr+rKMBHwF51dUBeQEfo6P+4f6H1dX+h/7ho1CXAQkBW8XFAVsBCZeX/vf+pcXF/qX+95cBJFBQAjZQUP7lUFAEbFBQ/cpQUAEbUFAACgEO/qwJGgbMABMAFwAbAB8ANQA5AD0AQQBFAEkAAAEyNwE2NTQnASYjIgcBBhUUFwEWAREjEQE3AQcBEQcRASInAS4BNTQ3ATYzMhcBFhUUBgcBBgE3AQcBMxEjATcRJwE3AQcBNxEjBRRFNANbMjL8pTRFRTT8pTIyA1s0/Y1QA+w4+/I4AchQAbIlHPylDQ0aA1scJSUcA1saDA78pRwBwDj78jgCAVBQAYlQUAGROPvyOAPUUFD+rDQDYjJISDIDYjQ0/J4ySEgy/J40Ar4Cg/2i/gY4BA44/HYFQin7D/67HANiDiETKBoDYhwc/J4aKBMhDvyeHAGeOAQOOPo2B7j5gC8E+yj8NTgEDjj70AoCcAAAAAgBDv6sCRoGzAATABcAGwAfADUAOQA9AEEAAAEyNwE2NTQnASYjIgcBBhUUFwEWASE1ISUhNSElITUhASInAS4BNTQ3ATYzMhcBFhUUBgcBBgEhNSElITUhJSE1IQUURTQDWzIy/KU0RUU0/KUyMgNbNP71AqD9YP7oBND7MP7hBw748gOHJRz8pQ0NGgNbHCUlHANbGgwO/KUc/FQHDvjyAR8E0fsvARgCn/1h/qw0A2IySEgyA2I0NPyeMkhIMvyeNAElUMtQy1D8pRwDYg4hEygaA2IcHPyeGigTIQ78nhwEJVDLUMtQAAAACgPAAWgGaAQQABcAGwAfACMAOwA/AEMARwBLAE8AAAEyPwE+ATU0Ji8BJiMiDwEOARUUFh8BFicRBxUFNwEHExEHERciJi8BJjU0PwE+ATMyFh8BFhUUDwEOAT8BAQcTMxEjEzcRJxM3AQcBNzUnBRQxI90SERES3SMxMSPdEhEREt0jlCgBORz+oxypKJAPHQzdFxfdDB0PDx0M3RcX3Qwdkhz+ohypKCh8KCiNHP6jHAEtKCgBaCPdEiwWFysS3SMj3RIrFxYsEt0jrQFIK/WRHAFcHP6yAgUr/k5SCwzdFyEhF90MCwsM3RchIRfdDAtvHAFeHP4fAoD9vSsBsij+lhwBXBz+ayv1KAAAAAAHA8ABaAZoBBAAFwAbAB8ANwA7AD8AQwAAATI/AT4BNTQmLwEmIyIPAQ4BFRQWHwEWJyE3ISchNyEFIiYvASY1ND8BPgEzMhYfARYVFA8BDgEBITUhNyEnITchJyEFFDEj3RIRERLdIzExI90SERES3SNiASYU/rJTAfQU/eQBDg8dDN0XF90MHQ8PHQzdFxfdDB3+sAKC/X4zAhwU/gxTAU4U/toBaCPdEiwWFysS3SMj3RIrFxYsEt0jdyg8KNsLDN0XISEX3QwLCwzdFyEhF90MCwEYKD0oPCgAAQKxAKAHeATYAA4AACUiJjcBPgEzMhYXARYGIwMFLScWAhIMHhERHgwCEhcoLaBOJwObFBQUFPxlJ04AAQKxAKAHeATYAA4AACUiJicBJjYzITIWBwEOAQUUER4M/e4WJy0EHi0oF/3uDB6gFBQDmydOTif8ZRQUAAAAAAIBBP6sCSQGzAAPABIAAAEiJjURNDYzITIWFREUBiMBIQEBqUNiYkQG1URhYUT6jQQQ/fj+rGJDBtdEYGFE+SpDYgKMA3IAAAIBBP6sCSQGzAAPABIAAAEiJjURNDYzITIWFREUBiMJASEBqkRiYkMG1kRhYUT8lQII+/D+rGFDBtdEYWFE+SpDYgIiA3IAAAQBBP6sCSQGzAAPAH8AmgCuAAABIiY1ETQ2MyEyFhURFAYjJTI+ATU0Ji8BJjU0Nz4BNz4BMzIWFRQGIyImJyYjIhUUHgEzIBE0LgEjIg4BBw4CIyImNTQ3PgI1NCYjIgYHBhUUHwEWMzI3NjMyFhUUDgEjIhUUFhceARceAhUUDgEjIi4BJyYjIgYVFB4CATI+ATc2NTQvASYjIgcOASMiJicmIyIVFB4BNzI/ATY1NC8BJiMiDwEGFRQfARYBqkRiYkMG1kRhYUT7H3m6aRkPEQQoWoY3N2pDT1ONgjpeKAoKF0SDXwE8VJVkTmpKHhxBX0s0Rx4hVkCfjl3GRwwFPwoOCgujekBMUYhUJSkcGkMuNk8rRIBcYqVwFAgNCQ9BeKQDGU+XdBgGDUoKDQcJRptkTJQxEA8XdLlWFQ9GDw9GDxUVD0YPD0YP/qxhQwbXRGFhRPkqQ2LmWp9mLF8sMwwGFgwadD8/XqadnaspLgocMHRUAhF+vGhCZDUzVzUbFRAZHVp9UWBrTDUJDAcKbREIdC8pPmc9HBxQGxkVCAgdQT49c0tUbygODgxDloRSBK8xRR4IBgsMRAoHQjQ0Lw8eOGZAzA9GDxUVD0YPD0YPFRUPRg8AAAAABgB8/qwJrAbMAEUAUgBeAMMA2AEvAAABIiYnDgEjIiQCNTQ3LwE+ATMyHgEfAT4DNz4CMzIWFRQGBxYVFAYHFAYHDgEHFAYHHgEzMhYVFAYHDgIHDgEHDgEBLgM1NDY3FhUUBjciJjU0NjMyFhUUBgE+Azc+Aj8BLgEjIiYnDgEHJz4CNw4BByc+AjcGByc+AjcOAQcnPgM1NCcOAQcnNz4CNTQmIyIEBw4DBycuAScuAiMiBgcWFRQGBxcOARUUEgQzMj4BNx4BAScuATU0PgMzMhUUBgceARUUByUyFhUUBiMiLgEjIgYHDgEHPgEzMhYXBy4BIyIGBw4BFRQXByY1NDY3Jy4DNTQzMh4BFz4BNz4BNTQmNTQ2MzIWFRQGBz4BNz4BMzIWFRQOAgc+AQZpH1QvIjch+f6J0QNVCzefXkmMfS9KI3ONl0h24ctUPUkMEBcsIZOGBjk6LjUaJhNWgBYTCxYyNUmRKSIt+14oYVo6ioIWAsAWHx8WFR8fA68uSkRIKy4rFw8bCD86Mk0gP3pEBFCTZw8nWC4FPX9fDltzCGe/lylNr2ASXKaBSgQqiWknWk9sNx8gaP7RoUykmXoigA0hExtXbT1FcisMAgNZAgO7AVPjGTg6GjI7/lmCDhQ9aIKJQFIlHCUqBvywSmwrJCtzbSQfMxUYJw4fQBwmRCZpFi0RGTIiDApDSEseGgsOPkMvGC9fRgkRJRUDBBoXIiEcFRQVLBZQlTMaF1Z+eiM7gf6seFIEAqsBN9IoInqzTlNAakApMJWtpkBqk05BMhYrFyksMWwkZdhWPGwyOHc1AQIhMhA7JBVgfUJbQxURMQQmBRkgHQkNPS5RQxEjHR8WFR8fFRYf/AElIx00NjltXiI9Aw4KCigoBVAERGo9FhsFUAY+Wy8nDVALVIxfOVMWThVQZWswEwwiVjhGMStMPhYSFaiPQ7S8oTBHBx4ZJE01NTUlJg0ZDYEWLxq7/u2WAgQDVVwD6UMbSiNez8OeXVIiUSUHQTUeKRk7JBUWEA8DAxw3HAUGDA48BggGCidRKnqQIpuRLmY0IClqbV8eHG6nVhw2Gxk8EzyINSk4UzswgTsaMBZRdRoUI05ORhwUGQAAABkA8P7eCTgGmgAFAA0AHQAhACUALQA8AEAARABMAFsAYQBnAG8AnQCsALIAtgC6AMIA0ADUANgA4ADuAAABJREJAREBIjU0MzIVFAc3PgE1NCc0JiMiFQYVFBc/ATUHFzU3FTciNTQzMhUUBzc2NTQnNCYjIhUGFRQXNyU1BRc1NxU3IjU0MzIVFAc3NjU0JzQmIyIVBhUUFz8BFzUnBxc1NxcVJxciNTQzMhUUJS8BBy8BBy8BBy8BDwEnDwEnDwEnDwE1Nxc/ARc/ARc/ARc3HwE3HwE3HwE3FwU3NjU0JzQmIyIVBhUUFyU1AQUVJQE1JxU3JzUfASI1NDMyFRQHNzY1NCc0IyIVBhUUFwU1JxU3JzUfASI1NDMyFRQHNzY1NCc0IyIVBhUUFwUo+8gENwQR+BQMDA0MEA0KEgoMFxEbX7m5LV+ADg4PDRAaFAoOGRMeagEM/vQyqJwQEBEQEh0WDA4bFSF6QTk5QSMeFRWsEREQAzR9LCyWMjKeMS/nPELjQjybOTSfNS1tbi01oDM5nDtD40A65zAwnjMxli0rf/y6Eh8VCw8bFh4DVPwT++sEFQIL/syamosPDw4QERwTGBkUGwEVtYhbW4cNDQwOEBkRFhcSGP7elQXSAVX+q/ouA1APDg4PKw0KGBAZChgULw8XHxEGIZYmWzYTOBURDw8RLg8ZHB0JGhYzERgfFQcvpThhOiI9GBMSEhMwEBofHwsdFzgTGiEWBwwJrAsNb0AGBEEEJBMSEhM/HzIeJDEaJjYgODIvMBw3IRwzIhktGUQaFi0mFi8lFjM2Gxc6MhopMBcnLRghuQ0XHhoTIBk1Cx8fGy+6AQP7tNn+oJs0pA8bPR5YERAQESwMFBwYETQwCxwaGjmPJZUXEDcSUg8PDw8qDRQYFw4wLAoaGxUAJADi/qwJRgbMAAsAEAAfACMAJwArADwAQABIAFcAWwBfAGkAbQB2AIIAjgCTAK4AsgC+AMIAxgDSANYA8QEVARkBIwEnATMBPwFLAVQBXQFmAAATETMVIxEhESM1MxElETcXEQU1NyY1NDY3HgEVFAcXFQURIRElMxEjAzUhFQE1NwcmNTQ2Nx4BFRQHJxcVATUzFQMRIREjESERITU3JjU0NjceARUUBxcVATUhFQEzNSMDJzUzNSEVMxUHJzM1IwE1NDYzMhYdAQEmNTQ2NzMeARUUByUzPgE1NCYnDgEVFAERNxcRAS4BNTQ2NzMeARUUBgcnPgE1NCYnDgEVFBYXBTUzFQEiJjU0NjMyFhUUBgERIRElMxEjJSImNTQ2MzIWFRQGATUhFQEiJjU0NjMyFRQPAQ4BFRQWMzI2PwE2FhUUBjciLwEHBjU0PwEnJjU0MzIWHwE3NjMyFRwBDwEXFhUUDwIGBTM1IwMnNTM1IRUzFQcnMzUjJyY1NDY3Mx4BFRQHJTM2NTQmJw4BFRQWEyImNTQ2MzIWFRQGATU0NjMyFh0BITU0NjMyFh0BITU0NjMyFh0B4u6eB8Se7vj1IyMBEiksIBwdHisp/a0BWP72vLwnAQoBjy4DLlxJSlsuAy79Q6YuA0ZQ/VoCYikrHxwdHywp/P4DAvtpQkIsQC4BOy0+bkJCA3UkHBwj+1EdZ0gWSmUc/vnTAgJALi1BBbcjI/uMEx/wyyTL8B4UQxAZ0bCw0RkQAs2m+y8QFxcQEBcXBLABWP72vLz9qB0rKx0dKysCFAEK/NRRcnJRIAkIKjVQOipEDgICCHIBAgYeMwwEIRQGAgIOFRgeEgQCAQExCREwDQIB80JCLD4tATsuQG5CQrwcZkkWSGcd/vnTBUEtLkADaxAXFxARFhb9WyQcHCP+viQcHCP+xiQcHCP+rAN6UP0mAtpQ/IaMAkA1Nf3AWuM5Cy4aOBkZOBovCjnjKAWB+n86BPn+S05O/KrjPwwsQz1oGRloPUMsDD/jAulQUP0XA6T8XANW/KrjOQovGjgZGTgaLgs54wKHRkYDO3v+0ldd0tJdV7N7/HQoISgpICgDkyxdTIgTE4hMXitMDB8SMFwPD10vIvmvAkA1Nf3AAuIlfyx69lZW9nosfyUkHWskXtBNTdBeJGsdd1BQBLUYERAXFxARGPg6BYH6fzoE+V0rHR0qKh0dK/3uTk4Ck3JRUHILAwMCCkouOlArIwUIAQdMbZUHLAUBBQQEKy0OAgIECQodERACCxIWHAUCAwQNNQq8e/7SV13S0l1Xs3sHK15MiBMTiExdLEwbIi9dDw9cMBIfAQIYERAXFxARGPsTKCEoKSAoKCEoKSAoKCEoKSAoABkBbf6sCLsGzAAHAAsAFAAYACEAJQAuADIANQA9AEAAQwBPAFUAZQBoAGsAbgCAAIwAkACUAJgAnACuAAABESERIREhESERMxElETQ2MzIWFREBNTMVARE0NjMyFhURATUhFQERNDYzMhYVEQE1MxUBNxcBIREhESERIQEnMy8BMxM3Myc3IycHIxcHMzcnNzMXDwEiLgE1ND4BMzIeARUUDgE/ARcnNx8BJzMBJzcmNTQ+AjMyHgIVFAcXAzUBNTQzMh0BARUJATUzFRMRMxEBNSEVJzUzFQMnNyY1ND4CMzIeAhUUBxcBzwGwAyoBsPkUpQE6RC8wRP5DYgHJRC8vRPx1AWsCjkQwL0T7mmIBrhoc/WMF6v7w/Db+8AL1HDiQGjZYRYZDQ4ZFRYZDQ4YVMDBgMDAwU4lRUYlTU4lRUYkFHBqqHBxYHDb9BNdoQCg8OhISOjwoQGg6AXZZWQF2/jECPGJkpf4GAWvcYjDZaEAoPDoSEjo8KEBo/qwGjvv+BAL5cgRq+5YxATEvREQv/s8CZ/X1/ZkBMS9ERC/+zwPITk78OAExL0REL/7PBL/19f6iMDD8vAXy+/4EAvz6NZ0w/rZ9eHh9fXh4I1VVVVXPUYlTU4hRUYhTU4lRzzAwzTU1UzACSAo3K0AnVEgtLUhUJ0ArN/1WggHUd11dd/4sggJF/G/19f1oBGr7lgP5Tk739fUBlAo3K0AnVEgtLUhUJ0ArNwAAAAAKAQT+rAkkBswADwAiAC4AhgCSAJ4AqgC2AMIAzgAAASImNRE0NjMhMhYVERQGIwE0Njc+ATc+ATMyFhceARceARUBMjY1NCYnDgEVFBYBITU0JicuAScuASc1NiQ2EjUjFA4CBzU+AjUjFA4BBzU+AjcjDgIHESMRLgInIx4CFxUuAjUjFB4BFxUuAzUjFBIWBBcVDgEHDgEHDgEVAzI2NTQmJw4BFRQWMzI2NTQmJw4BFRQWJTI2NTQmJw4BFRQWBTI2NTQmJw4BFRQWMzI2NTQmJw4BFRQWMzI2NTQmJw4BFRQWAapEYmJDBtZEYWJE+uMXMBgqFTF6amt5MRUqGDAX+2MXHx8WFh4dAQsD6ihQHC0VLWtfnQEQzHNQZrfyjZTti1B1yX5Yi1MDUAI+aEFQQWg9A1ADU4xXfcp1UIvuk43yt2ZQc8wBEJ1fay0VLRxQKBwXHx8WFh4d8RcfHxYWHh0BTBccHxQWHR0BTBccHhYWHx/yFxweFhYfH/AXHB4WFh8f/qxhQwbXRGFhRPkpQ2EBMDcqDQcQCRUkJBUJEAcNKjcE1SQdHT8XFz8dHiP66kBBVBgIEQoVHwSBCIHWARSci/jAcwiNC5z3k33ThgqFCmGXWUNySwoBef6HCktyQ1mXYQqFCobTfZP3nAuNCHPA+Iuc/uzWgQiBBB8VChEIGFRBBNYkHR0/Fxc/HR4jJB0dPxcXPx0eI3UjHh0/Fxc/HR4jdSMeHT8XFz8dHSQjHh0/Fxc/HR0kIx4dPxcXPx0dJAAAAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwA/AEsATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBJzcXASc3FwEyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGASc3FwEnNxcBETMRFycTFwE1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQPeOUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkBAjwTQalBAatx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD9gWIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0D+zDhGOAN1Yihi/ewByv42IiYBIyX+pVBQAq9xcf6ZRjlGwyhiKAAAABEBBP6sCSQGzAATABcAGwAfACMAJwArAD8ASwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQEnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwERMxEXJyUXBTUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxA945Rjn8H2IoYgIbvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQECPBMlASQlATBx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD9gWIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0D+zDhGOAN1Yihi/ewByv42PUGoQcRQUAKvcXH+mUY5RsMoYigAAAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsAPwBLAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVASc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBic1BRUBJzcXASc3FwERMxEFNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nED3jlGOfwfYihiAhu/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz8HAVEBB2IoYvv2OUY5AQI8Amdx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD9gWIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0BHSwJL/oc4RjgDdWIoYv3sAcr+NllQUAKvcXH+mUY5RsMoYigAABEBBP6sCSQGzAATABcAGwAfACMAJwArAD8ASwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQEnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYFJTcFASc3FwEnNxcBETMRBTUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxA945Rjn8H2IoYgIbvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AQX+3SYBIwEmYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP2BYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQHCpQan++zhGOAN1Yihi/ewByv42WVBQAq9xcf6ZRjlGwyhiKAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwBDAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVASc3FwEnNxcBAzcTAzIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwERMxEFNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nED3jlGOfwfYihiAraoQqfcvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQECPAJncfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/YFiKGIDnzhGOP1DASQl/tz9mZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL97AHK/jZZUFACr3Fx/plGOUbDKGIoAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvAEMATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBJzcXASc3FwERMxEDMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgEnNxcBJzcXAREzEQU1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQPeOUY5/B9iKGIB9EskvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQECPAJncfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/YFiKGIDnzhGOP0jAVH+r/3ekP0BTb6+AU39kJD9/rO+vv6z/ZADLUArLD8/LCtA/sw4RjgDdWIoYv3sAcr+NllQUAKvcXH+mUY5RsMoYigAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwBDAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVAScTFwEnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwERMxEFNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nEB60GnQgFLOUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP7RJQEkJf2MYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL97AHK/jZZUFACr3Fx/plGOUbDKGIoAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvAEMATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUFJyUXASc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgEnNxcBJzcXAREzEQU1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQFVJgEjJgFmOUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQULRBqUH9jGIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0D+zDhGOAN1Yihi/ewByv42WVBQAq9xcf6ZRjlGwyhiKAAAABEBBP6sCSQGzAATABcAGwAfACMAJwArAC8AQwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQEnNxcBJzcXEzUhFRMyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGASc3FwEnNxcBETMRBTUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxA945Rjn8H2IoYqUBUSW/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz8CUWIoYvv2OUY5AQI8Amdx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD9gWIoYgOfOEY4/nVLS/yMkP0BTb6+AU39kJD9/rO+vv6z/ZADLUArLD8/LCtA/sw4RjgDdWIoYv3sAcr+NllQUAKvcXH+mUY5RsMoYigAAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvAEMATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBJzcXASc3FwElNwUTMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgEnNxcBJzcXAREzEQU1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQPeOUY5/B9iKGIB6f7cJQEkDb8BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP2BYihiA584Rjj+jKhBqPw0kP0BTb6+AU39kJD9/rO+vv6z/ZADLUArLD8/LCtA/sw4RjgDdWIoYv3sAcr+NllQUAKvcXH+mUY5RsMoYigAABEBBP6sCSQGzAATABcAGwAfACMAJwArAD8ASwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQEnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYnAzcTASc3FwEnNxcBETMRBTUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxA945Rjn8H2IoYgIbvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/XqlBqQJuYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP2BYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQHkBJCX+3f4tOEY4A3ViKGL97AHK/jZZUFACr3Fx/plGOUbDKGIoAAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsAPwBLAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVASc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBicRMxEBJzcXASc3FwERMxEFNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nED3jlGOfwfYihiAhu/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz9YWgJPYihi+/Y5RjkBAjwCZ3H84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP2BYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQJABUf6v/jw4RjgDdWIoYv3sAcr+NllQUAKvcXH+mUY5RsMoYigAABEBBP6sCSQGzAATABcAGwAfACMAJwArAC8AQwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQERMxEFJzcXASc3FwEyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGASc3FwEnNxcBJyUXBTUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxAmk8ATk5Rjn8H2IoYgIbvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQFTMAECMAFQcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0D+zDhGOAN1Yihi/bg62Dn+UFACr3Fx/plGOUbDKGIoAAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwBDAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVAREzEQUnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwEnJRcFNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nECaTwBOTlGOfwfYihiAhu/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz8CUWIoYvv2OUY5AU4ZAT0ZARpx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD+LQHK/jasYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL9p0ZzR4ZQUAKvcXH+mUY5RsMoYigAAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvAEMATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBETMRBSc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgUlNwUBJzcXASc3FwE1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQJpPAE5OUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwEn/sMaATwBEWIoYvv2OUY5A6Vx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD+LQHK/jasYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQDh1RnT+vThGOAN1Yihi/ZNQUAKvcXH+mUY5RsMoYigAABEBBP6sCSQGzAATABcAGwAfACMAJwArAC8AQwBPAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQERMxEFJzcXASc3FwEyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGFyU3DQEnNxcBJzcXATUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxAmk8ATk5Rjn8H2IoYgIbvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/2v7/MQEBAUZiKGL79jlGOQOlcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0Ci2TrZzDhGOAN1Yihi/ZNQUAKvcXH+mUY5RsMoYigAAAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwAzAEcAUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVAREzEQUnNxcBJzcXAQM3EwMyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGASc3FwEnNxcBNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nECaTwBOTlGOfwfYihiAnhyR3KkvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQOlcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4/S0BPRn+w/27kP0BTb6+AU39kJD9/rO+vv6z/ZADLUArLD8/LCtA/sw4RjgDdWIoYv2TUFACr3Fx/plGOUbDKGIoAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvADMARwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBETMRLwETFwEnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwE1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQJpPIZHc0YBTTlGOfwfYihiAhu/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz8CUWIoYvv2OUY5A6Vx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD+LQHK/jaOGgE9Gv2JYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL9k1BQAq9xcf6ZRjlGwyhiKAAAABEBBP6sCSQGzAATABcAGwAfACMAJwArAC8AMwBHAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQEnExcDETMRBSc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgEnNxcBJzcXATUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxAbI62DohPAE5OUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkDpXH84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP7xMAECL/45Acr+NqxiKGIDnzhGOPsBkP0BTb6+AU39kJD9/rO+vv6z/ZADLUArLD8/LCtA/sw4RjgDdWIoYv2TUFACr3Fx/plGOUbDKGIoAAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwAzAEcAUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVAREzEQUnNxcBJzcXEyclFxMyJDYSNTQCJiQjIgQGAhUUEhYEEyImNTQ2MzIWFRQGASc3FwEnNxcBNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nECaTwBOTlGOfwfYihisQ0BSw4evwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQOlcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4/jRKO0r8kpD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL9k1BQAq9xcf6ZRjlGwyhiKAAAAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvADMARwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBETMRBSc3FwEnNxcBJTcFEzIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYBJzcXASc3FwE1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQJnPAE7OUY5/B9iKGIB8P60DQFMHr8BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwJRYihi+/Y5RjkDpXH84lACGyhiKP7BRjhG/qyiAR4BedfXAXkBHqKi/uL+h9fX/of+4qIBayhiKKVGOUb+bnFxAtBQUP4tAcr+NqxiKGIDnzhGOP58Okk5/DuQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0D+zDhGOAN1Yihi/ZNQUAKvcXH+mUY5RsMoYigAABEBBP6sCSQGzAATABcAGwAfACMAJwArAC8AMwBHAFMAVwBbAF8AYwBnAGsAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FyUnNxcBNTMVATUzFQERMxEFJzcXASc3FwElNwUTMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBgEnNxcBJzcXATUzFQE1MxUBJzcXJSc3FwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9z0Y4Rv6jKGIoAfNQ/OJxAmk8ATk5Rjn8H2IoYgHo/v0wAQIEvwFN/Y+P/f6zv7/+s/2Pj/0BTb8sPz8sLD8/AlFiKGL79jlGOQOlcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4/pXYOtn8M5D9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQP7MOEY4A3ViKGL9k1BQAq9xcf6ZRjlGwyhiKAAAEQEE/qwJJAbMABMAFwAbAB8AIwAnACsALwBDAE8AUwBXAFsAXwBjAGcAawAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzcXJSc3FwE1MxUBNTMVAREzEQUnNxcBJzcXATIkNhI1NAImJCMiBAYCFRQSFgQTIiY1NDYzMhYVFAYnAzcTASc3FwEnNxcBNTMVATUzFQEnNxclJzcXBRTY/of+4qGhAR4BedjYAXkBHqGh/uL+h/3PRjhG/qMoYigB81D84nECaTwBOTlGOfwfYihiAhu/AU39j4/9/rO/v/6z/Y+P/QFNvyw/PywsPz9WO0o7Al1iKGL79jlGOQOlcfziUAIbKGIo/sFGOEb+rKIBHgF519cBeQEeoqL+4v6H19f+h/7iogFrKGIopUY5Rv5ucXEC0FBQ/i0Byv42rGIoYgOfOEY4+wGQ/QFNvr4BTf2QkP3+s76+/rP9kAMtQCssPz8sK0CJAUwN/rX+NThGOAN1Yihi/ZNQUAKvcXH+mUY5RsMoYigAAAARAQT+rAkkBswAEwAXABsAHwAjACcAKwAvAEMATwBTAFcAWwBfAGMAZwBrAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNxclJzcXATUzFQE1MxUBETMRBSc3FwEnNxcBMiQ2EjU0AiYkIyIEBgIVFBIWBBMiJjU0NjMyFhUUBjcnExcBJzcXASc3FwE1MxUBNTMVASc3FyUnNxcFFNj+h/7ioaEBHgF52NgBeQEeoaH+4v6H/c9GOEb+oyhiKAHzUPzicQJpPAE5OUY5/B9iKGICG78BTf2Pj/3+s7+//rP9j4/9AU2/LD8/LCw/PwhZO1gCD2IoYvv2OUY5A6Vx/OJQAhsoYij+wUY4Rv6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiAWsoYiilRjlG/m5xcQLQUFD+LQHK/jasYihiA584Rjj7AZD9AU2+vgFN/ZCQ/f6zvr7+s/2QAy1AKyw/PywrQIcQAUwQ/Pk4RjgDdWIoYv2TUFACr3Fx/plGOUbDKGIoAAAAAAYDV/6sBtEGzAAVAGEAwADUAOYA9QAAATMRFA4BIyIuATURMxEUHgEzMj4BNQEeARUUBiMiJjU0NjcXLgE1ND4BNTQmNTQ2MzIeATMyFhUUBhUUFhUUBiMiJic3HgEVFAYHNx4BFRQGIyImNTQ2NTQuASMiBiMiJicDFBYXBy4CJzcUFhUUBhUUFhcGFRQWMzI2NTQuATU0NjMyHgIzMj4BMzIeARUUDgEVFBYzMjY1NCY3FjMyNjU0JjU0NjMyFhUUFjMyNjU0JjU0NjU0JiMiJicuAQYFJy4BNTQ2NTQmJzceARUUBhUUFgE0PgE3DgEVFB4CFRQGIyImNxQWMzI2NTQuAicOAgZHQmWqaWiqZUJTjFZXjFP+CQMWRjY6Uw0NDBsUFxcJNlAogJlMjIsFMDouMTEEHQgbISAFCgU4NTQ2DAkXFxsoJiY6EGnEshF/nFcWEAguGRQkLB8jGg8PExMcGA4ZHhQgIxcyMREGBhUTFRYPAgsNEhApGBQcGhoVFBIwBWZ0PXgkVGEqAWFHEgcUAwI7BgYUCv79WZVYBAouPC6EX2eGQl9MRF0pNy0EM1UzAYT91jhOKChOOAGV/msdMR0dMR0DI1WcXDBKWTwdPB8bCC0cITAwH1NfJVhGHh9eZR9GGiNjOzRTQjgdLF4nITgMERE2Dj1QTD0obTNucyknLyIBPiJWLTokNzEcBSCQPzFJJhMeBEU0KCszJiV0gzkfHSMvIxQTR5NyGFJNESIlKCMeThwHGQ8qYj0fJjgoKigrGjlZJhI+OEk4GQsaDRBZAy1DHR1KFg8VBx4NIg8fRCUaQgFPWb2cJhAuIDdiXmU7VnJ/ZktYSzsuU1VkPyl2ggAAAAAWAJv+rAmNBswAHAAmACoALgAyADYAOgBEAEgATAB3AHsAjwCjAK8AswC3ALsAvwDDAMcAywAAFzQSNjc+AzU0EjYkMzIEFhIVFB4CFx4BEhUFIiY9ASEVFAYjATUhFQEnNxclJzcXATUzFQE1MxUBIiY9ASEVFAYjASc3FwEnNxcBITQuAScuASczDgIHJzYSETQCJiQjIgQGAhUQEhcHLgInMw4BBw4CASc3FxMiLgI1ND4CMzIeAhUUDgInMj4CNTQuAiMiDgIVFB4CEyImNTQ2MzIWFRQGAyc3FwEnNxclJzcfATUzFQE1MxUFJzcXLwE3F5sUSE4aMyoZgeQBLq2tAS3jgRkqMxpOSBT3xRAWAZsUEf4iCKD6xiw9LP7/GGoYASo0/fh6A+YQFQGbFRH9KD0sPf2baRpp/Q0IUBY+PR9VGx8YW3pIGnSjdM7+8Jyd/u/OdKRzGkh6WxgfG1UfPT4WA/2qJaoGhOavY2Ov5oSE5q9jY6/mhHPKmVZWmcpzc8qZVlaZynMdKSkdHSkp7T0sPQJSahhq/mQW+hZQev34NAE1Gmka6Cw9LNarAQG9RBc5W5VyrQEu5oKC5v7SrXKVWzkXRL3+/6t+FhBtbRAWAXNQUAGcGmkaSSw8LP7aenoB5DIy+0UWEG1tEBYDD2kaaQJOPSw9+yuBzJ04HWtYWZdsGUwoAQ4BAJwBEdB2dtD+75z/AP7yKEwZbJdZWGsdOJ3MA3BqOmr9XmOv5oSE5q9jY6/mhITmr2NQVpnKc3PKmVZWmcpzc8qZVgHmKR0dKSkdHSkBe2kaaf2fPCw83SaWJqUyMgGaenreLD0sVBppGgAAAAADAPoAbgkuBQoAEwAlADkAACUiLAEmNTQ2LAEzMgwBFhUUBgwBJyIkJic+AiQzMgQeARcOAQQHMiwBNjU0JiwBIyIMAQYVFBYMAQUU2/6C/uGiogEfAX7b2wF+AR+iov7h/oLbt/68+Ukmn9wBCpKUAQvcnSVI+v69uMkBYAELlpb+9f6gycn+oP72lpYBCgFgblui1nt71qJbW6LWe3vWolu0RHtSXZJlNTZmkVxSe0RkUY64Z2e4jlFRjrhnZ7iOUQAACQPK/qwGXgbMABsAJwAtADMAPABIAFcAawB+AAAFIiYnAyImNRE0NjMyFhURFAYjAw4BIyImJw4BFyImNTQ2MzIWFRQGATUiJxUWITI3NQYjLwE3JzczFwcXBzcnNy4BIyIGBxcHNyIuATU0NjchFhQVFA4BAzI2NTQmLwEuASMiBg8BDgEVFBYHJjU0Nj8BPgEzMhYfAR4BFRQHBMEdKAQwNzuhnZ6gOjgwBCgdIC0GBS4zapGQa2uPkf7JHiokAcAkJCoeziwcHxgvFx8cLJ4yNSVQLCxPJjUynkRyQwEBAe8BQ3FFf48tJxIIP2FhPwgRKC2Qc1ksLw0OXHh4XA4OLytYYjQoAhsyJQGbR1FRR/5lJTL95Sg0RkZGRvIpGBkoKBkYKQO1Mg8wEREwD3E6zychISfPDNQJLggHBwguCYNDckQFCAQECAVEckMBFiAcEgsBWCgXFilYAQsSHCAmJzscJAU/QSwsQT8FJBw8JgAAEADh/qwJRwbMABcAMwBDAFMAYQB2AIIAhgCSAKgAuADIANoA5AD8AQsAAAEiJCY1NDY3EjMyFjMyNjMyEx4BFRQGBAMgJCcuAQI1NDY3Fw4BFRQSFhcWBCEyNjcXDgE3IiY1NDcBNjMyFhUUBwEGJzI3ATY1NCYjIgcBBhUUFgMiJic3HgEzMjY3Fw4BEzc+ATU0JicuAT0BFx4BFx4BFRQEASImNTQ2MzIWFRQGASc3FwEiJjU0NjMyFhUUBgEyJD4BNTQmJwYEIyIkJw4BFRQeAQQBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQEyNjcuASMiBiMiJiMiBgceAQE1NCYnNx4BHQEBIiY1NDc2NTQmJyY1NDYzMhceARUUBwYDIicuAScmNTQzMhYVFAYEBun+lNB8Z4P8N2QoKWM3/INoe9D+lND+3P6pDwsRCAYETgQECBELDAEkAQoZMBc+JVCAMFIiARUiLTBTIv7sIicUEQECEi0XFQ/+/RMvrlWMNzMvb0dIcC4zN42ML7rNDA0TF1MFEQ0OD/7v/R4mMjImJjMzAxFPYk7+gSYzMyYmMjL+x4EBAdR/YENr/uWsrP7la0Ngf9QBAQQTd8R0dMR3d8R0dMN4YZ5fX55hYJ9fX5/8zpj3YziYXzRdMjJcNV6ZOGP4AvEBAk0DAwGvCxMFJSksCxEKCQk0Ni0HlAsIBgsFFBsUKA4DqTxrRjhVHQGMGBj+dB1VOEZrPPsDtJ13+wFA3SlPJhggQyPc/sH6c3aSAQFMAwMDUzAtIgEXIlMvLiP+6yNFEwEDFBIWLRH+/BMSFi8CZ0NDLDkzMzksQ0P9XFYdglUUJxooTyssWBwyGhstG4CvA704KCg5OSgoOP3DUGBRAd44KCg5OSgoOAFqGi04HhQ0ExscHBsTNBQeOC0a/EN0xXd3xHR0xHd3xXRSX59gYJ9eXp9gYJ9fBHwWFaGmGBimoRUW/ePTESQRJxs2HI3+Ag8MCwc4SDVjIAgPCxIHKXhEWkcMAZoFBAYCCREbHQ4KEQAGAIIBGAmmBGAAOQBLAF0AmQCrAL0AAAEiLgEvAS4BLwE1PgMzMhYXPgEzMhYXPgEzMh4CFxUHDgEPAQ4CIyIuAS8BLgEjIgYPAQ4CAT4BNz4BJy4BBw4BBw4BFx4BEyIuATU0PgEzMh4BFRQGBw4BBzI+AT8BPgEzMhYfAR4CMzI+AT8BPgI3NS4DIyIOAQcuASMiBgcuAiMiDgIHFR4CHwEeAgE+ATc+AScuAQcOAQcOARceARMiJicuATU0PgEzMh4BFRQOAQLufMB+GSYKGxk1JI+vrD+M0msdTBMUSx1r04s/rK+PJDUZGgsmGX7AfHKnciI0DR8ZGR8NNCJyp/7UDCYLEQ4FBiQRDigNFQgKCR7ekZw8N42CgZI9FxYed3xmh1cdOBVDNTVDFTgeVodmdaBfEiUJGisjJoOXjTBXj4tTIkEeHkAjU4uOWDCNl4MmIysaCSUSX6AEIgwmCxEOBQYkEQ4oDRUICgkeoWt3HhYXPZOAgo03PJwBGCNsbKUvJw4e0hIfFg0uOAICAgI4Lg0WHxLSHg4nL6VsbCMmaWKXJh4eJpdiaSYB4AYTBgkbDxEMBwUWCA0iDw0E/sUwjItTVR4kVElFbCs7NUsYUVOfOzU1O59TURgcUlCmKTYpE28NFRAIEywoAgMDAigsEwgQFQ1vEyk2KaZQUhwBkAYTBgkbDxEMBwUWCA0iDw0E/sU1OytsRUlUJB5VU4uMMAAAAAASAFr+rAnOBswAGQAjACsAMwA/AEsAVwBdAGkAdQB9AIkAlACcAKYAsQC8AMQAACUiLgE1NDY3JjU0EjYzMhYSFRQCBxYVFA4BASc2Ej8BFwcGAiUnNwEFByUBAyc3AQUHJQcBLgIvATcXHgIXATI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWAwEHJyUJATI2NTQmIyIGFRQWNzI2NTQmIyIGFRQWAScBByc3ARcBNi8BLgEHBh8BHgE3Fj8BNiYnJg8BBgEnAQUnJQEXARY/ATYnJg8BBgEyNSc0JgcGHQEUBRY/ATYnJg8BBhYJAQUnJQEzFQTodcBxWExlgNmGhdeAdGctcb/9Tko4SBd5FUYXSf3mMXUBIgFYGv7l/vbALJoBGgHHJf5t9gWRJzQhDX0ipA8gMyj85BYgFxMWIBelHioiGh4qJHT+ztspARoBXQEfHCYmHBwmJsoVHCEWFRwhAsyG/s+BG8cBQYH7kx0FCgIUDB0FCQIU0h4DBwIQDh0DCAUEeor+kP7BGgFtAYp//EQcDiENGxoNJA7+9R0BEQweASEfBxEHHRsIEwQNA3L+Wv77LgEuAcZ0iGWraVmeNZ3HoAECmZn+/qCV/vxQTllorGX+jx+GAR2wIE4Sov7wyT5ZAbZrTFr+bwF2Q2UBGe1H0vX8DWinpGI8SE5srKpqA3YnGhcdJxoWHm82JiAtNSYfLwF3AayDRaj+Gf5LMiMjMTEjIzJDJBkbKSMZHCn9P3ECFxBMGv3NcASMBiA9DRACBCA/DREHAiA9DhQBAh0+I/0aRwFfcUyB/odBAmUPHkgbDQwbRhsBQSI2DhEBAh02ISEHH0ofBgYdSQ0X/bkBF9lC+/7TTgAABwF4/qwIsAbMAB8ANQBLAG8AcwB3AHsAAAECJCMiBzYSNTQCJxYzMiQTEgQzMjcGAhUUEhcmIyIEJy4BJzY1NCYnPgE3HgEXDgEVFBcOAQc2Ny4BNTQ2Ny4BJw4BBx4BFRQGBxYTNiwBMzoBMyY1NDcqASMiLAEnBgwBIyoBIxYVFAc6ATMyDAEBJwEXAwE3CQERMxEFFOL+gLtAP0FBQUE/QLsBgOLjAX+7QD9BQUFBP0C7/oHjed1tFQoLbd15etxtCgsVbdx6wK0GBgYGYrRXV7RiBgYGBq3AjgEIAQOEAQIBV1cBAgGD/v3+946O/vf+/oQBAgFXVwECAYQBAwEJ/YEoBkAoKPnAKAZA/KRQ/qwBC+wMlQENg4MBDZQM7QEL/vXtDJT+84OD/vOVDOzsaYkkhIJCgkMjdWlpdSNDgkKChCSJA5xHNWo0NWg1JmZFRWYmNWg1NGo1R/2Bnsxj79rb7WPNnp7NY+3b2u9jzAEGRQOeRfxiA55F/GL+Dgc9+MMAAAAIAXL+rAi2BswACwAXACcAKwAvAEEAUQBhAAAJAREBFQkDNQERASImNTQ2MzIWFRQGBSImNTQ2NxYzMjceARUUBiURMxEzETMRAS4BNz4BNzYWFxYGBw4BBw4BEyIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEFRfwtAzb9PQNiAwD9PgMx+ogyOjoyMjo6AaSDjFBDMUtLMUNPi/7kUIxQ/tkQFQULPyUXJAcFBAwhMgcEGoNxu25uu3FxuW5uuXFblFlZlFtblllZlv6sAaMBvwFYV/7Z/ogBgQElV/6t/kIBYx0ZGhwcGhkdTUo3RV8JLi4JX0U3SsIBq/5VAaj+WALkAR8VMFsXDgsQDRoIFUQgExD+hm65cXG4bm64cXG5blBZlVpblFhYlFtblVgAAP//AhL+rAgWBswSBgJxAAAACQE7/qwI6gbMACIAMABFAFQAZQB7AKYA0wDeAAABIiYvAQcnFw4BIyIuAjcTFzc+ATMyFhcnNh4BFwEWDgIBMjY/AQYjIiYnBwYeARcyNj8BJwcOASMiLgE3EycDBh4CJTcDJjY/ATY0JxcOAhcBMj4BLwEHAy4BIyIGFxMeAQEyNjcTBy4BNTQ2NwcuASMiBgcDBhYXMjY/AScHDgEjIiY3Ez4BMzIeAQ8BBhQfAQc+ATcHEzYuASMiBgcDBh4BATI+AScBLgEnFhUcAQceARcBFg4BIyImJwMmNjMyFhcTNwMuASMiDgEXEx4BASc+ATMyFycuAScHVoLRJDy8EhhG7oh3x4cxH9C+OyTPgnzHKyJvxY8dAQwaKGyg+31HdBIkRVFSjCcmEjFsRIbULQM6NRqfYV6URBm8b7waKHGoAlJuvAoDCjYEDR5PZSAXAu4nPB0KO652BA8LEg0Eqws+/GsLEANlCAIBh3MHDTkjLjgMqwQOEjxzEwc4MAo3IzQ4Dq4Sa0FCYSsQOgYHLBYNGxkjcxtGnGdnpRy2EjZvBAdonEUa/vQiwXwJAlOAFgELES9kQEBoEq4OODQjNgpia2gTdT5FbDIRtBym/swLG1ooUkQlEF49/qyhgto1Sg+Nk2eu23QDETTZg6CLbhYCWaNu/BhesYxSAfRYRosrVEmNRHxOwaeHCdrGYXptqlwCwR79PmK4kVX5HgLBKFklyg4kGQ4wlK9X/B0vRyXaMAGuDREcDv11KzEC8xEMAW1mDhoNhOZAJx0fNC/9dA8avERCGdSvJSxTNQKPRE9LcjzcGDoaogobKx44Aapks3F/aP1cQnZL/Q5ztGID6H2iDCopCA8LDnJW/Bo+cklQQwKPNlErJv6XHQGFSEJOeUL9Y2eABJMbFBstjT5TCgAAAAAFAQv+rAkdBswAJwA/AE4AdQCLAAAFATYAATY3PgM3Fw4DBx4BFx4BFz4DNxcOAwcOAQcIAQEiJyY1NBI3Fw4BBx4BFx4BFz4BNxcGBAE+ASQ3LgEnLgEnBgIGBwEuAicuAi8BFwEUBgcOAS4BNwE+ATMyFh8BHgEXHgEXFgYHDgE3Jzc2JicuAQ8BJzc2MzIWFx4BFRQHAzf+oj4BUwEkARhiloKJVClNfXiFVRxORkRFEl+FZl84QDxmcphuDRwU/tj+lf3aMhUVenY5N1ogEiEVFRwOO4RAOIP+/QGCPrIBArMPOz49RBex+KMyBe4MIT45O0ImEZc9/oIoHyVLMwUhAfUULxgdMxJwG0lOPDwWHQ0aEjZcQWoILC4sQAuDLnkeISBPODg3GoUBXlYBaQEqIhpul3FnPUA4X2aFXxJERkRPG1SFeH1NMFKGgpVhCw0C/t3+rv7zFRUzVAEEgjk8hT4MHRUVIBMgWDo6dnsBOjKi97EXRD4+OxC0/v+yPgN4FS1FOTs9HAqSA/6VIkIXHAUhNyAB6xQYEBJtEz1NOz8XH1scEw+ZLoMKQC4sLglqQWMaNzg4TiEfIAAABgEK/qwJLAbMABEAHgBLAHIAngCvAAABJzc2JicuAQ8BJzc2FhceAQcBNjIXFhQHBicHJzcmJz4BMzI2NxcOAgcOAgc+Ajc+AjcXDgEVFAYHDgIHBiMiJyY1NDc+AQkBPgEzMhYfAR4BFx4BFxYGBw4BJy4CJy4CLwEXARQGBw4BLgEBPgM3Njc+AzcXDgMHHgEXHgEXPgM3Fw4DBw4BBw4DBwMXPgM3LgEnLgEnDgMIoUFqCCwuLEALgy55MGJUUyoo+RESMREREhYe6C/pBXIEKBkUb0Y5Jl1YHwQaPDhZlGsaAjRKIjg9TyAaGmeCRR0XHBcXED8wAqwB9RQvGB0zEnAbSU48OxceDhoSNhIMFzxFO0ImEZc9/oIoHyVLMwX+KB9VhMiTARhilYKFUjBNfXiFVRxORkRFEl+DZl86QD1mcZhuDRwUlNGQZyvz+i5de7WHDzs+PUQXhbByTwTwLoMKQC4sLglqQWMoKVRTYjH6ohISETERFAToLukgfBofTz03Iks0AxhmlF82PBwFH1hdJTlEcBQaJgYGGC4oERcXHhkaZboEawHrFBgQEm0TPU07PxceXBwTFwgVI0REOz0cCpID/pUiQhccBSE3/KYsZpDQlSIabpdxZz1AOl9mg18SREZETxtUhXh9TTBShYKVYgsNApHIhFUfAWX6Jk9xr4UXRD4+OxCHtXtdAAAAAAUAuv6sCXAGzQAdADsAUQBeAH8AAAEnNgA+Ajc2JyYHBgQAAScIASQ3NhYXHgEHBgIAAT4CNz4CPwE2NxceARceAR8BDgEPAQ4CIyImNx4BNjc+ATcuAScmJyYGBw4CBw4BARYXHgE/AS4BJy4BJwEuASc+BDcOAgc+ATcOAQcyNjcOAgcWNjcOAgVmN8kBJ9KSZSgaKCcxOf7A/iv+5TsBHwHcAUU6L1wxLwUfIvT+WfomPUIyIyVcg120Ik81DCg8JUo1GRpUKt4Xf793aMs0Vb2pN0IyECFAHTgQSl8lGT8zCRAjAd4GMRo4FsccMyIiJwv+XV+WLiI0KyoyIBUVEA8jTSgFNRUoZysRMjYYN24+HEdTAWU7xwE07beRPykqKB0i8f5e/tQ3AS8BqvUhGwIxL1Y1Ov66/iP84hxccz1AWDEE5F42HiJDPiUwGS8oQA6vdb5wYU09KCk8R200CCMdOUMCJiUZYV0TJTgBtDUxGh4Bnw4lIiI1G/zdCVApO1hDNzIcIE5MHQMmOUdMEzAeMEEoDBoGHRwmHwAABgEE/qwJJAbMACEALAA7AEkAVwBnAAABDgEjIiYnLgE1NDY3EyY2NwE+ATMyFhceARUUBgcBDgEnBTI3JScDBhUUFxYBFjY/AS4BJy4BJwcOARcFAS4BJy4BJwEeARceAQE3LgEnLgEnBx4BFx4BPwE2LgEnLgIPAR4BFx4BAfQaMxgYLxgYFBIQ2Q0UMQTZGTofRpU4OFcWGPsjLmIm/i4WJAFQ6sYWExMB4h5IHzooaTg0WCI3IggeAfIDQidbLy9gNfy+J1guL2UDsGwrVCwrZjhtL2cxNVfJQiQOQy8uZl8lRDJmMTBX/s4QEhUYGC8YGTMaAW8mYzEE1xkVVzg4lUcfOhj7JS4TDaoVx+n+siQXFhMTAQwfDR85IFY3NWQtNyJGHn8DQjRgLi9dJ/y/NGQvL1kDVG05ZCwsVSpsJFgyNWV5RCVfZi4uRA4kQiZWMjFlAAACAYn+rAiYBswARgCWAAABICQnAyY2MzIWFxMeATMyNicDJjYzMhYXEx4BMzI2NRM+ATMyFhURFBYzMjcTPgEzMhYHAzc+ATMyFhUUBgcOAw8BBgQnMiQ/AT4CNz4BNTQmIyIGDwEOAhUjND4BNxM2JiMiBgcDDgEjIiY1ETQmIyIGBwMOASMiJicDLgEjIgYXExYGIyImJwMuASMiBhcTHgEEYP7r/tsbeQlQQjhECzcBEAcIDgEjBExEQUYEHwENCQkODgJPPEFKBwQLAUUITzlFVQdJNj92R090LCYxY1pFEhpQ/sj/5wEPRxobcY9IFxdFLjNbQVh+sV1QWqt3TgQmHxokBEYENiEkNxwfGiIBDgE8KCo9Ah8CHB0fIAMjAj4pJTsGNwcZFx0jBXkX9/6s3+YEFk1mSUb+qgcIDQgCSFBdVk/9tQsODAUC30BVUEf9IwUGDAJpQVNsTvypRlJHW0MqQBkfW2lrMETSw1CnukRHoZEtDhsWIS1CTWkjir1yes6dLgOPLDgpJf2NHyk1JQLeJiEnIP0hJzg6KwJLMCkqL/24KUAvJAFUKyIvLPvqxrcAAAICRv6sB+IGzAAyAG4AAAE1NC4CLwEuATU0Njc1NDYzMhcRNDYzMhYVETYzMhYVPgEzMh4BHQEUDgEPAQ4CHQElITU0PgE/AT4CPQE0JiMiBgcRIxE0JiMiBhURIxE0JiMiBhURIxEmIyIGFREjNQ4BFRQWHwEeAxUDyw0lSTwpVVBscnpXKSpnUVJmKTVZawwYCz1iOhYyKSIgIQv9GAKYDyYiJCUsE047ERUISz87LTFQODAwOFAmLTZLUE1BRk4lQVArEP6sZSY6PVM/K1mcV3R7CMVbfRAB01VpalT+Jx5pcQIDO2dBg2Odjk1APEgxGYNQMyQ+U0FER32NXoNBUgMC/v8BN2BEMDL+0gObMzs6NPxlAW8ZTjr+V5QHTVNIf1MnRGJJPB8AAAIBiP6sCJgGzAA0AHkAAAEgJDURAyY+ATMyFycmPgEzMhYXGwE2MzIWDwE+ATMyFgcDNz4BMzIWFRQGBw4DDwEGBCcyJD8BPgI3PgE1NCYjIgYPAQ4CFSM0PgE3EzYmIyIHAycTNiYjIgcDDgEjIiYnAy4BIyIGFxMHAy4BIyIGFxMRFAQEYP7r/rxyDSNONBwgFAwlUDQzVxCu6jJ8U1gVBQsXDU9QDog+O3pHT3QsJjFjWkUSGlD+yP/nAQ9HGhtxj0gXF0UuM1tBWH6xXVBapnGSCCMoQhe6TukMKCxCIPsKHhQWHwe9CC0ZKDAJs056CTUjJy0KdAES/qzf5gIbAdI1WDUKUTJXNkQ1/b4CyZh3UxQDA2hQ/PVaVkNbQypAGR9baWswRNLDUKe6REehkS0OGxYhLUJNaSOKvXJ3ypwvAz4sLk79bRYDPyw4Yv0MHhwdFgJ2HSQ3JP0zFAHmJSs3Kf4n/eLGtwARAKr+rAl+BswAGQAdACEAJQApAC0AMQA1AE0AUQBVAFkAXQBhAGUAaQBtAAABCAESNTQuAiMiDgEHLgIjIg4CFRQSABchNSElITUhAxEjEQEzESMDITUhATMRIwEzESMTCAECNTQ+ATMyHgEXPgIzMh4BFRQCAAEhNSEDISchAyE1IQEzESMBITUhATMRIwEzESMFISchBRQBiwHz7FWZzXd54q8uLbDieXfNmVXsAfNuAi/90f7tBGD7oPo8ARg8PNYGSPm4AfM8PAETPDwe/pP+MN1/2omA2qk1Nanbf4naf93+MPrBB6T4XAEDUzP9DYcIWvemBSI8PPrTCHD3kAZKPDwBGDw8/VcDUy39DP6sAS8B/gHC1X7bpl1doWdnoV1dptt+1f4+/gIzPMg8ASMERvu6/qYF7PsTPP3RBqH4fwaC+awBGwHjAafAk+2MasSGhsRqjO2TwP5Z/h0CjjwC5Tz9pzz7yQah/l48+7kF7PtuBEZ8PAAAACcBQP6sCOgGzAATABcAGwAfACMAJwArAC8AMwA7AD8AQwBHAEsATwBTAFcAXQBhAGUAaQBtAHEAdQB5AH0AgQCFAIkAjQCRAJUAmQCdAKEApQCpALkAyQAAASIuATURND4BMyEyHgEVERQOASMBNzMHJzczByc3Mw8BNzMHJzczBxc3MwcnNzMHJzczBwE1MxUhNTMVATczByc3MwcnNzMPATchFyU3Mw8BNzMPATczFwU1EyETFSUhAyEFNzMXBzczHwEnMxcvATMXLwEzFyU1MxUBJzMXATUhFQcnMxcHJzMfASczFy8BMxcHJzMXBychFwE1MxUBJzMXLwEzFy8BMxcBITI2NRE0JiMhIgYVERQWNyImNRE0NjMhMhYVERQGIwIfPWY8PGY9Beo+ZTw8ZT76GwxgC0gOyA+zDZcPAQ1gC+AMYg11D2EPgA9jDnwKZQ3+FUkGnEn7UA1eCI4PXwyWDmEMQw8CkA/9yQ5eCyYJXwYgB1kC/GuZBfyZ+ScGhHP6ZAJ+CVIJKQRSCw4JXgxADF0QlAteDv5yUAGPD2IQ/TAC5I8RYRImEGMOUhJgEroQYhEkEmAScBABMg79vVABqxJnDJQSbA20D6EM+l4F6jtUVDv6FjtUVEwQGBgQBcgRFxcRAe48Zj0DID5lPDxlPvzgPWY8/bMkJDwkJDskJHckJLMfH3ckJDskJDwfH/5YpWNjpQExJCQ7JCQ8Hx+zJCSzHx88JCQ7JCSlOwFp/pc7QgEgRh8fPCQkOyQkOyQkPB8f78vL/pokJAFJUFDSHx88JCR3JCSzHx88JCQ7JCQBZsvL/l4kJHckJDwfHwHqVDsDIDtUVDv84DtUeBgQAv4RFxcR/QAQFgAACwEJ/qwJHwbMAC4AVABeAGIAdAB4AIAAigCWAJoAngAAJRE0NjcTPgE7ATc+AjcuASchHgEXMzIeAR8BMzIWFxMeARURFAYrARchNyMiJjcUFjsBEyETMzI2NRE0JisBFRQGIyEOASsBIiYnISImPQEjIgYVNz4BOwETIyIGBxMhAyETFBYzIT4BOwEyFhchMjY9ASE3IQMhAx4BFSE0JicbATMyFhcDLgEjEyImNTQ2MzIWFRQGATchFyU3IRcBCQkHfRVkP045DhUbFQUPCQOnCA0GGSAkGRA5Tj9kFX0HCW9OR0X5aEVHTm9QQC1fXAUmXF8tQCsg6VxB/qgGIBasFiAG/qhBXOkfLBkNFRD0h9EkOg5SBcCJ+1IgLSABWAUhFqwXIQQBWCAt+5IOBFKH/LwEDhADBBINmIf0ERQNcA07JDgWHR0WFh4e+wINA7oN/EwNA3oNTAIKFS4XAaVHUrsvLxQDMloiIlU1EDI1u1JH/lsXLhX99k5v4+NvTi1AATD+0EAtAeUgK1tBXBMaGhNcQVsrIJMFAwHSMy76vwHDAWIgLRQbGxQtIFtQAdIB3lTDd33GS/4i/i4DBQF5LjP84x0WFh4eFhYd/fozM6IzMwAAAAUCYf6sB8cGzAATAC8APQBLAFkAAAEiLgI1ETQSJDMyBBIVERQOAicyPgI1ETQuAScVFAYjIiY9AQ4CFREUHgIBPgI3NTQ2NxEGBAYVATI2NRE0JiMiBhURFBYlNTQmJCcRHgEdAR4CBRSP+75rrwE3zc0BN69rvvuPft6oX4TNcF5EQ19wzoNfqN7+GyWXtVBFNaz+/44CYyMvLyMiMDAChY7+/6w1RVG1l/6sa776jwMUswEPmJj+8bP87I/6vmtQX6fefgFZZYhSEpxHZWVHnBJTiGT+p37ep18EhTdZPQxRPFwNASsHhuWX/p42JgE/JjU1Jv7BJjZx8Zflhgf+1Q1cPFEMPVkAAAAHATL+rAj2BswALwBGAGgAfwCPAJ8AsQAAASIsAQoBNTQSPgEXByYOAxUUGgEWBDMyJDYaATU0LgMHJzYeARIVFAoBDAEBIicmAjU0PgEzMhYXHgIXFhUUDwEGASIkJjU0PgE3Fw4CFRQeATMyPgE1NC4BJzceAhUUBgQBIi8BJjU0Nz4CNz4BMzIeARUUAgcGASIuASc0PgEzMh4BFQ4CATI3PgE3NjU0JiMiBwYHBjcyPwE+ATU0JiMiDwEOARUUFgUUgf7r/v3PenrM+4AWUqqce0hvve0BAHl5AQDtvW9Ie5yqUhaA+8x6es/+/f7r/VsVD26LIDonFBwHCTyCcQ8Ksg4CDLP+56FTi1MLPGxEi/WdnvSLRGw8C1OLU6H+6AFwGA6yCg9xgj0IBxwUJzogi24P/cdyunQMZ8CFhr9nC3W5/nYlCQceGBEcEBISRRAG9wgEJhEPFRQHBCYRDxX+rGzOASYBddyOAQ/ZgAFIA0+Ls8Rf0f6i/u++Y2O+AREBXtFfxLOLTwNIAYDZ/vGO3P6L/trObAIkEXwBN6RDfVIcIy2gyWsNFhAN5xMCPXfMf1aSYg4qC12CRGeoY2OoZ0SCXQsqDmKSVn/Md/3DE+cNEBYNa8mgLSMcUn1DpP7JfBEDBUBySZDmhobmkElyQAFpLCM/GhQPEBoSTGot6QEIBBUNFRsBCAQUDRYbAAAACgD6/qwJLgbMAAMAIgBCAFYAWgBeAGIAdgCXAKcAABMRIREBIiY1NDcmNTQ2NyY1NDYzMhYVFAceARUUBgcWFRQGFyIuATU0NjcmNTQ2NyY1NDYzMhYVFAcWFRQHHgEVFAYFIiQnLgEnNx4BFxYEMzI2NxcOAQEhESEBESERJSERIQE1MjY3PgE3PgE3Fw4BBw4BBw4BEyInBiY1NDY3JjU0NjMyFhc2Fgc2FhUUBiMiJwYjIicGEzQ+ARc+ATMyFz4BMxUiBvoINPoUJCYQCBATCRgNDRgJFA8FAxEi4h5KNhoTBx4WAhcQDxQDGgoWFxwB8qP+6ZhstFcMXL9wlQEFlkSTVRRZnvqoB5T4bAEmBUj7CASo+1gBfVCGPTFdMVC4dwRwq08xYzZAjVQ7ISMyKh8FUjgvTgo3OQMjMzcnFxgaNCAZI9IqOhgFOhwjCgpPMWXZ/qwIIPfgA1hEJSUTFBoYLwcSGilIRyoaEgcuFw8ZCBQpI0FBEyYdGyUDDQ4VHwQGBhYeHBQJCxggEg0SLBcgHMNcRDE3DFANPDNEVBQVThYV/fwHgPmjBTr6xlAEmvyHUAgKCB0RHTAFUAQuGxEeCgwIAYIwAysgHysDFxQ4UDosAy0vAywcHCkIIhAl/vwiNhoHICIVITaVOwAAAAAEAPX+rAkzBswACgAOABcAJQAAExEhNzYzITIWFRElIREhJSE1IRUhMhYXJSERIREhNz4BMyEyFhf1BiggDTIBbx8p+BIHnvhiAdAFzvhiAXoZJQQDHQLF+GICxxIEJRoBZxolBP6sB3F+MSkf+ChQBDhQ7U0eGcYBGf71gRofIRoAAAAHAQT+rAkkBswABwALAA8AEwAjADMAQAAAARE3FyE3FxElIREhAREhESUhNSEBNSEVIzUhNz4BOwEyFhURBTUhNz4BMyEyFh8BIREjNRM1IRUjETQ2MyEXIREBBGkKBzoKafgwB4D4gAKgAkD+EAGg/mADm/oaTwT7DAMmG/EfKfnQAf4UAyYbAWIbJgMUAnBPUPkqTykfAbAeBV7+rASs5+7u5/tUUQQE/W0BY/6dUMMD34WCyGUcICkf/twvUKkcISEcqf7e0v4P9/cB+R8p+v65AAsBG/6sCQ0GzAADAAcACwAPABMAFwAbAB8AIwAtADcAAAURIRElIREhNSERIQEzNSMHNSEVATM1Iwc1IRUBESERAyERIQE1IRUUBisBIiYRNSEVFAYrASImAgoGFPo7BXb6igV2+ooCUdTUQwFa/unU1EMBWvtaB/JP+KwHVPupAVpNO0o6TgFaTTtKOk6MBpD5cE8C0VAC0PuwYKPm5gNjYKPm5vprCCD34AfQ+H8BwSIiO01NA1siIjtNTQAAACMBY/6sCMUGzAA5AD4AQgBHAEwAVgBaAF4AYgBnAGwAbwBzAHcAewCAAIQAiACMAJAAlACZAJ4AogCmAKoAygDcAO4A8QD1APkA/QEBAQUAAAEiJCYnAR8BNycHJzcnNxc3JzcXPwEHFzcnNxc/AQcXNycfATcXBxc3Jx8BNxcHFzcXBxcHNwEOAQQlNycHFyc3JwcBJwceAQEnNyc3EycWBDMyJDcHBAM3JwcnNycHATcnBwE3JwcXAT4BNycBNycBNycHATcnBwE3JwcBPwEnByU3JwcBNycHATcnBwE3JwcBNycHBTcXBxcnPwEnByc3JwcnNycHJzcnBwE/ARc3JzcXNycHFwcnByMnByMnByc3JwcXNxcHFzcfASIsASY1NDYkISAEFhUUBgwBJzIkPgE1NCYkIyIEBhUUHgEEATcHJzcnByc3JwcBNycHATcnByc3JwcFFKX+96MM/vdYLmqNJTYnXSdsjFtiL0GEkIuLjl5kcG6pi4upbnBkXo6Li5CEQS9iW4xtJl0ngor++Ayj/vf99XCLj2uOfYwcAgFmTS1a/hw6LTMpfR0mASbX2AEmJR39+sKMjIszioqMAgyRkZH+UIyMVBUC3CxaLU38ljJJAf2MjIsBTY2NjQFPi4uMAS8/a4+LAT4rHYz9iYyMjAFOjY2NAU+Li4wBSoyMigF2FyoyK2U/FlWMNYuLijSMjIz2i4uKAUqTU5qMKVEPi4uPmlJ9mE+YmE+YfVKaj4uLD1EpjJpTk8X+qf79kuMBqAEmASYBqOOS/v3+qcWuATLqhNf+gvn5/oLXhOoBMgNXFkk1i4uM9YqKiwKsKwmN/AqKios2jIyL/qw7aEIF1FT/b4wkMSddQm2MWg8vPhqRioqQCmVvBamLi6kFb2UKkIqKkRo+Lw9ajG1CXScXYvosQmg743CMjGmqf4we/jlkTQgOAdsMMTUa/Xy6RlFRRrqcAYWMjIw1i4yM/fSMjIwBtIqLV339cgEOCE0DBC9I/m6KjIz+toyNjf60jIyM/tAHaYyMQe0ejAJzjIyM/rSLjY3+toqMjP63i4yMPYsZNjBlQX1XizaKjIw1jIyM9o2Kiv6xkAuajS4YEIuNjZUYeJmYmJl4GJWNjYsQGC6NmgtGM118SWKNTEyNYkl8XTNjJkNZMkBgNzdhPzJZQyb+L3dINYyLi/aNior+0fIJjP3yioyMNYyLiwAAAAARAcL+rAhmBswABAAKABYAIgA0AEAAUgBeAHAAgwCJAIwAkACUAJgAnACgAAABESERASUhESERIRciJjU0NjMyFhUUBiEiJjU0NjMyFhUUBiUmNTQ2MzIXBy4BIyIGFRQWFwUiJjU0NjMyFhUUBiUmNTQ2MzIXBy4BIyIGFRQWFwUiJjU0NjMyFhUUBiUmNTQ2MzIXBy4BIyIGFRQWFwUmNTQ2MzIWFycuASMiBhUUFhcBNSERMxElASEBNSEVATUhFwE1IRUBNSEVATUhFQHCBqT+GfuTBE0Bt/n81CEwMCEiLy8BKSExMSEiLy/+cxJ5XpM2UwdEKUJUCgYCdSEwMCEiLy/+cxN6XpM2UwdDK0FUCgYCdSEwMCEiLy/+cxJ6XpI2UwdDKkJUCgYBChJ6XktqF1cHQypCVAsG++EFTFD+RAEn/tn7QAZL+bUGSwX5sAZQ+bAGUPmwBJf+rAd2+mb+JFABrgUo9jAiIDAvISIwMCIgMC8hIjBgNUF5obgEOUB+WRkxFXcwIiAwMCAiMGA3P3mhuAQ5QH5ZGTEVdzAiIDAwICIwYDk9eaG4BDlAflkZMRUXOT15oWVpEjlAflkZMRX5WVAGZflLkwElA586Ov7sOjr+7Do6/uw6Ov7rOzsAMwDm/xAJQgbMAAMABwALAA8AEwAXABsAHwAjACcAKwAvADMANwA7AD8AQwBHAEsATwBTAFcAYwBnAGsAbwBzAHcAewB/AIsAjwCjAKcAqwCvALMAtwC7AMcA2wDfAOMA7wDzAQcBEwEnATMBRwFbAAAXESERATM1IzUzNSMTMzUjJzM1IxMzNSMTMzUjATM1IxMzNSMTMzUjEzM1IwEzNSMTMzUjEzM1IxMzNSMTMzUjATM1IxMzNSMBESERATM1IxMzNSMTMzUjASImNTQ2MzIWFRQGATM1IxMzNSMBIREhATM1IxMzNSMTMzUjATM1IwEiJjU0NjMyFhUUBgEzNSMBLgE1NDYzMhYHIzYmIyIGFRQWFwEzNSMTMzUjATM1IxMzNSMTMzUjATUhFSUiJjU0NjMyFhUUBiUuATU0NjMyFgcjNiYjIgYVFBYXATM1IxMzNSMBIiY1NDYzMhYVFAYBMzUjAS4BNTQ2MzIWByM2JiMiBhUUFhcFIiY1NDYzMhYVFAYlLgE1NDYzMhYHIzYmIyIGFRQWFwUiJjU0NjMyFhUUBiUuATU0NjMyFgcjNiYjIgYVFBYXNy4BNTQ2MzIWByM2JiMiBhUUFhfmCFz5BaKioqLUoaHUoqLUoaHUoaH+WKKi1KGh1KGh1KGh/YSiotShodShodShodShof2EoaHUoaH+JwX7/LKhodShodOhofuoHywtHiArKwG9oaHUoaH8cwe8+EQEYaGh06Gh1KGh/YWhof57HywtHiArKwI5oaH8XwUEUUtAWAM/Ai4pNCsGBAQ1oaHUoaH+WaGh06Gh1KGh+dIIAftZHywtHiArK/6YBQRRS0BYAz8CLik0KwYEAwmhodShof5YHywtHiArKwGIoaH9EAUEUUtAWAM/Ai4pNCsGBAI1HywtHiArK/6YBQRRS0BYAz8CLik0KwYEAjUfLC0eICsr/pgFBFFLQFgDPwIuKTQrBgTtBQRRS0BYAz8CLik0KwYE8Acm+NoBLoMyhP7Hg+iD/seE/seDAZ6D/seD/seE/seDAlSD/seD/seD/seE/seDAlSD/seD/SkDv/xBAZ6D/seE/seDBEcsHx4sLB4gK/4Ng/7Hg/x+Bob7w4P+x4T+x4MCVIMBcCwfHiwsHiAr/VeDApcSKBd9hWpaQkZnWRYtF/wzg/7HhAGeg/7Hg/7HgwIxUFCrLB8eLCweICtxEigXfYVqWkJGZ1kWLRf9n4P+x4MCJiwfHiwsHiAr/g2DAeESKBd9hWpaQkZnWRYtF24sHx4sLB4gK3ESKBd9hWpaQkZnWRYtF24sHx4sLB4gK3ESKBd9hWpaQkZnWRYtFwMSKBd9hWpaQkZnWRYtFwAAABIB/v6sCCoGzABEAFAAXABjAIEAhQCWAJ0AoQCtALkAzQDfAOMA9AD4ARcBIwAAJSIuATURND4BMyEyHgIVFA4BIyIuATU8ATcjIhURFDMhFSEiJjURNDYzIQ4BBx4BMzI2NzYuAiMhIg4BFREUFjMhFQMiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjc1ITIWBiMXIiY9ATQ2PwEXBh0BFBYzMjY9ATQnNxceAR0BFAYTJzUXByImPQEzFRQzMjY9ATMVFAYXNTMyFgYjASc1FwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiLgE1ERcRHgEzMjY3ETcRFA4BAyIuATU0NjcfAT8BHgEVFA4BNyc1FwciJjURMxUUMzI2PQEzERQGNyc1FyciJicuAiczFB4BFx4BMzI2Nz4CNTMOAwcOASciJjU0NjMyFhUUBgOSeLZmY6prAgNggEogP3ZTVnY8AcQ/JQEQ/vA0QUlIASMHCQEtXC4uXC8CFTdjTv4GVopRsZMBXPdIZGRIR2VlRyk5OSkpOTmSAQkTDAwTW1NxJigLFh8wREQwHxYLKSVxBMPDVjNLSTUaGklIVugTDQ0T/uPDwwFjR2VlR0hkZEgpOTkpKDo6/m9IeEdQJF41NV4kUEd3SUp3Rl9JCFdWCEpfRncMw8NWM0tJNRoaSUghw8NWLj4QCiUfA1MPFwwSJRERJRIMFw9TAhQaGQgQPi5XdnlUVHl2/Wa2eAKlcrhsTnFwIyImDxAlIQQIBDj9LiRQQDQC0kdBGCwXCgMDChVSWT5WlFz9W5OxUP3DZUdHZWVHR2VKOSkpOTkpKTk3VisrlTouojU7DwRMCROmER4eEaYTCUwEDzs1oi46AWo8KTyBHx/pzxUIDczmIhx9VisrATk8KTz+HWVHR2VlR0dlSjkpKTk5KSk5AbEVLSQBUgr+ug0LCw0BRgr+riQtFQFOFy8kKzAJYRobYAgxKyQvF3I8Kjx4Hx8BDfMVCA3z/vMiHLI8KjxLDgULUl8eEj8+FAUCAgUUPz4SFkNENQgFDrQXIiQgICQiFwAIAM/+rAlZBswAGQAxAEQAWABkAHAAeACAAAABIiY1NCYnLgE1ND4BMzIWFRQWFx4BFRQOAScyNjU0JicuATU0JiMiBhUUFhceARUUFgcWMzI+ATU0JwMuASMiDgEVFBcTAyY1ND4BMzIWFxMWFRQOASMiJgMHJwcXARcBFzcnNycXBxcHJwEnASc3FwEXNyc3FzcnCQIHJzcXBwePXX0XEU9mPmg+XH8YEk9kPmg/PldAMy48UDs9V0EyLjxOzG2qZKRjVe80kVNkpWJVs/Bod8p6ZLI/72h4yXpksPB6Y0km/KVpA15hRiN6X9CPIpdj/JDPA20mn2H9lrR+bG9ufrP+JAHpARb3bgps+AMfgF4RGQMOd08/aD5/XBEaBBB3TT9pPlBYPjFMCQhHLjtQWD0yTAgHRi49UWaDY6ZkhWQBHj9DYqVlhGT+rQEefKF7yXhSS/7ifqB6y3hTARtlNTpr/TCAAtM4PGpn7fd4aYQ4/R77AuBsfzX8VNZugV+Ca9X+0AGc/rbTggmC1QAAEACl/qwJgwbMABkAHQAjACkALQAzAKMAqwC0AL8AzwDVANkA3QDjAOcAAAkBJwEuASMiDgIHAQcBPgMzMhYXARcJASc3FwElNxcHBQcBNxcHCQEnNxcBAz4BNxMBIiY1NDY3PgEzMhYVFAYHDgEVFBYzMj4BNTQmIyIGBwYDJz4CNxcOAgcXNhI3NjMyHgEVFA4BIyImNTQ2Nz4BNTQmIyIGBw4BFRQWMzI+AjU0JicmIyIOAgcBNwE+AzMyFhceARUUDgIBAz4BNxMOAQkBPgI3Fw4BAS4BNTQ3HgEVFAYBDgEHDgIHJz4CNz4BNwsBNxMOATcDNxcBJzcXASU2MhcFAScfAQhG/XQS/qMcZkFVvraSKAK1Nf0gJaDS5WlWgyYBaDcCffy4RjBN/e79tAxQCQIME/1bY0Y+AmMDP7Qqn/4GngUNB54CoIqDFRYPSyU1RQcFBQYTGC5MLWpLMW4+sCvGE0VpRi9AWj4WSRxyUo6ARXBCPmpCOzUHBwYCIBMUIQsTEl1qUYtpOl1jREV00LypTf61EwFBUbK9wF8vYi5ybEV7pf1KqwUNB6gFDP2I/uQeV2w74lRvBDkMCR4FCQr+njObWG12MwkxASV4fFSqNAa8NdQSKpHnJOf9jNExzwKv/vgNGgsBAP1vtDeyAgICAi4B/SkkPGyOUv2vOwJ3aLSGSzI5/ew+/gz9D5tCnwL9U84FiURPAVKxJm7+1vxc0kC6AcABOAUPB/7L/XCbkTyOUThdaUEdSCIjLxEdFEVtO1ltOj6w/oRYbeXPTC9FtsJZHaQBAlOORnlNTY1ZQjcWLiggPxkyNTcoUYU2dHBOhKJUZaElGXPC7XsCyYD9WH3TnFcVFTK+dGG6l1kC6QEbBw0G/ukHDwJHAQooX08Q/kGC+9IUNBlXXRJCIiJRA/gHLzpHlXccOxR1nlE3MAb9rwEKKv79BhtFAP8L/wKr7RLr/VzvAgHpAqrfAt0AAAAACgEA/qwJKAbMABkAOwBXAGMAeQCTAJ0AqQC1AMEAAAE+ATcBFwEOAQcnARcBJz4CNwEXAQ4DASInJSYjIicmNTQnAyY1NDYzMhcFFjMyFxYVFBcTFhUUBicWPgEnAyY1NCcmIyInJSYOARcTFhUUFxYzMhcnIiY1NDYzMhYVFAYXJwE2JicuAQcBJwE+ATMyFxYVFAYPASc3FxY2NTQuASMiBh8BBycmNjMyHgEVFAYnJicmJzYWFx4BBy4BJy4BJzYWFx4BBy4BJy4BJzYWFx4BBy4BJy4BJzYWFx4BAQAsYUsDrjD8UjhOIhUEoiT7XgZSc10vA/Yu/AkrUmeUBoEgGv7lFh1NNTcT/Rg6Ih8aARsXHUw1NxT9FzkyDBgIDPslJCIvNyn+5wsYCAz7JCQjLzcoXBokJRkYIyO7MwFeDiQXFkUP/mMrAagKHg9AQ0cICAEgBiAZJD1ZKR8nAgNDAwVROzx3T0+qDiIjGBQ0ExMIUQoZERMcDhY1FBQJTgofExUgERg/FxcLYQsgFBYjERpBGRgL/qy721AD8S78Dz2aeAkEoSz7YRgXLDosA6sw/FQoOS0tA2oY/RM1N00dFgEbGiAiNhf9FDU3TB0X/uUaHyI3SQoGFw0BGCk3LyQiJf4KBxcN/ugoNzEjIiReJBoYIyMYGSUrKwGaEUQZGB4N/qIzAWUICENHQQ4eChMDQwMCJx8qWz4nGyAHIThTUXg9PFApGyIjDwsLEhI2Ww4hEBIYCgsLExI4bRElExUaCg4MFhVAchInFBYcCg4MFxZEAAAABQEE/qwJJAbMADoAdgCDAJAAnQAAAT4BNTQuAScuAjU0EiQhMgQSFRQGFRQeAhUUDgEVFBYVFAYHMhYVFAYVFBYVFAYHDgEHDgEVHAEXJSE0PgE3PgE3PgE1NCY1NDY1NCYjIiYnNz4BNTQmNTQ+ATU0LgI1NDY1NCYkIyIEAhUUHgEXHgEVFAYBJyY3Nh8BHgEPAQ4BEycmNTQ/ATYWHQEUBiUGJyY/ATYWHwEWBgcC4AYHH05Gbok/tQFnAQvjAUmxEi49LiIiFTlEMkMoFG9iLkstBQgB/XYCOQYLBUpePz5JFCIjHhw6FHIpHhUiIi49LhOd/tzN9/6+njuAaXFUBAV5yRgODR3sEQsJGwkjN/0fH/0SGhr+/xwODxnJDyMJGwkLEf6sLG5WLFFoTHji7Yn4AW7Jkf74tDVnHyk4MTcnICMZEQolExs7HCYiHzQPDDMjQ2AKBAsJKI8+ECQNSzZ8ZhQNDgYGMyoUOBYTKRQLByI1LhEUEg8hEBokHhAVKzZJMjFcLqDmfLT+teWC3tJyeZdMMmABZ5wTGRcLYAcgETEQBgEnIgMdHQMjAhYSORMVwQsXGRKcDAcQMRAgCAACAZX/dAiTBgQAGwA3AAAFLgEnDgEjIiQuATUQACEgBBIVFA4BBw4BFRQWBy4BNTQ2Nz4CNTQCJCEgABEUEgQzMj4BNx4BB4XH3kkiVBDF/rnuggHTAasBFgGS2FJ1N0MrMEsZHD1PNmdDwv6T/v/+df5dzgFu8B0/PRhDkowXgn4EAmCy9JMBZAGCrP6/35i/dikyOiIkohRBcSg4WT0qZqKEyAEcmP6r/r+s/viVAwYEfHgAAAAAAgDw/qwJOAbMABkAMwAACQElNy0BJzcDBRMXNxclAxcDAQUTJQcnBycJARc3FzcFAyUnNyc3BScHJwclFwcXBwUHFwEIAYv+6bX+vwERcfsfAWTF79R0AT8t96oBDf6qZ/5zcN3Tpf3JAkedycNeAUdXASTbmNkj/vlkvuOz/t4Z11/dASWj+/6sAvs244vLxzoBKX8BC/Sr5F3+02f+/v7vaf6jWu62vcP+xwGju7WgykoBJ1nf6FvvTciZ6PNn8TKno3/LMgAIAQn+rAkfBswADQARABUAIQAlACkANAA8AAAJAREBFwcnCQIlNwERAREBESU1ARUlIiY1NDYzMhYVFAYJAREBNQE1ARMBNz4BNwEOAQcXJz4BNyUOAQcFFPv1BAs+MQ38eQOHA4f+HT0CKvvN/G0Dk/xtAmkkMjIkIzIyAVcDk/xtA5P8bb79jsRVz20CCXziWYr6R7ts/q1lwkr+rAHxA8kB9x5CBv5K/kwBtOo8/vP8N/56Aj4BtP3G2asBuqtFHhQUHh4UFB77cAG4Ajr+TFMBuqv+RgFIATljmtMo/vghyppFGpLgQ6ow5aEAAAARAFf/EAnRBmgACQATAG4AeQCAAIoAlwDRAOoA+QEGAc4B3AHqAfwCCwIWAAAFJRMDBSUFAwEFJSc3PgEzMhYVFCciJjU0PgE1NC4BNTQ2NyIuASMiLgEjAzYzMhY7ATIWFRQGIyImNTQjIg8BBhUUFh8BFjMyNTQmNTQ2MzIWFRQOASMGFRQzMjYzMh4BMzI2MzIWFRQOAhUUBgUlNjMyPgEzMhYXNz4BMzIWFwUtAQMTJQUlEwMBIiY1NDc0NjMyFhUUJyImPQE0LgErASImNTQ/AS4BIyIPAQ4BIyImNTQ2NTQmNTQ2NwU3FA4BFRQWFRQGFRQWFRQPAQ4CASImIyIGIyImPQE0MzI+ATM+ATMyFhUUBiciJjU0NjMyHgEzMhUUBhMiNTQ3NjU0MzIVFAYlIiYnLgI9AScmLwEmLwEmIyciLwEmLwEmPQE0PwE+AjMyFx4BPwE+ATU0JiMiBwYjIi4BIyIGDwEGIyImNTQ3Nj0BNDMyFhc3NDMeATMyNjU0JjU0NjU0JiMiBhUUFhUUBwYjIiYnIjU0Nj8BNj8BNh8BFhUUIxQWMzI/AT4BOwEyPgIzMhYVFAYVFBYzMj4BMzIWFwciBhUUHgEVFAYjIgYVFA4BFRQjIi4BIyIOASMiLgIjIgYVFBYVFA4BHQEUDgIBIiYnLgE1NDMyFhUUBhciJjUmNTQ2MzIWFRQGASInJicmNTQzMhUUDwEGDwEGNyImNTQ2Mz4BMzIWFRQGFyImNTQ2MzIWFRQFMvsl620C8QKCAvGCARr8vfyWSCoGFAUJDR4VGw4OIiMMBxoQGScSN1tLN2JAH0IXaDQ6DgsNEhgZDD4PCwwkDggZDBYPJjxCYjAtHQwMFBASEQ8JHBBgaDRENAoCDv7lqm9OVDUgLU0jaBRlNkFiBfylAVQC4P55/W79ff1nY9ID0xEdDwcLCBb5DiUUGw0YEA8JKQYQDx8KFwIeExAZBxgbEQEwwRsbFhsGFTQVGxgEbhsnFhUqFA0WFhsVGB0IEwpBLzDbF0MOCQkSIiAtG/UMDCgMDCn8lAQRDAQPDBQEAgQCCQsKBzEEBhoJAgwCAxgCMjQEEhUCDQ1CGyspChcPBgcPExMPDCUGFAkOCxMKFgsIDwYiFgcOBxAsERoIBQwmCAkIBAQLDiESGCsFBycHBzsNFgoIDxEaEU0rJw8lLjkiHSgsLU8gIxoSKDobIFpPFhUxGhMcKSkPKCAPERsXCQgOGiIzJxgdIBwcFSMrAnADCQUDCREIDwVnEhgUEAsaMhj81gkFCw0KNDEICggGBwTaFRsZFAcUBwkZJPgSGRAJDg/wZwLsA+yMpXv8wvzvVDUQKw4XGRIjoCsgEkVGFCMuIhIYKg0VFCcnAa6QLlQjDA4OCRUOPxEPCw4HFAcXBxYHCAw9JyldQRQcHg8hIgNCOy5UTkkkIBX3H2YeHjg7CCw+JBlcOEoCxAMEa6V8/G79YwN9DwkKDRQLKw8UgEYZRxo8KxQWBgsqCxQoaAoPFw8JGQoTIRgUVBNCOy48LRoUDxkTIRUOIgwTBhIHOzX89C4YHRMnFxgXCAhHJCgw0SoYDBMVFhoQDP7lCwwFEh4REhwvaBAQBi4uBjUOAwYUDQQGBgMDCgQFFwQFPgQGJAQdGx0DCQEDAhQMDA4GBxoaDggYDBYNDAMIDBQLAQEsGAUFJg0HEQQJGw0IBi4OBRgDBAgHBw0YChoYTAkBDAMEIQcPEgsUFR8UNSk1KRMNEiMXDR0QDxwWkhUaDw8ZIB01JxwWHiEaEB8fKyswPjAUERYyJwkgIQ0jDDk9LAELFhMLDgcPIhMUD1ASDQ0IBwkaDgsRA08MGQoJDC8QDgUHBhUcEpcQDAYIERQkDgwRXxUNESA0CxQAAwAy/3QJ9gYEACoATwCPAAAFIi4BNTQ2Nz4DNz4CMzIXFjMyNjc2MzIeAh8BHgIXHgEVFA4BIyUhMj4BNTQuASMiBgcmIyIGByYjIgYHLgEjIgcuASMiBhUUHgEBMj4BMzIWMzI+ATMyHgEzMjY1NC4BNTQzLgEjIg4BIyImIyIOAQ8BDgEzMjYzMh4CMzI+AjMyFRQOARUUFgGUYaFgbFNMgIamcmB4USQpJRENCAoMJB0eRHC5kjYrUmdMbpJstWz5PgauXJlcUYtXYaEeZ6NrsCdSUhItIx+DUG5RJWc7cJdQhQN1REs2JBQ+DRcfGg8QKSgQIhgzNCWRtxwLGCIcKzUVEVJoNIITARMLEhAeGxEXGR4zNDokHzQ0P4xenmFkoyxXk5vFiHKEOBoMBQgZKnLVqj8yW2lJKcZ+bbNqUE6LW1iKUWxZf3hlKQUHSlhRLC+VcU92QgN/Li0LKSkpKgcHETY2ERGzzBcXLlF7P58WIAkwPjBBVkEcGTAzHxQTAAsCfv6sB6oGzAAcADUAWQBcAGAAZABnAGsAbwB+AIIAAAEiNTQ+ATc+AT8BIRceARceAhUUIyEuASMiBgcvATM+ATMyFhczBy4BJyYCLwEjBwYCBw4BFwM3JSc/ASc3FzUzFTcXBx8BBwUXAyc3Byc3JRUjNQUXBycXATUHJwMhAyUhNyEBNycDMycjJzMnIwM2EjUzETQzMhURMxQSFwMzNSMCjA4oVkRLeisvAWovK3pLRVUoDv6mNI9rao81+CnwO6p6eqs68CkiQSBThCsz3DMqhVMgQa5ITQEDnCSMayNlOmMscp8fqgEaOEorPtU8z/72Ov711S7oPwEHjgamArqm/rkBIE7+RAEBjo5lhAxsAnAGZF8aGCg3NygZGaoyMv6sDgsvamBq74SRkYTvamBqLwsOmomJmjAWlY6OlRYpWS10AQCGoaGF/v90LVk0ARR3WUdqNVYuUW9vTydbPVtOYWn+6z7sMS4wW6OjXDEwNe0B03k3+wEC/v5Gdv4HQjcB85Zblf4ZfgEhkgFoQkL+mJL+334CtJ8AAAAAGQFo/xAIwAZoABsALQAxADUASABOAFwAZwBtAIgAjACjAKkAtwC9AMMA0QDVANsA4ADlAOkA7QDxAPUAAAEuATU+ASQzMh4CBwMnNy4DIyIOAQcUFhcTLgE1ND4BNxcOARUUFjMXFAYBNTMVCQE3BQEiAhEzFBYzMjY1NCc3HgEVEAIBJz4BNxcBNQYjIiYvATYzMhYdAQEmNT8BHgEVFA4BASc+ATcXASImNTQ2MzI9ATQ2MzIWFwcOASMiJic3FRQGAQM3AQMiJjU0PgEzMhYXDgEjIiYnDgEHFA4BEyc+ATcXATUyNjU0Jic3FhUUDgEBJz4BNxc3NToBFxUBIicuASc+ATMyFhUUBgEDNwkBJzceAR8BJzcWHwEnNxYXARMzExcnARcTJyUXBScBFwMXQE4zxAECj27UqWEFiUeAA1qRsFl/4KsuMiCIlaEjPiYxDBBKNFEeAP+v/Wz+hAYBtgHYxNlQrp+gqBxMEQ/T/c5XBQkHZQEZJjcjPgsNSjs9RgEAN6JbIBtFdf2ASwgQClQBOi8lJy0hT0AdQCIODzcoKUAFDiL94/sHAVlAFyOJ5Iql1hEaVSdLiCMwpWQmPJM8ChULQQInGjMcGjBMKUP98CEMHg0hQg4hDQFaFhUCCggIIhUdKSn9M5MJAQkBUDchDR8KQy9CGBQKKGASBv4WUAxG04oBCwpnHgGtBv4bcgGWCAGkEa+ZkNBwQm6HRv7yJP4yZFMyY7N6bocI/SUzrXI+lZA0Ehk6GD1WrE6mASIyMgKhAQoKlvwNASsBBuj78utoVxg0bDf+9/7eAttnDRkLeP7dQRoyJiwXLCZs/ZZ4dPkfImkrRIdqA66BChUKkf36EgwMCh6VNzsICTM3LCYcEdMUHgLWAXYH/uv9cCUjhrVcdGMNEU4+SlQCNmI+AYGjCA8Hr/2SRk4uID0ZM0lgMlk3Ao68BAgDwg7CAsD+eRcdUCUSHz8sLkECaQG3Bf6G/sUJvQMIA+oSswsN7xmkFxkBMAHU/iw0MgGDBf0tdHMQKVABFAwAAAgBBP6sCSQGzAAPABsAJwBJAGoBJwE1AZIAAAEiJjURNDYzITIWFREUBiMBMjY1NCYjIgYVFBYXMjY3PgE1NCMiFRQXMj4BNz4BPwEmJy4BIycGBw4BBwYVFDMyFhUUBgcGFRQWNzI+ATMyFjMyPgE1NCYjIgYHDgEjIiYjIgYHDgEVFB4BJTI+ATcyNjU0JjU0NjMyFjsBMjYzMhcUMzI1NDY3PgEzMhYVFAYVFDMyNj8BLgE1PgE1NCY1NDYzMjY3PgE1NC4BNTQ2NTQmIyIGFRQzMjYzMhYVFAYjIi4BIyIGFRQWFRQGBwYUFRQeARUUBgcOAQcOAQcOAQcOAiMiJjU0NjU0IyIGFRQWFwcOARUOASMiJiMiBiMiJiMiBg8BDgEHBhUUFjMyPgEzMhYzMjY3HgEzMjYzMhUUBhUUHgEBMjY1NCYjIgYHBhUUFhMyNz4BNTQmJy4BNTQ2MzIWMzI2MzIWFx4BFxYzMj4BMzI+ATU0JjU0NjU0IyIGIyImJyYGJy4BJy4BIyIGFRQeARUUBh8BFgYjIiYjIhUUFhUUDgEVFBYVFAYVFAGoRl5dRgbaR1xcR/lQCRILBQgdCoYIAwQCBwwWZQMXGwUCBwQjAQoNEhokIi4IHwcDOBoQBAMbONYHGiMRChMECSEaMBUNDgcKEgkOCQwPEAIWDRgbAScEHx8FCS41FwwUKh8jDx4HDw0PDxoeDAsHCAsPCAQJAzIBAxoNAhUcCgwGBR8jIwopDAQHBAQOAwcKFw4PCgUGBQ0CIgcBAwIaBQYYCwQYBgclCAYlKQwRHxgGFSUDARYaFgcfDBAiDgorKg4/CQ0jHlENKxIKBwJIc0sMBBAECCwfDRcICxsFCCgWGgEdBw0FAgQIBgwMuxALETQXFQ0YEgoPDw8UGhkOHhMKKwoUCQwUHhkfSzcyDQoPKg4EIwgKGgccJRcoJw0NDgcGKAEBARoLCB8ODwcfHyMK/qxdRgbaR1xcR/knR10BAA0HBQgQAwgGIxEGBAUFCxkXahYdCAooGk0gFRwKKQM4Aw8EBg4tCQ8MGgQjRAIbvC0tDx8mDBEmDgsQCgwZCxYQBgssJV8lLg0NBQkTEwsVKCEGGhoOIxoLGRUOExwOFBAPRhQyEzQrIBIkDR8XOhYRNh8UPzkKByMHDx8MCAoEDwgMFhoZCwUDDAMOFQkKDwsRQjsFCy0TFD0IBAgHBzgHBRoWFw0LFAMDGg4JFQs7EDsRCxIfGAQTGUQLFwgECwoPHyADKgMKCRAIEDsRCiMbAioUDAcXCA4HDwUNAdgOFQkRCAwEAhoNCxAcLCAOBw4GDDw8ERcJChweFhkJCCggAgMDBhknHDMlGhcLMDAMGiQZGg0bGw8EEwcMGx8SESIUCCQIDwAGAhz+rAgMBswALAA6AFIAmACnALsAAAEiLgI1ND4BNRE0EjcuATU0Njc+ASQzMh4BFx4CFREUBgcVFAYjIiYnDgEDIiY1NDYzMh4BFRQOATcuASMiBgcGJicmNjc+ATMyFhceAQcOAQMgJDURND4CNy4BIyIGFRQeARUUBiMiJicOASMiLgE1NDYzMh4CMzI1NCYjIiY3Ey4BIyIGByIGBw4CFREUBhUUHgEDJjc+ATc2Fx4BBw4BBwYBPgE1NC4CIyIOAhU+ATMyHgEDqkyPcUIODUxSEA4TEAaHAP+6cdKMB2R6OE9mr68eUCNa2Ks6XR8rcXQqNli+RIg4EyQPEyAFBBAUFC8aQ5g8Fw4EBBvpARYBMAcTJR0fQiNgbjk5UkQ5diEEHBo/Zj1QQkFhTkcmV3FEIxkOzA1ZPS5aGSFMJEZSIxtpkwMhEBhFIRckDgYKHEYaEwLtHCxHd5NMbbiITEqaZFC7tf6sFC5LNiJPUyoBdJUBM6wdPCERIgyZzmc0alEul+am/hppaibrhW8FBBYVAgkvGAsKBgsIDiAVhBITAwIDCBQRGQQEAxQSBxsOEQz9yEVnAbRzp5aqdgsMXzwyUVU6QFULBxgaLEIgGyUfKh9kSk0REwEORlhJRQsLiuTLZP57NHsuMTERBBQRITJ6NCQWCR8QLnsvIgIbIlwxNEwxFy5Zg1YvIB0uAAAABwEE/rEJJAbHABMAGwA3AE8AWwBvAHsAAAEiJAACNTQSACQzMgQAEhUUAgAEAzI3JiMiBxYXIi4CNTQ2MzIWFxYEMzIkNz4BMzIWFRQOAgMyPgE3NTQmBw4CIyIuAScmBh0BHgIBIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEiJjU0NjMyFhUUBgUU3P6G/uWfnwEbAXrc3AF6ARufn/7l/obciHiCfn6CeIh988V2JB8XOCRgAQuKigELYSQ4FiAkdsbzfV7W1l0TDVDM0VpZ0stRDRNd1tf+/TRKSjQ0SkoBLMsBXQEGkpL++v6jy8r+ov77k5IBBgFdAis0Sko0NEpK/rGeARoBeNvbAXgBGp6e/ub+iNva/of+5p4BiC5HRy43UIalVCkjCQgWICAWCAkjKVSlhlABTQ8hGTcOBwMTHhERHhMDBw43GSEPAbNYPj5ZWT49Wfv6kgEGAV3LywFdAQaSkv76/qPLy/6j/vqSBAZYPj5ZWT49WQAAAAAKAQT+rAkkBswAEwAXABsAMwBNAFcAYwBnAHsAhwAAASIkAAI1NBIAJDMyBAASFRQCAAQBESMRBTMRIxMyJD4BNTQmIyIOASMiLgEjIgYVFB4CNyIuAjU0NjMyHgIzMj4CMzIWFRQOAicgJScEISAlBwQDJz4BMzIWFwcmIyIBNxEjATIkABI1NAIAJCMiBAACFRQSAAQBJz4BMzIWFwcmIyIFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/fM8AVQ8PB6DAP/Oe0Q9LbTqf3/qsy49RHvP/oN05btxGyAhg6axT1GwpYIiIRpwvORxAVsBVhH+rf6w/rD+rBEBXIxKE2tRUmsSShpragL/PDz+yscBXAEIlZX++P6kx8f+pP74lZUBCAFcAaFKE2tRUmsSShprav6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAYkB2P4tQQH1/d9ZlbhgOz8iIyMiPztguJVZRk+Cn1AcGBUbFRUbFRgcUJ+CT72oO6enO6gCRw5eZ2deDoj8lgUB0vzwlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBBsOXmdnXg6IAAAAAA0APP6sCewGzAAVACEALQA/AEkAUABaAGYAcgB5AIEAnQC1AAABNBIAJDMyBAASFSc0AgAkIyIEAAIVAzI2Nz4BNw4BFRQWFyImNTQkJQ4BBw4BASIkACc3FgAEMzIkADcXBgAEASc2MzIXByYjIi8BNjcXDgEBJzYzMhcHJiMiASImJy4BJwwBFRQGJzI2NTQmJx4BFx4BAS4BJzcWFwEyNyYjIgcWFyIuAjU0NjMyFhcWBDMyJDc+ATMyFhUUDgIDMj4BNzU0JgcOAiMiLgEnJgYdAR4CAQSiAR4BedfXAXkBHqJRk/75/qTJyf6k/vmTSUVQHQ0WDaq/Rz5fbwEXAQMcJBMldAOq1/6H/uJQSUkBCAFdx8gBXAEJSElP/uH+h/zgNVmJiFs1RmhmuT1c4RhliQN/NVuIiVk1R2ZoAtZgcyYTJBwBBAEWb2FAR7+qDRYNHVD++CqJZRjhXP0IiHiCfn6CeIh988V2JB8XOCRgAQuKigELYSQ4FiAkdsbzfV7W1l0TDVDM0VpZ0stRDRNd1tcCv9UBdwEfoqL+4f6J1RqyAU0BCZub/vf+s7L+WGqEOk0iFI1qQkpJcWGdtAtDcVCgiv3EogEduiOt/veWlgEJrSO6/uOiBJMuh4cualghqkNCHmT+9C6Hhy5q/T+KoFBxQwu0nWFxSUpCao0UIk06hGoC0EpkHkJDqvwXLkdHLjdQhqVUKSMJCBYgIBYICSMpVKWGUAFNDyEZNw4HAxMeEREeEwMHDjcZIQ8AAAAHAQT+sQkkBscAEwAbADcATwBbAG8AewAAASIkAAI1NBIAJDMyBAASFRQCAAQDMjcmIyIHFhciLgI1NDYzMhYXFgQzMiQ3PgEzMhYVFA4CAzI+ATc1NCYHDgIjIi4BJyYGHQEeAgMiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGBRTc/ob+5Z+fARsBetzcAXoBG5+f/uX+htyIeIJ+foJ4iH3zxXYkHxc4JGABC4qKAQthJDgWICR2xvN9XtbWXRMNUMzRWlnSy1ENE13W1+81SEg1NUlJARfLAV0BBpKS/vr+o8vK/qL++5OSAQYBXQIXNUhJNDVJSf6xngEaAXjb2wF4ARqenv7m/ojb2v6H/uaeAYguR0cuN1CGpVQpIwkIFiAgFggJIylUpYZQAU0PIRk3DgcDEx4RER4TAwcONxkhDwFmjmlpjo5paY78R5IBBgFdy8sBXQEGkpL++v6jy8v+o/76kgO5jmlpjo5paY4ABwEE/qwJJAbMABMAHQAxADsAQwBfAHcAAAEiJAACNTQSACQzMgQAEhUUAgAEASc2MzIXByYjIgEyJAASNTQCACQjIgQAAhUUEgAEASc2MzIXByYjIgMyNyYjIgcWFyIuAjU0NjMyFhcWBDMyJDc+ATMyFhUUDgIDMj4BNzU0JgcOAiMiLgEnJgYdAR4CBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/0rN1uEg103RWRjAbnHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAF1N12Cg103RmNj84h4gn5+gniIffPFdiQfFzgkYAELiooBC2EkOBYgJHbG831e1tZdEw1QzNFaWdLLUQ0TXdbX/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEEbSyKiixr+3iVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEHSyKiixr/LUuR0cuN1CGpVQpIwkIFiAgFggJIylUpYZQAU0PIRk3DgcDEx4RER4TAwcONxkhDwAACADB/qwJZwbMACsANQA/AE0AWwBjAH8AlwAAASIkAAI1NBIAJDMyBBcHJiQjIgQAAhUUEgAEMzIkABI1NCYnNx4BFRQCAAQBJzYzMhcHJiMiBSc2MzIXByYjIiUyNjU0Ji8BBw4BFRQWFyImNTQ2NxsBHgEVFAYBMjcmIyIHFhciLgI1NDYzMhYXFgQzMiQ3PgEzMhYVFA4CAzI+ATc1NCYHDgIjIi4BJyYGHQEeAgTR2P6H/uKhoQEeAXnY3QGBji6D/pXQx/6k/viVlQEIAVzHxwFcAQiVCQhNCgqi/uL+h/0rN1uEg103RWRjAmc3XYKDXTdGY2MCgGh1LTV7ejQvdWiEnzU5tbY5NJ78CIh4gn5+gniIffPFdiQfFzgkYAELiooBC2EkOBYgJHbG831e1tZdEw1QzNFaWdLLUQ0TXdbX/qyhAR4BedjYAXkBHqGrk0ONpJX++P6kx8f+pP74lZUBCAFcxy5aKxkxZjXY/of+4qEEbSyKiixrayyKiixrB2tfOnxQvLxQfDpfa0aVe0SQWAEW/upYkER7lfz0LkdHLjdQhqVUKSMJCBYgIBYICSMpVKWGUAFNDyEZNw4HAxMeEREeEwMHDjcZIQ8AAAAABwEE/qwJJAbMABMAGwAvADcAPwBbAHMAAAEiJAACNTQSACQzMgQAEhUUAgAEASclFSU3BRUTMiQAEjU0AgAkIyIEAAIVFBIABAElNSUXBTUFATI3JiMiBxYXIi4CNTQ2MzIWFxYEMzIkNz4BMzIWFRQOAgMyPgE3NTQmBw4CIyIuAScmBh0BHgIFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/MQYAXf+hiAB34HHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAMt/hsB4B/+hgF4/YKIeIJ+foJ4iH3zxXYkHxc4JGABC4qKAQthJDgWICR2xvN9XtbWXRMNUMzRWlnSy1ENE13W1/6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhA/5HdBXARPMg+7uVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUDrpcg80TAFXT9SC5HRy43UIalVCkjCQgWICAWCAkjKVSlhlABTQ8hGTcOBwMTHhERHhMDBw43GSEPAAAABwFF/qwI5AbCABMAHQAoADwARwBbAG0AAAEiJAACNTQSACQzMgQAEhUUAgAEAyInNxYzMjcXBgEnPgEzMhcHJiMiATIkNhI1NAImJCMiBAYCFRQSFgQBJzYzMhYXByYjIgMiLAEmNTQ2LAEzMgwBFhUUBgwBJzIkNjU0LgEkIyIEDgEVFBYEBRTP/qP+/46OAQEBXc/PAV0BAY6O/v/+o8/dwy6txcWtLsP9OTgqbDp4VzZAWVgBqr0BP+2Cguz+wL29/sHtgoLsAUABdzhZdzpsKTZAWVn5xv6f/vKakgEHAWTS0gFlAQeSmv7x/p/G4QFNuHfQ/vWUlP71z3e3AU7+rJABAwFdzMwBXAEDkJD+/f6jzMz+pP79kAHlhEB2dkCEAhovO0B7L1z79YLtAT+9vQFA7IOC7f7Bvb3+wOyDA68ve0A7L1wBQDVdeURCbVEsLFFtQkR5XTWuK080KUk5ISE5SSk0TysAAAUAvv6sCWoG/gArADUASQB1AIkAAAEiJAACNTQ2NyYCNTQ2MzIXHgEXNiQzMgQXPgE3NjMyFhUUAgceARUUAgAEAyInNxYzMjcXBgEiJjU0NjcuASc3HgEXBw4BBw4BATIkABI1NCYnNhI1NCYjIgcOAQcmJCMiBAcuAScmIyIGFRQSFw4BFRQSAAQBIiYnLgEvAT4BNxcOAQceARUUBgUU2P6H/uKhIR9FQS4oNTk1jk+EAUe1tQFHhFCONDk1KC5BRR8hov7i/ofXtcQyrpmZrjLE/hE1Sh8ZNEkjGmrBWDcBAQIKRAENxwFcAQiVJiNFSgcJDRw9sG5+/sG1tf7Bfm2wPhwNCQdKRSMmlQEIAVwCAS1DCwECATdYwWoaIkk1Gh5K/qyhAR4Bedhft1enAR+JO0tFQGYiZ3R0ZyJmQEVLO4n+4adXt1/Y/of+4qEBnqE+j48+oQGBVTwmQBMdIAtMI21HQQcNBy49/TGVAQgBXMdiu1icASCLERshRXwvbXx8bS98RSEbEYv+4JxYu2LH/qT++JUCzz0uBw0HQUdtI0wLIB0TQCY8VQAAAAYBBP6sCSQGzAATACEALQBBAEkAXgAAASIkAAI1NBIAJDMyBAASFRQCAAQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASc+ATcXDgEBLgEjIgYHJz4BNxcOAQc6ATMyFhcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H13bibixmyGxsyGYsbuH+KTNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFc/n5GLpd6HG+ABFZBiUcSJBcjW7dbHjp8UQMGA0WOQP6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAgBSSkNES0tEQ0pSAfJZPT5YWD49WfxelQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBSAmU3EsTChd/icgHwIDTVJ4JEoXSD0oHwAAAAsBBP6sCSQGzAATAB0AJwAxADsARwBbAGUAbwB5AIUAAAEiJAACNTQSACQzMgQAEhUUAgAEASY/ATYXFg8BBhcmPwE2FxYPAQY3Jj8BNhcWDwEGASInNxYzMjcXBgEnPgEzMhYXByYjIgEyJAASNTQCACQjIgQAAhUUEgAEASY/ATYXFg8BBhcmPwE2FxYPAQY3Jj8BNhcWDwEGASc+ATMyFhcHJiMiBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/yRFgo3CxcXCzcLVxcLUQsXFwtRC3EWCjcLFxcLNwsBi7zJKLSpqbQoyf1iThRrUlJsE04cZ2cBxscBXAEIlZX++P6kx8f+pP74lZUBCAFcAhwWCjcLFxcLNwtXFwtRCxcXC1ELcRYKNwsXFws3C/56ThRrUlJsE04cZ2f+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQMuCxdzGAwLF3MYEAwWqxgMDBarGCgLF3MYDAsXcxj+wHFGZ2dGcQKIEGBmZmAQhvtglQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAt4LF3MYDAsXcxgQDBarGAwMFqsYKAsXcxgMCxdzGAFIEGBmZmAQhgAAAAAGAQT+qQkkBswAKwA9AEcAXQBhAGsAAAEiJAACNTQSACQzMgQAEhUUAgcnPgE1NAIAJCMiBAACFRQSAAQzMjY3Fw4BAyIkJic3HgEEMzIkNjcXDgEEASc2MzIXByYjIgEiJyU3BRYzMj4BNTQvATcXFhUUDgEDJzcXASc2MzIXByYjIgUU2P6H/uKhoQEeAXnY1wF5AR6iT0ctNzyV/vj+pMfH/qT++JWVAQgBXMdlwFhAZeF3sP7H9UxKRd4BHaChARzfREpM9f7I/SFCXoqKXkJHX18EVpJ7/vk4AQdlcEd2R2uDOIODXJubjjiO/nlCXoqKXkJHX1/+rKEBHgF52NgBeQEeoaH+4v6H2JT+8HZRZud8xwFcAQiVlf74/qTHx/6k/viVKSY7MDQBYYX2qiCb4Xl54ZsgqvaFAzQsjIwsaPsAeP46/mJMfUuAaIE6gYCiYaFiAV+OOI4DASyMjCxoAAcBBP6sCSQGzAATACEALQAzAEcAUgBYAAABIiQAAjU0EgAkMzIEABIVFAIABAMiJic3HgEzMjY3Fw4BASImJzcWMzI3Fw4BASc2NxcGATIkABI1NAIAJCMiBAACFRQSAAQBIic3FjMyNxcOARMmJzcWFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/ofXVapQMUaQSEmPRjJQqv4YP3g1NFRkZVM0NHn+yDaB4QzFAhjHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAJZf200VGRlUzQ0ebpzxQzhgf6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAZVQRjg9RkY9OEZQAk87Oi5dXS46OwFwK6AWRRL6cpUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQOUdS5dXS46OwFwihJFFqAAAAAFAQT+rAkkBswAEwAnADcASwBbAAABIiQAAjU0EgAkMzIEABIVFAIABAMiLgE1NDYzMhYzMjYzMhYVFA4BAS4BNTQ2MzIXNjMyFhUUBhMyJAASNTQCACQjIgQAAhUUEgAEAS4BNTQ2MzIXNjMyFhUUBgUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/ofIT49ZPzUpZjQ0Zik1P1mO/i3K4WdOOEBKZlBodP7HAVwBCJWV/vj+pMfH/qT++JWVAQgBXAI7dnRpT2ZKQDhOZ+D+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQGMP2c7MEQeHkQwO2c/AiIswYFTbCFqfl5e0Pw2lQEIAVzHxwFcAQiVlf74/qTHx/6k/viVA15s0F5efmohbFOBwQAAAAAGAOj+rAlABswAEwAiACwAQABrAHoAAAEiJAACNTQSACQzMgQAEhUUAgAEATI3Njc2NTQmIyIOARUUASInNxYzMjcXBgMyJAASNTQCACQjIgQAAhUUEgAEASIuATU0Jic1PgEzMgQzMj4BMzIWFxUOARUUDgEjIiYvAS4BIyIGDwEOAQEyNzY3NjU0JiMiDgEVFAUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of8OSAFCjQaEw4dOiYDEebfLMvOzsss3+bHAVwBCJWV/vj+pMfH/qT++JWVAQgBXP6NnLlRIipi1FjIAUePYs/ohVjVYSkjUbidnc8kCiVDODhBJgokzwLRIAUKMxsTDh06Jv6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhBK4jRRkLGA8UMkwnIv1JnUGOjkGd/lmVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUC6FXBoi8vB4EMCh4PDwoMgQcvL6LBVYR7IoBaWoAie4QBdiNHFwsYDxQyTCciAAAAAAcBBP6sCSQGzAATAB0ALwA3AEsAXQBlAAABIiQAAjU0EgAkMzIEABIVFAIABAE1ITI2NxcOASMBIiY1NDcOAQcnPgEzMhYVFAYBJz4BNxcOAQEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ3DgEHJz4BMzIWFRQGEy4BJzceARcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/fABZZKIIU4mtK/+ejJGDR9MIxg2djdJX0n+VTU6rIEKdpQCoscBXAEIlZX++P6kx8f+pP74lZUBCAFcAsQxRw4fTCMYNnY2SV9IpjKUdwqBrTr+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFvUGaIEqGLAjZGMxoTBBcQQh0eQT8yRgFPLkRQEkYQQ/shlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVA1VGMxoTBBcQQh0eQT8yRgFPO0MQRhJQRAAAAAUBBP6sCSQGzAATABcAIwA3AEMAAAEiJAACNTQSACQzMgQAEhUUAgAEATUhFQEiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/1ZA6D80DNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcAiczSkozM0pK/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qECbFBQAZBZPT5YWD49WfxUlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVA6xZPT5YWD49WQAAAAYBBP6sCSQGzAATABcAGwAvADMANAAAASIkAAI1NBIAJDMyBAASFRQCAAQBNSEVATUhFRMyJAASNTQCACQjIgQAAhUUEgAEATUhFQEFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/ScEBPvUAXK4xwFcAQiVlf74/qTHx/6k/viVlQEIAVwBfwFyAYL+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQJnUFACFlBQ+9OVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUELVBQAaAAAAAHAQT+rAkkBswAEwAdADAAOABMAF8AZwAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzYzMhcHJiMiAyImNTQ2Nw4BByc+ATMyFhUUBgEnPgEzFSIGATIkABI1NAIAJCMiBAACFRQSAAQBIiY1NDY3DgEHJz4BMzIWFRQGEy4BIzUyFhcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/gQsqKmuoyyRlJHPMUwGCCRWJRg6fTNOaEf+aS5EtoF2nAKJxwFcAQiVlf74/qTHx/6k/viVlQEIAVwC1TFMBwcjVyUYO30yTmlHgjqcd4K2Q/6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAbo9eHg9agGGSDQLGQwCGhBCHR9BQTRIAUo0OzdGLvsqlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVA1pINAsZDAIaEEIdH0FBNEgBSjIuRjc7AAYBBP6sCSQGzAArADUAPwBLAFcAYQAAASIkAAI1NBI3Bw4BFRQSAAQzMiQAEjU0AgAkIyIEByc2JDMyBAASFRQCAAQBJzYzMhcHJiMiASc2MzIXByYjIgMyNjU0LwEHBhUUFhciJjU0NxsBFhUUBgEnNjMyFwcmIyIFFNj+h/7ioWBVHiIllQEIAVzHxwFcAQiVlf74/qTHj/75cS96AR+d1wF5AR6iov7i/of+BS6qqKmpLpSQkP4hHnt7e3sebGxsbml+Z4CAZ35piq1zxMRzrQKmHnt7e3sebGxs/qyhAR4BedikASp931S3Ycf+pP74lZUBCAFcx8cBXAEIlVBIQVBXof7i/ofY2P6H/uKhAXNCeHhCagFTSjAwSioBW3tnhqDHx6CGZ3tQqoifswEv/tGzn4iq/stKMDBKKgAABwEE/qwJJAbMABMAFwAjACsAPwBLAFMAAAEiJAACNTQSACQzMgQAEhUUAgAEATUhFQEiJic3FjMyNxcOAQEnPgE3Fw4BATIkABI1NAIAJCMiBAACFRQSAAQBIiYnNxYzMjcXDgETLgEnNx4BFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of+IQIQ/VxDfTA8T2VmTTwvff6EFW+KK0MxoQJVxwFcAQiVlf74/qTHx/6k/viVlQEIAVwCY0N9LzxNZmVPPDB99n+hMkMrim/+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQGfUFABqj44NVtcNTo9AaNNHVRAK0xl+0KVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUC+T06NVxbNTg+AaMiZUwrQFQdAAAAAAUBBP6sCSQGzAATAB8AKwA/AEsAAAEiJAACNTQSACQzMgQAEhUUAgAEAScSITIWFwcuASMgAyImNTQ2MzIWFRQGATIkABI1NAIAJCMiBAACFRQSAAQBIiY1NDYzMhYVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/ZM68gFTWqpfIliWU/7QpTNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcAiczSkozM0pK/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEB+zYBByktSCklAXhZPT5YWD49WfvwlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBBBZPT5YWD49WQAAAAUBBP6sCSQGzAATACEAKAA8AEMAAAEiJAACNTQSACQzMgQAEhUUAgAEASc3FzcXNxc3FwcnBycBJy0BNwEVEzIkABI1NAIAJCMiBAACFRQSAAQBJTUBFw0BBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/3OuTSDt6amt4M0ubOoqP5GGAFQ/romAeNnxwFcAQiVlf74/qTHx/6k/viVlQEIAVwDKf4FAeMm/roBUP6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAWOaPm6ooaGobj6apKOjAQxMa69G/v4I/JuVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUCw6IIAQJGr2sABQEE/qwJJAbMABMALQA5AE0AWQAAASIkAAI1NBIAJDMyBAASFRQCAAQDNTI2NTQmIzUyNjU0JiM1MhYVFAceARUUBgEiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/VEWDcuLTBLSXdtLhocgf5JM0pKMzNKSgE3xwFcAQiVlf74/qTHx/6k/viVlQEIAVwCMTNKSjMzSkr+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQF3UDUpIChQJxkgHVBPPjssFzkhSWUC6Vk9PlhYPj1Z+/CVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEEFk9PlhYPj1ZAAAAAAYBBP6sCSQGzAAuAEgAVABcAHQAiQAAASIkAAI1NBIAJDMyBAASFRQGByYnPgE1NAIAJCMiBAACFRQSAAQzMiQ3MjY3BgQDNTI2NTQmIzUyNjU0JiM1MhYVFAceARUUBgEiJjU0NjMyFhUUBgEnPgE3Fw4BASInPgE1NCY1NDYzMhYVPgEzMhYVFA4BAy4BIyIGByc+ATcXDgEHOgEzHgEXBRTY/of+4qGhAR4BedjXAXkBHqIJCSUlBgaV/vj+pMfH/qT++JWVAQgBXMetATZ8Hz4ejf6I80RYNy4tMEtJd20uGhyB/kkzSkozM0pK/tBGLpd6HG+ABMqBhSMfIGFPSGkWKRJRXGCr0EGJRxIkFyNbt1seOnxRAwYDRY5A/qyhAR4BedjYAXkBHqGh/uL+h9gxYi8dCiZNKMcBXAEIlZX++P6kx8f+pP74lXJlAgKLoAF3UDUpIChQJxkgHVBPPjssFzkhSWUC6Vk9PlhYPj1ZAS4mU3EsTChd+6UwHD4fK19JbHljTQYGXlBQekUC0iAfAgNNUngkShdIPQQkHwAAAAUBBP6sCSQGzAATAC0AOQBNAFkAAAEiJAACNTQSACQzMgQAEhUUAgAEAzUyNjU0JiM1MjY1NCYjNTIWFRQHHgEVFAYBJz4BMzIWFwcmIyIBMiQAEjU0AgAkIyIEAAIVFBIABAEnPgEzMhYXByYjIgUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of/RFg3Li0wS0l3bS4aHIH9204Ua1JSbBNOHGdnAcbHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAGjThRrUlJsE04cZ2f+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFjUDUpIChQJxkgHVBPPjssFzkhSWUC8xBgZmZgEIb7dJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQQGEGBmZmAQhgAADQEE/qwJJAbMABMAHQAnADEASwBVAGkAcAB6AIQAjgCYAJ8AAAEiJAACNTQSACQzMgQAEhUUAgAEASY/ATYXFg8BBhcmPwE2FxYPAQY3Jj8BNhcWDwEGATUyNjU0JiM1MjY1NCYjNTIWFRQHHgEVFAYBJzYzMhcHJiMiATIkABI1NAIAJCMiBAACFRQSAAQBJzYhFSIGASY/ATYXFg8BBhcmPwE2FxYPAQY3Jj8BNhcWDwEGASc2MzIXByYjIgEuASM1IBcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/JEWCjcLFxcLNwtXFwtRCxcXC1ELcRYKNwsXFws3CwFjRFg3Li0wS0l3bS4aHIH9izxniYlnPE9lZAHixwFcAQiVlf74/qTHx/6k/viVlQEIAVz+azaAAP92nQN7Fgo3CxcXCzcLVxcLUQsXFwtRC3EWCjcLFxcLNwv+aDxniYlnPE9lZAFCNp12AP+A/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEDLgsXcxgMCxdzGBAMFqsYDAwWqxgoCxdzGAwLF3MY/kFQNSkgKFAnGSAdUE8+OywXOSFJZQMGNHZ2NFr7jZUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQV7PHRQLv0xCxdzGAwLF3MYEAwWqxgMDBarGCgLF3MYDAsXcxgBRzR2djRaAQgyLlB0AAAABwEE/noJJAbMACkAOABHAEsAZABwAHwAAAEmJAoBNTQSACQzMgQAEhUUCgEEBzc+AhI1NAIAJCMiBAACFRQSHgEXBSImNREeATMyNjcRFAYjJzMyNjURDgEjIiYnERQWNxEzESUuAjU0NjMyHgEzMj4BMzIWFRQOAQcRIQMiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgQXqv7h1XWhAR4BedjXAXkBHqJ11f7hqiaS9LRjlf74/qTHx/6k/viVY7T1kQEcq9BlvGFiu2XQqw4OiaJVm0JCm1Wicjz+l2GgYDglLLHthYXtsislOGCgYf1qFTNKSjMzSkoCjTNKSjMzSkr+yyq8AQwBSLfYAXkBHqGh/uL+h9i3/rj+9LwqXi6w8QEjoccBXAEIlZX++P6kx6H+3fGwLq+xkgHPDg4ODv4xkrFQg3ABlQwNDQz+a3CD8AGI/ngnLoKWSzIlICAgICUyS5aCLgGCATtZPT5YWD49WVk9PlhYPj1ZAAAJAQT+egkkBswAKQA4AEcASwBkAHsAiwCbAKcAAAEmJAoBNTQSACQzMgQAEhUUCgEEBzc+AhI1NAIAJCMiBAACFRQSHgEXBSImNREeATMyNjcRFAYjJzMyNjURDgEjIiYnERQWNxEzESUuAjU0NjMyHgEzMj4BMzIWFRQOAQcRIQEnPgEzMhYXLgInNx4CFwcuASMiBgUiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGBBeq/uHVdaEBHgF52NcBeQEeonXV/uGqJpL0tGOV/vj+pMfH/qT++JVjtPWRARyr0GW8YWK7ZdCrDg6JolWbQkKbVaJyPP6XYaBgOCUsse2Fhe2yKyU4YKBh/Wr+px5Aj1MXIxEnY3NBHEybjzgbLE4jWIsDy1KIUVGIUlOIUFCIU0NsQEBsQ0JtQEBtQis8PCsrPT3+yyq8AQwBSLfYAXkBHqGh/uL+h9i3/rj+9LwqXi6w8QEjoccBXAEIlZX++P6kx6H+3fGwLq+xkgHPDg4ODv4xkrFQg3ABlQwNDQz+a3CD8AGI/ngnLoKWSzIlICAgICUyS5aCLgGCAT0+MDoFBSE4NRpAHE5gNzkLDDSSUYhSU4hQUIhTUohRPEFsQkNsQEBsQ0JsQYg8Kys9PSsrPAAAAAAHAQT+egkkBswAKQA4AEcASwBkAGsAcgAAASYkCgE1NBIAJDMyBAASFRQKAQQHNz4CEjU0AgAkIyIEAAIVFBIeARcFIiY1ER4BMzI2NxEUBiMnMzI2NREOASMiJicRFBY3ETMRJS4CNTQ2MzIeATMyPgEzMhYVFA4BBxEhASctATcBFQUlNQEXDQEEF6r+4dV1oQEeAXnY1wF5AR6iddX+4aomkvS0Y5X++P6kx8f+pP74lWO09ZEBHKvQZbxhYrtl0KsODomiVZtCQptVonI8/pdhoGA4JSyx7YWF7bIrJThgoGH9av7pGAFQ/romAeMCyf4FAeMm/roBUP7LKrwBDAFIt9gBeQEeoaH+4v6H2Lf+uP70vCpeLrDxASOhxwFcAQiVlf74/qTHof7d8bAur7GSAc8ODg4O/jGSsVCDcAGVDA0NDP5rcIPwAYj+eCcugpZLMiUgICAgJTJLloIuAYIBAUxrr0b+/giioggBAkavawAFAQT+rAkkBswAEwAdACUAOQBBAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNjMyFwcmIyIBNTI2NxcOAQEyJAASNTQCACQjIgQAAhUUEgAEASImJzceATMFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/gUuqqipqS6UkJD+GILMXixm5gHsxwFcAQiVlf74/qTHx/6k/viVlQEIAVwDP4zmZixezIL+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFxQnh4QmoBJFA6P0JGQf1RlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAq9BRkI/OgAHAQT+rAkkBswAEwAdACkAPQBFAFEAWQAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzYzMhcHJiMiAyImNTQ2MzIWFRQGATIkABI1NAIAJCMiBAACFRQSAAQBJz4BNxcOAQEiJjU0NjMyFhUUBgEuASc3HgEXBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/3aLcW3usIstJybsTRKSjQ0SkkBF8cBXAEIlZX++P6kx8f+pP74lZUBCAFc/kASdIspOzGhA1Q0Sko0NEpJAQZ+oTE6Kotz/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBtDympjyXAWFYPj5ZWT49WfyklQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBVRDIFRAJ0pk/eZZPT5ZWT49WQH4ImRKJ0BUIAAAAAAFAQT+rAkkBswAEwAdADEARQBZAAABIiQAAjU0EgAkMzIEABIVFAIABAEnNjMyFwcmIyInIiY1NDY3LgEnNx4BFwcOAQcOAQEyJAASNTQCACQjIgQAAhUUEgAEASImJy4BLwE+ATcXDgEHHgEVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/eIyxLW1xDKumZmhNUofGTRJIxpqwVg3AQECC0MBDccBXAEIlZX++P6kx8f+pP74lZUBCAFcAgEtQwsBAgE3WMFqGiJJNRoeSv6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAVg+oaE+j9RVPCZAEx0gC0wjbUdBBw0HLj39lZUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQJrPS4HDQdBR20jTAsgHRNAJjxVAAkBBP6sCSQGzAANABsAKAA2AEoAVABoAHwAkAAAASc+ATU0Jic3HgEVFAYXJz4BMzIWFwcuASMiBhMiJzceATMyNjcXDgETLgE1NDY3Fw4BFRQWFxMiJAACNTQSACQzMgQAEhUUAgAEASc2MzIXByYjIiciJjU0NjcuASc3HgEXBw4BBw4BATIkABI1NAIAJCMiBAACFRQSAAQBIiYnLgEvAT4BNxcOAQceARUUBgJdQCkhISlALysrMzI+YC8vYT0yNEYhIUZnWHUyNEYhIUY0Mj1hzi8rKy9AKCIiKH3Y/of+4qGhAR4BedjXAXkBHqKi/uL+h/3iMsS1tcQyrpmZoTVKHxk0SSMaasFYNwEBAgtDAQ3HAVwBCJWV/vj+pMfH/qT++JWVAQgBXAIBLUMLAQIBN1jBahoiSTUaHkoD/jI0RiEhRjQyPWEvL2CrQC8rKy9AKSEhAa1aQCgiIihALyv+lz5gLy9hPTI0RiEhRjT6fKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFYPqGhPo/UVTwmQBMdIAtMI21HQQcNBy49/ZWVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUCaz0uBw0HQUdtI0wLIB0TQCY8VQAAAAAIAQT+rAkkBswAKgA4AEgAVABgAGYAcgB4AAABIiYnNxYzMiQAEjU0AgAkIyIEAAIVFBIXFSYCNTQSACQzMgQAEhUUAgAEJTI2NTQmLwEHDgEVFBYXIi4BNTQ2NxsBHgEVFA4BAS4BIyIHJzYzMhYXASImNTQ2MzIWFRQGASc2NxcGASImNTQ2MzIWFRQGEyYnNxYXBRR55GZwo7DHAVwBCJWV/vj+pMfH/qT++JWYgqbEoQEeAXnY1wF5AR6iov7i/of9YFNuNSNpaSI1a1VNeUU8JqmqJztGeQLqZ6tcgIwgmZNmw239CjNKSjMzSkr+wUhc3hq+A34zSkozM0pK2U6+Gt5c/qw2MSc+lQEIAVzHxwFcAQiVlf74/qTHx/6ig22PAZnt2AF5AR6hof7i/ofY2P6H/uKhjXJXRI1Cy8tCjURZcEtIfU9Oo0gBPP7ESKNOT31IAZ08NTxKQjtAAddZPT5YWD49WQEwJLVPTEP+N1k9PlhYPj1ZATCZQ0xPtQAABwEE/qwJJAbMABMAHQAsADQASABXAF8AAAEiJAACNTQSACQzMgQAEhUUAgAEASc2MzIXByYjIiUnPgE3LgEnNxYXByMiBgMnPgE3Fw4BATIkABI1NAIAJCMiBAACFRQSAAQBLgErASc2NxcOAQceARcDLgEnNx4BFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of+BCyuo6OvLJuLjP4hImfEVEKNShXMvBgWW+SQEnOKKzszoAIJxwFcAQiVlf74/qTHx/6k/viVlQEIAVwDMnTjXBYXvcsUSY5CVcRnB36gMjorinP+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQG7PYuLPX3aPDpGCjBJFkNAnzFHAeNDH1RBJk1k+vqVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUCwkFHMaA/QxZJMApGOgHoIWRMJkFUHwAACwDE/qwJZAbMAB8AOwBSAGAAagB0AIsApwCvALkAwQAAAS4BNTQSACQzMgQAEhUUBgcnNjU0AgAkIyIEAAIVFBcBMjY1NCcTBS4BIyIGFRQWFw4BFRQWMzI2Nx4BFyInBiMiJjU0NyY1NDYzMhclAxYVFAYFIiQnNxYEMzIkNxcGBAEnNjMyFwcmIyIDIic3FjMyNxcGASImNTQ3AwU2MzIWFRQHFhUUBiMiJwYnMjY3HgEzMjY1NCYnPgE1NCYjIgYHJRMGFRQWAS4BJzceARcBIic3FjMyNxcGASc+ATcXDgEBKRIToQEeAXnY1wF5AR6iExJDGJX++P6kx8f+pP74lRgBOjZLRIX+ww1EKTZLKSMvOUw1K0YWFEosUT07SFZ7PiJ6V10/Aau1NHoCF7b+tIZjdQEYmJkBF3Vjhf61/i4uq52dqy6YgoLgcX0kbV1lZCZ2A1dXejS1Aas/XVd6Ij57Vkg7PVEsShQWRis1TDkvIylLNilDDv7DhURL/PwllV8Sb7IuAeZ5diZkZV1tJH3++UgvsW8SXpUBqUKKR9gBeQEeoaH+4v6H2EeKQjxob8cBXAEIlZX++P6kx29o/dRLNk0lAT92KS5MNidAFxJJLjVMMSouNlA3LntWVz4zP1d7RaD+TjxPV3q9eGoaUVtbURpqeAI5Qnh4QmoBzkBIODdGQfxMeldPPAGyoEV7Vz8zPldWey43UDYuKjFMNS5JEhdAJzZMLil2/sElTTZLBMhKahVOGIFa/nhBRjc4SEABZCRagRhOFWoAAAgA8P6sCTgGzAAqADYAQwBNAFkAYQBtAHUAAAEiJCc3FgQzMiQAEjU0AgAkIyIEAAIVFBcHLgE1NBIAJDMyBAASFRQCAAQBMjY1NC8BBwYVFBYXIiY1NDY3GwEWFRQGJSc2MzIXByYjIgMiJjU0NjMyFhUUBgEnPgE3Fw4BASImNTQ2MzIWFRQGAS4BJzceARcFKNj+hI1TgAFQvscBXAEIlZX++P6kx8f+pP74lRI4FBahAR4BedjXAXkBHqKi/uL+h/woaX5ngIBnfmmKrTk6xMRzrQFPPqTCw6M+ip6ewjNKSjMzSkr+iQ50kyxAN6wDgjNKSjMzSkoBEYKsN0Ask3T+rKSOH3iJlQEIAVzHxwFcAQiVlf74/qTHX1ptRpRM2AF5AR6hof7i/ofY2P6H/uKhAU97Z4agx8eghmd7UKqIUKhaAS/+0bOfiKo6NMDANKQBf1k9PlhYPj1ZAgxOFUg6MEdX/d1ZPT5YWD49WQIMF1dHMDpIFQAABQEE/qwJJAbMABMAJwAzAEcAUwAAASIkAAI1NBIAJDMyBAASFRQCAAQBIiY1ND4BMzIeARUUBiMiJiMiBgMiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/5ANExdpGhpo11LNSWCQkKBnTNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcAiczSkozM0pK/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBWko4QmY6OmZCOEokJAJcWT0+WFg+PVn8mpUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQNmWT0+WFg+PVkABwEE/qwJJAbMABMAJwAzAEcATwBbAGMAAAEiJAACNTQSACQzMgQAEhUUAgAEASImNTQ+ATMyHgEVFAYjIiYjIgYDIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEnPgEzFSIGASImNTQ2MzIWFRQGEy4BIzUyFhcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/lw8Tl2cXl6cXU48KWJCQmK8NElKMzRJSQEsxwFcAQiVlf74/qTHx/6k/viVlQEIAVz+RDVFr3xglwOfNElKMzRJSe9DmGB8r0X+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFMUDtBaz8/a0E7UBsbAnRZPT5YWD49WfyQlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVBY48P0pQN/2kWT0+WFg+PVkCHj43UEo/AAAAABQBBP6sCSQGzAATACcAMwBHAE8AWwBjAGcAawBvAHMAdwB7AH8AgwCHAIsAjwCTAJcAAAEiJAACNTQSACQzMgQAEhUUAgAEASImNTQ+ATMyHgEVFAYjIiYjIgYDIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEnPgEzFSIGASImNTQ2MzIWFRQGEy4BIzUyFhcFNTMVMxEzETMRMxEzETMRMxEzETMRMxEzETMRMxEzETMRMxEzETMRMxEzETMRMxEzNTMVBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/5cPE5dnF5enF1OPCliQkJivDRJSjM0SUkBLMcBXAEIlZX++P6kx8f+pP74lZUBCAFc/kQ1RLB8YJcDnzRJSjM0SUnvQ5hgfLFD+ckyXzJfMl8yXzJfMl8yXzJfMl8yXzJfMl8y/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBTFA7QWs/P2tBO1AbGwJ0WT0+WFg+PVn8kJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQWOPD9KUDf9pFk9PlhYPj1ZAh4+N1BKP6qoqAFm/poB6P4YAjj9yAJW/aoCfv2CAn79ggJ+/YICVv2qAjj9yAHo/hgBZv6aqKgAAAgBBP6sCSQGzAATACkAMAA7AE8AVwBiAGoAAAEiJAACNTQSACQzMgQAEhUUAgAEASImNTQ+ATMyHgEVFAYjIi4BIyIOAQMhLgEjIgYDIic3FjMyNjcXAhMyJAASNTQCACQjIgQAAhUUEgAEASc+ATcXDgEBIAM3HgEzMjcXBgMuASc3HgEXBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/2LMESL8JeX8IxFMC2Em1JRnIQlAyo+1IKD1W40OQw4K2JkDEsgx8cBXAEIlZX++P6kx8f+pP74lZUBCAFc/vwkaX0iPyWMAx//AB5KDGZhKzcMOS5yjCZAIn1p/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBZUI/idR4eNSJP0IzMjIzAV1aY2MBMgpKCV1jCv7//AKVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUFaj01dU0aWIf+WQEBCmNdCUoKAWw7h1gaTXU1AAAIAOv+rAk9BswAKwA/AEsAUwBlAHUAgQCJAAABIiQAAjU0EgAkMzIEABIVFAYHJz4BNTQCACQjIgQAAhUUEgAEMzIkNxcGBAEiJjU0PgEzMh4BFRQGIyImIyIGASImJzcWMzI3Fw4BASc+ATcXDgEBIi4BJy4CJz4BMzIeARUUBicyNjU0LgEjIgceARceAgEiJic3FjMyNxcOARMuASc3HgEXBPvY/of+4qGhAR4BedjXAXkBHqIXFUIOEJX++P6kx8f+pP74lZUBCAFcx8MBWIJbjv53/nYuNk17RUZ7TTYuJFktLVn+6kB7MTVPaGlPNTF7/oI6L6J+E3OMBdFaf18rK0xWPFfZeobbgqGAYXpvu3OlfyxSOSlTav7EQHsxNU9oaU81MXv9KYt0En6jL/6soQEeAXnY2AF5AR6hof7i/ofYT5dIPTp5PscBXAEIlZX++P6kx8f+pP74lZJ+FpiyAX83LDRePDxeNCw3GRkCeTs6Ll1dLjo7ASAmS2UiRB9V+8dJcj4/WjgLWl5mrWt3mEZvWleNVFobWVM7Zj8Ckzs6Ll1dLjo7ASBAVR9EImVLAAAAAAgBBP6sCSQGzAAVABwAKAAwAD0ARQBZAG0AACUiJjU0PgEzMh4BFRQGIyIuASMiDgEDIS4BIyIGLwE2Ny4BJzcWFwcGAyc+ATcXDgEBJi8BPgE3Fw4BBxYXAy4BJzceARcBIiQAAjU0EgAkMzIEABIVFAIABCcyJAASNTQCACQjIgQAAhUUEgAEA3YwRIvwl5fwjEUwLYSbUlGchCUDKj7UgoPVsix9lUmZUAnazgy7wQx0kzA3OKoDt567C2rTagpSmkeYegl/qjg3L5N0/cfY/of+4qGhAR4BedjXAXkBHqKi/uL+h9fHAVwBCJWV/vj+pMfH/qT++JWVAQgBXBFCP4nUeHjUiT9CMzIyMwFdWmNj0DZwMCUxCkUdfjgcAYFFFEg9K0dW/d2MHDhATQ5FCzEkMW8B1xZWRys9SBT5wqEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioVCVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUAAAwBBP6sCSQGzAATABcAGwApADcAOwA/AEsATwBjAGcAcwAAASIkAAI1NBIAJDMyBAASFRQCAAQBMxEjEzMRIwMhMjY1NCYjISIGFRQWNyImNTQ2MyEyFhUUBiMlITUhBTMRIyUiJjU0NjMyFhUUBgEzESMDMiQAEjU0AgAkIyIEAAIVFBIABAEzESMnIiY1NDYzMhYVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/VM8PNw8PLwDbGaFhWb8lGaFhWZJXFxJA2xKW1tK+9YE6PsYAlY8PP6+NEpKNDRKSQHpPDy+xwFcAQiVlf74/qTHx/6k/viVlQEIAVwCYTw8OjRKSjQ0Skn+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQHwAZD+cAGQ/kyFZmaFhWZmhUZcSUpbW0pJXIc85QGQ4FVBQVZWQUBW/ZABkPzQlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAaABkOBVQUFWVkFAVgAKAQT+egkkBswAIQAtAFgAZgBvAH0AhQCwAL4AxgAABSYCNTQSACQzMgQAEhUUAgcnNhI1NAIAJCMiBAACFRQSFwEiJi8BFjMyNwcOAQUiJjcmNTQ2NxM3Aw4BFRQWFwYVFBYzMj4BNTQuAjURFxEUHgIVFA4BExE+ATMyFhcRLgEjIgYDITUuASMiBgcBJz4BMzIWFwcuASMiBi8BPgE3Fw4BASIuATU0PgI1ETcRFA4CFRQeATMyNjU0Jz4BNTQmJwMXEx4BFRQHFgYBJz4BMzIWFwcuASMiBiUuASc3HgEXAl6fu6EBHgF52NgBeQEeobufS524lf74/qTHx/6k/viVuJ0CazRoMhFtcnJtETJn/fySqQRRdnAoTylhfi4rDXhvRmc6MEAwTzNDM1SRDUe3amq4Rka2bGu2MAKjPqtpaKs+/ss6LIdJSYgrOh9sNzdsZEQ6p3AUYowEZ1qQVTNDM08wQDA6aEVveA0sLX1iKU8ocXVRBar+oTosh0lJiCs6H2w3N2wBqjOMYhRxpjpLjwGR59gBeQEeoaH+4v6H2Of+b48phAF93ccBXAEIlZX++P6kx93+g4T+zgoKVhoaVgoKMlhKHDkvPA0D9wP7xgYiEgoTBRYSKzAQGxITGyA1LQQ3DfvxKCsgMCwnPiQBqgHWODw8OP4qHzo6ARBROz8/OwGvM0BKSkAzMTw8hS1WcB9OGl76JSQ+JywwICsoBA8N+8ktNSAbExIbEDArEhYFEwoSIgYEOgP8CQ08LzkcSlgE2TNASkpAMzE8PIVMXhpOH3BWAAAABQEE/qwJJAbMABMAIwA3AEMATwAAASIkAAI1NBIAJDMyBAASFRQCAAQDIi4BNTQ+ATMyHgEVFA4BAzIkABI1NAIAJCMiBAACFRQSAAQDIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H11+VVluWWVmWW1aVX8cBXAEIlZX++P6kx8f+pP74lZUBCAFcmTNKSjMzSkoCjTNKSjMzSkr+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFyM1o4UopTU4pSOFoz/t6VAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEEFk9PlhYPj1ZWT0+WFg+PVkABwEE/qwJJAbMABMAIQAtAEEASQBVAF0AAAEiJAACNTQSACQzMgQAEhUUAgAEAyImNTQ+ATMyHgEVFAYBIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEnPgEzFSIGASImNTQ2MzIWFRQGEy4BIzUyFhcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H11l+OmI7PGI6fv4UNEpKNDRKSQFdxwFcAQiVlf74/qTHx/6k/viVlQEIAVz+Py5IuHtwngPbNEpKNDRKScE+n3B8uEf+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQElf1k8YTo6YTxZfwLNWD4+WVk+PVn8XpUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQWTNEFGRj3911k9PllZPj1ZAfE4PUZGQQAAFQDm/qwJQgbMACkANQBBAFMAVwBjAGcAbwBzAHcAewCHAIsAjwCTAJcAnwCjAKcAqwCvAAABIiQnNxYEMzIkABI1NAIAJCMiBAACFRQXByY1NBIAJDMyBAASFRQCAAQBMjY1NC8BBwYVFBYXIiY1NDcbARYVFAYlIiY1NDYzMhYVFAYjIiYjIgYBNTMVASImNTQ2MzIWFRQGAREzETcnPgE3Fw4BBxEzETMRMxEzETMRASImNTQ2MzIWFRQGAREzETMRMxEzETMRMxEzESUuASc3HgEXBREzETMRMxEzETMRMzUzFQUy1P6JjEqGAU+4xwFcAQiVlf74/qTHx/6k/viVDD0foQEeAXnY1wF5AR6iov7i/of8FGl+Z4CAZ35piq1zxMRzrQG9RGDNpaXNYEQwXEJCXP0fMgHtNElKMzRJSf4+MhgOeoczPj2hPzJfMl8yAmk0SUozNElJ/cIyXzJfMl8yAWmGoT0+M4h5/ugyXzJfMl8y/qyfiiZ6hZUBCAFcx8cBXAEIlZX++P6kx0xKZ35/2AF5AR6hof7i/ofY2P6H/uKhAU97Z4agx8eghmd7UKqIn7MBL/7Rs5+IqldfRGJxcWJEXyQkBBqoqP5QWT0+WFg+PVkBsAFm/poWThdDPjJJUi8B6P4YAjj9yAJW/ar+UFk9PlhYPj1ZAbACfv2CAn79ggJ+/YICVv2qFhlSSTI+QxdkAjj9yAHo/hgBZv6aqKgAGAB8/noJrAbMAB8AWgBuAHoAiACMAJwAqgCuALIA7QDxAPUA+QEJARcBKwEvATMBNwE7AT8BQwFHAAABJjU0EgAkMzIEABIVFAcnPgE1NAIAJCMiBAACFRQWFwEiLgECNTQ2MzIXByYjIgYVFB4CMzI2NTQuAScuAScuASMiFRQWFwcuATU0NjMyFhceARceAhUUBgEuATU0NjMyFhcHLgEjIgYVFBYXASInNx4BMzI2NxcGJyImNTQ+ATMyHgEVFAYBNTMVASIuATU0PgEzMh4BFRQOAScyPgE1NCYjIg4BFRQWAxEzERcRMxEBIiY1ND4BNz4BNz4BMzIWFRQGByc+ATU0IyIGBw4BBw4CFRQWMzI+AjU0JiMiByc2MzIWFRQCDgEBETMRFycRMxMRMxEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQuASMiBhUUHgEBJz4BNTQmIyIGByc+ATMyFhUUBgERMxEzETMRFxEzETcRMxEXJxEzExEzETM1MxUBEAyhAR4BedjXAXkBHqIMSgMDlf74/qTHx/6k/viVAwMBrnfovHE5NBYhFREPCxRlpstmXHIzeGguQRkjIgsSSEM3SlAtKyxDIRo9JXGFOaH9/EZTMjUuUhJFECkUDBVMQANapJkSR5ZOTpdGEpmkT2g0UzAwVDNn/DEyAYVKeUZPhU9LeEZPhFA5YDpsTThhOmzZMl8yBDd8ojmFcSY8GiFDLCwsUEo3Q0gSCiMjGUEuZ3kzclxmy6ZlFAsPERUhFjU4cbzo+7EykTIyXzICQE+FT0Z5SlCET0Z4S01sOmA5TWw6YQIDOUFLFQwTKRFFElIuNTJS/A0yXzJfMl8ykTIyXzJfMgIeTlDYAXkBHqGh/uL+h9hQTjYaNBrHAVwBCJWV/vj+pMcaNBr8JoHZAQ+NT1sOTgwtLXzyw3VgTC5gfFgnXCc4KSkypVssZblAMkdPMihUIF+Odj1vjQG6btdXR1dDMyUpIiUpTcBn/lAxThYZGRZOMehxV2Wta2utZVdxBIioqP3SUYlTWpdbUIhUWphbUEV0RF1/RXNEXYAB3gFm/poPAff+GPpejW89do5fIFQoMk9HMkC5ZSxbpTIpKTgnXCdYfGAuTGB1w/J8LS0MTg5bT43+8dmBBbMCJ/3ZHw4CVv2qAn79gv3SW5haVIhQW5daU4lRUIBdRHNFf11EdEX99ihnwE0pJSIpJTNDV0dX1wN6An79ggJ+/YIOAmT9qhECJ/3ZIA8B6P4YAWb+mqioAAgBBP6sCSQGzAATACUALAA4AEwAVABgAGgAAAEiJAACNTQSACQzMgQAEhUUAgAEJyIuAT0BND4BMzIeAR0BFA4BAyE0JiMiBgMiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASc+ATMVIgYBIiY1NDYzMhYVFAYTLgEjNTIWFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/ofXO2I6OmI7PGE6OmHNASJSPz9SzzNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFc/lc2S791Z6EDjzNKSjMzSkrdQKJndb9L/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qHRO2I67TthOzthO+06YjsBvkRTUwFKX1JSX19SUl/8M5UBCAFcx8cBXAEIlZX++P6kx8f+pP74lQXLPEREUDn9x19SUl9fUlJfAf47OVBERAARAQT+rAkkBswAEwAdACkAMwA3AEcAVwBjAG0AgQCNAJsApQC1AMUA0QDfAAABIiQAAjU0EgAkMzIEABIVFAIABAEmPwE2FxYPAQYXLgE/ATYXHgEPAQY3Jj8BNhcWDwEGFzUhFQEiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGASY/ATYXFg8BBgEyJAASNTQCACQjIgQAAhUUEgAEAS4BPwE2Fx4BDwEGASc+ATMyFhcHLgEjIgYBJj8BNhcWDwEGJyIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYTLgEjIgYHJz4BMzIWFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of8kRYKOAoXGAw3DFgJCAVSDBUKCAVTC3IWCjgKFxgMNwzgAVj9f1KIUVGIUlOIUFCIU0NsQEBsQ0JsQUFsQis8PCsrPT0C/xYKOAoXGAw3DP6VxwFcAQiVlf74/qTHx/6k/viVlQEIAVwCigkIBVIMFQoIBVML+8ofLF81L2U3EjFdKi5QBIQWCjgKFxgMNwyMUohRUYhSU4hQUIhTQ2xAQGxDQm1AQG1CKzw8Kys9PV0kTy4rXDISN2YuNWAr/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qECPgsXchgLCxZzFxIFEwqqGAsEEwqrFyYLF3IYCwsWcxerUFABpFGIUlOIUFCIU1KIUTxBbEJDbEBAbENCbEGIPCsrPT0rKzz+TQsXchgLCxZzF/4clQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAdIFEwqqGAsEEwqrFwQlPhcUEA5EDg4R++8LF3IYCwsWcxf5UYhSU4hQUIhTUohRPEFsQkNsQEBsQ0JsQYg8Kys9PSsrPAJMEhEODkQOEBQXAAAAAAcA/v6sCSoGzAArAD8ASwBXAGMAbwB7AAABIiQAAjU0EgAkMzIWFwcuASMiBAACFRQSAAQzMiQAEjU0Aic3FhIVFAIABAEiJjU0PgEzMh4BFRQGIyImIyIGASImJzcWMzI3Fw4BISImJzcWMzI3Fw4BASc/ARcnNxcPAScXJSc/ARcnNxcPAScXLQE/ARcnNxcPAScXBQ7Y/of+4qGhAR4Bedhtz14iV71kx/6k/viVlQEIAVzHxwFcAQiVU0pGUFei/uL+h/6ALjZNe0VGe002LiRZLS1Z/vRAezE1T2hpTzUxewLjQHsxNU9oaU81MXv+5dkP2gKcEswP1QisAXniB70IpQnUB7cGqwGK/wAM8AW8D/AM8ATM/qyhAR4BedjYAXkBHqErKUglJ5X++P6kx8f+pP74lZUBCAFcx5IBC3Enev7hnNj+h/7ioQF/Nyw0Xjw8XjQsNxkZAnk7Oi5dXS46Ozs6Ll1dLjo7AYpGMJkeMjlBMZkgNkYfM74hFjwcM7weFlQ7N80mK0E2OM8oLQAACQEE/qwJJAbMABMAIQAlACkAPQBDAEcASwBRAAABIiQAAjU0EgAkMzIEABIVFAIABAMiJjU0PgEzMh4BFRQGAScBFwMBNwETMiQAEjU0AgAkIyIEAAIVFBIABAEnNjMVIgkBNwEFJwEXJyYjNTIXBRTX/of+4qKiAR4BedfYAXkBHqGh/uL+h9iIp1eLTU6KV6b9UDwBjzwL/hwuAeR1xwFcAQiVlf74/qTHx/6k/viVlQEIAVz+cjaV6ssD/v5xPAGP/kAuAeQuMn7L6pX+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFwbVhCdUpKdUJYbQIbNgG3Nv56AVVC/qv8UpUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQWFPIhQ/UIBtzb+SQVCAVVCxHRQiAAAAAAEAQT+rAkkBswAEwAfADMAPwAAASIkAAI1NBIAJDMyBAASFRQCAAQBIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEiJjU0NjMyFhUUBgUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of9yTNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcAiczSkozM0pK/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEEEFk9PlhYPj1Z/ECVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUDwFk9PlhYPj1ZAAoBBP6sCSQGzAATABsAMwBHAFMAZwBuAHoAggCJAAABIiQAAjU0EgAkMzIEABIVFAIABAEuASc3HgEXASAlLgE1NDY3PgIzMh4BFx4BFRQGBwQlICU2NTQmJyYkIyIEBw4BFRQXBAMiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEJS4BJzcWFwEiJjU0NjMyFhUUBhMnPgE3Fw4BASc2NxcOAQUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of8zojTSjhBt3sCVf7C/s4QEQwMWdfhaGjh2FgMDBAR/s7+wgEWARIZBwea/tt0dP7bmgcHGQESSjNKSjMzSkoBLccBXAEIlZX++P6kx8f+pP74lZUBCAFcA5wbTS4gYjz+YzNKSjMzSkrGBXy4QDhK1PpJKDxiIC5N/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEDIQtRSDo+Rwn9UthLk0g+djofOiUlOh86dj5Ik0vYULh6fC5ZKzM3NzMrWS58ergDQ1k9PlhYPj1Z+/qVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JXzCzAlTVMQAslZPT5YWD49Wf7LUAlGPzpIUf4XShBTTSUwAAAWAKD+3gmIBpoAJwBPAFMAVwBbAF8AYwCDAKYAqgCuALoAvgDLANUA2QDjAOcA6wD4AQQBEAAAASIkJgI1NDcuATU0NjMyHgEXPgEzMhYXPgIzMhYVFAYHFhUUAgYEJyAkEjU0Jz4CNTQmIyIOAQcuASMiBgcuAiMiBhUUHgEXBhUUEgQBJyUXJyU3BSclNwUBNTMVFxEzETcyPgE1NCYjIgYHDgEjIiYnDgEjIiYnLgEjIgYVFB4BFyIuATU0NjMyFhceATMyNj0BMxUUFjMyNjc+ATMyFhUUDgEnETMRMxEzEQMiJjU0NjMyFhUUBgE1MxUBLgE1NDYzMh4BFw4BBSImJyUeARUUBgElNwUBIiY1NDY3BQ4BASclFyUnJRcBLgEnPgIzMhYVFAYBJz4BMzIWFwcmIyIFJz4BMzIWFwcmIyIFFNH+qveGKygpbGE6k59LTKRWVqRMS5+UOWFsKCkrhvf+qtEBAQF/1C8dJRNHNi2LmUZSs2FZrGFFm4kuNkcTJhwv1AF//NAaAWYaH/52DAGKIP6fIgFhAW8yeDKRcL91FRAKJBYdSy07WRISWTstSx0WJAoQFXXAb4rjh0QxGTIXHTshJzyCPCchOx0XMhkxRIfjozJ4MsMoSz41NT5KARIy+8oYGBISEUtgLjh6AhgkWC8BAQIBLwSM/poaAWb8OikwAQIBAS9YAkEMAYoM/ooiAWEi/mosejguYEwQEhIY+wZCLW05OW0tQkdKSgLJQi1tOTltLUJHSkr+3nrfATS6k4F522285FqeZhYVFRZmnlrkvG3beYGTuv7M33pQwAFW4ZV/UpaRSJi4YaRmHBwaHmakYbiYSJGWUn+V4f6qwAFfTHxMiz1PPUClSKX9yuPjPAEV/usZOl43DBUJCAsWOzAwOxYLCAkVDDdeOlBMg1AvQg8IChEyIGJiIDIRCggPQi9Qg0w3AaT+XAEV/usBjD8fGx0dGx8//rDj4wOiPqlJP1VFcUEfdiB0nCcYLhVjefyefEx8AxZ7YRUuGCecdP2lTz1PUkilSAEPOHYfQXFFVT9Jqf44LEVLS0UsbGwsRUtLRSxsAAAYAKD+3gmIBpoARwBTAGAAZABoAGwAegB+AJ4AwQDFAMkA1QDZAOYA8AD9AQkBEwEXASQBKAE0AUAAAAEmNTQ3LgE1NDYzMh4BFz4BMzIWFz4CMzIWFRQGBxYVFAcnNjU0Jz4CNTQmIyIOAQcuASMiBgcuAiMiBhUUHgEXBhUUFwMyNjc+ATcOARUUFhciJjU0JDcOAQcOAgMnNxc3JTcFATUzFQEiJCc3FgQzMiQ3FwYEAREzETcyPgE1NCYjIgYHDgEjIiYnDgEjIiYnLgEjIgYVFB4BFyIuATU0NjMyFhceATMyNj0BMxUUFjMyNjc+ATMyFhUUDgEnETMRMxEzEQMiJjU0NjMyFhUUBgE1MxUBLgE1NDYzMh4BFw4BBSImJyUeARUUBgEiLgEnLgEnFgQVFAYnMjY1NCYnHgEXHgEBIiY1NDY3BQ4BASclFwEuASc+AjMyFhUUBhMnNxclJz4BMzIWFwcmIyIFJz4BMzIWFwcmIyIBgRErKClsYTqTn0tMpFZWpExLn5Q5YWwoKSsRSQovHSUTRzYti5lGUrNhWaxhRZuJLjZHEyYcLwoGREodCBQNn7VCPmFvAST3JSANFkBeit8M7H7+nyIBYQFvMgE7+/53eTtuAWrq6gFrbTt5/nf+QjKRcL91FRAKJBYdSy07WRISWTstSx0WJAoQFXXAb4rjh0QxGTIXHTshJzyCPCchOx0XMhkxRIfjozJ4MsMoSz41NT5KARIy+8oYGBISEUtgLjh6AhgkWC8BAQIBLwOrRV4/Fw0gJfgBI29hPkK1nw0UCB1K/XkpMAECAQEvWAJVIgFhIv5qLHo4LmBMEBISGLQZ7Az5c0ItbTk5bS1CR0pKAslCLW05OW0tQkdKSgF1V1mTgXnbbbzkWp5mFhUVFmaeWuS8bdt5gZNZVy87RpV/UpaRSJi4YaRmHBwaHmakYbiYSJGWUn+VRjv+lWKCJU8mE4tgPUNQcl6ZtQpZdzhjgD0BxiJPJSilSKX9yuPj/qmwmjaOoqKONpqwARsBFf7rGTpeNwwVCQgLFjswMDsWCwgJFQw3XjpQTINQL0IPCAoRMiBiYiAyEQoID0IvUINMNwGk/lwBFf7rAYw/HxsdHRsfP/6w4+MDoj6pST9VRXFBH3YgdJwnGC4VY3n7+j2AYzh3WQq1mV5yUEM9YIsTJk8lgmIDtnthFS4YJ5x0/jRIpUgBDzh2H0FxRVU/San9mkwlT3wsRUtLRSxsbCxFS0tFLGwAABEAoP7eCYgGmgAnADUAQQBcAGgAdQCdAKcAswC9AMoA1ADiAOkA8wEBAQgAAAEiJCYCNTQ3LgE1NDYzMh4BFz4BMzIWFz4CMzIWFRQGBxYVFAIGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGEyImJzceATMyNjUzFBYzMjY3Fw4BIyImJw4BNyImNTQ2MzIWFRQGAS4BNTQ2MzIeARcOAQEgJBI1NCc+AjU0JiMiDgEHLgEjIgYHLgIjIgYVFB4BFwYVFBIEEyImJyUeARUUBgEiJjU0NjMyFhUUBgEiJjU0NjcFDgEFLgEnPgIzMhYVFAYBJz4CNxUOAi8BPgEzMhYXBy4BIyIGJSYjNTIWFwEuAic1HgIXNy4BIyIGByc+ATMyFhclJz4BMxUiBRTR/qr3hisoKWxhOpOfS0ykVlakTEuflDlhbCgpK4b3/qrRVIYrRSFkOztkIUUrhv4xKz8/Kyw+Pog6ZSo0HU8pO2tCbDopTx00KmU6OW4gIG6OKEs+NTU+Sv0OGBgSEhFLYC44egKdAQEBf9QvHSUTRzYti5lGUrNhWaxhRZuJLjZHEyYcL9QBf3wkWC8BAQIBLwHWKz8/Kyw+Pv7eKi8BAgEBL1gCICx6OC5gTBASEhj5UD4pgJVIPH5spiE/okwmRR8VGzUgR5UBMozwfs5OBp0hbX09SJWAKUY0lkcgNRsVIEQmTKI//ngeTs5+8P7eet8BNLqTgXnbbbzkWp5mFhUVFmaeWuS8bdt5gZO6/szfegFoZF4kSE5OSCReZAHhTDc3TEw3N0z+xyYlPBodRD09RB0aPCUmMCYmMJc/HxsdHRsfPwJSPqlJP1VFcUEfdvsfwAFW4ZV/UpaRSJi4YaRmHBwaHmakYbiYSJGWUn+V4f6qwATBdJwnGC4VY3n+OEw3N0xMNzdMAch5YxUuGCecdBg4dh9BcUVVP0mp/B0yMlAxA1ADKUPoSh0gCQlKBwYetzdQHx791ClDKQNQAzFQMt8aHgYHSgkJIB2HSh4fUAARAKD+3gmIBpoAJwAxAD8ARgBUAGQAfwCLAJgAwADKANQA4wDxAPsBAgEPAAABIiQmAjU0Ny4BNTQ2MzIeARc+ATMyFhc+AjMyFhUUBgcWFRQCBgQBJz4CNxUOAi8BPgEzMhYXBy4BIyIGJSYjNTIWFwEiJic3HgEzMjY3Fw4BAS4BNTQ2MzIXPgEzMhYVFAMiJic3HgEzMjY1MxQWMzI2NxcOASMiJicOATciJjU0NjMyFhUUBgEuATU0NjMyHgEXDgEBICQSNTQnPgI1NCYjIg4BBy4BIyIGBy4CIyIGFRQeARcGFRQSBCUuAic1HgIXASImJzceARUUBgEmNTQ2MzIXNjMyFhUUBgUuASMiBgcnPgEzMhYXASImNTQ2NxcOAQEnPgEzFSIDLgEnPgIzMhYVFAYFFNH+qveGKygpbGE6k59LTKRWVqRMS5+UOWFsKCkrhvf+qvtgPimAlUg8fmymIT+iTCZFHxUbNSBHlQEyjPB+zk4CzlSGK0UhZDs7ZCFFK4b+Wqi6VkAtNh5LKUFXNjplKjQdTyk7a0JsOilPHTQqZTo5biAgbo4oSz41NT5K/Q4YGBISEUtgLjh6Ap0BAQF/1C8dJRNHNi2LmUZSs2FZrGFFm4kuNkcTJhwv1AF/BNAhbX09SJWAKftuIlQu9gICLQGuwVdBVD42LUFVugJZNJZHIDUbFSBEJkyiP/wRKC4CAvYuVAJFHk7OfvCvLHo4LmBMEBISGP7eet8BNLqTgXnbbbzkWp5mFhUVFmaeWuS8bdt5gZO6/szfegE2MjJQMQNQAylD6EodIAkJSgcGHrc3UB8e/gZkXiRITk5IJF5kAaoloGpEWhspL2lNoP5KJiU8Gh1EPT1EHRo8JSYwJiYwlz8fGx0dGx8/AlI+qUk/VUVxQR92+x/AAVbhlX9SlpFImLhhpGYcHBoeZqRhuJhIkZZSf5Xh/qrA5ilDKQNQAzFQMgPYcZwmFywVZXb90rSgTWlYG1pEaqDwGh4GB0oJCSAdAq92ZRUsFyaccf3YSh4fUAGqOHYfQXFFVT9JqQASAKD+3gmIBpoAJwAxAD8ARgBRAF8AZwB+AIoAlwC/AMkA0wDhAO8A+QEAAQ0AAAEiJCYCNTQ3LgE1NDYzMh4BFz4BMzIWFz4CMzIWFRQGBxYVFAIGBAEnPgI3FQ4CLwE+ATMyFhcHLgEjIgYlJiM1MhYXASInNx4BMzI3FwYBIiY1NDYzMhYXFhUUBgEuASc3HgEXByImJzceATMyNxYzMjY3Fw4BIyImJwY3IiY1NDYzMhYVFAYBLgE1NDYzMh4BFw4BASAkEjU0Jz4CNTQmIyIOAQcuASMiBgcuAiMiBhUUHgEXBhUUEgQTIiYnJR4BFRQGAS4CJzUeAhcBIiY1NDc+ATMyFhUUBgUuASMiBgcnPgEzMhYXASImNTQ2NwUOAQEnPgEzFSIDLgEnPgIzMhYVFAYFFNH+qveGKygpbGE6k59LTKRWVqRMS5+UOWFsKCkrhvf+qvtgPimAlUg8fmymIT+iTCZFHxUbNSBHlQEyjPB+zk4DHVFgGSlMIygkES3+BC1BHA8OWjESPwFQDREERQQPDPwQJBcKFR8NZHNPQklZFkMfgFwfRyVwUShLPjU1Pkr9DhgYEhIRS2AuOHoCnQEBAX/ULx0lE0c2LYuZRlKzYVmsYUWbiS42RxMmHC/UAX98JFgvAQECAS8EKiFtfT1IlYAp/XApPxIxWw0PHEECqTSWRyA1GxUgRCZMoj/8ESkwAQIBAS9YAkMeTs5+8K8sejguYEwQEhIY/t563wE0upOBedttvORanmYWFRUWZp5a5Lxt23mBk7r+zN96AVQyMlAxA1ADKUPoSh0gCQlKBwYetzdQHx79si8vFhYNMA8CKFA3LE0+Kg8ZJEz+qS9iNAYvWStnAwNGAwM7GUZGFGJcCgo28z8fGx0dGx8/AlI+qUk/VUVxQR92+x/AAVbhlX9SlpFImLhhpGYcHBoeZqRhuJhIkZZSf5Xh/qrABMF0nCcYLhVjefxDKUMpA1ADMVAyAdRMJBkPKj5NLDdQ9RoeBgdKCQkgHQJie2EVLhgnnHT+JUoeH1ABjDh2H0FxRVU/SakAEACg/t4JiAaaACcAKwAvADMATgBaAGcAjwCZAJ0ApwCrAK8AvADIANQAAAEiJCYCNTQ3LgE1NDYzMh4BFz4BMzIWFz4CMzIWFRQGBxYVFAIGBAEnJRcnJTcFJyU3BQE1PgE1NCYnNT4BNTQmJzceAhUUBgcWFRQGAyImNTQ2MzIWFRQGAS4BNTQ2MzIeARcOAQEgJBI1NCc+AjU0JiMiDgEHLgEjIgYHLgIjIgYVFB4BFwYVFBIEEyImJyUeARUUBgElNwUBIiY1NDY3BQ4BASclFyUnJRcBLgEnPgIzMhYVFAYBJz4BMzIWFwcmIyIFJz4BMzIWFwcmIyIFFNH+qveGKygpbGE6k59LTKRWVqRMS5+UOWFsKCkrhvf+qvr+GgFmGh/+dgwBiiD+nyIBYQLyMTArGh00YDMiKFU6GxgnWWQoSz41NT5K/Q4YGBISEUtgLjh6Ap0BAQF/1C8dJRNHNi2LmUZSs2FZrGFFm4kuNkcTJhwv1AF/fCRYLwEBAgEvBIz+mhoBZvw6KTABAgEBL1gCQQwBigz+iiIBYSL+aix6OC5gTBASEhj7BkItbTk5bS1CR0pKAslCLW05OW0tQkdKSv7eet8BNLqTgXnbbbzkWp5mFhUVFmaeWuS8bdt5gZO6/szfegGvTHxMiz1PPUClSKX9sUUCFhYPIQU7AhwSFyglQyYpLCwcLQsbNTQ7AWk/HxsdHRsfPwJSPqlJP1VFcUEfdvsfwAFW4ZV/UpaRSJi4YaRmHBwaHmakYbiYSJGWUn+V4f6qwATBdJwnGC4VY3n8nnxMfAMWe2EVLhgnnHT9pU89T1JIpUgBDzh2H0FxRVU/San+OCxFS0tFLGxsLEVLS0UsbAAAAAARAKD+3gmIBpoALQAxADUAOQBEAFIAVgBiAHAAmACiALAAtAC+AMIAxgDUAAABIiQmAjU0NjcuATU0PgEzMh4CFz4BMzIWFz4DMzIeARUUBgceARUUAgYEASclFyclNwUnJTcFASc2MzIWFwcmIyIDIiY1NDYzMhYXFhUUBgE1MxUnIiY1NDYzMhYVFAYBPgE3JjU0Nw4CFRQWASAkEjU0Aic+ATU0JicOAgcuASMiBgcuAicOARUUFhcGAhUUEgQTIiYnJR4BFRQGASImNTQ3PgEzMhYVFAYBJTcFASImNTQ2NwUOAQEnJRclJyUXJT4BNTQuAScWFRQHHgEFFNH+qveGFhUoKUBrQDhERGhbULBcXLBQW2hERTdBakAoKRUWhvf+qvr+GgFmGh/+dgwBiiD+nyIBYQG/NKarVqlSNI6Pj+4tQRwPDloxEj8BLFAoKEs+NTU+SvySHEkrVBUhPSgaA2ABAQF/1Ix9OzMJCBpEeGdiqGFbrmJneEQaCAkzO3yN1AF/fCRYLwEBAgEvAdgpPxIxWw0PHEECh/6aGgFm/DopMAECAQEvWAJBDAGKDP6KIgFhIv7mGxooPSEVVCxI/t563wE0ukqLP3nbbX67Z0FqfTwZGBgZPH1qQWe7fm3beT+LSrr+zN96Aa9MfEyLPU89QKVIpf3XPoVDQj5zAYNQNyxNPioPGSRM/qfc3KY/HxsdHRsfPwIZMVUimKBYcAtYjVxVq/s0vwFW4a0BFE5al1onVDEeaoFDHhsbHkOBah4xVCdal1pO/uyt4f6qvwTBdJwnGC4VY3n+SUwkGQ8qPk0sN1D+VXxMfAMWe2EVLhgnnHT9pU89T1JIpUjWXKtVXI1YC3BYoJgiVQAAAAASAKD+3gmIBmgAYwBtAHcAhgCWAJ0ApwC2ALoAxgDSANwA5gD1AP8BCQEQARwAAAEiJic3HgEzICQSNTQmJz4CNTQmIyIOAQ8BLgIjIg4BBycuAiMiBhUUFhcOARUUEhcHLgI1ND4BNy4BNTQ2MzIeAR8BPgIzMh4BFzc+AjMyFhUUDgEHHgIVFAIGBAEnPgI3Fw4CLwE+AjcXDgIBMjY1NCYvATMHDgEVFBYXIiY1ND4BPwEXHgIVFAYBJz4BNxcGASc2MzIXByYjIgEiJjU0Njc+ATMyFhUUBgE1MxUnIiY1NDYzMhYVFAYBLgE1NDMyHgEXDgEBLgInNx4CFwEiJiclHgEVFAYBIiY1NDYzMhYXHgEVFAYBLgInNx4CFwEiJjU0NjcFDgEBJic3HgEXAS4BJz4CMzIVFAYFFHXUXU9NrF4BAQF/1DInJlA3KzAyr7xIRjJgXzExX18zRki8rjMwK1RZJzJuahNae0AWJhdWUVNYOLbJUzYrWFwuL1tZKjZTybc3WFM2TiMYJRaG9/6q+8ZODUlqPSgzWj+oQDB1gkEVN3ZqAgZEQBwvXUhdLxxBQ2RwECgld3clKBBv/SkobsBSCpQC2UB5bGx5QGBFRf7CL0EYGiZaDQsUQQEuUCgoSz41NT5K/TQ1SBoYaH45OnEF4ws/WTQoPWpKDPvEJFcwAQECAS8B3i1BFAsNWyUaGEECVCVqdjgVQoF2L/w/Ki8BAgEBL1gDo86UClPAbf4vKXE6On1oGBpI/t4oJTgaG8ABVuFiw1dIrLBNRz9EbDw6DRAICBANOjxsRD9HVfGrV8NijP7dZVtM0OZtQ4J7OqvzVW5oRG5BKgoMBgYMCipBbkRobk6xq0Y6fYNDuv7M33oBAxA/gXAkRR9fbbYxPmVHEEsOQlz+TEFGKVFasrJaUSlGQVBvaCRFXEbh4UZcRSRobwLaRTtDCk8Q/h0voqIvgQGROSkaKgsRJD0hOk7+l9zcpj8fGx0dGx8/AmtbuTEgME0tImP7kTRtXx9FJHCBPwP+dJwnGC4VY3n+g046IT0kEQsqGik5/lk0XEIOSxBHZT4C83ljFS4YJ5x0/eZuEE8KQzsCADZjIi1NMCAxuQAVAKD+3gmIBpoAUwBXAFsAgACEAJIAogCxAL0AwQDOAPMA/wEJAQ0BHAEoATIBNgE6AUcAAAUmAjU0Ny4BNTQ+ATMyHgIXPgEzMhYXPgMzMh4BFRQGBxYVFAIHJzYSNTQnPgI1NC4BIyIOAgcuASMiBgcuAyMiDgEVFB4BFwYVFBIXJSclFyclNwUDPgE1NC4BNTQ2MzIWFRQOAQcDIxM+AjU0JiMiBhUUFhUUBgcDJTcFASImJzceATMyNjcXDgEnIiY1ND4CNRQeAhUUBgEiLgE1NDYzMh4BFRQOAScyNjU0JiMiBhUUFgERMxEBLgE1NDYzMh4BFw4BAQMuAjU0NjMyFhUUDgEVFBYXIy4BNTQ2NTQmIyIGFRQeARcTASImNTQ2MzIWFRQGAyImJyUeARUUBgElNwUBIi4BNTQ+ATMyFhUUDgEnMjY1NCYjIgYVFBYDIiY1NDY3BQ4BASclFyUnJRcBLgEnPgIzMhYVFAYCppOjKygpQGtAOEREaFtQsFxWqlxbaERFN0FqQCgpK6OTCHJ8Lx0lEy9IJB8xRXhnVbVhW65iZ3hFMCAkRzATJhwvfHL+NRoBZhof/nYMAYoMOCYPD3dmc5YPGRFHVU4QGA9oUUVIHiQwbv6fIgFhAtxfsFAVSqZaWqZKFU+xX0NOLDksLDkrTP45PWY9g109ZT09ZT07VFQ7PFRVAZZQ/RYYGBETES1aUjh6A9pHEBoPlnNmdw8PJjhaMCQeSEVRaA8ZD07+ZyhLPjU2PUysJFgvAQECAS8EjP6aGgFm/Tg9ZT09ZT1dgz1lPjtVVDw6VVXEKTABAgEBL1gCQQwBigz+iiIBYSL+Yyx6OFNZLhATERhlbwFOzZOBedttfrtnQWp9PBkYFxo8fWpBZ7t+bdt5gZPN/rJvYWQBG6qVf1KWkUhll1Q/aYFDHRwbHkOBaT9Ul2VIkZZSf5Wr/uZkkUx8TIs9Tz38+2xuNjZnZDBwgph0GFtzPP77ARs4bFQUU2lTTz2nTT10XwNFpUil/HMZGU4XGRkXThkZ2WlKN2VbUCIiUFtlN0lqAo08Zj1cgz1lPT1lPVBVOjtUVDs7VP6vAQ7+8gKRPapJQFRCb0YfdvrSAQU8c1sYdJiCcDBkZzY2bmxfdD1Npz1PU2lTFFRsOP7lAz0/HxsdHBwgPgHUdJwnGC4VY3n8nnxMfAFrPWU9PWU9g1w9ZjxQVDs7VFQ7OlUBW3thFS4YJ5x0/aVPPU9SSKVIAQw4dh9Gb0JUQEmqAAAABQEE/qwJJAbMABMAHQApAD0ASQAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzYzMhcHJiMiAyImNTQ2MzIWFRQGATIkABI1NAIAJCMiBAACFRQSAAQBIiY1NDYzMhYVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/Y8s2uzs2izH09OXNElJNDRJSQE2xwFcAQiVlf74/qTHx/6k/viVlQEIAVwCMTRJSTQ0SUn+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQIKQpOTQoUB0VJERFJSRERS+/CVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEEFJERFJSRERSAAAAAAUBBP6sCSQGzAATAB0AKQA9AEkAAAEiJAACNTQSACQzMgQAEhUUAgAEAyInNxYzMjcXBgEiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h9ft2SzH09PHLNn9qTRJSTQ0SUkBNscBXAEIlZX++P6kx8f+pP74lZUBCAFcAjE0SUk0NElJ/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qECCpJDhYVDkgJWUkREUlJERFL78JUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQQQUkREUlJERFIAAAAFAQT+rAkkBswAEwAfADMAPwBJAAABIiQAAjU0EgAkMzIEABIVFAIABAEiJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASImNTQ2MzIWFRQGASc2MzIXByYjIgUU1/6H/uKiogEeAXnX2AF5AR6hof7i/of9vjRJSTQ0SUkBNscBXAEIlZX++P6kx8f+pP74lZUBCAFcAjE0SUk0NElJ/Mgs2e3t2SzH09P+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQKUUkREUlJERFL9vJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQJEUkREUlJERFICrUOSkkOFAAAACQEE/qwJJAbMABMAFwAnADcAQwBXAGcAdwCDAAABIiQAAjU0EgAkMzIEABIVFAIABAE1IRUBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciJjU0NjMyFhUUBgEyJAASNTQCACQjIgQAAhUUEgAEASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/jAB8v14UolRUYhTU4dRUYdTPWM7O2Q8PWQ7PGQ8NUxMNTVNTQFaxwFcAQiVlf74/qTHx/6k/viVlQEIAVwCVlKIUVGIUlOIUVGIUz1jPDtkPTxjPDtkPDVMTDU1TU3+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQGTUFABy1GJUlOHUVGHU1OIUVA7ZD08ZDs7Yz08ZDzzTDU1TU01NUz7r5UBCAFcx8cBXAEIlZX++P6kx8f+pP74lQMOUYhTUohRUYdTUolRUDxkPD1jOztkPD1kO/NMNTVNTTU1TAAAAAYAf/9CCakGNgBxAH0AiQCVALUAwQAABSIkJjU0Njc+ATc+AzMyHgIXHgEXHgEVFAYEIyIuAScuAScuAjU0NjMyBBcWBDMyNjcXDgEjIiQnJiQjIgYVFB4BFx4CFx4DMzIkNTQmJy4BJy4DIyIOAgcOAQcOARUUBDMyJDcXBgQDIiYnNx4BMzI3FwYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBJz4BNz4CNTQmIyIEBwYHJz4BNzYkMzIWFRQGBw4BAyImNTQ2MzIWFRQGAuK+/u6TdXAsORxTnbbqn6DqtZ5THTgscXOS/u6/r//EV3C9VmRqJldPdwEkgrwBVIkyVDQdNGNAl/6Rw3n+92s0LCBdXD97hExCgJS/gv4BFWloLj0eUpKk0pGR0qSSUR09L2hqARX+ngEAbziA/uTFN4YyHyx1L4KFNZ4BsCs+PissPT3+xCU2NiUmNTUCIzFNdjFZXSIuMmj++H0oPy0gMROEASR1TVl1gC5ydSU2NiUmNTW+feeeavuHNU8vj92YT0+Z3Y4wTzWH+2me5306cVRrnD5JWUMmP0CMeayoExg/GBqxtXGHIR0VLktCLWZ1RTxWNhroylrifDhUM4zRikREitCNMlU4fOFbyug4PDhIRAE9IRk/Fh1JM1wBzjcuLzY2Ly43ASk7MTI7OzIxO/1BMkxpI0BKLxcfJId2JjQ1GysTf4tFP0BuWyFmAnU7MTI7OzIxOwAAAAAFALn+rAlvBswATwBdAGkAwQDNAAABIiwBAjU0EjY/AT4BNz4BMzIWFyc+ATMyFhUUDgEPAQ4CByc+ASQzMgQWFwcuAi8BLgI1NDYzMhYXBz4BMzIWFx4BHwEeARIVFAIMAQMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGEzIsATYSNTQuAi8BLgEnLgEjIgYVFBYXBy4BIyIGFRQWHwEeARIVBy4BJCMiBAYHJzQSNj8BPgE1NCYjIgYHJz4BNTQmIyIGBw4BDwEOAxUUEhYMAQEiJjU0NjMyFhUUBgUU7v5q/tGoYaVnIB0cDBZVOTIxBBQjUilPaDdjQ2Fvn1cEEkrcASCwsQEg3EkSBFaecGFDZDdoTypSIxQEMjE5VRULHhwgZ6VhqP7R/mruWadOPUODS0uDQz1Op/6XJTY2JSY1NeqsATkBBsBqN193QCAtJw4SLR0UFQIEKCRVKjNBWVhhdLhqS03T/uyxsP7r0k5Karh0YVhYQTIqViMpBAMWFBwtEw8mLSBAd183asEBBQE5AbwlNjYlJjU1/qx+9AFj5LABJOFNGBY3NGBsQzoGGhhjTjdURCEvNrTZbgGO1nd31o4Bbtm0Ni8hRFQ3TmMYGgY6Q2xgNDcWGE3h/tyw5P6d9H4B70NSNEU0NEU0UkMBQjsxMjs7MjE7/R9GjNIBF66B27OJMBgiST1NRx0cChsOGSEgNDE2UisvOMj+5LgEnuB2duCeBLgBHMg4LytSNjE0ICEZDhsKHB1HTT1JIhgwibPbga7+6dKMRgLhOzEyOzsyMTsAAAAACgA8/t4J7AaaAGsAdwCDAI0AkQCdAKcAqwCvALMAAAEgADU0Njc+Ajc+ASQzMgQWFx4CFx4BFRQEKQEiJjU0JTc+ATU0JzceARUUBg8BDgEVFDMhMjY1NCYnLgInLgIjIg4BBw4CBw4BFRQWMyEyNTQmLwEuATU0NjcXBhUUFh8BBBUUBiMlIiYnNRYzMjcVDgEBIiY1NDYzMhYVFAYvATYzMhcHJiMiASc3FwEiJjU0NjMyFhUUBi8BNjMyFwcmIyIBAzcTBScTFwEnNxcCbf7u/uGHkUVNOCJR2AEMn58BDNhRIzdORJKG/uH+7v58SlQBgmJqZBk/ExKAj2KgoVMBhPTyeoVHUDgjT8n0kI/1yU8jOE9IhXry9AGEU6ChYo+AEhM/GWRqYgGCVEoBIyxbLERvb0QsW/59L0NDLy9BQaUlQF9hPiQvTEv+17o4ugPmLkJCLjBCQ60lQF9hPiQvTEv9tGFHYQJCR2FHASE4ujj+3gD/3nfvfTtGPS5tsmtrsm0uPUY7fPB33v9PPZ4zDQ4vKx4gJxc3F01TFA0VSCo60L1m03I+Rz4vaqReXqRqLz5HPnLTZr3QOipIFQ0TVE0XNxcnIB4rLw4NM549T00HDUkXF0kNBwF5MSIiMDAiIjH+Kjg4KikCztMx0/vaMSIiMDAiIjH+Kjg4KikDlgEhGP7fGBgBIRj+FzHTMQAAAAgAUP7eCdgGmgArAIkAlQCxAL8AyQEnAT8AAAEuATU0Njc2EiQzMgQSFx4BFRQGByc+ATU0JisBJgIkIyIEAgcjIgYVFBYXEyIuATU0PgE/AT4DMzIWFRQHPgEzMh4BFRQOAQcOAQcOARUUFjMyNjcXDgEjIiY1NDY3PgE3PgI1NCYjIg4BIyI1ND4BNTQjIgYPAQ4CFRQWMzI+ATcXDgIlICQnNxIhIBMXBgQlIiQmNTQ2PwEOARUUBDMyJDU0JicXHgEVFAYEJyIuATU0NjMyFhUUDgEDIiY1NDMyFRQGASIuASc3HgIzMjY1NC4BLwEuASMiFRQeARUUIyIuASMiBhUUHgEXHgEXHgEVFAYjIiYnNx4BMzI2NTQmJy4BJy4CNTQ+ATMyFhcmNTQ2MzIeAh8BHgIVFA4BASIuASsBPgEzMh4BMzI+ATMyFhcjIg4BAP8gHp5zN/ABUsnKAVHxNnOeHiAxEA95WS0s2f7DwsH+wtksLVh6DxDPg8JqPIRqFF6RdWYzJzoBCCUQP21EO3RVTYlTpKw5LSdMKzU0ZzhPasi8U5ZMQlksW0olOzAWIyQkJ0PTkhVofTe+n1aYfStFN5evArf+yv5oXD+cAk8CT5w/W/5n/sq5/u6WAgNdCQcBHvHxAR4HCV0DApb+7rlUklqmmpqmWpFVHDJOTzIC+F2wljhFK32ZVZ++N31oFZLSRCckJCMVMTomSVwsWUJMllO8yGlQN2c1NSxLJy05rKRSik1VdDtGcD4RIQcBOiczZnWRXhRrgzxqwfxnXIBiMIUbWTZAdWgsLWd1QDZZG4UvY4ACXCNcMHacB7wBHJ6e/uS8B5x2MFwjQRQ7H1xzvgEYmpr+6L5zXB87FPxBdNWRZsbahRl1nl8pJyUKAwECPHRTR3NWGxk0IUKgXDA9MDY+PTtsUXjISSA3GBU9UzRQXhUVHRIeHA0Rubwbhs2vWbXVRndJKF6ISOvl3zX+VwGpNd/luVyncQsZDh0cIhGFn5+FESIcHQ4ZC3GnXMMoQCMvMzMvI0AoASMpFyAgFyn8dkiIXihJd0bVtVmvzYYbvLkRDRweEh0VFV5QNFM9FRg3IEnIeFFsOz0+NjA9MFygQiE0GRtWc0dTdDwCAQMKJScpX551GYXaxmaR1XQFgCUkJSIlJSUlIiUkJQAACgBa/t4JzgaaACoAeQCHAJUAoQCrANMA3wEuAUAAACUiJCY1ND4BNTQmNTQ+ATMyFhceATMyNjc+ATMyHgEVFA4BFRQeARUUBgQBIi4BNTQ+AjU0JjU0PgEzMhYVFAYVFBYVFA4CFRQWMzI2NxcOASMiJjU0PgI1NCY1NDY1NCYjIgYVFBYVFA4CFRQeATMyNjcXDgElICQnNxYEISAkNxcGBAEiLgE1NDYzMhYVFA4BASImNTQ2MzIWFRQGFyImNTQzMhUUBgMyPgE1NC4BNTQ2NTQmIyIGBw4BIyImJy4BIyIGFRQWFRQOARUUHgEBIiY1NDYzMhYVFAYBIiYnNx4BMzI+ATU0LgI1NDY1NCYjIgYVFBYVFAYVFB4CFRQGIyImJzceATMyNjU0LgI1NDY1NCY1NDYzMh4BFRQGFRQeAhUUDgEBJz4BJDMyBBYXBy4BJCMiBAYFFLb+7JoiITBHeEo/aCovMhYVMy8rZz9KeEcYGCIhmf7s/D14w3MtPC0fRXdMR10jI0FWQTsrKEkuMzdiOU9qQlVCIyMsJlBlHy08LV2eYHfWSUZX9gJ9/sH+XlE8QQF+ATcBNwF/QDxR/l7+wVSSWqaamahakv6gJzc3JyY3N+UdNVJSNR2e7YQhIjBnTS1PJidQLy5QJyZQLUxoMCEihO4BqCY3NyYnNzcB2o/2VkVK1nZhnl0tPC0fZlAlLCMjQVZBak85YzUyLkkoLDtCVUIjI15GTHdFHy08LXPC+ZdIRPEBP7i5AT/xQ0c83P7dqqn+3NuQYKxyN15TJzSNQEl1Ri0YGhMTGhgtRnVJKl5XIidTXjdyrGD+Tm68dFWgjXMpGVotX5RWTDkxWzg3Xi9OdF5bNC8/MTpAQTptUUJqYGY9IWk6O2ofGB2LbiBdIzZ9ipRNXZdainwnkp3p+uxK6/X160rs+gGSKEAjLzMzLyNAKAGyQy4vQUEvLkN5KxciIhcr/k5MiFoxUVY3QIc6TWciFhYkJBYWImdNOodAN1ZRMVqITAIrQy4vQUEvLkP7052SJ3yKWpddTZSKfTYjXSBuix0YH2o7OmkhPWZgakJRbTtAQDoxPy80W150Ti9eNzhbMTlMVZVfLVoZKXONoFV0vG4FZCav+4iH/K8moul9fekACQDG/t4JYwaaAD0ATABaAMkA1QDfASgBNAFDAAAlLgEnLgE1NDY3NhIkMzIEEhceARUUBgcOAQcnPgE3HgEzMjY1NCYrASYCJCMiBAIHIyIGFRQWMzI2Nx4BFwMiJjU0NjsBDgEVFBYXBgEiJic3HgEzMjY3Fw4BBSImNTQ3JT4BNz4CMzIWFT4BMzIeARUUDgEjNTI2NTQmIyIGBzY1NCYjIg4BBw4BBwUGFRQWMzI+AzMyHgMzMjY1NCclLgEnLgIjIgYHJz4BMzIWFx4BFwUWFRQGIyIuAyMiDgMBIiY1NDYzMhYVFAYXIiY1NDMyFRQGAS4BNTQ+ATU0LgE1ND4BMzIeATMyPgEzMh4BFRQOARUUHgEVFAYHJzY1NC4BNTQ2NTQmIyIOASMiLgEjIgYVFBYVFA4BFRQWFwEiJjU0NjMyFhUUBgUiJz4BNTQmJzMyFhUUBgJULkQUcZecdDbuAVHJygFR7jV1nJhxE0UtQyxEGBMRClp2d1k1Kdf+w8LD/sPWKTVYd3ZZCxETGEQrtDNBQjAyBQMCAxYDG12qTWA2fkBBfTZgTKv8nXOLkAEEG0g9OXR0NzVCESIYOWM8TH9PWXRZRiI/Hg0fHSthbD84SB/+/GJcUkV/hZe5dXW4l4SARktjYv78H0g4PlVDJBk0FiwhSiRGhk89SBsBBJCTa1CHg5Cxc3OxkYOHAa0lNjYlJjU25RwyTk8y/eEnJiEgFxdDc0Y+dWYnKGZ1PUdyQxcXISAjIzw3ICEuZks5ZWY8PGZkOkpnLiAhHh8C0SU2NiUmNTUCAxYYAwMDBjMwQUDbOI5RBZ13d54EvQEbnp7+5b0Ennd3nQVRjjglNJN5AwFzXFxzvAEZm5z+6LxzXFxzAQN5kzQBmzo2NToiNyMcJhoH/RMTEzwKDAwKPBMT0IRlk02LDkNAO2E6MSkHB0RzR0+GUEp+XVBjDw4hFxQdNmE/OEARizVoRlNCYWFCQmFhQlJHaDWLEUA4P08lEBI8GRhfVEBDDotNk2aDQ2JjQ0NiY0MEN0IsLkBALi1BaykWICAWKf62LV00OFpPJyBWXSlHcUM3ODg3Q3FHKV1WICdPWjg0WygrPU8yUFI0QYI5TGk3ODg3aUw5gkE0UlAyJ0kjAYpBLS5AQC4sQnoHGiYcIzciOjU2OgAAAAAFAdH+rAhXBswAPABJAIgAlACgAAABIiQnLgECNTQ+AjU0LgE1ND4BMzIWFRQGBycyFhUUBgcOARUUHgEXJzYkMzIeAhUUDgEVFB4BFRQGBAMiJic3HgEzMjY3FwYDMiQ2NTQuATU0PgE1NCYkIyIOAQcjLgI1NDY3PgE1NCYjIgYHJz4BNTQmIyIGFRQeARUUDgIVFB4BFxYEEyImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGBWn9/pBjO1ozDhMOBQRNg09jeQkNFzZITFQyHwEDAiNuATvLjPO2ZiQkLi2+/q96i+lGPDzIeylUKhJfwMMBLq0tLiQkm/72poPYtFA9BAUCPUVAMhwXBxMRFREQSkRbdAQFDhMOL1EzWAFSLyIwNiUjLjQBfiIwNiUjLjT+rImOVecBC4s4n6WLJCJIQhlokk1tUBA/JiRDNTJPJhcbGSlTZkcLwMdgquCAYa98Fho0RDRdkFIC1GdfLVFXCgpIF/18P2xEIzk+LB2AqluY849XtY5cgm07MTsfHS8ZFRgFCCAqRBgyO355GkNHISKOqp4zf/jXToV4A9w8KC9COikuRG48KC9COikuRAAADQB6/qwJrwbMAEcAZQCtALoAyQDUANgA9gD6AQUBFAEhASUAAAEnPgI1NCYnLgInLgIvAS4BNTQ2MzIWHwERNDYzMhcHJiMiBhURHgEXBy4BIyImJy4BIyIVFB8BHgIXHgIXHgEVFAYFJz4BNTQnLgE3Ez4BMzIXByYjIgcDBhYXHgEVFAYFLgE1NDY3PgI3PgI/ATY1NCMiBgcOASMiBgcnPgE3ETQmIyIHJzYzMhYVETc+ATMyFhUUBg8BDgIHDgIHDgEVFB4BFwERNDYzMhcHJiMiFREHJz4BNxE0NjMyFhURIgY3PgE3ETQmIyIGFSUnNxcBLgE1NDY3PgEnAyYjIgcnNjMyFhcTFgYHBhUUFhcBETMRARE0JiMiBhURHgEXLgEjETQ2MzIWFREeARcjETQjIgcnNjMyFhURASc3FwcaUAIDAwIFATxFEBQaIB8qKSxZQC1RIhdINEE0PhscExlvoixMJ4tpECUUHk0pSSUqOC8YFBJHPwQFAgP6H1AICQNAQgQiBEg3OSo2ExouBSIEQEACAwkByAQEAwQFPkcSFBgwNyolSSlNHhMlEWmLJ0wsom8ZExwbPjRBNEgXIlEtQFksKSoeIRkVEEU7AgQDAwQB/d9KOj4sPBQaNDUpLVsxRzQ2SGjFhBYtFhkVEBsB2sM9wwSbCAkDAkBABCIFLhkUNio5OEcEIgVCQQMJCPuyUAK0GhEVGRcs9lvGaEg2NEcyWi1eNBoUPCw+O0n9Kz3DPf6uBBNPSwwdNCYON0EbI2dZDhMTOyg0OB0cEwIXM0Y9NCEYEf25CnlwHGVcHBYjJRweEBMZaG0jHzk/KCk5HyRURwhPbzYyKFmwSAJLQU4oOhJD/bU+n1MbOyE5dE1FVCQfOSkoPzkfI21oGRMQHhwlIxYcXGUccHkKAkcRGCE0PUYz/ekTHB04NCg7ExMOWWcjG0E3DiY0HQxLTxMDiAH7PU0xNhc6/gU9PR8wEAIZOE5LNf29OHEFBgEB/hQcHxdb+TL4+WxPdDkhOxtTnz4CS0MSOihOQf21SLBZKDI2b08GsAFo/pj9SgIEFx8cFP4CAQa2QDgCQzVLTjj95xAwHwH7Ohc2MU09/gUC0zP4MgAAAAUAuf90CW8GBAAfACkAMwBRAFsAAAUgLAE1ND4BNz4BNz4DMzIeAhceARceAhUUDAEBJzYzMhcHJiMiJyInNxYzMjcXBhMgJDY1NCYnLgEnLgMjIg4CBw4BBw4BFRQMAQEiJzcWMzI3FwYFFP6q/gv+8DxpQiczHk2TqdyXl92pkk0eNCdCaDz+8P4M/aMniqOkiid4j4+YZFkbTFZVThtbxAE8AdH+bmInNCNNiJjGiorFmIlNIzMnYm8A/wHRAmJkWRtMVlVOG1uMb9meQ5mhTi9HMoLRlU9PldGCMkcvT6CZQ57ZbwKbO1lZO070JUEgIEEl/HNdtYRT03UvRzp+w4hGRojEfTpHL3XTU4S1XQONJUEgIEElAAAABgB//0IJqQY2AFgAZQCTAKEArQC5AAAFIiQmNTQ2Nz4BNz4DMzIeAhceARceARUUBgQjIiQnNxYEMzIkNTQmJy4BJy4DIyIOAgcOAQcOARUUBDMyLAE3HgEzMjY3Fw4BIyIuASczDgMDIiYnNx4BMzoBNxcGFyIuATU0PgEzMhYXBy4BIyIGFRQWMzI2Nz4CMzIeARcjLgIjIg4CBzcOARMnPgEzMhYXBy4BIyIGAyY1NDYzMhYVFAYHISY1NDYzMhYVFAYHAuK+/u6TdnEtOBxTnrTpn5/qtZ5SHDgtcXWT/u+/o/7mijlzAQOY+wEYbGcwPB1RkqPSkZHRopJSHTwwZ20BGPu3AR8BA4tOjEIrbzcfP3w1MnBmJDd7083jwDtpMh0yWC8GCgQyJK8/a0E/bUVRsHQma51HTF9WST14EIK/mEZooV8ERgRQgU8rXnSVYxIXklg0Oo9TVI86NDRxRENxpRI7KCk6CwgBcBI6KCk7Cwi+fuedaPuGNk8wjt6ZT0+Z3Y8wTzWG+mqd535ARjg6NOjKW+B7OlUxjNGKRUWK0YwxVjh64lvK6EOnli0iGRk+HR0UJRd2mVgkAUIZGUAZEwFBBk84bU87Z0E4RztBM14/UlxoUFFfKU+acmF9PBUwUDoeZn8CEDU+QUE+NTU0NAEGISY2Pz82FSMPISY2Pz82FSMPAAAGATb+rAjyBswAKwA/AGsAfwCaALMAAAUnLgEnLgE1ETQ2MzIWFxMeARceARcHLgEnLgEnAy4BIyIGFREUFhceAR8BASc3LgInBSclFwceAhc3HgEXLwE3PgE3PgE1ETQmIyIGBwMOAQcOAQcnPgE3PgE3Ez4BMzIWFREUBgcOAQcBJT4BNxc+AjcnNwUHJQ4CBxcBNCYjIgYHJz4BMzIWFz4BMzIWFwcuASMiBhUnNCYjIgYHJz4BMzIXNjMyFhcHLgEjIgYVBdpbBiAcHzJKMzJKBl4gMhYfOxwmKEsnFjQiYAIcFBMaEiAbKg1T/aMwymaMWx/+dCIB8D01GkVmSSooNhaMOVMOKRsgEhoTEx0CYCI0FidLKCYdOh8WMx9eBksxM0oyHxwgBgHJ/twXNSgqSmVGGTU9AfAi/nQeXItnyv5KLh0bLgNQCFs5ITwWFjwhOVwHUAMuGx0uUCUXFSQCUAVSNDkrKzk0UgVQAiQVFiY0iAkTCgtFKgVpL0A8Lf1VYdF6FiYRRxczHIXcZwKxEBUTDPqXFxMNChwUff6mQJNfqK5mtEjhNx9VkIhKPjJYNUs6fRQcCg0TFwVpDBMVEP1PZ9yFHDMXRxEmFnrRYQKrLTxAL/qXKkULChMJ/ljVNVgyPkqIkFUfN+FItGauqF+TBdcbLSgbCjlQHRgYHVA5ChsoLRviFSMeFAgzRysrRzMIFB4jFQAJASL+rAkGBpoAHABDAE8AVgBcAGwAeACOAJwAAAEDNy4CJwUvAS0BPgEsATYzMhYVFAYKAQYHCwElNw4BIz4BNz4BNz4BNxUOAQcOAQcOAQc+ATcXPgE3NjcXDgEHDgEBLgMnNjcfAQ4BASU+ATcFBwE3EwYHAwEuAScuAic3HgIXHgEXEyImNTQ2MzIWFRQGATI+BTU0JiMiBgwBDgEVFB4BAS4BJy4BJzceARceARcEZmdzW5pfBP704AwBBQFxTdoBAQEK/GhocF+k0uhyNen9agY8ZTEgKhERLyUwjEI3ayMfJA8IEgscSjEKMlIoMhtNEC4jSZQBZytpYD4CLT2BtBY1/f4BGwsfFv7q2QMovCdgTnwBcUKoVzRWNgRDAi5RNlGoPRhGZGRGR2Nj/i5Iuc7NuZFTPk1i//7t/v3SfFCAA/dOp0RBUQVQAzlDQow3/qwBAv4FYZxclVtY9z927dSmX2xnX/D++/8A31H+cv73d1oICTtpNDRNJTA1AVABLCIfOywZMxsDDQtREzcpNFwWNlgkS0cBDwI+YGkrPS29dx81AXGdJk0mLc/8+tcBLj4Q/vYBrQRgTC5+gzIwKHuBMktZBAFdZEZHY2NHRmT9/GCl1evr0lE5SWu24/TmXEuBTwL5BU9DQK1YBDeXQUA+AwAOAFb/EAnSBmgAKAAsADUAQQBFAFMAagB3AIIAhgCMAJoAoQCoAAAlICQ1ND4BNxcOARUUBCEzICQ/AQUXMwMTIwMlNwUTIQMTISclBwYEIQMnExcBIiYnNxYzIRUBIiY1NDYzMhUUDgEBAzcTASImPwE2OwEyFg8BBiMlIiYvATYkNxMFHgIXBy4BIyIHAw4BBSI/AT4BMzIWFRcUIxM0LgEvASYGBzIWJREzESUnJQUHJQUnLAEhMgQXFSYkIyAEJTQ2MzIWFSU0NjMyFhUDSv7I/qwoRy4gKkMBKAEURAEfAUo6vQF0U2o9hH1v/boEAgtuASGdTv74U/7omkf+kP7PzEx6TP6uQH8xPExoBIn7wBwwPCoaFBkC3XFNcf2sBwoDRgYLcAgJAR4CDv5vLlMeNk0BG74PAoUXIBMDYGLqd7GVYxc1AhISAhQBHiM+YAMQxwkQCbpDYxF01f5qUP18GAJ1Ap0X/Xr8LQQBQwLCAWaaATCLi/7Omv6b/UEB/VY9PFP+4FU8O1KAlosoWk8USRNgKV90n6DBB/QBDAG2/tgbThgBJf35/qn1BZ2ysP64GQFrGf5tNjE2T04CMzUeIzENF0k6/foBlRb+awLZCgnuEQgF9BEFBwU9j60lAQUXKn5zGkwxJDn+1AQDBQ/0CAccEdYPAXwhUUwYBgJWRCrhAXT+jE1Kw8FLuSxPEREDA04DAxFAHTU1HUkaNTUaAB8AvP6sCWwGzAAaACgALgA6AEYASgBWAGIAbgByAIIAkACgAKwAsAC0AMAAxADSAOEA6gD6AQYBCgEOARIBGwFYAWEBagFwAAAFJyMHIREmNTQ2MyE3FwchHgEVFAYHIREnIwcFNDYzEz4CMxcDMhYVJTMTDgEHASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWNzUzFRciJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBic1MxUTMzY3Mxc3JyMuAScjBhUUEzI1NCYnJgcGFx4BFRQBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNyU3DQEnJRcBPgE1NCYnMxYVFAcBMzUjAREnLgE9ASEVFAYPAREDNicuAScmIyIGFx4BFxYBPgE1NCYnNxEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNyU3DQEnJRcBNSEVAycRIREjESERASImJzceATMyNjceATMyNjU0JiMiBgcuASMiBgcuASMiDgEVIzQ+ATMyFhc2MzIXNjMyHgEVFA4BIyInBgERNDYzMhYVESUzETQmIyIGFS8BNSEVBwb0kGCn/RwyJh4DGsEJt/3uBgYHCAV+abuN+UwlF8waWVQSFIIXI/7do4gYUxsBUDdPTzc1Tk41FB8fFBYgIGuWWDdPTzc1Tk41FB8fFBYgIP3FEBcXEAgKCgwr3fwTA2umJbt+AgoH/BYlGQMDAxoXAwQBAwlCb0JCb0JCbkJCbkJBXV1BQV5et/7YJQEo/uklASgl/YsLCQkLURMTAkZ7e/uwdhAPAdgNEXZpFQ8oJwYFEw0OAQQsLhECngoKCgriAehCb0JCb0JCbkJCbkJBXV1BQV5euv7YJQEo/uklASgl/YcC7G0T/Z9QAwH7Lxc6OQ0fPCItUCUiSyhEXV1EK0sgJE4vLUwZJEkoN1o2UEx/TCVIIEFZXUZBU0RtQEBtRFBCSQJEY0pJY/7r0TstLTzOewNie3Dm0gFrN7RffDtVNCZRKTFgMf7hRrzkHiQBLCdXPnf+jyMfQgGAEFko/s9NNjdOTjc2TVAfFBYfHxYVHgu5uVtNNjdOTjc2TVAfFBYfHxYVHgKsLSAgLCshIishUlL+IycwXDxoFCURM0E/AZUaJDkZGwUFFxk1Ixn89UFuQ0NtQUFtQ0NuQVRdQUFcXEFBXRX7Lf0xK/0tAQ43aDQ0aTdpa2pp/rxEArEBZKgXRClXVylEF6j+nAHBEBQ3SB4WDQsiVz8W/JA7bjc3bzoQ/jD9oUFuQ0NtQUFtQ0NuQVRdQUFcXEFBXRX7Lf0xK/0tAYBFRf4RdQQm/O0DY/sVBUUQHk8ZFCkiGyRbQEFaJRwiKSYbFxs1WjdOfkoUEjU9Mz5rQkFrPzI+/T0BRjJFRDP+ukQBAhMgIRLcQDg4QAATAHj/QgmwBjYADQAZACUAMQA9AEEARQBRAF0AYQBlAGkAbQB5AIUAiQCNAJEAlQAANzUzETQ2MyEyFhURMxUFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBESERJTM1IwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgE1IRUBESERJTM1IwEhESEBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBESERJTM1IwERIRElMzUjeDJlWAdaWGUy+DlJZWVJSWVlSSY0NCYlNTUCA0llZUlJZWVJJjQ0JiU1Nf39AUr+/L6+BHxJZWVJSWVlSSY0NCYlNTX6lgiE+ikBSv78vr79NQg098wHRUllZUlJZWVJJjQ0JiU1Nf1FAUr+/L6+AZoBSv78vr4GWgT6ZnZ2ZvsGWsRnR0pkZUlJZVQ1JSY0NCYlNVRlSUllZUlJZVQ1JSY0NCYlNQMDAW7+kkbi+4FlSUllZUlJZVQ1JSY0NCYlNQHxUFABEgFu/pJG4vzlBLT56GVJSWVlSUllVDUlJjQ0JiU1AwMBbv6SRuL+2AFu/pJG4gAHAQT+rAkkBswADAAkADEAPwBWAGMAcAAAJSImNTQ2CAEsAjcRASInBSImNxMXBwYWMyU+ATMhNTcRIQ4BASImNTQ+ATMyFRQOAQEyNjUjFAYjIiY1IxQWASImJzceATMyNjc2JDMhFSEiBAcOAhchEQYMAw4BFRQWEyc2LAI2NxcGAAwBArnf1pIBAQFRAYEBkQGCqP3xcEf7MzUqHKk4mQUGBwPtQGQ8AmlQ/qciX/tnFR05TR4wNkwEREdjbiMZGSNuZPr/JmkuHihYHz2FdfkB1e4CP/3B5v5B8lt5Wr0GG5/+mP6N/p7+zOuFqMAIkQE4ATIBENQ+SEr+5P6K/ldFYGVk9wENAQz0xoIS+Xn+Z1MCVC0BETj5CAsCREtxRv5sKCsDKh0VH0w5MSBON/0XY0YZIiIZRmMBzQ0NfQsKKy5hZIBZZSYrEScF3R2IweX289tXOD8CiVAPWYu23Hwklv7v3ZIAAAAACwEK/qwJHgbMAA8AEwAgACwAMgBMAFgAcAB6AIMAjwAAJSIuATU0ACQlAT4COwERJREzEQMiJjcTJREhNSEHBiMBIiY1NDYzMhYVFAYBITchNQUBIi4BNTQ2NzMGFRQWMzI2NTQnMx4BFRQOASciJjU0NjMyFhUUBgEhESMiDgEHITIWHQEUBiMhDAEGFRQeAQEiJjU0PgI3EQEhMjY/ATYrAQUzMj0BNCsBIg8BBgLNe817AP8B3QFOAQJKm8WHt/i/RqIiJA+4Bxz92/5OUwwP/gYlNTUlJjQ0/p0DIYkDjPlVBAZEcEIBAVIEYUVEYQRSAQFCb0QTGxsTExsb/I4F+md3podJAXIaIyAd/U/+0f5C9FypBVtDRE6CoVL8pQFGEQsEFgUXzwEochMSVRkEFwS4ZLBznwES1EABAkpWJvnsSgKa/Wb+IjIfAYAI/lFHYw4Czj4rKz4+Kys+/YKihwj+F0JwQwkSCA8URGFhRBQPCBIJQ3BCshsTExsbExMbAaoFdBtGQBwXxhUZOcD0iFOOVgFDNS0zc25WFv4eAq8KEGkYmxF5ERNxFwAAEQII/qwIIAbMABMAGgAhACUAKQA4AEUAUQBYAF8AawBxAIUAkQCgAKwAuwAAASIuAicTPgIzMh4BFxMOAwEiJj8BMwc3IiY/ATMHFzchFyU3IRclIiQnLgE1ESEVFAYHBgQnMiQ3Nj0BIRUUFxYEAyImNTQ2MzIWFRQGASczFxYGIy8BMxcWBiMBIiY1NDYzMhYVFAYFJTcFJRcBMj4CNwMuAiMiDgEHAx4DJSImNTQ2MzIWFRQGASImPwE2OwEyFh0BFAYjBSImNTQ2MzIWFRQGJyImPQE0NjsBMh8BFgYjBRR7p4eUajx9ybxpabzKfDxqlIen/K8gFhI8oEgoIRUQMntHUjoC5Dr8+jcCRjf+ppf+2YAbIQT0IRt//tmYmAEXdg/7mAx2ARjnJTY2JSY1NQPBSKA8EhYg2Ed7MhEWIfyoGycnGxsnJwD//aMFAlgCWAX9o2+bfHxRNWqwp11dp69rNVF8fJsB8CU2NiUmNTX8+hEWAhcDH+sPFRUPAXobJycbGycn1Q8VFQ/rHwMXAhYRAVIBBQkHBREfJBAQJB/67wcJBQH9Wi4aWKDrLxtSnOugoOucnGUXGQUqHAD//xwqBRkXRhcWAxCurhACFxcB6zYlJjU1JiU2/H+gWBou65xSGy8EQCccGycnGxwn8XRQdXVQ/kgBAwcFBIcZHQ0NHRn7eQUHAwGLNiUmNTUmJTYCmhgRxh8VD8YPFfAnHBsnJxscJ/AVD8YPFR/GERgADgEG/qwJIgbMACEALQA7AEMASgBOAFIAXgBqAG4AeACAAIcAiwAAASImJzcuAScHJgoBNTQSACQzMgQAEhUUCgEHJw4BBxcOAQEiJjU0NjMyFhUUBgMhMjY9ASEVITUhFRQWExE0PgE7AREnMxEiDgEVAREhEQEzESMBIiY1NDYzMhYVFAYFIRE0LgErASIOARUlMzUjByI1NDsBMhUUIxMRMzIeARURJzMRNC4BIwczNSMFFHPYWNI8ZTjAfr1poQEeAXjX1wF5AR2hab1+wDdmPNJY1/3UHCoqHB0pKVcD5UQu/lD+l/5PMBhCb0Mq2ZUgRi8BNAFI/vTQ0AIhHCoqHB0pKfuxBPJp47jpuORpAghaWgUtLe0tLYgqRG5C2pUvRSH2MjL+rDAs4wUaFqteAQQBOa3XAXkBHqGh/uL+h9et/sf+/F6rFhoF4ywwAwAqHB0pKR0cKv6yLkRWVlZWRC4CLgImNGZE/PxEAnkuQh/9AALs/RQBIgGO/UIqHB0pKR0cKksDP2igXFygaJw8Wjw8PDz9bgMERGY0/dpEAeofQi4NPAAAAAAPAPz+rAkkBswACQAVACMANAA9AEsAYABwAHQAggCMAJoAoQClAKkAAAUuATUQEiQzIRElMjY1NCYjIgYVFBYDIiY3ExcHBhYzITUzEQETMzI2NxMhNyEyFgcBDgEjEzMyNjU0JisBATMyNjURNCMiDgIVFAEhESEiJjU0PgIzITUhIgYCERQWASEyNjURNCYjISIGFREUFgE1IRUlIiY1NDYzITIWFRQGIwEhESEiBhURFBYBJy4BPwEzFxYGDwEGIiczNzUnBxUlNSEVBTUzFQG8RlCRAQCmBcf4uRgpGBEZJxeUIxkW5jufCAwNBy9Q+DsNLk97J7X+hYgBdSUgEf52JHhKjeQNERENtwH06REYGCliWjr9wAcF+2Y9P0dwgDkDpvqJktx7JwQiAV8QFxcQ/qERGBj+/QEO/rMQFhYQAYwQFhYQAcYBGP7oERgY/WOoDwEQoFShEAEPpw4qC0FLbHD8VwgM+5nnPjVjQwFTAdXz+wruNR8XHjQhFh79/DMbAREzuwoXyv7mAaMBDFFJAVPQNyD9HUNMAz4UDw8T/d4YEQFBGkhtdi8q/mABUjg1QpiHVuTr/kz+0jEzAXcYEQE3ERcXEf7JERgDAU9PRhQPDxQUDw8U/LkBiBcR/skRGAMsqRAlEKCgECUQqQ9vTUJtbz/OTk5IvLwAABkAxv6sCWIGzAAbACEAJQA+AEoAWwBnAGsAfACNAJEAogCpALsAywDVANkA6QDtAPQA+AD8AQABBAEIAAAFIiQmJzU3ETMRBxUWBDMyJDc1JxEzERcVDgEEAREzBxcDIRMlEyUiJj0BIRUUBisBIiY9AQ4BIyImJxUUBiMTIiY1NDYzMhYVFAYDNz4BOwEyHwE3NjsBMhYfAQEiJjU0NjMyFhUUBgEDNwkBIiYnET4CMzIeARcRDgInMj4BNxEuAiMiDgEHER4BFxEzERc3PgE7ATIfATc2OwEyFh8BCQEnIRUhCQEnPgMzMh4CFwcmJCMiBCUzMjY9ATQmKwEiBh0BFBYnIjU0MyEyFRQjBSc3Fy8BPgEzITIWFwcuASMhIgYFNxcHARE2MzIXEQERIRElIREhBzUhFRc1MxUnNTMVA+qU/u/XPTNQM2IBRsHCAUdiNFA0Pdj+7/xHyzKMZgE4NgHVbPztEBgD4RcRXhEYW5hMS55bGBE/IzMzIyMzM4oJAyUbFCIRFBQRIhQbJQMJAXEjMzMjIzMzAVLFmwLc+qxp2mhjinhGR3mKYmKLeEc9Zm9KSW9nPTxmb0prpzEyLAkDJRsUIhEUFBEiFBslAwkDrf0ICAMC/bMCS/g9JxdLj/fEw/ePShcox/7PjIv+zwFhthEXFxG2EBgYPhERAVcREf7DHTsfgTseNBwBUBo1HzsVHAL+sAMaARkfOx0EjxYTEhX9jQGj/qEBG/7lKQFgBrKysgINGRFwdwPp/Ad3IBIVFRIfdwP6/Bd3cBEZDf6uApvmO/6GAV0I/puyFxG+vhEXFxGOBAQEBI4RFwGrMyMjMzMjIzMBZVwbIh4iIh4iG1z+mzMjIzMzIyMz/aMBiTX+QgN/GhECGBERBgYREf3lEREGUAQMDAGTDAwEBAwM/nAQDwcB3P4kBlwbIh4iIh4iG1z9GgFtUk7+5gTyKjxiRSYmRWI8KionJ2IYECERGBgRIRAYmxQUFBQczgjWdC8mJycmMBoXFY/WCM740AZoCAj5mAS/Aav+VUQBI6hFRXdQUMhQUAASATP+rAj1BswAGwAfACMAPABIAFkAXQBpAHsAjQCRAKIAtADEAMgA0gDiAOYAAAUiJCYnNTcRMxEHFRYEMzIkNzUnETMRFxUOAQQJARcDIRMhEyUiJj0BIRUUBisBIiY9AQ4BIyImJxUUBiMTIiY1NDYzMhYVFAYDNz4BOwEyHwE3NjsBMhYfAQEDNwkBIiY1NDYzMhYVFAYBIi4BJxE+AjMyHgEXEQ4CJzI+ATcRLgIjIg4BBxEeAhcRMxEXNz4BOwEyHwE3NjsBMhYfAQEnPgMzMh4CFwcmJCMiBCUzMjY9ATQmKwEiBh0BFBYvATcXJyI1NDMhMhUUIyUnPgEzITIWFwcuASMhIgYFNxcHBRSV/u7YPjRQNGIBR8TEAUdiNFA0Ptj+7/uJAYKz0QFUdQFodf0NERgD5hgRYhEXYJZKSpZgFxE8IzMzIyMzM4oJAyUbFCIRFBQRIhQbJQMJAsLRswGC/UsjMzMjIzMz/rFGkpFGY4x6Rkd5jGNFkpFHMm57REpxZz09Z3BLRXpuGTIsCQMlGxQiERQUESIUGyUDCfvqKRdLj/fExPePSxcpxv7PjIv+zgFithEXFxG2EBgYIx48HWcUFAF0FBT+ZS8cNBkBThozHC8SHAz+sgwcASIdPB4DDRkSbXgD6vwFeBwTFRUTHHgD+/wWeG0SGQ3+rwG5E/5aAYf+ebEYEb29ERgYEWQEBAQEZBEYAawzIyMzMyMjMwFlXBsiHiIiHiIbXPw+AaYT/kcCXTMjIzMzIyMzASALFAsCGxERBQUREf3lCxQLUAcNCgGTDAsEBAsM/m0KDQcHAd7+IgRcGyIeIiIeIhtcAmEwOV9HJiZHXzkwKygoYxgQIREYGBEhEBh+zgjWIhMUFBNeIygmJigjGhERmtYIzgAAAAAVAQ7+rAkaBswADwAaACYAKgAuADIAPgBCAFYAXABnAHMAfwCDAJEAnwClAKkArQCxALUAAAU1NxE0PgEzITIeARURFxUFIiY1NDchFhUUBicyNjU0JiMiBhUUFgUnIQcBNTMVJzM1IwEiPQE0OwEyHQEUIxMRMxEFETQ2MyEyFhURIxE0JiMhIgYVESUhJxEhEQEiJjU0NyEWFRQGJzI2NTQmIyIGFRQWASI9ATQ7ATIdARQjATUhFSUiJjU0NjMhMhYVFAYjBycuAT8BMxcWBg8BBiI/ATUnBxUBNTMVJzM1IwE1MxUlNSEVAQ4mUYVNBXlOhFAm+X9DXRoBDBpdQyArKyAfLCwBXiwC0yz7zuqucnIB1xERXRERYUb+Vkg3AhA3SEYeG/3wGx79kgdeIPjiBgxDXRoBDBpdQyArKyAfLCz+JhERXRER/YEBDv6xEBQUEAGQEBQUEOyoDgEPolaiDwEOqA8sFoSEhAOk6q5ycvwx5fygCAumWGcDmU55RUZ5TfxnZ1iuXkIwKSkwQl5VLB8gKysgHywQgIACoP7+PIb+3xHUEhLUEf5jAzX8ywQC9jhGRjj9CgL2Gh4eGv0KF1wDXvyi/qheQjApKTBCXlUsHyArKyAfLAIxEdQSEtQRA2xOTkUUDw8UFA8PFAiqDicPoaEPJw6qEFGBFYODFfv0/v48hgPMra03UFAAAAAAEQB//6YJqwXSAC4APABIAFQAWABhAGUAbQB5AIUAiQCTAJ0ApwCxALUAvwAAJSImNTQ2NzYSPgIzMhYfASEyHgEXExYGKwE1MzI2JwMhDgMVDgEVFBY7ARUlNTM3NiYrATUzMhYPARMiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjc1IRUBIREjIgYVFBYBMxEjAxEhEyETIREFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIREhASI1NDsBMhUUIyciNTQ7ATIVFCMBNz4BMyEyFh8BASI1NDsBMhUUIxc1MxcBITI2JwMuASMhAP86RhUbDyRFf9GfFxQKFAU3XGovAxsCRTr76iEfAiD4URgxKRkUHBwfrf70dhEDFyQlJUo+CBziVXh4VVV4eFUqOjoqKjo6twRH+p0BPe9YSCcBuKqqUP3qjgfoHvrMA2xVeHhVVXh4VSo6OioqOjr8vgIk/dwELBwcVxwcVxwcVxwc+zIUBSQcAgIcJgQTAcMcHFccHFZoCP0rAhMdHQINATAp/hxdTUY2cUj+AVLMZyINFCYudGr8q0A/UCMpA+A3sNXkay10LSMwUJFGahQYRjsytf64eVVVeHhVVXlpOyopOzspKjtOUFACKwIf1vUoLP6nA0b8EAGzAr/9jv4A33lVVXh4VVV5aTsqKTs7KSo7AsYB0vyUGRkZGW4ZGRkZA3pwHCMjHHD89BkZGRn91tYBuyMgAUshIwAAFQCq/qwJfgbMABQAHgAqADYARgBYAGQAbgB+AIgAlACpALkAvQDJANAA4ADqAPYBAAEQAAAFIiY1ETQ2NzYkMzIEFx4BFREUBiMFIiY9ASEVFAYjAyImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImPQE0NjsBMhYdARQGIwEiLAEnNR4BBDMyJDY3FQYMAQE1NDY7ARUjIgYdAQEiJj0BIRUUBiMBICQnNR4BBDMyJDY3FQYEASERISIGBwMGFgEiJjU0NjMyFhUUBgUhMjY1ETQmJyYkIyIEBw4BFREUFhMiJjcTPgEzITIWFxMWBiMlIREhASImNTQ2MzIWFRQGASEDLgEjIQM1NDYzNTQ2OwEyFh0BMxcBNTQ2MyEyFh0BATUzMjY9ATMVFAYjATU3NjMhMh8BFQEiJj0BNDY7ATIWHQEUBiMB/Cw6Wke3AW64uAFut0daOiz6Rys5ASAiGX0fKysfHysrvCMyMiMjMjL9chojIxoqGiIiGgQDrP62/v1CMOkBVM7NAVLqMUL+/f63+x9iSCEhMCoGBRkiASA4LP1f/t/+TGUl6gFcz8sBV+soZv5P/LsBL/7oGA8BGAEQBAMjMjIjIzIy+wMGMAsLMCio/pjGxv6YqCgwC74dJAEhAiEZBJEZIgEgAiQd/PIBUP6wA0UfKysfHysr/jwBWxkBDxj+5gI0NBoUMxQZbwX7OEI0A+Q0QgECITAqUGJI+c82GS8EUC8ZNgFdGiIiGioaIyMa1zksBdRHYwYQDQ0QBmNH+iwsOX06LD9oGiMB0CsfHysrHx8rFjIjIzIyIyMyAvwjGp8aISEanxoj/H0FCghQBwwGBgwHUAgKBQSKGD5PTiIdGPpDIxpoPyw6Ap8gHVQTHxERHRNTHCABGgHwExP+YhUX/gEyIyMyMiMjMu8LCgXWKTUEEA0NEAQ1KfoqCgsCoCYcAhIZHx8Z/e4cJk4B8PwnKx8fKysfHysB6QHKExP+BTYsJ1QUGRkUVIkCmgkmPDwmCfzVTiMcGBg+TwQtYU8mJk9h/GghGp8aIyManxohAAAAABEA8v6sCTcGzAAmADIAPgBCAE4AYQBpAHkAfwCPAJcApwCzALcAvwDLANcAAAUiJjcTPgIzFyEyFxMWBisBNTMyNjUDNCYjIScOAgcDBhY7ARUXIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBY3NSEVATU0NjMhFSEiBh0BBTM3NjURNCYrASIGDwEOARUUFgE1LQEhFSEFATMyNjURNCYrASIGFREUFgUTIRMhBSUzMjY1ETQmKwEiBhURFBYBNzYzITIfARMzMjY1ETQmKwEiBhURFBYBIiY1NDYzMhYVFAYBNSEVASc2JDcXBgQTIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBwERNCF8Vc8yZPwTYjAIOAUEynZ0REQ4YJvsFP4KbTRFfBBsjVZlOb29OTm9vTik6OikpOjvMA536A0lAAbH+TyIhAXRPlyMbFLYlKQgdBAEo/v0BNgFLBST65P64AXXjFBoaFOMTGxv9g1QG7B/6//6nAxrjFBoaFOMTGxv+yxcHJgHHKAcXht4UGhoU3hMbG/7LIjExIiMwMPr4CA79Fjl+ATufEZT+2txOb29OTm9vTik6OikpOju4T0YDL7bDSkSC+7AxQFARDwRQHRZEA0ajkPzRIBxQnG9OUG1tUE5vWjsoKTo6KSg7Qk5OAxvwNz09HxjwjBwHJAEmExspLZsWKREwKv7pTgY/Tj8BORsTARcUGhoU/ukTG5YCXv3kP5MbEwEXFBoaFP7pExsCZHwoKHz9nBsTARcUGhoU/ukTGwLFMSIjMDAjIjEBrlpa/pgyk8orRCjF+RlvTlBtbVBOb1o7KCk6OikoOwAAAAAVAW7+rAi6BswADwATABcAGwAfACMAJwArAC8AMwA3ADsAPwBDAEcASwBTAGMAeQCBAIsAAAEiLgE1ND4BMzIeARUUDgEBETMRAzUzFSc1MxUXNTMVBREhESUhESEXNTMVFzUzFQEhNSEBNTMVAREhEQEhNSE1ITUhAREzEQE1IRUFMzU0KwEVFBcyPgE1NC4BIyIOARUUHgEnIiY1ETQ2MzIWFREUIyImPQEjFRQGNzMyPQEjIhUnMzI2PQEhFRQWBxxyvHBwvHJyvHBwvP0DjP2NjY1Ujf3cAtr9dgI6/cZmjVSN/DACC/31A0ON++ACq/2lAgv99QIL/fUC04z+1AG3ARE7HzuCXZdaWpddXZhZWpgsExJMYWJLJRERzBGfOx87Hy8PN0X++EYDknC7cnK8b2+8cnK7cPsaAXj+iAH2dnbDdnbDdnamA0j8uFACqMx2dsN2dgLSgv1vdnYBvwKA/YABDmQ8gv0FA7D8UAHiWlorHB8cH/FZmFxdl1lZl11cmFmMFg0BLCAlJSD+1CMWDRoaDRZlHxwfQSUcWVkcJQANAFD/EAneBmgANgBGAFIAZwCAAIQAlACiALIAvgDLANsA7wAANyImNTQSNz4BPwEBJjU0NjMhMhYXGgETFgYrATUzMjYnCgEDLgEjISIGFRQXAQcOAQcGAhUzFRciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBNTMyNj8BNiYrATUzMh4BDwEOASMBLwEPASM3ITIeARchPgEzIR8BByMvAQ8BATchFQEiJjcTPgE7ATIWFREUBiMlITI1ETQrASIGDwEGFgEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBITI2JwMmIyEiFREUByImNRE0NjMhMhYXExYGIxMiJj0BNDY7ARUjIgYdARQWOwEVuS08JBsOVTlyAP8fgmgE9zNPDlxvHgdfSpubKC0DHXhRByUX+wlIUir+3ZQpMgggHc6mQGtAQGtAQGpAQGpAOE5PNzdQT/6gRzpJDyULGBGioiI2Fg8mGHBKAiFEf4BE4AsBjjY/NCQEKipRLQE1R2AIwGCUd0b6OlEHRfm2EwILvRA+Ia4RGBkR/rEBGxAQeQ0ZBYgGCwTgQGtAQGtAQGpAQGpAOE5PNzdQT/2hAr8JDAI2Aw39dBEkERkYEQLuERQESAYfG/k2Tks3KCgaIiUZSwU6LJYBGG46SBAgAeI+QltyQTX+r/1c/rNKYVAvJQFqApcBMx0gRjk7RP3ZKQstIHz+5YhQ9T9rQUFqPz9qQUFrP2RQNzdPTzc4TwGqRiIdSRUbRio/IFM0NP7ncV07VbwPKikyMDMVdEw1UG8BQoqKAakbFAFfHSMaEf6GERhOEAESEA4L/AsS+9I/a0FBaj8/akFBaz9kUDc3T083OE8Dyg0JAQ8NEf7wEU4YEQF6ERoaEf6ZHCD9sE44qDlLRiIcqBomRgAAFABa/qwJzgbMADAAQABMAFQAZQBpAG4AfgCLAJQApACwALgAvADAAMQAygDUANoA4gAAFyImNTQ2NzU0Nj8BATM1ITIWFRQGBxYSFRQGBw4BKwEnMz4BNTQCJyEBBw4BFREXBxciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBY3JyE1ITIWFwE1MzI2NTQjITchMhYVFAYjASchBwElNSEVASImNxM+ATMhMhYVERQGIyUhMj0BNCsBIgYPAQYBPgEzIRUjJwcTIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWATQ2MxUiBhUBJwEXAwE3AQURMxEBMyc3Iw8BNTQ2MyEyFh0BJzM3JyMXASE+ATU0IyHNND86MiMulgFPuwUwREUFBTA4BQgEIh1yKpEGBS4w+gr+wZAcKc8muj1kOzxkPD1jPDtjPjJGRjIyRkbsD/3VAZl3siD9L4xYVCf+3R4BGSwrfnIBjhsE3xf5FQFmB175CxMFDMsRPSEBPxEYGRH+DQGzGhroFSoOhBAD7x+UkwE87mOTpT1kOzxkPD1jPDtjPjJGRjIyRkb62GdnSzMDUT0B8T09/g89AfH+rHr87kcjI0c4QychARshJ8FHODhHI/7fBRIDBD/7JlhbTEltFt02RCV4AkDUPDoeOSXT/ivTgtBcLzFkUtCIuAG71v3cchYrHP5eXmT8O2Q9PGQ8PGQ8PGQ8ZEYyMkZGMjJGzSW+cnEBTzxATSdGMjtvWv58UFABf1OJ3AGqGxUBYh0gGhH+hREYUBn9GRUX5xz8lY97viFt/vY7ZD08ZDw8ZDw8ZDxkRjIyRkYyMkYGHoB1UE1Y/Z5pAR9p/uEBH2n+4cQCPv3CA7Y4ODh8lyYsLCaXRDg4OP7wEScXNQAAABgAXP6sCcwGzAAuADQAOgBKAFYAZABoAHgAhACIAJAAoACsALIAvADCAMUAyADLAM8A0gDmAOkA7AAAFyImNRE0NjsBNTcTNjMhMh0BMzIVETMRITUhNSMRNCYjITU0IyEiBwMHESMVIRUnNSE1IREnNSM1MxEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWASc3NTQmKwE1MzIWFREBNSEVASImNRE0NjMhMhYVERQGIyUzMj0BNCsBIh0BFAERMxElNSETIRUhAwEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBMyc3Iw8BNTQ2OwEyFh0BJzM3JyMXJTcjFzM1FzcjAREhESUzNQERNCYjISIGFREjETQ2MyEyFhURATcjFzM1hREYGBEYdjQGQQYXTudkjv5lAUuOCgr+yRz6KhoDNHNBAZSs/voBVo5+xAFkRnJDQ3JGRXFDQ3FFPldXPj9YWP5UFOwTC1ZvIi8BkQLd/A4QGRgQATMRGBkR/vvaDw/aDwHQRP4aAk/hAtL9VeEB/UZyQ0NyRkVxQ0NxRT5XVz4/WFj7BUsjI0s4Ky4i1yMtpks4OEsjAXqqqj2pPKqq/qIDov35qQJZEBH7TBMQTDUmBNwlNP2Xqqo9qYoYEQEHERf3iAIdPk0oXfz5/qdOvQNRCAtZHBn964X+4cROPM5O/uTX5Eb+1v4jRHJFRXFDQ3FFRXJEZFg/PldXPj9YAslJaM8LEEYtIv75/RJOTgLIFxABJxEZGRH+2RAXRg/ODw/OD/0pBMD7QKVOASNO/t3+WkRyRUVxQ0NxRUVyRGRYPz5XVz4/WAXcOTk5g5wjLCwjnEo5OTkQyNnHtsj+9QE9/sMyx/4hAlETEBAT/hcB/SY1NSb9mwEpyNnHAAAAFgBJ/xAJ3AZoADgASABUAGIAZgB2AJIAnACsALgAyADMANAA1ADcAOAA5gDqAO4A8gD2APoAADciJjcTPgE3JTc+AjMyBB8CHgIVFAYHDgErATUzPgE1NCYvAi4CIyIOAg8BBQ4BBwMhFRMiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBNTM3NiYrATUzMhYPAQEnIQclJz8BIRczESMvAQchLwEHJTI2NTQmJwcGIyIvASYjIg8BBiMiLwEOARUUFgEhESIOAQ8BBhYBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWASImPwE+AjMyHgMXBwEnNxcvATcXEyc3FxMhNy4DIwEzNSMBJwMzFSMBJzcXJTUhFSczNSMFJzcXLwE3F81ARAMRAllKATW8Urr0qOwBMV2Qqzk8FwwJBD83irILDC0pwaA1mtiThL6MazLN/rIuOAITATO9SntISHtKS3tISHtLS2lpS0ppaP5SuSoDCgrI7R8gCkEB7ScEFB/5WRnbWgcbJqqgUtmt/Etc+HMDw0deCgokDREQEBINDxANEhAQEA4kCgpd/kUCEYCfZy1lCgQEtUp7SEh7Skt7SEh7S0tpaUtKaWj7AxMID8w6gcGaYohmXGpKiPwqGJ8YGJ8Yn9VFEkWhAZYzO1lce17+98rKBFZFFvis/SkSRRL+GQIp+8nJAeigGJ+eGKAXEUNIAbI+ahFJ2V9hIW98vzQRVmkvb99sKzdQhuJkSlwNO9RHWSsTLE057U8KPib+FlD+/0l6S0t6SEh6S0t6SVppS0toaUpLaQG6RIsKDUQzIdb+7VlZNv4Vopn+5GRZvZgRqUBxVSY5ChcJCw0KCg0LCRcLOSVWcAJhARgZOjJwCxj8KEl6S0t6SEh6S0t6SVppS0toaUpLaQMwGhHmQUcbCSBGeV1vAnk2RzaRRzZI/qUOnw79hCtPXy8QAY55+0UCARJEAqmfDp+J3d0yefRINUeiNUg2AAAYAMD+rAloBv4AJQAvADgARwBcAHAAegCiAKwAsAC0ALgAvADFAMkAzQDXANsA3wDjAPIA9gD6AP4AAAUiJCcuAScmNTQSPwETPgE3PgEzMhYXHgEXExcWEhUUBw4BBwYEBSImNREFFRQGIwMhMjYvASYrAQMiJj0BNDY7ATIWHQEzBwEhMjY/ATYmJy4BIyIGBw4BHwEeAQUiJC4BJwM3FgQhICQ3FwMOAgQBIiY9ASURFAYjATIkNz4BNz4BNTQmLwEDLgEnLgEjIgYHDgEHAwcOARUUFhceARcWBAE3PgE7ATIWHwEBJzcXJTUzFQM3IRcBJzcXASE1IyIPAQYWASc3FychNSEBNz4BOwEyFh8BATUhFQUnNxcnITUhASczNTQ2OwEyFh0BFAYjASc3Fyc1MxUvATcXBRSs/pW2WXkODiUcBeAmfV5lzmFizmRffCbgBR0kDg55Wbb+lfwVGiMBAyMahQEGHyQIEQsp/NIfKCgfYh8oUhAB+QJSKToKEggpJWC4Skm5YCUpCBILOgFR0v7rvZNPBW8VAZQBcwFzAZQVbwVPk73+6wHkGiMBAyMa/MG2AWSpPlILBwYjHQXTGmlIYchfXshiSGka0wUcJAYHC1I+qQFl/s8MAyMZbxoiAwz+FBuYHf7nnncHBjwH+oqYG5oEaQEG/CkLEQcj/StPFE/wAXP+jQJ8DAMjGW8aIgMM/EMDrv7oFE8U5gFz/o0C+hBSKB9iHygoH/7Amh2YOp77HZobkBUXC3haV3GHAQlVIwGHQ1MJCgoKCglTQ/55I1X+94dxV1p4CxcVxCMaAUyUuBojApIsHD0qATInHigfKCgfG1L9/jApRiAyAgYGBgYCMiBGKTCoDBkmGwGL0T5RUT7R/nUbJhkM/jcjGriU/rQaIwEUFRYIU0AoXjV9+1IlAXIvSQcLCQkLB0kv/o4lUvt9NV4oQFMIFhUEFmoaHx8aagGTM1YzWDw8/RmpqQNEVjRX+pevKj0cLAQODq4OKFr9WmoaHx8aagIQ0tKarg6uyFr8o1IbHygoHygeJwJKVjNWezw8XTNXNAATAFX/dAnTBgQAPABMAFgAZgBqAG4AcgB2AHoAfgCIAIwAkACgAKwAuwDCAMcAywAANyImNRE0PgE3JTc+AzMyHgIfAR4BFREUBisBNTMyNRE0Ji8BLgMjIg4CDwEFDgIVERQWMyEVFyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgE1Mzc2JisBNTMyFg8BBTUzFQM1IRUBNTMdATUzFT0BMx0BNTMVASERIg4BDwEGFgE1Mx0BNTMVASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEiJj8BPgIzMh4CFwclITcuAiMnJTchFwE1MxXIQDMpSjEBeW1Eh6TYlZPdr5pQ2x0XSEVjYz0JCOdMjp/Mi4jElHtAgP5oGC4dDBcBGcFHdkZGdkdIdkZGdkhHY2RGRmNj/jiVKQIJCbjeHh8JQAJGerYDzfzpenp6ev3ZAbx4onExHB0OAlJ6egEXR3ZGRnZHSHZGRnZIR2NkRkZjY/v3Vyo4GD6JyZx2qIN3RWD+JwGsLTh6qX4i/uxNAb9PAh2VEkRGAdAmVUIJRpdef0shJlqadJATJiD9ujlQUDkCRAgMBZhwklQiG0JzWLFMBCczGf4vHB1QnkZ2SEd0RkZ0R0h2RlpkRkRjY0RGZAGoRIgIDkQxH9YYenr+tE5OAcZ6enp6enp6enp6egHBAS8gTUQnKS7+uXp6enp6/hZGdkhHdEZGdEdIdkZaZEZEY2NERmQDCW1SI1piJxlBdl2YSEhRZjDMBuTk/JHm5gAAABMBE/6sCRUGzAApADMAPwBOAGQAeQCDAKsAtAC4AMQAzQDZAOgA7ADwAPQA+AD8AAAFIiQnLgEnLgE1ND4BPwETPgE3PgEzMhYXHgEXExceAhUUBgcOAQcGBAUiJjURFxUUBiMDNSEuASchNSEeARcBIiY9ATQ2OwEyFh0BMxcBIiQuASc3HgIEMzIkPgE3Fw4CBCUiJi8BJjY3PgEzMhYXHgEPAQ4BIwEiJj0BNxEUBiMBMiQ3PgE3PgE1NCYvAQMuAScuASMiBgcOAQcDBw4BFRQWFx4BFxYEATc+ATsBMh8BBTUhFQE+ATchFSEOAQchFQE3NjsBMhYfAQERNzMXESM1JyMHFQE3MzU0NjsBMhYdARQGIwE1MxU9ATMdATUzFTM1MxUnNTMVBRSy/qunUnILBwcOGQ85wB1wRGLIYWLHYkRxHMA5EBgOBwcKc1Kn/qz8Nhgg7iAYrgE9CRgO/vIBNSA4Df3tHCUlHFcdJE8FAtTM/vG2i0kaSIWuAQfJyQEHroVIGkmLtv7x/hcfLQ4hCB8hUbdYWLdRIR8IIQ0uHwF8GCDuIBj86a0BT6g5SgcHBhcTNckUTDBYwmlpwVkwTBTJNRMXBgcISTmoAVD+0gsDIBdmMwYL/i0FfP7vDTkfATX+8g4YCQE9/aQLBzJmFyADC/z0t/a3UIO+gwO2BU8lHFcdJCQd+4pJSEpISZFIjBUUCm1UNWk1Va2WMB4BpT5PBwoICAoHTz7+Wx4wlq1VNWk1VG0KFBXIIBgBSoDKGCACaEYaMxhGMIBBAfIkGykcISUcHUf9SAgQGRFKERgOBwcOGBFKERkQCMcmJV0XJAYPDw8PBiQXXSUm/ZcgGMqA/rYYIAEWEhYISTc1YzFs308bAbUsNgUKCAgKBTYs/ksbT99sMWM1N0kIFhIEA14XHTRegJaW/c9BgDBGGDMaRgKxXjQdF14BbwEGkpL++t9pad/90kcdHCUhHCkbJAKVSUlJSEhJSUlJSUlISAAAAAALAJ3/2AmLBaAAPABMAFgAZgBqAHoAhgCRAKEAqQC9AAAlIiY1ND4BNyU3PgMzMh4CHwEeAhURFAYrATUzMjY1ETQuAS8BLgQjIg4CDwEFDgIVFBYzEyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgE/AjYmIwc3MzIWDwEBNSEVFyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEhNSIOAg8BBhYHIiY/AT4DMzIeAhcHJSE3LgMjAS4CJyY2Nz4BNxcOAQcGFx4BFwHyt54kWU8BO5pLd4W7j4Guio9hpTQuDEk3W00dIRQqIpdOc2NqiF+Hq3ZoRKn+qDc9GW+W2VF1P0d3R0d2R093PkJeXkJDXl7+LxSpPAgLFKknpy8lFVYB7AN4xkd3R0d3R0d2R0d2R0JeXkJDXl78YAG1WXVRQyc1CgZCNxQsTjdXZpZ3b4xmaUty/oEBXCowSk5rUwNaMU1BIAcDByBXMi0fPxwXDRlIKa+LoYSlYiGEpFBgMRAVQoNubiI2UU7+OTdFUBscAbw6RS4WZVhyQiAJDSpWSLSQF0yIcX9d/tlHdkhHdkZGdkdIdkdiYENBYGBBQ2ABdlI8exEVAkhBLLL+qVBQ10d2SEd2RkZ2R0h2R2JgQ0FgYEFDYAOG1wkaMik4CxZQTS5SOkQiCg0wZVh9UC44QyIM/S08ZV0vChoKLEoeNxExHRgUJmQxAAAADwBu/t4JugaaACUALwA/AEYATQBnAHYAgAClAK8AuAC/AMYA0ADfAAAFIiQnLgEnLgE1NBI3Ez4BNz4BMzIWFx4BFxMWEhUUBgcOAQcGBAUiJjURBRUUBiMBIiY1NDY7ATIWHQEzFw4BASImPQEFFSczNScVFBYBIiQuAic3HgMEMzIkPgI3Fw4DBCUiJi8BJjYzMhYPAQ4BIwEiJj0BJREUBiMBMiQ3PgE3PgE1NCYnAy4BJy4BIyIGBwYHAw4BFRQWFx4BFxYEATc+ATsBMhYfAiIkJzchFwYEEzUlFRQGIyczMjY9AQcBNz4BOwEyFh8BBSImJzczNTQ2OwEyFhUUBRTM/n+/XoEMBwlFM98aiExx4XBw4nBNhxrfM0UICAyBXr7+fvu3GyQBBiUa/v9aVlQ9KB0mVA8rWAE4O08Bhvy2+iYCsLv+9MKSfUIaQXiNvAEGuLgBBryNeEEaQn2Swv70/mskIAs+EZ7a2p4RPgohJAIbGiUBBiQb/IPDAX3DRFgJCAc8NOINV0dn3Hd23WePHOI0PAcICVlDwwF9/qEOBCwgiyAsBA/azf5qzUYF1EbN/mrJAYZPO7a2Hib6/v4PBCwgiyAsBA4B1CxXLA9UJh0oPlNXGBYLfV87eTuSAQBSAmRHQgcLCgoLB0JH/ZxS/wCSO3k7X30LFhjLJBwBLHK6HCQEyxscQFUoICBTCQj+ik87cQL5Rm0CKx4m/f8JERokFz4XIhgPBwcPGCIXPhckGhEJjBUdpy8oKC+nHRX92iQcunL+1BwkARkZFghXQzt0NoDxTwJsJi8HCgsLCg5O/ZRP8YA2dDtDVwgWGQSCgSAoJyGByRITs7MTEv6D+QJxO09GJh4rAgGTgSEnKCCB0AgJUyAgKFVANwAAAA0AZP+mCcgF0gAWACYAMgBUAGQAcQCAAIwAlgCmALIAwADEAAAlAyYjIQEFDgEVESMRNDY3JQEhMhYXEwEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYlNTQ2OwE+ATMyFhchPgEzMhYXMzIWHQEhLwEPASEvAQ8BASImNwE+ATMhMhYVERQGIyUhMjURNCMhIg8BBhYFIiY1ETQ2MyEyFhcTFiMlMzInAyYrASIVERQBAzMyFhcTFgYjASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEnPwE2JisBNTMyFg8BJTUzFwkOcQEQ++X+Kv50FBRQQzABagHYBEAmNwRx+RpGc0REc0ZGc0VFc0ZEYGBEQ2Bf/jAjGakqrGNhqywCVyi1bXGqMZ0ZHP7YU5+RRvzRO52bVAGyEAUNATgaNhsBXg8VFRD9xQH+FBT+4BIeww0PAvIQFRUPATsOFQEkBjb+690XAhoCEsQUAgk5eyQvAxoENiv9/0ZzRERzRkZzRUVzRkRgYERDYF/5uBCEGAMLC4arIB4LKAb7cAq+BLUP/dwaARIO/bICTjI8AxgCJjEm+0r+4UR0RkVzRERzRUZ0RFpgRENfX0NEYGxrGiJcbHNxeoR3ayAabcVib7THYmnEAt4ZDwFoHyAWEP57DxVOFAELFCThDiBOFQ8BhRAWFRH+jzhOFwEKEhT+9RT+LgHqLSP+zSw7/eBEdEZFc0REc0VGdERaYERDX19DRGAB5EAgUwsPQjgjiyHW1gAPAGz+3gm8BpoADwAfACsAMwA8AFIAYgBvAJEAoACsALYAugC+AMgAAAEiJjURNDYzITIWFREUBiMBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWATUzNSM1MxUDNTM3IRElJwcFIiY1ETQ/AQE2MyEVISIGBwEHESEHAyImNxM+ATsBMhYVERQGIyUhMj0BNCsBIgYPAQYBIiY/ASMHISchETMRMzchMjY9ATMVFAYrARcWBisBAyMDFyIuATU0NjchHgEVFA4BJzI2NTQmIyIGFRQWATMRIyIGFREUFiEzESMBMxEjATMyNjURNCYrAQTRGiMvIwSEIy8jGvkwRHFCQnFERXBCQnBFPlVVPj1WVv4qkpLY5tmsApb+29vM/vo1NjNUAREfQwJG/ckXGg/+93ABnFhAEwcO0RE6JOYRGBkR/m8BURoalBkjDoATBJcYGgcswAf9akkBelDMBAODFSBQUDgmKwcaGGNWymrHRHFCQTQBBDVAQnBFPlVVPj1WVv1ix8cRGBgBKNzcASzc3AEsxxEYGBHHAWwjGgSfIy8vI/thGiP9ckJwREVwQkJwRURwQmRVPT5VVT49VQIBRlpG5v70ief+kwJiZzhFNQHcOh4yAaEwUBAX/mpC/e5QAlYbFQFAGh0aEf6tERhQGdUZExTEHPzzIxeWaVABhP58aSAV4ddGSZYXIwED/v26QnBEQ28gIG9DRHBCZFU9PlVVPj1VAnoEjhgR+8QRGASO+3IEjvtyFBUEPBEYAAAAEwCC/0IJpgY2AB0AIwAvADsAQQBNAFkAaAB0AHgAhACQAJwAqACwALQAuAC8AMAAADcREzY7AT4BNxEhFSMnByEnIREOAgcjIgcDESEHJxEjNTMRFyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJTUzNyERASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASI3Ez4BOwEyFhURFAYjJzMyPQE0KwEiDwEGATUzFQEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFi8CNSEVDwEBNSEVAREhESUhESEDNSEVgtMWLeUnyJoCS1yadf3gJAEUOmpLDPMnDcIBHx2oiM7gTW1tTU1sbE0iMTEiIjIy/n+RMgJsAYBNbW1NTWxsTSIxMSIiMjL8GSQUiQs4JIwRGBkR/r4aGjUvElUMA0bSAZtNbW1NTWxsTSIxMSIiMjIBik1tbU1NbGxNIjExIiIyMr9JtQJWsUn8ZwTc+voFKPsoBIj7eCYE3BQCyAIPOHqVBPp0lmRkWgVwBUR0TiL+Gv2ZUCgBa0b+T/ptTE1tbU1NbGYxIiMxMSMiMa+jdf7o/uttTE1tbU1NbGYxIiMxMSMiMQMLMAFPHCEaEf6YERhQGeoZLNQc/VbV1f7pbUxNbW1NTWxmMSIjMTEjIjFmbUxNbW1NTWxmMSIjMTEjIjFgPDG5uTA9AgJkZP78BTD60FAEkP7yZGQAABEASv7eCd4GmgAQABgAWwBrAHcAfwCDAMYA1gDiAO0A8QEFARgBHAEpAS0AAAEnEz4CJD8BEzcBBwYEBgcDJyY9ATQ/AQEnJicHJzcuAScHJzcuAS8BNTc+ATcnNxc+ATcnNxc2PwEzFxYXNxcHHgEXNxcHHgEfARUHBgcXBycOAQcXBycGDwEnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGJRACITUgABEFNSEVAScuAScHJzcmJwcnNyYvATU3PgE3JzcXPgE3JzcXPgE/ATMXHgEXNxcHHgEXNxcHFh8BFQcGBxcHJwYHFwcnDgEPAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYBETM0Jic3HgEVERc1IRUDJxM+ATMhMhYfAQcnNycmIyEiDwEiJjU0GgE3FwcnFwMjNw4DJQM3EwEiJjU0NiEgFhUUBiMTAzcTAV9OIQNDlwEDw1XrW/7jj6v+/ZMEVqk2NqkBBBAiGyxWEAwWCzwzLAUIAzs7AwgFLDM8CxYMEFYsGyIQZBAiGyxWEAwXCjwxKgUIAzo6BwkqMTwKFwwQViwbIhAyT4FNTYFPT4FNTYFPP1paPz9aWgHZ8v7vATABI/7EAs8BRxAZMRYsVw4nHjszKxIIOjoEDQkrMzsPJBMPVywXMBkQZBAaMBYsVw8UIw48MysRCDs7BxMsMzweJw9XLBYwGhAuYZ9eXp9hYZ9eXp9hUHJyUFBycvs3KBweKy0ofwFwcUTzJX1UAas/dSho2TegMzRt/lWCMIsbHkFrPz9EEWdIchgWHRQRAYwkUCX9TQ0U6AEUARnpGBAPWVBZAUEHAZQpXFI4BAICRQr9ZQQFQFot/VguDzeMNw8t/T48BgosMzoLFgwQWCwOHRAQZhAOHg8sWBAMFgo7MywKBjw8BgosMzsKFgwQWCwPHg4QZhAjGCxYEAwWCzozLAoGPI9Ngk9PgUxMgU9Pgk2DWkA/Wlo/QFo5ASMBFEz+xP65Lk5O/uM6BA4JLDQ6ICYPVywuMhBlEBkwFyxXEBQjDzs0LQkOBDo6BA4JLDQ6DyQUEFcsLDQQZRAwLy1XECYgOzQtCQ4EOpZen2FhnV5enWFhn16bclBQcnJQUHIDxwHCY0sfNSN0a/4+MU5O/YQqAYs8OScscM86mDc5T7M6KLoBSgE7oiGrMC3+5BZXioifvwL4BP0EAuENDjAwMDAODf0bAwUK/PEAAA4BBv6sCSIGzAASACIAJgAqADYATwBdAG8AfQCQAKAArAC8AMYAAAEiJi8CLgE1ND4CNz4BMyERATUnESEVIREXFSE1NxcHFQE1IRUBNSEVATI2NTQmIyIGFRQWBzcyPgE3PgE3NiYrATchMhYHDgIHDgIBNSc3FxUhNTcRMxEHFQEiLgEvASEyNjczBhUUFjMhFQEzMjY9ATQjIg4CFRQDIREhIgYHDgMHHAEVBRceAQEzMjY9ATQmKwEiBh0BFBYFIiY1ND4DMyERJTMyNj0BNCYrASIGHQEUFiEzESMiBh0BFBYD5k9pLFbXJR46XWwxYcJ1BMT4YX0CDP5EfQEVrD2Z/hwC/vz2B6j5aRQlEQ0TJxJlK0BQOR4rUy8HBgvHOAELCwgJOlxePSVHWwTIlD6mARZ6UHr6022fg0QLASJrfCfUBkNNA7P7QowUGhERQUQvHgTs+4xtpFMpXlU4BAEDYyNDAaDgFBoaFOATGxv+lhIeKURRUSIECf314BQaGhTgExsbAZWAgBMbGwGyQ06XZhIdHkLDzasrU0T65vz73JgClU791pirsMwztuEDDUZG/n1QUAPqKRYOESkVDRMklRAuKz5nNAgRMhkINWiCXDc6Ffqv3LgyzqqslQIC/eGV3QSGDBwWQ1VYHhg3QIEBbxsTxxc8VU4RHP1hBHw/RyOUta4+BAYEe6w8LQKfGxOwFBoaFLATG0QRFhdYZl08/mtEGxOwFBoaFLATGwEMGhSwExsAAAAAHwEE/qwJJAbMAA8AEwAXACMALwAzAD8ASwBPAFMAVwBbAF8AawB3AHsAfwCDAIcAkwCfAKsAuwC/AMMAxwDgAOoA7gDyAQ8AAAEiJjURNDYzITIWFREUBiMlJzMVMzUzFSciJjU0NjMyFhUUBicyNjU0JiMiBhUUFhc1MxUnIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYXNTMVJTUhFQU1MxUBESERJzM1IwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgE1IRUBNTMVAREhESczNSMBNTMRMxEhETMRMxUFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFITI2NRE0JiMhIgYVERQWBTUzBwERIREnMzUjEycuAiMnJiMiBwU1NzYzMhYfATIeAR8BBTU0NjMhMhYdAQERIREnMzUjAS4BIy4CIyIGBw4CByc+Ajc+ATMyFhceARcBskdnZkcGxkdmZ0f45C6Agr42NkpKNjVJSTUXISAYGSEh0b4YNkpKNjVJSTUXISAYGSEhvb77wAe8/Qa++7YBGNygoANvNkpKNjVJSTUXISAYGSEh+9kGef7ovvveARjcoKD9kiNQBf5QI/7tNkpKNjVJSTUXISAYGSEh+lgGxCY4Nyb5OiU4OAbscRz8bwEY3KCgPK42XnJXejU0P0D+8OFXVyxNJWNag245ofvZV0AFcEFW/kEBGNygoAIkKmEWT3RMFhdTKTdZdWEbVXNaLy1lMTWWfiBLEv6sZkYGxkdnZ0f5OkZmRXJycnKjSzQ1Sko1NEtGIRgYISAZGCHpcnKjSzQ1Sko1NEtGIRgYISAZGCHpcnJuTk5ucnIDBwE2/so8vvyiSzQ1Sko1NEtGIRgYISAZGCEBXVhY/bpycgMHATb+yjy+/SZWA5f8kgNu/GlWhEs0NUpKNTRLRiEYGCEgGRgh3jclBsYmODgm+TolNwtycgMHATb+yjy+AR+9PDsUbC4wymOnQCEhWBxIQrlJEjpRUToS/fcBNv7KPL4BnRQRW3E0U0oEDyQjSx8lEwRJWHGPAxEIAB8A8P6sCTgGzAAPABMAFwAbAB8AIwAvAEMATwBqAG4AegCGAJAAlACcAKAApACwALwAwADEAMgAzADnAPMA/wEDAQ8BGwEfAAABIiY1ETQ2MyEyFhURFAYjJTUhFSURIREnMzUjAREhESczNSMBITI1ETQjISIVERQFETQ2OwEyFhURIxE0JisBIgYVERMiPQE0OwEyHQEUIwERNCYjFhUUIyI1NDYzMhYVFCMiNTQ3IgYVEQE1IRUBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYDNTQ2MyEyFh0BAQM3FwM0NjMhMhYVAREhESczNSMBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFNSEVBREhESUhESEBJzcXARE0JiMWFRQjIjU0NjMyFhUUIyI1NDciBhURAyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJwM3FwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjcnExcBQyMvLyMHoiMvLyP4SQQB/K0BDtGUlAFTAQ7RlJT9uAdmICD4miADyEk3pDdKRCIbpBshYBERXRER/L4rMQQYGWZkZGYZGAMwKwM2Anr5Y0xoaUtKaWlKJDU0JSY0NPQjGgcoGiP5Keg46LViQAXCQWH+pwEO0ZSU/D5MaGlLSmlpSiQ1NCUmNDT9mwfM9/YISPgIB6j4WAL3PsVfAcErMQQYGWZkZGYZGAMwK/BMaGlLSmlpSiQ1NCUmNDRZ6GDGAZ1MaGlLSmlpSiQ1NCUmNDR0OOg4/qwvIwMeIy0tI/ziIy/FUFC9AUT+vD3K/vkBRP68Pcr9xSAC5h4e/RogGwIpOEpKOP3XAikcIiIc/dcBExHUEhLUEQLfAhcoHwUKGh8mKCgmHxoKBSAn/en8oFBQBQRpS0toaUpKalo1JSU0MyYmNP2NIhceHhciAyoA/zn//NgqR0cq/ZcBRP68PcoDQGlLS2hpSkpqWjUlJTQzJiY0cE5O7QNa/KZOAr7+/TL0Cfw5AhcoHwUKGh8mKCgmHxoKBSAn/ekBpGlLS2hpSkpqWjUlJTQzJiY0rAEdCfT+yGlLS2hpSkpqWjUlJTQzJiY0tzkA/zkAAAAAEAEa/qwJDgbOABEAGQAdACUANQA9AE0AVQBhAG0AeQCGAIoAmgCmALIAAAEiLgE1ETQ2MyEyFhURFA4BIwEnIREhNSERBREzESURIREjESERJSEyNjURNCYjISIGFREUFgM+ATMhMhYXJSImPQE0NjMhMhYdARQGIxMRIRUhESEHAT4DNTMUHgIXASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGFycmJy4BJwUOAQcOAQUBNQEtAS4BPQE0NhcFHgEdARQGBSImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGArVmoFtUSgYcS1Nbn2f6RgcBOP7IAX4B1Ub+ZgLuUP2y/twElnmYIC755C0hmCsQcFMEOlNwEPtzDxUVDwM4DxUVD10Bfv7IATgH+4syRi4VlxUuRzH9cSY2NiYmNjaTJjY2JiY2NuaJIgIBCAsBMRAfDwcaA7/4DAf0/jD7+hohEAoEAxwjEP7EJjY2JiY2NpMmNjYmJjY2/qxcn2cB90dHR0f+CWefXAEORgFeRv4W/gMB/P8nAvP9DQKt/VMXm3kB9yIeHiL+CXmbA5UhICAhHBUPHw4VFQ4fDxX9DwHqRv6iRgNSJqXY6mxs6tilJgLNNiYmNjYmJjYmNiYmNjYmJjZwHAcmIDgWQg4sIRAOfgHASP5AZNUFKxspCw0CywUpHDQLDRQ2JiY2NiYmNiY2JiY2NiYmNgAAAAAPAQ7+rAkaBs0AEQAZACEAMQA5AEEAUQBoAHQAgACKAI4AngCqALYAAAEiLgE1ETQ2MyEyFhURFA4BIwEnMxEjNTMRFxEhESMRIxEnITI2NRE0JiMhIgYVERQWJREzFSMRMwcBPgEzITIWFyUiJj0BNDYzITIWHQEUBiMnLgE1NDY3PgE1MxQGBw4BFRQWFx4BFQEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBhcnJicmJwUGBwYFATUBLQEuAT0BNDYXBR4BHQEUBgUiJjU0NjMyFhUUBhciJjU0NjMyFhUUBgRybp5UT1kDJFlPVJ5u/RsItbX7ZAFoUMh2AbSFiyI2/Nw2Io0Cdfu1tQj8eg5oTAFyTGgO/bcQFhYQAZwQFhYQoHGKExsXEVAWHBMRRFgyJP2vJTMzJSUzM5QlMzMlJTMz430iAgMTASciHA8Dxvf0CAz+F/v6GxgQCgQFFCEQ/sglMzMlJTMzlCUzMyUlMzP+rFqpdgHkRz8/R/4cdqlaAQ5GAV5G/hbhAv39AwK3/UkjmJEByzAfHzD+NY+avgHqRv6iRgLEIR8fISMWDx0QFRUQHQ8WNjnKbi9ZQDVHJSxTSDJKJk9xQSUvHAMGMyUlMzMlJTMmMyUlMzMlJTNwGQYoRiRAGj0hgQHFSP47X9cFKxwsCw0CzgQoHDkLDRMzJSUzMyUlMyYzJSUzMyUlMwAAHAC6/qwJbgbMABUAJQAvADMANwA7AD8AQwBNAFEAVQBZAF0AYQBlAGkAbQBxAHUAeQB9AIEAiACMAJgAnAClALEAAAEnEycTJQUOAgcVIzU+ARI1JQUDFwEiJgI1PgEzMgwCFxACIxM2NywBIRQWFyABNSEVJTUhFRcnNx8BJzcXASclFwM1NhI1MxQCBxUlJzcXLwE3FwEnNxcvATcXLwE3FwEnNxcvATcXLwE3FwEnNxcvATcXLwE3FwEnNxcvATcXARE2MzIXEQEnNxcBNSYjIgYHFTYzMhYBJzcXJyURPgEzMhYXBzUmIyIHFTYyMzIWCO9MG7An/JH90QUgPDBQMkAfAoQDwSix+XuM1HZ85prBAbEBwgG6yoqYiQkD/jf8LP32CAYD9/y4Amf91AJoPE8JTplTCFP9BwQCLAScQ0hQREcBsVIIUv9OCU0Bj1IIUvhTCFOXRwlIAhVSCFL4UghSlFMIUwIUUghS+FIIUpRSCFICGlgIWP5SCFL8dktRV1EBslIIUv3xJjETIw0kIBYrArxSCFJJ/tIlRSgpSSpVIyogGw8eDxQlASELAUAbAbuDIHv1xjaUk0zbAQWJKI/+Qxr7/csBaOsIBhoxRSr+uv7UAYQnKDs8EycUAahOTshOTtsLTQpmDE0LAXtNDk79qqtrATfe1/64d5VoC04LpwtNCv6lC04LpgxNC7AJTQr9qgtOC6YLTguuDE0L/asLTgulC04LrgtOC/2pDU4NpwtOCwHzAcweIP42/rsLTgsCQUoKBARJAwP9VgtOC5wwAXsPDxAQgUsIBUsCAgAABgCH/xAJoQZoABMARQBRAIIAiQCzAAAlLgInJQYCByc+ATcXBTceAhcDIic3FjMyPgIzMh4CMzI+AjMyHgEzMjY3FwYjIi4CIyIOAiMiLgIjIg4CASc+ATMyHgEVFAYHBSInNxYzMj4CMzIeATMyPgIzMh4CMzI2NxcGIyIuAiMiDgIjIi4BIyIOAgEnAT4BFgcBJjQ1NDY3LgE1ND4BMzIeARUUBgceATMyPgIzMhYVFA4BIyImJx4BFwIKZ5JlJQi3CWBfRFVZDB73whcjXYNbIUQ4IiQ2N11eb0hOZ1NdQ0huZ3VNQGRWKhU1FiE+Qy5FP0UtRmtld1JSaE9aRURkWWQB6NgmbjctNxoFB/yGRDYiJDRji3F1TWSroFJEamZ5Uk11aHFJFzcWIT5HUnlmbEdLcGRyTmCooldDbXOUArUxAT8GHhYI/PgBDwo0Q0FtQkNtQUAtJ2gzKz4zNCAfN1qcYh5IGCMoC9c6ouafFNv+3VsrSvnEJBQjiMGHMf4BG0ISJTAlJTAlLDkrNjYNC0MgISohKzksJTAlJTAlAfNEZ384XzsQNhldG0ISJTAlPT0sOSslMiUNC0MgJTIlKzksPT0lMCUBOBgDKw4CFBP+FwsUCmW2SxxwQ0NsQUFsQ0JvFSgqJS8lMyI3UCsLCS5vLwAABwBKAG4J3gUKACEANgBEAE0AVQBZAGQAACUgJAADNiQ7ARcjIgQHFgAEITI3EycBLgEvARYEFwEXAwY3IiwBJzcsAi8BDAEFBxYEMzI2NycsBCc3FgwDBSUmJCclHgIXJy4CJwcWBAUlJw0BJzc2MzIWDwEOAQlI/VL8NP3KTqoBaat+MrCU/s+TZQI9A34CRR8HTw/+EJfmYUSTAR6NAhYhXwon/v52/s57bv7q/k3+roZEASoC3gHFj8QBa6ksVysl/p/9y/40/nz+oq8UrQFcAYIByAIvAV38eP/+o0cBBnzThAVXEWycWppLAQsCsf4iHAE5AhrdGQuDTVkFEgYzbtQBhAEHREhQNjXp/ratHAFuKwFwCgwEUAQPCf50VP5KLd0OHRdUFkheNkpkihZaDAgCAYMXMzlBTS1CLUxAOTEXrjOdZLEeirFZIz57ZBtoPWubHXsPm1nHVDoyqDk0AAALADwAbgnsBQoADQAdAC0AOQBJAFkAaQB1AIUAlQChAAA3IjURNDYzITIWFREUIwEiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BAyc+ATMyFhcHJiMiASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEBITI2NRE0JiMhIgYVERQWASc+ATMyFhcHJiMiASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEDJz4BMzIWFwcmIyL7v11iCDJiXb/48U6BTU2BTk+ATU2ATzlcNzdcOThdNzddzTI9olhZoT0yapubA5FOgU1NgU5PgE1NgE85XDc3XDk4XTc3XfwfCDJBLi5B985BLi8DVDI9olhZoT0yapubA5FOgU1NgU5PgE1NgE85XDc3XDk4XTc3Xc0yPaJYWaE9Mmqbm26/Ax9iXFxi/OG/AQdNgU5PgE1NgE9OgU1QN104OVw3N1w5OF03AcMwQUVFQTBw/X1NgU5PgE1NgE9OgU1QN104OVw3N1w5OF03/vkvQAMfQC4uQPzhQC8CyjBBRUVBMHD9fU2BTk+ATU2AT06BTVA3XTg5XDc3XDk4XTcBwzBBRUVBMHAAAAsDKv6sBv4GzAALABcAIwAtADkARQBVAF8AawB3AIIAAAEiNRE0MyEyFREUIyUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgMnNjMyFwcmIyI3IiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYDITI2NRE0JiMhIgYVERQWEyc2MzIXByYjIjciJjU0NjMyFhUUBicyNjU0JiMiBhUUFgMnPgEzMhcHJiMiA+rAwAJUwMD+1lyCg1tcgoJcP1lZPz9ZWYsyZ5WVZzJUdnZ2XIKDW1yCglw/WVk/P1lZ6wJUQS8vQf2sPjIwoDJnlZVnMlR2dnZcgoNbXIKCXD9ZWT8/WVmLMjGER5VnMlR2dv6swAagwMD5YMB6glxcgoJcXIJGWT8/WVk/P1kBVjBtbTBXgoJcXIKCXFyCRlk/P1lZPz9Z/RswQAagQS8yPvlgQS8EOzBtbTBXgoJcXIKCXFyCRlk/P1lZPz9ZAVYwNDltMFcAAAAAEQDz/qwJNQbMAA8AGAAhACUAKQAtAFcAZwBzAHwAhQCJAI0AkQC7AMsA1wAAASImNRE0NjMhMhYVERQGIwEiJjURIREUBicyNjURIxEUFgMBIQc/ASEXAyEBIQEnLgEPASc3NiYvATcXMjYvATcXFjI/ARcHBhYzNxcHDgEfAQcnJgYPAiIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEiJjURIREUBicyNjURIxEUFgEhASETITcRJTchFy8BLgEPASc3NiYvATcXMjYvATcXFjI/ARcHBhYzNxcHDgEfAQcnJgYPAiIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFgEjFBwcFAfiFBwcFPkgR1EBMFFHIiaQJsAB2v55UzQmARIm4QGHAjz+ev3yDQIWCjsDKggGCj0BQwsOAw8EKQcYBykEDwMPCkMBPQoFByoDOwoWAg0DSHlISHlISXhISHhJS25uS0tubgYoRlIBMFFHIiaQJvyuAYcCO/56YAGGNP5uJgESJrINAhYKOwMqCAYKPQFDCw4DDwQpBxgHKQQPAw8KQwE9CgUHKgM7ChYCDQNIeUhIeUhJeEhIeElLbm5LS25uAaMdFAJ6FB0dFP2GFB39CSQiAu39EyMjThATApr9ZhMQA1wB2VNvubn9qAI8AQg/DAoFHgUyCRgEHAYCEwtAAjQJCTQCQAsTAgYcBBgJMgUeBQoMP31IeUhJeEhIeElIeUhQbktLbm5LS275oiMjAu39EyIkThATApr9ZhMQAvkCPP3ENAGHnbm57D8MCgUeBTIJGAQcBgITC0ACNAkJNAJACxMCBhwEGAkyBR4FCgw/fUh5SEl4SEh4SUh5SFBuS0tubktLbgADAUP+rAjmBswAGQA9AKEAACUiJC4BNTQaAjc2JCEgBBcWGgIVFA4BBAMgJCY3Ez4BNxcOAQcDBh4BBDMyJD4BJwMuASc3HgEXExYGBAEyNxM+ATMyFhcTFjMyNicDJjU0MzIXBRY2NTQnASY1NDclNjU0IwUiNTQ3ATYmBwEGIyInAy4BIyIGBwMGIyInASYGFwEWFRQjJSIVFBcFFhUUBwEGFRQWNyU2MzIVFAcDBhYFFJz+2+iIGzFCJykBNwEcARwBNyknQjEbiOj+25z+0P5G5woqBTtEGx4wAioDhfMBRr29AUbzhQMqATEeG0Q8BCoL6P5G/YoMBuwKIB8gHwrsBwsJBgOKAx4MDQGzCA4I/n0SIQE3CxH+qS8KAQ8IFAv+lBASIQUuAwgKCggDLgUhEhD+lAoUBwEPCi/+qRELATchEv59CA4IAbMOCx4DigMGQxEoQjGOAVEBWgE8eoFtbYF6/sT+pv6vjjFCKBH+aT5wSwEuIC4YSwQWDP7SGTcwHh4wNxkBLgwWBEsYLiD+0ktwPgHoDQGiEQ0NEf5eDRELAdQLBx4GtAMJCAYIARYNGCENeAUJDgMfDBEBsgwQC/6IECkBfRocHBr+gykQAXgLEAz+ThEMHwMOCQV4DSEYDf7qBQkICQO0Bh4HC/4sCxEAAAACARL+rAkUBswARABRAAABJz4BNz4BNz4BNz4BNz4BNxcuASMiBgcOASMiLgEnJiMiBgcnPgEzMhYXHgEzMjY3PgEzMhYXDgEHBgQHDgEHDgEHDgEDIicDJjYzMhYXExYGAgs1QYdIPopDTY9DqP14QZlVBRctF0xsMnOjWTRgbkt3vnbIZh5r2n14sj5NgktfmU9AhU1CkDyI0U1o/vfNR5hNQoM7Q3sEKwb8AxsaFBgC/AMbAbE8OVUdGikQEyodSdGkWokvFAYGGh1CNh5HPWImKUosKUEzP1E/LiUbJCwlqWmP8FkfLBQQJxgbTfzGKwfBFx0UE/g/GCAAAAAABwLI/qwHYAbMAAMABwALABcAGwAfACMAAAElEQUBESERJSERISciJjU0NjMyFhUUBgERJRETESERJSERIQdg+2gEmPxUAsD9hgI0/cxEITAwISEvLwM5/AicAsD9hgI0/cz+rAIIHgL4vwKc/WRGAhB1LyIhLy8hIi/8qAd+AviCBDQCvf1DRgIxAAADAQT+rAkkBswAEwAnACsAAAUyJAASNTQCACQjIgQAAhUUEgAEFyIkAAI1NBIAJDMyBAASFRQCAAQBBwE3BRTFAVoBB5WV/vn+psXF/qb++ZWVAQcBWsXW/of+4aKiAR8BedbXAXgBH6Ki/uH+iAIEQfqMQf+VAQcBWsXFAVkBCJWV/vn+psXF/qb++ZVVogEfAXnW1gF5AR+iov7h/ofW1v6H/uGiAWxFBY1FAAAAAAkA9f6sCTMGzAAiACcALAAxAD8ASwB+AJQAzQAAJT4CNz4BNTQuAScuAzU0NjceAQQhIAQVFA4DBwYEAzcnDwE/AicHFzcnBx8BNSE2NTQnITUhFhUUByU+ATU0JichFhUUBwE+Ajc+BDUQISIuAicjDgEVFB4CFwwBFRQGBSc+ATU0Jic3HgEVFA4BBw4CJSc+ATU0JCUsASY1MxQWBBcMARUUBgEiJicuAScmNTQmJy4BNTQ2NTQmNTQ3PgE3PgEzMhYzMjYzMhYVFAYVFBceARUUBgcOARUUBgcOAQGSBFnLrX1bK2RVdNyvZ150AnYBHwD/AYMBj2q14/Z10f68TRsMNAYQNQotHI4eJyYFSAZ7QUH5hQaZc3P+ZzUmJjUBoEBA+RMqqNdxd+3TpF79MHLqyYUPHCgpYJ/CYgEBARLk/vYP5Nd9bQMiG0V7UoucUgP+EUpY/tn+zv76/tJ+Qm4BFPYBUAFDcvvSHBYuFiwXKAcPCw4TBCIUGAoIIhEJDw8ZCyMwUQMrERwGCg0hBw4ZLLZym24sIDMfEygfBgg9ecaScsRRkahI0tV+s3pQMxQjS/5KJCkGKXAJKBsfUyIiDzL9UDtgYDtQW5CQWy04VTEyVDhPb29PAkEYMS8TFDBHapxuAWQNOIByKYRNhKtkMQoZcmpfh0IxOH9ANkgVEhIsGi5CMRYlRVWiHSmEOnOSJyKB366bw3AfKrKTSYb8fA0PCAYEBi0IHRQPIR4RHw0IFQ8fEwsVDwsLAhAaIQcMBRkWCCwbChYNERAZHB8SIDEAAAYBDv6sCRoGzAADAAcAGwAvAEMARwAAATUhFTM1MxUDNT4CNTQ+AjcVDgIVFA4CASIkAAI1NBIAJDMyBAASFRQCAAQnMiQAEjU0AgAkIyIEAAIVFBIABCUBNwECZgRDZ8XDQTkNFECCb0I4DBRBgv2T1P6L/uShoQEcAXXU1AF1ARyhof7k/ovUxAFYAQaUlP76/qjExP6o/vqUlAEGAVgDcPp3MQWJAk7c3NzcATYZHFqPaFOQckwNGRRYnXs/fG5V+w+iAR8BedbWAXkBH6Ki/uH+h9bW/of+4aJQlgEJAVvGxgFbAQmWlv73/qXGxv6l/veW6QV9MfqDAAcBBP6sCSQGzAAPABcAGwAfACMAVwBjAAABIiY1ETQ2MyEyFhURFAYjASETIwMhAyMBMzUjJzM1IzczNSMBMjY1ETQ2MzIWFREUFjMyNjURMxMeATc+AScDLgEjIgYPAQYrASIGFRQWMyEyPwEzERQWEzI2NTQmIyIGFRQWAapEYmJDBtZEYWFE+hYBu5JIgv61h0kBcFpagVpagVpaAnweKBQNDhUoHh4oF3YIKxcUEAiUHHxYRmIqqRAczxkgHhYBDhkPZRUog0NeXkNCXV7+rGFDBtdEYWFE+SpDYgEOAon9vQJD/nhaXVldWv0oKh8CGQ4TEw795x8qKh8Dgv6mFRQHBisXAaNQLyInnRAgGRceD2v8eh8qBOVeQkJdXUJCXgAIAQ7+rAkaBswAEwAXABsAHwBNAGEAZQBxAAABIiQAAjU0EgAkMzIEABIVFAIABAE1MxUnNTMVNzUzFQEiJjURIwcGKwEiJjU0NjsBNz4BMzIWFxMWFRQGIyInAyMRFAYjIiY1EScRFAYHMiQAEjU0AgAkIyIEAAIVFBIABCUBNwkBIiY1NDYzMhYVFAYFFNT+i/7koaEBHAF11NQBdQEcoaH+5P6L/PxV1lUsVQItGSAKbxQb/BIWGxLqpjFWPENmGJgDFRQgC4ILHxoZIEsfbMQBWAEGlJT++v6oxMT+qP76lJQBBgFYA3D6dzEFif3ROVJROjpRUv6sogEfAXnW1gF5AR+iov7h/ofW1v6H/uGiAhJVVbdUVLZVVf3IIxkDgGMTFxMUGpUsHjg8/ogJCBMXHQFB/IgZIyMZAcE2/gkZI/eWAQkBW8bGAVsBCZaW/vf+pcbG/qX+95bpBX0x+oMEj1I5OVFROTlSAAAAAAQBBP6sCSQGzAAPABcAGwBgAAABIiY1ETQ2MyEyFhURFAYjJSETIwchJyMTJyEHATM1NDY7AR4BMzI2NzMVFxEHFSMuASc1MxUUFjMyNj0BNCYjIgYdASM1IxUjNTQmIyIGHQEUFjMyNj0BMxUGByMiDgEVAapEYmJDBtZEYWFE+d8BwpQ9Fv28Fz2MKwIqK/7SiWFFlxSCUlKBE9R7e9oTUjfTGBISGBgSEhjTiNMYEhIYGBISGNN1KpxTilL+rGFDBtdEYWFE+SpDYvQCk2Zm/qO7uwH+OEVhUGRlT2wjAagjbThQEIseEhcXEqMSFxcSHmtrHhIXFxKjEhcXEh6LI3VRiFMAAAcBDv6sCRoGzAADAAsADwBVAGkAfQCBAAAlJyEHBQMzEzMTMwMBNSEVJTU0PgE7ATY3NSMVFAYjIiY9ATQ2MzIWHQEzNTMVMzU0NjMyFh0BFAYjIiY9ASMVHgEXMzU3ESc1Iw4BIyImLwEjIgYdAQEiJAACNTQSACQzMgQAEhUUAgAEJzIkABI1NAIAJCMiBAACFRQSAAQlATcBAs4nAVsn/t5qRlLdUkZq/pUBm/7tTIBNkSdtxRYRERUWEBEWxX3FFhARFhYREBbFM00SynFxxhJ3TDBWKWRQQFsBh9T+i/7koaEBHAF11NQBdQEcoaH+5P6L1MQBWAEGlJT++v6oxMT+qP76lJQBBgFYA3D6dzEFiYGeniMBr/6XAWn+UQFNNzfZNk1+S24fgx0QFRUQlxEVFREcY2McERUVEZcQFRUQHYMOSjVmIP54H2VJXiYlXFpBM/woogEfAXnW1gF5AR+iov7h/ofW1v6H/uGiUJYBCQFbxsYBWwEJlpb+9/6lxsb+pf73lukFfTH6gwAfAH//pgmpBdIAIQAlACkALQAxADUAWQBlAGsAbwBzAH8AhgCOAJoApgCrAK8AsgC2ALoAwgDFANEA1QDbAPkA/QEBAQUBEwAACQE3JwchEyMDByc3EyEiBhUUFjMVIiY1NDYzIQMhNxcHCQEnNxcTETMRATUhFTcnNxcBJzcXBSIuATU0PgEzMhcHJiMiDgEVFB4BMzI+ATU0Jic3HgEVFA4BAyImNTQ2MzIWFRQGJzM3JyMHFzUhFSURMxEBIj0BNDsBMh0BFCMvATc2FxYHJSc3EwEHAQcBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnATchAxM3JRcBEyEBJxMXEwM3EwE+ATcXDgEHJyUDASImNTQ2MzIWFRQGJScTARczNycjBxMiLgEnMx4BMzI+ATU0LgEjIgYHJzYzMh4BFRQOATclNwUlJyUXBScTFwEnBy4BNTQ2MyEyFRQGB+j+nzFXNP2GW136YU1u8f75Q1MyNFVhgmQCDl4B6jraPAFV+RAk7yMUMv4+AVEI7iTuAUfuI+/+woDWf3/WgElCIzUzX59fX59fYJ5fQDYqWWt/1YE0SUk0NElJVkQiIkQimwFR/j4yAhETE4oTExIuixYYFxj9QiplZAGeHf6gRgI5Q11dQ0JeXkIhLy8hIS8vHf5QEQJ2qkk+AbMp/XJ0/kYDJSuoK2xXMVf9qhBeRDspOw6EAR2uAWg0SUk0NElJ/fpEnwEwJUQiIkQiRHDBhBZ7ILp2YJ5fX55gFiwVO0dLgdV/f9Xk/twZAST+4A0BRQ7+oCuoK/4oUl5VVSEcAXxNXwG4AoqTGJkBLvzBfg6RAx49NSYpUFZJVmz+yK5LtP2M/mQj7yT+pwFR/q8BkTIyRe8j7v5y7iPut3/VgYHVfxVzEF+eYF+fX1+fX02HMHhAx3WB1X8BV0o0M0pKMzRKQzs6OhwyMnEBUf6v/mEUZBQUZBRTKKMbExMdLz2EAU7+VUcBbOr+6F1DQV5eQUNdUC4iIC8vICIu1AG+O/4S/uVID0UBYQFQ/EcZASQZ/rgBRg3+ugHoWZY0aiNfNwwLAUX91Uo0M0pKMzRKlWcB3/3KYjs6Ov4rY6pqbZJfn19gnl8GBWwXf9WBgdV/6KgrqL4wWDEWGQEkGQHxUSsaLxYOEh8ZSQAAAAALAQ7+rAkaBswADwAfACMAJwA7AEsAWwBfAGMAdwCLAAAlIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATcnExcJATcJASE1MwMhIiY1NDY3Fw4BFRQWMyETIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQEnExcHNTMVATQCACQjIgQAAhUUEgAEMzIkABI3FAIABCMiJAACNTQSACQzMgQAEgNbWJFXV5FYWZFXV5FZSHZHR3ZIR3dGRndjOLY4A5P6dzEFif7p/srmbf56WWJwagJSTj5BAbJxWJJXV5JYWJFXV5FYSHZGRnZISHdGRnf+2jDNOKjrAmaU/vr+qMTE/qj++pSUAQYBWMTEAVgBBpRQof7k/ovU1P6L/uShoQEcAXXU1AF1ARyh1VeTWFiRV1aRWVmSVzxHd0hIdkZGdkhId0f7FgHHFvwSBX0x+oMB1DwBd1FKSE4EPAQuLDAv/PxXkllZkVZXkVhYk1c8R3dISHZGRnZISHdHAVcsAeYYEjw8/mzGAVsBCZaW/vf+pcbG/qX+95aWAQkBW8bW/of+4aKiAR8BedbWAXkBH6Ki/uH+hwAAABABVP6sCNQGzAA1AFUAXwByAHYAfACIAJIAnACiAMEA0ADiAPUBCAEYAAAFIiY1ND4BNTQuATU0PgI1NCYnBw4CBycHIiY1NDYzJS4BJyUOAQceARUUDgMfARYOAQEiLgE1ND4BMwcOAhUUHgEzMj4BNTQmJzceARUUDgElIiY9ASEVFAYjJSImNxM3AwYWMzI3EwEHAQMOAQUzNSM3AQUHJxMBIiY1NDYzMhYVFAYnMjY1NCYjIhUUATczNjcnByc3CQElPwEHBQEiLgEnMx4CMzI+ATU0LgEjIgYHJzYzMh4BFRQOAQEnITI2JwE3FwcBFhQGIwMnNxcWNjU0JisBNzMyFhUUBgE+ATcHDgEHLgEnBx4BFw4BFRQlLgE1ND4BMzIeARUcAQcOAzcyPgI3LgIjIg4BFRQWBNcsKB4dBwgoNiggJOEVP0AVTE4ZG2aAAQFwkxkCEQESCc7FSGtpRQILAh9U/Z5mp2RjqmgUTHtHTYJPToFNSjsVVm1jpwGCFx8BNh0Y/Vo5PxClRKsHGhceCYMBQw3+410JOAG9u7ss/uoBNAmxuf4dJzU1Jyc2NicRGBgRKAJTN5YUIUtvG48BCv4Z/oEsSyIBQgIpX6BmCVQIT3tIT4FNTYFPFywVMkBKZqdjY6f9uxIB4CQXFP61PUErATMdPkGqnkBsNkEqJloJUUhTdv2hNkgLMwYNCA8aCjkTJxYWE/6xCgpPh1VSj1kCK6G3oAUie5GGLAdJbT1BbEADATYrHTApESUxNi0sZmRYHzNPMZcOIRgCYUoZFjMzxAqMYVEZNg1n2H1EcGJaWzPiHUw4/q1mqmZlp2NUBU59S0+EUFCET0x/JVUurWpmqmanGxiWkRwcalk6AmwH/XsZJB8B/P5ZXAFk/pIlLS5W5QF9KzYZ/v8BnTUnJzU1Jyc1NRcQERcoJ/2hRC8kZJJBvP6aAfk1rhWKLfwBXJpdRnVFUIRPToFNBwdHGmOmZmaqZgEvRyocAb1TDTv+YSdUOwJ5HTsQCB8mHyZDSj5MSQJAMn1ABhQmEAkcEwYfLhEdJxAPjxs4HFWOV1iNUAcQCwwcGhBDDRQXCz9pP0VyQg0YABEAkP6sCZgGzAA1AFUAXwByAHYAfACIAJIAnACiAMEA9wEGARkBLAE8AU4AAAEiJjURPgEzMhYXHgEzByImJy4BIyIGBxEUFjMhMjY1ES4CIyIOAQcnPgIzMh4BFxEUBiMlIi4BNTQ+ATMHDgIVFB4BMzI+ATU0Jic3HgEVFA4BJSImPQEhFRQGIyUiJjcTNwMGFjMyNxMBBwEDDgEFMzUjNwEFBycXASImNTQ2MzIWFRQGJzI2NTQmIyIVFAE3MzY3JwcnNwkBJT8BBwUBIi4BJzMeAjMyPgE1NC4BIyIGByc2MzIeARUUDgEBIiY1ND4BNTQuATU0PgI1NCYnBw4CBycHIiY1NDYzJS4BJyUOAQceARUUDgMfARYOARcnITI2JwE3FwcBFhQGIwEuATU0PgEzMh4BFRwBBw4DBT4BNwcOAQcuAScHHgEXDgEVFCUyPgI3LgIjIg4BFRQWASc3FxY2NTQmKwE3MzIWFRQGASdBVlzWbS+CQztsJRklZ0BQayBStFMxJQfRJTBXwb1SL32AMj46kpQ8YtfVX1RC+cFmp2RjqmgUTHtHTYJPToFNSjsVVm1jpwGDFiABNh0Y/Vs5PxClRKsHGRgeCYMBQg3+5F4KNgG9u7sr/usBNAmytP4jJjY2Jig2NikSGBgSJwJTN5YRI0pwG5ABCv4Z/oAsSyIBQwIqYKBlCVMJT3pJT4FNTYFPFy0UM0JJZadkY6f9DCwoHh0HCCg2KCAk4RU/QBVMThkbZoABAXCTGQIRARIJzsVIa2lFAgsCH1ReEwHhIxgV/rY8QSsBNB0+Qfv4CgpPh1VSj1kCK6G3oAEtNkgLMwYNCA8aCjkTJxYWE/7iInuRhiwHSW09QWxAAwMwnkBsN0AqJloJUUhTdf6sVEEDSOPqMR0ZKk0nHSUn0cj81yQwMCQEX5zfd0FuRS1PfUiB8aj7eEJUBWGoaGWnY1QFTn1LT4JNTYJPTH8lVS6tamanZKIbGJaRHBxqWToCbAf9exkkHwH8/llcAWT+kiUtLlblAX0rNhn3AZM1Jyc1NScnNTUXEBEXKCf9oUQrKGSSQbz+mgH5Na4Vii38BlmYXUZyQ02CT06BTQcHRxpjpmZmp2QBTjYrHTApESUxNi0sZmRYHzNPMZcOIRgCYUoZFjMzxAqMYVEZNg1n2H1EcGJaWzPiHUw4JEcqHAG9Uw07/mEnVDsFSBs4HFWOV1iNUAcQCwwcGhCfMn1ABhQmEAkcEwYfLhEdJxAP0g0UFws/aT9FckINGPziHTsQCB8mHyZDSj5MSQAAAAABAs3+rAdbBswAYgAAASIuATU0NjMyPgM1NCYjIg4CIyImNTQ+AT8BPgI1LgE1ND4BMzIeARUUBgcUHgMVFAYjIiY1NCYjIgYVFBYVFAYHHgEXHgEVFA4BIyImNTQ2NTQuAiMiDgEHDgEDljFdO0U3KlhRQCUKERorMUQzKzQ5XTUKK1k9XnJcmV1dmVtZTk1zck02NDEyKSIOEyIKCCZlOzQoMUsnLTwNRWVkHh5JX0AsOf6sNFIsKS5vrb2fKBgbQ1dDMycoRVM6CzCAbxUtqmddmFtbmF1bnDQkV22GpWRES01UUWAVERxaOx8/H0+LSUBOJTBbPDwtFy0WIGpsSkmghFs7AAAFAQ7+rAkaBswAEwBXAGsAbwB7AAABIiQAAjU0EgAkMzIEABIVFAIABBMiJwMuAS8BIwcTFhUUBiMiJwMuATU0PwE1JwcGDwEGJjU0PwI+ATMyFh8BHgEVFAYPAQ4BIyImNTQ/AScRExYVFAYFMiQAEjU0AgAkIyIEAAIVFBIABCUBNwkBIiY1NDYzMhYVFAYFFNT+i/7koaEBHAF11NQBdQEcoaH+5P6LeCEVwRATAgVJg0ICIRwqDkICAxqCGzUOHdUZJiXKdBdcQB9VPZsdGgMDOgQaEhYcAjiD2Qsj/p3EAVgBBpSU/vr+qMTE/qj++pSUAQYBWANw+ncxBYn9KDdPTzc4UFD+rKIBHwF51tYBeQEfoqL+4f6H1tb+h/7hogE+IAEXFy0hfKb+5g4GGSA5AQwLEggmHp3vIWEYCT4HHhkoCjnQKSwWGDwLHhkIEgvBEBEZEwUMtDL9wf7GEBMXI+6WAQkBW8bGAVsBCZaW/vf+pcbG/qX+95bpBX0x+oMEdk83OE9PODdPAAAABgEE/qwJJAbMABUAcgCGAJIAlQChAAABIicBJjU0NjcBNjMyFwEeARUUBwEGAQYuAT8BESMPAQYjIiY/ATY/ATYzMhYfATcnJjU0PwE+ATMyFh8BFh8BFg4BLwEuAS8BFRQWFxMWBiYnAyYjIhUHFA8BBi4BPwIHBi8BFRMWBiYvASYjIh0BFAcBMjcBNjU0JwEmIyIHAQYVFBcBFgMiJjU0NjMyFhUUBgU1BzciJjU0NjMyFhUUBgUUSzD8nTIZGQNjMEtLMANjGRky/J0w/iUNJxMOYxkmMQoUFRUJNAYMbx04MDMZKE4wBA18FDkpLDQPRwgKjhMKJBSUBwcCGwMEjQwkMwuOCBYeAQhrDTIhDmgFohgMIG0JHicIVAoWIgYBJCsYA2EcHPyfGCsrGPyfHBwDYRjhKzw8Kyo7PAEXNacqPj0rKjw9/qwyA2cyRB9AGQNnMjL8mRlAH0Qy/JkyAlcSByEUiQFAInEWHxNyDgpSFhwoPxFsCgYQDoYVFBkbghAIcQ8mERB4BgkENMEOGQv+kR4iBBsBcBQeexIQzhkDJhvKyR8EECij/ugWGgQW5xgjNRQH/WQaA2ccJCIcA2caGvyZHCIkHPyZGgSPPCorOzsrKjyLsTnmPSkrPDwrKT0AAAADAQT+rAkkBswADwA7AEcAAAEiJjURNDYzITIWFREUBiMBMjY1ETQzMhURFBYzMjY1ETMTHgE3PgEnAy4BIyIGBwMGFhcWNjcTMxEUFhMyNjU0JiMiBhUUFgGqRGJiQwbWRGFhRPw5GycaGicbGycJVgcmFBUUCI0Pd0xMdw+NBxMVFSUHVgknd0BaWkBAWVr+rGFDBtdEYWFE+SpDYgFeKBwB7hwc/hIcKCgcAxb+8RUUBwgoFQGhLDk5LP5fFigHBxQVAQ/86hwoBJVZQEBaWkA/WgAAAAADAQT+rAkkBswADwBBAE0AAAEiJjURNDYzITIWFREUBiMBMjY9ATQzMh0BFBYzMjY1ETMDNTMTHgE3PgEnAy4BIyIGBwMGFhcWNjcTMxUDMxEUFhMyNjU0JiMiBhUUFgGqRGJiQwbWRGFhRPw5GycaGicbGyddZwpVBygTFRQIjQ9ySEhyD40HExUUJwdVCmddJ3dAWlpAQFpa/qxhQwbXRGFhRPkqQ2IBXigc7Bwc7BwoKBwBCAGwX/7vFRMHCCcWAaEsOTks/l8WJwgHExUBEV/+UP74HCgElVlAQFlZQEBZAAAFAQT+rAkkBswADwA7AEcAeQCFAAABIiY1ETQ2MyEyFhURFAYjATI2NRE0MzIVERQWMzI2NREzEx4BNz4BJwMuASMiBgcDBhYXFjY3EzMRFBYTMjY1NCYjIgYVFBYBMjY9ATQzMh0BFBYzMjY1ETMDNTMTHgE3PgEnAy4BIyIGBwMGFhcWNjcTMxUDMxEUFhMyNjU0JiMiBhUUFgGqRGJiQwbWRGFhRPp8GycaGicbGycJVgcmFBUUCI0Pd0xMdw+NBxMVFSUHVgknd0BaWkBAWVoDUhsnGhonGxsnXWcKVQYnFRUUCI0PckhIcg+NBxMVFCcHVQpnXSd4P1pZQD9bWv6sYUMG10RhYUT5KkNiAV4oHAHuHBz+EhwoKBwDFv7xFRQHCCgVAaEsOTks/l8WKAcHFBUBD/zqHCgElVlAQFpaQD9a+2soHOwcHOwcKCgcAQgBsF/+7xQUBwcoFgGhLDk5LP5fFicIBxMVARFf/lD++BwoBJVaP0BaWz9AWQAGAQT+rAkkBswADwAfACUANQBeAG4AAAEiJjURNDYzITIWFREUBiMBMjY1NC8BNycHBhUUHwEWEzM3NSEVATI/ATY1NC8BBxcHBhUUFgEhNRceATMyPwE2NTQmIyIPASUuASMiBgcFJyYjIgYVFB8BFjMyNj8BEzI+ATU0LgEjIg4BFRQeAQGqRGJiQwbWRGFhRPvjHysfhzdecyAfqyR5wrb90gHJKCWrHh90XjiHICv+cQH4kQ4VCxYZqx8sIBgYif72H1QyMVQf/vaKGBgfLSCqGRYLFg2R/EFqPz9qQUBrPz9q/qxhQwbXRGFhRPkqQ2IBQCseKB6GNHtvHyUgIKwlASHwT0/97yWsICAlH297NIYfJx4rAqF5PQYFEn4XJR8sEWJxDQwMDXFiESwfJRd+EgUGPQEaP2tBQWo/P2pBQWs/AAAABwIS/qwIGQbMABIAJAA9AEUAVQBlAGkAAAETLgI1IRYVFAYPAQ4BFRQXEyUhJyY1NDY/AT4BNTQnIR4BFwUiJjU0Njc+ATc+ATc2MzIWFRQHDgEHDgEBNDYzITIWFRciJicDJjY7ATIWBwMOASMlMzI2NxM2JisBIgYXEx4BAzUhFQKUnVSCSQXDGVFdHisdCUb72wPCMQkoMR5TSAf60BWhdwEOEBUUETtmKC5HGQ4TDhUGHE83Mor9OTMvAu0wM8QoLQIjA0xVzFZLAyMBLSn++foNCAEjAh8u1S4eASMBCFMBzP6sAecnntZ7REdZoV0eKzYiFyn+xk7cKScyUjEeU4hHJBud3SBNFBARFAIIGBcaQSsVEw4MCzFSHxwnAiIsLi4sEjEuA1xKRERK/KQuMUgKEANbJRkZJfylEAoCjktLAAAAAAMBBP6sCSQGzAAPADQATgAAASImNRE0NjMhMhYVERQGIwEzEz4CNx4CFxMzEyMDDgIHLgInAyMDDgIHLgInAyMBMjY3NQ4BIyImNTQ2MzIWFzcuASMiBhUUFgGqRGJiQwbWRGFhRPotq2AGDgwCAwsNBWGstZRcBQ8MAwMMDQVnj2cFDQwEAwwOBlqVBTc4WjAzVyxcVl1VJ1MoLzBrNqGtnP6sYUMG10RhYUT5KkNiAq8BdBU+PxcXQD4T/osCyv54F0VFGBdFQhIBkf5vEkFEGRdGRRcBiP0sERN/EhR+cXGBHRJ8FxrOoaXIAAAAAAwA3P6sCUwGxwAsADkARgBTAGAAbwB8AJAAogCyAMEA0AAAAQYuAScuAzU0Njc2FzYzMhc3Nhc3PgI3EQ4BDwEWDwEWFRQGBx4BBw4BASImNTQ3Nj8BBwYHBhMiJjU0NzY/AQcGBwYBIiY1NDc2PwEHBgcGEyImNTQ3Nj8BBwYHBgEiJjU0Nz4CNw4CBwYBIiY1NDc2PwEHBgcGATYuAicuAwcGHgIXHgM3Ni4CJy4DBx4CFx4CNzY1NCYnLgEjIgceARceARM3Ni4BJy4BDwEeARceAT8BPgE3NQ4BDwEeARceAQdHSbPahmOmekIhIkmFkKSVhzMrSTdPip9vR3ZQMwgrL0UdHR0EGxlG+dQnPSMnVWkZFCclnyVBIydTaRcTJyUBAyg+IydTaRcTJyWaJkEjJVVoFxMmJP6dKDgjETJZTBEbGhAlAjImQSMlVWgXEyYkAecMMXKnamiyi1sRETF1q2dltI5cUCUZaalsb8qoeBs+rdN2ecF0HxxWUVLWcWxmWNF3crA1HxENJBMeVRgiKDIVEyZwIUxuN2GhXxsaGAcKFgEdA2a5e1yikH43I0QZNy9LPzMrCzBFUCMB/toCMEYsRSsviptDhz9BZyQiI/2NQCgtISYUGGlTJyUB8D8oKiUpERdoUycl/tZBJyolKREXaFQnJQHvPygpJScTF2hUJiQBKDgoMCUSGxoQS1oyECX9qj8oKSUnExdoVCYkAT0QVoOoYV+aaS0ODleEqWFenWwsJhd4qMNjZphZDyMBZq5wccilz1RbcNJRU1UnLp1tZ8sBvh8RMzQUICsYIRwnFhMtghs+OgeRBE1UGBQUCAobAAAAAA8A//8QCSkGaAATACAAMAA2AEMAUQBbAGcAcwB7AIcAkwClALEAvQAABSImAicXHgIzITI+AT8BBgIGIwU0PgI1Fw4BFRQWFQMiLgE1ND4BMzIeARUUDgEvATMyFhcBNDY1NCYnNxQeAhUBIiY1NDYzITIWFRQGIyUhMjU0IyEiFRQBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBPgIzMhYXASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWARE0JiMiBh0BIzU0NjMyFhURASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWAvx4yn4HUQxpoWAEMGCfaQ1RCX3HefriHigeiSseHUhRhk9PhlFShVBQhVIVenC7UgLwHR4riR4oHvlbNkBANgc9N0BAN/jDBz0xMfjDMAOSOlJSOjtRUTsiLi4iIS8vASMQSFsrP3Aa/Z06UlI6O1FROyIuLiIhLy8DEjopKDpAX0NDYf4YOlJSOjtRUTsiLi4iIS8vcJkBELAZluJ9fOKXJLT+7JyAHSIeKyUHHCYQFSkWA0VPhVFShlBQhlJRhU8ZazY1/KIWKRUQJhwHJSseIh0Cqz8sLEBALCw/QSorKyoBRlI6O1FROzpSPC8hIi4uIiEv/touSitcRwL4Ujo7UVE7OlI8LyEiLi4iIS/83wETKDk5KCEhQV9fQf7tAalSOjtRUTs6UjwvISIuLiIhLwAAGQDv/qwJOQbMACMATwBbAGcAkwC6ANsA9QEBAQ0BGQElATEBPQFJAU0BYwF3AYMBjwGbAaYBuAHMAdoAAAUiLgECJy4BJzceARceAzMhMj4CNz4BNxcOAQcOAyMFIiY1NDY3PgE1NCYnLgE1NDYzMhYXNDYzMhYVFAYHPgEzMhUUBiMiBhUUBhMyNjU0JiMiBhUUFhcnJjU0NjMyFhUUBgEiJjU0JiMiJjU0MzIWFy4BNTQ2MzIWFT4BMzIWFRQGBw4BFRQWFx4BFRQGASIkJy4CIyIOASMiJjU0Njc2MzIEFxYEMzI2NzYzMhYVFAYHBgQnMiQ3NjU0JgcGBCMiLgEnJiQjIgcGFRQWMzI2MzIEFwQvASY1NDY3Fw4BFRQWMzI2NTQmJzceARUUBgEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFicuASMiByc2MzIWFxMRMxEBIi4CNTQ2MzIXHgEXHgEXHgEVFAYnMjU0Jy4BJy4BJyYjIgYVFB4CEyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWATI2NTQmIyIGFRQWFyInNTYzMhYVFAYBJzY1NCYjIgcnPgEzMh4BFRQBETQmIyIGByc+ATMyHgEVEQcXFQMRNCYjIgcnNjMyFhURA0ViiGBMJwcbDj8NIQgkRFFwTwRNWGg2FwcFCghEBwkFBxxEhG/7E1cvJzUdJQwVERcTFBEeExkdGhkECQ4gDjgLDzowNRUoOTgpKTo6fuEXX0RDXikEkk81LzsPCzgOIA4JBBoZHRkTHhEUExcRFQwlHTUnL/4+tf6vnYPCmUgQNzEJLkExJUpUiQEkxr4BLFbX5DczEC1BMSeO/uGMjAEUiiEYEZf+/5w5tOaFxv7sgU0+IxgRFFEccwEFxQEvMfwmTz8IJjBhQ0RgKCIfMTpd/m06UFA6OVBQOR4rKx4fKysBODVLSzU1Sko1GiUlGhomJgHsQlxcQkFcXEEmNzcmJzc3GwpLMC0oFjI5RW0Rf0b+1kOgkl1EKisbDUJBN18cIyo/MisSF2VNSUgLDA4QFlyGg/c6UFA6OVBQOR4rKx4fKysBYiMxMSMiMjIiUioqUj5WVv4SPQ5wU2xFPymBRkt4RgEJjm40WyFSKolPXZFUHh7lMigkHSIqOUdZsDmPAP/GI0IZHxlMLMPteilCcIlHOD4jESA6NUediFWkFxYXHhkOIxYWIRAOGBAOFg8UGygdEQgWEwoJMAsSPkk9JgRMOygpOTkpKTonNCktRF5eRCtJ+8UmPUk+EgswCQoTFggRHSgbFA8WDhAYDhAhFhYjDhkeFxYXAqg4OjE+HwYHQi4nPAkSU0xJGhgJCEItKDwJIQtGDhwHIhEaAhQVCSwyTE8PCCESGA1JSG+NYDpBRnIZQxRNLUNhYUMpRxY5HmU8TXoBy1A6OlBQOjpQQCweHiwrHx8r/Us2NUpKNTVMQCcaGiUlGhsm/nBcQUJcXEJBXEA3Jic3NycmN8wuPB0+H1RB/vgBb/6RAkE5Xm83KkAgDzskHigFBTcjMT5GKRcDBSMrKT8NEBcSKlZHK/65UDo6UFA6OlBALB4eLCsfHyv+xDIiIzExIyIyQESgRFY+PVcCtiQqJVl7UyE4QEt/UDr9FQNVeJ8wKgRJU1ydZP2YZj5JAh4BNDZCJUEqa1P+zAAIAQT+rAkkBswAAwAHAA0AIQAxAEYAUwBjAAABESURASE1IQE3EQUVFwkBISIGBwUGIyEiBhUUFjMhMj8BATI2NRE0JicBFSERMxEUFgEyPgE9ASEiBg8BBhUUFjsBFRQeAQMhNSEiBhUUFh8BHgEBIiY1ETQ2MyEyFhURFAYjAwz+0QOZAa7+Uv3mRv7D9wIXAar+vyQ2FP79HCf+nCQqKSUBuR8XwAI1Hio3Mv3vAa48Kv72QmtA/hwJEghEDwsLaUBspAHT/eMSFQsKGQ8i/CFDYmJDBtVEYmFEAl0BzTH+YPz0bwK8BwHcIAsp/MQCChIU/RsoIyMpGMP9ciwfAkk7biv9cxwBxf3HHywD6UBsQnoCBB8HEAcNKkJsQAG4ghIOCxULGQ8P+VxiQwbWRGFgRPkpQ2IAAAAACAEE/qwJJAbMAAkAEwAXACsAOwBQAF0AbQAABSEyNj0BIRUUFiczESMiBhURFBYFITUhAwEhIgYHBQYrASIGFRQWMyEyPwEBMjY1ETQmJwEVIREzERQWATI+AT0BISIGDwEGFRQWOwEVFB4BAyE1ISIGFRQWHwEeAQEiJjURNDYzITIWFREUBiMCwwG9JDT9lDNxPj4lNDQDbQGu/lIDAar+vyQ2FP79HCfYJCopJQEtHxfAAjUeKjcy/e8Brjwq/vZCa0D+HAkSCEQPCwtpQGykAdP94xIVCwoZDyL8IkRiYkMG1kRhYURTNSU8PCU1lgJuMyX+QyU0lG8BDwIKEhT9GygjIykYw/1yLB8CSTtuK/1zHAHF/ccfLAPpQGxCegIEHwcQBw0qQmxAAbiCEg4LFQsZDw/5XGFDBtdEYWFE+SpDYgAAAAoBBP6sCSQGzAAPABsAJwAzAD0ASQBVAGMAbQB3AAABIiY1ETQ2MyEyFhURFAYjATI2NTQmIyIGFRQWITI2NTQmIyIGFRQWITI2NTQmIyIGFRQWATMRIyIGFREUFgEyNjU0JiMiBhUUFiEyNjU0JiMiBhUUFgEhESM1NCYrASIGHQEjMzU0NjsBMhYdAQEzMjY1ETQmKwEBqkRiYkMG1kRhYUT5+SQyMiQiNDQBcSMzMyMjMzMBcCMzMyMjMzP9p4iIK0BAA/UjMzMjJDIyAXIjMzMjIzMz/AsC+HhARf5EQXjDGCL+IxcBO4gsPz8siP6sYUMG10RhYUT5KkNiAUAzIyMzMyMiNDMjIzMzIyI0NCIjMzMjIzMBSQPRQCz9BSw+/rc0IiMzMyMjMzQiIzMzIyMzAUkD0T5KRUVKPj4pGxspPvwvPiwC+yxAAAAAAAkBBP6sCSQGzAAPABkAKQA1AEEASwBVAGEAdgAAASImNRE0NjMhMhYVERQGIwEzESMiBhURFBYHITI2NRE0JiMhIgYVERQWNyI1ETQzITIVERQjJSERIzU0KwEiHQEjMzU0NjsBMhYdAQEzMjY1ETQmKwEBIiY1NDYzMhYVFAYHMjY3MxUzNTMVMzUhLgEjIgYVFBYBqkRiYkMG1kRhYUT6lX19IjIydgUwR1VVR/rQR1VVR2BgBTBgYPxMAjhgZLBjYZ0TGaYaEwEDfSMxMSN9/ZwtQEAtLj8/Lj5eC3w8Uzz+uQtePkZjY/6sYUMG10RhYUT5KkNiAboCsDEj/fYiMLtVRwNsR1VUSPyUSFQ8YANsYGD8lGB/ArA1bGw1NB8SEh80/VAwIgIKIzEB5UAtLj8/Li1APFA7ZmZmojxPYkdGYwAAAAAOANL+rAlWBswAIQAnACsALwBHAE4AUgBWAF0AYwBnAHcAgwCVAAABNSMiJjURNDY7ATU0NjMhMhYdATMyFhURFAYrARUjNSEVAzc1IxYVESE1ITchNSEBITI2NRE0JiMiBhURIRE0JiMiBhURFBYBIREhIgYVASE1ITUhJyE1IRE0JiMhATU0NyMVAREzESciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYnEz4BMzIWFxMvAS4BIyIGDwECEq4/U1VA/lQ+BDo+VP5BVFM/ruL7wPtsfBAC8/0NXQKW/bH+xwdgHiQlIB4k+SokHh8mJAFvAjf+Cx4kAocC8/0NApZH/bECNyQe/gsC8xB8/pZKJWCTVFOUYGGTU1OUYIF+fYKCfX7EQw2Cc3OCDUNXNQZdVlZdBjT+rJ1TPgIBP1PCPlRUPsJTP/3/PlOdnZ0CioJlHiT+dohQVf4bJB0CAR8jJB7+JgHaHiQjH/3/HSQCNQGjJB79IohQVVABYR4k/cWlJB5lAeQB1v4q8xg8NTU8GBg8NTU8GEQiIyMiIiMjIlIBNDs4ODv+zDXwGx0dG+0ACACb/6YJjQXSABgAHQAqADAAOQBIAFIAXQAAFxEhBRUeARc+ATMyHgIzMh4BFREhAyEDEyE2NyElMz4BNy4BIyIGBx4BJz4BNzUnATM+ATcjIg4BNy4CJyY1NDYzMhYVFAYBMxEhETMRIREjASEuASMiLgEnDgGbASkBWk2aOkh9Om2tnq5vcapf/tdf+ihfDwFjCSv+aQEhlxo9JECQRUyaMSOdxzSEQ/sBquIeeEYsc6lmMww6RiIFYENEX1j85qgHCKL4VacDzwSACZiGgNa7WlN+WgYsmPoGPCIOCR8nH2S4f/2zARf+6QJNdWFGKkUYMjNHOy87xC45Bsdu/H567kxpxM4iNiYKFhFEX19EQmH8nQEX/ukBtwPf/GyznSwuBFPnAAAPASz+rAj8BswADQARABcAGwAlACkALwAzADsATQBUAGYAeACLAI8AAAElExEXEQMFJQMRMxETJQM3EyUnExEzERMDMxMHJRMRFxEDBSUXBQM3EyUnExEzERMDNxMBLwIlHwEVJSY1NDYzMhYXBy4BIyIGFRQXAS8CJRcVASY1NDYzMhYXBy4BIyIGFRQXASY1NDYzMhYXBy4BIyIGFRQfASY1NDYzMhYXBy4BIyIGFRQWFxMRNxEF6P6ARzwxATQCuEBLS/n3uzXH/mA03TyoTExNe/45WEtLAXoBqQgBH5g1ov68ObM8eDI8M/ynjaIoBChM1PvtJHlld40fTBxlV0NPIQLScIA0AxPv+uMgc19vjh5MGWZQPUkbAawdYlFechlJFktAMToaZRpeTFlxF0cTTDwtNQwLCk7+rJkBWAKxBf1N/tx6ZgGBApH9dP4+PgHQOP4IehwBTQOx/Dr+BQWg+mUgugG5A6MO/GT+fpo8TacBljb+TWYlARACqP0//mQEJwL73AXQWQ9CdUcSVQdgWXeQrrgQn4tlVkxW/Z9PCjNfPUgBp1pXd5CsqhCRiWZXS1D+Q1FFXnKLkQ96aktAN0ZFS0NecomHDm9oS0AdPx0BDQFAAv7AAAkA1v7eCVIGmgAVAEMASwBfAG0AiwCPAJ0AqQAAJSAkJjU0NzQSNiQzMgQWEhUWFRQGBAEiLAEmJz4BMzIXBy4BIyIOAQceAQwBMzIsATY3LgIjIgYHJzYzMhYXDgEMAQMgJCc3FgQhESIkLgE1ND4BMwUlMh4BFRQOAQQBDgEmNz4BNzYeAQcOAQEyJD4BNTQnPAE1NC4BJCMiBA4BFRwBFQYVFB4BBBM1MxUnIiYvAT4BMzIWFwcOAScyNjcuASMiBgceAQUU/tz+Zdhdf+IBLK2tASzif13Y/mb+26n+rP7T3zULkJorNxQVJxJKXjEJNdYBGQE0k5MBNAEZ1jUJMV1LEicVFDcrmpALNOD+0/6sqf7x/lxvIGgBkgEIuP6+9IlEqpgB8QHxmKpEifT+v/1sCiseCB9kQhgkBhg3UwHBpQEu7IhccMv+8KCg/vDLcFyI7AEuZIJBWYAkCBeYVlaYFwgkgFk9YyANcUJCcQ0gY8c4aUlHL6MBEchubsj+76MvR0lpOP4XHjNDJejLDU4FBjyIdBw1KhkZKjUcdIg8BgVODcvoJUMzHgKxNzFKLzP+fhcoMx0PDwQmJgQPDx0zKBcCexsEHxhWeioPGiwOIGT99horNx4eIwQOHJL2tWRktfaSHA4EIx4eNysaA9K6uo0bEltBW1tBWxIbWg4NJkNDJg0OAAAACACb/6YJjQXSABIAGAAfACsAMwA4AEIASwAAFxEhBRUeARc2MyEyEhURIQMhAxMhPgE3ITcuASc3FT8BMzY3LgEjIgYHHgETMz4BNyMiBgE2NzUnAzMRIREzESERIwEhLgEjISIOAZsBIQFiVpcxMjYDcq7J/tNh+i1hEAFVBRQP/oNGJjIRImS+gS1GLYRJU40vGpfq2QVQRFB/kv5IZ4zz8KAHFZ34TqADxASJEJKA/a9SdUVaBiyc8QhTQg7++PP96wER/u8CVzhhKSgRJRUqXQkHTik1PEM+Ljn+7nq4N7cBLl4KvWr6igEX/ukBtwPV/HuxuFiiAAAABAEE/qwJJAbMAA8APQBJAFsAAAEiJjURNDYzITIWFREUBiMlITI2NTQmIyE3NjU0JwMuASMiDwEnJiMiBhUUFxMWMzI2PwETFhUUBwUGFRQWEzI2NTQmIyIGFRQWASU+ATMyFhcFNyUuASMiBgcFAapEYmJDBtZEYWFE++cCMyUrLiX+9atSCH4NRy03L8CuGB0ZJRDYFxwUGA+CZQMc/uwvLMA+V1c+PlhY/UoCrxsmEREmGwKvEv1TIDEVFTEg/VP+rGFDBtdEYWFE+SpDYvgqJSAsaTNAFx0Bsys2L7vOHCMaFRP+/h0QD4P+oQoKHRKnHDMcKQPdWD0+WFg+PVgBGboIBgYIukS6CQcHCboAAAAAAwD//qwJKQbMAAcADwAXAAAJAREBIQERASUhAREBIQERCQERASEBEQEDXP2jAl0DZgJn/Zn80AL7Ahr95v0F/e8CM/4dAeMCtwHs/hT+rAJdA2YCXf2j/Jr9o4ICEQL6AhH97/0G/j8B4wK2AeP+Hf1K/h0AAAAAEQFA/qwI6AbMAAsAMAA0ADgAPABAAEQASABMAFAAXABoAHQAfQCJAJUAngAAASURJTc2PwEXBwYHASc2MwUyNjU0Ji8BNxceARUUBzMyNjU0Ji8BNxceARUUBiMlIhMnExcTJxMXATUhFQUnExcJAQURAyclFwEnExcDJwEXJSImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWNyImLwEzBw4BBSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWNyImLwEzBw4BBlr7GgXyMClNYx1fMhz5mzpCgwLgL0ceHWxBZycnKLMuPh0aXUBhICNtT/vQXNM6IDmiOF85/fIFE/1dOaA4AYYBIfp/QAMFfQP9wDjfOB04ASA1AeslNjYlJzY2+ctEYmJERmFiRSg4NyknODgoDRYEL6wvBBUDTURiYkRGYWJFKDg3KSc4OCgNFgQvrC8EFQHlUgLWXnVkIClJJxVG+jI6WQNDKxdGKZwwmjpdITsxPy0YRiaJMI0vWyZRawICFAQCqwT9RQgCygj9+jk51g8C6Q39JALhWP3AAVo5Mjr+DRADCxD85xEDKxTgNicmNTUmJjf4mGFERmJiRkNiSDcmKDg4KCY3PRgT6+sTGIVhREZiYkZDYkg3Jig4OCgmNz0YE+vrExgAAAAAIAHj/qwIRQbMACoALgA2AEoATgBWAFoAXgBiAGoAbgB2AHoAhQCJAI0AmQCdAKEApQCpALEAwgDMANQA6ADwAPgA/wEKARYBNQAABRE0Njc1IyImNTQ2OwE+ATMyFhczMhYVFAYrARUeARURIxE0JichDgEVEQUhNSETIiY1NDsBFQMRMzUzNTM1MzUzFSMVIxUjFSMRBSE1IQEiJjU0OwEVATUhFSURMxEHITUhASImNTQ7ARUBESERASImNTQ7ARUBITUhASY1NDYzMhYVFAcTNyEXAxEzEQEiJjU0NjMyFhUUBgEnExcBNyEXJTczFxMDNxsBNTMyFRQGIwEiNTQ3BzQ2MzIWFScWFRQjJyI1NDYzMhYVFAE1MzIVFAYjAxEjNSM1IzUjNTMVMxUzFTMVMxEDNTMyFRQGIyc1MzIVFAYjASEuASMiBgEmNTQ2MzIWFRQHJyImNTQ2MzIWFRQGASY1NDcmNTQ2Ny4BNTQ2Nx4BFRQGBx4BFRQHFhUUBwMmdGsMEBUVEA4VkGhokBUOEBUVEAxrdE5ya/56a3L+vwGj/l0TDRQh7/IeHh4ePB4eHh4BmwH0/gz+WA8UI8P+rgZi+5ZQAgHW/ir+aw8UI6EBTwEg/QQPFCOXAxMBo/5d/HUbQRwcQhtpUgIaUnZQ/LwPFhYPDxYWAUw16TL+40wBNkz+nDeMNzPmMun67yETDvzqFB4IKR0dKQgeFEkfEg0OEwG/wyMUDw0eHh4ePB4eHh7yoSMUD6uXIxQP/NUBfg5jTk5jAnkbQhwcQRtCDxYWDw8WFv2SCyAWFRAJCygcHScLCRAVFiALewOPdNRSJxkSEhlLU1NLGRISGSdS1HT8cQOPa8JJScJr/HGLVAFLFA0jRP72AUyroZZ/u5ahq/7wtjICPRQPIUT9ZPDw4AGj/l1PMgJ4FA8jRv2lAUX+uwLxFA8jRvx9VAPADSImOTkmIQ7+GYqK/mUBo/5dBAoXEBAWFhAQF/3+HQGvIv6xf3+zXV3+8gGqIv5R/uhEIw0UAoQLEwsMFx8fFwwLEwtRIg0TEw0i/dpEIQ8U/kcBEKuhlrt/lqGr/rQCWEYjDxSWRiMPFAKqLDIy/bsOISY5OSYiDYgXEBAWFhAQFwH5FhYqGwwVDhUBCxcNGzANDTAbDRcLARUOFQwbKhYWAAANALr+rAluBswAUQBVAFkAXQBhAGkAcQDVANkA3wDnAO0A8wAAASImNTQaAj4BMzIeARoCFRQGIyImJzcOASMiJicXDgEjIiYnMw4BIyImJzMOASMiJicOASMiJiczDgEjIiYnMw4BIyImJzcOASMiJicXDgEDETcRAxEhESUhNSEFESERASc+ATcXDgE3Jz4BNxcOAQEyNj8BNh8BHgEzMj8BNh8BFjMyNj8BNh8BFjMyNj8BNh8BFjMyPwE2HwEWMzI/ATYfAR4BMzI/ATYfAR4BMzI/ATYfARYzMjY/ATYfAR4BMzI2NTQmAi4CIyIOAgIGFRQWAREXEQEmJzcWHwEuASc3HgEXASYnNxYXASYnNxYXAVhPT2666fvuYGDu++m6bk9PJTwbGhEtIB0+HxIWNSUdMC0QHTEfHysuHSMxJiMvJiUwIyUyIx0uKiAfMR0QLTAdJTQXEh8+HR8uERobPAxQqAf2+FoHVviqAuUBjPygNxYjIS0eHvA3FiMhLR4e/cYSGg83CAgeCQ4JDSRUCQUhEhIJERJGBwYxGA8KDhE9BwYxGBkaGz0GBj0bGhkYMQcGPREOCg8YMQYHRhIRCRISIQUJVCQNCQ4JHggINw8aEiQqaLHb6dhVVNnp27FoKgczUP10GVkuYhvWERwaMR0fE/7rLGkndS8BFChtJ3krAS2AVGkBBgEUAQHOeXnO/v/+7P76aVSAGhoIGyEcHwEdHRklIhwaJyUcGB8fGBwlJxocIiUZHR0BHxwhGwgaGv6ZAZwj/kH+5gEk/txOiKgB5/4ZBLAZLjglJyIyixkuOCUnIjL9FgsNMQcLLA0MFzUFCS8ZCg01BQYzGAgPMwcHMhgXNAYGNBcYMgcHMw8IGDMGBTUNChkvCQU1FwwNLAsHMQ0LTTde8QEC88N0dMPz/v7xXjdN/kkBvyP+ZAN+Y28me27CLzQiJCg6MgIDXF8taGj+vFphLWxlAAAAAAsBBP6sCSQGzAAZADMAPwBDAEcAYQBtAHQAgACHAJcAACUyPQEzFRQzMj0BMzI9ATQrASIdARQ7ARUUITI9ATMVFDMyPQEzMj0BNCsBIh0BFDsBFRQBMjY1NCYjIgYVFBYBIREhExEhESUyPQEzFRQzMj0BMzI9ATQrASIdARQ7ARUUATI2NTQmIyIGFRQWATM1MycHMwEyNjU0JiMiBhUUFgM3IzUjFSMBIiY1ETQ2MyEyFhURFAYjA38bFh0aERkZpBoaDwGLGxYdGhEZGaQaGg/+0xcjIxcYIyP+rwWx+k9QBRH+wBsWHRoRGRmkGhoP/tMXIyMXGCMj/upaZJGQYwKdFyMjFxgjIz2RZFpj/AxEYmJDBtZEYWFEWhvd3Rsb/BvcHR3cG/wbG93dGxv8G9wdHdwb/BsCUyMYFyMjFxgj/PUEMPwgA5D8cGgb3d0bG/wb3B0d3Bv8GwJTIxgXIyMXGCMBq/K0tP1jIxgXIyMXGCMBtLTy8vmXYUMG10RhYUT5KkNiAAAAAAUBBP6sCSQGzAAPABsAKAA3AEkAAAEiJjURNDYzITIWFREUBiMBMjY1NCYjIgYVFBYDPgEzMhYXNy4BIyIHJzYkMzIeARc3JiQjIgQHJz4BJDMyBBYXNyYsASMiDAEHAalDYmJDBtVEYmFE/JUuQUEuLkFB9zSZWFmZNDRDsGfSiJ9nAQKQYLOiRDNz/uafn/7mc7lX7wETjIwBE/BWM1r+/v7ZlZT+2P7/W/6sYkMG1kRhYET5KUNiAZxBLi5BQS4uQQFKRk1NRj5RVKW/a3AyYUg+dXh4ddxdiEpKiF0+YZBQUJBhAAANAWf+rAi+BswAMgA2AEAARABOAGMAawBvAIsAlQCZAK0AvAAABS4DJwMuAS8BNxceARcTHgMXJTU0Jy4CJwMuAiclNwUeAhcTHgIXHgEdAQEnJRcBIiY1ERcVFAYjASclFwEiJj0BMxUUBiMBIiY3Ez4BMzIeARUnNC4BIyIHAwYlIiY3ExcDBgEnJRcBNTQmJy4CJwMuASclNwUeARcTHgIXHgEdAQUiJj0BNxUUBiMBJzcXAS4CJwMuAS8BNxceARcTHgIXAScTPgEzMhYXBy4BIyIHBqOEuX5YJNUiNCD4EPs1TCjVIEptongB0BlahVwdxihLVjz+9hEBCk5uVSnGGEpyVCMr+PARAe4RATsNE1ARDvz0EQHsEQK/DRNQEg76+RMWBOAMRzRARx1LEicgLw3hBQG8EA4CXC1SBf5/EQGUFwLXDBlYc0kZ6ChySP76DgEKWo4u6BU7YUwyKAGMDRNQEg769hPxEwRRptmCJ/kcOULnEPlKUSDwIHHMpvuUSzsMRjRLSAtLCCckLw2UIUBYhGUCW2JQCD9JQA1pc/2lWXNLOB5/lhsIHDxgUQIpcYZFD0VHQxNbmnP910NMMBsLOibQAbxEe0T9RBMNARxQzA0TAwpEfUT7qxMN3t4NEwI6GxMEkj5EYubHGJq8Vkb7bB2SFQ0B3D7+VhYB00RnQ/vfgyMUBxg9XEYCkHF0E0NJQxaPg/1wPEgtFg48PYNeEw28CsYNEwWuSC5J+wU4YYFoApxKSRI/SUMUZFn9ZFhtVzgEqQ8BNz5EkKcFg25GAAAQAQT+rAkkBswAEwAXABwAIQAmACsALwBDAFcAYwBnAGwAcQB2AHsAfwAAASIkAAI1NBIAJDMyBAASFRQCAAQJAhYnASEeAQERAR4BASEBDgEBPgE3AQMBBgcBMiQAEjU0AgAkIyIEAAIVFBIABDciJCYCNTQSNiQzMgQWEhUUAgYEAzI2NTQmIyIGFRQWATY3AQMRDgEHAT4BNy0BLgEnAScBLgEnEwEmJwUU2P6H/uKhoQEeAXnY2AF5AR6hof7i/of9igEx/fBagQIP/Z4EKgKh/s9Jmf2AAmL98CUpAxtPmUn+z5X+zohXAn7GAVwBCJaW/vj+pMbG/qT++JaWAQgBXMau/s/ngoLnATGurgEx54KC5/7PriY0NCYlNTUBw4Va/fCVUJpIA/4lKgT9ngJiBCkl/fBtATJJmVBFAhFXiP6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAZMCD/7PiM0BMU+b/hwCYf3xJSkDGgExRpv8kgQpJQIQAQECEVqG+qOVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JV4gucBMa6uATHngoLn/s+urv7P54IC7jUlJjQ0JiU1/d1WiAEyAQECYwQpJvwCR5pPAk5Rm0f+z20CECUpBP12ATCGWgAADAEE/qwJJAbMABMAHQArADUAQwBXAGcAdwCBAI8AmQCnAAABMiQAEjU0AgAkIyIEAAIVFBIABD8BJjU0NycGFRQBPgEzMhYXNy4BIyIGBwE2NTQnBxYVFAcBNy4BIyIGBxc+ATMyFgEiJAACNTQSACQzMgQAEhUUAgAEAzI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEBNyY1NDcnBhUUATcuASMiBgcXPgEzMhYBNjU0JwcWFRQHAT4BMzIWFzcuASMiBgcFFNcBeQEeoqL+4v6H19f+h/7ioqIBHgF5EEcaR0dL/Q41vm82ZCsLMWg1c9E+BLwfTEdIG/2+OSC8d0yONRssg0lnngHTx/6k/viVlQEIAVzHxwFcAQiVlf74/qTHh96EhN6Hh96EhN6Hcbpubrpxcrlubrn+9EdHGkceBLwePtB0NGgyCy1jNW++/PhMH0cbSAFwEZ1nSoIsGzWNTHi7IP6sogEeAXnX1wF5AR6iov7i/ofX1/6H/uKiIxNlZKG6GsypcALEGh8HB0kICCIe/IxndafOGryfZmMEQTIsNRgWRxQVJ/u5lQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAdaF3oeH34SE34eH3oVQbrpycrpubrpycrpuAzcauaFkZRNscKv83UQeIggISQcHHwJAy6l1ZxNjZp+7/rAfKBUURxYYNSwAAAcAr/6sCXkGzAAkADAASABqAHIAwwEPAAABIi4BNTQ2NwEmNTQ+ATMyFhcFBhUUFhclFhUUDgEjIicBDgInIiY1NDYzMhYVFAYFIicBNwEWMzI/ATY1NCcBNwEWFRQPAQYlMj4BNwEeATMyPgE3By4BNTQ/ASYjIg4BFRQXAQ4BFRQWCQE3AQcnBxMFIiYnLgEnLgE1NDY/ATYzMhYfARYzMj8BNjU0Ji8BJjU0Nj8BPgIzMhYVFAYHDgIVFBceARUUDwEOASMiLwEmIyIPAQYVFBYfARYGDwEGJzI/ATYmLwEmNj8BPgEzMhYfARYzMj8BNjU0JyY1NDY3PgE1NCYjIg4BDwEOARUUFh8BHgEVFA8BDgEvAS4BIyIPAQYVFBceARceAQJ3QG5CO0UEKid2x3hpgxX+/QJDOAEyEXLBeFBK/F8kSmIdIC8vICAvLwVbRCn9tjQCVBIdGBJwFg/9ZjQCoCUzbyj6IDpHOyQDxS9RMmCYWwPmXnUK0ypfYqNgPfumOS1gAlr++u8BFDrnfdv9LRk2HzNrJAwNEhZzMScRIxYVDQoKDAsRBAQFBjAtrFGNrX5NREtZNFw5HCAlQckZKRcQGx0kCQsPDwsDAgkTByVyJywOD2cXBw8ICA0SJRIjFQ4gFB0LCA8ayyMhQJB1QiYZKHSafkqsHiICAQUFBSAmGC0XFRQaDhQScw0OJ1coFB7+rEVxQ0RxPgPJVl56x3ZJS5YJDjxmGbA/OXPBcxj7yypFKccvICAvLyAgL8czAsI+/TQXEWATHBkPAr4+/TwoOD0uYiNQGzcqBGAVEleWXoQaml8iKHotYaNjbFn8DDRRMkNmA60BO9f+3zjzb/76lhYTIHpKGSsUGCkSXSgLDAwHDAsRDgcTDRQaDClLJpJFSh0uNSwrGQ4oKBAUFRg6Ikc5rhUWCQoNDA0KDQQKBRYuSR5dIFAMUhIxJxUWJw8gDw4IBgkDFq4fJRoWK0g5VSASEg0LCBtGP5MaKh0FDQUUFR8MIB0jFg0ODQ0JD10MERIZRWgaDRAAAAAABAGz/qwIdQbMABEAIQAxADkAAAEmAAoBETUsATcWBAUVEAoBACc2ABoBESYkJwYEBxAaAQA3LgEKASc2JDcWBBcGCgEGJxEGBAcaAgUUy/7A4HYBMQG+cnIBvgExduD+wMu3ASPLbPT+ZIGB/mX1a8wBI7eT5J5TAswBLnBxAS3MAVOe5ZNo/vWvCIrw/qxFATIBwgI8AU5GFZJwcJIVRv6y/cT+Pv7OD0UBJwGqAhsBOhSAY2OAFP7G/eX+Vv7ZfT36AV0BouUWX1VVXxbl/l7+o/oQBUFFVBj+5v4m/rAAAAAABQJM/qwH3AbMAHMAgQCTAKUAswAAASIkJjU0NxEmNTQ3ESY1NDcRMxEGFRQXEQYVFBcRBhUUFgQzMjY3LgE9ATQmIyIuASc1FjMyPgI1NCYnDgIjIiY9ATQmIyIuASc1FjMyPgI1NCcOAiMiJj0BNCYjJTcRFhUUBxEWFRQHERYVFA4BBAEiJj0BNDYzMhYdARQGEyIuAjU0NiQzMgQWFRQOAicyPgI1NCYkIyIEBhUUHgIlIiY9ATQ2MzIWHQEUBgUUyP69vR0dHR0dUB0dHR0drgEfqzpqMw0TMiFqekAVXFh87b9xDBQZeZpKEhsxIGp6QBVcWHztv3EcE3ecTBUgKxgBUekcHBwcHHDE/v7+ZCo7PicnPjrfcfjYh70BQ8jKAUK8iNn4b4Dlr2Sr/uGurv7hq2Wv5QGHLkJFKyxEQv6sV5RcMTEBDyw0NC8BIi40Mi8BK/62Ix8fI/6dISEgIf6yJB5DckQJBwgjG8sfJgQIBUoMMFFjMxglGThaNBcUhh8mBAgESwwvTmEyJCYxUjIXFaUhKVWW/sMtMTEv/tkwMDAv/u0vMEd3WDEG5RoRLA4XFw4sERr+uCdQeVJbkVVVklpTek8mUChFVy49bkZGbj0uV0UomBsTMg8ZGQ8yExsAAAAiAQT+rAkkBswADwATABcAJgAqAC4AMgA8AEAAUQBVAFkAXQBhAGUAaQBtAHEAdQCFAIkAkACcAKAApACoAK8AvgDQANQA2ADcAOAA5AAAASImNRE0NjMhMhYVERQGIyUzNyMBMwEjJSM8ATU0NjMyFhU2MzIWATM3IwE1IQcBMycjATYzMhc2MzIWFwERMxElLgIvAS4BIzUyFhceAhcJASEJATM3IwEzJyMBNSEVATM3IwEzJyMBMwEjBzMnIwkBNwkBITI2NRE0JiMhIgYVERQWEzUhFR8BNyM1IxU3MjY1NCYjIgYVFBYDESERJSERIQEnIRUBFzcjNSMVEyc+ATsBPgE3FwYHIyIGBSE+ATMyFhc2MzIXPgEzMhYVATM1IwERMxEBNSEVJScBFwU1IRUBskdnZkcGxkdmZ0f7P4UocP5rigFmPP4PySAVFh8UGw8aAexqIln9AALkFAHmhT1w/NAQGA8NERkPGgf+41ABlUV8h1glQnFHUIlOXJWLTP2kAkACCAJA+/BTGEYBTGozWfw/AXcBKkIOOwEBUyVGAcyK/kw8bEIVO/3h/vA1ARH+OgbEJjg3Jvk6Jjc5SQF3jm5uUzYbICsrIB8sLPIDuPyYAxj86AKYFALl/IBublM2hzVXx3wUP5RVCaF3LW6qAk/+eAdELhAdDRkdNBoFFA0RGvyXwsICQ1D+ygF3/pQ2ARE1/uUBd/6sZkYGx0dmZkf5OUZmZu3+5AN7QQkIAzhQUTtGLf2DygFJRkb8tO0CoDgXNS0p/vAD5/wZ3kVQIwEMMihELzcBJ1lM/EEDxvw6AnWQ/mjKAwROTv3wU/73kP0AA3tVUwH2AQ87/vL6bjclBscmNzcm+TklNwZSWVm8bm49PWUsHyArKyAfLP6qAm/9kU4B0/ycRkYCNG5uPT391itrYTVCC0MWbVUoICYFBRIwGiIyIwJldPwTA+f8GQKKTk45PAEOOxNZWQAAABIBBP6sCSQGzAAPAFEAXQBhAG0AeQCTAJ8AowCvAL8AwwEFAR8BOwFHAVMBZgAAASImNRE0NjMhMhYVERQGIyU0Njc+ATc+ATc+ATc+Ajc+ATc+ATc+ATc+AT8BPgE3Mw4BBw4CDwEOAQcOAQcOAQcOAQcOAQcOAQcOAQcOARU3IjU0NjMhMhYVFCMFATMBAyI1NDYzITIWFRQjJSI1NDYzITIWFRQjAS4BLwEuAS8BLgIjNTIeAR8BHgEfAR4BFwMiNTQ2MyEyFhUUIxMBMwkBIjU0NjMhMhYVFCMBITI2NRE0JiMhIgYVERQWAzUhFQMnNCYnLgEnLgEnLgEnLgEnLgEnLgEnLgEvAS4CJy4BJzMeAR8BHgEXHgEXHgEXHgEXHgIXHgEXHgEXHgEXHgEBJz4BPwE+Aj8BPgEzFSIGDwEOAg8BDgEBIjU0Nw4BIyImNTQ+ATMyFhc+ATMyHgIVFAYBIjU0PgEzMh4BFRQFIjU0PgEzMh4BFRQBIicGIxEeAhc+ATMyHgIVFAGoRl5dRgbaR1xcR/lHDhINJSIVGAoKDQgRHiggDxcKBwsGBxQMDB8TDA4JC1QeCBAQJCQSCAgQCAodFRMcCQoVDAoQCw8iFRscDBAJexhFIwR+I0UY+2UBvzf+el8RNBkDfhk0EfyICycRAqARJwv9wAgyIBw0dFAmT3NzUFqHhVcmTl0hGzVSEKMHHA0B+A0cB37+ejcBv/0dBBUJAXoJFQT7vQbZJi0tJvkmJS4vRAenhkIJEAwcGxUiDwsPCwwVCgkbFBUcCwcRCAgRJSMREAgeVAsJDgwUHgwMFAcGCwcKFw8gKB4RCA0KChgVIiUNEg7921spakMiJjM8MhlinDoffmUZOk1ELiImPwHeWgYMFwocLxwjCgwoDR8eCwwdGRAs/oRNGyQODiQb+4BVHigPECce/uk/FidHFjIvDg8iDQ0gHhP+rF1GBtpHXFxH+SdHXUg+ZyUbLhwRIBARJBw7RjIbDRcOChsSFS4SEh8QCgwgFhkqGRkbJi0UFScLEB0SER0REzMpIioUGSkRFiIXH1U1WSArUVErIF4D2/wlAVQXIklJIhfSEBo6OhoQAaIRHgQECF5XKVZWHkwjYV4pVUwFBAc3JP7sChQqKhQK/TAD2/wlA1QGDiAgDgb8tS4mBtkmLS0m+SYlLgO/Tk78OQQ1VR8XIhYRKRkUKiIpMxMRHRESHRALJxUULSYbGRkqGRYgDAoQHxISLhUSGwoOFw0bMkY7HCQRECARHC4bJWcDqSkWHgQCAhAxMhlic0xaZRk6OhQDAgIK/l4nEBACAQsEF0Y3OChxUj1hbzEFBwE2Hy5xUlJxLh8yIzN8Wlp8MyP+8xMRAhsFYI9NL0E7XGQpKAAAAAANAFX/2AnTBaAAHQAlAC0AMQA5AE8AWQBdAG4AeAB8AIoAjgAABS8CByEiJCYnLgE1MyAMAh8BNjMyFh0BBxcVIwEuATUXFBYfAS4BNRcUFhctATcFBy4BNRcUFhcBITczMjY1NCYvAiwBISMeARceAiUsAiE1IAwBBSUnEzMBAxclITcBJwEhBRYVFAYjEyUGJj8BHwEWBgcBJzcXByc3PgEzMhcFByUmBgcFJzcXCXVyBz1J+8C0/vfSYmN6jQENAi8CFwHYtggmPjxVZ11U9z0SD0UNEKYSEUYLEAEL/XMMAo1oEBBGDQ0BcAQnRDwLDAwLNiD+NPw6/gApG048XsP3BTr+gv1i/Zb+zgE1Am8CoQF//B9AxFsBq6I//mX+/CT++EABEQEcAiMcTTiU/hIWIAk/oB8FDw3+w0QHRL1GCQI0JB5dAVIG/kwQGQEBZUQHRCg7pwJSO4l1d+lFHDRILEkPIBqbmzw2ArMsWjcMKEwnMyliMQIoTiZpSE5K3CliMQIoTiX9pEskFBIeAQPYW1hCf0t2hznWO0skRSNLPPwxAX/+DgHbHSIP/nwuAZUvAhsYJP5awAMgEngOYA0UAgFRBKsEsgaaIzAIG04jAhcUiQS/BAAAAA4AZP6sCcQGzAAcACYAMAA+AEwAWgB1AIMAjwCYAKQAsAC8AMoAAAEiLgEnLgInAQUlNQEDFxMWDAEWHwEeARUUDgEBJTUBFwEfAQEXAS4CJzceAhcBIiY1NDcnFxUeARUUBgEnJj0BNDYfARYfARYGFycmLwEmNh8BFh8BFgYBMjY1NCYvAS4BLAElAycTAR8BJQEeAhceAQEnJi8BJjYfARYfARYGASImNTQ+ATcXDgIBJzcnByclBRUBIi8BJjY/ARcOAgEiNTQ2MzIeARUUBjcnPgIzMhYVFA4BAScBLgEnAScBMh4BFwcH5UWUtXVAcoRa/lH+yv73ARZF6tL6AXEBENBZcmVmQmv6mv7TApg1/X8DzQNrM/wnGFheIQQvdWwhA7woOy4ebBghLf1+VBYPCk8dAgQBFOZyFAMKARALbRkFDQIUAsxEWVJNglbK/vP+jf8A2FEw/vUBrAE/Ac9YhHU/odv+hHQWAw8BEg1WEgUvBRQBrwsYNVs5KhhRUPu6V9q82TIBCQEqAk8rGFMNCRZpvQ87QAGqUC8dFTQmPBY4E0pTHQwMMU7+d0ACIjN5Mv12LgKkMX97KAIBFSBKPiIwJxUBgdacPQErAdJW/p4XSHCkczkzi0pAYTf9l2JlAxIu/QYUQwLMPgJlJVA4AU0BP2Ax/FtAK0AdUgtMCjwkKDEC5isLHTgLCgQfDB1ADg13OwobWQsNBSwKHmQNDv6FTzo1ZidCcqBsRRYBax3+k/7kDmbc/mMVKDEiV0kBAjsMGnMODQUiCBGTEBP91RkTKW1iGBNVh00Ehhb6WrUy3I4i/IgpkhcyEFG+KE0y/vdSJj8nOR0ZIXUfRohaEAscdXgBLDAC1SI1Df2/NQJYLkQiIgAAEwBk/qwJxAbMABkAHQAhACUAMwA3AEMARwBPAHAAfACXAJ8ApwCvAMcA0gDaAOUAAAEiLgEnNTYsAzYzMhYXMhYVFA4CDAEGAzcnBwU3JwcJASUFAScuATU0NyU2FhUUDgEBNycHBS0BBxcHJwcXBycHAQM3ARciNTQzMhUUBSImNTQ3IyIuAicmNTQ2PwEXNiwBMzIVFA8BFhUUDgE3MjY1NCYjIgYVFBYFMjYsAT4CNTQmIyIGBy4BIyIGDAMHHgEBIjU0MzIVFDciNTQzMhUUNyI1NDMyFRQTIiY1NDcOAQc3JT8BFxYVFAYHFhUUDgE3MjU0JiMiBhUUFgMiNTQzMhUUNwYnJjc+ATcXDgED5zN8qnpeARQBQQFIASjiODBYIktPdcn//uj+7fBpjX2UAWSGi4gB8PthAukEffk25REYIwGtCxAeXgMRkZWDATACJv6sYdxc1G3TaNl1/cPFSwFLEhcXFgEmNjsHC5j43uCANwUDGDvcAe8B9uYhEKoDRW5UEhouGxMaL/6RSNsBAgEL98RzIjMKFQwLQSgtx/7z/s/+zf7sZ4qoAmsXFxZsFxcWYhcXFrs2KQUfPB3QAYwEKSUPbYMEV3h8Li0cFRov6hcXFrQTEhEUKU0uDytAAu0DDxFeTbrCs49THyc7My+FmpyPcUH9RSocJV0xHiz+kwFXzP4DPx8CDAoYBTQCFQ4NLSf8ozcfM/TbRiQ2JToqOyk5LgRpAXk0/syTHx8fHx03LhQPBAcMCANCED8TA1sYKxsTDApmDw8qTTB3HBYkPBwVJTyvPmqFkIpzJRMeAQIbG0uBpba1UBAHAbUfHx8fRx8fHx88Hx8fH/4+QiwNEgQGAqMnPxU7GBMXLyUMEilSNX00JDscFyI+AYAfHx8fTBASERImKhAvDygAAAAZANL+rAlWBswAGgAmACoALgAyADYAQABOAGsAdwCDAI0AkwCXAJ8ApwCvALsA2ADgAOwA9AD4AQABDAAAASIsAyY1NDYzMgwDFhceAR8BHgEVFAYBLQEHFwcnBxcHJwcJASUNATcnBwU3JwcFNycHASI1NDclFw4CASIvAS4BNTcXHgEVFAYlIiY1Mxc+Azc2PwE+ATMyHgIVFAYHBgwCBTI2NTQmIyIGFRQWBSImNTQ2MzIWFRQGAS4BJwMzAR4CLwE3MzIHATUzFQEiNTQzMhUUFyI1NDMyFRQXIjU0MzIVFAEiJjU0NjMyFhUUBiUyNjU0Ji8BLgEnLgIsAiYjIgYVFBceAQwCJSI1NDMyFRQBIiY1NDYzMhYVFAYBIjU0MzIVFAE1MxUBJzcnFx4BBwEiJjU0MzI2NxcOAQiEov6P/o3+sP74mC9EbQEjAUQBPgEWxygZKAUJQC9w+ssB/v68X7pdw3XGaMaAA8f7eALfBIH8XXhzcgEtgnh7AUyPi4j6kx0cAVBePnGQAxIgH8gbEZC7Kyg3/LM2JCosVeTvzj4PCwgIEQ8vcmhDFQlx/tP+tv7CAp8XGhoXFxoaAZwXISEXFyEh/gJfxlV/TQERI0gwh0M5NhoOAg5Q/n0ZGRlfGRkZZBkZGQFYFyIhGBchIAFlO0UkOAoEHg8kq+3+7v7n/vzSPwsLFTLmAUEBdwGJ/k8ZGRkB5xchIRcXISH+ZhkZGQFCUP6rtpkFNBcaBQEZDQ4aHmAhFCVsAtQ4YXyKij0gNR4zQklKIRQ3FQ02QyQxOfzCuUgaMh4zHzkfOiP+rAFTy/gfKRgmTS4bLFQyHzAFQhYUBDthAwQB/YsRbA8yKG87DUo6QUiuTlZIBSIvMBIEDQkJCxMdIA0LDwMmPiwYfDAnJy8vJycwCiEXFyEhFxchAnAGJS0BpP5dCCEjX0I2GP0rkZEBjyEhISEeISEhISAhISEh/pQiFxggIBgXIngUEQslKx8MKA0fQEA6MiUVCwgNGDiFg2xB0SEhISH+JSEXFyEhFxchAbshISEh/qxzcwIxMI9NBRYwDv4aDQwZCwwtDQ8AAAAKAOv/2Ak9BaAAFgAiACcANwA7AD8AQwBHAFUAYQAAJSIuAiclEQElBRMnAyUFBx4CFRQGJSImNTQ2MzIWFRQGNyclFhcTMjY1NC4CIyIGFRQeAgkBJREBPwEXCQERCQIlEQMiJjU0Nj8BMxcWFRQGBS8BNDYzMh4BFRQGBEhSlHhREP5iAx4BZQGfY1xQ/q/+uANklFOn/SchLy8hIS8vGyUB3iIDOzdJP2d6OkNaRG+E/bkBhv34A7IO+REDNPyuA1L+CwGB/XLEI0UgHxAyED5EAaA9WiUjLEosKnBgn8FgnQJz/tGslf5iLgE0fqEJKJ7Yf7bdoS8hIS8vISEvRUf3EjT+cIh4X8ChYnxuZMinZQJxATrE/jP941xeTv4pAUMCd/69/pwBOfv+MgKpIA4dKQrW1hE/DiBRwBsvRklpMS8+AAAAHADz/qwJNQbMAB0AKQA1ADwASABZAGkAbQCPAJMAlwCbAJ8AowCvALsAvwDDAMcAywDTANcA2wDiAOYA6gDvAPsAAAETLgE1NDY3JQUXBQcXAwcTJzclJyUFDgEVFBYXAwciJjU0NjMyFhUUBhciJjU0NjMyFhUUBgEvAQwBBQcBIiY1NDYzMhYVFAYBIiYnAzMgDAEFFA4BBw4BIyUhMjY3PgE1LAIhIxMeAQElNyETLgQnNR4EFwUWPgMzMhYXBy4BIyIOAycBPwEHEycTFxMnNxcBJyUVASc3FwEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEnNxcFJTcNASc3FyUnNxcnJS4BNTQ3BQEnNxclJzcXAScuAT8BFwEnNxcBJxMXByY/ARcBJxM+AR8CBw4BFQH4cS86Uj0CEQFhEwJMCpURTw2UCf29Ef7b/fYYIkQwfxsbJiYbGyYmxBkjIxkZIyP+qWwqAeUD8QHubftNFiEhFhcgIP6nhbsUUNEBSgJiAmsBWgoXFhNjQfpQBbAlOQwcGP63/a/9tv7DdUMPjgHB/uQYARH2OC4WKF9iaXg9HRkZAkYQHSIuQS4GFQoFBw8HKjMkJTYs+94a9Q2STz9PqVALUPzuBAI2AXZQClACGxMdHRMTHBz88BYhIRYXICABYVAKUAHL+/AKBBD+wVAKUP64UAtQLf6uLi9MAVECElAKUP64UApQ/iUpJScKA3gCYVAKUP3Db2MzQFYNA1QC19ReBx8TgwUsDRIBywJnG1c1PVICFmrWV/cP/nACAU4P91jbWxkBJRwsOw79U+kmGxsmJhsbJgMjGRkjIxkZI/4rvbUHXjnUAdIiFxchIRcXIv3looUCJiVINIG9l0k/T1AuJ1rTlzFCI/40Z3wDTwaJ/ccFNUdINAVLBjZIRjECOAInOjooAQFLAQEqPTwlBAL2kAyU/lMKAuMK/Z0IpggBVk4YTv3dCKQI/agdExMcHBMTHQMAIhcXISEXFyL+pQihCEltTWy1CJ4IpwmrCE0yBzonRQ1p/TIImwilCZkIAcIHBzkkChT9MgibCAFrHgF3B38QNwsO/WIWARwUEwMVPw4EIhQACQEi/qwJBgbMACYAQABxAIkAmwDEANEA4AD2AAAFIi4BLwEOASMiLgE1IzQ2NxM+ATMyFgcDASEVIR4BMyEyFhUUBiMFIi4BNTQ2NwcGFRQWMzI2NTQnNx4BFRQOASUhMjU0IyEiJicBEzYmIyIGBwMOAQcXNDYzMhUUBhUUHgEzMj4BNz4BNTQnNwEeAgUiJiczFjMyNjU0JiMiByM+ATMyFhUUBgEGJjU0Nj8BNh8BNw8CDgEHAScTNz4BNy4BNTQ2NyYjIgYPAQYVFBcDBxMuATU0PwE2MzIWHwEUBgcBMzYzMhYXNy4BIyIGBz4CMzIWFwcmIyIGBxUBIiYvAQcnPwE2Nz4BMzIWFRQGBw4BBM9yjFQegQdbQS4uD2ErL48IQyg7WQtbAT8CZ/3NKTgjAskuQUAv+l5Eb0J7YRVBSzQ1SyQsKjBBbgJTAw8zM/1BRmo4/pxhBS0ZFCAElRgpBzsNChITChcSDB4YBAgJGhoBDzBJUgOHTHQThh89LkA/Lx0bpRVxSFuAgPlcJCwVGk8WH0BOBSU3DyQRATw0QBQNFQsSFAsNCgoDEhpwD0U8SDofHxy5EQ4iKAYcLSgDUJI8qxc1HgwtajNeoX8WbZ5dQ5U9IGI/PUoU/MgJEgpQZyNrPR47ICQIISkPIEAj0xc8OPWRvEhiJ09mNAMSLypKPv4b/mY7Mx85KCk6gUJvRFyKCoslSDdGTDUvJG4iYzhEb0K6KSk5SAHKAggXHhAT/NEWOh0RHRcZH0AUGDgnKTYSJj0TORaV/qM9SyG6WkQ4QC4tPhE4UYFbW4AGvwVEMiQyBA0EBw8PggcjChIC/pRCAWwEAg4PDywYDx8KCQIFFC0sRAb+pyQBSQhRJTdRHwMnGnAuLQj6xH0EBEIcH4Gra6ZfMS+uESUoJgW6AwITEocTLRYKBQVILyREBgwGAAAAABAAyP6sCWAGzAArADsASQBVAFkAhwCiAK4AugC+ANAA2gDsAPQBBAEMAAAFBiYnLgErASImNTQ+Ajc0PgE3BQ4BFRQWMzI2NTQmJyEeAxUFBw4BBwUiLgE1ND4BMzIeARUUDgEnMj4BNTQmIyIGFRQeATciJjU0NjMyFhUUBjcnNxcBJTY/ASUuAychHgEVFA4CDwEGLgI1NDY3JwYCFSIGBwYWOwEyHgEXHgEBIi4BNTQ3MwYVFB4BMzI+ATU0JzMeARUUDgEnIiY1NDYzMhYVFAYBMjY1NCYjIgYVFBYBJzcXByUjIiY1NDY3JR8BHgEVFAYjBzcvAQcWFRQGBwEiJj0BNDYzITczMhYdARQGIwE1MzIVFAYHJSc1ND4BMzIVFAYjIiYnNwEnNzYeAgcEgVdzNGTDi48fJDVXaDJMhlYBAD0zi3NZZjUbAuQwa106/WqKFjYe/C9XkFZWkFdXjlRUjlc+ZTyCXV6FPWhBIzMyJCMxMQtCiUQBuwFUJhOhAlsONkVLIv2tFhgJFCUd70BlRiQwLY12dkB3OA0GEjtpopZVL1IDeVeSVxdkIT9oPz9mPSBjCwxVj1gjMzMjIzMz+0YWHx8WFx8gATphNFkO/vQyMTo8IwEFRkQgHDkVXTE8NHcGBggB0BkdHRYBNcfvFh0dE/yTwTAKCv7OPCQ0GSsSDhQ2BA4EVmZZDBoUBgmDBjc7dIMZFhhKTjsIefDUTXat9EuMqFQxTrxAJ5/BtT4QfRMVAuhVj1dYjlRUjlhXj1VaPWY+XoKDXT5mPY4zIiMyMiMjMlgt4Sv+/hcDEZIPOYeIciJFgzIeXV5AAg0DRIGuZ1LniUB7/se5Mz4OEDt5XTMj/uNWkFc+Nzc+Pmc+PWc/PTgbOiBXkFbnMyMjMzMjIzMFcC4gIC0sISAu/v0qcSwhg003NEIBCE8cDSQgJyoMcxo8AxYcDSAM/WMYFF0WHWEdFqMZJgJyWS8KGAhpAsolSzRuOUgcEBr7vJ4TAy0+MwQACQBa/xAJzgZoAB8AIwBBAFEAVQB5AIwAkACYAAAFBiMiJi8BJgInASImNTQ/ATYzMhYVFAcBHgEfARYGBwElNwUBICQ1NDY3FgwBOwEVIyIsAScOARUUBCEyNjcXDgEDICwBJzceAQQhMjY3Fw4BJTchFwE3PgEvAS4BJwEmNz4BNTQmIyIPAQYVFBY3NhcBFhIfARYzMhMnPgE1NCYnBgQHJywBNx4BFRABJzcXBSc2JDcXBgQH+CInJEEXgD1PDf5BNUc8fR8iMUUQAb93tUCBISA3+hD+2Z8BdwFg/Zv9qzw6XAFIAa3zaGjd/nL+vW8mJwItAj1lvFgGVsBp/sr+T/7wRRxA/AGmAT5IjkUFQpH+OeUBOm0Brb0dEBGBQbNx/iUIDg0HGxEPDX0XLhwNCAHaC004gBsjEowYqp4kJIr+w+MzAQQBl2s3OP3xmOLF/nw10QD/Q0JI/vjcFCom1mUBD4YC/0I0SCJHEkoyIB39BVPEa9c3cyAC8myMOf1s7u5Q0HkzSyhOIT4rW5g8w8sHB04HBwF3RZV3aoSfSAQEUAQEK/fY/PVtETcc1226TgMrDQwLEQsUHghHDR0ZGgoEDfzUif78XtYsAa1MNJlqPJhZNTsUUhFSOnnPUP7zASexNXTPTyCYiC6PpgAAAAANAFr/QgnbBjYADQAjADYARgBbAG4AcgB2AIoAjgCSAJ0AoQAACQEFFQEnAQ4BIyImJwEDIiYnLgE1NDYzMhYXNx4BFQcXFg4BJzI2LwE3NCcHLgEjIgYVFBYXFgUiJic3HgEzMjY3ARcBDgEFIiYnLgE1NDYzMhc3HgEVBxcWDgEnMjYvATcmJwcuASMiBhUUFhcWAxMXAwEDNxMBIiYnNx4BMzI2NwE2FhcWBwEOAQEnARcBJwEXATI+ATcBJQEUHgElAzcTAVYEgQM3+6Y/AZFGgT6m1yD+M54WKA0jMU8wDBkNJ0lCMwMHKUkpIDgHET8yMQ4iEBkcJyIFAQVDfytPIlErJD4tAd46/h84WQHYGC0OKDlPNRkdKFBMNwQIJ0srHzUHFEQFMzoQIQwaHjAiCs43Sx4DEn1Sd/5BUKc9Uy9wPDJfPQOaBxwOHxP8VTp7/n0wAv8z/gwwAtgy/U8wi482AgD9UP2jaLQEPLpHuQJhA9XQNfvDQQGFDg+Ajf54/u4TETB3JjJHBwYhBltTMRAkPyZGKhAsPToQKQ4MIBMcZCgDvVpKLDo8HysBwkT+OjUnxBMQMX4oNVENJQRhUTsSJEUsUCwPLkg6DTYVDSQWGmgjBQGHAkid/rH+iwIkKf3//mNkWClDSDlAA8wHCA4fFfwjPUIDwzUCrzD89DMCxDH9eA8fGAH/r/3+S206HgFuO/6VAAAIAQr/2AkbBaAAIgAuADoARgBWAHUAhwCYAAAFIiYnJiQmAicmNjclPgE3PgEzMh4BFRQGBx4BFwEWBgcGBAEiJjU0NjMyFhUUBgUiJjU0NjMyFhUUBgUiJjU0NjMyFhUUBiUiJCUmLAEnNxYMARcMATMBMiQ3AS4BJzc+ATU0LgEjIgYPASIGBwUeAgQXHgEBDgEjIi4CJzc+ATMyHgIXJSc3Ni4BNz4BFx4BBw4CBwZxa/iXtP7vzJg7CR4cAgMpWSg66qOH130cDB87HQElFAcZuP65/F4cKiocHSkpATccKiocHSkpAV8cKikdHSkpApuv/gH+zOT+h/7pUzVbASwBbLoBFgH6t/2PfQEjqf7qIkgrERASarNui9cfCzxlN/4YNYW5AQKyk+gBMBpDJ1XDv50uDwotCmDj16Ie/pVCLAcSEAoLQyMkIwwLJSIHKDU3QZXDAQ67HS4ESwYJAqSrgNeDKnAcHD4k/pUYNRF7dgHDKhwdKSkdHCqWKhwdKSkdHCp5KhwdKSkdHCpbdW1RpqJKPFGmmkNjev7xbW8BXCpIIS0qUShutWyehC8ICEij8rWPQTUyAswJCS1QbD85AgY5XGcvkxh8Eh4mHSAZDQ0+IB0TCxMAABAAY/90CcUGBAAdACQAJwAzAD8ASgBVAGAAawCIAJMAngCqALYAwQDMAAAlIi4CNTQ2MzI2NwE+ATc+ATMyHgEVFA4BBwEOAQciJicFDgE3JzcTIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDMyFhUUBhciJjU0MzIWFRQGJyImNTQzMhYVFAYXIiY1NDMyFhUUBgEyNjcBPgI1NCYjIgYHDgEHAQ4BIyIGFRQeAgEiJjU0MzIWFRQGFyImNTQzMhYVFAYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDMyFhUUBhciJjU0MzIWFRQGAueI669iclQ3WxgEcRIsGmPYaHavYS1SNvsHR5T7NXkTAWsaWvxRaKZTdnZTVXV1GhsnJxsbKCf+LxMbJxIcF6ETGycSHBcKExsnEhwXnBMbJxIcF/72SIBFBPkmPSWqjF66VSI0FvuPIG4+NEJanssD0hMbJxIcF6ETGycSHBcBa1V2dlVTeHgaGycnGxsoJ/5uExsnEhwXnBMbJxIcF31EdJNOUWsOCwIiCCQYW1hjq21Jjm0a/ZoiJjlZQz4qNBwwIf7Dd1RTdnZTVHdrKBsbJycbHCcCNRcQHhYODRRoFxAeFg4NFLwXEB4WDg0UaBcQHhYODRT+zR8hAmYSVXI9h6RRTR8nC/3eEBE9L0B2XTYDJxcQHhYODRRoFxAeFg4NFP4NdlVUdnZUVXZrKBsbJycbHCcCRBcQHhYODRRoFxAeFg4NFAAAAAoAbv6sCb8GzAA6AEoAVgBiAG0AmwCsALwAyADMAAAFPgE3JSciBgc0NjcuATU0NjMyHgEVFA4BBzIWFzcuATU0EjcnLgE1NDYzITIXITIeARcTFgcRIycjBwEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYDMjY1NCYjIgYVFBYBNSEyNREzERQGIwEzETQ2NyMmNTQ3ITUzETMRND4BMyEyNicDLgIjIS4BIyE3ARUjDgIVFBchBREhESMRITIWFREjETQjIREBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWAyE1IQZ4AgcG++W4W5tQLUYZJzwvMFU1IzASLWApMTE5REy1IyQzLgHjKikEJlmMWAlDBxifrrC2+ulQhE9PhFBQg05Og1BTdHRTU3Z2gRQdHRQUHR0BAwENHEYpIAEKrAkKTQ8PATVQvylONQG/FQ0EQQhNazf7sgwnEv6YFAEfuy82FQMB8wGn/llQA8caI1Af/rIB6lCET0+EUFCDTk6DUFN0dFNTdnYBAR/+4QcbNhsFayUhRowqDUQ3P0kzQhgVLiUIFRYtSMdkogEfqaggMhYgH1FRiFP9wTsq/U65uf6zToNQUYROToRRUINOWnVSVHV2U1J1ArovIiEvLyEiLwGpRhwBhv52NCr9TAEbGiETIB4fHlr9wgF3KFI4GB8CLEZqPCsmGP76P3eypGQgJF4Cmf15AtUjGv1uAmIf/Wf8Lk6DUFGETk6EUVCDTlp1UlR1dlNSdQLwbgAKAD7/dAnqBgQANwBHAFMAYgCIAJgApQC1AMEAywAANyImPQE0NjsBNzYzITIWHwEhNzYzIT4BNTQmJyYjJTUFMhYXHgEVFAYHMh0BFAYrAScjByEvAQcTIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWATUzMjY9AS8BNx8BFRQjARE0IyEiBgcDISIHDgEVFBYXBy4BNTQ2Nz4BMyETPgEzITIWFREBIiY3Ez4BOwEyFhURFAYjJSEyNRE0KwEiBwMGFgEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBIiY9ATQ2OwEVeRkiJh/qMRglATYWGg2cAq1ZGzMCFwIBBAUCG/yBA4cmNgQKCAIDQyEawrinpPyAj8Oe90p7SUl7Skt7SUl7S0pra0pKamr+jGQIDCJdB4E5MQQxFP6OO2YZ7f6lKAMDAgwMTwwNAwQDMygBRdckjVABlxol/RsODgfIDzcg5xEYGRH+hQFBFBSsFAuLBw0El0p7SUl7Skt7SUl7S0pra0pKamoBgxEYGBFUgSMZehoTNxsTEcOzNSFMKEGFORsCTwIsJk+bTS5cLTx8GSPNzcgCyv7zSXxKS3tJSXtLSnxJWmtKSmtrSkprAf5CDAiARQlCDXShRP72BOAUPTH+MSclYzZLm1MMUqJRN2w2JTUBpUdRIRv6+gKiFg0Bgh0iGRH+bhEXThYBHBYW/vQNGfvCSXxKS3tJSXtLSnxJWmtKSmtrSkprAjoXEaoRFfgAABcA1P6sCVYGzAByAIIAjgCmALMAwwDTAN8A5gDuAPUBAQENARsBJwEzATcBOwE/AUMBTwFTAXsAAAEnPgE1NC4BJy4BJy4CNTQ2NycuAiMiBgcOAQcOARUUFw4BFRQWFw4BFRQWFw4DFRQWFwcuATU0PgI3LgE1NDY3LgE1NDcuATU0Njc+ATc+ATMyFhc+ATMyFRQGBw4BFRQeAhceARceAhUUBgEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBLgIjIg4BIyIvAR4BMzI+ATMyHgIXAQMhDwEnBycHJyEHJyUuAicuASc3HgEXFgQWFwEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBNSAlFwYEJzUyJDcXBgQnNSAlFwYEASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGAQYmLwEmPwE2HwEWBgcBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYXJzcfASc3FyUnNxcTJzcXEyImNTQ2MzIWFRQGNyc3FwEiJzcWMzI1NCYjIgcnLgEjIgYVFBYXFS4BNTQ2MzIXPgEzMhYVFAYIWColIDSDd1fJYUeBUgYEawslPC4dRECD2GgWEU4gJB0YGBAwFxQaDwZGWCd9SgQLGBMcIhwRGSEwGiA2MXLUfERNIWRqEBhOHSQSDgwONlFSG1vBV4SbQzD54Eh3R0d3SEh3R0d3SEdlZUdHZWUCFitxk14rhnYVJx4LJUUxCjY3CnK8j18W/WmkB2MhlEyCs7V2/n5p5wJVIpPimlWfQxRDjkzLAQCMGwGCSHdHR3dISHdHR3dIR2VlR0dlZfsSAU4BABiI/s/BqgEighiI/s+3AU4BABiI/s8C4BkjIxkYIyNvGSMjGRgjIwMyDh8KfBAZmhkTpA0DD/yrGSMjGRgjI/5KGSMjGRgjI1UohSgEM5cz/mcQ1BDoO2U7VhkjIxkYIyMDQ0JD/oxafS9oQEgqJUBoMDJpLwwQjW2WqTkofngvWyJEUU0BI0QXMyI5Vk0sIFY6K3V7NB5aMGI5Qh0KDhwdBgESDCQsFTMeGS8MHCQdHCsNe6RnPRVcczBGRaVbFTReooERLx4cOg4MKhs4LBEzHykyAgUeGw8LYmgiISceYjIrThkgTk0/ETlQIDFgc08xW/1lR3dISHZGRnZISHdHWmVHR2NjR0dlAkphaCcLCwaYCAMBAi5cilz+zQFymGRo3m9v19dq2azKYhAJGRBxFiELHoXsuv1MR3dISHZGRnZISHdHWmVHR2NjR0dlBRdGUEIrKcBGKChCKym0RFBCKij+QSMZGCMjGBkjgSMZGCMjGBkj/EAKBxDIGRJuERWrDSALAs4jGRgjIxgZIwGqIxkYIyMYGSOmOl064y+iL6BEMET+OiWkJf7hIxkYIyMYGSMmGbIZAR5xM182FRcwDVFZEAwmPgRGBWBJKTmzFBg+NDdEAAAMAQT+rAkkBswAEwAXABsAHwAjADcAOwA/AEMARwBLAE8AAAEyJAASNTQCACQjIgQAAhUUEgAEJTcBBwEzESMBNwEHATMRIwEiJAACNTQSACQzMgQAEhUUAgAEJTcBBwEzESMBMxEjATcBBwEzESMBNwEHBRPWAXkBH6Oj/uH+h9bV/oj+4aOjAR8BeAEDOPvROAFGUFAETDj61jgCKFBQAXHE/qT++JeXAQgBXMTFAVwBCZeX/vf+pAHROPqeOAKlUFABSlBQAkA4+tY4BDRQUAFhOPvYOP6sowEfAXnV1QF5AR+jo/7h/ofV1f6H/uGjBzgELTj87QXZ+Xw4BSo4+skHTviZlwEJAVvFxQFbAQmXl/73/qXFxf6l/veX8zgFYjj5nAey+HYHWPqHOAUqOPmlBe38rDgEKjgASwEE/qwJJAbMABMAHwArADcAQwBPAFsAZwBzAH8AiwCXAKMArwC7AMcA0wDfAOsA9wEDAQ8BGwEnATMBPwFLAVcBYwFvAXsBhwGTAZ8BqwG3AcMB1wHjAe8B+wIHAhMCHwIrAjcCQwJPAlsCZwJzAn8CiwKXAqMCrwK7AscC0wLfAusC9wMDAw8DGwMnAzMDPwNLA1cDYwNvA3sDhwOTAAABMiQAEjU0AgAkIyIEAAIVFBIABAEyNjU0JiMiBhUUFicyNjU0JiMiBhUUFgEyNjU0JiMiBhUUFiciJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgUiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJAACNTQSACQzMgQAEhUUAgAEAyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGATI2NTQmIyIGFRQWASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGATI2NTQmIyIGFRQWATI2NTQmIyIGFRQWATI2NTQmIyIGFRQWJzI2NTQmIyIGFRQWBRXVAXgBH6Oj/uH+iNXW/of+4aOjAR8Bef3oFBsbFBMcHEgUGxsUExwcAbgUGxsUExwcZBMcHBMUGxv+ZBQbGxQTHBwBQBMcHBMUGxsBkRMcHBMUGxv9zxMcHBMUGxsBkRMcHBMUGxv97BMcHBMUGxsBkRMcHBMUGxsBjxMcHBMUGxv90hMcHBMUGxv+ZBQbGxQTHBwDPRMcHBMUGxv97xMcHBMUGxsBkRMcHBMUGxsBjxMcHBMUGxv8LBMcHBMUGxsBkRMcHBMUGxsBjxMcHBMUGxv8SRQbGxQTHBwBuBMcHBMUGxsBjxMcHBMUGxsBkRQbGxQTHBz8VBMcHBMUGxsBjhMcHBMUGxsBkRMcHBMUGxv8ShMcHBMUGxsBkRMcHBMUGxsBjxMcHBMUGxv8LBQbGxQTHBwBuBMcHBMUGxsBjxMcHBMUGxsBkRMcHBMUGxv8SRMcHBMUGxsBkMX+pP73l5cBCQFcxcUBWwEIl5f++P6lxhMcHBMUGxsBkRMcHBMUGxv8LRMcHBMUGxsBjhMcHBMUGxsBkRMcHBMUGxsBkRQbGxQTHBz8cRMcHBMUGxsBjxMcHBMUGxsBkRMcHBMUGxv8LBMcHBMUGxsBjxMcHBMUGxsBkRMcHBMUGxv8SRQbGxQTHBwBthMcHBMUGxsBkRMcHBMUGxsBkRQbGxQTHBz8URMcHBMUGxsBkRMcHBMUGxsBkRMcHBMUGxv8ShMcHBMUGxsBjxMcHBMUGxsBkRMcHBMUGxv9zxMcHBMUGxsBkRMcHBMUGxsBjhQbGxQTHBz8cRMcHBMUGxsBkRMcHBMUGxsBkRMcHBMUGxv9zxMcHBMUGxsBkRMcHBMUGxv97RMcHBMUGxsBkRMcHBMUGxuMExwcExQbGwGOFBsbFBMcHP4WFBsbFBMcHAG4FBsbFBMcHGUUGxsUExwc/qyjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aMBhxwTFBsbFBMcyRwTFBsbFBMc/m4cExQbGxQTHMkcExQbGxQTHAGRHBMUGxsUExzIHBMUGxsUExz+bhwTFBsbFBMcAlocExQbGxQTHP5vHBMUGxsUExwCWhwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwCWhwTFBsbFBMcAZIcExQbGxQTHPzdHBMUGxsUExwCWhwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwD7BwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExwD6xwTFBsbFBMc/m8cExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMcA+wcExQbGxQTHP5uHBMUGxsUExz+bxwTFBsbFBMcA+scExQbGxQTHP5vHBMUGxsUExz+bxwTFBsbFBMcA+scExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPrHBMUGxsUExz63pcBCQFbxcUBWwEJl5f+9/6lxcX+pf73lwORHBMUGxsUExz+bxwTFBsbFBMcA+scExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPrHBMUGxsUExz+bxwTFBsbFBMc/m8cExQbGxQTHAPrHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHAPsHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHP5vHBMUGxsUExwD6xwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwD7BwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExwCWhwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwD7BwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExwCWhwTFBsbFBMc/m8cExQbGxQTHAJaHBMUGxsUExz+bhwTFBsbFBMcyRwTFBsbFBMc/m8cExQbGxQTHAJaHBMUGxsUExz+bhwTFBsbFBMcyRwTFBsbFBMcAAAAAAkBBP6sCSQGzAATABcAGwAfADMANwA7AD8AQwAAATIkABI1NAIAJCMiBAACFRQSAAQ/AQEHATcBBwE3AQcBIiQAAjU0EgAkMzIEABIVFAIABAE3AQcBNwEHATcBBwE3AQcFE9YBeQEfo6P+4f6H1tX+iP7ho6MBHwF4pjb8MjYE+Db7IjYFyDb6kjYDicT+pP74l5cBCAFcxMUBXAEJl5f+9/6kAfg2+lk2Bj82+pI2Bcg2+xo2BRkR/Dw2/qyjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aMHOgOMOvymOgSJOvvkOgUROvqZlwEJAVvFxQFbAQmXl/73/qXFxf6l/veXAQI6BUQ6+5k6BRE6++Q6BJE6/IhcA4I6AAAACAEE/qwJJAbMABMAFwAbAB8AMwA3ADsAPwAAATIkABI1NAIAJCMiBAACFRQSAAQ3AScBJQEnAScBJwEFIiQAAjU0EgAkMzIEABIVFAIABAkBJwEnAScBEwEnAQUV1QF4AR+jo/7h/ojV1v6H/uGjowEfAXnZA/A2/BD+4AUdNvrjxQWZNvpnAoTF/qT+95eXAQkBXMXFAVsBCJeX/vj+pfwsBZk2+mdRBR02+uMKA/A2/BD+rKMBHwF51dUBeQEfo6P+4f6H1dX+h/7hoxYDqzr8VQoExTr7O14FOTr6x9yXAQkBW8XFAVsBCZeX/vf+pcXF/qX+95cBcQU5OvrHzATEOvs8ASADqzr8VQAAAAAMAQT+rAkkBswAEwAXABsAHwAjACcAOwA/AEMARwBLAE8AAAEyJAASNTQCACQjIgQAAhUUEgAEJTcBBwEhNSEBNwEHAyE1IQE3AQcBIiQAAjU0EgAkMzIEABIVFAIABAEhNSE3ITUhATcBBwUhJyEBNwEHBRPWAXkBH6Oj/uH+h9bV/oj+4aOjAR8BeAEgNvu9NgEaBbH6OwSrNvqfNgIHTviyBlk2+l42AvPE/qT++JeXAQgBXMTFAVwBCZeX/vf+pPtpB574YigHTviyBx42+p82/vEF7R76RQasNvu9Nv6sowEfAXnV1QF5AR+jo/7h/ofV1f6H/uGjGToD7jr9UVD+4joE9Tr9I1D+bzoFMTr5vpcBCQFbxcUBWwEJl5f+9/6lxcX+pf73lwOcUPpQ/OE6BPU63FD9DzoD7joAAAcBBP6sCSQGzAAPABMAFwAnACsALwAzAAABITI2NRE0JiMhIgYVERQWNzMRIwEzESMBIiY1ETQ2MyEyFhURFAYjBTMRIwEzESMBMxEjAaoG1URhYUT5KkNiYuhQUAFPUFD+DSMzMyIG1iMyMiP8bVBQAU9QUAFPUFD+rGJDBtZEYWFE+SlDYSsHzfgzB834WDIiBtcjMjIj+SoiMyUHzfgzB834MwfNAAgBBP6sCSQGzAAPABMAFwAbACsALwAzADcAAAEhMjY1ETQmIyEiBhURFBYDITUhNSE1ITUhNSETIiY1ETQ2MyEyFhURFAYjASE1ITUhNSE1ITUhAaoG1URhYUT5KkNiYk4H9/gJB/f4CQf3+AmSIzMzIgbWIzIyI/iZB/f4CQf3+AkH9/gJ/qxiQwbWRGFhRPkpQ2EBJFDLUMtQ/KYyIgbXIzIyI/kqIjMEJVDLUMtQAAAAAA4BBP6sCSQGzAAPABMAFwAbAB8AIwAnADcAOwA/AEMARwBLAE8AAAEhMjY1ETQmIyEiBhURFBYlNwEVATcBFQEzESMBNwEVATMRIwE3AQcTIiY1ETQ2MyEyFhURFAYjBTMRIwEzESMBNQEHATMRIwE1AQcBNQEHAaoG1URhYUT5KkNiYgH4OP2eA/w4+8sBJVBQBKs4+fgCb1BQBSY4+GA4giMzMyIG1iMyMiP8bVBQAUpQUAK6+jQ4BJRQUAFw/Ak4BDT91zj+rGJDBtZEYWFE+SlDYQw4AmFw/dg4BDNw/CEHzvgWOAYHcPpNB874LTgHnzj4jTIiBtcjMjIj+SoiMycHzvgyB8754XAFyzj4TgfO+7RwA/k4/Z9wAig4AFcBBP6sCSQGzAAPABsAJwAzAD8ASwBXAGMAbwB7AIcAkwCfAKsAtwDDAM8A2wDnAPMA/wELARcBIwEvATsBRwFTAV8BawF3AYMBjwGbAacBswG/AcsB1wHjAe8B+wIHAhcCIwIvAjsCRwJTAl8CawJ3AoMCjwKbAqcCswK/AssC1wLjAu8C+wMHAxMDHwMrAzcDQwNPA1sDZwNzA38DiwOXA6MDrwO7A8cD0wPfA+sD9wQDBA8EGwAAASEyNjURNCYjISIGFREUFjciJjU0NjMyFhUUBicyNjU0JiMiBhUUFgUiJjU0NjMyFhUUBiciJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgUiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjURNDYzITIWFREUBiMBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYFMjY1NCYjIgYVFBYnIiY1NDYzMhYVFAYBqgbVRGFhRPkqQ2JichMcHBMUGxuMFBsbFBMcHAFeExwcExQbG4wTHBwTFBsbbxMcHBMUGxsBkRMcHBMUGxuLExwcExQbG/5kFBsbFBMcHAFAExwcExQbGwGRExwcExQbG/3PExwcExQbGwGRExwcExQbG/3sExwcExQbGwGRExwcExQbGwGPExwcExQbG/wsFBsbFBMcHAG4ExwcExQbGwGSExwcExQbG/3sExwcExQbGwGRExwcExQbGwGOExwcExQbG/wtExwcExQbGwGRExwcExQbGwGRExwcExQbG/xHExwcExQbGwGRExwcExQbGwGPExwcExQbGwGRExwcExQbG/qHFBsbFBMcHAG5ExwcExQbGwGOExwcExQbGwGUExwcExQbG/xHExwcExQbGwGRExwcExQbGwGOExwcExQbGwGRExwcExQbG/qIExwcExQbGwGRExwcExQbGwGOExwcExQbGwGUExwcExQbG/qiExwcExQbGwGRExwcExQbG/4ZIzMzIgbWIzIyI/yhExwcExQbGwGRExwcExQbGwGRExwcExQbG/qIExwcExQbGwGRExwcExQbGwGOExwcExQbGwGUExwcExQbG/qiExwcExQbGwGRExwcExQbGwGOExwcExQbGwGRExwcExQbG/wtExwcExQbGwGRExwcExQbGwGPExwcExQbGwGUFBsbFBMcHPrIExwcExQbGwGPExwcExQbGwGRExwcExQbGwGRExwcExQbG/wtExwcExQbGwGRExwcExQbGwGOExwcExQbG/xKExwcExQbGwGOExwcExQbGwGRExwcExQbG/3SExwcExQbGwGRExwcExQbGwGMFBsbFBMcHPxxExwcExQbGwGRExwcExQbGwGRExwcExQbG/3SExwcExQbGwGRExwcExQbG/3pExwcExQbGwGRExwcExQbG4kTHBwTFBsbAZIUGxsUExwc/hATHBwTFBsbAZETHBwTFBsbiRMcHBMUGxtyExwcExQbGwEdFBsbFBMcHEsTHBwTFBsb/qxiQwbWRGFhRPkpQ2G+HBMUGxsUExzIHBMUGxsUExzIHBMUGxsUExzIHBMUGxsUExzJHBMUGxsUExz+bxwTFBsbFBMcyBwTFBsbFBMcAZIcExQbGxQTHMkcExQbGxQTHP5vHBMUGxsUExwCWhwTFBsbFBMc/m4cExQbGxQTHAJbHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPrHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHAJbHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPrHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHAPsHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExwFfRwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMcA+wcExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAV9HBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwFfhwTFBsbFBMc/m4cExQbGxQTHPreMiIG1yMyMiP5KiIzA5EcExQbGxQTHP5uHBMUGxsUExz+bxwTFBsbFBMcBX0cExQbGxQTHP5uHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHAV+HBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHP5uHBMUGxsUExwD7BwTFBsbFBMc/m4cExQbGxQTHP5vHBMUGxsUExz+bhwTFBsbFBMcBX4cExQbGxQTHP5uHBMUGxsUExz+bxwTFBsbFBMc/m4cExQbGxQTHAPsHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPsHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAJaHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAPsHBMUGxsUExz+bhwTFBsbFBMc/m8cExQbGxQTHAJaHBMUGxsUExz+bhwTFBsbFBMcAlscExQbGxQTHP5uHBMUGxsUExzJHBMUGxsUExz+bhwTFBsbFBMcAlscExQbGxQTHP5uHBMUGxsUExzJHBMUGxsUExzJHBMUGxsUExzJHBMUGxsUExzJHBMUGxsUExwAAAAADQEE/qwJJAbMAA8AEwAXABsAHwAjADMANwA7AD8AQwBHAEsAAAEhMjY1ETQmIyEiBhURFBY/AQEVBTcBFQE3ARUBNwEVATcBFRMiJjURNDYzITIWFREUBiM/AQEHATUBBwE1AQcBNQEHATUBBwE1JwcBqgbVRGFhRPkqQ2Jitzb+7AI/Nv2MA542/CwE/Db6zgZcNvluaiMzMyIG1iMyMiNcNvg6NgfZ+aU2BpH6/zYFN/xfNgPX/b02AnngNv6sYkMG1kRhYUT5KUNhDToBAm3QOgJKbP3pOgOSbfyjOgTYbftZOgYjbfpTMiIG1yMyMiP5KiIzCDoHQTr6G2wF7jr7KWwEqTr8bGwDYjr9tWwCGjr+/WzQOgAAAAANAQT+rAkkBswADwATABcAGwAfACMAMwA3ADsAPwBDAEcASwAAASEyNjURNCYjISIGFREUFiUBNQEFATUJAicHCQE1AQUBNQElIiY1ETQ2MyEyFhURFAYjJQEnAQU3NQkCJwERAScBEQEnAREBJwEBqQbVRGJhRPkqQ2JiASYGXPluAZYE/PrO/YQBFjbgBBADnvwsAZYCPv2M+zUiMzMiBtYjMjMj+M8Hxjb4Ogb03v7s+WUCeTb9vQPXNvxfBTc2+v8GkTb5pf6sYUMG10RhYUT5KkNiDQXwbfndOASlbfsoBo0BAjrQ+MsDX238bjsCGGz9tgozIgbWIzIyI/kpIjIIB0E6+L+Fz23+/gVGAkw6/eb+SwOUOvye/k0E2zr7V/5LBiA6+hIAAAAOAQT+rAkkBswADwATABcAGwAfACMAJwA3ADsAPwBDAEcASwBPAAABITI2NRE0JiMhIgYVERQWJTcBBwE3AQcTITUhATcBBxMhNSEBNwEHEyImNRE0NjMhMhYVERQGIwEhNSE1ITUhATcBBwEhNSEBNwEHATcBBwGqBtVEYWFE+SpDYmICHDb9hTYEYDb7oDYbB+X4GwYuNvm4NhoH5fgbB7w2+DQ2mCMzMyIG1iMyMiP4owfl+BsH5fgbB8k2+bQ2/oMH5fgbB8k2+5w2BGU2/YM2/qxiQwbWRGFhRPkpQ2ENOgJKOv25OgQJOv0/UP5mOgXNOvzHUP1pOgcwOvjFMiIG1yMyMiP5KiIzA5xQ+lD8hToFzjr+p1D8/ToEDDr9tDoCTDoAAAIBNgA8CPIFPAAPAB8AAAEiJjURNDYzITIWFREUBiMBIiY1ETQ2MyEyFhURFAYjAWcVHBwVB1oUHR0U+KYVHBwVB1oUHR0UA0IdFAGYFRwcFf5oFB38+h0UAZgVHBwV/mgUHQAGAXz+rAisBswARwBPAFYAXgCUAMMAACUnNz4CNz4CNz4BMzIXPAE1NDYzMhYXHgIXHgEXHgMXIy4CJy4BJy4BJy4BIyIGFRQWFwcuASMiBgcOAgcOAgcFJzYkJRcGBBMnPgEzFSIHJz4BNxcOAQMnPgM3PgM3PgI1NCYvAS4BJy4BIyIGByc+ATMyHgEfAR4BFRQCBgcOAwcOAwEuAicuAScuATU0NjMyFhceARceAhcHLgInLgEnLgEjIgYVFBYXHgEXHgEXAbY62BxXiWZEWzwVFFk8KB9CNyY6JhAwPyc5SwgVOTgqB04ISVEUBEIxQFgaGxgPExYGClcNJB8iLA8XQWFHZYNRGwE9SFsBSQEDCu/+2Fcaa9RnwU5RS2ojMyVi6jw2VlVsTWfFp3MUFykaNCXkFh8MEh8MDBwRRBo3IxoxQzPiMEEbKxgXfLPUcEljTU4BrRQfFAUEDAU3QEQzN0AiDiEXOUkqCVAIJ0Q2FyYPGx0XDRo8MwwOAwYkHB843ZHq13ZPfnlGQ1MUAgIBQkkvQhs/Ryc5Yh5MenKDV2KsoFASUjFBaisvHCIrFSMVLSUmLjBLhIdSdNDkkkIixNUfUBy+AUdMJidQDB5JvHxmaKL7fTY8UDgxHCZyiI5ASdL8hy9iI9sWIQ0UFhcbKiwsGjsx2S6CPor++9tMSp6WfCgaKzNKAwkwZ244Ok8Kb8NFRl5CViI7Jl2rtm8GaaqeWCZDJkQiMSM7r2kZbylPk0EAAgCq/qwJfgbMABkAMQAAAQgBAjU0PgIzMh4BFz4CMzIeAhUUAgAFCAESNTQuASMiDgEHLgIjIg4BFRQSAAUU/nX+DexVmc13eeKwLS6v4nl3zZlV7P4N/nUBbQHQ3X/aiX/bqTU1qdqAidp/3QHQ/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AtABGwHjAafAk+2MasSGhsRqjO2TwP5Z/h0AAAAAEgCq/qwJfgbMABkAHQAhACUAKQAtADEANQBNAFEAVQBZAF0AYQBlAGkAbQBxAAABCAESNTQuAiMiDgEHLgIjIg4CFRQSAAU3ARcBITchJSE3IQE3AQcBITchATcBBxMhNSEBCAECNTQ+ATMyHgEXPgIzMh4BFRQCACU3AQ8BISchAyE1IQE3AQcBITUhATcBBwE3AQ8BITUhATcBBwUUAYsB8+xVmc13eeKvLi2w4nl3zZlV7AHzAesp+2AHAxYB9R79z/73BEAt+3UDVin6mCkBRgYaD/m5BPIp+jYpPAeY+FkD1P6T/jDdf9qJgNqpNTWp23+J2n/d/jABCyn6NimbA6Qe/IpZCHD3kAdQKfrATP4ICIX3ewfmKfyIKQPmJfzoOI8Dkfx+A9YQ/eBN/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AswtBEJa/Gg8yDz+4i0E+C387jz+fC0FWS388zz8NwEbAeMBp8CT7YxqxIaGxGqM7ZPA/ln+Hc8tBVctpzz9tjz91C0E2Q7+ATz9iy0DNS39wjEC0R+cPP6VQwHwDgAAAAAGAM7+3glaBpoAMABgAGYAoQDIAOQAAAEiLgInLgMnLgE1NDYzMhYXHgEzMjY1NCYvATcXEz4CMzIWHwEeARIVFAIGBAEiJjU0Njc+ATc+ATMyFhceATMVIiYnLgEjIgYHDgEHDgEVFBYzMj4CNTMUDgIBJzY3FwYDMiQ2EjU0AiYvAS4BIyIOAQcDBh4BMzI2NxcOASMiJicWFRQGIyImJy4BIyIGFRQWFx4DFx4DASImJy4BNTQ+ATMVIg4BFRQWFx4BMzI2NTQmIyIHJz4BMzIWFRQGJSImJwMmNjMyFhcFByUuASMiBhcTHgEzMjcXBgY+sP+1gDEqRk1nTHpegnNNkWRHbyg7RigvvDJ0MBQ+aFFnxIvIkrNSfNv+3/rRZYBcZn2WNDJbOSxGGhgnEBw3Fxw1ICU/MjSgg1JAUURFo5NeUGiowAPgRofOFK0klAEDxXBKpInIgqtZOkYqES8EJkAhER0PKBY1GgcMBwN1XDKDTV94R09WTVpTclVPMTJ2oeQBZmNoGhMSX9OtmK5JEBERP0lKXjYnHCEkGi8YSGWN/l5UbwUQC2x5Ilc0AS4F/sMyTRpSQQkQBEA0LiA0Nv7eV4yhST9TOjIfMmNAU1MsMyQkRzokQSadPmEBNH2NOllqmXDz/tm+o/7h23sEmGVRQl4rNWEnJjYXEA4UUBcNERQmJidqNiI6JS44NVNaJTh4Z0D9QCb3N04u/aBvxAECk7IBD99omWRPKG5q/tAeQS0ICUYNDgEBEBNbdiknMSYnLydAJCE5RF5HSJN7SwKLRFA9todNWCZQGDYtgqk3NiZBMCY2EUgNDGVHU26ybVgBCryxDQ1KUU0MDISV/vY4QRo8LgAACADy/qwJNgbMACsATwBbAF8AcwCHAJsApwAAASIkAAI1NBIAJDMyBAASFRQGByc+ATU0AgAkIyIEAAIVFBIABDMyJDcXBgQBNSM1MxUzNTMVMzUzFTM1MxUzNTMVIxUjNSMVIzUjFSM1IxUTIiY1NDYzMhYVFAYBJzcfATI/ATY1NC8BJiMiDwEGFRQfARYXIi8BJjU0PwE2MzIfARYVFA8BBicyPwE2NTQvASYjIg8BBhUUHwEWASImNTQ2MzIWFRQGBQLY/of+4qGiAR4BedfXAXkBHqJDPkA2O5X++P6kx8f+pP74lZUBCAFcx+ABgoQ/jv5d/PSWgqqCqoKqgqqCloKqgqqCqjY0Sko0NEpJBAGcMZ4RDgcpBQsXCQkMCCkFDBcIqAsO5hIIUQwVDQzmEghRDSEOBykFCy8JCAwIKgYMMAn9ujRKSjQ0Skn+rKEBHgF52NgBeQEeoaH+4v6H2Ij+bzJl5HrHAVwBCJWV/vj+pMfH/qT++JW/oDGvzwHYh/ednZ2dnZ2dnfeHh4eHh4eHAoFfUlNfX1NSX/29eUF8kAw8CAcNBxAGCzsICAwJEAatCaQMFQsNdRIJow0UDQt1E0QMOwgIDQchBgs8CQYLCSIGAv5fUlNfX1NSXwAAABIBBP56CSQGzAApAC0AMQBbAGoAeQB9AJYAmgCeAMcAywDSANYA2gEDAQcBDgAAASYkCgE1NBIAJDMyBAASFRQKAQQHNz4CEjU0AgAkIyIEAAIVFBIeARcFNTcVJzUXFQciJic1HgE7ATI2NTQmLwEuATU0NjMyFhcHLgErASIVFBYfAR4BFRQGIwciJjURHgEzMjY3ERQGIyczMjY1EQ4BIyImJxEUFhMnNTMFLgI1NDYzMh4BMzI+ATMyFhUUDgEHESEnNTcVJzUXFQciJic1HgE7ATI1NC8BLgE1NDYzMhYXBy4BKwEiBhUUFh8BHgEVFAYjNycRMy8BNjMVIgYBNTcVJzUXFQciJic1HgE7ATI1NC8BLgE1NDYzMhYXBy4BKwEiBhUUFh8BHgEVFAYjNycRMzcuASM1MhcEF6r+4dV1oQEeAXnY1wF5AR6iddX+4aomkvS0Y5X++P6kx8f+pP74lWO09ZEBFSYmJh4WOhkaOhYQFhsVHA43NEIwFzMYDhMoEws0GBwLOi09Lwyr0GW8YWK7ZdCrDg6JolWbQkKbVaKoJyf+nWGgYDglLLHthYXtsislOGCgYf1qPi0tLSMcQB4fQRwTPTcSQ0FNOh0+HhEXMBMUHiEbHw1JN0c6Fi0t2DCayluVA1QtLS0jHEAeH0EcEz03EkNBTTodPh4RFzATFB4hGx8NSTdHOhYtLaNElFzKmv7LKrwBDAFIt9gBeQEeoaH+4v6H2Lf+uP70vCpeLrDxASOhxwFcAQiVlf74/qTHof7d8bAuIUMDRmOFEW8xDg8+EREWFw4aDAYXNigwMAwONgsMJhEYDQUaNSUvOMWxkgHPDg4ODv4xkrFQg3ABlQwNDQz+a3CDASYT3P4ugpZLMiUgICAgJTJLloIuAYLxUwRXe6EWhT0SEkoWFTYlGwkiOTA8PQ8SPg4OGhcWHg4GIkEsN0TYFgEMQ0ByUC/9TFMEV3uhFoU9EhJKFhU2JRsJIjkwPD0PEj4ODhoXFh4OBiJBLDdE2BYBDEMzL1ByAAAAAAoA1/6sCVEGzAAsADoARgBMAFAAXABwAHQAeAB+AAABIiQAAjU0EgAkMzIEABcHJgAkIyIEAAIVFBIABDMyJAASNTQmJzcWFRQCAAQTLgEjIgYHJz4BMzIWFwEiJjU0NjMyFhUUBgEnNjMVIgEnARclIiY1NDYzMhYVFAYTJwE2NTQmIyIHAScBNjMyFhUUBwEnNxc3JzcXAyYjNTIXBOfY/of+4qGhAR4BedjiAYcBIkhFP/7z/pLUx/6k/viVlQEIAVzHxwFcAQiVAwJHDqL+4v6H0U7ock3AeBt001lu42f86DRKSjQ0Skn+vzeE9tIDn0gBEj3+tTRKSjQ0SkkTKgKeECEaHBb9SSoCrTU4MkAf/qM2Iz8jNiM//HPR9Yb+rKEBHgF52NgBeQEeobH+yckuvwEnqZX++P6kx8f+pP74lZUBCAFcxxozGUZXVdj+h/7ioQI1MjwjKUUsJjUxAX5YPj5ZWT49WQFBKqpG/JYxARE6k1g+PllZPj1Z/i8qApYQFhchFv1TKgKjNUEyMB/+2TcjPk02Iz4BGo5GqgAAAAoA8P6sCTgGzAAhADQAQAB0AIAAkwClAK0AyQDhAAABIiQAAjU0NjcXDgEVFBIABDMyJAASNTQmJzceARUUAgAEATI+ATU0LgEjIg4BFRQWFx4CNyImNTQ2MzIWFRQGByIuAS8BLgEvATU2JDMyFhc2MzIXPgEzMgQXFQcOAQ8BDgIjIi4BLwEuASMiBg8BDgIlIiY1NDYzMhYVFAYHMj4BNz4BNTQuASMiDgEVFB4BATYsATMyDAEXJy4BJCMiBAYHATI3JiMiBxYXIi4CNTQ2MzIWFxYEMzIkNz4BMzIWFRQOAgMyPgE3NTQmBw4CIyIuAScmBh0BHgIFFNj+h/7ioSEfMRARlQEIAVzHxwFcAQiVERAxICCh/uL+h/01jpQ3PKGZhp1CDgoTPo+bNEpKNDRKSU17qWcYJBAQETJ7AQOSy9EiMyMjMyLSypIBA3syERAQJBhnqHyPsloLEg0lEBAlDRIKW7IDTTRKSjQ0Skoji44/EgsNQpyHmKI8N5X7HFsBEgFTvr4BVAERW2VW9f7XpaX+1/RXAxmIeIJ+foJ4iH3zxXYkHxc4JGABC4qKAQthJDgWICR2xvN9XtbWXRMNUMzRWlnSy1ENE13W1/6soQEeAXnYX7VUbTx+Qcf+pP74lZUBCAFcx0F+PG1UtV/Y/of+4qED7D2glUxSIBE9Qz1eNFpZHWpYPj5ZWT49WboeXF2NPigJGqIhIEdWCAhWRyAhohoJKD6NXVwePIRrtgUFBQW2a4Q8ulk9PllZPj5Yah1ZWjRePUM9ESBSTJWgPQI5mOR/f+SYCX+7aGi7f/tfLkdHLjdQhqVUKSMJCBYgIBYICSMpVKWGUAFNDyEZNw4HAxMeEREeEwMHDjcZIQ8AAAAJAPH+egk3BswAKACGAJIAoACqALYAvgDKANYAAAEiJzcWMzIkABI1NAIAJCMiBAACFRQXBy4BNTQSACQzMgQAEhUUAgAEBSImNTQ2NTQmJy4BNTQ2MzIWHwEeATMyNjc+AjMyFhUUDgEPAQ4BByc+AT8BPgE1NCYjIgYHDgEjIiYvAS4BIyIGFRQWFx4BFRQGFRQWMzI+ATU0Jic3FhUUDgI3JzY1NCc3HgEVFAYvAT4BNTQmJzceARUUBgEmIyIHJzYzMhcBIiY1NDYzMhYVFAYTLgEjNTIWFwEiJjU0NjMyFhUUBhMmIyIGByc+ATMyFwUnqZwth5HHAVwBCJWV/vj+pMfH/qT++JUUTQsMoQEeAXnY1wF5AR6iov7i/of8uL/FEhwQEBdEPD5mHAgUGRURLiErgqtmU10iXloYP3dMKVKKPhNcTjU1gtFKMD8aJTQgCBNBJRwmEw0SIRKkmkaSYwQILSVCcIiXCWsTIhYcUmcKOjklIw8zR1gCS6PHg5AiopTmu/2WNEpKNDRKScFTqXKCyFwBSDRKSjQ0Skmlf4kjPx0SJEgloJD+rDRFKZUBCAFcx8cBXAEIlZX++P6kx2RiFDVtONgBeQEeoaH+4v6H2Nj+h/7ioTLLry9VIixJISFAITZESDwRKyESExg3Jjc3ITIsGwcTO0AxSkYQBRgjFxgXRScZFjFFESoyIB8VMxolVjEuTC6LpyA0HgwSDDUmOSpDMRq4PBU7HxM5EDwfN0d1PAktHBskBzwGSjI3SwJyoENIS7YB81g+PllZPj1ZAW9TRFBRXv2vWD4+WVk+PVkBZkkHB04ICFQAAAAACQEE/qwJJAbMABMAHQApADUASQBRAF0AZQBtAAABIiQAAjU0EgAkMzIEABIVFAIABBMmIyIHJzYzIBcBJzYsAjcXBgwCJSImNTQ2MzIWFRQGATIkABI1NAIAJCMiBAACFRQSAAQBNywBJRcMAQEiJjU0NjMyFhUUBgE3LAElFwwBJSc+ATcXDgEFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6Hz7r5anAUe3MBFNP6bC54ASQBLAEJXDxm/u7+1P7eAeUzSkozM0pKAS3HAVwBCJWV/vj+pMfH/qT++JWVAQgBXPzdCgHvA7kByAb+OfxEA00zSkozM0pK+2EkAVICvAFXBv6q/ToBMCZ27IIkgur+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQF7nx9OIbEBO0JTsKSBIz4nhKSvK1k9PlhYPj1Z/OCVAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUEblA+XiJQIV/+dFk9PlhYPj1ZAvlWJkYcUBxGIUY/cTFHMXEAAAAUAOb+rAlCBswADwAjACcAKwA5AEcASwBPAF8AawBvAH8AiwCbAKcAqwC/AM8A2wDnAAABIiY1ETQ2MyEyFhURFAYjASImNRE0NjsBFSMiBhURFBY7ARUlNTMVMzUzFQciJjU0NjMhMhYVFAYjJSEyNjU0JiMhIgYVFBYFNTMVMzUzFQEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBNTMVBSEyNjURNCYjISIGFREUFgEiJj8BNjIfARYGIzciLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYBNTMVATUzMjY1ETQmKwE1MzIWFREUBiMBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNzI2NTQmIyIGFRQWAkE9UVE9BaY9UVE9+Y09UVE9Z2ccIiIcZwHvPFo83ENVVEQCqERUVET9WAKoIyUlI/1YIyUmAVg8Wjz950BrPz9rQEFqPz9qQUBaWkBAWloCszz74wWmHCIiHPpaHCIiAnMIBwR2BxQHdgUICOlAaz8/a0BBaj8/akFAWlpAQFpa/qlkAwdnHCIiHGdnPVFRPfxgPmg9PWg+PmY9PWY+O1ZWOz1WVjwVHx8VFR8f/qxRPQToPVFRPfsYPVEBGFE9ArU9UVAiHP1LHCJQIObm5uYoVkVGVVVGRVZQJyQlJiYlJCco5ubm5gHDP2tAQGo/P2pAQGs/UFpAP1paP0Ba/e3m5ugiHAToHCIiHPsYHCICQBAH0AwM0AcQaz9rQEBqPz9qQEBrP1BaQD9aWj9AWgKRp6f7PFAiHAK1HCJQUT39Sz1RBUM9Zz4/Zz0+Zz4+Zz1QVjw8V1Y9PFZeHxUVHx8VFR8ACQBL/noJ3QbMAB0ASgCJAJUAogCwAN0BHAEpAAABJjU0EgAkMzIEABIVFAcnNjU0AgAkIyIEAAIVFBcBIi4CNTQ2Ny4BNTQ2Ny4BNTQ2MzIWFz4BMzIeAR8BPgEzMhYXHgIVFA4BJzI2NTQuAScuASMiBhUUFhcHLgEvAS4BIyIGFRQWFwcuAiMiBhUUFhcHLgIjIhUUHgEXBy4BIyIVFB4CBSImJzcWMzI3Fw4BATQ2MzIWFwcmIyIGFQEiJic3HgEzMiQ3FwYEASIuATU0PgE3PgEzMhYXNz4CMzIWFz4BMzIWFRQGBx4BFRQGBx4BFRQOAicyPgI1NCMiBgcnPgI1NCMiDgEHJz4BNTQmIyIOAQcnPgE1NCYjIgYPAQ4BByc+ATU0JiMiBgcOAhUUFgEnPgEzMhYXByYjIgYBICGfAR4BfNzdAXwBHZ8hWB+S/vz+pcrK/qX+/JIgAShd0LZzHhwZGyolCQlJNBIjDgs8KB83QS4eDkMwPlAKBikkXKNvhp0iJwgHKyMiJgcFGBk0IA02Oh0WHVtoKGhiMR8ZHJ12JFZjNhYjVHUyHkZcGyploLQCxWjGWjOis7OjM1vF/W5tVjtpIkEzUjZCAXZ+/nsddu910QFqiDyS/nUB+WukXCUoBgtPPjBDDh4uQTgeKTsLDiMSNUgJCSYpGxkcHnO20FpPtKBlKhtbRx4ydVQjFTdiVyR3nBsaHzFhaShoWxwXHDs2DR81GRgFByUjIyoIByginv6xSwhvUjlpJz06UjRFAbGDiNsBewEbn5/+5f6G3IiDEXmBygFbAQSSkv78/qXKgnj8uEBqfTwiMgwgPhorOAkQIhM6UAwLJisbRkAqOj9iWjRwdjxillRKkHY4Y2pAQT9FMhIlEhQfRSwSSjgcGh2ObyRqi0QiIi6jYihEYDMjI11aIC0pUCkrZFc4GCYjQzw8QyMmBPdif0E7JldTQ/5lQT5GPD6/tS3EzvxyVJZiPHZwNFpiPzoqQEYbKyYLDFA6EyIQCTgrGj4gDDIiPH1qQEo4V2QrKVApLSBaXSMjM2BEKGKjLiIiRItqJG+OHRocOEoSLEUfFBIlEjJFP0FAamM4dpAFVQZfdzw2LFNOAAAAAAUCLP6sB/4GzAA9AEUAXQBtAIAAAAEgABEDJj4BMzIWFxMHAy4BIyIGFxMQACEgADU0JiMiDgEVFBYXHgIXBy4CJy4BNTQ+AjMyHgEVFAIEAyc+ATcXDgEBLgEvASY2MzIWHwEjJy4BIyIGHwEeARclNzYmIyIGByc+ATMyFg8BBScTNiYjIgYHAycTPgEzMh4BBwUb/qX+uUgFNGI+T2YHO0w+BTcvPEkESgEeATIBJQFErKm32mFqd22FYDdBLUtvY5qVP4reoIO6Y6f+yFFKC15OJ0BJ/mgzLgcWC2toXGwIE1ASBj88QzwIFQUTFAHpDggtTzFHBkgUXVRuYwwNASBKbQY4OjVDB0lHQQlvWD5XKwf+rAGPAagCzDhcNlhF/bguAmQyLUEy/QH+l/6uARzzoaUfRDo8NgIBHUxJLz49FQIDYGFBWjgaXrWEuf7wlQE5ClmSJj8eeQFvEUhJ6nWEamTm2EhEVVXXLDAMjZxXaUZBLVNXk4aTkDoD2jhOO0D9VlsCXlVnPWY9AAACATb+rAjyBv4ANQB6AAABIiwDJyERNz4BNz4CNTQmNTQ2MzIeARUUBzMyHgIVFAceARUUBx4BFRQGIwUeARUUBicyNjU0JiclNR4BMzI2NTQnLgEjNTIWFz4BNTQuASc1HgEXNjU0LgIjIT4BNTQmIyIVFBYVFA4BBw4BDwERMxYMAwhFdf7P/qv+qf7HfP749x5kOE2QXgFHPkVoOk66ULGZYCAoK0QLDG92AQJ2ZmBNLDFJX/4XKEcfkXkRWrB3fLhYFxx/zXVWyFoWU4OTQf7BRT5VQjUBbqBNSGYO1cx3ATQBVAFSAS/+rC5TbX9DAzcCJ1EpOH6XXSlHJD5MVpdkkKY/ZnY4My8eVi9ZPhg6HFNyYi1UPT1MUCAZGzYjtzoCAzxJLCQfGFAZHBU1GThiPwJQATIrGR8pWk4yd7dYdI06IlQecbONOTVWJgL9aUJ/bVMvAAcCFf6sCBcGzABOAFoAZgByAH4AkACgAAABIiQmLwEuAycuATU0NjMyFh8BIxE0NjMyFhUjNCYjIgYVEQcnLgEjIgYVFB4BFx4DHwEeAjMgJDcTNiYjIgYVIzQ2MzIWBwMGBAEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBjciJjU0NjMyFhUUBjciJjU0NjMyFhUUBgERNDYzMhYVESMRNCYjIgYVESERNCYjIgYVIzQ2MzIWFREFZMz+67E3Ex0gDwgFBhRPOlJuKBUJaUhIZVA2Jyc6WEIoSjgbHgoNAwUKEBwYEzCa+L0BKAEGCCkCMy8mNlBlR1BkBCkK/sr9xhAVFxAOFxjhEBUXEA4XGOcQFRcQDhcYyRAVFxAOFxj9Y2hIS2ZQNyomOgHHMiclOFBnRkhh/qxNrI8yTKqliCo1YyIzP25/QgKrR2VlSCc2OCb8kAzOfmYbFRI1PR4ujaOePzJ9lkG9yQPwMks2J0hlfVT8EOzmAwElMiwtMSgnMAknOTIwMy8uMgklMiwtMSgnMAoiKyQrLyAfLgE2AzNIZGVI/M4DMic2Nib8zQJzJzY3JkdmZUj9jQAAAAIAw/90CWIGBAAdAFMAAAUiJicHBiYnAyY+ASQ3PgEsATMhEyMiDgIPAQ4BJzI2PwE+AzsBAyEiDAEGBwYEDgEXEx4BNyU+ATU0JiMiBgcnPgEzMhcmJzceARUUAgceAQPSapkR72OIBBoDPZ4BGtpV/AEoATGLAWE65Ex1bHtRvHr4hXbacbxWh3qEVJAy/uuI/tX+3flUyf7+jzYCGgJRPgER5NMyOVPIXzZp5WI1Jz2gFJWn7fUIb4x4XSwSe20C81R7YlszFCIaD/vpFDNeSq1wbVBiZ6tOZjoXA3cOGiEULk5QYUL9DUlNDDOb9Gc+NF9VPF5qEWMoTiWzfJD+0qlFWgAAAAIAxv90CWUGBAAdAFMAAAUiJi8BLgMrARMhMgwBFhcWBB4BBwMOAS8BDgEnMjY3JgI1NDY3FwYHNjMyFhcHLgEjIgYVFBYXBRY2NxM2LgEkJy4BLAEjIQMzMh4CHwEeAQZWhfh6vFF7bHVM5DoBYYsBMQEo/FXaARqePQMcBIZj7xGYa1BvCPXtqJQUoD0nNWLlaTZeyVM5MtPkARE+TgMcAjaP/v7JVPn+3f7ViP7rMpBUhHqHVrxx2oxtcK1KXjMUBBcPGiIUM1tie1T9DW17EixdeFBaRakBLpB8syVOKGMRal48VV80Pmf0mzMMTUkC80JhUE4uFCEaDvyJFzpmTqtnYgAAAAgAqv+mCX4F0gBlAHUAhQCoAMsA5QEQATMAAAUiLwE3FxYzMjcuASc3HgIzMjY3LgEnNx4DMzI2NTwBNSYnNx4CMzI2NTQnASYjIg4BIyIuATU0NjclPgMzMj4BNz4BMzIeARUUBg8BFhUUBiMqASMOASMiJw4BIyInBgEiJjU0Nj8BNjMyFhUUDgEnMj4BNTQmIyIGDwEGFRQWFyIuATU0NxcGFRQWMzI+ATU0JiMiBgcnPgEzMh4BFRQOAhciLgE1NDcXDgEVFBYzMj4CNTQmIyIHJzYzMh4BFRQOAhciJjUzHgEzMj4BNTQmIyIHJzYzMhYVFA4BAScuATU0PgEzMh4CMzI+ATMyFhcHJiIjIg4BIyIuAiMiDgEVFB4BHwEFNz4CNTQmIyIGBw4CIyIOAgcFBhUUFjMyPgIzMhYXBYBQQ1orXS43KxE1ZS46KlxWIh4nBUmGOTwdV15TGCAvlYxAKnV2KSMyIf5nLVdRmow9M1w6PjsBJxJCW3BBseSMLR4vFjNHJlRNtxJhRAMHAwhcOxQUD042Ehcj/IVCWxQXDi8/PlU2SR4MJB0mHQ4bCw4VLJQoSC0RSgsyGyJWQTUYEjEZGx4+GydILjNQXHUnSC4USAYGNBkbTEoxMxocKzBANyhILT1gaZowR1ACFw4YOSkYEA8PIiIeMUc+Xf2PsExVJkgyGlV2lVhVkYpJJU4ijQkRCT2AjlNaooBPBxYlFSA6JbQFy7cmOSAuIhAkHCiO8Ls7aFQ5DP7ZTU0sJGN2ezw9YSJaLj5EQCAXI1owOCxYOiUhK3BDNCFSSzAoIAIEAVrFLjmCXTMkNyQByzE+PjNSLi9OHZMJDQkEHywTDRBiv4u+4jV/LC1FYjdNBjM9BUMBg1Y9HTYXDi9bQh1KNlAdJQshLAgNEBgaHCftLkgnHyQgFA8ZND5THxozGhRQFRkuSCcoWU4xjS5IJx0oJAwQBRk0MUpMHBozH0AvLUgoLGpgPShGMA8XKDkXDxgJSBFGMS5cPgICeDXivou/YjNEMx0dDA48ARobM0QzWJxobqJpGnwCfhppom6bwQ4OEy0fBAcKBpMmLCQ/JTIlJSYABwJP/qwH1AbMACwASQBRAGkAbQCFAJwAAAEgABEXEAAhIAA1NCYjIg4BFRQWFx4CFwcuAicuATU0PgIzMh4BFRQCBAEiLgEvASY2MzIWFwcuASMiBh8BHgEzMjY3Fw4BASc+ATcXDgEBLgEvASY2MzIWHwEjJy4BIyIGHwEeARc3ExcDBScBLgEjIgYVFBYXEwcDLgE1NDYzMhYXEycTPgE1NCYjIgYPASc+ATMyFhUUBgcFG/6l/rlSAR4BMgElAUSsqbfaYWp3bYVgN0EtS29jmpU/it6gg7pjp/7I/TQ+WTIECAVyYUplDEEGRDI/QQQIAz87O0wKSRNxAiVKC15OJ0BJ/no9NQgWC2toXGwIE1ASBj88QzwIFQUZHLmGMF4CXWf+1h0/NjQ+FhbxTPEcFG1TU2gjjS1rFhY+NC48GBApIVtBU20THf6sAY8BqCz+l/6uARzzoaUfRDo8NgIBHUxJLz49FQIDYGFBWjgaXrWEuf7wlQKoMVxCn2N/S0ESIytMR5xAQTs1E1Jb/pEKWZImPx55AWoQSE/qdYRqZObYSERVVdczMQuSAa90/tCxPgPBX0pHOxVPQf0rGgLVVVMXXHZncv2zdgFDQU8VO0c3RC53RD52XBdTVQAAAwFC/qwI3gbMAGcAeACGAAABIAARAyY2MzIWFxMjPgEzMhYXPgEzMhcjETQ2MzIWFREHETQmIyIGFREUBiMiJicOASMiJicDJiMiBhcTEAAhMiQ/AT4CNz4BNTQmIyIOAxUjND4DMzIWFRQGBw4CDwEGBAEyNicDLgEjIgYVFBYfAR4BBTI2NRE0JiMiBhcTHgEENf61/qhHCXJdVmgHHCEUWT01WRwbUDhZMRRvWFhxUEE4OT5rUjpZFBZUMVVmCEQLbTlBBUkBIwEuywEoXAo1X2pDcE98X2nfzqVgUGex4fl5hqVoiTxaUTAKZ/6y/nE9TwQVBUE6PzgBARUFNwF6Mj1CNjpHBBkEPP6sAY8BqAK8WoBjSv7wLTUpKScrNwIaWnFxWfypJgN3PUNEPfw4WHI2KyEnW0kClG9KOf0R/pf+rrq5FGqFTRUjMyIyPFCIqLNSX8u8l1hlWT1XLhRDdF8Uz9EDJkcxAQU+QVFZCBIJyTMzGUMsASI+Rkk1/s4xNAAAAAAJASL+rAkGBswAHQAxAD0ASQBXAGQAfACcALIAAAUiLgI1NDYzMhYXHgIzMj4BNz4BMzIWFRQOAicyNjc1NAcOAiMiLgEnJh0BHgEDIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYBMiwBNwYEIyIkJxYMARMiJic3HgEzMjcXDgEFJz4BMzIXNjMyFhcHLgEjIgYHLgEjIgYBIiQmAjU0NyYCNTQ2NxYEMzIkNx4BFRQCBxYVFAIGBAEUEhYEMzIkNhI1NCYnBgQjIiQnDgEFFGG3klYdGQ8tJiV5iz9Ai3kkJi0PGR1WkrdhafxpIjmYm0A/nJg5Imn8wzA0NDAwNDQCKDA0NDAwNDT+pKwBRwEebN/+OdfW/jjfbQEdAUesfP2AH3nuc+X1H4D9/Z5KWLl1U1dXU3W5WEpPlVgiUDg4UCJYlQGXsP7M64QOUlsWEvYB7OjoAez2ExVbUg6E6/7M/FJ30gEWn58BFtJ3Uk6G/sykpP7Mhk5Shj5phEUbHwcKCQ8JCQ8JCgcfG0WEaT77GhwzFgoRFQkJFREKFjMcGgFHXUREXl5ERF1dREReXkREXQHCaMKHODs7OIfCaAGnExNDERIjQxMTIh7gyzAwy+Aex7IbICAbsvjig+kBMq9MTl8BIJY7ej9ER0dEP3o7lv7gX05Mr/7O6YMDTZ/+69J3d9IBFZ+A8GZPUlJPZvAAAAAACQCW/qwJkgbMAB8ANwBNAFkAdwCHAJMAoQC/AAABIiQAAjU0NjcXBhUUEgAEMzIkABI1NCc3HgEVFAIABAMiLgE1NDYzMh4CMzI+AjMyFhUUDgEnMj4BNTQmIyIOASMiLgEjIgYVFB4BASImNTQ2MzIWFRQGJSIuATU0NyY1ND4BMzIXPgEzMhYVFAYjNxQGBw4BASIuATU0PgEzMh4BFRQOAQEiJjU0NjMyFhUUBgEnPgEzMhYXBy4BIyIGASImJy4BNRciJjU0NjMyFhc2MzIeARUUBxYVFA4BBRTY/of+4qEVE00llQEIAVzHxwFcAQiVJU0UFKL+4v6H15LujS00H0NdiWRliF1DHzUsje6Sbcd/EhMYX594eJ9eGRMSf8f++TRJSTQ0SUn9pT5oPU0JUYlTRjsaWDNSdHNTC35jEnsDSj5oPT1oPj9nPT1nATU0SUk0NElJ/O41X9JubtJfNVS2YGC2BLFRexJjfgtSdHRSM1gaO0ZTiVEJTT1n/qyhAR4BedhLkEQXgYfH/qT++JWVAQgBXMeHgRdEkEvY/of+4qEBFFeLTy84ERcRERcROC9Pi1dQQGIyEhIcHR0cEhIyYkAC/Fk9PlhYPj1Zdj1oPmZDJCJTiVIcKjFyUlJzHGmiGkxh/g09aD4/Zz09Zz8+aD0BfVk9PlhYPj1ZAypAKS0tKUAiJCT9KmFMGqJpHHNSUnIxKhxSiVMiJENmPmg9AAAACQEE/qwJJAbMABMAHwApADgARABMAGAAbwB3AAABIiQAAjU0EgAkMzIEABIVFAIABAEnPgE1NCc3FhUUBi8BNjMyFwcmIyIDIiY1NDY/AT4BMzIVFAYBLgE1NDcXBhUUFhcBJz4BNxcOAQEyJAASNTQCACQjIgQAAhUUEgAEASImNTQzMhYfAR4BFRQGEy4BJzceARcFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/l9QAwKQLLQDQyqZnJqbKYOJh/A2TCsxFDobEDdSAgkCA7YqkAID/F8SdIspOzGhAgjHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAI/OVI4EBs5FDIqS9l+oTE6Kotz/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBHAoSHA2dX0J5xQ8ip0RJSEU9AUBYPw0gFgkaCWFDYv3IFCIPwnpAX50NHBIDZkMgVEAnSmT7opUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQMEYkNhCRoJFiANP1gBuiNjSidAVCAACwD6/qwJLgbMABcAJwA5AEAAUABmAHEAiQCQAKAAsQAABSYCNTQSACQzMgQXJyYkIyIEAAIVFBIXBTI2NTQmJy4BJw4BFRQeARciLgE1NBI3HgIXHgEVFA4BAyc3BSclFxM+ATc+ATcnDgIHDgIHFyImLwE+ATc+AjcXFhUUDgEHDgI3PgE3PgE3DgEHBgMiJic3HgEzMiQAEjU0Jic3HgEVFAIABAEnExcDNxcBIiYnLgEnNiQzMh4BFRQGJzI2NTQuASMiBgceAhceAQJwrsijASABfNn5AaaXcYv+ltHG/qL+9ZiUggEKRWYzOTQpEExWOV8zToBNg4IUOz0WPTdGdVdDc/7YHAGFL0Vx4FdawkhFLXR8OjiKkkOHGC4WaW7eYkF5cTTPDDhrTEzAy9o6by0uTRlGdC1Y6F2yX0tNjUnNAWEBCZUZFC8lKZ7+4/6A/vgulkd09iAB0DyVYlt/S3wBEnxZllqOck1jRnVHVb9fGzBDNll7aI0Bn/bXAXkBH6PPtgaSnZb++P6jxsz+n4H+bkkveVhQTihfwFZJeEdQXZlZcQEMjidubSRjkj1EdkgC2yDscUeTLv2hSLtXWut1KUSZkzo4eHEsxgQE3kasYkGPnFJmMzxcy8FMTGs4gRpMLi9uORVCLFb9mB0eQBYVjAEBAV/SU5I+aVvIad/+hf7nmwUtLwGLHP7SeEP+6jc8OEIfhohLf05wklBeTzhdOFVNCxknIjgzAAAHAQT+egkkBswALgBPAG4AdQB7AIIAiAAAASIkAAI1NBIAJDMyBAASFRQKAQQHNzYAEjU0AgAkIyIEAAIVFBIABDMyNjcXDgEXIi4BNTQ2NTQmJy4BJzceATMyNjcXDgEVFBYfARYVFAYnMjY1NC8BLgE1NDY3Ig4BIyImIyIGBx4BFRQGFRQWASc+ATMVIi8BNjcXBgEmIzUyFhcDJic3FhcFFNj+h/7ioaEBHgF52NcBeQEeomvE/veeFLcBG6CV/vj+pMfH/qT++JWVAQgBXMcQHg8hFy+hK1c7IB04addYMWDZZ2jYYDFYPBQKFBBfZzY+FBIMDiESHTUvFQwzICI3JFRpHzb9Lixc033evECMxA6kBECi3n3UW096pA7EjP6soQEeAXnY2AF5AR6hof7i/ofYrv7F/vq/MlxEAQsBZ87HAVwBCJWV/vj+pMfH/qT++JUBAU4CAjIpUTw4Xy4nNxAfaEZTMjIyMlNGYz4oQho0KS1JeFA2NCozMCFHIythHhgZCQ4RBFBWPmMpL0IEG0I+PFCuMLckTh/+SGxQPD4Bb54fTiS3AAcAx/6sCWEGzAApAC8AOwBDAFUAYQBnAAABIiQAAjU0EgAkMzIEABIXIyYCLAEjIgQAAhUUEgAEMzIkNhI3MwYCDAEBJzYzFSIBIiY1NDYzMhYVFAYBJz4BMxUiBgE1ITI2NTQmIyE1ITIWFRQGIwEuATU0NjMyFhUUBxMmIzUyFwTX2P6H/uKhoQEeAXnYzwFsARurDVANn/78/rC+x/6k/viVlQEIAVzHsAE6/KofUiC3/u7+qP5UKsXw2P7jNEpKNDRKSf6/NkfJcGGsAkMD2iMpKiL8JgPaQVFRQf0MCg5KNDRKGHdzzfKF/qyhAR4BedjYAXkBHqGV/vb+n8y7AUT0iZX++P6kx8f+pP74lXbTAR2mt/7G6YIBLj+cSwJSWD4+WVk+PVkBgSxWXUZP/WRGMCUoLUZXRENYARMSLBk+WVk+MSYBsJ9GuwAAAAMA1P9CCVQGNgB6AIIAkAAABSAkAjU0Ejc+AzMyHgIXHgEXFhIVFA4BIyIkACcuATU0NjMyFhc+ATMyFhUUBgcOARUUHgIXBy4DNTQ2Nz4BNTQmIyIGBycuASMiBhUUHgEXFhIeATMyNjU0Jy4BJy4DIyIOAgcGAhUUFgQhMiQ3FwYEASc+ATcXDgEDIiYnNx4BMzI2NxUOAQRG/uT+dsxkXVOctOifn+q1nVMcOC1ydG/Kh7X+t/7/S2FymnlukyEWPSAqNwwLChM1XXZCKUmEZToXCwsHEg4fOB0qEnRnWG01Wzkxn8ztf6vD0y89HVGTo9GRkdGjklFVXroBZgECewEYhlmi/sX+fRlDjUMbSog7I1MjGBpDJBktExYvvnsBAMmMATCgjt6ZT0+Z3Y8vUDWI/veAktVzwAFT20HOXo2zg4QnJUMuFCkdGTsgMmZjXCpALWt0dzorShoYHQsSFzpFCJ2VgnM6fW0jmP7+wGrRueT6OFUyjdGKRESK0Y2U/uGBsdxnGhs6IygCq0wQEgRQAxABdBEQRQwPCAZNBgYAAAgA2P56CVAGzAAqADIATwBsAHYAfQCJAJAAAAEiJic3HgEzMiQAEjU0AgAkIyIEAAIVFBYXByY1NBIAJDMyBAASFRQCAAQlJz4BNxcOARciJw4BIyImNTQ3LgEnNiwBNz4BMzIWFRQOAycyPgM1NCYjIgYHBgwBBx4BFwYVFBYzMjY3FgEnNiQ2NxcOAQQTJy0BNwUVASc3FzcXNwUHJwcnASU1JRcNAQVAUp1KSDl6PssBXQEGkpL++v6jy8r+ov77kxkXTzGfARsBetzcAXoBG5+f/uX+hvycMH7XYj5k3k5lbQwXDJi0CTcyBK8BMAEfkz5QHlNLQXCPnU0/hXtiOSAuEz09hv7v/t2iCDM0D4V3ESwLY/5HE7gBEtZdLWDg/uTaGAEo/tUeAYEBTpgXbVzBFAEwD94X3AEj/nwBgR7+1QEo/rEXFjsOD5IBBgFdy8sBXwEHlJT++f6hy1GaSQ2bptsBegEcn5/+5P6G29r+h/7mnidAV8R1MnnMt1YBAZF6JTFEkGElUWE9GhhseXXw2apjUFyextZlVz4SGjheTyM8aztAK1hjAwFYAVpNMmFqQEBCcGUCVkdmhkSsRvyws1iBzlvWQEov7GcB2IVGrESGZgAHAQT+rAkkBswAEwAXACMANQBJAFUAYQAAASIkAAI1NBIAJDMyBAASFRQCAAQBNSEVASImNTQ2MzIWFRQGASc2MzIeATMyNxcGIyIuASMiATIkABI1NAIAJCMiBAACFRQSAAQBIiY1NDYzMhYVFAYDJz4BMzIXByYjIgYFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/iECEP2ONElJNDNKSf7UPmNwM1dMJCkoOj9MNFJLKUkCFscBXAEIlZX++P6kx8f+pP74lZUBCAFcAjQ1SEg1NUhI4DRklzyILk4eSit//qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEB0VBQAc9bRERbW0REWwGDMn0lJSs2RSUl+s6VAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUDYm5QUG5uUFBuAig8VlO4FHxIAAAHAQT+rAkkBswAEwA2AEoAbQB1AJEAqQAAASIkAAI1NBIAJDMyBAASFRQCAAQBIj0BJyY1NDY/Aj4BMzIWHwE3NhUUDwEXFhUUIyIvAQcGATIkABI1NAIAJCMiBAACFRQSAAQBIi8BBwYjIjU0Nj8BJyY1NB8BNz4BMzIWHwIWFRQPARUUATI3JiMiBxYXIi4CNTQ2MzIWFxYEMzIkNz4BMzIWFRQOAgMyPgE3NTQmBw4CIyIuAScmBh0BHgIFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/KYXmUIWG8sfDBYODSQdUNE6KnFGDRUNJLOOIgJyxwFcAQiVlf74/qTHx/6k/viVlQEIAVwDSxAkjbQkDBYIBkZxKzrRUB0lDQ4WDB/KMUGZ/WWIeIJ+foJ4iH3zxXYkHxc4JGABC4qKAQthJDgWICR2xvN9XtbWXRMNUMzRWlnSy1ENE13W1/6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhBCEy2FonEg4PBzOWOjInL4ETBRoWMoe4JBEVDUV/H/wvlQEIAVzHxwFcAQiVlf74/qTHx/6k/viVA9Eff0UNFQkcELiHMxUaBROBLycyOpYzDBgTJlrYMv1sLkdHLjdQhqVUKSMJCBYgIBYICSMpVKWGUAFNDyEZNw4HAxMeEREeEwMHDjcZIQ8AAAAKAQT+egkkBswAKQA9AEEAUQBdAGkAhQCVAKUAsQAAASYkCgE1NBIAJDMyBAASFRQKAQQHNz4CEjU0AgAkIyIEAAIVFBIeARcFIiY1ETcRFBY7ATI2NRE3ERQGIwMRNxEBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGEy4BNTQ2Nz4CNz4DMzIWFRQOAQcRDgIHASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYEF6r+4dV1oQEeAXnY1wF5AR6iddX+4aomkvS0Y5X++P6kx8f+pP74lWO09ZEBILPHUJmREZKXUMazIjz93kNvQkJvQ0RvQUFvRE1ra01MbGxMHy0tHyAtLX9tfR0ZJbb2hYG8h2AkJyhfrXRl7PR0Ao1Zl1tbl1lalltbllpJe0tLe0lIfEtLfEgpPDwpKjs7/ssqvAEMAUi32AF5AR6hof7i/ofYt/64/vS8Kl4usPEBI6HHAVwBCJWV/vj+pMeh/t3xsC6vt6UBLRT+v4KKiYMCDSn9yqW3AUABkBP+XQJ+Qm9DRG9BQW9EQ29CPGxMTWtrTUxsbC0fIC0tIB8t/QgwgzgYIAkOHDMvLmNWNVE8Wsu8QwG7NFc+EAISW5dZWpZbW5ZaWZdbPEt8SEl7S0t7SUh8S6o8KSo7OyopPAAAAAAIARj+hAkQBswAJwB4AIAAlwC3AMkAzwDhAAABJiQKATU0EgAkMzIEABIVFAIABzc2ABI1NAIAJCMiBAACFRQSFgQXBSIuATU0Njc+ATU0NjMyFhUUBhUUFhcHLgE1NDY1NCMiBhUUBgcOARUUHgEzMjY3Mw4BIyImNTQ2MxUiFRQWMzI2NTQmIyIHJz4BMzIWFRQGAS4BJzceARcBJz4BNTQmIyIGByc+ATMyFhceARUUBgc1MjY1NCYnPAE1NCYjIgYHJz4BMzIWFRwBFR4BFRQGASImNTQ2MzIWFRQGIyImIyIGATU2NxcGEyImNTQ2MzIWFRQGIyImIyIGBHW//sTlfZ4BGQFy09MBcgEYn7D+xtATtQENlZL+/v6rw8P+q/7+kmG1AP+dAUl2xnZANi8TUU5UVg0CA0gEAw1gLCMVNzI6X6FiZIAVORdKLDc9MSYWHRYvLiYwQ3kVQ2YoUU+0/m8oUSkeJEgjAiVEBggvMCxrTRdTdzEvQB8NDgkiNz9PRzE1LI5KIVCeN1JfQFRr/H4WHUw5OUweFQowGBgvAhdoYyBzQBYdTDk5TB0WCjAYGC/+9B+wAQkBS7nUAXEBGZ6e/uf+j9Td/oD+5UdbRwEDAVfDwwFVAQKSkv7+/qvDnf7l6qcq2WGoaFOySmWQN4d9f3EpVSINGQ4PECATLkoooE9lOKhzQp5IU4NLRU4eJDklIzBBDwsMKBxALy5GGhhcXZCfA2MJGhBKDxcI/dkvDyUVMSUYG0YdGh0dED0iGTFvSjgoLj0RDRoNND0tK0MtMmhOAwUDDVxBR2MDhTwrRVZWRSs8Cwv+kFAOLEozAWM8K0VWVkUrPAsLAAAAAA4BBP6sCSQGzAATAC8AMwBaAGIAZgBqAHYApACvALcAywDXAN8AAAEiJAACNTQSACQzMgQAEhUUAgAEATcXNyc3FzcnNycHJzcnBycHFwcnBxcHFzcXBzcnNxcBNz4BNTQmLwEuATU0MzIXNy4BJzcnByIGFRQfARYVFCMiJwcWFwclMjU0IyIVFAUlEwUBNycHASImNTQ2MzIWFRQGATI/AQYjIiY1NDYzMhYVFAYjIj8BLgEjIgYVFDMyNxcWMzI2NTQmIyIOARUUFjciNTQ2MzIXBw4BAS4BJzceARcTMiQAEjU0AgAkIyIEAAIVFBIABAEiJjU0NjMyFhUUBi8BPgE3Fw4BBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/1xGTEFLBEuBSkYKBgpGCkYMQUrEC8EKBgoGCoZJCoRKQENBicvGB0eFA8lKyQSDSAUBBsFKi41ISAuLSsGIScGAQQkJCQCjvouQAXS/XYmQxL+cjRKSzM1SUkCrRkhBSEfN0BDOi86FxEWBRQNJw4pLTYaEwcDKSkmUEM0SiZWOhQWFgwICQcP/cOBsT43N5J2r8cBXAEIlZX++P6kx8f+pP74lZUBCAFcAh00SkszNUlJ1Qd3kjY3PrD+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFnXgYpBUEGKQVcBVwGWwVbBSoFQQYoBV8EXgVfiARBBf72MwIzJRciEBELFQ8iGikJDgQlBCUuKCwgFBMWKCMyFgQyASQlJSTUnAJunP7W4QjjAghZPT5ZWT49Wf0+CiMKQztNbkM0LkAefAgMRzRKIQIrXi5GWEFlN01UgiMaRAUyKSEDPgtHQTQ3NQv7VpUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQNcWT0+WVk+PVn+UAs2ODZBRwAFAQT+rAkkBswAKwBjALMAvwDLAAABIic3HgEzMiQAEjU0AgAkIyIEAAIVFBIfASYKATU0EgAkMzIEABIVFAIABCUiLgE1NDY3PgE3PgEzMhYVFAYHPgE/AT4CMzIWFRQHPgEzMhYVFAYHHgEVFAYHHgEVFA4DJzI+AzU0JiMiDgEHJz4DNTQjIgYHDgEHJz4DNTQjIgYHDgMHJz4DNTQmIyIGBw4CByc3PgE1NCYjIgYHDgEHDgEVFB4BAyc+ATMyFhcHJiMiBSc+ATMyFhcHJiMiBRRua5MRJBHHAVwBCJWV/vj+pMfH/qT++JWljTWFxW2hAR4BedjXAXkBHqKi/uL+h/5FheGHV08yQhosUDM4OwoIJE4nPT5NMRMwQQcaNxgvPh4bIik1LxQZb7XVzlBIvMKlZhAMFUNhQhktenRMIQwfF02bZhxAmYpYKxZDPh1WY2IpHDCAeU8bFxlFPD1mbUoUFwwLGBYbMiMiTSlLSXfCrz0sekJCeiw9R2RkAmU9LHpCQnosPUdkZP6sFzsBAZUBCAFcx8cBXAEIlZX++P6kx9D+lISRXgEHAT2v2AF5AR6hof7i/ofY2P6H/uKhCHjOgGemYj1bMlZHWD8VLRcLIRQgISQPNCkQFxMVOi8cQiMHNiMjUykHLBoze3tnPkY6XGtkIw0OKjoZPBJCUE8fIg0RO1owOx1YZGMpJiI1GT0+NxI7F0hUVCMTFx4iIjEmFCUxGjQWIi0yRUNmMlqMWG2uZQSxNUFHR0E1bW01QUdHQTVtAAAOAQT+egkkBswAIQAtADkARQCMAJgApAC7AMIAyQDVAN0A5ADsAAAFJgIRNBIAJDMyBAASFRACByc2EjU0AgAkIyIEAAIVFBIXBSImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImJw4BIyIuATU0NjcmNTQ2MzIWFxEzES4BIyIGFRQXDgEVFB4BMzIlFjMyNjU0Jz4BNTQmIxEzER4CFRQGBx4BFRQOAQEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBiUiJjU0PgEzMh4BFRQGIyImLwEhBw4BAyEuASMiBi8BLQE3BRUBIiY1NDYzMhYVFAYBJz4BNxcOAQElNSUXDQETLgEnNx4BFwKuzd2bARkBe+HhAXsBGZvQwmPF1o3+//6mzs3+pf7/jdTD/r8eNSAQHzMgAvURGBgRERcXgAsQEAsLDw8C2kGPSoLwbM7kWjQyBlpQE0cVRitgJi1ESFNMbsuN3gEDtGNHNzklLMWuRmmpYgwQExk8av1rERgYEREXF98cJiYcHCUl/YUuOojsl5jshzkvDyMMCv1eCBAyCQM1PdeHhtfIGwEa/uIiAYgEHhAYMRYQGTH6Gw5yky8+OqwD8f51AYgi/uIBGgp+rDo+L5Nymo8BwAEH4AF7ARmcnP7n/oXg/wD+SpEnggGk+s4BXAECj4/+/v6kzvr+XoJqIhcRDyMXEg0kJhsaJiYaGybRGBERGBgRERj+mRINDQ8bOiwdKQkOECYsBAMBWv5cCwkSFxkYAxUQFBoNHiQWDxcTBxkRHSMBk/6yAh43KRAXDAgdEyEpEwGvJhobJiYbGia/PissPT0sKz6dQkKFz3Z2z4VCQgcEzsoGCQEpcW5uw1BhgE6wSfw8Dg4UHQ8OEx0FUk8URj0ySFf914ZJsE6AYQHEFVdIMj1GFAAAGQDw/qwJOAb+AA0AGQAlADUARQBRAFUAXgBiAG4AegCDAJMAowCvALMA5gEjATcBTgFaAWYBdgGIAaIAAAUiJjU0PgEzMh4BFRQGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYTNTMVFzU0NjMyFh0BBychBwEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgE1NDYzMhYdAQEiLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGJREzESUiJw4BIyImNTQ2Ny4BNTQ+ATMyFhc+ATMyFhc+ATMyHgEVFAcWFRQGIyImJwYjIiYnBicyPgE3Mw4BBx4BMzI2NxYzMjY1NCYnPgE1NC4BIyIGBy4BIyIGBy4BIyIGFRQWFw4BFRQWOwEuASc3HgEFIiciJjU0Njc2MzIWFRQHFhUUBicyNjU0JzY1NCYjIgYHDgEVFBYzMjcWAyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWAyInLgE1NDYzMhceARUUBicyNjU0Jgc2JiMiBhUUFjceAQEhByEWEhYEMzIsARI3ISchBgIABCMiJAACBQBYdTheNzddOXT8WzNISDMzSUkzHSgoHRwoKAHPUohRUYhSU4hQUIhTQ2xAQGxDQmxBQWxCKTw8KSo7O2U8YBENDRFmJwF8I/wHM0hIMzNJSTMdKCgdHCgoA4URDQ0RAVNSiFFRiFJTiFBQiFNDbEBAbENCbUBAbUIpPDwpKjs7/rU8/uyziRIqFWCFJiIFB0t9TBYrESOSV02EJR5DJV+bXAVVgl4HDwdTfihQI3GEaa1qA1AETUcWKRY4XB8gGz1TLi8IBUd2SS1UJhl3RU6BFRlPElFzDhApMVxMAxAZDUwtwASoIhwyOiQeGUUpOwUPOioTGhULGRQVGQIaHxoTDgwSCjNISDMzSUkzHSgoHRwoKEw8GR8nNyg7Gx8mNygTGiMXARwUExoiFgIc+LsBjRj+4Rqk/gFEuroBRQEAphr+3BcBkg2p/ub+j9XV/pH+6aicRjU0VTQ0VTQ1RgOCRDAwREQwMEQ3JBkZJCQZGST9kFGIUlOIUFCIU1KIUTxBbEJDbEBAbENCbEGKPCkqOzsqKTwBM5ubZWMOEREOYyxLSwNHRDAwREQwMEQ3JBkZJCQZGST8uG8OEREOb/5iUYhSU4hQUIhTUohRPEFsQkNsQEBsQ0JsQYo8KSo7OyopPN0BCf73pX4EBoJeLlYiFCsTTHxLBgZTY05DDQ1cm18jFUJuXoIBAWAZGEdQZa5rZ6tBCgs8LgxTPS1IFR4qFkl2RxYWR1xsUwkMc1AcNxsWSCxBTxksGx1ug6UUOSsgMgxCOykLERgcKjo3GhMTGBkMExofGgIaFBMaBBgBs0QwMEREMDBENyQZGSQkGRkkAQw2CDIhKDc2CDIhKDcyGhMXGwUVHRoTFh0GFhz8X1Cr/uDTdHTTASCrUMr+p/8Aj48BAAFZAAD//wJY/qwH0AbMEgYFdgAAAAMCOP6sB/AGzAAWADoASgAAASIuATUQEiQzMgQaARUUDgEjIiYnBgQnMjY/AT4BMzIWFRQHPgEzLgEjLgEjIgYHLgIjIg4BFRQeAQEiLgE1ND4BMzIeARUUDgEDRXF0KKYBJL6jASbkgzaGeE64VVr+9XRFdz0FNFozTWkZUpxEHGxHNIg/MmgjBUlzRkl5R0V4AUF8zXp6zXx9zXl5zf6sO4p1AQ8Bkd6Z/vf+r7hsdC0kHR8iqUVMBUE4aU4wNTI1T0k7RS0kRG5ARnhLSXlIA/J6zXx9zHl5zH18zXoACADI/0IJYAY2AD4AfQCbALsAzwDvAQ0BIQAABSIuATURNDYzMhYVFAYHJz4BNTQmIyIGFREUHgEzMhIRNC4BIyIGBwMuASMiDgEHJz4CNxM+ATMyHgEVEAAhIAARND4BMzIWFxMeAhcHLgIjIgYHAy4BIyIOARUQEjMyPgE1ETQmIyIGFRQWFwcuATU0NjMyFhURFA4BEy4BIzQ+ATU0JiMiDwEnNz4BMzIWFRQOAhUeARclLgE1NDY3PgEzMhYVFAYHJz4BNTQmIyIGBw4BFRQWFwM2NDU0JiMiBgcnPgEzMhYVHAEHASc+ATU0JicuASMiBhUUFhcHLgE1NDYzMhYXHgEVFAYFJz4BNzQuAjU0NjMyFh8BBycmIyIGFRQeARUiBhMnJjQ1NDYzMhYXBy4BIyIGFRQWBx2q/ItXQUxJBgtQCwYiIx0rddiU/fYSKiQhIgcjCRMJQ3pVDk4QYYpPHApHST9OI/7f+sz+3/7eJE0/SUcKHE+LYBBODlV5RAkTCSMHIiEjKxL2/ZTYdSsdIiMHClAKB0lMQVeL/Kde4KUQECQdSBYUUBQOV0lAUQoMCoPeY/69AgIMCwZTOkFNCgxHBwYfHxknAwoNAgIwAiojICkPQhVON0dVAQMkUAICDAsDJhofHwYHRwwKTUE7UgYLDAL+7DFj3oMKDApRQElXDhRQFBZIHCUQEKXglFABVUc4TxpCFCsgIyoBvoXvoAMEQlyOlE+SRQxCi01yYC0h/PyJzG8BWwFjla5KPkf+jQIBSHpMDlmQXAkBKmdmWNC1/n7+dAGMAYK10FhmZ/7WCVyQWQ5MekgBAgFzRz5KrpX+nf6lb8yJAwQhLWByTYtCDEWST5SOXEL8/KDvhQM3PjqFxJc/KzfSwQjBjI5kTjJudXw/BEE/SSNJJi/DgEZWa1kbNycOJy4WNT8sJn/ALSVHIgIhDBkTQkI2OC5JR2xXCgwG/a4EIkclLcB/Jiw/NRYuJw4nNxtZa1ZGgMMvJkmvQz9BBD98dW4yTmSOjMEIwdI3Kz+XxIU6AnMtBgwKV2xLUy5COkJCExkAAAAABgFy/qwItgbMAGQAggCIAM8A7gD6AAABIi4BJy4BNTQ2MzIWFwUBFw4BFRQWMzI2Nz4BNTQuAScuAScuASMiFRQWFx4CFwcuASMiBhUUFhcHJjU0PgEzMhYXLgEnLgE1NDYzMhYXHgIXHgIVFAYHJxYVFA4BBw4CJzI+ATc+ATcOASMiJjU0NjcBJSYjIgYVFBYXHgI3NDcXBhUBLgEvAS4BNTQ2MzIWFx4BMzI1NCYnLgEnJjU0NjMyFhceARcHLgEnLgEjIgYVFBceARceARUUBiMiJicuASMiFRQfAR4BFyUnLgE3Ez4BMzIXBR4BBwMnEzYmJyUmIyIHAwYWHwETIiY1NDYzMhYVFAYE91PSy0urn7GaJE4qAcoCBTEWDzQiH0McNT0dIwoWcDU0XiAhEyclWlIYFjZWNVJlERYKVD9mOBctFx04GjMwMy8mYjgpWUoSDCYeTjsHDUmAUXKwo11UlaVqd20REi8bQmIBA/5G/hxQP3x9dZNJx8wWUjVBAtkoTTL3FhYpJRMuHR8+GQ0iFzFLOlRaQCNLGB9NFB0QRRoURCIgPiI2VTQzOyQgH04mGykOFQ7yLUci/khkORwEOwVENyElATQuMQMcQxkCEhj+zRkYOgQ7Ag4hXSYWISEWFyAg/qwQGxAln4iUpQkJZAErHyU3GTtBKSlNiUxEl3cULVwTExUPBw0ODTA6HSQUDgwaCw4DMwxDKycLAwURGgkTIyEhKBcUDj5MJBaBoEhaoV8dChVGf3c9VXQ7UDRpT1l2NxAYakgLEw3+/2kRdXRtcCAPGxDRuF4uSp4B9wUUFGQJIhIbLgsJCgsIBhIIEg8GCkkxJgcFByMMLgodBwUGDBYWBAUSExItHxYdEAoIBxALBmISEwN0MBsxNwMyPjoJTww+L/50JAFrGhcGTwc7/M4iFRAtAyMjGRgjIxgZIwAAAP//AeD+rAhIBswSBgJmAAAACgJJ/qwH3wbMABwAKAA0AFYAZgByAIAAjACpALUAAAEgJCcuAgI1NBI+ATMyHgESFREUFhceARUUBgQnIiY1NDYzMhYVFAYlBiY1ETQ2FwUWFAcBJzcnDgIjIi4BJwcXBycRHgEfAR4BMzI2PwE+ATcVFwclIiYvASY2OwEyFg8BDgEjBSUmNDclNhYVERQGASImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYTMiQ2NTQmJy4BNRE0LgIjIgQCFRQSHgEXHgIBIiY1NDYzMhYVFAYFAf7c/p8PCQ0JBWe6+pOQ9rhnFBIOD7T+t+YZIyMZGiMj/roUKScWAQAWFgJSXj9CNpioT0+pmTZAP0hnFFlHWk3AXF3ATFlIVx1JJf1NGSsGDAgsJDwlLgoOBykZARv+/xUVAQEWKCr+xFWMNzMvb0dIcC4zN43+lSYyMiYmMzPzyAEmoAwNExdbotl/rf7unwUJDQkIjf4BqiYyMiYmMzP+rLSdWbjUAQSmtwEx33l41v7lo/04KkYkGy0bZplWxSQZGSMjGRkkfQsZFgEjGBQMjgwrDf6a/nd3ITUeHzUheHfAsgFxASEgKSMrKiQpISABwJ6UuiIYMyM5OCQzGCJYlQ0sC44MFBj+3RYaAgVDQyw5MzM5LENDAT04KCg5OSgoOPvYRXdJFCcaKE8rAsiT/sBrv/6u36X+/NO2Vk53QwQoOCgoOTkoKDgA//8Bs/6sCHUGzBIGAXsAAAAHAE7/QgnaBjYAQwCHAJUAoQCtALkAzwAABSIuATU0Ejc+ATMyFhc+ATMyFhUUBgcOAhUjND4BNz4BNTQmIyIOAQcmIyIGBw4CFRQWMzI+ATU0Jic3HgEVFA4BISIuATU0NjcXDgEVFB4BMzI2NTQuAScuASMiBy4CIyIGFRQWFx4CFSM0LgEnLgE1NDYzMhYXPgEzMhYXFhIVFA4BJSIkJzceATMyNjcXBgQDIiY1NDYzMhYVFAYlIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYlJz4DMzIeAhcHLgMjIg4CB/xyj0JpbDFTLgwXDEFoPTdOTUlOYi1OM2pTQkUhHh40Py8kGyQ4JkpZJ3GFVnY+KjE5NjpUmvnGaZpUOTc5MSs+d1WFcSZYSyc3JBomLkAzHh4hREJTajNNLWFPSU5PNzxpQA0WDC9TMW1oQo8CdZH+/nEgafOIiPNqH3D+/ZEuPD0tLT48/sgjMzMjJTIyAe0kMjIkJDMz+/dAbbi0x3x8yLO5bEBkqKK5dXW4o6e+YKpukQFOqU1TBARcW00+TJZVW5SPVl6jpGFNgTYgJiRSRQxCPnfRvlyLnU2BTl/MXjxs82ZkpmJipmRm82w8XsxfToFNnYtcvtJ2PkIMRVIkJiA2gU1hpKNeVo+UW1WWTD5NW1wEBFNNqf6ykW6qYFwUFEsREhIRSxQUAs4cJSk2NiklHPY4LzA3NzAvODgvMDc3MC84My6x8pBAQJDysS6q5Ig7O4jkAAAAAAIBE/6sCRUGzABlAHUAAAEiJjU0NjMyNjU0LgInLgMnLgEHDgEjIiY1ND4BMzIXHgEXHgMzMjc+BDc+ATc2MzIWFxYVFAYHDgEHDgIVFBYXFgQVFAYjIiYnLgEjIg4BFQcuASMiDgEVFBYVFAEiLgE1ND4BMzIeARUUDgEEuVtRPDMnIgIIEQ5AZF9tSKKRExkhEx0hKDwdDA8jUickka+mOScTHUJCOyoKCwkJDz4TIRFOMR8WLxkSEAWBqOcBBSwcHkAlQLdfSEsaLxxWESIfCAkBNUBpPj5pQEBoPz9o/qwnKigqUlxiuJhkDTxZRDYaOyYLDgwbHCNONwUMHxAPMDEhCQ5tmqKIIylEJD0EBRUqICoPCoybcJRpMjc/GyWoZCgmLSxNWBgxJk4PETlhO1K8U8oBmT5pQEBoPj5oQD9pPwAAAAAKAan+rAh/BswANQBBAE0AWABsAIgAlACgAKwAuAAAAREOASMiJgI1NDYzMhYVFAYVFBYzMj4DOwEyHgMzMjY1NC4BNTQ2MzIWFRACIyImJxUBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIi4BJxYENw4CAyIuATU0Nz4CMzIeARcWFRQOAScyPgE1NCYnNjQ1NC4BIyIOARUUFhcOARUUHgEFIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYDlDBpIFuFSUI6O0IFLCQpRkdVcE2NcIxWODUnIDIDBEI6O0GhjEJsJPuxNElJNDVISFwOExMODRMTAxddmVwDrQFVqQJdmV6a6YKKCmalZmelZwmKgumbg8VuNVYCS4haWYhMAQFVNW7FA3s0SUk0NElJVw4TEw4NExP+UTRJSTQ1SEhXDRMTDQ0UFP6sARYRE5MBB65JUVBKK3wzRzk0TE00VHx9VEY6F1NWGkpQUUn+8f7RSkbsBNpJNDVISDU0SYwTDQ4TEw4NE/1fXaVtGwMebKZdAS06Z0NhIVmKTk6KWSFhQ2c6WiI+Kh0kDQgOB0lyQkJySQcOCA0kHSo+IhVJNDVISDU0SY0UDQ0TEw0NFAJiSTQ1SEg1NEmSFA0NExMNDRQAAAAAAwDc/qwJTAbMAIQAigCZAAABIiY1NDYzMhYXLgM1NDY3LgEnDgEjIiYnBiMiJwYjIiYnJTcFPgEzMhc2MzIeAjMyPgM3LgE1ND4BMzIeARUUBgceAzMyNjU0NjMyFhUUBiMiJiceAxUUHgMVHAEHHgEVFAYjIiY1NDcuAyMiDgIVFB4CFRQjAT4BNyUHBTI2NyY1NDcmIyIGFRQWBNM6R0Y1DxwQCR4eFZKcDA4FKFQsN4NFISIiGyMmHyoI/eASAi0OJhYrHwsZNEk/SDEwQjc7UTtVcEh4SUp4R2ZNSGpNNxUoGTQjJDNzZCh0NQMGBgQRGRoRAR8pMUlJMhgVODo0EhlfYkUHCQdu/cEBBgT+GQQCOAcSBxIoDw0YJhX+rC4mJi4EBRtebGEeL+zKI0YkIiRSTBQSIyskiWJOFhsqBTxQPDtaXkkKFYxbSHdHR3dIV4kXBjI6K3R6JDMzJLzlJiANVmtcEyGIsL+0Rw8bDA43HRoXFxoeHnjyyntGZmUfKH2EaxZCBS4OGg1OFMMKCB0kNyAPSS8dJAAAAAALANL/dAlWBgQAJABPAGwAewCVAKEAsQC9AMsA1wDnAAAFIiY1NDcOASMiLgI1NDYzMh4CFRQHHgIzMhYVFAYPAQ4BBSImLwEuATU0Njc+ATU0LgE1ND4BMzIWFRQOARUUHgIVFA4BBx4BFRQGISI1ND4CNTQmJzceAhUUDgEHPgEzMhYVFAYjAyIuATU3HgIXHgEVFAYBIiY1NDYzMhcuATU0PgE3FwYVFB4CFRQjEy4BIyIHJzYzMhYXJSIuATU0PgEzMh4BFRQOARciJjU0NjMyFhUUBhMiJjU0NjMyNjcXDgIDIiY1NDYzMhYVFAYlIi4BNTQ+ATMyHgEVFA4BCMQfKisxUyNpuYtPQ0Y0XEYoFxxShmlNOQYIIRMw+IAfMRIhBwg5TIZrOTlEcEIyQRoZEBYQTcCsExEpAkNuCQ0Jcn90eoU0EhwOERsPNkVGOxFfnl5rETVaSTUrNwFHOkdGNRcsN0kudmp0whghGG5JbcJgyck99dlx4W38+Et9Skp9S0x9S0t97Sc2NicmNjZiLTU0LnB5F7YWdrWpKjs7Kig7OgEMTH1KSn1MTHxLS3xWMSc2OQQGa7jrgImaS3yYTks6Xm8wICYOIBRVLzM2My5WFCAOJiYQHTQgGmCEUWK2dT8uGkhTLEhhSkgvSmBOMCEyFycxQhVdbFgQIUQxqjtUQSInc3MpBAQuJiYuArhdml0zUl0qCAUyISEt/UguJiYuCk2YNSNBTTOrR0AVT1tSF0IDwSAbOYorDx0eS31MTHxKSnxMTH1LfzYlJjc3JiU2/u8zJSQqEyUmUU8YARItHyAuLiAfLX5LfUxMfEpKfExMfUsAAAAPANz+rAlMBswAMABhAGkAcAB8AIQAkACgALAAuADGANMA4QEfAS8AAAEiJzceATMyPgIzMh4CMzI+AjMyHgEzMjcXBiMiLgEjIg4CIyIuAiMiDgIDIiYnNxYzMj4CMzIeAjMyPgIzMh4BMzI3FwYjIi4BIyIOAiMiLgIjIg4CAyc+ATcXDgEHJz4BNxcGJyY1NDY/AQ4BFRQfASc+ATcXDgEnJjU0NjcXDgEVFBcTIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeASUuASc3HgEXJS4BNTQ2NxcOARUUFh8BLgEjKgEjJzoBMzIXJy4BIyoBIzc6ATMyFhcBJy4BPwE+AjU0JiMiBg8BIi4CIz4BNTQuAzU0PgE1NCYnMj4BNw4DBx4CFzIEFhUUDgEPAQ4BASIuATU0PgEzMh4BFRQOAQI9n0xCHVE7PV9cb0xQaVJbQkduZnZOR2ZWLygtIUA2P1paP0VrZXhSUmdQWkVFYllpa2eoMUNQrT1dXXRSWG9QUz1CZWN8WVuLcTIiISEuNkB4gk9PcWJvTkhhUmJKSWldZxkPVncuKDSKEiNriSstWN87EBAyFA00Lw11eyotMI9wQBMVLRMQODFYkVdXkVhYkVdXkVhKe0lJe0pJe0pKewEmMW1FB06AN/7jDRAWFywUEwwN+Dp7UAUMBgMHDQewdBhBeFQECQcCBQoEWoRAAngjHQoTBA00LEUyLU4YVT+Mk5ZKIx1EZWVEOjkYBFdoRiEILTUqBj+p0ny7AR6jG0Q+BhlH/qtVjVRUjVVWjFNTjP6siyI0LiUwJSUwJSw5KycnFUQcJycrOSwlMCUlMCUBo15UI4olMCUlMCUsOSs0NA9DFzQ0KzksJTAlJTAlBKEwBz09HkVHWzAFU1UWsV1hVyNKKBQtTy1IVcsxEEpRGFtY0GBjJlAvDjFGIFZQ/u9XkVhYkVdXkVhYkVcySntJSntJSXtKSXtKa0dHCjILVE+CJUIgKVIvFylGIxw6HlBORDKdQFM9Mz1N+egZFUchBxcwOSIpPjYxrSs3KzJQKkdKJiA3ODhqYCcfKxwHExIlRVBnRw0qNyNttG0kUWpJBxwPAthTjVZVjFRUjFVWjVMABAIc/qwIDAbMAEsAZAB0AIAAAAUiJicOASMiJicjLgInDgMjIiY1NDY3LgE1ND4BMzIeARUUBgc+ATc+ATc+ATMyFhUUDgQVFB4CFRQWMzI+ATMyFhUUBgUiJjU0Njc+AT0BNDY3Ey4BIyIVFBYVFAYBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWB6kgOw4YaD5q2UiAFikdBWp6ST4vLjL8/VVdUotUVYpSLDQsUyxfayInSi4yP0p1gnVKJC8kIjQgKS0lQFM0+7VKSCkuEQ2YubZCSBiODWIDJkNwQkJwQ0RuQkJuREhmZkhIZ2icJh8cJNrWS7K6VjBwZEA4MmvediyRWlWKUlKKVTd1USkkDRtJRE08PD4/Z1VKRUcoG0xvm2mHhyUkcU06QrgqLiZDJA0vH8ttjTb+qxcRoDp4MkNHBjZCcENEb0JCb0RDcEJGZ0hJZmdISGcAABABE/6sCRUGzAAeADAANwA+AEwAaQCEAJ0AqwC4AMQA1ADYANwA6AD4AAABIi4BNTQ+ATMhMh4BFRQOASMiLgEnLgEjIgYHDgIBIj0BMxUUFjsBMjY9ATMVFCMnIiYnIQ4BJzI2NyEeARMiJic3HgEzMjY3Fw4BJTI+ATc+ATMyFhceAjMyPgE1NCYjISIGFRQeATciJjU0NjMhMhYVFAYjIiYnLgIjIg4BBw4BJzI2Nz4CMzIeARceATMyNjU0KQEgFRQWATUhMj4BPQEzFRQCBCMlNyEyNj0BMxUUDgEjASI9ATQ7ATIdARQjJzMyNj0BNCYrASIGHQEUFicRMxEzETMRAyI9ATQ7ATIdARQjJzMyNj0BNCYrASIGHQEUFgKlc7Zpg+6iArKj7YFotHRzhEkaJTUmJzQkGkqEARVFRgUIiggFRkVUgpcFAj4EmYNadxD+QA91W2i0ODMumVpami00OLX9vlxoPBkvVT08VS8aPGlbX5JU8dX9TtT0VZRoYoG4qwKgq7iBYldrMig+QzM5RjclMmxXPE0xJUdgSkNcTSswTTxFWP7j/WD+41gCiwF6pPmMS6D+5bn+ihQBYKvIS27JhwGxbm6Ib2+FghkODhmCGA4OKUttS8Vubohvb4WCGQ4OGYIYDg4BCW/CfJjdeXndmHzCbztWKj0qKjwrVzr9o0q2qQoHBwqptkrThXx8hTRNTE1MASMyLTcjKCgjNy0yfitGKU07O0wpRytboGfF3t7FZ6BbYZJwmqammnCSY0A1NhQZOC5AY0ZHPzBGJh5EOkBGaVP6+lNp/N5LjPql9fW6/uSgtEvKrfX1iMpwAoduam9vam5LDhliGg4OGmIZDs0CMv3OAjL9zgH9bsZvb8ZuSw4ZvhoODhq+GQ4AAAAADwGT/qwIlQbMAB4AKQAzAD4ASABUAGEAdwCRAJ8AtgDCANABBAEoAAABJz4BNTQCLgE1ND4BMzIWFwcuASMiBhUUHgESFRQCAS4BNTQ2NxYVFAYnPgE1NCcOARUUAS4BNTQ2Nx4BFRQHNjU0JicGFRQWASc+ATMyFwcmIyIGAS4BIyIHJz4BMzIWFwEiLgE1NDYzMhYXHgEXHgEXHgEVFAYBIiY1NDY1NC4CNRcUHgEVFAYVFBYfAQYiASI+ATU0LgEzMhYVFAYBIiY1ND4CNRcOAhUUFjMyNjUzFAY3Iic3FjMyNjcXDgE3IiYnNR4BMzI2NTMUBgEiLgEnDgIjIic+ATUGIyImNTIvARceATMyNjUyFhUUBgcWMzI3FhUUBiMiJiceARUUBgEiJic3HgIzMjY1NCYnLgEvAS4CJzceAh8BHgMVFAYEJk4aGzJDMledaFOHQDo2ZUV5kzJDMhz9uDQyoHdjmmFWWzNUXwP7eZoiH3idaRtXShlT/V1LInFMJzIRKx0ySgIpGUEjLj0sKUsjQWYhAiM5dVAYDgsREBVLIRsZEQ8cKP5EPWQMDA8MUhMSDCUhGgQHAeEmByAgByY3R0f+TDZFJTAlRwU3NBYUJjRQXXMyMCMgHzhQDE4RewM9k1BZjjVzZVCa/nsUMzYYEEJRJTYRLzgXFislwAkJXBQiCyw7JicYERYxPEUIWkIWMhoXFQwBMFyuhSlDfW0qZVoRKh9XNSM0PSoaMBsuPzQjPl5AIY3+rBWg+G62ARLi2XyO13ozODwxKNu2b9Xr/uW1c/79AZ5FkEaCyzSLlIPDKTSSV2FdMphWX/5oJrB8NnE3Jbt1ZhJBN0qBJz49TXwCph5NTwtOCTP+d0dEJ0MaGmNd/UpTfDscMCUQEx0kHTUYFRsNDhgDGWNEIk0xMUZFXEgQSF5fSyxXHR85DkAB/qAlQi0tUjVgRENhAS1HMDlUT2FFSj1mVycaJmtZepg9F0gPQTcRUmWVHR5KHhpLL1RzAaRJUg8qQSUiFjYZBCkabGgaBQVLQEEkGDMOEiwbFS86CAoqYCgaJP7cSVBFLkAiIx0JHxwVRDUjNDsmEz4VKD01Iz5GLTAoS0MAAAAAEQE2/qwI8gbMAA8AEwAaAB4AKgBGAEoAVgBiAGYAdgCGAJYAogCmAK0AsQAAASAkJjU0NiQhIAQWFRQGBAERMxEDLgE1NDY3AREzESciJjU0NjMyFhUUBgEiLAEmNTQ2NxcVFgwBMzIsATc1Nx4BFRQGDAE3ETMRJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJwE3ARMgJDY1NCYkISAEBhUUFgQlIiQmNTQ2JDMyBBYVFAYEJzIkNjU0JiQjIgQGFRQWBCUiJjU0NjMyFhUUBgERMxEDNR4BFRQGAScBFwUU/tr+R/b2AbkBJgEmAbn29v5H+2A8Iy0eHi0B7zwcMSEhMTIhIQEg0P6Y/vGXOTckSAEBAUy1tgFLAQJHJDc5l/7x/pllPCAxIiIxMSEh/aYtQy4cLEUrRf1SQAKuvAELAZbk5P5q/vX+9f5q5OQBlgEL5f67rKwBReXmAUOrq/695ssBI5yc/t3Ly/7dnJwBJAGhICtFLB0tQwI6PBktHh79bkACrkABKYLrm5zqgoLqnJvrgv6ZApT9bAFnAio8PSsB/QUCg/195So/PyoqPz8q/shHfqVeK00eP99FbD8/bEXfPx5NK16lfkdTAoP9feUqPz8qKj8/KgLwTigiK1EoICo6A40x/HP+OnDHgYLGcHDGgoHHcH5MkGZmkExMkGZmkExKPHBMTW88PG9NTHA8kyogKFErIihO/O4ClP1sAWfRASs9PCoB4zEDjTEAAAAAFQDO/qwJWgbMABMAJQA1ADkARQBRAGEAbwB7AIwAkACUAKAArADUAOAA5ADoAOwA8AD0AAABIiY1NBoBNz4BMzIeAhcKAQ4BAyIuAzU0NjMyHgMVFAYnMjU0LgMjIhUUHgMvARMXEyImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGASImNTQ+AjMyFhUUDgInMj4CNTQjIg4CFRQBIiY1NDYzMhYVFAYBMjYSEwcuAic3BgoBFRQWASU1BQEDNxMBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYTIiYCJzcWEhYzMjY1NCYnAxcOAiMiJjU0PgIzMhYXEx4CFRQGAyImNTQ2MzIWFRQGJzUhFQUnNxcvATcXBSc3FwUnNxcDNldpUrGOCSUcQYp7Vgtls6movTaJinRHKi42iYp0RypLGz5ibmIdGz5ibmJHY9pjVBAVFRAQFhYOERkZEREZGQOCSkBfmrRVSkBfmrReN5SNXiw3lI1e/V4QFRUQEBYW/sllzNh1DDuLgS8kjq5QOgJU/dECLwJTnmme/ukRGRkRERkZixAVFRAQFhaJUY2BQT9CcnE+QDkiJGsdO5KRPTJEX5KgQDE1BG8cIA5m6RAVFRAQFhbnAaQB5uEQ4fMZ9xn+1jSFM/xGDE8hAVqOf2kBCQFb4g4OLEhXK/71/oXtb/1SLUpaWiYdIi1KWlomHSJGFRQ7QjokFRQ7QjokzzEBrjEBBBUQEBYWEBAVvRkRERkZEREZ/AYiJyhSRSoiJyhSRSpBIDAzFBkgMDMUGQPhFRAQFhYQEBX+UtABpwFELQgwRygV1/6x/vxqX1cCYRJQEvu2AhQj/eoC4RkRERkZEREZnxUQEBYWEBAV/kiRATT1Svz+0IhaaVLalAGzEiI3ICAUFzc0IRQS/j5yoHY0mJYCRBUQEBYWEBAV0FBQvj07PXo2bTYQINoheGYRegAGAbL+rAh2BswAGwApADkATwBfAHMAAAEgJCYvAS4BJwM0PgEkMzIEHgEVAw4BDwEOAQQlIiQnAxYEMzIkNwMGBAE+ATc2NTQmBw4BBwYWFxYBICQ/AT4BNxMGBCEgJCcTHgEfARYEASIuATU0NiQzMh4BFRQOAQMyJD4BNTQuASQjIgQOARUUHgEEBRT+/f7ThAQGAQYDmn7nAT6/vwE+536aAwUCBgSE/tP+/ev/AAooWgEYq6sBGFooCv8A/dImdUkkFRFVhiwPAQsOAV0BJgE9BQYCBgOMZ/5s/vb+9v5taIwDBwEGBQE9ASag/JKbAP+UlP6ck/yfnAEa232A3f7nmJj+592AfdsBGv6sWIxPdxlLGAUPMVVBJCRBVTH68RhLGXdPjFj4Xk0BRTQwMDT+u01eAnQTHQQCIhATAQQhGwkfDhH8739qdxpPGQSVOUNDOftrGU8ad2p/AoUsTTE1XDk5XDUxTSwDxB4wNxkYNjAfHzA2GBk3MB4AAAACAQT+rAkkBswAJgA4AAABIicuAQIuAScuASMiLgI1NDYzMh4CFRQWFx4CBBYXFhUUDgEBFjY1NCcuAicmIyIGFx4CCGMoIUnG4OTRVBhNMH/qtmqFfIz9xHEDCDTK/gEG5kwiP1n6mxggKkWBXQ8HKBgbBBZ0oP6sI03nAQb8yjQIA3HE/Ix9hGq46oEvUBhTz+DcxUwiKCZcQQUWBRoVKgoRea1fKyQZdc6MAAAAAA4AUP90CdgGBAATABcAHwAzAE0AYQB7AIUAmQCzAMcA2wDjAOcAABcRNDYzITIWFREhETQmIyEiBhURNxEzEQUnJSEFBychNy4BNTQ2Ny4BNTMUFhcOARUUFhclIiQnDgEjNTI2NxYEMzIkNx4BMxUiJicGBAUuATU0NjcuATUzFBYXDgEVFBYXEyIkJw4BIzUyNjcWBDMyJDceATMVIiYnBgQDES4BNTMUFhcRBTMRNDYzITIWFREzETQmIyEiBhUBIiQnDgEjNTI2NxYEMzIkNx4BMxUiJicGBBM+ATU0Jic+ATUzFAYHHgEVFAYHNz4BNTQmJz4BNTMUBgceARUUBgcJATcTIRMXAQMRMxFQnJkHHpmc/uYPGvj+GRDCUP7uHQEABY4BAB3x+o7YDQ0NDRQQJg8VDQ0NDQG7pv6NqFeENDWDV5UBa8DAAW6UV4Q0NIRXqP6O/mUNDQ0NFBAmDxUNDQ0Nzqb+jahXhDQ1g1eVAWvAwAFulFeENDSEV6j+jrgWEiYVE/t3ejFIBwJIMXpud/jid24EdKb+jahXhDQ1g1eVAWvAwAFulFeENDSEV6j+jicNDQ0NFQ8mEBQNDQ0Nxw0NDQ0VDyYQFA0NDQ37Tf7rPvsFXPs+/us6UIwFWpqcnJr6pgVaGxAQG/qmkAP4/AiQTHd3THEWp+xsbOymWI45No1cpuxrbOun5yMqBgImAgYlKCglBgImAgYqI+mn7Gxs7KZYkDc2jVym7Gts66cB+CMqBgImAgYlKCglBgImAgYqI/4HA/tfjTQ0l1D8ADgFCkc0NEf69gUKeG5ueP4kIyoFAiYCBSUoKCUFAiYCBSoj/Qun62xr7KZcjTY3kFim7Gxs7KcCp+tsa+ymXI02OY5YpuxsbOynA80BKTj+8QEPOP7X/DwD+PwIAAAABwKA/qwHqAbMACMALwA5AEQAUABYAF0AAAEiLgI1ND4BNxcOAhUUHgEzMj4BNTQuASc3HgIVFA4CJxE0NjcGDwEnNzMRAzI9ATQjIh0BFBciJzU0OwEyHQEGJyU1IRUFJzc1IRUXJwEhAQcBIQEFAxMhAQU/dc6eWXjShQlysWWF34aH34ZmsnMLhdJ5WZ7PfwIBHihCMsFGbB4eHkRMOSHIITmz/tgDHP7XEeT9kOPt/oMCVgE1Uv7q/mQBSwGXupYB4/56/qxWmMhxgeKcGU4Xhb9ugdeAgNeBbr+GFk4YnOKCcciYVv4BjysuGRseMz2W/ZgDDyBFHx9FIDEbxx4exxtij8vLj1NvSEhv1wK2/VEOAm39phEBpAEZ/UMABwKA/qwHqAbMACMAPABGAFEAXQBlAGoAAAEiLgI1ND4BNxcOAhUUHgEzMj4BNTQuASc3HgIVFA4CJTU3PgE1NCYjIgYHJz4BMzIWFRQGDwEhFQMyPQE0IyIdARQXIic1NDsBMh0BBiclNSEVBSc3NSEVFycBIQEHASEBBQMTIQEFP3XOnll40oUJcrFlhd+Gh9+GZrJzC4XSeVmez/7QiUlQOS8qPyAxKl8xUWdeVk4BF/IeHh5ETDkhyCE5s/7YAxz+1xHk/ZDj7f6DAlYBNVL+6v5kAUsBl7qWAeP+ev6sV5nIcYHinBlOF4W/boHYgYHYgW6/hhZOGJzignHImVf+RZBNZTQpMRsaPyMjX0dGfFtSUAMPIEUfH0UgMRvHHh7HG2KPy8uPU29ISG/XArb9UQ4Cbf2mEQGkARn9QwAHAoD+rAeoBswAIwBMAFYAYQBtAHUAegAAASIuAjU0PgE3Fw4CFRQeATMyPgE1NC4BJzceAhUUDgInIiYnNR4BMzI2NTQmKwE1MzI2NTQmIyIGByc+ATMyFhUUBgceARUUBgMyPQE0IyIdARQXIic1NDsBMh0BBiclNSEVBSc3NSEVFycBIQEHASEBBQMTIQEFP3XOnll40oUJcrFlhd+Gh9+GZrJzC4XSeVmez4owUSUmWClSSFpQOzxLTDozMUciJSBhPV9cRDlETHGJHh4eREw5IcghObP+2AMc/tcR5P2Q4+3+gwJWATVS/ur+ZAFLAZe6lgHj/nr+rFeZyHGB4pwZTheFv26B2IGB2IFuv4YWThic4oJxyJlX9A4SRhMVQDg4M0A/NCwwHBczGiVVQT1MCwpIPlBlAxkgRR8fRSAxG8ceHscbYo/Ly49Tb0hIb9cCtv1RDgJt/aYRAaQBGf1DAAUCP/6sB+kGzAAgAC0AQQBoAHYAACUiLgEnLgM1NDY3PgIzMh4BFx4BFx4BFRQOAQcGBAMiJjU0NjsBMhYVFAYHIi4BNREXERQWMzI2NRE3ERQOAQMyJDc+AjU0JiMiBhUjNDY3LgEnLgEjIg4BBw4BFRQeAhceAgEuASMiBgcnPgEzMhYXBNmTz5Q5GSgcDixESrDIa2rCoTg3MAxEUSZELmD+scSAVyo64DspVYCFv2dQprW2plBnv4e2AStSKj8kSThOXFB6agslK0Lrnm2xkT06Jw0ZJBc0gLUCrxxTKR85EzkeVjA4cCjWOoFqL5StrEhk4VhfWBkTNjU0nlYXjmJOuLZLnqT+uis9KicnKj0r5ClYRwHuBf4YOEFBOAHrBf4PR1gpAnqQi0aoqUdWa6yQqtYKSHgoPigXS01KxFxDpKWLK2BuLQPkHBwRETgdHSgnAAAAEADS/qwJVgbMAFsAYwBrAKkAsQENARUBIwExATkBQQFKAU8BVwFfAWcAAAEyJDcDLgE1ND4BNREeAhcOAQceAhc+ATc+ATU0LgInLgEnLgEnLgEjIgYHLgEjIgYHDgEHDgEHDgMVFBYXHgEXPgI3LgEnPgI3ERQeARUUBgcDFgQBPgE3Jw4BBz8BLgEnBx4BAT4BNx4BMzI2Nx4BFzI2Ny4CJzI+ATc+ATU0IyIGBw4BBy4BIyIGBy4BJy4BIwYVFBYXHgIzDgIHHgEBNy4BJwceAQEiLgEnEz4BNTQuATURJw4DBx4BFw4BBy4BJy4BNTQ+Ajc+ATc+ATc+ATMXNzIWFx4BFx4BFx4DFRQGBw4BBy4BJz4BNy4DJwcRFA4BFRQWFxMOAgE3LgEnBx4BGwE+AzcnDgMHAxcTPgM3Jw4DBwMTNyYCJwcWEgE3LgEnBx4BATcuAScHHgIXNxMhEwE+ATcnDgEHJz4BNycOAQc3PgE3Jw4BBwUUnQFJr5MQFxkYGUJBGBY6JSZ9ijkRLhgWJCtEUCZAr1ApXCwbZTErZC0tZCsxZRssXClPr0ElUUQrJBYYLhE5in4lJToWGEFCGRkYFhGTrwFJ/NZUh0YZRIVT6BwfQhMqF0oCfw4zJAscCQkdCiQzDitqKgswPyApfHQcDQgOBBIOWbVRHzoaGjofUbVZDRIFDggNHHR8KSA/MAsqav7DQSlHHkUgRQIqYce6UX0RGhgZcxVISzgGFDEgLmI6Dx4UFiApQksiPZNJK1JPEz4nvLwnPhNPUitKkj0iS0IpIBYUHg86Yi4gMhMGOEtIFXMYGRsQfVC7xv2XNSI/DEQDUYveWZZwQgZLBTtplmDb59JZlnFEB1MIO2mVYtzTNlWJDE0MlQSmFFOFRBlGh/yHJUl4Cz0IQmNEcVP+aEsDdSFLFioTQh/aLUYfRR5HKUspUANEDD8i/qxUbwGhME4jKUVHKQEJJGJmK1XAYhMrJww3l1JMmUwfepaVOmSvJRQYBz47HxMTHzs+BxgUJa9kOpWWeh9MmUxSlzcMJysTYsBVK2ZiJP73KUdFKSNOMP5fb1QCrBElGU0bJA/FSwkgDUUOJP0yUMRCBgYGBkLEUAgHNZSWNxIcDwcjLiECBBkYBSQfHyQFGBkEAgEgLiMHDxwSN5aUNQcIA/otI00tKjJI+zUiQzMBZS9eKy1KRCMBPxwZZnNdEVOqWBIeDi5iRkuLRhlvi4s1YJYkFRIKRCsuLitEChIVJJZgNYuLbxlGi0tGYi4OHhJYqlMRXXNmGRz+wSNESi0rXi/+mzNDIgXHPB56Qx9FkP0OATV759jHXBJStszphv7OcgEmfOHPw18QW7bF4of+0AImPGYBEpgTn/7X/PtODyQbTRklAy8uXPOBBFy3pSHIAQ7+9fznCiQORQ0gCesmSDIqLU0j9SOQRR9Deh4AAAAABgBa/qwJzgbMACgAOABKAFsAeQCsAAABIiwBJgI1NBI2NzYkNwcOAhUUFgQzMiQ+ATU0JiQnNwQAERQCBgwBASYnJjY3NhYXFhceAQcOAQUuAScuATc+ARceARceAQcOAQEgLAE3BgwBISIsASceAQwBEyAsATY3JgInHgEVFA4BBCMgJCY1NDY3BgIHFgwBAS4BNTQ2NyU+ATU0JiMqAQcFDgIHDgEHJz4BNz4DNyU2MjMyFhUUBgcFDgEVFBYXBRuq/qX+x/WOUJdrfQEtwSDL62PFAWbvrQEv54J4/vzTtwGSAZdoyv7b/of8eNZvDAQODiAKX8IRDwYGHQESGjEZEREEBBwSFywZERQCAhsBcAEKAaEBIktc/t7+b/793/5n/rVqOcUBDwFTsAEPAYQBCak0B42GFRWM+v6zwv73/nfYERB0hAtxATQBoQGDQEiTggHnWWc5Qg0mFP67p/u1PkB0URA8WDo1hKzfjwFHEiMUaGiLfP4VX2svLP6sOX7NASbGmAEL1UhUZBZRIVyPb3CoXTxpik5njVsaL0f+Xf6lrP7j3ZhPAt1Pfw4hCgoEDG5IBhwREA5FBAkHBRsQEREFBgkEAhoRERL9wHDXml2XWVCUZHGxekABq1KFmkmzARNeIk8vYah9RnHMii5PImX+6amawFkDMiNmOVx6E0UNPCYmHgESCSl0fIJ3FE4RYnFmfUMeCBMBSEtIZRJGDVE5I0AZAAAAABYAzf6sCVsGzAAjADAANAA+AEcATwBfAG8AfgCKAJkAqAC7AMMA5gDuAPYA/gEGARYBIgEqAAABMjY3PgI/AT4BNTQmJy4BIyIOAQ8BDgIHDgIVFBYXHgEBPgE3LgEnDgEHHgI3AScJAT4BNycOAQceARc+AjcnDgEHAT4BNzUiBgcDIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQE+ATU0LgEnBx4CFRQHJTcuAycVHgM/AS4CIyIGDwE2MzIeAQc+ATU0LgEnBx4CFRQHPwE+ATU0JiMiBg8BNjMyFhUUBgE+ATc1DgEHEyImJy4BNTQ2Nz4CPwE+AjMyFhceARUUBg8BDgIHDgElPgE3Jw4BByczNAInBxYSBTcmJCMXMgQBNy4BJwceAQE3LgIjIgYHFz4BMzIeAQM3NC4CJwceAwU3LgEnBx4BBONSbENIiIVEiHRwYV5dtlJXjl0PEw1DZkM1PxshKi9c/JUlSRsQKxQsViQMKCpmAmQ5/ZwCkxpMH2ohQBELNusLEw4EOwUYDv6TI2svNnUp2WalYGClZmakYGCkZlCASkqAUFCAS0uAAxMDAxUmHDYZJBQGARMcLnaEgzozen9y+CBOra1PFi0UGzA0TaamiAYFJEApLCM4IAm+VQ0LnXckTCgNV0lZcA/+fiBXMThoJiwiQyQfF0c9RWVEEhMMRm9GQ5pRUVRVWYpDkZRIN10C7BETBDsEERDCPKSMLYWcAYceyP5O0QLfAYr+CiofTC4fK0cC4CBN3fd2KVAlCCRNKHDr0WA8MVRnNj02Z1QyATIvIlEmHyNHAa1LPUJiQQ8eGqxuaNxVVElFdEVbQXuGUkFZRygrZycrKvz/JFgpEigPGUAjDywpegJaOP2nAfoTRB9mIk0XFDVuFzxCHwopWiEBdwsQATsRDgEMYaRmZqVgYKVmZqVgUEqBUFCAS0uAUFCAS/25EicVOoKEPRo4e3k1JiByNhUfFg8EPwMMFB12Myw7HgMCPAYbN98dPyBXsps2KDCQpU86NpMUJkghgJUOEFQiZWQmTgI7ERQDPAMZFfyRGyIdVRolZUlShIRSVTVaOD5KSr5XV4IRGgxIbEU0QJ03XjAELFYzleUBjpomk/6GHDRvbTxpAcsrHTUYMxYx/og0L0UmBQU8BQUkQf53BGDa1rtAFjqy09liJCZGGTMXPAADAQT+rAkkBswAEwCqAQkAAAEiJAACNTQSACQzMgQAEhUUAgAEJzI2Nz4BPwE+ATU0JiMiDwE0Jic3PgE1NCYjIg8BLgEnNzY1NCYjIg8BLgEnNzYmIyIGDwEuASc3NiMiBg8BLgEvAS4BIyIGHwEOAQcOAQc+AjcHBhUUFjMyPwEeARcHBhUUFjMyPwEeARcHBhUUFj8BHgEXJyYGFRQWHwEeARcnJgYVFB8BHgEVJy4BIyIGFRQfAQ4BATwBJy4BJzc2NTQmDwEuASc3NjU0Jg8BLgEnNzY1NCYPAS4BJzc2NTQmDwEuAScOAQceARcHBhYzMjY/AR4BFwcGFjMyNj8BHgEXBwYWMzI2PwEeARcVFBYzMj0BHgEFFdb+h/7ho6MBHwF51tUBeAEfo6P+4f6IqhQoFAUHAj4ODxITDA4bBQNHCgkWEQ8OIggaEU4OGBAUEy8YPig0CxYXDBUHIiJcKQMCKhIWAQE6czcVBBgOFBcHD0N8NwYPBCROVy4cCxQSFAtEMWo2PRgWEQ0LWyNLGzcpHBJtIzsWQBcfFA92ERgHLhkiHVYDBRkHDwgQFxNKAQgDogIuXzAgGyUWRytUKTIgIRlfLlorMiIgF2UiQR4OLRoVWSlGHBctFCBTMSIKFRYMFQYWJE0pGAUWFg8XBA0sXDANAxUTERcCBypVKxISKDt1/qyjAR8BedXVAXkBH6Oj/uH+h9XV/of+4aNIAgIdPBwaBhUMDRoGCyhNJTkIEgoQFwsaNWUxSg0REBsTMDRlMmoXJRAORSdXH1sxGRYoIysIURETIRk4BDoyHFYlNkssByoPExAVEGEHKiIvExQNGQhFHEceDAkfExgEFy1cLwcCFhQPFQINLmI0CwYUFx8GFSFGJA4FBBgRFQsqHj0DehcwFx9BIhEOGRQbDCcgQCATDRsVGAomJkolEAsdERsHHx48HAEDJREZAgYpTCEDCQYoWzJIFigPDS8iRyVsGB8VEz8mTiZsFx8XFD0hQCBbFRkwIipPAAAIAYv+rAidBswAEwAhAC0APwBRAGIAbwB8AAAlIiQmNTQSNiwBMzIEFhUUAgYMAQUiJic3HgEzMiQ3FwYEFyc+AzcXDgMBMiwBPgE1NCQhIgwBDgEVFAQBIiY1ND4DMzIWFRQOAycyPgM1NCYjIgQOARUUFhMnNiQzMhYXByYjIgQ3Jz4BMzIWFwcmIyIGA8e1/wCHkvcBMwFHlsYBHJeQ+v7C/p/+uBs5GwMcOBm2AUqaFJn+rogLUHFfZkUVR2phcv7+mgFGAS3vjP7d/viO/s7+4uaHAQMBAJGtXqPR6HOYoGet1N1iW8rBm111eoH++9uEhiUYkwFarT58PApwfab+tGoXP75dMlYjDEZYXLBDbM2SiQEA2qJbZr+Gkv714aZc3AMBMgEDNz8tPj27MhEbHy0iLSMuIBwB6VOWyOx/qLhTlMXofK6+AT5vXkuWhmk8bmlPloNiOEcyV3GAQUpIUoahTjxKAxcrV14NDjAZWsouHSAJCDEQHwAAAAAHANf+rAlRBswAewCDAJoAsAC6AMoA4AAAASImJy4BNTQ2Ny4BNTQ+ATcuATU0PgIzMh4BEhcHJgImIyIOAhUUFhcOARUUFhc+ATMyBBc+ATU+ATcWMzI3HgEXFBYzMjY1NCYnDgEHJz4BNTQmIycyFhceARUUDgEjIiYnLgEnBiMiJicOAQcUBgceARceARUUDgEBJz4BMxUiBgEyPgE1NCYnLgIjIgYHDgEVFBYXHgEBBiYnLgE1NDY3PgEXFgcGFRQWFxYGJS4BJCc3FgQWFwEuATc+ATc2FhcWBw4BBwYBJz4BNTQuASMiBgcnPgEzMhYSFRQGBDCe+ESRpBQVNzxAdU0KCFOPuGVy1baJJlA0tuyFVZx6RgwQhoUtKzyZT6EBKFsRDY/HITYtPjUpTC1MP0dbJR8OOCM4LDOjjSK33gZBTD1tSFJyDh8uHCw5Dx4PKL9rJSAODQRHYWev/e8+Te+RfdMBZVWLU1RCDaL1jEmSNg4Nj4072/5eEBsEBAMEBAQaECMFBAICAxACkEPY/vKWI5sBHeZI/fIOCgggaEQRGgQIJTpCIBMER0oyN3DEfzNWM0I+fUWN6Ys5/qyYiDOqbCVWK0KYVlusiSQaKxZWpoZQb8z+5qwS3AFBrkR0kk4cNh49z3dHjTshJIZ5HkooFJB5DhkdHAZSb5eOU4ExTYgtKzmhVJSXTrueSbx3cKZacmAIEA4RAgNeixk1VBkXHxoSdFBQfUYBDzRTWUtO/vQzWjs9WQpysWQlIyBCH2l2O32PA5kEEBARJRMUIxMQEAMHJxweDRkOERsTichyB0gKetaVAkYGHhBAVhMFDxAiDBM3OCD9shZl3Geb5X8ZIC4tKZb++qhv5wAAAAAEAQ7+rAkaBswAIQAxAEMAZAAAASIkJgI1NBI3PgM/AT4BMzIeARUUBg8BDgMHBgwBATI2NTQ2NzY1NCMiDgEVFBciLgE1ND4BMzIWFxYVFA4CAzIkNjc+Aj8BPgE1NC4BIyIGDwEOAwcOARUUHgIEU7z+zN14UVFEw+LmZpW06lOCwmsvMiAmJh80NUn++f6m/ngSFUAoHCklUDfcV45VfcZtRG0YMTpmhVuOAQDTSz1LQiw6QTlNglFI06yfY9/ZtDc6PGW4+v6seuEBOb+SAQBxX4ZmWjNKWU9qv4JPrWtEUY+Wtnqp9oUDoh4WOFcQCh0kSGgxPfFUj1dlnVsgFzFwUp+BTf6HV6Z1X87PX3yLqzZBZjxJVE4wWV92TVLOcojkqFwAAAYBDv8QCRoGaAA3AEEASQBoAKEAqQAABSIuATU0PgE3PgE3LgE1ND4BMzIXPgIzMh4BFRQGBxYVFAYjIiYnDgEHDgIHFA4BIyImJw4BEyc+AjcXDgIBIjU0MzIVFAE+Ajc+Az8BPgM3Fw4DDwEOAgcOAgcTMjceATMyNjU0Jic2JDc+ATcWMzI2NTQmJz4BNTQuASMiDgIHLgEjIgYVFBcHDgIHDgIVFBYBJzYSNxcGAgKLbqxjVMiuV6NSAQExVDIOB4ngymdut21tcQhqTAcPCCA9HlWrqFM0Ui4UKBJpum0qWY6LUjJTjZEB4ENDQ/xDCD2Fc1B6YE4iGpDCgFknGyFPeLuOGjBynG9kczUINpPaFSMWKzsBAn0BDIsmTCggFys7Bwt6bliSWD18krh4ExcKKzwNLzpxcDqhtEipBCI3n/JiRWX58F2jZ1ahvXw+fkwGDQcyUzEBo9ptXqRoW9yRHRlMagEBIj4dU5iHPC1RMwkINzoBGUQ3X2hCPkNqYQE+U1NTU/7NM2B1VDpeUUsmHaHQfD8PTA05dsqfHTVqe1BIYUgl/vR8EAw7KwYRDFfkhSRNKws7KwwgGJnQUVJ/STBwwZIFBTwqEyApMl5XKXOmh0Z7nALwOaEBPa8ps/66AAAAAwBp/xAJvwZoADgAcwCpAAAFLgQnPgM3PgIzMj4BNz4BMzIeATMyPgE3Mh4BFw4CBw4DBw4CBw4DBw4DLwE+AzU0JiMiBgcOAgcnPgI3PgI3PgI3PgI3PgE3PgI3Fw4CBwYHDgMHDgIHDgEHPgM3PgM3PgI3PgM3PgI3JiQnDgIjIi4BIyIGBw4DBw4CBw4CBx4CAlQueX1vTQuCuHtLFRpVe1JufUUYFEU6JVdUITxTMARw59BPK3KqgT9MMCkdIE1wV1V1WFAvOV5jfM9KRo94Sg8LDC0hN42MNiUxkIonLVdDDA9AkYZ7fTQMC3RycpleG3UzcpRo0hYMJkh/ZXR8ORAe7FFHZFJVNzRcZoNbTlc5HiA1P11Gb4tcKFv+/IAJRGlDJl1XHSAeDxc7V4JdVV40Fht2xJEjfZTwE1l3gHUqDCZGdlt0gDQsfnpoTRgZWZFTRnhMksd/JxMhL04/R1gwDQwnQmtRYXpHJYlBETtHRBoIDRcUIDsmAUYEJTIVGTpaRlVbJgQEKWVeU1gFBlm7mUCmx1sGDJdUZjcYBgcrY12u2XkKHz9yXVl0SCgNCyNIREZZNygVImeabFZuE1WQVhkYO0VphEoeAwIsamF4kU4VN4mBAAALAKr+rAl+BswAFwAwADwASQBYAGQAcAB/AIsAlwCxAAABIiQCNRAAJT4EMzIEFhIVFAIADAEnMiwBABI1NAIuASMiDgMHDgIVFBIENyImNTQ2MzIWFRQGASInLgE1NDMyHgEVFCU0PgEzMh4BFRQOASMiJiUiJjU0NjMyFhUUBgEiJjU0NjMyFRQOARMiJjU0NjMyFhceARUUBgUiJjU0NjMyFhUUBgUiNTQ+ATMyFhUUBhMiJjU0Nz4CMzIWFx4BFRQGJy4BIyIGBwYD3fr+kMkBIQEqSJGfut+KngEQzXOh/uf+kP5f1s0BiwFaAQmWZ7f0jIHOq5mVUsHubbQBTA0gPx8UID8f/vc2DwQHIRE0KQJ+KTUTFj4wN04jHi/91RYhRyMVIkcDzREPKCE3Iy0YK0saEw0fFhc5KQFwFyooEhcZFPuUKB4oDxEaLvsPFBs8jJNDIEsfFBEhHhk+GVfEThj+rMEBXesBDQFgiCGCmYxafuH+16vC/o/+wPKIUILmAS0BV7GbAQzKclWHlYQmW8XwnNb+x6qrQB8TGz8fExwBNhIMLREuKjQQHAQNNy8lKwgOFgsK/h4WIUYfFSJF/t4eIiUxLxIxJANoNCUUIRERERAZEx+MIRgiP0cYIhkIEhpEMysXLTQBKhYPFxk5VTALCQYVDREXBwYHX0wYAAAIANb/EAlSBmgAGAAgACYAPQBFAE0AaQCoAAAFIiY1NDY3AT4DMzIeARUUDgEPAQYEBhMuASc3HgEXJSYnNxYXATI2JD8BPgI1NC4BIyIOAgcBBhUUAS4BJzceARclLgEnNx4BFyUiJi8BByc3NjIfARYzMjY1NCYjNTIeARUUDgE3Jz4BNTQmIz4BNTQmIyIGBy4BIyIGFRQeAhUUBg8BJz4BNTQuAjU0PgEzMhc+ATMyHgEVFAYHHgEVFA4BAT8sPRYTAYiTyo9vN1aWXlbDpWmu/srljg8jHDMZNBMA/xg5JlYh/a4r2gEro2mYs01IckAqXYG/jf52FQKmHUQeNCRKHwEUHTslNSNFIwJPMFUjP48mkxQjD1QvQDtbSjg7XzhAaYUIO1lxSggFgVc3YB0aKhlDVCk3KUVCEFI7Xik3KTxpQiUfKWo6UIdRAQFLZTxk8DUoGjEXAcer3HwyXZdWR4eaZUBqoFoBCRgbDEMOLh1tNh9GMFD+llmcY0BdiW80QHJIL3bSov45GRUNAl0vPBM+GEcwLi9JHTweUDiBJyI/gUqEERBVMU0xNUpQOF45N145oFAFVjtHYhoqEFd6NjIQDVREL0o+Oh8oRjIMJilKEw4uQlk5Q2k8CiksToNQBw4IE31QPGRAAAAABQE4/t4I8AaaABoAJAAvAEkAUgAAASImNTQ2EgA3NgAkNjMyFhUUBgoBBw4EAzYkMzIWFRQGBBM+AjMyFhUUBgQBMj4DNzYaATY1NCYjIgQABwYAAgYVFBYBNiQzMhYVFAQBw0dEacMBD6W9AVIBIedSPTJisvGPc/H18eZ/aQEZmjhKrf7R4UfB12c4Sq7+wP2WaODo6OBphuewYgoKbf7C/mf4kf7+xXAaA4iAAQGLOEr+wf7eQjVG6QEnAUelvQEgw2M0LUHa/un+yJ9/99mlXgGOlaMXEyZgYQHqXoNFFxMiUVn8fWGn1utzkwEqAQ3QOQgJqf6095D+zv7k3z0cHgUyjIgXEzRvABcAjP7eCZwGmgAbAC8AOwBXAGMAbwB2AIQArwC7AMcA0wDiARYBKwE3AVIBXgFlAXEBoAGvAcIAAAEiJAACNTQ2Nx4DBDMyJD4CNx4BFRQCAAQBLgIjIgYVFBcHJjU0NjMyHgEfASImNTQ2MzIWFRQGATIsARI1PAE1Fw4CBCMiJC4BJzccARUUEgwBAwYmJyY2NzYWFxYGJT4BNz4BNxcOAQ8BJzQnNx4BFQMuAScBHgEVJzQnARYXJS4BNTQ2MzIXPgEzMhc+ATMyFhIXIyYCJiMiBgcuASMiBgcuASMiBhUUFwUGJicuATc2FhceAQEuAyc3HgMXByY1NDcXDgEVFBYXATQ+ATMyFhcHJiMiDgEVASc3PgE3PgEzMhc+ATMyFz4BMzIWFx4BMwciLgEnLgEjIgYHLgEjIgYHLgEjIgYHIg4BBwUnPgIzMhYVFAYHJzY1NCYjIg4BASc2NTQnByc3FhUUAT4BMzIXNjMyFhcHLgEnLgEjIgYHLgEjIgYHASY2Nz4BFxYGBw4BFyc+ARceARciJjU0NjMyFhUUBgUnPgE1NCYnLgEnLgEnNC4BIyIGFRQGIyIGByc+ATM+ATMyFhceARceARcWFRQGJz4BNwEOARUjNDY3AQYHNyc2NTQuASMiByc2MzIeARUUBgU+9v5t/t6cBw0QU5nxAVrs7AFa8ZlTEA4GnP7e/m37+RFBTSQSGAtODUE5Om1VFc4PFRUPDhUVAefjAXYBDpIOV8bz/s7FxP7N88ZXDpMBDgF2dg4hCgoEDQ4gCgsD/oUIDgcYSkcjOC8XDTZUNjEwkh8tDAK2PTNTOP3GIj7+akpPg1sgJRqaYVE4G1EnYohYGjwqWmtFKEQQG0MuWIIQGSwaQ1yFAwYKKBETDgkKKBEUDQJOJXB3Zh0qHV9uYyC5EhFNBggHB/uNVItQLF0rLT9IP2U7AehKLTSHWBVsRjU0FDEZRjETKRU6disgeG43OGRRHiBWKRMyFxk1HhkkFBA+GDtTBTxfTiQCeU8TU3A9QUYGBU4JHhkmT0D+3U4QSltayIf9dyOTf1FIODlZghMoGBkFCFA4HTUjJUcpWHAgA4sKDRMTKggJDBMTKLBBCyIODAVYDhUVDg8VFQFGTQsLNjw3QQ4PbEg1VTE8MyknKDsoHTVOJghhVVF/IVN5EQgkKaMN6SouG/3KHRxQMjsCsxhAREoXPGdAPi8zRlpWi1IP/t6UARABeuVXVRQZan91S0t1f2oZFFVX5f6G/vCUBAdJc0QrLCksEjcwSl1Uj1uaIxgYIyMYGCP8z4b8AWPdBQgEGUp9XDIyXH1KGQkPBNv+oPiEA2gGFxUXKQYGFxUXKVIXNSRycihBIFVfNGd4WjY3hUr+piVYMwFwVaU6IE9c/tJIQbNUqElhfwlWXBscG5f+2drOAQF5IxsQEmpKBwRSPnqWHgwHDxEnCgsGDxEm/ucBHi0uEUgSLSwfBAYqNzg3GRcrExIhDgMHYZFRHB5CLD9uRvx8H2x9fQxVXhoUES8KDDkxJCBQFCohJSoLEBwYEhANClVUJ2FXcQ5no15pUxYyHBEzIDU3TYUBphI8PH52PCSJpMNDAYN9kycZc1JsAjgkOEsRFBoZZXH+pgsmEBAHCwwmEBAFMx4WFwcGKHQjGBgjIxgYI2kULkIbPE4ZFzo9QDgBJDkhPEYaEw4RThUMVVpEPgpqRCEfEUSpIk4EFD46AS45hFVxuVL+j2VK5R44LT5jOyg+OlCIVB9DAAAXATb+3gjyBpoAEwAsAEAAWQBnAHQAfwCOAJwAqAC0AL8AzQDaAOUA8gD/AQ4BGgEmATIBQwFOAAABIiQAAjU0EgAkMzIEABIVFAIABCUiLwE3FxYzMj4CNTQmLwE3FxYVFA4CJTIkNhI1NAImJCMiBAYCFRQSFgQBJyY1ND4CMzIfAQcnJiMiDgIVFBYfAQEiJy4BJzQ2MzIWFRQGAyImNTQ2MzIeARUUBhciJjU0MzIWFRQGASI1NDYzMhcOARUUFhcGASImNTQ3PgEzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIic0NjMyHgEVFCUiLgEnPgEzHgIXDgEBIi4BNTQzFhcWFRQGASYnPgEzMhYXDgEBJic0NjMyHgIVFAYXIiY1NDYzMh4BFRQGASI1ND4BMzIeARUUDgITIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBIic0JicuATU0MzIeARUUBhciJz4BNzIVFA4BBRTN/pn+8JqaARABZ83NAWcBEJqa/vD+mQHNTUJBOEAtLh9MRy4XF0A4QUI6XGr9Nq0BLeaBgeb+062s/tLmgYHmAS79ZUFCOlxqME1CQThALS4fTEcuGBZAAd4PDwcYDhoPHjAU2jUsICMfRDA8zxYSMBUqMP5oKS4lHwIcGgEBBwKSIE4SECEuMTY6/gUcEx0THSEoAqsWFiATFxwm/sBtWDI9K1A0/s4YT0oUBCgbEjs+FAMUAp4qYUUga3EGHvyPGQUXRCEPJAoPUgJoV6kkFR9KQisEqys4HhYiMx0s/ZYiKEImHD4rPldOHxQcKRkWIC0CxhEdFBMRKRmWGRcQHhUXE/64DAMICBELEhMiFw+gNwMdQCFILUD+3poBEAFnzc0BZwEQmpr+8P6Zzc3+mf7wmhNCQjhBLy5HTB8YLRdBOEFCTzNqWjiLgeUBLqytAS3lgYHl/tOtrP7S5YEFCkFCTzNqWjhCQjhBLy5HTB8YLRdB+5oJGjceDg84IxQmAUcYJSAtGigWFhxsJRQ5GhcZKAFxf15vHT1aRxAfEBL94SQyGxkiJi0yNj0B+iMXHxopFhkb/c8gExcYGxQWHQGmNT9FITgiPvk5UyYaIhxUURYLDP4gHSoSGCgUCgsSDgNCDRc7VRUUNkj99X6CFxs1UlkkFBqbRzciGiw8GSIXAdAfR3lKIjAWDT5FMQF2HBMdLCAWGCr9LxYeFiYiGxIhnxolHSAXISYeAVYKJEMZMy4LGTRPKiM/fjMaMBYmGDIjABYBCv6sCR4GzABLAFcAYgB6AIUAkQCdAKkAtQDBANcA9QEAAQwBIQEtATgBTwFbAYIBjQGcAAABIiQAJyY1NDY3ND4BMzIWFwcuASMiDgEVFBcOAhUUFhcWEgQzMiwBEjU0LgInLgEjIg4BFRQXByY1ND4BMzIWFx4CEhUUAgAEASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQBIicuATU0PwE+ATsBMh4BFRQGByIGDwETMjY1NCYjIhUUFgEyNjU0JiMiBhUUFgEnLgE1NDYzMhcHFycyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEuATU0PgEzMhYXBy4BIyIOARUUFhcTIiYnNxYzMjYkNz4DNTQmJzceARUUAgAHBgQGJS4BNTQ2MzIWFwcnMjY1NCYjIgYVFBYBJjU0Nz4BMzIWFwcuASMiDgEVFBcBMjY1NCYjIgYVFBYBMjY1NCYjIhUUFiUiJjU0Njc+ATc+AjMyFh8BHgEVJwcBIiY1NDYzMhYVFAYlLgE1NDY3JjU0PgE3PgEzMhYXBy4BIyIGByIOARUUFhcOARUUFhcBIjU0NjMyFhUUBgE0PgEzMhYXByYjIg4BFQTn6v6G/vREGmZKP2g8R3UyPidKLzRWMgMcSTUMCkH6AVzR1AFsARCXPnCXWTZpNEuATh5aFFuibDl/QWWoeUKm/tn+eP54MTxIJTE8QQEQGSAnFhQd+7wkJxAJH10dVi+XHSIPAgJQfzswihQfExYwEgI7FBQvExMWMP6Amy05hFs/Qi4JtQ8QJBIOEygDfiZALR8pTzgBERMhIRMUHB36ukJDYJ5dPotMI0B8NU6ATTw6ElV/JDktfGP3AQ2EeMiTUREiVxcVkf76r4n+7f0BlRsek2dHiTrfRw4VIBcQGCn+3EeuO3o+Z85hMFa4WF+eX0P+7gsQIRMNECMCgA4XHRUjGv6mCxkFBwkrIkNHJQ8gPBlbHSLfxwKJEx0dExQgIPykTlAdFApNgE02hUldhBpGF2M7Q2QpQnRICAgaHUElBE4+SywfJ0r9c1ujbB03HwwzNlN/Rv6sqAEyz1BFX4UUOWpDO0E3NTAyTy0RDwMrU0EfPCHF/uaVifcBScB9+d2rMB0aTn9LNCwGLzdWpWsdJTm97v74hdP+mf72kwE1IB0jQychJjU7GRMaKSEYNgLnSB0sFzIrfSYTKTcXDw8FIiiDAboQEA4VJAwT/goXDRccGA8XGQFxCDVzNlV1IXB+SRMKEB8VChMa/GY3IBonOh8ZJv7uFAsTHxMNEx4DeVCeSV2dXi0sNigmTH9MQIhH/UAsLDQ+RYNcVLu9rEQjNxQgHkgoaP74/ux7YIhH3ThwNG6MRj7MYhMOFjAWEBgp/sikidJ6KStlZTFcWVydYXSdA2cTChEkEgkRJv3pGBEWLiYZLsUzHwsjGSI9EB8bBxkUSRZQHiAn/l0eEw0THxMLFK8nez8lRRwlKFCFUwVbSXtQJ0paR0w+bEYVJBwZPSgxTB7+hTc0ViYeNEkCNFSiaQcIUBFSfEEAAAAKAgD+rAgoBswAEwAfACsANwBDAE8AYwB2AIIAjgAAASIkAhE0GgE+ATMyHgEaARUQAgQBIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAY3IiY1NDYzMhYVFAY3IiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYBMiQSNTQKAS4BIyIOAQoBFRQSBAMiJjc2Ejc2MzIWFRQHBgIHDgEFIiY1NDYzMhYVFAYDIiY1NDYzMhYVFAYFFOr+ncdUlcfofHzox5VUx/6d/XUVHh4VFR4evxojIxoZIiLVFiEhFhcgIEQWICAWFh8fATIRGBgRERgY/ivUAT6yTYe0z21tz7SHTbIBP+sQHAYlo30QEREUDHiaIwMVA5YZIiIZGSIiaRMaGhMTGhr+rNwBiQEDvAFkATHmgYHm/s/+nLz+/f533AHBHhUUHh4UFR7TIxkaIiIaGSNBIBYXICAXFiDSIBYXHx8XFiAXGBIRGBgREhj+ZsYBZe2vAUoBHth5edj+4v62r+3+m8YEPxsZpQEbbg0ZEBELav77nw4OnyMZGSIiGRkjAVgaExMaGhMTGgAABgKV/qwHkwbQABUAJgA2AEYAVgBmAAABIi4BJwMzEx4CMzI+ATcTMwMOAgEuAScDJjYzMhcTFhcWFRQGEyIkJjU0NiQzMgQWFRQGBCcyPgE1NC4BIyIOARUUHgETIiQmNTQ2JDMyBBYVFAYEJzI+ATU0LgEjIg4BFRQeAQUUit6EBY5RiQR6vmlpvnoEiVGOBIXe/skoLwMcARANHgIcAyoVFp+k/v6TlAEBpKQBAZST/v+lith9ftiJiNl+fdmJtf7eqKgBIrW2ASGoqP7ftpv4kpL5mpr5kpL5/qw1WTYGWfnFLEIkJEIsBjv5pzZZNQECCDooAX0NFBz+giwHAxkSEALGMV9ERF4yMl5ERF8xUCI8JiY8IiI8JiY8IgH/RHhNTHdERHdMTXhETjdWLi1VNzdVLS5WNwAAAAsAuf6sCW8GzAAmACwANAA6AEEARwBwAHYAfACEAIwAAAEiJCY1NDc+Azc+Azc2MzIeARcWFRQCBgcOAwcOAQcCAAEnNjcXBi8BPgE3Fw4BBSc2NxcGAyc+ATcXBhcnNjcXBgEyABM+ATc+BDc+AjU0Jy4CIyIGBw4DBw4DBwYVFB4BASc2NxcGFzUyNxcGAyc+ATcXDgE3Jz4BNTMUBgMMr/70mFRHu7yVIihSa5hv1Ohu3LMuGlyfZjONjGQKEh4UfP5u/qsKRys/Qk4RIzYWQh5RARsePyFIK2oPKTsWRj24DlAoRzr9ZOoBXnQcHRcKS2p2bSdbkFMTKpy+XmjEY2KNalYsN52wqEJJgugDNCFDGUsnrU45Pk0xJSAnCk0QPe05FhlPJf6si/WgmpF6oGQ+GR6Qu71Ljz1nQF1fgf7530YjRj0sCxM6Nf66/tIBZE8IOjNR/U8IJR8uKzfNShlFIWEBb00HMCgldQhNDk8lcvzyASQBHUQ8GgsmMDY4Gz/K73NNSzNUMUM+PbO8mCApRFmOdICDidJ1BDBJHz8eXYxOSjFnASZEETMgFjBKpDYYPCs5WQAAAAwBD/6sCRkGzAAUACAALAA4AEQAWwBnAHMAfwCLAJcAowAAASIsASYCNTQaASwBMyAAEhEUAgwBASY2Nz4BFxYGBw4BJwYmJyY2NzYWFxYGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGEzIsATYSNTQuAiMiDAEGAhUUHgMBBiYnLgE3NhYXHgEBBiYnLgE3NhYXHgEBIiY1NDYzMhYVFAYBLgE3PgEXHgEHDgEFBiYnJjY3NhYXFgYnJjY3PgEXFgYHDgEFlqn+s/7X5YOH6gErAUujAQIBlema/v3+wP1sEAsYGDcPEQoZGDlhHz8ICScgIT4HCCQBaxYhIRYXICD+eCM2NyMmMzTBowExAQTDbXDD+4yi/sT+6NZ7Xp/H0wIDEjgXFgkSEjgXFwn+LxI3GBcIEhI5FhYJAgglNTYlIzY0/o4UEAoKKxMTDQgHKwF0Ij0FBCkkITsHBivgEAsZGDYPEQ0XFjr+rF+y/QE8ubQBPwEGvWf+6f3h/nPe/rzUZwMBDj4bGxYMDT4cGxfuDgURFC8PEAQREzP+9DEjIzExIyMxAdseFBQeHRMVH/ylabnxARGMi/zFcWW29P7fnX3RpHI8AhQNERsbOw8PFBoZPgH7DhIbGjwPDxMbGT7+0x4UFB4dExYeAXQFPSMjLgYGOyMkLJ0KDBMULQoKDBQTLZYOPBwbFw4OOh0cFgAAAAAIASD+rAkIBswAeACaALwAzgDiAPYBCAEcAAABIi4BNSU3LgEnLgEnBiMiJC4BNRYEIT4BNy4BLwEuAScmJC4BNRYEITI2NyYjIiYnLgInLgEjIi4BNTQ+Ajc+AzMhHgEXFA4CFRQeAhUUDgEHPwEUBgcWFRQOAgc+ATcUBxYVFA4CBxU/AR4BFRQGBCUiLAEmNTQ2NxcOARUUHgEEMzIkPgE1NCYnNx4BFRQGDAEDIiwBJjU0NjcXDgEVFB4BBDMyJD4BNTQmJzceARUUBgwBAzI1NCYjIgYjIicmIyIGFRQWAyIsASY1NDYsATMyDAEWFRQGDAEnMiQ+ATU0JiwBIyIMAQYVFB4BBBMlPgEvASYjIgYPAQ4BHwEeAQUyNjc2NTQmIyIGBw4BBw4BFRQWBlNlxIAB4qwORkJjiCk6P8z+sfOEsgHJARh952oZY14xSGciyf6174KyAckBGGnFWz7EaFwZLS86Pyl7NztsRENiYR4hFhQ6RQIpb95wOkw6KTUpLj4Xj9pVUAciMi8NU5ZFlgIiLygGHrUTG4/+/f4S4v6N/vOSWEMbMDaJ+QFWzMwBVvmJNjAbRFeS/vP+jeLi/o3+85JOPCwwNon6AVXMzAFV+ok2MDg2SJL+8/6NplAXEQYdBBQUFQ8OFUMR2v6O/u+XnAEWAW/T0wFvARWcl/7v/o/ayQFU+4uQ/wD+r8LC/q7/AJCL+wFUfwFdHQoSfxkjHEVBpzEpGHcVKgJBFSYNBxQOChUFAgEECRkS/qwnWUktO0c8BwsyKANEd51YmpwFJiBEOREJDh0TAUR4oV2enhQVhgwSIUFDIhccECglICwjJhkcUU81G0w1MD4uMSMdLSszIyROYUI+p0uGNw8XJTg8Uz8jWjeIawwIKj9IalYFCoYKJxd1uGutVZnPelN2GEsRUDVpsYRJSYSxaTVQEUsYdlN6z5lVAchPjsByUHEXQhFPNl+jeUREeaNfNVARORZsTXLAjk8CrykOEwQLCxQNFyT+306Pw3RuvY5QUI69bnTDj05QRXulX1mfe0ZGe59ZX6V7RQGITwdEHdApIQ4MBFApxyIWvi8oFhYgFRAUCBQLGSERDRUABwEM/3QJHAYEADQAOAA8AEwAfgCCAIYAAAUiLgE1NDY1NC4BNTQ2Nz4CNz4BNz4EMzIeATMyPgEzMh4DHwEeARUUAAUGBA4BEyc3FxMnNxcDNBIkMzIWFwcuASMiBgIVATI+ASQ3JAA1NCYvAS4DIyIOASMiLgEjIg4DBw4BBw4BBw4BFRQeARUUBhUUFgEnNxcFJzcXAldOfUkSJCU1NzA5GwIEaWdHVDo6UkU0SkUsLkVOO01gQkBYRyBfbP5h/niT/un0wg2ACICjXDdbXJIBD7tqzVUvSLdepOt9/tg5u+8BD4sBewGFSkQjSWZVYEM0TVA5N1RJJS49N0JiTE1BAgROWCYjJSQRaQJxIEwgAbpLJEuMTYRQL08oNUtYSD9sKSRGVjpdeQsINkdELRobHRwiNTw3EggXgGiH/mT0W5ZrOgKyC1AMASxTO1P9UeQBTbU9N0EvNp/+187+lTtqkVfsAXN8P1kQCBFHTDYcHRsaKkFGOAwMRj9klUQdRzAyVWFEM08pV2kEvW4Ybg4caBsAAAAAAwEl/qwJAwbMAF8AbAB/AAAFIiY1NDY3DgMjIi4BNTQ2Nz4CNz4DMzIeARcWEhUUAgcnNhI1NAInLgEjIg4CBw4DBw4BFRQeATMyPgI3PgQzMhUUDgIHDgIVFBYzMjY3Fw4BBQE3AT4BNwE3AQ4CASI1NCQlFw4BBycOAwcXDgEFdYV+HCM+n6yhP02FUVhRN7rSWUiHg4VFS4RxLbvKd208Ym7BtjmaWDmChX01K5SkiSBGTTtgODiXo5c3Kj4yMTonKjlQRg0VHQ5SYUKYTy1brwF2/rBHARUzm23+nUgBoHape/5nNgEZATAnHUwtJRlTWksRITA4xKutWdmaVZp1RJLuioHoVTlhXzYsYlg3V6yAXv7Iwon+2oI1dgEMerIBGFewujxZXCAaR1BOIkvMcXXJfEV2mFI/n6KIVEI9prKgNluhjT+PeTAuQzQ3kAIUJf5MNXpCAVQq/nNCd3IBeCVD2KceMWYwHQ0xODIPQBcRAAAAAAwBL/6sCPsGzAAYAB4AOAA+AEIARgBeAGIAaAByAHoAfgAAASInASYnAyY2NwE2MzIWFwEeAQcDBgcBBgE0JiMiBwUlPgEzNS8BNzUjNT8BHwIVJx8BFScVHgEDNCYjIgcBJxMXAycBFwEyNwE2NxM2JicBJiMiBwEOARcTFhcBFgEnIRUJARMXAwkCNwEWMzI3ARcFAyUFFSUFFwEnAzcE7Sko/bJRDrQMSEUDbx4YEyMSAtY+PhD1EkT9pSj+fyUdIwoBB/54BRwfXQNsUaEMLwSjVweDah0hlSMaJQsB308oUB0+Ad5A/fMaFwJbJAv1CSIm/SoXEAwR/JEpKQe0By4CTRb9YF0CQwN0/nvTQ7wBa/00/HEfA1AVDwwYA4wc+zc/AasChv2d/o0xAVZPFE7+rBQBLypaBFpIdxYBIAoKCP66HHpE++1NJ/6wFwI/Iz8w1rEgGXwYLBF+L0ljDGipODd9djY6iRg9AWogOi/81AIE0wL7NC8Cxyz9Ug0BUBQsBBMoRxABRgsG/uANRCv7pjIY/tELBdxOTvtQAxUBNCv+7v0oAxoBiEn+kQkJAU9K8AEpphVEEI3mAYgNARwDAAAAAAQA6v6sCT4GzAADAAcACwAPAAAFJwEXAScBFzcnARclJwEXASQ6BONg+9s1BTVYVlwBf2X9P2UBSXFBOwUhW/nsQASbY0RoAVlzVWABYWwABgCj/t4JhQaaABkALABAAE4AXgBuAAABIiQAAj0BNDYsATMyFhcBBQEeAR0BFAIABAEiLgM1NDYzMhceARcWFRQGATIsARI9AQYMASMiLAEnFRQSDAEBJQE+AzcyFhUUBgcBMj4BNwE+ATU0JiMOAgclIiY1ND4BMzIVFAcOAQcGBQT6/mT+1qG4ATwBk9plw1b+tgEjAUbI/KH+1v5k/Q0VQ0tDKhUNGwwlZlIRFgHo6gF/ARSUbv7B/nnd3P54/sJvlAEUAX8CYv6RAflddkUjCqSWICL8TBw8Px4CvxsXb2ILPHViAQoKDS0+Fx0aGCQaDf7ekAEKAXLijTFaRykJCf59DAFqImo4jeL+jv72kAGFPF9sYR8VFyBhpkUOFA8W/suD9gFX0z8sPiEhPiw/0/6p9oMDdxACbXKNTSMJQEYeOyT9QAIDAgLqHSANGh0LRo54xA4KDyYcGBcDAxMWCwAFAkb+rAflBtIAFQAoADgASABXAAABIi4BJwM3Ex4CMzI+ATcTFwMOAiUuAScDJjc2FhcTHgEXHgEVFAYTIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQUnEz4BNyU2FgYHBQ4BBwRtfMNyBXFPcgNro1VWomwCck9xBHPD/vEnKgIbAh4NEgEbARMWDAsXgJz6kZH6nJ35kZH5nXjYh4PWfn7Wg4LXAXZWqhdFNwFiGxwGF/6aJSMQ/qwzWjkFbgv6jR45JSU5HgVzC/qSOVoz+Q0qHQGmHgIBEQ3+WQgOBwQQCQ0VBGE7Z0JCZjs7ZkJCZztQL0QhI0QsLEQjI0UsKRcBoDdAEGUIJzAHZgooJwAAEwEO/qwJGgbMADMAPwBPAFgAYgBtAH0AiQCSAJ8AsADAAOQA8gD7AQcBEAEcASYAAAEiLAEmJy4BNTQ+Ajc+ATMyFhc0PgI3PgIzMhYzMjYzMhYXMh4DFRACBw4BBw4BAS4DNTQ2MzIWFwEyNjU0LwEmIyIGFRQfARYBIiY1NDY3FwYXIiY1NDY3Fw4BAS4DNTQzMhYVATI2NTQvASYjIgYVFB8BFiUyNi8BJiMiBh8BFgMiJic3FhUUBgE+ATU0JjU0MzIeARUBIiY1ND4BJDMyHgEVFA4BBCcyJD4BNTQmIyIOAhUUFgMzMiwBPgE1NCY1NDY1NC4CIyIEBw4BBw4CFRQWFzYzMhYFMjY/ATYmIyIGDwEGFgEmNTQ2MzIWFwEyPQE0JiMiBh0BFAMnNjMyFhUUBgMnJjU0NjMyFhceAQEnNDYzMhUUFhcFqI3+3P75xzIYHSg6OhIOIxAPGAoZT56FIlhNEBElFBpZPDJ4Ril7iHZLeYA2OxF29fxIZIxXJxQcPnQ+AnIUGRJ1EhURGRJ1Ev42EBg4Oi1K/A8UCwluGiv+KihOPyYzXGoDtRAbFX4RExAaFn4SARIbHQxBDh0bGw1BDuoYOh1XPxT8dxQRHxMlOCABK7e1gdsBEpB/v2uJ6/7Yn40BC9V+vpuF9sJxhiSQowEwAQPDbCwNZKK8V7j+5IAiQxFFZDVGOhghJ1cEKA8bAxYEHhMQGwMVBB79QRUYExslBgMsLhsUExnsLUotERc3vZQnExANGQ8QMAG2hDUcEAcG/qxpt++FQY8wPKKlhB0EBgMEJz5DXEUSIxgPDxQaYZuvnzT+sv49jTxSHRtBAeBWWCQQDggWJiP91iUNEg9qER4RExFrEAJjFBMYOxxXP8IiGRQ7FwlSRgIuWVgkFRcbYTP7rx8SFQ9gDh0SFxBgDVgoHJEgKR2RHgGtODotSi0QGAMFNUQVKDoZEk1oKvzAlZeB6rdqUI5eeuS0alBdn8dpaoJho8xsdGj+/1mczux7P0MMCx4TPmlPK3V7ICAPP7DBWWS4QgszShUXnhseFxeeGR4EEjkrHydLQvx6MbUWHh0XtTEC7lc/FBMYOgGYFzNXKzUpLzJR/sB9h3cTE1M2AAAJAQr+rAkeBswAXACgALAAwADQAQwBJgE1AUUAAAEiLgI1NDY/AT4BNy4BJy4BNTQ3JjU0PgEzOgEXNjMyFz4BMzIXPgEzMhc2MzIeARceARUUBxYVFAYHHgEVFAYHHgEVFA4BBw4BIyInBiMiJiciJicGBw4BBw4BJzI2Nz4BNz4CNzY1NCYnBw4CBzQ2PwEuAScHDgEHLgE9AQYjIiYnFRQOAQ8BDgEVFBYXPgE3NjMyFhUUBw4BBx4BEy4BNTQzMhYXPgEzMhYVFCcuATU0MzIWFz4BMzIWFRQFJjU0MzIWFz4BMzIWFRQGATI+ATceATMyNjcWMzI3FjMyNjU0JzI2NTQmIyIHJiMiBgcuASMiBgcmIyIGBy4BIyIOARUUFw4BFRQWATI2Nz4BNTQnNjU0LgEjIgYHFhUUDgEVFBYTJjU0MzIWFz4BMzIWFRQBLgE1NDMyFhc+ATMyFhUUAuU4jYFUQ1BDMDMLc6MYIycpNmixbQUKBFR2cFYIEQhOPSmFTElBLDE3YD8EVoAHMy0oYnULDQQDPmpDK3ZART09RUd2KkRwJTM6V0oQF0IhDBkPEFJbas/ZeQgSD8AKMEIkJg+kIlYokRpUOi8qIiYQLxsVQD9EPjw+LUGQTg0QEhURTIw/LFkgQEEbDSgTBhwODRKqOjwbDicTCyENCw8BK10aDiUQESMPCg8t/fszWEAOIjwfi8QlM0ZAPyIiR2IHO2VZMTQpO09DfigiViQOHBJCaTFaHBYgDFGIUVEhI14FfDVnHE52Dh9LekdLsEAyERJP44EbDSgTBhwODRL9zjg2GQ4qEA4iDQsO/qxPeoU1J1lPQi9EJRS6fBxIL0c4XWhrrGUBTksBATI+RyIVN1YxB3ZTHBlaZ0N8My69cSJAJhIiD0R5VxEyOh0dSDgoIyw9XHQgLilQEx0ffWFwjUwMGhcbMxI0AgkJAiVZFeAXHQTDI2A0EXVwbwkDBPVRbWE+Qz1HGRtZLlOhTg0aDRERTJtTJTAE+gsnHRwQDh4wHRUptRItGh8WER0pGRMthzkvIyIZGiEVDhox/m4tPxkJB5BvNzMKWj8ZGFc7PkIoNVVUKysEBlMoKQICUYhTdVgRQyM5T/y0PSoKf1ErHUFCUIlVdGc9VBZMVCFnkAG9FTocEA4eMB0VKQM/Fy4ZIRoTHSYWES8ACQC0/qwJdAbMADEARwB5AH8AgwCRAJcArwDDAAAFIiwBLgE1NDYzMhYXNjMyFz4BMzIWFz4BMzIWFz4BMzIWFzYzMhc+ATMyFhUUDgEMAQMgJCYvAR8BHgEEMzIkNj8CBw4BBAEyLAE2NTQmIyIGByYjIgYHLgEjIgYHLgEjIgYHLgEjIgYHLgEjIgcuASMiBhUUFgwBAyc2NxcGBREzESUnNiQhIAQXByYkISAEBSYnNxYXASImNTQ2PwE+ATU0JzIWFRQGDwEOARUUJzQ2PwE+ATU0JicUBg8BDgEVFBYFFI7+yf7c7ItfRUhQAgUMmFUaQiNBcTcjYTg4YiI3cUEjQhpVmAwFAlBIRV+L7P7c/sqP/uH+edYVO1wtE9oBa+vsAWrbEi1cOxXW/nn+4cYBcwEprjEjKDMFGRdScCAjQCNPbT4sYT09YSw9bVAjQCMgcFIWGgUyKSMxrgEpAXPaL3WxF6MBEkb8YkOqAcsBSQFJAcuqQ53+V/7L/sv+WAR9a6MXsXX+I3OSdJ08V0Ahc5J0nTxXQERVZDyCYS0jVWQ8gmEuTy9agKNgSFphQgGNCw4/OycuLic7Pw4LjQFCYVpIYKOAWi/++1uWWv0sv057RkZ7Tr8s/VqWWwFTTICfUyUvV0UDSlIQDjpBJjExJkE6DhBSSgNFVy8lU5+ATAJCM2w8QjeyAQH+/yUsyLa2yCy2pqaLYjdCPGwBoHdjTH9EGiYtGSMmd2NMf0QaJS4ZI0InQysaOFo3Kz0IJ0MrGjhaNys9AAAAGQBk/t4JxAaaAB4AKQA3AEEATwBnAH0AiQCTAKkAvQDKANcA+AEFARMBHwEsAUUBUAFbAWQBcQF9AYYAACUnNhI1NAIkIyIEAhUUFhcHLgE1ND4BJDMyBBIVFAIlIiY1NDYzMhYVFCciLgE1PgIzMhUUDgEDIjU0NjMyFRQGASImJzceATMyNjcXBgQlIiY1NDY3PgQzMhYVFAYHBgAHDgEnMjY3NgA3NjU0JiMiDgMHBhUUFgEiJjU0NjMyFhUUBgEiJzcWMzI3FwYFJgIRNBIkMzIWFwcuASMiBAIVFBIXNwARND4BMzIWFwcuASMiBhUUFhcBIjU0PgEzMh4BFRQGASIuATU0NjMyFRQOAQEiJicuASc3HgEXHgEzMjY1NCYnJiQnNxYEFx4BFRQOAQMiJjU0NjcyFhUUDgEBIi4BNTQ2MzIWFxQOASUiJic0NjMyFhUUBgEiLgE1ND4BMzIVFAYBJzYSNTQmIyIGHQEnLgE1ND4BMzIWFRQCFyImNTQ2MzIVFAYBIiY1NDYzMhcUBgEiNTQzMhUUBgEiJjU0PgEzHgIVBgUiJic0PgEzMhYVBiciJjU0MxYVBgiLIYaElf7zs8z+y60SFEIdF3LPARilyAExrJ347RMfJw4JI60IJB4IJyYGCAoMUDQUGDIZA/Se8HE0ZdePhv1tPnn+4/zKW4YYGECyz9XGUGh7Qzq4/r6VKmhAKUYhqwFQrVZSQTeevMe/USRUAaUYICYWDiYjASGZhj5oeXloPob8NNneuAFL3YPwdTZn1HfD/tilyM2+/uFdp3BHiEMWO3NPhZ5yff5wMRYaBgkaEyEDjgcaFSsfJRYbAnkzXyt26W5CaeBxKUQmSm8iL3r/AH0qgwEOfDMuS3usCh4FAh83FBn7QQcjHTocCw0DEBQBAwogFyMUEBgPAZ8IIx0fJwsPEAJAUF9SgmR9lEsBAVyeYpGnWpEKGScTER/9YxQ0LRcSBAoC5CQsLCD+UxkwFhwJBxAMCgFaFjQLHiMJCRsJnw4mRxIYk1uuAYXcsgEKlJv+8LExYTI5PYBAl/m2Y6r+0sX3/kwjGBAPKyUKM4glLAoFEg8PDjctASkjIx4yFB77uD9GQEI1TUk7T1oCfl8mUCZk6eO7cIhfQWUjb/6j2T1CUCww+wFYajVPQ1RXnNDygTk4O1ICNi8TEiAmEhIq/tVEOC4uOEQFwQGuAQHUAUO2VV09U06b/uLG7f51tuIBEgEmbalhJytYLy2pgHfrdALfCgw1Lig1EgQG/bwjLQ0ICwgKMyv83zgyi/RnMGTugS4vaEwmUSxyulRHV8l3MG42SXZEAUguFQUQAwwGCiMcBN8eIwcIDAUDCykgBhATFSIiFg0V/qQmLQoGEw8dG0T9gR2DAQ2OfoGOlxEcBw8HbpRLt5iU/uEKNhUIDw0TQgM0MxYIEAklM/3tNiwuECQCNBgMDScfBywvDwbaEAkJIx1DGAfHIg00EzcZAAYA0v6sCVYGzAAbAC4ARwBqAHYAiAAAASIkJgI1NBI3PgM3PgQzMhIRFAoBAAQBIi4BNTQ+ATc+ASQzFB4BFwYEEyImNTQ+Ajc+Ajc+ATMyFhUUDgQHMiwBNhoBNTQCIyIOAgcOBAcOARUUHgEXHgEVFB4BASImNTQ2MzIWFRQGJSImJzY1NCYnPgEzMh4BFRQGBC3C/sTjepeNWMbJukxMgn2HoWbC2ITy/rb+dP6SdLdoMU4pL9cBL7AkOyFs/rsHPTs+Znw+So6BNTljKzk2TIm00uCLhgEZAQ/stWeqpTpRSl9KZ+Ln3MJNaWtiqGhbVEZpApk+WFc/PlhYAUwiQCIHMisOTSovQyUf/qyJ+wFc0sUBH1AyLBIXHh5jcGRA/rz+3uX+UP6O/umcAvxBcUk0gG4YHDAeL2VTFtDS/oM6KSs2LDUoMI+MKy4nOCksiJ2af02WX6zoARUBMJz3ARw1VWQvQUQgGCksPOKOgbBoFxM0OEtiMAQYWD4+WFg+PlhBEBkZIj13F01ZXZpeNEwABQCW/qwJkgbMAFYAiQCuAMwA8wAABSIuAScuAicuAT0BLgE1ND4BNxciDgEVFBYzMh4CMzI+ATMyHgEfAR4BMzI2PwE+AT8BPgE/AT4BPwE+AjU0Jic3HgIVFA4BDwEOAQ8BDgEHDgEDIiYnDgEjIi4CNTQ2NxcOARUUHgIzMjY3HgEzMj4BNwE+ATU0JzceARUUBgcBDgIDIi4BJw4BIyIuATU0Njc+AzcWDAEXHgEVFAYHDgMHDgEnMjY3PgI3JiwBJw4DBw4BFRQeATMyNjceAgEXAQ4BBwEGJi8BDgEjIiYnBwYmLwEuAjUBHgE3JRcWNwE2NwEnBXdMg4hVRqawVlB1PEJObSwIHEs4PkE7WGGNcB9dXR0iMT40KkRIJig4HBEhTikXP0YaGBk0LDwxTi4pJyMhOSM2VjFOHy4NIiB+X2PR4I7zRxktGkiVf00gElcNCkhzhDwRHBZL5nlJkI5EAgknKQtiDRIjKf5sitfLYmjMlRgiSCxxsmUlPC2nztRaqgGOAZ7ALBcJDkmxsp42UsBZU5A1cdrQYZ7+ff51q1fEwKEzDhBgm1YoWCsHdLQENjv+2QIFAv44CQsLUy1pOl3BUJgPEgsbdos8AXMGDAoCXssICAGUBQQBCCQ4PU0ZFRgfHx1KPQUXWy8/bUYFVC1JKSg8O0w7BQUKHyEaKholLhs1LAkFDiwqJykvFh4ZSV84MlQRSRBLXSs1e2cYJg8jFjg1RxKLlP7kdG8EAR1Ca040Uw0bHDEPLT4oEgEBX2MgRTcBrCBHKiEgZyRUJk9lJv6HgIo0A1tEckUJCTlyVypQOiyJn5g6H150Qw8wOBo0EFWrm30oPEC3KihUu8poN21hIzeOlIYwDScRLU0vCAo5XzgCEK/+cAMEAv7CBwIHOBkZNCgQAQoLHApkvI7+dAcEATqCBQYBGQMGAVxvAAYCpP6sB4QGzAARACEAMQBDAFEAYwAAASIkJjURNDYkMzIEFhURFAYEAzI+ATU0LgEjIg4BFRQeARciLgEnER4BMzI2NxEOAgcyPgI1EQYEIyIkJxEUHgITMjY3NQ4BIyImJxUeARMyPgE1NC4CIyIOAhUUHgEFFK/+5aalARqxsQEbpKb+5rBCbUFBbUJCbUFBbUJKloIsTNVtbdVMLIKVS2vDmVlP/uKzsv7hT1mZw2tBfjMzfkFBfjMzfkGO+JpZmsNqasOaWZr5/qxIfk8GAEx4R0d4TPoAT35IAaJBbUJCbEFBbEJCbUGTFygbA40RFBQR/HMbKBe/IDhGJwV5PElJPPqHJ0Y4IAOUCQhjCAkJCGMICQJ1NVYxJEM1Hx81QyQxVjUABAGa/qwIjgbMADoAaADfASAAAAEiLgI1ND4BNy4BNTQ+AzU0JjU0PgIzMh4CFx4BFRQGBw4CBw4CBw4BBw4CIyoBJxQOAQMuATU0PgI1NCY1NDY3ND4BMzIXBy4BIyIGFRQWFw4CFRQWFRQOAhUUFh8BMj4BNz4CNz4BNTQjIgYHDgEHPgE3PgI3PgI1NCMiDgIjIjU0PgM1NCMiBgcOAyM+ATc+ATc+ATU0IyIOAQcOAwcuAzU0PgI1NCMiDgIVFBYVFA4BBycuATU0JiMiBhUUBgcOAhUUFhciJic3HgEzMj4CNz4CNz4CNz4BNTQmJzY1NC4BIyIGByc+ATMyHgEVFAceARUUBgcOAgcOAwcOAwLAG2BlRjlOHgoINU1ONQJmq89pbIZPNh1QdFRhDVJoLippZiYlUSkhQVlIBw4IL0C6PUcyQjIjeGE/aDxdSjcZOR46WgQCNmZCIzJCMjky1DM4JhY0hM6iYm0LH3pQYbwsEVkmJnJ/Oi5iQwYKV4ekVhhRd3dRBwcZLB9bYlMXFx0IEQwWIU0KKVdHEgUgKCUJDhYQCSg0KAUuSDEaGxUxKQ8BAQIDERQiLCtSNlCPMEoSHBU8H0RuX1ctMIuXQR9RWy1NS1tQCF2eZD1wKig0hEd7w3EDVFJTYileXCgwe3lcERZRcY3+rEBbVxcUIDQxIz8cUn1mWVozH4RNeO/EdkJhYB1SwHJ4s1g0ZVMZFxYUFRRUSTxULAEqaEwBSjmKP0N8eHpAO4ZJd8ouPWg/RToXGFw2CxQIDGSOTEh8RkaBenY6LWwvOz1YJ1pyUSUXMxAIJRMWHgspXBUVGxwVETQuBwQqNioLBjRTaHU7FB86KVhLL0NmLlphNVBJDAhlsnIfX15CAhRVZlwZW4hdMwcEVoKGMFSnTkFTQyvjEFs0Ny2IemGUQ0JdVDY8Q68PB0sHCkBaUxQWDBkpFGBsJT63cmulJT0lbaxlOjNIOD170YIdHTi8aXfaUyJxaBccIBMMCApSY0kAAAAABADq/qwJPAbMADQARQBqAIAAAAEiJC4BNTQ+Ajc+ATc2EjcXBgIHDgEHDgMVFB4BBDMyLAEaATU0Aic3HgESFRQKAQwBAS4BNzYSNz4BFxYHBgIHDgETIiQmNTQ+ATc2JDMyHgEXPgEzMhYVFAYHDgEVFAYjIiYnDgEEAz4BMzIWFxY2NzYnLgEjIgYHDgEXFgRkt/6+9os+W14fEScWMpBrVm+XNRwnEBtYWT2A4AElpbMBUwEm333y1xac6H+G7f7G/pX+JREPBzagSgshDiAZU5EuBh/wk/79oGSZUeIBP4Z5w4ATESQdJlULFgcDHiA5bhVM/f7CIT6ITDVpNBEZAwgXMnVJTJJLEAwGDP6sXqXXejhbUFMwGkguZQEAdBZ2/vtsOUYYKlNQSyNnu5FTdM0BDwE4pN4BQD9NLcD+7qux/rD+3tx7Av4GHRKPARRvEAULGiN1/vd+EA4C8x0tFhVMWilyf1yBOhINJCMNGiMMJzEcDUUuKEMnAQcUFgwMBAkNJAkUFR0dBhkOHQAAAAAXASL+rAkGBswAZQBpALkAxQDPANkA5QDvAPkBBQERASEBMQF7AYcBkwGfAakBswG/AckB0wHfAAAlIiYnJgoBNTQ2PwE+ATMyFhc+ATMyFhc+ATMyFhc+ATMyFh8BHgEVFAoBBw4BKwE1MzI2Nz4CNw4BBxwBFRQGIyImJw4BIyImJw4BIyImJw4BIyImNTwBNS4BJx4CFx4BOwEVBREzEQciJicOASMiJicmAicXHgIXHgE7AQcuAjUzFB4BFx4BMzI2Nx4BMzI2Nz4CNTMUDgEHJzMyNjc+Aj8BBgIHDgEjIiYnDgEjIiYnDgEBIiY1NDYzMhYVFAYXIiY1NDYzFw4BFyImNTQ2NxcOAQMGJicmNjc2FhcOASciJjU0NjMyFhcBIiYnNx4BFRQGJSImNTQ2Nx4BFRQGAS4BNz4BFx4BFw4BEyIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEDMjY3HgEzMjY3HgEzMjY1NCc+ATU0Ji8CLgEjIgYHPgE1NCYjIgYHLgEjIgYVFBYXLgEjIgYPAg4BFRQWFwYVFBYzMjY3HgEBIiY1NDYzMhYVFAYXLgEnPgEXHgEHDgEDLgE1NDYzMhYVFAYlLgE1NDYzMhYXASImJzcyFhUUBgEGJic+ATc2FhcWBjcnPgEzMhYVFAYXJz4BMzIWFRQGFyImNTQ2MzIWFRQGAgJITgoSHRF5UwIKn30JEwoLlWpAaSUlaUBqlgoKEwl9nwoCU3kRHBMKTkgxKS0oBA0WEQURKBWBeBo5ICeAYFFtHRxuUWCAJx86GniBFSgRBREXDAQoLSkCuVD0YYsgBw4IdpMOGRkGUQQQFQkLb1I1KQwUC04JEg4OeklHbBkZbUZKeg0OEglOCxMNKTVSbwsKFBEDUQYZGQ6TdgcPByCKYkBpIyJq/bcnNzcnJzc3nD9Aj2xFH2XyNUMaIeEcVBwcRQ4PKBwpYxgKN+Bffj08N1kZAiA0Ux3hIRpD/uguJ0AVFUAm/vsUGg0MLxMdJwcRR7aL2Hx82IuL2Hx82It1tGZmtHV0tWZmtWdKbyIib0pNdR4lQR5hYARQVltTFwUHeWcTJSgCAXBWRGogH2tEVXEBAigkFGd4CAUXU1tWUARgYR5BJR52ASciKysiIisrqSk3ChhjKRwoDw5E6A8xHiIjHTH+7yAYQTQySyMCNz1lH0Vsj0D+hSBHEQgmHRQuDA0aGN0jSzI0QRhgRRlZNzw9fvQnNzcnJzc3GW89dgEpASt5ZW4WGXqUAQJNajAmJjBqTQIBlHoZFm5lfP7W/tl2PW9QQBpXzd1rER4MBQwFbYwHB1ZdOCUlOF1WBweMbQUMBQweEWvdzVcaQFD0AqL9XnlUQQEBfV6mATalHl7Rxk5cUApk8PBjW+PlYVtQMSoqMVBbYeXjW2Pw8GQKUFxOxtFeHqX+yqZefQEBQVQjHR0jBPU3JyY3NyYnN/M9LkdLiS9FmzcwIzsTWkQ6AW8NDSgqOQoQHAsYU+VHQy47RS/9GjpEWhM7IzA32DcdMFYTE1YwHTcBfwgpHBsKCg5BEgYN/gdrunZ2umtrunZ2umtOVpdgYZZWVpZhYJdW/t06NDQ6VGAKCFliHRwgcUxJVQ4EQ2F0BQsLFgo/Vz8vLz9XPwoWCwsFdGFDBA5VSUxxIBwdYlkICmBUAmwlHBwlJRwcJXoTUxgLHBAKOSooDQEnCS0WEyMjExYtjxc/JDU6N1P9G0UviUtHLj0BvAwNBhJBDgoKGxwpwl9TNzo1JD/Rfy9FOy5DR9k3JyY3NyYnNwAAAAAdAFr+3gnOBpoAEwAdACYALwBdAH8AigCTAJ4AqQCyALsAxADNANYA6gD4AQYBDwEYASEBKgEzATwBRQFOAVcBYgFuAAAlIiwBAjU0EiwBISAMARIVFAIMAQEiNTQ2NxYVFAYFIiY1NDY3FAYnIiY1HgEVFAYBIiYnLgEjIi4CJxceAzMyFhceATMyNjc+ATMyPgI/AQ4DIyIGBw4BByAsAQI1NDY3Fw4BFRQSDAEzMiwBEjU0Jic3HgEVFAIMAQEiJjU0NjMyFw4BASImNTQ2NxQGFyImJzYzMhYVFAYBIiY1NDYzMhcOASc0NjMyFhUUBgM0NjMyFhUUBgEiJjUeARUUBgEiJjU0NjcUBgEuATU0NjMyFgMyLAESNTQCLAEjIgwBAhUUEgwBEy4CJz4BMzIWFw4CJz4BNwc0JiMiBhUnHgEBIiY1NDY3FAYBLgE1NDYzMhYBNDYzMhYVFAYBIjU0NjcWFRQBIiY1HgEVFAYBLgE1NDYzMhYBLgE1NDYzMhYnIiY1NDY3FAYnNDYzMhYVFAYBIiY1NDYzMhcOAScuATU0NjMyFhUUBgUU/f5J/rS6tQFIAbkBBAEEAboBR7W6/rT+SfuANB0XNB0BKBQeVjQ1iSM1NVUeApZijTgyWC6X97RkA0oLYqHUfT9sMDh6UlN4OTh5SHfElV8SSgRgrOuQNWg5N45i/vn+Uv7Kpx4SMwoJoAEjAY/w8AGPASOgCAszEh6n/sr+UvuWHCAhGzs5GEAB/RQeVjQ12RxAGDk7GyEg/nMcICEbOzkYQPI1IxQeVXs1IxQeVQNsIzU1VR79bhQeVjQ1Ao00Vh4UIzX48AGbATOsqf7P/mT09P5k/s+prAEzAZvwZ4xoMQXMu7zMBDFojGdkoTQSnomInxI1oAJEFB5WNDX9Dy5OGxIgLwJqNSMUHlX+Ci8aFS8DKiM1NVUe/bUuThsSIC8BvzRWHhQjNaYSG04uL88wHxIbTQHfHCAhGzs5GECPFhscGBccHGZ21AEeqK0BJtl4eNn+2q2o/uLUdgKSPBtAGTc9HCD6HxQhOAI7U75TOwI4IRQf/NoyHBkfSH+mXTRBdls0JRgcLS0cGCU0W3ZBNF2mf0geGhwyuHnbASWrMV8tWyUrEp7+98Jra8IBCZ4SKyVbLV8xq/7b23kFIB0YFxw2Fhz+PB8UITgCO1NsHBY2HBcYHQFAHRgXHDYWHJ47Ux8UITgBAjtTHxQhOPz8UzsCOCEUHwLQHxQhOAI7U/4CAjghFB9T/ftswAEAlJsBCMRtbcX++ZuU/wDAbAKMJS0dDF9lZV8MHS0yIS8KDyAtLSAPCi/+CB8UITgCO1MDjAIzHRIcS/05O1MfFCE4Ai02GDoWLzk2/YFTOwI4IRQfAocCMx0SHEv+XAI4IRQfU+QcEh0zAjVLljVLHBIdM/4tHRgXHDYWHL8YPxwdICEbHD4AAAAACQBz/n8JtQb5ABUAKAA7AFAAXABnAHMAhQCXAAATNBIAJDMyFhcOAQcuASMiBAACFSIGASIkJiceARcWBDMyNjceARcOAQEmJCY1NDYzMhc+ATMyHgEVFAYBIicmNTQ+ATMyFhc+ATMyFhUUDgEBJz4BMzIWFwcmIyIBIiYnNxYzICUXBAMnPgEzMhYXByYjIgEuASM+ATU0JiceATMeARUUBhMmJCY1NDYzMhc+ATMyHgEVFOicARsBfOB42GUSIw1Su2vL/qP+/JEPLQP+jf706VsiQiJ3ATWrOXZFBQ8IToP9orf+6pyAYzxJJX1LRGs+aQPbTFaBRXZKU30aEycUa4mH7fs3OC12QkJ2LThFaGgBvly3Wg6rtAFkAWEq/ozSOC12QkJ2LThFaGgCwRAwEjIxDAsUKBYLCi0MvP7slXtkQUAkeklCaj0CueABfAEZmystDCAQIyGQ/v/+qscK+/JCflkHCQJZYw4NESYRDhABUwdrtHFifRtcZ1CLV3fs/fAM7sdjnVx6cQQEe19pnlkFQjBBR0dBMGj9aB0fTzvxRP0CMDBBR0dBMGj80AcHbdVzO2w+AgI8azp01gJ7B2mxc19zGFllT4dU1gAFAQT+egkkBswAKwB+AJ0AqgC3AAABIiYnNxYyMzIkABI1NAIAJCMiBAACFRQSFwcmAjU0EgAkMzIEABIVFAIABCUyPgM1NCYjIg4BByc+AzU0JiMiBgcOAgcnPgM1NCYjIgYHDgMHJz4DNTQmIyIGBw4CByc3PgE1NCYjIgYHDgEHDgEVFB4BFyIuATU0Njc+ATc+ATMyFz4BMzIeARUUBgcOBAEnPgEzMhcHLgEjIgYFLgEjIgYHJzYzMhYXBRQkRyNaDRoNxwFcAQiVlf74/qTHx/6k/viVbGAIgJShAR4BedjXAXkBHqKi/uL+h/3AR7CwlFoMCgw1WkYbQ3VZMxALBRAJK2V3RR5RknBAFRASNUQcTldVIyBJfF00GBQQPkArU2tRFRQOCxcUFC8eD0wyQTlfpWd9yXVESC9JDSlPLz8iOYZDjN2BPC8QbJ63u/7aSDfQfCUuEBQgD2apBEwsqWYPIBQQLiV9zzf+rAUFRwGVAQgBXMfHAVwBCJWV/vj+pMeo/tJ6cowBac3YAXkBHqGh/uL+h9jY/of+4qEeLktZWCIJDBgwJDweQ0M5FAsRBQcgQUAiQiVXV0waDhQiOhgzMi0SQyVJQzgVERkaIxgnJxklLiArEx0kMDsdaj9Shkhck1VQardzVqFbPGUZTUg1KSJ2yHtSlzExamFOLgT9JG1+Ck4FA2ZZWWYDBU4Kfm0AAAYBBP6sCSQGzAAqADgASABUAGAAbAAAASImJzcWMzIkABI1NAIAJCMiBAACFRQSFxUmAjU0EgAkMzIEABIVFAIABCUyNjU0Ji8BBw4BFRQWFyIuATU0NjcbAR4BFRQOAQEiJi8BHgEzMjcXBgEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgUUeeRmcKOwxwFcAQiVlf74/qTHx/6k/viVmIKmxKEBHgF52NcBeQEeoqL+4v6H/WBTbjUjaWkiNWtVTXlFPCapqic7RnkBfEWHQjdQoFXTxyzZ/bM0Sko0NEpJAos0Sko0NEpJ/qw2MSc+lQEIAVzHxwFcAQiVlf74/qTHx/6ig22PAZnt2AF5AR6hof7i/ofY2P6H/uKhjXJXRI1Cy8tCjURZcEtIfU9Oo0gBPP7ESKNOT31IAcgYGXEqKIVDkgJCWD4+WVk+PVlYPj5ZWT49WQAAFQEE/qwJJAbMACIALgA6AEcAUwBtAHsAhwCTAJ8AyADWANwA4ADtAPkA/gECAQcBCwEXAAABIiQmAjU0EjYkMzIXBy4BIyIEBgIVFBIWBDMyJDY/AQYCBCUiLgE1NDMyHgEVFAEiJjU0NjMyFhUUBgUiNTQ+ATMyFhUUDgEDIi4BNTQzMh4BFRQBNTI2NTQmJz4BNTQmIzUyFhUUBgceARUUBgEnPgEzMhYXBy4BIyIGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGEzUhMjY1NCYjIgYVFBYzMjY1NCYjNTIWFRQGIyImNTQ2MzIeARUUBiMBLgEjIgYHJz4BMzIWFwUnJic3FiclJwUBIjU0Njc2MzIVFAcGASI1ND4BMzIVFA4BJyQDARcDJTcFAxMXARIBJTcFNyImNTQ2MzIWFRQGBRSw/szpg4TpATOwiYRFMmQynv7s0nd30gEUnqABHNc3XDfw/rr8gBQxIhMVMCL+/yU2NiUmNTUB3BMjMRMMByMwuhQxIhMVMCICMikyExsVEi0nRFUOERQTXP4mTBRpRERpFEwNPykoPwSEFh8fFhUfH/pjLD8/LCw/PwHnITkeGCM3HsQCbWiBWEE2QjYpGiIgFy9DRTJCXGlOPGM7p4P+6g0/KSg/DkwUaUREaRQBTU0SLTFEMv4oFQH7/TogJyA/Lh1FPQMEGDA/FxgvP6f+WrUDEyqa/dM5AgGHzQ79WJsB3/7AOQEVOiw+PiwtPT3+rIPoATOvsAE06YQsQA4OeNP+6Z+e/uvTd33ilgev/veUXi4+FxguPhcYAUAWEA8XFw8QFhMXGD4uEQgYPS0BGC49FxkvPhcX/q5GKRwWJxoXKBQaJUZFNRYpGRkuGjdQAoIVT19fTxU2PT38VjUlJjQ0JiU1Bk0wISEvLyEhMP6ZOyMYIjsjGSH8z0FnUkRdQDIuOiAYFyE6QjAxQ15GS2g9Zz5ujAG/Nj09NhVPX19PFwJpX0N93D0/QQFVGxQ8GTMbLjsz/WsTFjEiFBQxIzRMAZUBlC3+S0g2Q/6EAuUR/pz+3gG2KTYkTz4sLT09LSw+AAkBBP6sCSQGzAATAB0AQgBRAFkAbQBzAH8AhwAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzYzMhcHJiMiASIuAiMiDgIjIiYnMx4BMzI+AjMyHgIzMj4BNzMOAwEiJjU0Nj8BPgEzMhUUBiUnPgE3Fw4BATIkABI1NAIAJCMiBAACFRQSAAQBJic3FhcBIiY1NDYzMhYVFAYTLgEnNx4BFwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of8bx5pbRwcCBkaWwN3OXp6bSwkNTNAMFtiBVEDNTkmNDFAMTh2d3AxN3RTBFEDPmN1/UI2TCsxFDobEDdS/swSc4wqOjGiAevHAVwBCJWV/vj+pMfH/qT++JWVAQgBXANCJ4QGszv+VjRKSjQ0SknyJINwGHqZKf6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAnxJMQNQA/7nLDkrHykfhnxcVh8pHys5LD5bLDFiUTECcVg/DSAWCRoJYUNi8EQeVUAmS2T7QJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQHfYQlQCpABrVg+PllZPj1ZAQ1DYClCLXJPAAAOAH3+egmrBswAFwAeACwAOgBOAFIAaAB0AHwAjQCZAKAArgC8AAABLgE1NBIAJDMyBBcHJiQjIgQAAhUUFhcBLgEnNxYXJTI2NTQmLwEHDgEVFBYXIiY1NDY3GwEeARUUBgEiJjURNxEUFjsBMjY1ERcRFAYjAxEzESUuATU0PgEzMh4BFRQGBzUuASMiBgcRIiY1NDYzMhYVFAYBJz4BNxcOAQE3NgASNTQmJzceARUUCgEEAyImNTQ2MzIWFRQGEyYnNx4BFxMyNjU0Ji8BBw4BFRQWFyImNTQ2NxsBHgEVFAYBFAoImwEZAXrf6wGRji6D/obfzv6j/v2PAgMCwqz6YD+k6f3GZnIuM3d2NC5yZoWjNTq5ujo0ogLdq9BQookOiqFQz6wlPP6CTFCK54uM5opQTFqtWVmtWjRKSjQ0Skn+hwx0kjA3OKoDLC3EASWjAwJNBQNxzv7jVDRKSjQ0Sknl1WE3LIBk6WZyLjN3djQucmaFozU6ubo6NKICAjZZK94BewEanbaeQZmskP78/qLOFy4d/GwtlmQyqkrhaF07ek62tk96Ol1oUJh9RJJZARz+5FiSRX2Y/r6ykQFwDP6EcIODcAGADP6MkrEBRQGi/l5VIlArPGM7O2M8K1Ai4yIiIiIBsVg+PllZPj1ZAXtFFEg9K0dW+ppfPQEFAW7aHDcbHiJGJLv+uP74tgOtWD4+WVk+PVkBgy1+KzdGFf7baF07ek62tk96Ol1oUJh9RJJZARz+5FiSRX2YAAAAGwBa/noJzgb+ABYALgBeAGUAagCCALIAtwC7AL8AwwDHANUA3QDhAO0A8QD1APkA/gEDAQ8BLgFMAWQBlAGcAAABIiQnNxYEMzIkABI1NCYnNxYVFAIABAUvATcnNyc3Jz8BFzcfAQcXBxcHFw8BLwE3FzcnNR8BNyc3JwcnNxc3JzcnDwE1NycHJwcXFS8BBxcHFzcXBycHFwcXPwEVBwMuAScXFhc3NSMeASUvATcnNyc3Jz8BFzcfAQcXBxcHFw8BLwE3FzcnNR8BNyc3JwcnNxc3JzcnDwE1NycHJwcXFS8BBxcHFzcXBycHFwcXPwEVBwUzNQ4BFzM1IzUzNSMTMzUjNTM1IwMiJjU0NjMhMhYVFAYjAT4BNxcOAQcBMzUjASImNTQ2MzIWFRQGATM1IxMzNSM1MzUjEz4BNyM1My4BLwEiJjU0NjMyFhUUBgEiJjU0PgIzMh4CMzIWFRQGIyImJw4BIyImJw4BJzI2NxYzMjY3HgEzMjY1NCYjIi4CIyIOAhUUFgEnBy8BNyc/ARc3FzcXNx8BBxcPAScHLwE3JzcXBxc3FzcvATMXNyc3JwcjPwEnBycHFwcnNycHJwcfASMnBxcHFzczDwEXNwMuASc3HgEXBRqT/u90BXABCpTFAVQBAJAHBkwRm/7r/pD8Q0hfCCQaGiQIYEcbG0hgCCMZGSMIYEgbGRkZHSFBDCcHIAouQUEuCiAHJwxBIR0ZGR0hQQwnByAKLkFBLgogBycMQSENTG0bWDiP6oIIRv5ZYYELMiIiMgyCYSYmYoELMSIjMguBYiYkJCQqMF8ROQsvD0JfX0IPLws5EV8wKiQkKjBfETkLLw9CX19CDy8LORFfMAGBgjRGtqCgoKDcoKCgoPhmhYVmA2xmhYVm+ocdWz0zLkoZA4qgoP6CNEpKNDRKSQFJoKDcoKCgoNw1RgiDgwhGNXY0Sko0NEpJ/CFpiFucxWlMhn5+RI6Nhm4mTS1As1sMFw1KtVBLqkwbJE2iUEFKI0xTX3FOdW5/WFimhE5WBVgQNyZnJydnJjcQjo0ROSRoJyhoJjgRjGlAFT08Ez8RNRBIPno1LyYmLzV5PkcQNRE/Ezw9FUAPNhFJPXo1LiUlLjV5PUgRNlUoYzEnMmQr/qxOR1pMU5MBBAFYxSlRJxdbXdT+i/7loDJIGSQLYmALJRpIGRlIGiULYGILJBlIGSwXFx0gTCUuCyIJJwwmJgwnCiELLiVMIB0XFx0gTCUuCyEKJwwmJgwnCSILLiVMIAFAXNx7FdelUYQ1R+1hIjQPg4MPNCJiJCRiIjQPg4MPNCJhJCoiIiovbjZCDzEOORI3NxI5DzAPQjZuLyoiIiovbjZCDzAPORI3NxI5DjEPQjZuL62ECEf4hzyH/raHPIf+cIVmZoWFZmaFA5Jeqks/PYVK/KyHAZ9VQUFWVkFAVv6dh/62hzyH/rkIRzU8NUcI31VBQVZWQUBWAfFlT1GYeEYMEAxTU1VlDQ09RgIBMjtQPDQGRkIRDjgyLycMEAw6Y3tCKzb+OTcNjmcqKmeODTYmJjYOkGUrKmeODTYmHhFIaWhJETQMPhRqNi4nKS02ahNADTQRR2loSBE0DUATajYtKScuNmoUPgwBnihNHj8dTykAAAAADAEY/qwJEAbMACAANwBAAEoAZABtAHcAgwCWAKIArAC5AAABIiQmNTQ+ATU0LgI1NBIkMzIEEhUUDgEVFB4BFRQGBAkBJjU0PgIzMh8BFScmIyIOARUUFwEnJjU0NjcVDgEnJjU0NjMyFw4BByImNTQ+ATMyFg8BJzc2JiMiDgEVFBY7ARcFJjU0NjMyFwYnJjU0NjMyFw4BASImNTQ2MzIWFRQGBTYkMzIEFz4BNTQmJCMgBBUUFiUiJjU0NjMyFhUUBgEiJic2MzIXDgEnLgE1NDY3FhQVFA4BBbbI/tKoGBgRFxGrATDFzgErohYWNjWs/rz8n/5jFTFMVCMbEMXhBwsbUT8HAXpICz4tFDjxCTMkEgwfQKMzR1aAPz5FCAM7AwQmIitjRyMZGQIBBgo+KhUQWG0JNCUUDR4/AhgmMzMmJjIy/tN4ARSMkwEgcRQRff7/x/7m/uYLAyYmMzMmJjIyAWorWClYeVdXL2vtAQOIgQJFdv6sVJlnNWNvRz/B0rQz1QE/scH+pOeo9LFDRWJXNGebWAFgAY0UHyNQSC0PuVLVBj9RHA0H/pZ3ExkqOQMrCTvSERMjMAYVQy1PNz12T08+GAgYHitAWysdLTyIEBgpOwk+EQ8VJjIHFUEBbTgoKDk5KCg48mNhZ100Xjm2y1LP3UN3ujgoKDk5KCg4AiwYFmE2LisTDh0Pc7opChgJV4xlAAAADQD6/qwJLgbMABMAQwBQAGkAeQCjALcAxADfARcBJwFAAVsAAAEiJAACNTQSACQzMgQAEhUUAgAEASInNw4BIyInNjcmNTQ3HgEzMjY3HwE/AR4BMzI2NxYVFAcWFwYjIiYnFwYjIicGAy4BNTQ2PwEOAhUUASImNTQ+ATMyFxYVFAYjIiYjIgYVFBcWBhMyPgE1NC4BIyIOARUUHgEBIiYnLgE1ND4CPwEWFRQOARUUFjMyNjU0LgE1NDcXHgMVFAYHDgEDMiQAEjU0AgAkIyIEAAIVFBIABAE2NTQuAScXHgEVFAYBJwcuASc+AzMyFyYnNjMyFhc+ATcWFRQGASIuAScuASc1Mjc+ATMyFhcWMzI2MzIWMzI3PgEzMhYXFjMVDgEHDgIjIi4BJy4BIyIGBw4CJTI+ATU0LgEjIg4BFRQeAQMiJjU0PgEzMhcWFRQGIyImIyIGFRQXFgYDLgE1NDceARc+ATMyFwYHNjMyHgIXDgEHJwUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of+ZTM8Iy44GFw8MxxeHg04Mx4+H223uWkgPx40OA0dXRwyO10XOS4kPDRnXV1uBAQWDRceOSb+PxEQPWY9IhsTDw4IHQ5DYQMDEblcl1pal1xbmFpamAJpOGMeQ0w2SkAKJgsqKmBBQWAqKgwlC0BJNktDH2I5xwFcAQiVlf74/qTHx/6k/viVlQEIAVwBkkslOR8XDhUE/hLvvUZePxswMDolJTIXRjgyTHscGS0WORP+/WGmcRMcQyJOSS3LfX/SLA8PGT4cHT4YEA8s0X9+yyxKTSFEGxNypWJosHEJF0MiIkIYCXCwA7Ncl1pal1xbmFpamFwRED1mPSIbEw8OCB0OQ2EDAxFHFBQ5Fy0ZHHtLMzdHFjQjJjowMBtAXEe9/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEBaxdAEw9NCh4xUi8uPTonGTaCfjwZKTo9Ly5SMR4KTQ8TQBdUVAFAEB0QM3g9Zjh0ZydAAeMgHj5mPAgGFQ0SBmBEDhENEv72WZZaW5VZWZVbWpZZ/l9IOAhJNzqCj5pSAiExTbOwS0xxcUxMsLJNLiQCUZqRgjk3SQg4SP5clQEIAVzHxwFcAQiVlf74/qTHx/6k/viVAlsRQCdndDhmPXgzEB0DSzYbAyg0BikvIxxFNw06OBMrG1lnJ0j9KVSSWxIbB5Ama4iRfQUaGgZ9kIhrJpAHGxJbklRisHYdHR0ddrBiRlmWWluVWVmVW1qWWQEKIB4+ZjwIBhUNEgZgRA4RDRIBZyBIJ2dZGysTODoNOUMcIy8pBjQoAxsAAAANAQT+rAkkBswAEwArADUARQBTAF8AZwB7AJQApACyAL4AxgAAASIkAAI1NBIAJDMyBAASFRQCAAQBMjY3DgEjIgYjIi4CIyIuAiMiBx4BASInNxYzMjcXBgEiLgE1ND4BMzIeARUUDgEDMj4BNTQmIyIOARUUFgUyNjU0JiMiBhUUFgEnPgE3Fw4BATIkABI1NAIAJCMiBAACFRQSAAQBMjY3Ig4BIyIGIyIuAiMiLgIjIgceARciLgE1ND4BMzIeARUUDgEDMj4BNTQmIyIOARUUFgUyNjU0JiMiBhUUFhMuASc3HgEXBRTc/ob+5Z+fARsBetzcAXoBG5+f/uX+hv2AXI4mHDsjHCkdGRQOICUdHRUjJBIbGpYCA6OfK4uMjoksof26XppbW5peXppcXJrNLl0/RDEvXT1EAQYWHx8WFh4e/s0UaoQoQjCbAg3LAV0BBpKS/vr+o8vK/qL++5OSAQYBXQJvYpkiIywrIx4hHRsNBRopHh0VIiQSGxqWX16aW1uaXl6aXFyazS5dP0QxL109RAEGFh8fFhYeHpF5mzBCKYNq/qyfARwBetvbAXoBHJ+f/uT+htva/ob+5KAC22RhHBwaCAsIFh4WDFtx/o9uQmBgQm4BNVuXWl6aXFyaXlyXWQErOlgsMUc6WC8wRTceFhYfHxYWHgHdTh1OOy1GYPq/kgEGAV3LywFdAQaSkv76/qPLy/6j/vqSAot0cSYnHQkLCRMaEwxbcTxbl1pemlxcml5cl1kBKzpYLDFHOlgvMEU3HhYWHx8WFh4B3SFgRi07Th0ACwEE/qwJJAbMABMAHQAtADkARwBPAGMAcwB/AI0AlQAAASIkAAI1NBIAJDMyBAASFRQCAAQBJzYzMhcHJiMiASIuATU0PgEzMh4BFRQOATcyNjU0JiMiBhUUFicyPgE1NCYjIg4BFRQWAyc+ATcXDgEBMiQAEjU0AgAkIyIEAAIVFBIABAEiLgE1ND4BMzIeARUUDgE3MjY1NCYjIgYVFBYnMj4BNTQmIyIOARUUFgEuASc3HgEXBRTY/of+4qGhAR4BedjXAXkBHqKi/uL+h/5wInBra3AiWl9f/s9RhE9PhFFRhU9PhQ8SGBgSERkZtihUOTosKVQ4PHkNc5EuPzetAhrHAVwBCJWV/vj+pMfH/qT++JWVAQgBXAJXUYRPT4RRUYVPT4UPEhgYEhEZGbYoVDk6LClUODwBm4CsOD8vkHP+rKEBHgF52NgBeQEeoaH+4v6H2Nj+h/7ioQFqRzQ0RysBO0+EUVGFT0+FUVGET7QZERIYGBIRGVA0TigpQDRPKio8AahPFEc8MEhX+r2VAQgBXMfHAVwBCJWV/vj+pMfH/qT++JUCgE+EUVGFT0+FUVGET7QZERIYGBIRGVA0TigpQDRPKio8AagXV0gwPEcUAAAAABIBzP6sCFwGzAB8AIAAhACIAIwAkACUAKIApgCxAMgA1gDaAOIA5gD2APoA/gAAASImJy4BIyIGIyImJzYSNzY/AScmNj8BJyY/AScHJz4BNz4BNxYzMjY3HgEXHgEXByc3FzcuAScuASc3DgIHFyc+ATcXDgIHFyc+ATcXDgIHBgoBBxYzMjYzMhYXHgEzMjY3PgEzMhYzMjY3AzcBDgEjIiYjIgYHDgEBJzcXBSc3FwEnNxcBJzcXASc3FwEnNxcDJzYkGgI3FwYKAgQBJzcXATc2ABITFwYKAQQDNzMXJz4BNxcOASMiJicXDgIHDgEHASc+ATc+ATcXDgEHDgE3JzcXAS4BJzceARcBJzcXEyc+ATc+ATcBNwEOAQcOAQMnNx8BJzcXBOtGZCQWJhEVORNGZ0MiMQoBFh8oCQwXJiYNGkwNmupTfTs+c1SBWzBpQ1eLRk15Pe5yF06gLnUzL6Vuaji674grPlu5RSo5kI02MjBcsDwrNYWKPgobHxJKVxQ1GBkyHCNYOTlYJB0wGRg0EytIJusyAQ09eDgTNxURJRckY/5OQkJDASZBQUP+bS4uMAKLQ0NC/ew1NTb+QsMlyE4DhgEJ8MOCFTIWic37/usB4zs5Pv1zA8UBPtktNiSb3f7yzoJGHzN22D4ZCiElZIkcZkBrUh41bjsEghAeOx0xeTcTPHsjKjpYPz9A/UN1tCkpL5xnATc1NTaxFBUsGDV5T/7jNgE2YZY7GS+eMTAwICrLJf6sIRELDgQjJt0BsucfDRJ7HCINFlwgEzY3ePZlgS4wMREoExUVPzU5h1rvTT8znUJ2JSNXCiha2+Vrbgw6iToxMm5iIJweOHc0My1gViGg/tr+9nYoBRENEB4eEA0RBRIUBFp3+wMhIgQOCxEhARNOUFCZTE5OAXs5OTn+S05QUAHYQkJCApXOJdT7oTgNqwEUAVwBgb8axf50/pr+5qsCVEpHR/5zQWoBZgHSAQwU0P59/rf4As9pgRNf0k0GFBdkXikKHyYYKmtI/DI4ECQTIEcTNhZHGBwk2U1MTALNBX9zE21uBf5eQkJC/LQ5CxsQJEcjAqwT/SEoVSgQHAQbPDg5ux/RJQAACQFA/qwI6AbMABUAJgAqAEAARABVAG0AcQCVAAAFAzcTPgE3Ay4DJzceAxcTDgEBIi4BJxoBETMUAgMeAjM3ATUzFQEuAScTPgM3Fw4DBwMeARcTFwE1MxUBNRcyPgE3CgE1MxASEw4CJxM2AicuATU0NjMyFhUUBgcGAhcTJiMiEzUzFSUBNxcnPgIzMh4BFwc3FwEnASc/AQcuAiMiDgEHJx8BBwEHz/Mz+RpMIaIkSVyBXA1smW1SJas3nvzOUbywQhQVTw4WL4eSPyT+4Lj94EOfN6smUW2ZbA1cgVxJJKIhTRn5MwJjuP7gJECRhy8WDk8WE0Gxu94kBSMZDw49TE08Dg8ZIgQkMSgnwrj+ev6oihapBWizdHWyaQSpFor+qDYBLmMGpSsEWJFbW5FXBSulBmMBLi0C+Gj8+QQaEALfpNaGUyFXKWSX6a786iU2/tQLGBMBLAJcASGz/bD+mQsRCAkB5EtL/ukFNiUDFq7pl2QpVyFThtak/SEQGgQDB2j+H0tL/cJaCgkRCwFnAlCz/t/9pP7UExgLNAQ4jAE1f05mJj5ISD4mZk5//suM+8gMA49LSyQB5JEpGobNdHTNhhopkf4cNAGrZU0cPGulXl6lazwcTWX+VQAACACl/3QJgwYEAD8ATQBbAGkAhgCjAM4A/QAABSIuATUXLgInIyc1NzM+AjMyFhceATMyNjc+ATMyHgEXMxcVByMOAgc3FAIGIyIuAS8BLgEjIgYPAQ4CAz4BLwEuAQcOAR8BHgE3PgEvAS4BBw4BHwEeAQE+AS8BLgEHDgEfAR4BEzI+AT8BPgEzMhYfAR4CMzI2NTQmIyEiBhUUFjciLgE1NDYzITIWFRQOASMiJi8BLgEjIgYPAQ4BATQ2MzIWFx4BMzI2Nz4BMzIWFRQGByM+ATU0JiMiBgcOASMiJicuASMgEQUnPgE1NCYjIgYHDgEjIiYnLgEjIg4CFSMQACEyFhceATMyNjc+ATMyHgEVFAYDHYfFaykmNx8CNTc3TRpxmFVBmk9SpFNTpFFQlz1Ym3IaTTc3NQIfNyYycMqIVY95NRUYHxgYHxgVNHqPPBANCV8LIQ0QDQlfCyGfEA0JJgwgDRANCSYLIf7ZEA0JDwwgDRANCQ8LIZhGdWUtFiU8MDA8JRYuZXZGsL7Eufw0uMW/r1d+Q5yLA8uMm0N9V2B+PQwlXU1MXSYMPH7+GtC7TX45NWg3W5VEQYBLp64CAlMFAoCFSX0+RJZiOmk7M3tM/sYHLUgaEOrdT307QYVQQ4I+OnI7grt3OFABFQEnPng8Pns/SXk8P4tVpPCDGIyD8KI4E0pnPUhoSUdsPQ0KCg4OCgoNPWxHSGlHPWhLEnO//viJO3daJCodHSokWnc7AUoFHxbtHAsFBR8W7RwKvQUfFlwdCgUFHxZcHAoB4wUfFiQdCgUFHxYkHAr8cjBlTyY/Li4/Jk9lMPfgs76+s+D3U12teYuSkYx5rlxjcxdKOztKF3NjA5a+0BILCg8cEBAWrqcXJhUaKBiAfRgPEBsODAsR/sKvHkJVMeDwGxITHRINDBJImPOrAXMBWxMNDRAbERIfhvSmN2wABACg/q0JiAbMAJQApgD8AVEAAAEjIi8BJi8BJg8BDgEvASY/ATYmLwEmDwEGLwEuAS8BJi8BJgYPAQYvASY/ATYvASYGDwEOAS8BJj0BNC8BJg8BBi8BJj0BNDY3BzQ2Nz4BNTQmJy4BNTQ2Ny4BNTQ+ATMyFhc+ATMyFhUUDgIVFBYfAR4CHwEeAhcnMhYXFhUUBw4DBwYmJy4BDwEOARUUBhMGJjU0Njc+ATc2FhcWBgcOAQcyPgI3LgIvAS4CJwMuATU0PgI1NCYjIgYHLgEnLgEnNw4BFRQWFyceARcHLgInNw4BFRQWFx4BFwcuASc3HgEVFAYHDgEVHgEXHgIXHgIDJz4DNxciDgIHJz4CNxcuASMiDgEHJz4CNxcuASMiBgcnNiQzMhcHLgEjIgYHJz4BMzIWHwEOAgcnPgEzMhYfAQ4DByc+AzMXBgQGLFMfAQIBHyQfBAECFRE0GgMCAg8UFycKBgggHxAMAgMDGvsYJAUEBh4lFAMDBR0UExgFBgMRDCcUEx0dCgUGH1QhJSgPGxAODQgHJBwbFRMRd9ePgM0uDx4Rho4SFhIqJMk0RFFGU3yLSRgpNTQIDgkghrPIYhYQAgEYHDMaCwtvDxMPDECNOgwXBQUHCz+WplzUxY8WHj9pXlFWa1Au1ikmDhMOU19zzzwtbDxJoFFEBgkoLFBLlEwONXxvJUIcDiQuQ2VGDj6hVkYHBQ0ODx05kHhXd3NRVqXH2DgjcIKBNitFr7SeNTo/sLtOGCdfTjqNhjAiP4yqbRRHn1BFhDsnVgEIlkxPCyRAIoXfRhA0cTxhxlkfe7yMMxs/uV9AgDw4PpSUfCYWLJm4uEo0k/76/q0hJx0EBAMtChkKBA0HGBgaGgYHDB4TGQ0NBxESKSIOjg4NFxIcCg0HGRwmCgcHDhIXDAMEEAkbIyAJDw8jERUOJg8pcRMlFypZljIqRB0wbT4pQyskTxMeOhZXgUdMRAIBZ18tT0pIJh9DLv9BPxgFBglOlHQ7EBMhKBMURYJrSQ0DDxcYEwUIBCccFA0BcAEQDQ0PAQYoGwUFCwsYBR4tnjldbDJtbCoHBgYvUjoBDzRPLihKSU0qPjZVRxYZCgwmKAsRJA4nXDBOHigOSgscIxMXGDIWNTcTHB0OSg0vJQs6fhslRS0xj1ErRSYbNEMzNlc0Ado8FDY7NRIqBQkMCEIzXkkTKwMCCQ8KTy9GNhcrCAsLDklfZA1NBgVOQikKCRINSxo3OyIlDAwEBUsLMD5DHygJDggESDVyAAAAAAIA3ABuCUwE2AAlAEUAACUiLAEnFS4CLwEuATU0Njc+ATMyHgEXFgQXPgE3HgMVFA4BJzI+ATU0LgInDgEjIi4BJCcuAScOARUUFh8CDAIHmoH+xf6evGrk42sXFxolJQ0yKkWwxmayAXvfHkIbYr2aXGjDh2mfWk6CnU9M5Idb4Pj+/n4sQBUTFhkWCfwBRAH8AXluNVw7WBI4SCvOKYBKXLQ+FhQ1WjlilyoQKBMheZKUPUBcMVAhOCQtdnpnHzpVR3iWTxwsEzN9QERyIFFIXIpLAAAAABIAjP6sCZwGzAAOAB4AMABDAE4AXQBtAKMArwDBANoA6wD3AQoBFQFLAWQBdQAAASAAETQ+ATMhMh4BFRAABT4CNz4BNxcOAQcOAhUDJz4CNz4DMxciDgEHDgEvAT4CNx4DFxUuAicOAiUnDgEHJz4CNxcBIAARNC4BIyEiDgEVEAAFNC4BJy4BJzceARceAhcBLgInLgE1NDcmNTQ+AjMyFhUUBgc2MzIWFRQOAQceARUUBgceARcHLgEnLgEjIgcUHgEXATI2NTQmIyIGFRQWAS4BJy4CIzcyHgIXHgIXATI2Nz4CNTQjIgYHJzY1NCMiDgIVFBYBIzQuAjU0NjMyFhUUDgInMjY1NCYjIgYVFBYBLgInDgIHNT4DNx4CFyUnNx4CFwcuAScHJz4CNSYjIgYHDgEHJz4BNy4BNTQ2Ny4CNTQ2MzIXLgE1NDYzMh4CFRQHFhUUBgcOAgMyNjU0LgIjIhUUFwcuASMiFRQeARceAQEjNC4CNTQ2MzIWFRQOAgUU/qz+nmPnxQFOxuZj/p/7PgUNFA4gezMjKGQdChUNwEwQKywTFVZkVRMbFWJ1NRs2ej8pSUAZGFZhUxQiaGwqHy4xAZvVOlUoLytcURnsAmgBLgE4TcKw/rKvw00BOARLDRQLHWQoIzN7IA8TDQX6BR06KAQRFRkJYqXLakE+JhkaIR4kdsV5AgMBBB5HI1AkThoTLQcmIiA3IAGnFR4eFRUeHgSZDjYbNHZhFhsTVWRWFRMtKhD5gwstE2mzbiQXRBklijhYr49XNwOIgg4SDjc4ODcOEg5BFR4eFRUeHgO3JDEuHyltZyMUU2FWGBo/SSn+AiLsGlBdKi8oVTrRQCE2ICImBywUGk4kUCNHHgQBAwJ4xnYkHiEaGSY/QGrLpWIJGRURAyk6V002V4+vWDiKJRlEFyRutGgTLf1Rgg4SDjc4ODcOEg7+3wFFATl7kD09kHv+x/67M1l2VykRKg5BEyQFG2JvLwEKGjJoWRoFCQYEUAQHBi6C8DA2Vj0SAhIXFghUDB0ZBx0xO+aBFzAdQh4zIwSN/P0BHAESYmsrK2ti/u7+5IMvb2IbBSEWQQ4qESlXdlkDTDFzbykcVytCQyMnaMWgXiczH1ceCisjSKeePgwXDA8eDyFoRxZIfiIFAxcgZnEzAQclGholJRoaJfyCLoIuBgcEUAQGCQUaWWgyBDkIBDKQiyodFxA7V0siU4qrWEhQ/nQ7QiwrIj9DQz8iKyxCfCUaGiUlGhol/aAuOzEdBxkdDFQIFhcSAhI9VjbkSo0EIzMeQh0wF3E1M3FmIBcDBSJ+SBZHaCEPHg8MFww+nqdIIysKHlcfMydeoMVoJyNDQitXHClvcwHgUEhYq4pTIktXOxAXHSqLkDIECP50O0IsKyI/Q0M/IissQgAAAAgBeP6sCLAGzAB9AIwAmACmANYA4gDuAPoAAAEuAicVIiYnBy4BJw4BIzY1NCY1NDcHLgE1ND4BNwc0NjcuATU0Nx4BMy4BNTQ3HgEzLgE1NDceAxc+ATcOARU+ATMyFw4BByUOAQc+ATceARUUBgceAhUcAQcuASMeARciJiceARUUBgcnDgIHJxQOAQcmNTQ3DgEDNTI2NzMeATMVIiYnDgEBLgE1NDYzMhYXDgEBIi4BNTQ2MzIWFRQOAQMyPgE1NhI1NCc+ATU0JiMiBgcuASMiBgcuASMiBgcuASMiBhUUFhcGFRQSFxQeAQMiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBiUuASc+ATMyFhUUBgUHOU08IR6ENxBOfSAUIhcEKgtcBAMWLSR0ZVUfMAosgzclKQhBlDkfGwczb25lKh1dUQslP4VHMDQlMwwBGQ0qHSxXKAQCKRo9XTUBHjomKjYgGi4bDA0SDzwMLTUaN0d8Ug0bi4jfRj8dKB0/RkBVISFU/isXKScWGTkUHzICOB9HMjVjYzUyRiBKe0moxA46RVQ+LW8pJVArQ5EgIJBEK1AlKW8tPlRFOg7EqEl7uiAvLyAgLy8B6CAvLyAgLy8BJhIyHxQ5GRYnKf6sSD4kH0p1eVQpoWoZGBMUL2pUNT9TEigXPYp/LBKhoR0eVCYUFBENJj8fFhgcGx04HBsWKhAFKUM6WwwVUyA6Pw82ZzR6M1IoDikZEiAOLT8aEGeNSgcMCAoKOp1BGRlHbC83Xi9JTJ6CJGsaYn1EChcgJ0lsAoU8ISYmITwgJCQgAn4XPRwdHx0QGkD9xkBdKRsPDxspXUD+P02BTmQBE4k4MzJ4MThONSkREjYpKTYSESk1TjgxeDIzOIn+7WROgU0DPS8gIC8vICAvLyAgLy8gIC+ZJUAaEB0fHRw9AAAAEgEs/qwI/AbMADAATwBpAHwAmQClALMAvwD6ARcBMwFHAVUBmQIDAg0CFQIcAAAlIi4BNTQ2Nz4CNz4BMxcOAQcOAQcnPgEzMhYXBz4DNTQmJzceARUUDgEHDgIBLgI1NDY3HgIzMjcHJz4BNTQmIyIOAhUUHgEfASIuATU0PgIzMhYVFAYHEwYjIiYnHgEXBhM1LwEjPgEzMhYXPgEzBxUiJwYFIicGIyImNTQzMhYzMjc2MzIVFBYzMjYzMhUUBiciJjU0NjMyFhUUBhMyNjU0LgEjIg4BFRQWNyImNTQ2MzIWFRQGAS4BIyIGIyImNTQ2MzI2MzIWMzI1NCYnLgEjIgYjIiY1NDY3PgIzMh4BMzI2LwEuAjU0MzIWHwEHATceATMyPgI1NCYjIgYVFBcHJx4BMzI2Nw4BBxciJic3Fw4BIyImJyUuATU0PgEzMh4BFRQOAgMmJy4BNTQ2MzIWFzYzMhYXDwIDLgEjIgYHJz4BMzIWFwEiLgIjIg4BBz8BEz4BMzIWMzIWFRQGIyImJwc+ATMyHgEXHgIVFCMiLgIjIg4BBwYVFBYzMj4BMzIeAhcWFRQBIiY1NDY3JjUiJicOAQcnPgE3HgEXFBYXDgEVFBYzMjY1NCc2NTQmJy4BIyIHLgEjIgYHDgEVFBYzMhYXFjMyNTQmJzceAhUUBiMiLgEjIiY1NDY3PgEzMhc+ATMyFhceARUUBxYVFAYBJzY1NCc3FhUUBSImJzceATMvATY3Fw4BBVFpuXJjVRgdJyUweEAdQFUoFiIUBBcqE26cMw4FGx8XCAg9DxQhJQYLUZ784hklFQMDEUlaKhEQA48qMUhHPWlQLUSUdyKBy3U5ZIZMbHctL6gaNDVuMBNBIhZNF0ywHVgyL2YdFjQgJBcWIAGXMhwYGRYwFhENGRwTDAgOFBQUDw4WLqYXICAXFx8fmnqYTH9PVZBXtc0XICAXFx8f/qgTOxsrPzg0aENeJlUlGi0TDgcLGTEaKGQ7KFs+UyFLRRgcRkEUDgYLNggyKyIfRgpsYQHVJBUoFVeeekd9UUlpGfoWFUcrKlEoBC1cJDdpNe0IKz4RRGkmAS0JDj9wSEyGVFeTuTk9HSc2Qy4NFws6NDBWKZhHHYUui08XPywWNUgbYKg2AfgqVE9FHBNVYykFGAxVPw8YNDEgGS8eGycgfTNIDQwxPhw4SiUTHldbSA4INDsTCAsNDzg7ERE8TlowEP21YWQZFAMvaBIdLRAfFD4VLopOBAYZHkgtNSoQGzImEH5HNCcVLxxGTCAoO1BBDhsLDwkJXjwiPFIrGhoUHBwWYn88KyKKUjMrGjseS4EVPUkYCkv+fUArBUYFAWQ6cTAWLGE04yNzGkQQV0lQl2xolTQPIlhdeZVCE3doOUcaCAMEWmMHO1BHVT8gWyAGKFUiVGxhRZDkg/7BHVJdLBQXDhw5JwMc/B1xPVB1Q2+EQliwhhlKiOKFVaKDTohoPn8x/tgUJB9HZi0GAjeqWzQfJSofCQpplQs1OzoTJREWHBsRESAiFhcQH7ogFxcfHxcXIP77lXdRfkhSg0tzkMAgFxcfHxcXIAE6GkUcHA4IBTAqDwUSCRUfNBgNCQoFAiknMjEcEl4PHBoMChQUxpX8BDcKB0uCp1x1cXZiNiypFRANDxY0YURnHyGxEwoHKi3NGDMZUHI9SYliccaVVAIoHz0ISC41SQUEICwpAjJoAaVPVgoPOBMKZ17+yzhLOCYxElhOAQFfPS8ICgoSCw65Mj0zQxoyLxYODzdINzBBGwsKBxAeHjZRUhwKDw8CUlJLHzsQERMjDhYRAzkIJRIkFgITOxIdRBQrKC02LSssKzVVAjBBFQgHP0oOWC84UAYICwtckEQ8Q3KCWyQrGhl8XDlnIFRXFwwLPzMOh0Q5LyImUFEBex49TRgjCSUbX/gNEkQRDBw1OIUOVGwAAA0A6/6sCT0GzABvAIAAhACVAJkArADKANIBBgESAR8BSAGyAAAlIiYnNxYzMjY3PgI1NCYnPgE1NCYnPgE1NCYnPgE1NCYnNjQ1NC4BJyoBBy4CIyIGBy4BIyIGBy4BIyIGByYjIgYHJz4BMzIXPgEzMhc2MzIXPgEzMhYXHgEXHgEVFAcWFRQHFhUUBgcOAQcOAQEiJjU0PgEzMhYVFAYHDgI3NTMVFyImNTQ+ATMyFhUUBgcOAjc1MxUBIiY1NDY3Fw4BFRQWMzI3Fw4BASAkAjU0NjcXDgEVFBYEMzIkNjU0Jic3FhUUDgEEASYjIjU0NjcBND4CNTQmIxQOAhUeARUUDgEjIiY1NDY3PgE3LgE1NDYzMhYfAQ4BFRQWFw4BFRQWFwEiJjU0NjMyFhUUBiUiJjU0NjMyFyIOAgEiJjU0PgE3NDYzMhc+ATMyFhc2MzIWFRQHHgEVFAYjIi4BIyIOAwUiJjUzFBYzMjY1NCc+ATU0Jic+ATU0Jic+ATU0Jic0JiMiBgcuASMiBy4BIyIGBy4BIyIGFRwBFSIGFRQWMwciJjU0Njc+ATMyFzYzMhc2MzIWFzYzMhYVHgEVFAceARUUBxYVFAYHDgEHkig2GCUlLB4kCilHLQEBLC8KDBkWKhoGBj8jASxIKgcOBwUwQiERHgsQUiYaPwkKMRclVg0PGzlbHUYehVQNBiFTKyokMTVaRQcPB0VyH1N0CS02Bj4mDS8qA2ZPEEL7YRUeUoJHQTdIWTNBMW+KJhYgRoplR0BTYjhINGyp/BlPUR8dRhYcNjFcKUsacQKo/vb+ddoBA08CAcMBZ/W5ASGmCAlMFXzQ/wD8oxOJSmKMAQNCVkKQcy47LiMeNls3ODIZFBg5GwcJlXRopSQ7JiQEAxccGxP+6hYfHxYVHx/+5B4oeFtNOyROSkEB6WaDd9GGQS9BIg5GLDBIDQ8TQ1IwNkpPNydpfkdCZFVTXgNPRWFPNCQoMQMoKA4WEwwdIAgJKycyKQoZCA1FNSYhFjMeIjwLBx4LKjAuRjkpCkZiQzQLXUENBzJRRjAeIDRUFAYNQ2UsJgoaHBwhNSoEWbIRDkcWIBgDPVosCA8HIFgzFjkSEUYgKVcNDCsTLl8EBg0GLEYrAQEhPSYEBBkoEggHCSgZBk9NKFpqARwgDRc9AQFIOwp5USJkPBoaRl1GPiwoPGopVoweHir+ZBEQGzspHRQeAhEJHheNrKz3FA0WRTYdFyADFAsiGqD7+ANDa0YwUColHkEjLDiFGFhl/YClASrKBBAeExsVA6f/j0h5SxcsHhhDNliDVisEtzQSCzxO/SRmoYyLUH2aHDs4MRQjXTFEeEs6HxgxFhpKKSA/HHmjeGAqA2E8EB8OFkImHz0WAWYfFRUfHxUVH3srJ1FnJkVaRfwNl3RoqWUCMUU5LDc7LQRcQEIuBU42OE84ODhSUTgVbmY/RTceCgkDQBgYMxgZLxUgPxQOHxAmSAc2NAEDKjYUHRkjIQIDNy8DBgM2OCk2UGFHOF8PQ04BQC4MNi0BVkIXSysfGBdCJDEqLjcrSxc5TQAAAAALARP+rAkVBv4ATABaAHsAhwCZAJ8ApQCtALMAuwECAAAlIiY1NDY3PgE3BwMuATU0NjMyFwE+AzMyHgIVJzQuAiMiDgIVFBYXDgEHDgEHDgEVFBYzMjceATMyPgI3Fw4CIyImJw4BEyImJy4BNTQzMhYVFAYBIi4BNTQ+Aj8BDgMVFB4BMzI+ATU0JzceARUUDgEBIiY1NDYzMhYVFAYBJy4BIyIGFRQGIyImNTQ2NxMvATY3FwYvATY3FwYHPgE3ASYGHwEnNjcXBgUlPgEzMhYXAS4CNTQuAzU0NyIuATU0Njc2NTQmJx4BMzI2NTQuATU0NjMyFhUUBgcyHgEVFAcyNjU0JjU0MzIWFRQGBxYVFAcOAgIKbYpxbW/AahzuBggiGyIpAWAHMEJDGR5JQytUHSsqDhMvKhwZIkSjVFqveGddW0yKjSM+H4S5fVMeSzKh9K8YMhpKoCMNDgkGCxkZKBYDrJvvhhEcIxJWEyYdEmDGmqDOYwxPBgeN9v2bHy0tHx8sLP7jNBAuFRwrKxwsMZFyiwwWe1E5XNUWZDw5SQg4eiP+XgQRBCkPRCU8NgEn/uwLGAw7cTED2gkpJFF4eFETSYJRJSYGBQgTTSUwRhUVICA7VCQcQ2xAEDEwDhA1UionmmcWKx2sjHNhnkiItTkWAjcOGQwdJSb+uy1rYD5UgYs3CjVwXjo9XWIkEjwbTWsaMaWTQn9JUGGCAwEdQ3JUGo6WNgEBPkIBFSMaEh0JFDMgFiD86xU+PQxrm6xNEFGzoG0KEB0TEhsOYG0GNmk0PTsTBEk3Jyc2NyYnNwFRYR8eJyUdKE43ZJUY/nVUQyloKnhUQyFQKGXnEVctAYUFCQnGRBM4JVKy/QEBHR35TwELHx4/YmeKyJRIR2KZUS9aJR0ZF0gfEhUoHhoaDggOE084JUQeTHhELywaIhEYCA14UDFqI324k7MmaV8ABgEo/qwJAAbMAHQAhQCWAKIAtgEBAAAFIiYnDgEjIiY1NDY3Jy4CJzceAR8BDgEVFBYzMj4BNx4CMzI+ATU0Jic+ATc+AzU0LgE1NDY3PgE/AS4BIyAEBw4BDwEOAiM1Mj4BPwE+ATc2JCEyHgEVFAYHDgErAR4BFRQOAgcOAQceARUUDgEFIicuASsBIjU0NjMyFhUUBgUiJy4BKwEiNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImJz8BHgMXFAYjDgEjIicGASc3FycXLwEuASMiBhUUFjMyNjcUBg8BDgEVIiY1NDY3LgE1ND4CMzIVFAYPAQ4BFRQzMjY/AT4BMzIeAh8BHgEVFAYHEycXJwTON0MNSW0fLksyNzEoVUkYOTVtQU1COBsWHVFkOQQUJh4vSSoODnjDQyprZEIxMU43GiIJKAYaGf6p/mpCHB4TCg4xQSYJIiQJChUoJE4BbwE0Z3IvFyAUOjENFRo7YnU6QLVvCAZHc/4WFggHOCMpQV5EQEUmAZoZCAgrICwlUTo8Ryz9xA0VLBAMEiMCzxkwIVoUG258ZxRMPgg9LCIjJP3hQyBsDXBFgkZPJkxhNzcUMykeJEAcFydMGBNlblKDlkUZGBgPFhYRCzIrGS0qCA4PEB0bFzwrBARciQ18n1lJQDNeOCZOOGdVcT4IMRKPfpQ0ThojJCBKPUVgMUx3QSJDHR3X0xZTYFUWHRERGyAfAwIPElICA0FHH0hULUB8UVBDXyktX14mU08LHBoROUAoKQckGSRhaGAkv9onGT4mTYhUQSckLiImP0Y+MEx0JykrGy0/RToyUQQuFA0SMBcPFyb8gRofq+sIP1VTGzFHISoQEgGKdHUphh7pXjMiWkEuNgUECiAbMBUzK1M5GzQXa/Z9bcmfXB0TNSYYIzsTESUiFCQZWoF7IRxJs0YbLBD+sh+ZKAAAAAAGAXT+rAi0BswAaQB8AI0AmwCtALkAACUiJCY1ND4DNTQmLwEOASMiLgEnNDY7ATI+AzMyHgEVFA4CHQEjNTQ+AjU0JiMiBgcGBx4BFRQOAQcXHgEVFA4DFRQEITIkNjU0LgEjIgYVFB4BFSc0JjU0NjMyHgEVFAIEASIuATU0PwE+ATU0JxcVFA4CBSImNTQ+Aj0BNxUUFhUUBgEiJic3HgEzMjY3Fw4BASImNTQ2MzIWFxQGIx4BFRQGASImNTQ2MzIWFRQGBWTk/rO1M0tLMyskUhIuGjBtWRVUS0gxSEJSdlhqnFcnMydQJzMnkH1QbTQYFgcODg8CPD5DM0tLMwFgATbvAVi5L0knDQ4KClENNChEcETP/oT9qhU7LRTVBAIGaTJIRgE5O0IrNytkGU3+ix9JNQY1RB4tWTkUPWQBda/JrLZg9K1mTQ4Tt/2ZFh8fFhYfH1Z56qhjimFMSS0cLBIpBAUTKiI3MjlTVDlTk2JFdmtrOUVFQ29obkJxhzs6GR4LJQkVFRwfHR5PNzpWT1t9WdniiPmoT4tWDQwXJCogCyJAJDIra65nwP7jnP7GKTQOFAdHDjIQJyoPvhA1NyVwKRsYMjM3HLkb5CRlIC4tBTIFBFAEBQ0PThAO/ayciIqRLDoySBxCGmh/A+YhFxchIRcXIQAADABa/6YJzgXSAEEATQCDALcAwADMANUA5ADyAP4BDAEbAAAFAy4BIyIGBy4BIyIGBy4BIyIGByY0NRAAPwEXFB4BHwE3Fzc+AjU3FxYSERwBBy4BIyIGBy4BIyIGBy4BIyIGBycyNjU0JiMiBhUUFhM3PgEzMhc+ATMyFhc+ATMyFyYCJi8BFA4BBycHLgI1Bw4BAgc2MzIWFz4BMzIWFzYzMhYfASc3LgE1NDY3JiciJjU0PgIzMhYVNjMyFzQ2MzIeAhUUBiMGBx4BFRQGBxcHLgEjIgYTMj0BJyYdARQnMjY1NCYjIgYVFBYXMj0BNA8BFRQBIiY1NCYnNDYzMhYVFAYBPgE3NCYjIg4CFRQWBTI2NTQmIyIGFRQWNzI2NTQuAiMiBhUeAQEiJjU0NjMyFhUOARUUBgUUzBM4IBxSIxxtRDFtLiJaNylNLwEA//37FjF4aTRnZzRqdzEW+/7+AS9NKTdaIi5sMkRsHSJSHR84FMxKUVlCQllRSpQcWDA4MiOATTViKiNfNi4sA2THmqNLoYOLi4KiS6Oax2MELC42YCIqYzRNgSIyODBYHBw+GDErJyUTA0VMJjxEHyYzGB8fGDMmH0Q8JkxFAxMlJysxGD4UQyEhQzsWIgosERcXEREYGKUWCiL+FQ8TFRUpHR4sLQEACx4bEhIRKCUXMwFOERgYERAYGGYjMhclKBESEhsfASEWLiweHSkVFRNaASMdKR0aTWI3LzdAKS8QIBABSAHHdnYXvuNvEDc2NjcQb+O+F3Z3/jr+uBAgEC8pQDcvN2JNGh0pHZ5nXmSHh2ReZ/7J1SgyIkJYJiMoMg2mARjbSE2t43kPQUEPeeOtTUjb/uimDTIoIyZYQiIyKIZSbThtQ0GIVigqZ0owcWRAl3cEBHeXQGRxMEpnKihWiEFDbThtUjlTUwKTDisVBQo7DmIYEREXFxERGGIOOwoFFSsOAeoSDRguDxAZKCQiL/6/LDcTYGIpQkkhMDNHGBERFxcRERhHMzAhSUIpYmATNwEVLyIkKBkQDy4YDRIAAAAHAMj+rAlgBswAUwBxAHsAhwCxALsAxgAAASY1NDY1NCYnLgQnPgEzMh4BMzI2NTQmIyIOASMiLgI1PAE1DgEjIiYnLgE1ND4CJDMyFhc+AjMyFRQOARUUFwQSFRQGBCMiBgcOAwEvAT4BNx4BMzI+ATU+ATMVIg4BBy4BIyIVFBcOAQEiLgEnNxQWFRQBMjY1NCYjIgYVFBYBPgE1NCYnHgEVFAYjIi4BJy4BIyAEBxYzMjY3FRQWMzI+ATMyHgEVFAYBJzY1NCc3FhUUFyc2NTQnNxYVFAYEcAYSFxcXeJqbeBd6+Xlmwa9IhG1zgyiNoEdGsKJqDxYXMY41NDZXqfkBRcY3cjpNtaEvMDIzEQEG/cL+peRTiRcPESdb/csOMCpLOREmDQgKBQ5ROR0qMysVIAsaFBsxAxIrZ1sd8i78+CQzMyQkMzMEYcPMnYsbHi4uNpKWOzRpM/7//kmbPj4bNTvOy1CvlSZzj0QX/alECjo7RKBEB0A7SgT+rB0hNo41M08dHhYEBRkhWEAaG1s4PWYFBAsfOy8CAwEDAisfH1wiK4CLeUwGB0tgLhIUS1kpKxuK/puvofiLHxoRdJmYBAFFRhlGHBMVJjEOBwsoFUFDEQslIxkUIP7VRF0lBkNaHhECuzMlJDMzJCUz/Ngly4h00kZDezI0QH7OdwcGqZ8gBw4rPUQEBURtPx9LAoUQKytgXiVwdTAWECIlYmsleXsWKwAWAf7+rAgqBswAKQAyAGAAbQB6AI4ApACtALoAxwDXAOMA7wD6AQoBFgEiATABPAFIAVgBaAAAJS4BNTQ2Ny4CNRAAISAAERQOAQceARUUBgc3Az4BNTQAISAAFRQWFwMTIjU0PgI1FwciNTQ+AjUzFAYPAR4BMzI+ATMyHgEzMjY3Jy4BNTMUHgIVFCMiLgEjIg4BEyImJzceATMyNxcOASciJic3HgEzMjcXDgEBIiQCNRAzMh4BFz4CMzIRFAIEJzIkEjU0JiMiDgEHLgIjIgYVFBIEBSc3FB4CFRQBIiYnNx4BMzI3Fw4BJyImJzceATMyNxcOAQEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYTIi4BPQEzFRQOAQEuATU0NzIWFyY1Mh4BFQcBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnNC4CIyUzBSIOAhUXMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYHIi4BNTQ+ATMyHgEVFA4BEy8BND4BMxQHPgEzFhUUBgKwT2NLPRMWCQFpAVcBVwFpCRYTPkpjTwtQKyb+vv7S/tL+viYrUMF8LTwtYRSoLjwuUzcnLAooED1pajw8amo8EScKLCc3Uy48LqhBbGU1NWRtjR5AHTgRIhAcJzEdOtEeQB04ESIQHCcxHToBEML+26ToP5eTOjqTlz/opP7bwqkBAZFKTkOlkikpkqRETkqRAQECV3thLTwt/uQeQB04ESIQHCcxHToKHkAdOBEiEBwnMR06/Z5AaT8/aUBAaT4+aDFGXl5GRl5eRiY1NSYmNTXuFSYZqBkm/bQ3QwUfWSIsLmhKdAHSPUFPLy9PQD41FzIaGTMXDT5qhUgBWL4BWEiFaj7SRl5eRkZeXkYmNTUmJjU1FkBpPj5pQEBpPz9p02V0SmguLCNYHwVD6j6yYVmBGDNHPyUBEQE7/sX+7yU/RzMYgVlhsj78AQtPiEP1AQf++fVDiE/+9f0QJhcsMkArWfdSEjEzKgsnOR4iCgUbGxsbBQoiHjknCyszMBJSGhoaGgH1GRw6EA8aQRYT8BkcOhAPGkEWE/2dtQE6yQEvMFI0NFIw/tHJ/sa1UJwBFrZ3aDxlPDxlPGh3tv7qnIitWStAMiwXJgHJGRw6EA8aQRYT0hkcOhAPGkEWEwHbP2pAQWk/P2pAQGo/RlxISFxcSEhcSTQnJzQ0Jyc0/sQ+Ux9zcx9TPgKIOINFFxxGM2RnRl8mO/3zGCgtT08tKBgyCAYZMTEZBghlRH5kOoqKOmR+RJ5cSEhcXEhIXEk0Jyc0NCcnNI8/akBAaj8/aUFAaj8B2387Jl9GZ2QzRhwXRYMAAAAADADa/t4JTgaaAE0AVgBfAHYAzADYAOQA7QD2AQQBEAEeAAABJz4CNy4BNTQ+ATMyHgIXPgEzMhYXPgMzMh4BFRQGBx4CFwcuAic+ATU0LgEjIg4BDwEuASMiBgcnLgIjIg4BFRQWFw4CAScmNh8BHgEGNycmNh8BFg4BBSImJzcWMzI2NTMUFjMyNxcOASMiJwYXIi4CJyUuATU0Ny4BNTQ+ATMyBBcHJiQjIg4BFRQWFwYVFBYXBR4DMzI+AjclPgE1NCc+ATU0LgEjIgQHJzYkMzIeARUUBgcWFRQGBwUOAwMiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEGJjY/ATYWBycGJjQ/ATYWBwEuATU0PgEzMh4BFw4BASImNTQ2MzIWFRQGEy4BJz4CMzIeARUUBgGcQjxEOiwWGTRePy12fXEpGT0iIj0ZKXF9di0/XjQYFy06RDtCR0s8Mh4dRnNCK1dNHSYNWz49XA0mHU1WLEJzRh0eMjxKAWbPHRMc2RUCGwzMGRgb1xkBIgEFMVklOTJELDZINixEMjklWTFTMzMzPGp7pnf+s1pVJhAPW6ZxswEkcR5Z/uKzWoNIHRs8MVABTXWecmA3N2BynnUBTVAxPBsdR4Rasv7hWR5xASSzcaZbDxAmVVr+s3eme2o8UllXVFRXWP5/Jzc3Jyg4OALQFxwCFdkcEx3zGyIY1xsZGvt0FBMQHxYZTUoTRHADGyg4OCgnNzfFLXBEFElOGBYfEBMBdS5VophFOZZVk+eFSn2fVAQDAwRUn31KheeTVZY5RZiiVS5nuJ0+NmozVZBXKE05SgUMDAVKOU0oV5BVM2o2Pp24/jJWDCsJRAYoHIZ9ECgOawwqFuAnKDg3NS4uNTc4KCc5ObwQJ0g3mypEKyIaDR0SKj8ie3dZdYYSHxYKHA8WGhAiJps2RSUODiVFNpsmIhAaFg8cChYfEoZ1WXd7Ij8qEh0NGiIrRCqbN0gnEAFcPTkoNDQoOT0Bm0IuL0FBLy5C/jkKHCgGRAkrDCYQFioMaw4oEAMCHWc3NWA9THI6Gkv9nEIuL0FBLy5CAjQwSxo6ckw9YDU3ZwAAACkAgv6sCaYGzAA/AEsAVwBjAGwAeACEAJAAmgCkAK0AuQDFANAA3ADoAPkBBgETAR4BKAE0AUEBSgFVAWEBbQF5AYUBnAGnAbAB7gH9AgYCHwIoAjQCQAJMAlgAAAEiLgI1NDY3DgEjIi4BJy4CNTQ2MzIMAhcHJiwCIyIGFRQeARceAzMyNjcOAhUUHgEzMj4BNxcOAQEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBiciJjU0NjMyFhUUBhciJjU0NjcUBhciJjU0NjceARUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEGJjU0NjMyFhclBiY1NDYzMhYXASImNTQ2Nw4BBSImNTQ2Nx4BFRQGASImNTQ2MzIWFRQGAQYmNTQ+ATMyFhcDIiY1NDY3HgEVFAYBIiY1NDYzMhYVFAYBIi4BJy4BJzceARceARUUBgElLgE1NDYzMh4DASIuATU0NjceAhUUFyImNTQ3MhYVFAYDIiYnHgIVFAYXIiY1NDYzMhYVFAYBIi4BNTQzMh4BFRQGASImJx4BFRQGJyImJx4CFRQHBgEyNjU0JiMiBhUUFhciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEuAyMcARUUBiMiJjU0NjMyHgIfATI1NCYjIgYVFBYTPgEzMhUUBgcDIiYnNx4CMzI+AjU0LgEnPgQ3PgE1NCYjIg4DByc+BDMyFhUUBgcOAwceAhUUDgIBLgE1NDY3PgEzMhUUBgcXPgIzMhUUByUnLgE1ND4CMzIWFRQGIyImJw4CFRQWBT4BMzIWFRQHJyImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGBJVTnHxIW0MkOx1OhYtYSlooSFVkARQBLwEjcypm/u7+3f77WjEqHExJQ2JUWjtKdUJZZytioFtWYz4cIg+R/lAMEREMDBERoQwREQwMERGGDBERDAwREUoSHkk6MZciLTc0Ghgo/KAMEREMDBERNhEYGBERGBgBMjI8TSorYFD+qSg3JhwkVBsBiQ0TYk8qSQEAERINDhMSDPyJDRQUDQ4TEwGXT1pCXChFnVIaFhZKPgIBN/1zDBERDAwREQO9GEE/GA4RBIoUIw8TExL+mP7YVnYVEChxeW1JAeYRHxQCAhYkF4klMhBCVjRyK2UcPGI5G+gMEREMDBER/ZsvOhpwLjkbNwIRHkYcSGYchB9jQ0BoPwgJ/YISGRERFRYTYktWa0hKV2oCwgwREQwMERFfDBERDAwREfzaCktufTwqICcuUUBJloNbDnMjGRQPFh/daLxnUk1EeliLNw8/UUMnPoNwRVOnfnSeZkIvGBocIBg5tdPQqS8xOLff589LKSkcGyA8U4RpTH1LT4Ca/soBAV9YMlgZGU47OzRORylLWf1HSAQGMVl7STM3LyMjKQg5XDcGAnkMViwXHUxnDBERDAwREVYNFBQNDhMTagwREQwMEREHERgYEREYGP6sM1huO0i0SgUFRKONeKRsIjEpOnGkaSxdl2s6GxkURIZ2bIdHGwoHbJlrJz1rQjaXkUu5qgEcEQwMEREMDBF6EQwMEREMDBHyEQwMEREMDBF7GhQhUhlVZXAqIyZPERk/HSY4BA8RDAwREQwMEV0YEREYGBERGP6WCRwpKCIqNIsHFiUbGysq/ZcSDyNpJ2Vvzz0nIUATHVAjGDAD2xQNDhMTDg0U/fMKFx8gKRMxK/6PHhcuiTwQIA9khQMwEQwMEREMDBH7gYHcilSaQBg9l1Nqu0dFVQMriChfHg0LKkdVWf2wMUwmCxYKDj5GGiJeSTAmI0srICwBDYxtG0tLHRQX1xEMDBERDAwRAhZDZjODRGUyPkb+YE5GBD8jEhzYTkgHJzIXCgoLAmUaFREXHREQGaRsR0tWaUlLV/2WEQwMEREMDBFkEQwMEREMDBEDFVSlhlAECAUmMS4lLTpWkrhibCQSHhQRFhn+XHFmMxswD/ytdXlSYmgmOVxsMzNyfUUcNERon3R7oC0mLGGixs1ZIWvi0KVhQUo9uIOcwG49GB1pezlEjHVIA3IKCQQ+rF42PxsieDtCRE0fQzYP4wMpPRxbuJpdLiwmKSoiDYm8XB0+UDZSHxovDHkRDAwREQwMEUoUDQ4TEw4NFDYRDAwREQwMEWYYEREYGBERGAAAAA4CLP6sB/wGzAB9AJsBNAE+AUoBVQFhAW0BeQGDAY8BngGqAbYAAAEiJjU0Njc+ATU0LgEnLgInDgEHDgMHHgEVFAYjIiYnDgEjIiY1NDc+ATU0JicuATU0NjcjIi4BNTQ2PwE2Ny4BNTQ2MzIWFz4BMzIXPgEzMhYVFAYHDgIHDgEHPgEzMhYXPgEzMhYVFAYHBhQVFB4BFRQGFRQeARUUJSImNTQ2Nz4CNTQmJyUOARUUHgEVFAYHDgEVFAYlMjY1NC4BNTQ2NTQuATU0Njc+ATU0JiMiBgcuASMiBgc+ATUyPgI3PgE1NCYjIg4BByYjIgcuAiMiBhUUFhcOAQ8BDgEHMhYVFAYHHgEzMjY3DgEVFBYXHgEVFAYHDgEVFDMyNjU0Jic+AjUeATMUDgIHDgEVFBYzMjY1NCYnND4CNzI+ATceAhceAhUUBhUUFgEiLgE1Mh4BFRQXIiY1NDYzMhYVFAYDLwE3FzcXBxc3FyUiJjU0NjMyFhUUBhciJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0PgE3DgEDIiY1NDYzMhYVFAYDJz8BMwc/Agc3FwcOARMiJjU0NjMyFhUUBjciJjU0NjMyFhUUBgcxPGsXEQICBAYCDh00MjFRNQgVFA4CBgdcRis/Fg88F0BTGiAiAQE8LwcHDztVLiQYFBIOSUJGNk2RKxcqFCktPI1vRGEoCx06SDMFDwtgjTRDZzgbPho7Nj46ASUmAwYG/gIrPBANDBQLQ1ABFAIDHyARBwoONAEgMSMGBgUmJQUGNjgQERJGIUBbQUDbjjIhOUw0JhILCycsRWhUJzFIMCUUUWIvFRZORggTCxEPHAgaLCQjDjUkI0IZGRwrPwIBLBwLDk8xKgUKERsQFx4bCxMYDAkNKS4jNQcGDxgYCSpuaB5KUiMCAwUEKz/8LxhBMSBIMqQSGRkSEhkZcMJaQzEHSA8kBEf+9hcjHhUXIx3TExgYExMXGHITGxsTExsbAakVIj9gMRJaihIZGRISGBgxNSQNRgwuEUQEP0ZnO3x4ERgaExEXGW8SGCEVEhgh/qw6ORo7Gw0dChRQUxkfM0Q6IycJJ291ZR4SJxE/QhwZBgk+Ly0ag749Gi8WTZZqHzIfP18wJT0QDQwUTGkrNkddQwYHEVNGNDUlNx1LYDsVG0IgHBopPRceY0BJbBoLGg4kZGwxIUAjFlNeJa8tHBMQIxUUZGgaKXlJWA8mGjNKORoTMiA0bRFJNSQtMRRaYR4UQDofX242FzIZBlY8IDMyKlI7NixsjDQ6V1ccESAJDwwUREkmFChHLBcXL4A5DRQICwoXCxIUEyMTGisIBTdgNl+DTRw+I0bMYhAmDioaHgsiEDygojsEAyt9iX0rECwNExgZGw0iDCCIm4IbHS0YVW5FGBdOTxc6TiYTDwXNN0kbLD8cFJwdExQcHBQTHQEhXscQb1gHrTRnDXokGRcfJBoWH5wfFRUfHxUVH5IfFRQfHxQVH/40HhgiRzECVX0BTh4WFh4eFhYe/vwZaal1JsgHeYgH4w9rAR0dFBcgHBUWIR4cFBcmHBQXJgAAAAgBmv6sCI4GzABNAHYAiwCWAKABQAFKAVwAAAEiJjU0Njc+ATU0JicuATU0NjcuAScuAScmNTQ3JjU0Njc+ATMyHgIVHgEXHgEXHgIVFAYHHgEVFAYjIiY1NDY3JyYnIwMUHgEVFAYlIiY9ATQuATU0PgE1NCY1NDY3HwMeAhUUBgcWFRQGFRQeARUUBiUiJjU0NzQuAjUfAQ4BFRQWFRQGASImJzcWMzI3FwYDIiY1NDMyFhUUATI2NTQuATU0Njc+ATcWMzI2Ny4BNTMUHgEXHgEVFAYHDgEVFBYzMjY1NCYnPgE1NC4BJy4CJy4BJw4BBxYUFRQGIzUyNjU0Jic+ATU0LgEjIgYVDgIVFBYzMhYXPgEzMhYVFAYjIjU0NjM0JiMiByYjIgcWFRQjIiYnBhUUFhcOARUUHgEXHgEXPgE3Fw4DFRQWFx4BFRQGFRQWASI1NDYzMhUUBicuASM3MhYXPgEzMhYXByYjIgR8c2kODAoEDBEZGQMDIy4cQGALrygTWFILfmZDhW5CcLEnSZ1jOF03CQ04MZ6vOmI1KwOMN75/JSVh/YdXPCMiICAtHhNSWxl+AwYEJjMHFi4uVQMuNz07GCEY5HYLBxVs/EM0XisaTF06QxJMdA0UEw0RAd1MUCUlIigsIAVANg4oEw4OUDFyYwQIAgM0LCYwfncxPBIIK0AeXXpnQRyKcQocEgKAZUJTAwotJ1uJRVFYJUoxJR8RGAkLHhIgKiUbJCMWFQogGxMbHQYuExAnDhBSWgQDKEguFigTFkUoOxQxLh4ZEw0UJjf++BkZDxkZfxlEKQchRx0UQyIpVSApM0I+/qxDQBU1HxocCw0sNEyKQhcrFic6KSqaTWSXTjwkMEp1Kl1cOmV/RRm0gzxJGQ5/umcuYTJNmUqagTUxKkgfRUSc/t8VKzEePEVRQUZ/DmiGOjhWTCcwqlpEVh56Nne8EFlhHkeigBAWECMMEQsQGx0sDRMZKi07UEpiTCeoCRkGFVonQTgE7h4cKjMZLB4BDhcOERUPEvn0FScTKC8cF2NSWkwbFAIESq5gxfWJIxE6IhEhEBsiDg4WVndBi1E5ZzRNm24IGzFDNm6VKhkoEwkSCV10Tkg9FCYVDzMsRYJTUUgIN1EvIR8RCw4OKh8ZIxQOFgsQIiAZCBkRGBIdJ0dgGggTCiheVBofMBRBgjsvFVRrczVGdzwoThoyTCwcGgX6GQ8WGQ8WTB4jOxUZERUfHDEwACIBlv6sCJIGzAA9AEkAVQBhAG0AeQCFAJEAnQCzAL8A2ADkAPAA/AEIARQBIAEsAWYBcgF+AYQBkwGfAasBtwHDAc8B2wHnAfMB/wILAAABIiYnLgEnLgEnLgEnLgEnLgE1ND4CMzIeAhUUBhUUFx4BFx4DEhceATMyNjU0Jic+ATMyHgEVFA4BASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGFyc3Byc3BycXByc1ASImNTQ2MzIWFRQGEyImLwE/ASc3Fyc3FzcfAjcXDgIDIiY1NDYzMhYVFAYBLwEyNjU0JicuATU0PgE3FyIGBxYVFA4BBSImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGEzI2NTQmJzceARUUBiMiJicmAi4BJy4BJy4BNTQ+ATU0LgIjIg4CFRQXHgEXHgEXHgEXHgEXHgEBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBJz8BHgEBJzQ2MzIWHwEWFRQGDwEBIiY1NDYzMhYVFAYXJzcXJzcXNxcHNxcnIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBJzcXJzcXNxcHNxcnIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYHXZHlNhhGKD1wOjVrOEBPG3B5ME9dLS5vZkIGBAY1P4K+hFg5FQs1Ih0WEhETFgw/Zj1Ri/wiERkZERIZGUMRGRkREhkZ/aQQGRkQERgYNRAZGRARGBgCxhEZGRESGRndERkZERIZGWskRXwYaGAM5xEe/WwQGRkQERgY2T1PFk8CNE0FSzAgLgUaHkZcZRNHQpQQGRkQERgYAicIexohFQ0MFC0+Gt47diN3LjoBahYhIRYWICD+RhYhIRYWICD+qxYhIRYWICDjFiEhFhYgIP40Hy0tHyAsLAMIFiEhFhYgIMYWISEWFiAg1GWCVz0fDgpEOEddDRhFeMmcQUMTDAoCAjZQUh0ZPzsm3yBBOS9ZNTuARjNSGS+9/kkWISEWFiAg/jQfLS0fICwsAbSdIEsdEQFfYjgpI1IiXwggFb/91hAZGRARGBhjgyA2DycVHSQVMQqTEBkZEBEYGAIhERkZEREZGf5nEBkZEBEYGFcQGRkQERgYAjh9GEAGHRAlGCE/EJMRGRkRERkZkhEZGRERGRlNERkZEREZGf6s371UeiM2NRQTMjE6pXxiy2VGl4NRVYSRPCReExMPBx4bOHCLvP77tFtYMSYcQR0FBEFsQ098RwGGGRARGBgREBlLGRARGBgREBkCSRkSERkZERIZZRkSERkZERIZ/TwZEBEYGBEQGdYZEBEYGBEQGZgSeU8cUQc2A9IDcwJjGRIRGRkREhn+/UM6AxcRIxYPQA44UwWVLZJ0GUU0ASkZEhEZGRESGf1cOSwPEQwYCwsVCg4tMRF/Fw0+MBYhEzYhFhYgIBYWIQHLIRYWICAWFiEBVSEWFiAgFhYhgyEWFiAgFhYhAiEtHyAsLCAfLf0DIRYWICAWFiG9IRYWICAWFiH9wW9TQmIMBh81GytWjW3SARW4hkIcLRMNJRgMLz4iKnRuSkZtejSpvIeUMioqEhM+PS2RWaa8A8QhFhYgIBYWIQJnLR8gLCwgHy3+okiWH0V6/fPbJhgJCQUNDRMqBSgCXxkSERkZERIZco0aJWkFS0UOUCUcNxkSERkZERIZ/gsYExQYGBQTGAGvGRIRGRkREhlQGRIRGRkREhn9ioQeQ30HVEcIZjIgTRgTFBgYFBMYWhgTFBgYFBMYVhgTFBgYFBMYAAkAYP7eCcgGmgBhAHAAhACYAKkAtQEkATEBPAAAASImNTQ+AT8BPgE1NC8BDgIHDgIjIiYnIiY1NDY3AT4CMzIWFz4BMzIWFz4BMzIeATMyPgIzMh4CFRwBBwMGHgEVFAYjIiY1ND4BNTQmNQ4BBx4BFRQGBx4BFRQGASImNTQ2MzIWFRQGBw4BASImNTQ+ATU0LgE1JRQeARUHDgEBIi4BNTQ+ATMyFhceARceARUUBhMuAjU0NjMyFx4BFxYVFAYFIiY1NDYzMhYVFAYBMjYvAT4BNTQmJz4BNz4BNxcOARUUFhUUDgEVFBYzMjY1NC4BNxM2NDU0LgIjIg4CIyIuASMiBgcuASMiBgcGIyImIyIOAQcBDgEVFBYzHgEzMj4BNz4CNz4BNxcOAQceARUUBg8BDgEVFBYlIiY1ND4BNTQmJzcXAS4BNTQ2MzIeARUFgoWeGy0cIAsJU200cnc6I1NiOyJBIGJidnUBFRljejsaKhMQRS8hLw8gTRwwYVUcH0NNWzdZuJtfASIBEBKoeHB9JycQNINeAQI3JwUFmfvZEg03LBwoNBEWEQIYYF0ZGSgpAU4oKCcYXPzWKEsvEBgNEBcTFEtTFBFdlAwnHxAQERsVOzAJTAFqHyc4JB8nNwHfWWgCCzEtBAOMrUAQTDc9Q0IGJyc6ZVZ5EhECIgFShJxKLU1KTi8xWFEoJF8sAyIXGSEFFQ4fQSAqWkkQ/tl8V0JCIT8aMFdRJTdoZC5yfAZOCl9Wa1MODSIlN2ECwlpqJyYDB8ki+uMkLiAZHkMv/t5SUyZXTxlqI0IxJw4SIxgRGxA6MBMShWRtymEBlDpZMwgGT1YsLg4XKysoNSh0xfeDCREI/X0gU00XWmVOWy1wci4lPSg3PAgMLA5CnzA2VhpASwLWIhc7RxwRESERFjX9oj4fF1RdIy5IRShgaYpqOdQNFAL6esl3SIFRMkhHulkWNRo9XgEqAz5hNj5gMyhYHxYWMUeeNSMsRTUiLEb8UichtzGETxtBIQlKXkyRQy9MpEw1Rz04eWgiLjFCLQ1JXCcCgQgOB3Hbs2ooNCgtLS0aMkRbTgcZKUUr/lVVs1ZQSxYPMTwQGAkQIVHnnQeZ1VoONzM/XSViLmk1JDjVKiUXPToSLjwpfnkD7B1pOSw5RmQvAA4ARv6sCeIGzABAAEYATgBSAFoAZgCyAMAAywDXAO0BAwELASwAAAE+ATcOASMiJz4BNy4BJwYEIyIsAScuATU0Ny4BNTQ2Ny4BNTQ2MzIWFx4BFz4BMyAXNjMyFhceARUUBxYVFAYEAScTNxcHEyc1EzcXBwMBJyUXAQMTNxcPARcBIiY1NDYzMhYVFAYBPgI1NCYnPgE1NCYnLgEjIgYHJiQjIgYHLgInLgEjIhUUHgEXIgYVFB4BFw4BFRQeAhcWDAEzMiQ3HgEVDgIHHgEzMjY3DgEBJz4BNTQmJzceARUUBgEiLgInNx4CMyUnNjU0Jic3HgEVFAEnPgEsATMyPgI3Fw4DIyIEDgEXJzYsATMyBDMyNjcXDgEjIiQjIg4BASc+ATcXDgEFHgEzMjY1NCYnNzIWFRQGIyImJw4BIyImNTMUFjMyNjcHPw04IhgvGjpCI+2fAjIslP69oeD+ev7gSYx+G0NZKiAXFikeGjY0YoQ3U5xJAaHA4cWS0y5gZT0Lm/7n+ddHuZs7kk1QatAruF3+byIBOiMBYBk12U/jLBn+5B8sLB8fLCwEhIDAawkIJB9dWR+xgmfXgE/+3ddNnVMxboxfAgUCChcnFyFHJ1A8HSE1UlciRQELAW7XmgFBolhTXp11IgwZDS9rNSZC/lBKFBVAQDNNTxYDZw9LW1QYLRxXVBj9zUgnQkE4TE76IjRx5AEDAT/MgK54XC8oNGeDuIbE/tH213tYmgEaAQZ6lAEehEyVSiFUqVOF/tyNber6BPgka3QHUAuL/tEWIxggLA4IGhEdTy8eNhANUy4tRTIjHSo5DP6sNXUvAwQTjMotRHMiPUh11pEpTiUfFyxRJRwmBCZHJSMvKzVibRQPDv6IfnE9yoOFhiwvfMl2AbIoAT2rM6X+BgK3ASiFQnb++QGjSZBI/MAA/wExRTxG+PMEUCwfHywsHx8s+3QRY5VbGjQTSHlEeK0vZXBQVo2PDxAPRINqAgMMDjxIIA4OCSk3IA8fEw0fHhkHj89uSUYru4MVUGw/AQEMBzduAlMkMGIwWbBGMVDFazh1/toIER4WOBYaC8kgYGJZqEY8UchqcwKmN26VWScGEB0XSBggEQckU428HXyCMCcXHkgiGScpbv0VP0CWUghksl4qHR8WERUGHTUUMDcaHDc0NC8WGzs3AAASAPL+rAk+BuAAnAFqAXYBggGOAZoBpgGyAb4BygHWAeIB7gH6AgYCEgIaAiIAAAEiJy4BJw4BBw4BJy4BJy4BNwYmJy4BNjc+ATcuAScmNjc2FhcmNjc+ATc2NTQmJyY1NDY3PgE3PgE3NjMyFhceARUUBgcOAQcOARUUFhcWMjc+ATc+ATc2LAEzMhYXHgEKAQcOAQcOAQcOARUUFhceATMyNjc+ATc+ATMyFhceAQcOAQcOAQcOASMiJyYjIgYHDgEHDgEnHgEHDgEnMjY1NCYnLgEnLgEnNx4BFx4BMzI2Nz4CNzYzMhYXHgEzMjY3PgE3NicuASMiBgcOAQcOASMiJy4BNTQ2Nz4BNz4BNzYSPgEnLgEjIgYEBw4BBw4BBwYmJyY1NDY3PgE3PgE1NCYnJgcOAQcOARUUFhcWBgcOAgcOARUUFhceARcHLgEnLgEnLgEjIgYVFBceAhceAhceATcHBiYnLgInJiIHBhYXHgE3BhYXHgEzMjY3NiYnLgInLgE/AQYWFx4CFx4CFxYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYTIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAY3IiY1NDYzMhYVFAYlLgE3PgEWFwEGJicTHgEGBU0nFxkbEgYODSpwPx9JIDw3AW+hQTInGi4NHA4lXBscBCgyjlEEK0U5ai4eCQkYEw4KDgQSBxwSHRo2ETIzQUQ5dDUgHxIRJkkZEBMMCzhFqQFAAQ5cMUUZMAZgz6RDkjY5NhAMDBUVEiwWIkEdMFc3RKJQQ3wxHBocHGA6DhkRGSwUHxYPEw0bDig7O0OLRTYDLxQvDhoZIyg5WSkqKQQ4DikcLX1CO3EyIzI0JSQwEyILBRELFDccM1kFBhElXzRDiDctXzQoWyxQQCIhGBgZVEcmeDeXv18KHgwwIlH0/tOmNy0JECAaN4M+PC0sN3wuNzcnJxMHBh8TChYFBiEFIylHRSg1MDQvHTsoHCNVKSIzDSFSJhw+Bw00QB4hGhohJGc6ATyQLRsaEAwJGw8oBjRBuXISJj4hTioYMhMPBQkMMDsdLS4NQAEkKCBGSSIaExAUCP5+JTU1JSU1NQEHJTU1JSU1NXETGxsTExoakBMbGxMTGhr+oBAVFRARFhYCTBMbGxMTGhoB2hAWFhAQFhb7xBAWFhARFhYEXhAXFxARFhb7jxAXFxARFhYEmBAXFxARFhb9WxMbGxMTGhrdExsbExMaGgsTGxsTExoa/nYsECEkjq9TARYgUS2rHhEZ/qwaG1QlDRwOKxsQCCYhPplqATdAMXN0Mw4NBhIdGBpZJS8DNkqWSDs3KBocCxMIFR4ULRoSGA46YBwSGhM0gkVNm0I3VzAeQyAZLBEmGRA0OTaeQ6bEVQ4VKbv+9/7Cq0ZCCwwQDwseDxQnFRIVIB81iDlGRTEwGlocHBESBA0LDxMZEhMQLnY8RCwEUY4yFhRVRBkkSyAONiUmWCMcKDwcLDEqNSZNUCknEQ0GBxkMFScGCREmJjw6L483Kys9IEUhHTgZGiAQCTc4mAEe7qMeDA1Mvas4gyZHVBkzA0A+Ti9dKjReLjWHQThjIhAFBFMyHDgWDBIGIFogJTMwIi51PkJ9LhsmDjgEJygjVS8pIhYaEAgRDRQfIUNCISQjAUANLS0cNSwMCQ4ngjdDLhhwrD0gHxMSDiEJDAsXHC2QPAE6YikgFhYgGD85DwcDQTUlJTU1JSU1/uI1JSU1NSUlNQFIGhMTGhoTExrUGhMTGhoTExoCSxYQEBYWEBAW/bIaExMaGhMTGv4qFRARFhYREBUEZhcQERYWERAX+7cWEBEWFhEQFgSSFxARFhYREBf7fBcQERYWERAXAsYaExMaGhMTGlwaExMaGhMTGtIaExMaGhMTGpQtUSAjGhIe/SwhECwBmVOujgAeAZ/+rAiJBv4AUwBrAHoAjACgAQsBHgEuAUABSgFWAWIBhQGcAagBtgHDAdMB4AHtAfgCBgITAh0CJQIpAjMCPwJDAk8AAAEiJic+ATU0LgInLgEnLgE1NDY3Jy4BJwcOASMiJjU0Nj8BPgEzMhYXPgEzMh4BFw4BBx4BHwEeARceATMyFhceAhUUBgcOAQ8BDgEjIiYnDgElIiY1NDY3PgI1NCY1ERcHFA4CFQ4BJT4BPwEuAScHDgEVFBYXAyImNTQ2NTQuATU0MzIWFRQGJyIuATU0NjMyFhc+ATMyFhUUDgETMjY3Jy4BNTQ2Nz4BNx4BFQ4BBw4CBx4BMzI2PwE+ATU+ATU0LgEnLgEjIiYnJi8BLgInPgI3LgEjIgYHLgEjIgYPAQ4BFRQWMzI2PwEeAhcTDgEVFB4BFx4BFx4BFx4BFRQGBx4BASImNTQ2NTQmNTQ+ATMyFhUUBgEiJy4BNTQ+ATMyHgEVFAYXIiY1NDY3PgEzMhYVFAYHDgEBIjU0NjMyFRQGASImNTQ2MzIWFRQGJyImJzYzMh4BFRQGASImJy4BNTQ2Nz4CNTQuASc3FRQeARUUBgcGFBUUBgcOAQEiLgE1NDY1NCY1NDYzMhYXHgEVFA4BASImNTQ2MzIWFRQGASImNTQ2MzIeARUUDgEBIi4BNTQ2MzIeARUUFyImJy4BNTQzMhYXHgEVFBciJjU0PgEzMh4BFRQBIiY1IiY1NzIWFRQGFyImNTQ2MzIWFRQBIiYnLgI1MhYVFA4BASIuATU0NjMyFhUUBiciNTQzMhYVFAYBLgEnNx4BFwE/AR8BIjU0NjMyFw4BAyImNTQ2MzIWFRQGFyc3FwciJjU0NjMyFhUUBgT2MlwSCwoLEBIHBxAKS0UHBXENJBE0EDoXSWJaWgkkdkcqViMVJBMqWlAaA1pLET8coxAZDBEcBzxoITxlPTs2BDszDhFTMi9EFRlL/pMeOBcHBgoGBK4LBAMDBC8BmAUNBy0DDg4vAwUFAZsKFAkoKBUvQhRKEkU4HhAJOwwQMAoOFSEsRBQkEREEBQwIK1ooGhoHGhELFRACDikZGiEMEDM+Jkk2TiMfWTQTPhokFqAjPysGIE8/ByJNLBsvERtQKSpRGBpKVywvEjsUagofHwaCBQoUNzQOGAoIGwYFCAoHDiMBig0RDREaHwcIBhn+OBcmHyciLhAVLR8tlhIcMA0RIhcaKTcVDSz84BAcDRAbAbkTJTcTESQubg4kAg4eCBkTGQOEECELAgQBAhARBiQpCpgrKwsCAQQKCUH9zgkRCxUZFw0NHwcGCxYe/koKFxoMDBYYAqIOEjgeCQ4IISn93QkhGxQJCB0Y1go8GBglDxIuGRMv1R01DxMGDiAY/SUVHQ0SURYeHYsMGxgJCA0EXRILCwwXDk5KFB3+gAkWEBgQECchdTYOJS4ZAYNMXhc0I04x+usJIx+xMjsfLCogQf0QFxcQERUW1V4kLhUSGhkTEhoa/qwqMSdUJyJUWVAeIDsVTXxVFUEc+h1VLgUBAk1MQGYmEkRYHxkEAxs0KDp7ICx5IHATJhcEBRQID12JUkR9Omi5g3kwKRocGR02CgwMNgsVVl8gQ3xWASLt5gtkhX0lDQ7AFCsUjCNVRAYcSyRDUg8BABMJCBcIECIiDxA9Lxsv4xogCCREKQ0OFygaFygY/RENDeUbYzM/dh0FEQ1lnyUZWTIiTUERCwwMCoV8xXAlcT9MaT0JCBANB0kUbitybiMFLT4eIR4MDCMmOSsuH1ApIicCAQccUEgP/uATUBgnP0g2GlUpIH4rH0gfLkgfDQsBvB4PCxIIChkHCBoVGBJDRgHtHwYdDw8gFiMtEBMj9CkNES8KDhMeDBkdFQ0fA2oPDBoPDBr+MTAYDSM4Gg0Zmz0aGyAoDQ0Q+w0EBAgUDAgQBjNOWkUUUkwK66YmUkUTEHcxECISK1IXBgkDaRwgBQgfDg4XBgwOBQUJKBkTMCQCLigLDA4hFAkP/QZTIyU/P0UKCiQeAn8pMw4HDyoyDRfBCxUVOgsPHhcRJA4R3RwQEjAkJzUWIALjJhgWFAohGBghYR0MBxEdERP7NlAlLEBAK1NKJ1E3AdArOxgKDjUVGDSsNg8YEQ0P/nM6hy5/Y4k0BPV8AnPqKBkZHBwiAUQSDQwSEgwNEoUfbQ0KFxAQFhYQEBcAFwET/qwJFQbMAC8AQABNAFsAZQB8AIgAjwCZAM0A1gDjAQcBHAEjAScBKwE1ATkBPQFBAUUBSQAAASIkJz4CNw4BIyImJw4BIyIuATU0PgE/AT4BNwE+ATc+AjMyHgEVFhoCEQYEATI2NTQmIyIGFRQWFx4BFRQFLgEjIgcnPgEzMhYXJSc+ATU0Jic3FhUUDgEBJzYkNjcXDgEEAyc2NTQmJy4BNTQ2NxcOARUUFhcWFRQBIiY1NDYzMhYVFAYTJwABFwYAASc+AzcXDgEFMjY3EAoBJic0LgEjIg4CFSIGBwEOAQceARUUDgEVFB4BFRQGBx4BMzI2Nw4DBx4BAyc2JDcXDgIDJz4BNTQmJzcWFRQGASc+ATUQAgAkIyIOARUUHgEfAQcnLgE1ND4CMyAEABIRFAIBIiY1NDY3Fw4CFRQzMjY3Fw4CAyc+ATcXBgEnNxcBAzcXEyI1NDYzMhYVFAEnNxclJzcXJScTFwMnNxclJzcXBqC5/uZMCA8UEUmjXBAgES6bSUl8SiZcUD8bQBkBEx1kOxFZcDA6Xzis955LUv76+p0SHisgEyEoDQYCAicBR0pZhThQlkBqdwH+Z0FPTQQCXwkrVAI6ILIBBNdrPGzc/vD6VRsQEQ0VDg9UDAwSDST+3RwpKRwdKCiRJQIpARNFjv5RAaJQJ1pWRBAaKIv+yrLjSUud96wlOyIYQ0IsOm4Z/uwOJhYnUB8fMzIEBBgrE3/PZBMaEQ0HP+H0EpoBW7ctb/j071QLCwMCWAYOBB0WGRqS/u/+gu2CuWFAXi11TV51c1eRr1gBDgGgAR2TOf0XGxRiVU8fPScaHXVJKzWRh2RXGEozRloCqimPCfvA2aVmZDIvGgwYApMr4DP+ujbqM/3fWf1lTVH6T/3kM0h4/qwhL26XkGEjJQEBNEJGek9AbnlQVCVRHAExISsHTJFefdOCbP75/q3+Sv7mKSQCZDQnKCcPDhcKFAkdDiQOjodhOUhLyrbuRU3QXxYtFV08QVm8qPycRkK654U0h+3BAgcdR0UnVzkpWjImSCUfHzkdKEwpcl1PAX8yIyMxMSMjMvyrRAEOAYcpzP6o/qsjKHeFfC1mZNggGBoBAgGWAT77Z2/DeUBjaikhHP7OEC4dCEIyIUk+ERsiMzQQHQ4BAkQ5aJF4gVkYGAHdVjnmrD1lwpgDDh8dTCoTJxMMKi8zXPtDq0u8ZQEhAdMBTbIbJxQJQVcpaiNSZn4eKD8rF83+kv4V/uOU/uoChCQWPtF+OxhOUBofTD1AMmtJAQ8cSYM8N2z9TU1AeQPuAUMa7v7ZXUJpRyuW/YZOfmhmVZ9x4j4BQmH+P0T9c+trjEsAAAAAEQBB/t4J5waaABEAHQApADYAQgBOAFoAZAB0AIUAlACkALQAwwFDAWUBhAAABSIuATU0PgE/AR8BBw4BBw4BJSImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASImNTQ2MzIWFRQOASUiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBhciJjU0NjMyFhUUBgEmJz4BMzIVFAYBMjY/ATY1NCMiDwEGFRQWATI/AT4BNTQjIg8BDgEVFBYBMjcBNjU0IyIHAQYVFBYDMj8BPgE1NCMiDwEGFRQWATI3JT4BNTQjIgcFBhUUFgMyPwE2NTQjIg8BBhUUFgEeARUUDgEHHgEVFAYHHgIVFA4BBxUUBiMiJiciJicOASMiLgE1NDY/AScOASMiLgI1NDY3PgE3PgE3LgI1NDMyHgEXNz4BMzIWFz4BMzIWFzYzMhYXPgEzMhYXPgIzMhUUBgc+ATMyHgEVFAYHHgEVFA4BBx4CFRQOAQUUHgIzMjY1Mj4BNTQmIyIGBy4BIyIOAQcOAQcOAQcOAQEyNjU0LgMnBgcXBw4BFRQWMzI2Nx4BMw4BFRQWAhspTjM2TyZWr1RSFm86DigBEwoIGxALBxpJCggbEAsHGv0QIjg7KC49KzcBxRwpKRwdKCgDqQoLIBALCiBRCwogEAsKIP1TFBQcOBkoRv7NDhgEJAISEgxDBRkEXAUI9hcPHQoK/hEPFP5dExcBxxUaDRT+Hx0eqhUQ3wwHFQ8U9RkdApcMDQE3EQwcDA/+xicY1Q0P0wkUBQjeGxMC2TtDMkcgJC+CZhEiFkFaKMWpTIQOMUo+gaBLRHJELRY/MAwZDX3uv3FZXh8gDQsYDCFNNhMURk0cDgchDQ1TQzdVEA88P24TCz0sboUvEhgCK2tgGhMOCwwaF1aWXTUmj5sbKBMzbUosRfcbZKnRbZu4N1UyMDM0YTA/jlkzYl4sCxkODSASM0sGKI+Pbbro+HRHtkl2FRFkRkGWhUqGSQQCUc4aKxcUNzQNrhOKThVeJgkJDA4HERwOBxAdHw0HERwOBxAcAs5IKB8rJRsSOi5sOCcmODgmJzj84Q8IFB8OCRMgFA4IFB8OCRMfA44rFDg1NzBFAcASFM4ICBYguQ8KExX85wI/BhMJFgIlAhcOEBsBHxABQw4UGQz+5hEgFSICCxDcCxMIFRC8ExoTG/3iBocIEggXBWsNIA8aAd8JigYLFANoDRsOF/7MFCUJCFVsLR9CCxJTORtANAkNFg8EAoWdS0YLEWBNL1AxHTcSNmsBAVWRtWBEThYHExAOGQwvd2IREBQdDIVCbUA2dpBCUIZIQH9sOTMVKRsUEEIpAgEOGA4LZzsWKBYKNTsVCSUmCwlAVaxOmHtKyLhFc0Q8QVdHPU0jRTQNGAgHCQMIKPxycGIta2pZOQS/NIhmEhEIIjxLZBUTCxgLKDEACQEJ/qwJHwbMAFoAtQDCAM4A2gDmAPIA/gEKAAABIiY1ND4BNQ4BIyImJx4BFRQGIyImNTQ+AjUuAicmCgE1NDY3NjMyFhceARUUBiMiBhUUHgI7ATIWHwEeAjMyNjU0LgM1NDYzMh4BFRQEBR4BFRQGJzI+ATU0JicgJDU0LgEjIgYVFBYXHgEVFAYjIi4BLwEuAisBIi4CNTQ2MzI2NTQmJy4BIyIHDgEVFBoBFx4BFxQOAhUUFjMyNj0BHgEzMjY3FRQOARUUFgUiJjU0Njc+ATU3FwcFIiY1NDY/AR8BDgEBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYFIiY1NDYzMhYVFAYGNHhSFRQfQCo0XyoCAntjX34kMCQXMSQHfbVghn1Ae0RfCj4ydmB2VFubxWpAwupSMjhJOiAwNjRMTTRBQ2+uZf7b/vkKBlV6NTcTDhQBIgEcTopaECYWCmh7ZlAwUlk9Mi53pnZAe+KxZ5GJQEYtPAcxLFQrdHtesHkJOz8mMSZKQ0dEPYVKR2EvExQx/NVtTSAwJxwhfhwCCz8vGRZnYxMQRP1QExsbExMaGgELGCIiGBgiIgFQGCIiGBgiIqQUHBwUFBwcAQQSGhoSEhoa/qwsMiQsLycCAgQEID8RSU5AQCkxOGJZGVBWIH0BGwEghZvlOnxWQSFJNVhtJC9Zo4BKUmI8QkYZMSspNSMeJR0iKFmbY6jNCzs7GWE7TgkhJCZbWZ6XTHtJAwYDCAMfZ0dOXiJTSTw3Qx9WlcBpYEFBNiM0IDBBay7CjXz+7/70di6ETWZ4QScVEiAqH8YHCQUGbB0rJRQQDgEcKhEvOi/MrhLmkscfExcpDzEcTBY0BmobExQaGhQTG/vNIhgYIiIYGCJuIhgYIiIYGCKqHBQUHBwUFBwaGhISGhoSEhoADwBf/qwJyQbMAHYAqADIANgA4QDpAPEA+QECAZ0BqQG1AcEBzAHYAAABIi4BKwEiJjU0PgI1NC4BNQ4BIyImJwYjIiYnBiMiJjcuAScOASMiJiMiBiMiLgE1NDY3LgE1ND4BMzIeATM+ATMyFhceARc+ATMyHgIzMjY1NCYnLgE1NCEyFhUUBgUOAQcWFRQGFRQeAhUUBiMiJicHBiUiNTQ3BiMiNTQ3BiMiNTQ+ATMyNjU0LgM1NDY3FwUUHgEVFAYVFB4BFRQGIyIOAQEiJjU0NjMyPgIzFxQOAiMiJiMiBhUUBiMiJicUBgE+ATc0JiMiBhUmIyIGFRQ3MjY1IgYHHgEXPgE3LgEjIicyNjUuAScUFzI2NS4BJxQXPgE3LgEjIgYBMj4BMzIWMzI2NTQuAjU0NjU0Jic+Ajc+AjU0JiMiBhUUFhceARUUDgEjIi4CIyIGBy4BJy4BIyIGByIuASMiBhU+ATMyHgIzBgQjHgEzMjYzMhYzMjUzFAYHHgIXPgEzNDY3Fw4BFSIVFDMyNjcUFjMyNjc+AjcXDgEHDgEHHgEzMjY3FB4BFRQOAhUUFjMyHgETIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBJzY1NCc3HgEVFBcnPgE1NCcXFhUUBgYZIh4SETQ1OTNCMxobDSYQMlkiDRYrLgsRDSdDEDZSJhYnExY5FBlkNUVlNhsbPj40XT4zYVMdEUMrOlYORJ1GMXM7WqiekkM/Yj5RWk4BIKzJ6v7tJXg+DiAwQDA2JRtHJEEm/f0cF1U3KBAxHx1CYzFCXj5bXD4TFEUBDzg4KBwcKxwxRkH9pRgsQDswMhsdG5YNHi4hIzUdDQQHERYlDQ/+6CVCHxkUEhMRHAwMCRMVGzcWCiPKGC8WASASKkMVHBkwGrsYIQ1DIIEaIQ0BGA0TEwPnDicwGiA8JgkMMkIyIA4PKGdhHrDPWpmMS3E3F2VwQ21BTpSWoVxCd0tHnk0OPSMhNARHY1AsOkgRQhctcXlyLSn+/qcNTC4sWysVORXRUTxEGCsxIBFEHDMrPSgppDQFEQcaHCMWFj9SMA1NJWdKEBkJIEAeFjU3Hh40RDQeNSkkERYQFxcQERYW/HsWICAWFx8fA68SGBgSEhgY/vtNCxZSCQrbTwQEJV0YBP6sKSgoHB8xMj8sLFFULQcFIh0EJiIFU0eNjygEBgcqZZRGMFMYHmc6O2hBICAfIT4yHc2TGCM2RjYkGQ4WDQ8zKHm5npTNWTp8LDgzQn4rP19MQiEiKRATMR5XDxQaNhsRGx8VGzsqPDgrMy5BblstQiiTaihJQyAdZykkJxkQCxAsLAKeWUFHUkJWQrEPQEQxBTEeGSs0JCY8ArgCCwgyLyEWLRsRIOo3MQQIKjLrCBcNIDBMNzEMDwOGJykgAyIUglQUKhYSGjv57ScnHwYGDjhSaD46cj8mRyYRUWgyO29+UHuOFxANDQQPNj4mQCU2RjYoLKfjKCYuIx0hIUw4BwswQDCgtDFIKAXmYoEnHEVkTCIgQoI3LzuKRGRBAwQdJzYNJ32GNBKUpjkMIRAQERAUYXxZLjRJMh8JBwkoKAM4HhQUHh4UFB4DlSAWFh8fFhYg/QkiGBgiIhgYIgEwEi8lOT0MIEEjMWcSEyMRUUsSQ0kWKwAAABAAif6sCZ8GzAA7AEsAVwBjAMwA1ADdAOwA8QD1AQIBBgEKAQ4BEgEWAAAFMjY3PgE3HgIzMjY3Fx4BOwEyNjU0JicDLgEjIgYHAS4BJy4BJy4BIyIOARUUHgEzBy4BIyIOARUeAQMyPgE/AScHLgEjIgYVFBYTMjY1NCYjIgYVFBYFIiY1NDYzMhYVFAYBMjY1NCYjIgYHAS4BIyIOAgcOAwcOASMiJic+ATMyFhcTPgE1IxQOASMiLgE1ND4BMzIWFzIWFwczATYzMhYXEx4BFRQGKwEiJicDARc3Mj4BNxMOASMiLgInPgIzMhYXAR4BASYCJwcWEh8BJgInBx4CFwUTNjMyHwE3Jy4BIyIHAQUnBx4BAzcnBwE+ATcOAQc+ATcOAQcBNycHJzcnBwE3JwcnNycHJzcnBwH2NVQqNY5EUdbnaHDPRisNSDmjPlB6WsgPPjgqRCT+mkmSSjWBPi+AWV+WVlKUYkcKHAozXz1IbJVDVT0eHn1cGTsbKkdKSiAODiAfLy8BbCk7OykpOjoEKFlxdEgTMBT+8BY8JRFXZE4JDExmZSQcSSYsURwEPS8aOhSAVmdHOV44QnNHP3FLTW4jecxJp2oCjTIrFR4N1V1jKB6iKCgRwP3cOJVIlHYbRUm/bUmnpZA0PFo8EBQjFwEDHV77/T2tfTRxoz28GU4yQiI1KxICh4ENEBMGIXQ4CTojREP+9QL+KXooVt5ZBlkCRXSaETRaHTZLBWJ7PP3PTBZMEzchNwIoaQZpBmMNYwhVFlXIERMz0n4nPyQ1LaIvNkI0R2QEA3dBUy4m/oYXFgElMQg/P1+iZ33Pe5gCATJpVRcZAUUVNDAvNoEVEzIfHRcB2D8yMk5GMjJHNUYxMUZFMjFG/IwqKyZDDAgCMS4yBwoKAzGerZMnCgYNDSZKDQsBDCO5fE2CTmSraVR+RjRAmXqqAsA1JTb8YwY6JhcbNEwDQ/3EN5gOHhf+1SoxFSYwGwkdGCIu/gU4OgVa1AFXmy+L/sPJEsgBaZUXZtHoi/cBEhwalFrIISth/oKer4AHFwHQDCgM/QAcVy8TGgMsUxc4PRcCnzAhMBhHF0f+wQ4oDioeJh4pNSI1AAAAAAcAnv8QCYoGaADJANEA3ADwARYBHQEpAAAFIiY1ND4CNTQuAjU0NjcXDgEVFB4DFRQOAxUUFjMyNjc+ATU0LgI1NDY3HgIzMjY1NCYnLgIvAS4CIyIOAyMiJic+ATU0JiMiDgEHLgEnNDY3PgE1NCMiDgEHDgMHDgEVFB4BMzI+ATMyHgMzFyIuAyMiDgEjIi4BNTQ2Nz4CNz4CMzIWFTYzMhYVFAYHFBYzMj4DMzIeAR8BHgEXHgEVFCMiJicOARUUHgIVFA4CBw4BASc3HgEVFAYBIiYnLgEnHwEOAQEiJjU0PgI1NC4CNTcBAw4CAyImNTQmJzceAhUUMzI2NTQmIz4BNTQmJzceARUUBgceARUUBgM3NjcXDgEBIiY1NDYzMhYVFAYFyC4qRVpFT2hPS1wxTzk1Tk41L0ZHLwsLETo6UHMkLyQrMWmbjFIdPkJENE9NMjFMl59ZXIJhUlM1QlkFaWoUERtSUx0EHAkkOxEeIyZLOw4uMh8lI1g4KTsbHFRWHiU3Ok91WA1ki18+KxQOSVopNF47VmciLDgyD0llOClCHRkuOF52Mx4mSFFpj2KTzJE5KjdtR1BXqYXvdAMGJS8lKj89FFVe+vY4TAwPHgLpKDIOCw8LnDQPGwEtDgtIXUhGXUZUAQzRCiUv1FFEFBlKEhcMSR83MyMPDxAPSRITCw4nK1wQE1NcFzpt/SUMEhIMDBIS8D4xPoJ5YBwKPW2kcGWaRkA3gU1Re11IOxwZVGVnWh4UFVZhhpQTDiM3VkBBaC2txFAOEhMxJh5VfFhXiJg/N1BQN25HZpUuERdNdz4GFAMaQ08XOBIjVoNGByw3LwoaHRUYOSgcHUBfYEBOQF9eQBscQF8uMjogC0FDDlOIUTkyEzcpQJR4GTM3UFA3dblmSmGjKS1dMlzExBErEz5QMyQSFk5bVyCMcwSyZSYHKhceJf2IQlhGOxkq1hsZ/hUSCyt7gW4eGzFEbVcI/rb+jhI1KQHOZE1AkDMdI2ttJ2EoFxYZSnEvMFQsGjRZMi1iPAY2Fy5lARVUDRtMEhcB3RoSERoaERIaAAwBCv6sCR4GzABMAFgAaQB1AH0AtgDDANYA5wDyAP0BHAAABSICAzceAjMyPgE1NCYkIyIGIyImLwEuAisBDgIHFhUUBgceATMyNxYXAy4CJyImNTQ2NTQ2PwEyFh8BHgEzMjYzMgQWFRQOAQEiJjU0Njc1FwMOATciJjU0Njc0LgEnNwYPARQGBSImNTQ2NREXERQGATcyNjcXDgEHIgMuAScuAjU0PgI1MxQOAhUUHgEXByY1NDY3FwYVFBYfARQWMzI2NTI1NCc3HgEVFAYjFAYBIiY1IiYnNx4BFRQGASImNTQ2NTQnNx4BFRQOARUUBgE0JiMiBiMiJjU0NjMyHgEVJTQuATU0MzIeAR8BNC4BNTQzMh4BFwEiLwE2NTQmIyIHJz4BMzIWFx4BFx4BFRQGIyInFAYHOm+tJk0YT18vPGQ9ov7gvW2NIzRSFxgYN0k01R9cTAgyMg4ESDcbFmwnKCBLPApQXAuXjn9yryEeHi0rG4BuzgFFvFKI/PcYLx4ObQ8BKd8YLB0OBg0NrAknCCMBkBUqK10v/e8yR3YxHjyc9qsPIEEfTn5LO007UDtNOzNhRAsFFBBFIB0vNzY7KTFBG0YTEicmWP1QDhQGEAE5DhQUBZoUIC4VPRQhAgI5+wA3NR1HFSUaeE4yZUP+sCQlExs+LwVEIyMOHUMxAgVUEAwyJCYXIhJdIlkzO0UUFRULCCgmFg8NNwEBTQEjDav7iYXVd4TKcx5bUlZWZi0HIy8aBhEPIQUgGAlAdf70D3ujR0hADCUNO2AfM4dxZ2dPHYjumZH3l/6tDAcLLgr8Cf7RCBJQDQgKLAo+YF8+EVo39wkQUA4HCikbASES/qgIEgHUUyEjTiYjqQECFEg0JprAXl2woY86PJmoq09Mk4AwFysRRmcmIGBKPF8kKm1rRDyARzMgK1YoPFBMZwU+FxIPDQgBFhAQFvnNCQoLJB3xM1cVOiZGX15ICBIGdB0tEysKJUgnPiFVEjQxDA8tPx0xQFQ4FhQ9YTb8cQiQKhwYIxxAMDErIiNUJBomDhEXBxwrAAApARb+rAkSBswAWABkAG8AggCOAJoApgCzAMkA1ADiAO4A/AEhAS0BOQFEAVQBYAFrAXcBgwGJAZQBngGqAbUBwQHNAdkB5QHzAgECDgIaAigCNAJAAkwCVwJjAAAlIiYnDgEjIiY1NDY3LgE1IiY1NDYzNDY3LgE1NDYzMhYXPgEzMhc0NjMyFhc+ATMyFhc2MzIWFRQGBx4BFTIWFRQGIxQGBx4BFRQGIyImJw4BIyImNSMUBiUiJjU0NjMyFhUUBhcyNj8BBw4BFRQWASI1ND4BNTQuAScXHgIVFA4BAyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGATI2NTQvAQcOARUUFgEiJjU0PgE1NCYnNx4BFRQGBwYHDgEBMjY/AScmBhUUFicyNj8BJy4BIyIGFRQWEyImNTQ2MzIWFRQGFzI2PwEnLgEjIgYVFBYBIi4BNTQ+AjUnLgEnLgE1NDYzNjMyFhUUDgEVFB4DFRQGNyImNTQ2MzIWFRQGJzI2NTQvAQcGFRQWAScuASMiBhUUFhcBPgM1NCYjIg4BFRQeAQEiJjU0NjMyFhUUBgEyNjU0Ji8BFx4BNyImNTQ2MzIWFRQGATI2NTQmIyIGFRQWNyYnNxYzAzc2JiMiBhUUFhcBJzcXBzcXBzcXASImNTQ2MzIWFRQGATI2NTQmDwEXHgEBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYDNz4BNTQmIyIGFRQWFwEyNjU0JiMiBg8BFx4BJzI2NTQmIyIGDwEXFgEiJjU0NjMyFhUUBhM3PgE1NCYjIgYVFBYXASImNTQ2MzIWFRQGJyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGFzc+ATU0JiMiBgcXIiY1NDYzMhYVFAYD5TFZHhpKLFF1JyEtH1R5elUtNygwc1AsSxwcWzQtMnhMQmUSICgdQmwPNkpSdC4mNStVe3pUKyAhJnVRK0saHlkxUmvibv4/GSUlGRklJRooOBI1qSxEQwIpGjMzMDMFXxMiFy5D7xkkJBkZJCT+eRklJRkZJSXwGSUlGRklJQI8LkMKMGceI0MB3QoZISEOEkoOChMaEwMDEP0AHTkWXZRHWT6oFC4ap6ccLRQpOzvKGSUlGRklJSoKFgqeZhk3HCtDQwLmZ6FbTGVMNB89GjcbUUkfTTlRNzc7VlY7gaIWISEWFyAgLC1DP2gwCEH9NCoNPCkvQ0QsAtoWU1g+xJl1t2l23/2dGSUlGRklJQTfL0M7Np0qDztbGSUlGRklJf1NGiYmGhknJzouFh4LFe0SCTY7LkIiHgGwMCQ1HGEccV8M/eYZJSUZGSUlA5ssPU9QqnIaOP6MDhQUDg4TE4wOFBQODhMTAjUZJSUZGSUl/hoOFBQODhMT8VENDj8sLUEODgOhKTo6KBcwGL29HS3OMkNBKx82GWaeGP2mGSUlGRklJb58ICBDLTE7AwECwxklJRkZJSXpGSUlGRklJf5xGSUlGRklJXadODlDLyg7D6QZJSUZGSUlIDAsISd1US1MGiNrN21SVHA8cCIaVDJPciUgLzQWU21POxALUTw0dVExUBkiaURwVFJsOnIaGkwtUXUoIS0weE9SdW8mGRklJRkZJgs4Oag2DjMwL0P+KAsREhcVG1NcJhgvZU4LDiAXAbImGRokJBoZJgF6JhkZJSUZGSb+JhkZJSUZGSb9mUUvGRdoMA43ITBG/kQ7FBkbFxMHMC8GPD0GFhsMCRgYJAMIIR5+Gg07PC4/7A4NUVEODkIsLD8BMSYZGSUlGRkmSwMBGn4gIEQtMDv8AGy2blyoi2IXHxMUAQMFBxcaM0g1SGdgPUlvWlFVNT5e1SIXFyEhFxciDUQuPitGfRYaMUMELqg2O0MvMDIP/E9Ng4WbZIumYLeEi96BBBYmGRklJRkZJvtMQy8pOQ8rnTc6CiYZGSUlGRkmAq8nGhomJhoaJy8BGxELAQieTVRALB05F/53S3ALUkQnTgQxAeomGRklJRkZJvxeQC09NQgQiB8gAbUUDQ4TEw4NFJkUDg4TEw4OFP3PJhkZJSUZGSYCDxQNDhMTDg0UATGnGi4UKjs8KRMsHfzpPyssQQ8LUlINDOJALixEJRlpMAcCjCYZGSUlGRkm/rJwHTcbKz8/NQoYC/1mJhkZJSUZGSbkJhkZJSUZGSYB5yYZGSUlGRkm+SsQOCkvQzo3FyYZGSUlGRkmAAAAAAgAKP8QCgAGaAByAHwAlACgAKwBMAE8AUoAAAUiJjU0PgE9ASImJzceATMyNjcRFA4BFRQWMzI2NTQ2Nx4BMzI+ATceARUUDgEVFBYzMjY3Ez4BNTI2NTQmIyIGIyIuAyMiBgc3NjMyHgMzMjYzMhYVFAYHFAYHAw4BIyImNTQ2NycOASMOARUUBgEiJjU0MzIWFRQBIiY1ND4BNTQmJzcXDgIVHAIVFA4BASImNTQ2MzIWFRQGAyImNTQ2MzIWFRQGEyIuATU0Njc+ATU0JjU0NzY3PgEzMhYVFAceARc+ATMyFhUUBgcWFRQGByc+ATU0JzY1NCYjIgYHLgEjPgE1NCYjIgYHDgIHDgEVFAYHHgEXPgEzMhcHLgEjIgYHLgEjIgYVFB4BMzI+ATU0JicuATU0NjMyFhUUBgcGBxwBFRQOAhMiJjU0NjMyFhUUBgEiJjU0Nj8BFA4BBw4BBQtJZSoqRJBhMDuAPRouFSgoLytbYhEOGTsnRa2rQgcGICAjMVw+BAsQBjVbExERFiAmP012uY1nwGwEzMuSyoZUNxYaHx8eJ01BDAwKBHlxQ2EkIwlq05UHC5X7rB48Hh87Af4nVyMiAQF2lAEDAzxb/oYVF0ElFBdAhCAvLiEgLy9Eidl9cEgmFwO8LE4VXVQ5TgEUMhArXzpMVBsVNjE4Py4qRkUpLClgFCZ7KgIDIx47NggYPzQHVEQRFB9JDhQoE5VZPyBSOhg2HiRHJ0NZY7N5e8d0AwIBAiwfHigXFAYIV5W4yyAvLyAgLy8DezkyKQX8AwQDDWfwNzkdOTcaxyMvOxwjBgT+5Ss0JxkRHWRcgIUvBAguTzNYaTkWLCcPDxNKZAFDPIc+TDUdMRVQdnVQQkRaelB1dlAbWD1NZBwrczz+1YF7KzQXPTRzOjwNaWR9kQMGQiEhQSIh/XsaIRNCSBs5cgwYHQw4OxMBLjoSM0QhAk4RDRouDw4aLwHCNiUmNTUmJTb9C3LCeWZmFQthLhoqCs4yVCtUc1ZHDggBCAVKSoduLlAmfYVVokEwNYdJkG5VW0lZXUsTEw8eDUMyaz4HNkAYB2tgS3IXAykOAwR6MC4uBggpJ0dXYJ9gXZ1hFBwOCxAFHisrHhgkCAICBgwGYpxvOgKyNiUmNTUmJTb9EB4ZGjkoUilUOwYfJwAACgFk/qwIxAbMABwAOAA8AF4AbAB9AIkAnQDFANgAAAUiNTQ+ATc+ATU0JicXDgEVFBYXHgEVFAYjIg4BBSI1ND4BNz4BNTQmJzMVFBceARUUBiMiJiMiBgEnAzcBIiYnNx4BMzI+ATcXBy4BNTQ2NxcOAhUUFhclHgEVFAYTLgIjNDYzMh4BFRQGASImJzcvAR4CFx4BFRQOAQEiJjU0NjMyFhUUBgU1NAImIyIOARUnPgIzMhYSHQEBIiYnDgEjIiQmAjU0NjcXBhUUEhYEMzI2Ny4CNTQ2NxYaAhUUBicyNjU0JgoBJw4BFRQeAR8BHgECtx07Vyk1IQ4JdwECExw3MFiCPG9RAVEmJEw9LTICAnE2GkwkIRlBKEypAd1mlUf85R9FHDIWLQ8NEQ4GDvMlImhYKTRMKQoLARUCAzsgGFRYHy0lM1c1GgTVXZM/jBdOJo+rTkM6Xof7qyMyMiMjMTEBdW6/e09/S08FZKBfkuSCAUYfTCcoYTe3/r31ixoYSy1+3wEmpxYzDaDrgc/JXKeDTC8zCApDdJVTl5Rpw4gOU3r7GBktJQwQGgkcXzEoGzcWKCQIEBoXDwkYGVkTEyAbDQocFhpnJ6ojDgcgGhAKAx8BgB4BWh4CFCwwLy4UGkI9DLooXjBcnBQwB0ZgMBUqFNYSKBSPdwEcOEIcGzMySyQVI/qPNCog59xGjXEcGB4cJkEoBXMzJSUzNCQkNNUcpQEAkzdcOhVMdkSk/t2/GfudDwwKD3LTASSyRJJMF5J5o/74vWUEBUu265ii4Tlw/ub+2/75XjpLUBMiU+oBCQEFbDSwe2zVszkfICEAAAgAK/7eCf0GmgApAEAATABYAM4A2wDnAPQAAAEgAAE3Jz4CNy4BNTQ2MzIEFz4BMzIWFzYkMzIWFRQGBx4CFwcXCAEBIiYnNxYzMjY1MxQWMzI3Fw4BIyInBjciJjU0NjMyFhUUBgEyNjU0JiMiBhUUFgEgJBMnNy4BJCMiBgc+ATMyHgIXHgIVFA4CIy4CJy4BNTQ2MzIeARcuASc+ATU0JiMiBAcuAiMiDgEHJiQjIgYVFBYXDgEHPgIzMhYVFAYHDgIHIi4CNTQ+ATc+AzMyFhcuASMiBAYHFwcSBAEuAjU0MzIeARcOAQEyNjU0JiMiBhUUFgEuASc+AjMyFRQOAQUU/pD9lP7zpoEbcY1EIik9RmQBAII5v1FRvzmDAP9kRj0oI0WMcRuBpv7z/ZT+CjNfHjkxRi81RDYuRjE5Hl8zUTU1NU5eX01NX17+lSw9PSwsPT0BSQFCAi/8qqld+P7pjU1oHR9MLE55XEgdJlE3T4WkVB5ViWwHB6WiZMLMczFsMCgvFxxg/v12GnWLPDuLdRt2/v1gHBcvKDBrMnPMw2OipQcHbIlVHlSkhU83USYdSFx5TixMHxxpTYz+6Pdeqar8Ai/+kxYnGTQeW2EnN20DkSw9PSwsPT0BvjpuNydhWx40GSf+3gE0AS1rblfSw0F640lVWl9VIi8vIlVfWlVJ43pBw9JXbmv+0/7MAQIsIjY0NiMjNjQ2Iiw+PnJURURUVERFVAHPUzo6UlI6OlP9Df0BBHKQj8ZnLToSFDpWVhwkWm1ETpZ6SKLbn0YMQCXYvDZwWE2DJYPqSzwjaVUTKh4eKhNVaSM8S+qDJYNNWHA2vNglQAxGn9uiSHqWTkRtWiQcVlY6FBI6LWfFj5Fy/vz9BXEcXGMlQiU9JStc/U5TOjpSUjo6UwJ+NFwrJT0lQiVjXAAYAXr+rAiuBswAJwAtADMAOQBRAGsAcQB7AIcAkQCXAKMAuQDSANgA5ADqAPQA+gEIARQBIgE4AVEAACUuAjU0PgE3GwEeAhUUDgEHJzc+AjU0LgEvAQcOAhUUHgEfAQUnPwEXDwEnPwEXBy8BNyUVBwEiJjU0PgEzMh4BFRQGIyInDgEjIiYnBicyNjceATMyNjceATMyNjU0LgEjIg4BFRQWEy8BNx8BEyc2MzIXByYjIgEiJjU0NjMyFhUUBhcuAjU0MzIWFwEvATcfAQEiJjU0NjMyFhUUBiUiLgE1ND4CMzIWFT4BMzIWFRQOAScyPgI1NCYjIgYHJzY1NCMiDgIVFB4BAS8BNx8BASImNTQ2MzIWFRQGAS8BNQUXATU+ATMyFRQOAQc1PwEXBwERNCMiBhUjNDMyFhURASImNTQ2MzIWFRQGJScRNDYzMhUjNCYjIhUBIiYCNTQ2MzIWFzQ2MzIeAhUUDgEnMj4BNTQuAiMiFRQXBy4BIyIGFRQeAgQdBB4bETIwwcEwMRIbHgRSGQwQCAooLISELCgKCBAMGf7fOhzdF76MN2rrEdShK4sBD/0BBUBadb9vcL51WUE3NR9JNTRJIDUtGDATIUo5OUohEzAYKSxYmmJimlgsG+7SJbXmURRnaWlnFGNZWf48MEVFMDBFRd44a0UzJmYpAtUYvhfdHP2fFh8fFhceHv2gRmw+M09WJDI9FCMTMztVjE4pT0AmExETQCA4LTQcPDQhKEoFE1vUEetq/fAWHx8WFx4eAghy/QEPi/5kKWYmM0VqO+a1JdL9aTgeG06HQUcCaTBFRTAwRUX+T1BHQYdOGx44Ag5SjFU7MxQiFD0yJFZPMz5sSjNKKCE0PBw0LTggPxQREyZATxFYudB8M1FbQgEK/vZCW1EzfNC5WA2+XIdzPCo7RzuwsDtHOyo8c4dcvmILqlE8RAYjn0FAOjAtdANCA/1YY0NYazIya1hDYyEQEREQIU0UFhcSEhcWFC8oME0tLU0wKC8C1gV8NW0F/qhKHx9KGwHVRTAwRUUwMEWIDz9LHh8mH/0IhkQ8UaoCtx8WFx4eFxYfqW/Ef2u1iEtqSh4bkGiZ/5pQUIuwYEVaeKIMxlxnSHeRSmGmZPzFiTpAQZ8CHx8WFx4eFxYf/ndfA0IDdAEBkR8mHx5LP2NEBW01fAGzAqBYLimkUFP9sP7SRTAwRUUwMEXcUgJQU1CkKS5Y/QCaAP+ZaJAbHkpqS4i1a3/Eb1BkpmFKkXdIZ1zGDKJ4WkVgsItQAAAACgB6/t4JrgaaAEMAUQBXAGsAfACZAKUAwgDQAOoAAAEiJjU0NjMyFz4BMzIWFz4BJDYzMhYVFAYMASMiBgcnPgEzMj4DNTQmIyIMAQcuASMiBgcmIyIGFRQWMzI2NxcOAQEnNz4BNyUeARUFDgEHFycBExcDASIuATU0NjMyFhUeATMyNjcXDgE3Ii4BNTQ2MzIWFRQHFgQzFwMnARM+ATMyHwE3PgEzMhYXEwEHAQMOASMiJicLASImNTQ2MzIWFRQGLwE3NjMyFhc1NDYzMh8BNzYzMh8BBycPAScVBycBJQEHJzc+ATMyFhcBBQE0LgEjNhI+AjMyFRQGBz4CMzIWFRQGAAOeVXR4VSgmGmxCDhsNWOsBA/1qjoWa/vT+p78fIgorHS4uePjhsmhaaZv+rf7MbRYpEzpbIygwO1RRQj5hChkSf/3CTygeMRkBPxMW/tAVICGINwEQGVEe/kBWjVQXEh8aLW49SadhF1e8s4rvkhwTFB4LOAET1ARDOAFIYgQdESUMLSAFIhMUHARBAYg6/mg8DC4aEyYPW4AXIiIXFyIiJEAqDRgOLy4iGSAbPBMGHxATi0JaEGFNTUoFu/38/mN1MGwNGBIPHxABkAH3+841SyCn6JlfPBgniJiGmVIZGBya/q4Bm3hUU3QQNUADAkt/XjVeU0mCYzgEBS0QDSI7TFMpNi1Vl2MFAzlEF0o/N1BbQlY+Tv5OGoBhWBPuASsQ8BBKauQ6AQABHgz+zAGEJEMwFh08JRYWJCQ3KCa4THlBICAlGxURU1E8/CE6AUICMhQUHnBmDxMWGv5W/kc1AcsBhigoGhv+GAH6IhcXIiIXFyLOEH8oHCKBICYoWoQsDFYqQIsfhaQtPPzk8wIS9C3mGhwUFP4A6gJkGiwb2wEqumMjMS28rG98MRkVKq/+4AAAACIBGP6sCRAGzAAlACkALQAxADUAOQA9AEEARQBJAE0AUQBVAGEAbQBxAJcApQCxALUAwQDNANEA1QDZAN0A4QDlAOkA7QDxAPUA+QD9AAAFIiYnLgMnLgMnLgE1ND4BMzIWFx4DFx4BFx4BFRQOAQEnNxcDJzcXASc3FwMnNxcBJyUXASc3FyUnNxcBJxMXASc3FwEDNxcBJTcFASc3FwEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEnNxcBMj4BNTQmJy4CJy4CJy4BIyIOARUUFhceAxceAxceAQEiLgE1NDYzMh4BFRQGASImNTQ2MzIWFRQGASc3FwEiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEnNxcBJzcXASc3FwEnNxcBJzcXBSc3FwEnNxcBJzcXBSc3FwEnNxclJzcXJSc3Fwa4OHQtTls6MiQkbIicVE1ef9N9QYM7R2dWWTlBtog+RXO++o0k0C4POaE4Aasm5CgkOJg5+vcFASIFAjAk6yT+ITSOOwJNQT5D/Wwp4ikCF0BIOfr2/uMOAR0FYWk8af4rHykmGR8qJP6kEyYWERgiF/2W5SfmBBpZml45KluviCAwZ207PX44Zq9qX3NHfnJoMCcsKEM/QWn9hTpnQV5DO2hBXQKzHCkpHB0oKAFLrTGt/UciMjIiIjExtxomFhQaJhb9To01kgXkxCPF+jQpQysEugzlDP3kO5U6/sgzuzL9J0YWRwOtKNsn/sE4rTb9hynbKP6qLsMt/tc4cTxiIx40cXBpLS08O1ZIQbdqfNWDJycvfo+URk+eZi6aRG6/dAMBPH02/scp1Sj88zesOP67JuooA69FFET8kDyRPJgtpCT8ghIBFBIBNDmoOf0+AQsC+wWPPEI7+mXCJMMBtTIfHicxIBwpAY4kFhAWJhIQGAJ9mTmZ+q9emlk3dh9FloguRa6fLS8obLBoUsFILD03QjIoXWNnMzQbA15BaTtHWUBnPEVd/WopHB0oKB0cKf7OtzG1AlcyIiMxMSMiMvc4HBUgNh0VIQKVtCm3+nV7PHsFb+AM5ftIRCBDAWQl5idGMMcxAcML3Af6+jqjOC8q2ioBDjejNxozrjQTJcYhAAAAAAsAPAAKCewFbgCbAKMArwC7ANkA4ADwAPgBAAEhASgAACUiJjU0PgE1NCYnJQ4BIyImNTQ+AjU0PgEzPgEzMhYVHgEXPgIzMgQXHgMVFAYjIi8BDgEjIiYnFScVJxUuAS8BLgEjNCYjIgYHDgIVFA4CFRQWMzI2NwUeARUUDgEVFBYzMjY3PgE1NCYnMj4DNx4BFRQOARUUFjMyNjURFxEUIyImNTQ+ATU0JicOAgcUBgcOAQEnMhYVFA4BASI1ND4BNTQmJwUHATI2NTQmIyIGFRQWAS4EIyIOAiMiJjU0PgEzPgEzMhYVMhYfARMBNDYzMhYXASImNTQ+AjU0JiclFRQGAS4BJzceAR8BLgEnNx4BFwEyPgE1NC4CJyYkIyIGBxQeARc1FzUXNR4BMzI2Nx4BAS4BJzcWFwPHRFw2NgIC/n8lWz6CkjBAMHjBbhlPLCxIKUAckMqgT+EBSnwnU0YsVEFYUVUWZDwlTCbby2p9I0chV1IbIyI5GlGpcjBAMGlbVJJcAUQFBjU1LCJFfCALFAEER7O8qXwZChAhIigaQ09Q7D1LIiEDBUTH5HEnHSuS/HYNQ3Y0TwKQwTk5FyEBFyH+XRomJhobJiYDY1OWhnJdIxtBSVAsKzlckE0MKhUQESNgMVJm/SonKSU/BAPLK0QdJR0JFAEAXv77EyYUNxoiDtgWKhU0GCcSAnISJRksRk8jdv7Uv3T9rz5gMczhOnhAMWc9U1b+exssFDIjMQotOi9BNRsPTSOlBQidlR0cFCAgR3tNKS9ZTAkXCz1FHMjQQUgyPjk2TkQnBwoMCzlnWVpJEVFYtVV/NGQuJARBaEEiIRQbHFtfDA7SNGMmGjg0FRcZKiEXaDwLGx4GCw8SCi1pGhQuLhQTCUlaATgb/uXzLScbPTQOCykkDxQKAlSFGigyAqXPIiYYPzD9qkEWKCEMSqJnq6ECZyodHSoqHR0q/twDS2tqRyk1KSwoN3RRIyMdEREfWf7TAfBFVT8r+0QOGRETFignEENbCbVYWgONFi8aLCEqEKQULBgwHCgR/qgMHRcdLTRLOsapRFBOrYMQVm5dbDoiJwsRSysBXxQoFTInJQAAAAAFAH7+rAmqBswANwBQAGkAhgC+AAABIAARNBI/AT4CNTQjIgYHJzQ+ATMyHgEVFAYHAw4BBzYsATMyHgIVFAYVFDMyPgEzMhYVEAABIiQnNxYEMzI2NzI+ATU0JzcWFRQGBwYEJSImJzceATMyNjUyPgE1NCc3FhUUBiMUBgEiNTQ+AjcmNTQ2MzIWFzYzMhYVFAYHFhUUDgEBIAARNCMiBiMiJjU0NjU0LgIjIg4DBzQ2NxM2NTQuASMiDgEHFzYzMhYVFA4BDwEGAhUQAASf/fv98XN/TUtPHhYUQyG5Y6RhaqpkPTLkERcHoQFPAUaRdu3EdhgQFigqGBQh/Wr+Dc/+Y6I1lwGBwcPeDzhaNQZJDXxkHf73/vNW544ehtdQc1EtTzAKRxNrT4/7g1EpPT4VKSgcJEQTCjwUGS0jHmGTA4UCVAJnFRBGIRYjGHe4ylRl8PvsxD9GH+RhT4ZTSHhNCXA+PCwvLVlCTXVtAd/+rAE0AS2TASqoZmNuNAsSExbIWIpRZatqTqJI/rgZLRBNbTocMUEkGSIUEBsbNkf+Vv4+AQGbjTyFkYZsHDMiEw0gHSNMaQhwhPo5Oko3NlhYFCUbEREmJCQ/XFVkA2EzHSItUkwPJxspFRFUHBYaKQcsNEN5TfryAZkBhSIoHSIgNQoRJyIWJkFUXS5SpS4BSIuAVIhQNVw7jSMxJiBXe1dmm/7vif76/vMAAAAADACw/qwJeAbMAMEA4AD1ASkBNwFRAV8BawGFAaYByQHSAAABIiY1NDY1NCcuASc3HgEXHgEVFAYVFBYzMjY1NC4BNTQ+ATcyPgE3HgEVFA4BFRQWMzI2NTQuAjU0PgI1NC4BJy4CJzcuASMiBgc3LgEjIgYHLgEjIg4BIyInFBYXDgIHDgIHDgIVFBYVFA4BByc+ATU0JjU0Njc+ATcjPgE3JjU0NjceATMyPgEzMhc2MzIWFwceARcHHgEXHgIVFA4CFRQeAhUUBiMiJjU0NjUOAQcOARUUFhUUBgEiLgE1PAE3Fx4CMzI2NTQmJy4BJxceARceARUUBgUiJjU0NjU0Jz8BFxQOARUUFhUUBgEiLgM1NDYzMhceAzMyNjU3FRQGIyIuAScmIyIXHgMzMj4BNTQmJzceARUUDgEBJy4BNTQ2MzIWFx4BFxMnPgI3HgEXNxc+ATcXDgEHJwcuAScOAgEiJicRNxQGFRQWFRQGASImNTQ2MzIWFRQGJzQmJw4BByc+ATceARU+ATceARcHLgEnDgEBPgI3FBYXPgE3HgEVFAYHPgI1HgEVFAYHNjcOARUnATQmJzcWFz4BNRc2NDU0LgEjIgYHJz4BMzIeARUUBgcnDgEBLgE1Ex4DBW91hiIcOmgtGjVzQxocIlNYWlEMDBEfFkCOdBYQCRQUUkNHTxEVEREWEU+MXVySVQJGGIhJEC4OPAcRCCZNISF2XzdXSyUSFwMEFR4WCgwQDgoFJB8SHygOSyUrEj8MDiIRNgU8NBQDAi4mESxOX0TEUT9CMEckS1mjPU0keExtpl4RFhERFRGBZWGEKjF7TQ8RGIX8fFKRWgFXDkZfMhERExggMQldCB4SGiZDARBSXCYGfDucFhYXXP7DebB3SB8iGygWFkhbZzU2P0RfWkuOeCkHBQcEEUNsmWc9cUkEA0ANCFyU/mhCCQ0aExQUBAsxK8BLHV5yOBcoFCY2Bg0GOw4cC0IiIUAQKlBCA8sTJA/TDhBY/IsTHR0TExwbYAEDJlkwH1aHJwUGLkUaDiEUJwcPByxpAvcLGiYbCg0GIhYMDAEFIDgjCwwJCBxTFg48/ZAZFikpExgVZAE5XTcoVxczIXM1S31LDRRIDU4EIkdZFjIkCQ/+rFxVUIA/iUkPMiFQKTUOJZRfTH1GLjMzMTY+QjtNhFwRCRMNKUAeIW1jEig2OC0hX2pmJyFxgHEgQHpjHh5PTx8HKywEBEIBARIUTFkUFAUUKg8fNT8uFSAwLRguKA8eKxpilpZhbGLBYB0nHyJGKzJUJjRjHCgnDRoNEAoaGZwdEBEnA1NdBCg4FyB6m1MldH5tHxxkc2YeUmNgTjOXZwoTAiV7TzNtUVhcAQ2D1n0IEQh9UIhSDAcKEhAXSy4NGScQFiwhKjWaNS4khz4bP2ahUiRKZlAoeiE2PgF5WYyejiwjNjw+gm5Ee3xmgYuQZZxTDBFNmn9MXJ1iHDUYOipGM3a9bgGMqRdPIC85HBU0biX+nh1Jo5UzGiwTOSQNGQorGTsmKjoMMxAvdHr+DQYFAZ4zN2cwNFYvLSgESyIYFyIiFxgiwi9JLh06GT8pYyQvWSwgQyQjLxUpCBELNEf8fjVQSScpThQmbCUONh0PHA0jX14hFzoiHD4dNyM6Zk8yAZcvRRY3JCUfcWpbBg0GPGI7IhcyICxOgk4bQT5BVGD+VBuNVAFHTJKOjgAAAAAJARH+rAkXBswAMABJAGkAfACDAI4AvQDkAQkAAAUiJyYkJyY1NDY/AT4BNTQmJzcWFRQGDwEOARUUFhcWBBceATMyNjc+ATczDgEHDgEBIiY1NDY/AT4BPwEXBw4BFRQfARYVFAYjEyIuAS8BLgEjNTIWHwEeARcuATU0PgI1MxQOARUUFgEiLgEjIgYjIjU0PgEzMhYVFAYXJic3HgEXNyImNTQ2MzIVFAYBLgIjIgYHJjU0Njc+ATU0JiMiDgEjIiYvAR4BMzI+ATMyFhUUBgc+ATMyHgEXEyIuATU0NjMyFjMyNxcOASMiJiMiBhUUHgEzMjY1NCYnNx4BFRQGEyImJzceATMyNjU0JiMiBgcuASMiBgcnPgEzMhc+ATMyFhUUBgV5rGfc/uREpZuUfldFCgtLGlxpfoKETExBAQjmHXtFP18ZgdM2VS3poR51/eElKS1AIG5aDU7FQB8QLBQlDwwtfJlNCwsQMR5MTxMLC1xWAwMYHhhQKSkN/D0kMikaHyMLDUFsQEBYU7xXuVxUejQDDxUgEiMfA7oyrNt6SYg3AzQYPD9vXDZIQzAZRikeQ1UTJjRMRnqhU0UlPyh68co+RFCET1A9LkEWHwZPBzkoLT4mHCE5YDqNmRYbRR4ezhg9WQ5DCDMmLjlNPRkxKBIvEycxEUcPUzktLx8+Il19aku7L+bBjZlowVRHMWJMHT4cHUJSYog7R0mgTjp7PMXVKlFhQjwMgWd6qhs9Rv73ExARFAwGFCgcrhFoMysLExoMFxkLCgKGPmY9P19WUItsPz1RBw8eDjpORFRBV3hnPxw/BEkWFR4iPXBHWEQ9SpNgNyggTS+BGBIWJSkXJf2zQ2Q4GRgODS9SFjiCL11zKCkODWEbEykonYFSkkMGBzlyVf3RPGY9PFArKQwwPSshGyVCKHZpI0QvKDRaMJCfAak9MRUWHT0xOUkTGwsRJzQhR0MZFBd3W1VpAAAAABEBD/6sCRkGzADEANUA3QDwAPwBDAEiASkBNQE9AUcBVgFmAZoBrwG3Af4AAAEiJicWFRQjIi4BJwcOAScmCgE1ND4BMzIWFwcuASMiBiMiLgEjIg4BFRQeATMyNwcOASMiJic3FB4CFxY/AR4DMzIvAR4CMzI1NCYvAR4CMzI2NxM+ATU0JiMiBgcuAScuAjU0Ny4BIyIGFRQeARceARUUBiMiJic+AjU0PgE3LgEjIgYHDgEVFA4DFSM0Njc+Ajc1PgEzMhc+ATMyFhUiBhUUFhceARc2MzIWFRQGBwMOASMiJicWFRQBIi4CNTQ2MzIXHgEXFhUUASc+ATcXDgEBIiY1NDYzMh4BMzI+ATMyFRQGASImNTQ2MzIWFRQGASI1NDYzMj4BMzIWFRQOAQEiJicGIyImJzcWMzI3HgEzMjcXDgEvATYzMhYfASImNTQ2MzIWFRQGFy4BJzceARcvAj4CNxceAQEiJjU0NjMyFRQOARUUBhciJjU0PgEzMhUUDgEVFAYFIiYnLgMnJjU0MzIWFz4BMzIWFx4BMzIWFwcuASMiJicuASMiBhUUFhceAxceATMBMjY3LgEnLgEnDgEVFBYVFAYHHgEFAy4CNRcbASIuAyc3HgMXNjQ1NCcuAScWFRQGIyImJy4BJy4BIxYVFAYjIiYnLgEnJiIjIgYHNz4BOwE2MzIWFxYXHgEVFAYHBgV2Xa41AyAhcnYnHAcYDXi1ZXvYi2WsOgMnTh4jSi8fRUIcN2A8YLiDQkQoGC4Xiu9GEC5VdEYOBx4iTUg3DA4DDUSObxQKAgQ7YG0/GIzLPtMxKSQUJ1kgDmxKRXZIHAshESJGETY2ODSDUzZpJhEVChM0MhUgFxk1FzM9K0BBK1AdFR9JOwkUiII0NBQcFkBYDQkvLHKJJ0RUNlEzNdNF8oEyUwwK/u0TUVc+GxATDyZQNBv80SEVXy40OWADoz1OFhEJLDQVCikmBRlY/LQaJiYaGiUlA2w+GRRPfFAKBwtUhv1AGC4VKCoZLRsgIx4wIw83FBYeHxkmbEsROxsxCHcaJiYaGiUlTRU7KDogOhopdL0HEQ4B1A8b/lwJCz0mFCEhE1gKDiAyHBYkJBUBkCK8kg9fdmUVW5g0XDQRQCw7XiMRJhM4kjp0H0gpnshFPT8gMSMPEBdoeGEQeq5DAT4lUBEERy8UJhMIBQIRERY4AljJBwYBtWsjInSFelMIFyV1hXoqAQoKGA0ECQgNFggEEQoJEQkDDwkIDwcEBgMKFwskW0sGSFckDSA+JjQMTTALCwgHBv6sPBYPByhEZjIpCwcKXQEQAVvLn+6DS0COPkcrHBxWkFhKfEkOVgQCYG8hbt7OrDsLEEkqVEUqEFMuSCgHAwYERhARBWp0AYhbXRMXFmBVOMZ/d+O3NCgTEhNJUChNhn5/rT8yQCMePGWFa67QcB4OCRAYNNGrYpqCfIhUTXYxSXyVbmT16B8MCl9CChEbi03H9U9PSTEieGL+d4B8BwUOEyUBDCQ3PhkQGREpURwOERUDO6cWNw1aFln89SQaDhAHCAQDEhkpA2smGholJRoaJvwILhMXGRgNCBY3JwNcExMZEhUuGDcjIhQwEg5SWC4ZEiUmGholJRoaJmcmPBhODyAWyDoPG21sGTE8nAEaFR8qVgwNLC0QDSU7GCIfQC0ODjEyEQ4oLBooBBESDgEGZo0cFRQdOkMBAQgNNgIDOxwaDh4pFg8CAg8SEAUiH/zAExBRv24vYjQxVi0lWjtDcDAJDA4BO3iNTRgr/coB/wsSGRwONQoXFhADBgwHLysFCgQNEB8THhAJHA4CAhISHBgXFw0WCgEEBkYGBDkqJRIhIkIgHC4XAwAAABQAOv7eCe4GmgCRAJoAowCrALMAvQDFANEA2QEFARoBMQFLAWUBcQF9AYkBqwHOAgEAAAEiJAACJy4BJy4BNTQ2Nz4CMzIXNjMyFhUUBx4BFRQHHgEXBy4BJz4BNTQmJz4BNTQmIyIGBy4BIyIOARUiBhUUFhceAhceARceATMyNjU0Jic+ATU0JiMiBhUUFwcuATU0NjMyFhUUBxYVFAYjIicWBCEyPgI1NC4BIyIOARUjND4BMzIeARUUBzY3FwYEASc+ATcXDgIvAT4BNxcOAgEuASc3HgEXEy4BJzceARcBJzYzMhcHJiMiAS4BJzceARcBIiY1NDYzMhYVFAYBLgEnNx4BFwEuATU0NjMyFyY1NDYzMhc2MzIWFQc0JiMiBgcuASMiBhUUFyYjIgYVFBYXJyInNxYzMjU3FjMyNxcOASMiJw4BJyI1NDY3NiY2NzYzMh4BMzIVFAYHDgEBIiYnBiMiLgE1NDYzMhYXPgEzMh4BFRQOAScyNjU0LgEjIgYVLgEjIgYVFB4BMzI2Nx4BASImNTQ2MzIWFRQGBS4BIyIHNzYzMhYXJSc+ATMyFwcmIyIGAS8BPgIzMhYVFA4BBxc+ATMyFRQGBxc+ATMyFhUUBg8BASc3LgE1ND4BMzIWFRQOAQcXPgEzMhYVFAYHFz4CMzIVBwE+ATU0Ai4BIyIGFRQWFx4BFRQOASMiJic3HgEzMjY1NC4BJy4BNTQ2MzIeAhIVFAYHBejr/m3+xs0nOFYNKj05KQ6X54U5NCs/QVECKzYTCxkSQxoiFRQNMTQEAicbGioUHj8ifc97KzEyGgc2SiURQy8jcjk4SBIPFScoFxkqCD4ICFA5OE0rGnJeJCSZAbsBCYfZmlIxUC8xVzVQS3tHR3RFDysiPIv+bPosLyh/NiMgTUp5IzaUQRgmX1oDdx45ISodOBu+Ij8gJBg6JvzxFy07KiQHFxw5A+8iQB8eGjwm+0gYIyMYGCMjA/wdPiIlIDsb/RkZIiIZDAgHHxcnDwowFh4wDw4KFAIDEAgNEQMEBg4XFhLCFxUPDw4+HCAcHggyBy4gFhoKOF0hBw0PAQkdDA8YKikTMUAvHEoCtSM6Gh0rMl48QS4IEQcUYjpGc0UsUD8vPDFQLTRFDTIPHBUsQiIaIwcWM/5CGCMjGBgjIwGXLXg6KiIDJi88ey7+vgcmaTdANgkxRTNgBJEMPhVPWyYaJRVCRRA/byVcZoEKHzoZMUVIMsj9+YJPDQw2VzEgISs8GxhBXyIUGjdRF0lEIRQfZwFnLyxSjK5cFw8sFlBLYrN8c8g8OTKrYZ6jHD0zLiNCND2WmH9OKyr+3pgBHgGU+xllNxJUMDBREGysZAwrZkEIECx4TDUwGCscLClAMg4rHEBsLQkZDSYzGxgKCmKeWzgsIzIKKU43CYLpWEBRYE4jPycTSSwpNTkpHBQWEh4WRmJhR1cxQ0JpkwzB1S5XekwyVDM0VDFHeEpKeEcyMCYoNZ+xA9knO34lLxhLUWgnOGUQNQkxQv0dCyAWQREeC/71DRwPRwwbDgKFTSIOSAj86woWDEkJFA0EfyMZGCMjGBkj/DMLHBBGEBsKAl0CIRYXHwQSDxcgJzAqGS0RHQ8OCQgUEAkFAhELDBcEkAcvBFkPISUIJCsMJyxlEAwUExY9OA4GHR4eFjoXDRX+OxMZGUBiMjU9AQI1PElyQDFePU5NMS1PMUExBQcVFx0/LBQTHBwCUyMZGCMjGBkjshQWBzIIFxRYMg8RDDUMD/rl+1c6aUMdGxAhPTsTKx4yJTsqGQgIGBgZLgsqAmozSBxCIkqRYB8YGDlKNA9VWh0XGFFkFlFHEFPH/oV633WnARjPcQoLEkUfcNVvbqBWRT04MzmXf0F4gEtFSyEsLDyAy/7ivHPdYQAAFADs/qwJPAbMAFgAZACDAIwAogCzAMAAygDVAN0A5QD/ARMBHwErATcBSQFTAXkBjgAABSImNTQ2Ny4BNTQ+Ajc+ATMHIgYHDgMVFBYzMjY3PgI3Fz4BMzIWFx4BFRQGIyIuASMiBhUUFxYVFAYjIiYnJiMiBhUUFjsBFSUuATU0NjcOARUUBiU+ATcuASMiBhUUFgEiJjU0NjMyHgEzMjY1NCYjIiY1NDY3NjMyHgEVFAYBJz4BNxcOAgE3PgI1NCYjIgYHJz4BMzIWFRQOAQEiLgE1NDY3BTM3HgEVFA4BAyInNR4BMzI2NxcOAQciNTQ2MzIWFRQnMjY1NCYjIhUUFjcGJyY3NhcWFyY3NhcWBwYHMj4BNTQuAScmIyIHLgEjIgYHDgIVFB4BFyIuATU0PgI/ARceAxUUDgEDBiYnJjY3NhYXFgYBJy4DJzceAwEuATc+ARceAQcOASUnPgIzMh4BFSM0LgEjIg4BNyImNTQ+AjcXASc+ATU+ATU0JCEuASMiBhUUFhcnLgE1NDYzMhYXDAEVFAYHFAYDJz4BNw4BIyImJzceATMyNjcOAgGwaFwSDQsMUY23ZR2QVQQ9cRNYrY9WSEYcMBIPP35uAw9QKVCdOjteEwwSKzIeEBIcRxMRBxUgEAkTExYYfv7om8EZEztfXQGiCmpKH0EiTHdNAnZedjAeFykzJRshIxkZJCgmJiEwVjef/QdMDnxJEhdBNwLsHXrLeWRWUXc+Q0maZniSjvr+X2mtZw4TAViRzhQNZ6xvVE4nTykjSygEJ0wlxWlcWmnDQjtAPX87IgwIBwwNBwcxCwcHDA0HBxl2uWpVg0YkGSQUCiEUECERRoNVarl2i92BZJKRLTU1LZGSZIHd4w8aBQQREA4bBAQQAvNQAilBSyU9J1RHLf2zDxEEBBoPDxIEBBv+Wk4XeKtjabFrUFWNU0+KYn4oITpMPAItAj4tUVdKZf7M/sAdWx0iMhwTZw0LZz0nXR8BXgFYYlJrx0oLOygOHQ8fQyoNSF8wFjAcI0MzuzE3FD0aDBkNS8zf1VRRak9PVUTE1b4/HywODDx4bSs6CQw+NhNPHw8QIiEQCxgKGxkRJAgPBxcRCxRdBAKHcC5UFx2ddzc5c3qRGRERYU46Sf7gXEwvWzo7JBwSGxANCiMcHD5jN2B0An8TeNo+XxRjhP2HTgI5Yz46WVhgK3FqhVxYhUsCQE2DTx8yJYdwHR8jT4NNAXkbNA8NCQcxCAqLwWZycmbBPD9GTU+cRz67BRQUAwMSEgUEExQFBRIUuUuAUE1tUSIRIREQCQgiUW1NUIBLUF6laGKIXEQfJCQfRFyIYmilXgHiAxkVFCEDAxoUFCH81hIuh5OEKjQtlKicAucDIBUUGQICIhQUGlMQcq5ia7BqU45WUpKxHRYpRTktEKP8PEI2zHFN0liIhR0oNyYrUBMmFj0VTl8oHQSrrmHfVX7cAaQTLIVJAgIIB0sNCAEBM312AAAABwFe/qwIygbMAG4AegCGAJIAnQC2ANMAAAEiJjU0NjU0JiceARUUBiMiJjU0NjU0LgE1BiMiJjU0NjcuATU0NjcmNTQ2MzIWFzIWFz4CNy4BNTQ2JDMyBBYVFA4BIz4BNTQnDgEHNC4BIyIOAhUeARUUBgcOASMiNTQ2NTQmIyIOAQ8BDgEBMj4BNTQmIyIVFBY3MjY1NCYjIgYVFBYXMjY1NCYjIgYVFBYnPgE3LgEjBhUUFgU+AjMuASMiBgc0NjciDgEVNjMyFhUUBgE+ATcuASMiBz4BMy4CIyIGBycOARUUFhceAgOhJCoeIB0BAVU4HC4mFxcnHExqEg0EBBolDCoiHCUTLGYlDGubUyAcngEKoqwBD50yUjERERgLGxQON0A8eWQ9PywkHRFCNDMRGxUdUUsUbBVA/fsGKiZGGx0cHxkgIRgZISHWGiQkGhkmJUcsZjM3aB8TBgGZTpzLkR1xRmquPnBecaZZHCEgOAYBsBOZfxw2HSIkO+vBLHqIQny4PjEuLiAcHlNP/qwQDA4sJRosCQcPBzZHEREVIyIRQkMSCEk0Fx0JFzQbNmEZGCEnLSMjGxF2x30FO5hhluJ+heeTVZlfIkgfKR8uSBs4Z0NEcIQ/O69eWtdiOkIjFCwUExs4UyjXKRoBjBUbCQ8lFRhAuiQbGiQkGhskWiYZGiQkGholhzE9DRwiJTITLEWBslxfTKCMd6k2dc2EDiowDSUCX3XTUgsMCYNqKz0hmY+UU6hRTIlAAQ4SAAAAAAYBkP56CJgG/gBNAGAAfwCxAPMA/wAAAS4CIyImJw4BIyIuATU0Nj8BPgI1NCYjIg4CIyI1ND4CHwE+ATMyFhUUDgEPAQ4BFRQzMjY/AT4BMzIeARIXLgEnHgEVLgEnHgEBIiY1NDYzMjY1ETMRFAYHDgIDIiY1ND4BNz4BNyUHJR8BHgEVFAYHBQ4BFRQWFRQGEyImJzceATMHLgE1PAE3HgEXLgE1HgEXLgEnMjY3Fw4BIxYXIiYnHgEXLgEnHgEXDgEFNCYnHgEXLgEnHgEXLgIjIgYPAQ4BIyImNTQ/AT4CNTQmIyIGBxcVBx4BFRQGDwEOARUUHgEzMjY3HgEzMh4BASImNTQ2MzIWFRQGB8xRY1Y/dso4LWktfsVxMykdJSUNPj4/YEk4FyEpQUsisDCMNHGOHkg/IhARKBYrISZAmmR+3a5xEh0mJgUJGUUZBAL89yJEOzFBLk4FBQlET24kSSQ0Fht2LwF5Av6mnOkcJSYj/gYcCgYhxyhZHCQWRB8XCQgBL2gzEBpBn1UQMSI5bzMHID8iNxJeiUsGGgs0ezUCCQgHDgIgBQYYNCYGFRQWPCEspth2TXw5JilJMytGLSJBQRdfUBxTJm1tHyAsMh0lLVugaSFfQDfScjFNTvyyEhkZEhEZGQGAKScNCQcJEGSvb0uxSTRBRSAKIywiLSIzJl9YOQEGJjmQdCxgg2E1GioSJiUlK0hOdcr+/o0VFg8YVCkQGQUaNfzgRSIZHQcLAuj9MhovDRg1JgEiMycTQDsMDiELWA3cBJQSJREXGQh4BxgIEjEWGC0DHiUcIBUcCxtAJAsXCy9CECxXJDpBBx5GIQYHMAQHREUiKBhPFAIvKBw2FwEBvhQxHQUSEyo/JQUUDpPlgz1AKy82QzM6RzVleEkfVGIaFEwJRg42JCJcWTRDmkFZjE8NDQcKBxQD/xkSERkZERIZAAYBAP6sCSgGzAA2AGYAfgCKAJoAqgAAASImJwYjIAMmNTQ2Nz4DNz4CNz4BLAE2MzIWFRQCBwYVFBYVFA4CBw4CBw4BBw4DJzI+Ajc2Fjc+AjU0JicGDAEjIi4BNTQSNyIGBw4CBw4BFRQWFx4BMzI2Nx4BAzIkNhoBNw4BIyImNQ4BBwUDBgIVFB4BASInNxYyMzI3Fw4BByIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgEFKjl5N0A0/m9wzE5VIB0UIyc1VUokTOwBFAEW8VGWuDpFFRI6UEIIHDVGNjdlGg4uR2FBOEczMiQrVTQ9RyAIBnn+6v7gin6/bLCkgsM1JiQqMUI9XVgv7awmRyMvbLV9AQ390IYOGjcaTGs/dzj+xJmrtFqcAaMVHgkJEQdjJUYTaD1fnFxcnF9gnF1dnGBJeEhIeElId0hHeP6sJiIJAb+et1KnTB00NTslMiEXIUeWi25B06xt/u6eME0/fSs8V0I4HWd+QA0NBAgENUExTSY4NhATBRAUfrlsPYs5muR8Ya91kwEpgx0vIlBVKjmDRVKQO93MCAYrIwHOetMBDgEslQYGcE8WMBsM/vuG/uODXoxNAqYFTQFeGEZRv12dX1+fYGCfX1+dXVBIeElKe0lJe0pJeEgAAAAADgDm/qwJQgbMABwANABMAHgAuQDDANAA3ADqAPIA+gEGARkBKQAABSIkJgI9ASY1NDcmNTQ+AjMyHgEXCAEVFA4BBAUiLgEjIgYjIjQmIyIGIyI1ND4BNxcHBgUiLgEjIgYjIi4BIyIGIyI1ND4BNwUOAQEiJicGIyImJy4BJy4BNTQ3LgE1NDYzMhYXNC4BNTQzMhYXHgMzMjcXBgMyJBI1NAAlLgIjIg4CFRQWFw4BFRQWFzQ2MzIVFAcGBzYzMhYVFAcGBzYzMhYVFAYHDgEjIiYnDgEVFB4BBAEyNjciJw4BIxQXIiY1PgE1FxQXFAYjAy4BNz4BFx4BBw4BFycmNTQ+ATMyHgEVFAcTJz4BNxcOAQEmNTQzMhYzAQYmJyY2NzYWFxYGASInAx4BMzI+AjMyFhUUDgIBIi4BNR4BMzI2MzIVFA4BBGGo/tXmhD5CJVWRuGJnu44gAS4BJGzB/v79DRsKCxsTJBIYARoJDAcTXpRQqKskAaQTCgoVEScSEAcFDg0pEg0ySCIBZ1WLAQJwvk8WFxMkEQwWDhAvMxAuDRMIFQ0aGhYXTi41U1p6Wy0hEjLDuwEan/7t/s8XdqVcUZt7SR8gLS9COVdDFRUrBwoJDx4JIQoSDwoYHgoQNCUbMBYBAXXOAQ/+px4XASMbChgIHCoyIDA0ZjElwhYQCgksFRUQCgoreigOHSMICBwWEOkdTVwfSSt4/dshMxZBLwEgFycEBBkWFyYEBRgDxi4vFBArDh5PaYlYPzNZlLf81Bc2Jw4XFSAnFDoeK7h51wEaonpBXF5USldlvZVXXaFn/v3+PtSI67FiCiAfDh4eAwoLPEYbgYAbkh8eExoaFwoMOUQcK1twArGbhwkNCwgXBwgjDA0OIAgHBRACAxASDAcNHioviIRZC0UU/jmVAQKhuQG492CUVEp/oVY4TR4mVis3ShFXVQ0HCA8nBAcHBQMLNAQLBwgKEBkXCQcZIA6U/8BrBPsjHh4OEEFGYVUDIRkDMgNNbgFKCDAbGhkICC8aGhp1JAwQCiUgHyYMFgn+bkoeakIiW3cCHwlYbhf+2gQiHBssBAQhHBws+8gPAXQPED1RPTI/V6F9SQRnR2MoBAMGOB5IMwAJALT+rAl0BswApAC4AMQA5QDxAQIBfQGQAZsAAAEiJicDLgEjIgYVFB4BFRQGBw4BIyImNTQ2NTQmJwMuATU0NjU0JjUzFB4BFRQGFRQWNxMeARUUBhUUFjMyNjc+ATU0LgI1NDYzMhYXExQWMzI2NxM+ATclHgIVFAYHDgEVFBYzMjY/AT4BNTQ+ATU0JicuAicuAS8BHgEXHgIXHgEVFA4CFRQGDwEGIyImNTQ+AjU0LgEnBw4BBwMOAQEiJjU0MzIeATMyPgEzMhYVFA4BAyImNTQ2MzIWFRQGJyIuATU0PgEzMhYVFAYVFDMHIiY1NDY1NCMiDgEVFBYzASImNTQ2MzIWFRQGASImNTQ+ATU0JiclFAYHDgEBIi4CNTI+AjcWMzI2NTQmJw4BBw4BIyImJw4BIyImJw4BIyImNTQ3JjU0PgEzOgEXPgEzMhc+ATMyHgEzMjYzMhYXHgMXHgEVFAYVFBYVFA4BFRQWFRQOAQcOAQcOAQcOAgcOAgcOAQcOASMiJicHIiYnDgEBMjY1NC4BIyIVFBYVFA4BFRQWASImJzcUHgIVFAU4RlECFQMiHB0sCwsRCwlmNzNRIwwKh09fCS9QGBcJU0aXCxAgHhMdOQMLDgcIB1VESEUEFRovLBkBGAxSVAEfFEM2EAgNCBsWJCAEJQkIIyNpdEV6g1QqUyoMLnk2Vn9uPY6LFRwVCAslFoA0TQ4RDigzEdY3OgsYBFD87y5KHAcjLRMTKCEICAcfOXMZJCQZGCQkoDtoQDldNCAoJBUIKBwkER1BLWdHAdEZJCQZGCQkAwYrMyMiHRUBDzUqCjj8fyQ7KxiBs3lOHCY1LEdNaw4dFgdXOyM9FxxOMDFWHQ0uHS1AHRRps24JEQkLPy4xIxg7JiYuHQwLIRMdOhQEJjErCCw1EykaGysiJAMGCA8WOQoRAwISEjQrBw4RFQohGhMvHW4kPxQhFwEfNlA1TCUeMyMjOwUnLVseTyApIP6sLzUByUY5MC0bcnomL3YoIC8vKyI2NhEqHAGGEHJPIjoXRJNiRWVaNRlAGjpNAf5JHjoZIT0aFQ0NCiZsJRRVYVESSGVwW/43Cg4OCgEplaEeZktzWygYVyY9MwgMFBQWrixbSVqTp3WZoR8TK0M0GiINXAs1Izc/JRAky7ZplXFjN0xlMK5pPzERS1lMERlATi9LE3qC/tY0LQN2TTANDAwKCQwGETcrATAuICAuLiAgLvpFc0U/gFYwJB1aGhYuKR0iUhwXQ2QyT3D+xC4gIC4uICAu/CIgFR5RUyMtfiFFi/RzHB0BajhQTBRSiqhVEyQoG0JAExkFO1oZEB4pJRkSHzwrKh85RG61bAEsNB0WHhkZBh4wCQUOLjMNRS8TIhIMPhwTJyMNE0AdFjAtEiRMExwgCxIwMBQUDwQGDUATCA0KCjUkHyVNA5NwSz+GXRYsXDUbLDQoPSr9OWdVvzF0bE4MEAAAAAsAdv6sCbIGzAAtADUAPQBZAHEAeQDDAM8A2wDiAO4AAAEiJAACERASJDMyFhIVFBYzMjY1NCY1NDYzMhYXNjMyFhUUBgcOAg8BBgIMAQEnPgE3Fw4BLwE+ATcXDgEBIiY1NDY1NCc3HgEVFA4BFRQWMzI+ATUzFA4BASImJwYjIiYnNxYzMjcXBhUUFjMyNxcGFy4BJzceARcTMiQAPwE+ATc+ATU0JiMiBgcuASMiBhUUHgEVFAYjIiY1NAIjIgQCFRQSFx4CMzI2NTQuBDUzFB4EFRQGIyImJxYEASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGBSYnNx4BFyciJjU0NjMyFhUUBgSO5f6A/ueanAEjzJ3shYVzZmglSy5LeCtyf0djIRsdSEcbCSm9/uz+p/wSHylrNA8wZE4VK2g2DzJpA9FkdCUhNh4dEhNLPTpaNVBHfv3TJjIRIiQiQhkzISMxEUQFGxsYICEuuhtMJiYqUBse9AGSAREzCSFtRh0QMydDhkEpbj4TGBQTloiZr+3Rr/8AjEtAJKPIWz5GT32LfU9QT32LfU9kcDuCP3gBK/53FyIiFxchIZYQKB8WHTYwAVRHUxopUSOuFyIiFxchIf6srQE+AbIBBQELAZLhjv73u7vGlIdNjCgyOmpgdDsyIjkmKHW0hy3N/rLwgQU7NR44FD0WNYwxFB8INwca+2i3lGOKOUgeOxtUMjNXXj52hWu/fpbjfwQtIiIcLysjNlkNGxIiJRA9Gt4jVCUyJVkp+37TAX3+LaTrZSocCAsZT0p2eRIKDldtL6rB9tvuARbG/pL8rP7RgEeCUjIxNWtraWdhLR9QX2tzeD5NayEdYmwGUCIXFyEhFxcibSoQCA4eEA0Vzy4cNA8qF7QiFxchIRcXIgAAAAoAr/6sCXkGzABRAGIAbgB4AOAA8AEAAQwBIwFFAAABIiY1ND4BNTQmJy4BJwMuATU0PgI3PgEzMhYXMh4CFRQGBxc+ATMyBBYVFB4BFRQOAQcOASMiJjU0Nj0BNCYnLgEnDgIHHgEVFA4BBw4BJSImNTQ+ATURFxUUDgEHDgEBIiY1NDYzMhYVFAYBJzI+ATcXDgIBMjY3PgM1NCYnPgM3HgEXHgEdARQGFRQWMzI2Nz4CNTQuAjU0JiQjIgYHJw4BIyImNTQ2NxcOARUUMzI+ATU0LgIrAS4BIyIGBw4DFRQeARcTHgEzHgIVFA4BFRQWJSI1ND4BNTQuATU3EwMOAQEuAS8BLgInNxQWFx4BFQEiJjU0NjMyFhUUBgEnARM2JiMiBgcDBSclEz4BMzIeAQcDASc+Ajc+ATc2JiMiBgcOAQcnPgE3PgEzMhYVFAYHDgIEfzRDFhYHB6LcNpqjhjVIPwkjnGhKbCYZOzUiBwYukbsw8gEkhDc3AwcHFUssOVcpOS8yZyM1dXMyAgEMFA0cWf52JiwnJrcKCwQHYv26Eh4gFhohMAFrGnnYrzoiIKbuAWQdNxADCwsIAgI5enp1NBZyODhCJCAWGy0MAgMBIy0jb/8A2zLGm0subDdDOisiPx8eLiBfShwpKw8IHVhCT34eBzhCMDF6a6k41p0GCgcSExAB7UQlJSQlmo5qB0X+fQUWGCkIGBMDUigZGyj89A4VFQ4OFRUCnS4Bzt8cLzIcKRXj/rFKAWPdJEooRVQRH+gBeBQwPS0WDCQSAgUFX2QhEScXNR0tIiFyYyxBPxQZOVX+rCsmFkR8aSh2MQzDoAHJCIGDJyoaGRZRYDEvS29xJgoVCyoGA3P7zHm9fBqJjDkOKDEsLCInE7gaSDM2m14TSk4ZHD0gZMiQEyoxYB0WGjw5FQGkU4hAk3EOHDIF+SgWERcUDhA0/aJSEyEWTwgmH/xVGhkFUIKfUiNGIhRLUTwDbaw+PGMspRwkFBIRGBUEN3poH1Z0mmS1114EBkMgJj5CRog0Ji+AKzQfKhAQUlxCMjBIUBMXEhYRTFYkAf4MpJoRY3cvWnJDFg0ObTAfQEwwMWiIYFf+4v57HCQBslybZKsjaXY0B1G6YmrZYQQcHRQUHR0UFB39h0IBQQGRMkoaGf706C72AQMrIUhtOf5e/rlNDTV3bTtLKwUIYlsvPxQ8GnQ6N1AZIhVrYHiOSgAAAAYBBP6sCSQGzAAgADAAPABMAFQAXAAAASI1ND4BPwEOARUUFjMyPgE1NCYnJjU0NjMyFx4BFRQGASIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFhMBHgEXHgEVAScBJicmJwkBLgEnNx4BFwEuASc3HgEXCDR4BAYDVQsKFhMVJBUZJQIXDxsJJxxU+XA/aD4+aD8/aD4+aD88WVg9PldYMwZ7MEUgIBX5gA4GPwEdHCD5vgT5BV5BQEBfBfyqBV5BQEBfBQMd9RVCQxZBR3oyQ2NXgkJJq1oIBg8WFli+WZ7G+48+aD8/aT4/aD8+aT5QWTw+WFg+PVgBVgZ6ARUgH0cw+YJjBj0fHR0B+b8EAUFeBT8EYED8qEFeBT8EYEAAAAAlAQT+rwkkBswAUwBfAGMAZwBrAG8AcwB3AHsAfwCDAIcAiwCPAJMAlwCbAJ8AqwC3ALsAvwDDAMcAywDPANMA1wDbAN8A4wDnAOsA7wDzAPcBAwAAJSImJxE0LgEjIgcuASMiBgcOAiMTIiYnNjU0Jy4CNTQ2NyY1NDcuATU0NjcmNTQ2NxYzMjY3PgEzMh4BFzIeARUUBgceARUUBgcOARUUFhcOAQEiJj0BMxUUFjsBFTM1MxUBNTMVASc1MwE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUnNTQ2OwEVIyIGHQEBNTMyNj0BMxUUBiMBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNRcVATUzFQE1MxUTNTMVJzU0JisBNTMyFh0BB4EQIwpGXycUEwc2UFqiTWCHckMbUmAXQDkhIAsIFBlQBgZaXAo0MQ9sKUQ2SoNPaqFjClWOVg4OFBIfGh0hIR4WQfn/Q2JQMyIeUHj+dVACA3h4/a1QAlN4/OVQAxt4/B1QA+N4+1VQBKt4+o1QBXN4+cVQBjt4+P1QUGJDHh4iMwcDKCMyUGFE+Zh4BkVQ+bt4BX1Q+oN4BLVQ+0t4A+1Q/BN4AyVQ/Nt4Al1Q/aOCAYtQ/mt4zVBQMiMoKERhNgoHAh1XaC4EQ01ZO0pPHf2mNB8RSDxMLUBALDFDKjEtUTgXLxNJWRkbGSlBH2IbGyUfNWJDZ6ZhJkAeKkYvQ1wpLj8eHjsIKDf+eWJDIiIiM1BQUAEXeHj+6QJOAY94eP4hUFACp3h4/VlQUANveHj8kVBQBDd4ePvJUFAE/3h4+wFQUAXHeHj6OVBQBo94eMghRGFQMiMh+KlQMyIiIkNiB81QUPlKeHgGtlBQ+hJ4eAXuUFD62nh4BSZQUPuieHgEXlBQ/Gp4eAOWUFD9Mnh4As5QAk79+nh4AgZQUP7CeHjIISMyUGFEIQAAJQEE/q8JJAbMAJcAowCnAKsArwCzALcAuwC/AMMAxwDLAM8A0wDXANsA3wDjAO8A+wD/AQMBBwELAQ8BEwEXARsBHwEjAScBKwEvATMBNwE7AUcAACUiJjU0Ny4BNTQ3LgE1NDcmNTQ2NyY1NDY3JjU0NjsBJjU0NjMyFz4BMzIXPgEzMhc+ATMyFhc2MzIWFzYzMhYXNjMyFhUUBzMyFhUUBx4BFRQHHgEVFAcWFRQGBxYVFAYHFhUUBiMiJzUuATU0NjcuATUmJwYjIiYnBiMiJwYjIicGIyInDgEjIicGBxQGBx4BFRQGBxUGASImPQEzFRQWOwEVMzUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MzI2PQEzFRQGIwE1NDY7ARUjIgYdAQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNRcVATUzFQE1MxUXNTQmKwE1MzIWHQECszNFCC08Ex0lJSgjHBUzJwVGNAQBRjEODwVBLCkaCT4pMiEONSEhNQ4hMik+CRopLEEFDw4yRQEENEYFJzMVHSIoJSUdEzwtCEUzFQw1Kw0HIh4xFBEOHzUQHyg3ISEsLCEhNygfEDQgDhEUMR0jCAwrNQz+4UNiUDMiHlB4/nVQAYt4/a1QAlN4/OVQAxt4/B1QA+N4+1VQBKt4+o1QBXN4+cVQBjt4+P1QBwMoIzJQYUT4hWJDHh4iMweAUPjzeAZFUPm7eAV9UPqDeAS1UPtLeAPtUPwTeAMlUPzbeAJdUP2jggGLUP5reM0yIygoRGE+RTEYFAVCLCoaDzgiNiIgNyM4EB8lKj8JFA8wRQUKL0YDKTkWJTIkGh8fGiQyJRY5KQNGLwoFRTAPFAk/KiUfEDgjNyAiNiI4DxoqLEIFFBgxRQzhDkIoFyUJGDciEisFHxkWKRsbKRYZHwUrEiI3GAklFyhCDuEM/nFiQyIiIjNQUFABF3h4/utOUAHfeHj+IVBQAqd4eP1ZUFADb3h4/JFQUAQ3eHj7yVBQBP94ePsBUFAFx3h4+jlQUAaPeHj5cVAzIiIiQ2IHVyFEYVAyIyH5wHh4BrZQUPoSeHgF7lBQ+tp4eAUmUFD7onh4BF5QUPxqeHgDllBQ/TJ4eALOUFD9+nh4AgZQAk7+wnh4AT5QUHYhIzJQYUQhACcBBP6vCSQGzAAcACgALAAwADQAOAA8AEAARABIAEwAUABUAFgAXABgAGQAaAB9AIkAlQCZAK0AsQC1ALkAvQDBAMUAyQDNANEA1QDZAN0A4QDlAOkA9QAAJTwBNTQSPgEzMh4BEhURIxE0LgIjIgQCFRwBFQMiJj0BMxUUFjsBFTM1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBIiY3PgE3PgEzMhYVFAcGBw4BBwYBNTMyNj0BMxUUBiMBNTQ2OwEVIyIGHQEBNTMVASI1NDc2MzIWFx4BFRQjIiYjIgYBNTMVATUzFQE1MxUBNTMVATUzFTM1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1FxUBNTMVATUzFRM1MxUnNTQmKwE1MzIWHQECU2S295OQ87RkUFie1n+t/vOa+kNiUDMiHlB4/nVQAYt4/a1QAlN4/OVQAxt4/B1QA+N4+1VQBKt4+o1QBXN4+cVQBjt4+P1QAj8QGAkdUzcXOg0OFBYiIy5FGAoErCgjMlBhRPiFYkMeHiIzB4BQ+9ciHhcXCxYLDhEmBxYLDBT9FXgGRVD5u3gFfVD6g3hQeAPtUPwTeAMlUPzbeAJdUP2jggGLUP5reM1QUDIjKChEYRZTv3C3ATHfeXjW/uWj/koBtpP+wGu//q7fcL9T/pliQyIiIjNQUFABF3h4/utOUAHfeHj+IVBQAqd4eP1ZUFADb3h4/JFQUAQ3eHj7yVBQBP94ePsBUFAFx3h4+jlQUAaPeHj9dBwUQWYnER4VDxcJDhgfVTcY+/1QMyIiIkNiB1chRGFQMiMh+cB4eAPwIx0FAwECAhMNIwICAsZQUPoSeHgF7lBQ+tp4eAUmUFBQUPuieHgEXlBQ/Gp4eAOWUFD9Mnh4As5QAk79+nh4AgZQUP7CeHjIISMyUGFEIQAoAQT+rwkkBswAUABcAGAAZABoAGwAcAB0AHgAfACAAIQAngCiAKYAqgCuALIAtgDCAM4BHwEjAScBKwEvAUgBTAFQAVQBWAFcAWABZAFoAWwBcAF0AXgBhAAAJSImJxE0JiMiBgcuASMiBgcOAQcTIi4BJzI2NTQnLgE1NDY3JjU0Ny4BNTQ2NyY1NDceATMyNjc+ATMyFhceAhUUBxYVFAYHDgEVFBYzDgEBIiY9ATMVFBY7ARUzNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVAQMyNjcuAScGFRQXDgEVFB4BFx4BFRQHHgEBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUnNTQ2OwEVIyIGHQEBNTMyNj0BMxUUBiMDMjcuATU0Njc+ATU0Jic+ATU0LgEjIgYHLgEjIgYHDgEjIiYnDgEVFB4BFwcuAScOARUUHgEXPgE3PgEzMhYXNjMyHgEdAT4BNxcOAQcRHgEBNTMVATUzFQE1MxUBNTMVAS4BIyIGBy4BIyIGByc+ATMyFhc2MzIWFwE1MxUBNTMVATUzFQE1MxUBNTMVATUzFQE1MxUBNTMVATUXFQE1MxUBNTMVEzUzFSc1NCYrATUzMhYdAQdvHDMOVzoHGSQMK0dAnV95vFsaPGBBDyMlPDMjCBAUSQMEWFQBjhYkHyNDP0SSUZzTHlaNVRghHSAhFR0rF176AENiUDMiHlB4/nVQAYt4/a1QAlN4/OVQAxt4/B1QA+N4+1VQAXMXOnVAeJsyLx0WCwUaHSUiIgkmA0h4+o1QBXN4+cVQBjt4+P1QUGJDHh4iMwcDKCMyUGFE/hgVERIhHBoXERkREEN5UAcOCAm4i0l9OzVfNyg8GQ0LTI5jCIuwIEZBY6xsHywgabVOTWEQCBA0XjsbGgEyAzE0CBP6mngGRVD5u3gFfVD+RBVgLAceDjudYT1yFiodiEprrDcOEDx4G/wReAS1UPtLeAPtUPwTeAMlUPzbeAJdUP2jggGLUP5reM1QUDIjKChEYSMVEwIdV3sDBlc6R0peWwj9wRAzNR4gKlBEYEYwRSQuLlVAEiQQTGgdCA9zRUMwFiIkI3FkCnCrZEI+R1Q/aDEyOxIUKlFF/oxiQyIiIjNQUFABF3h4/utOUAHfeHj+IVBQAqd4eP1ZUFADb3h4/JFQUAQ3eHj9lQJFFyARVz4pNCoxKzs0JjY2KDFXIjYnBwj+NFBQBP94ePsBUFAFx3h4+jlQUAaPeHjIIURhUDIjIfipUDMiIiJDYgHFFxAsHytiKyhTNS0/LiE8JFaQVwEBa2gdIBwmJiQOHRE+eVoQMhd8YBVBNT9uRgYWIBlQUUZFA06EUGwhOh4ELl01/s4HBAYIUFD5Snh4BrZQUPoSeHgDIy9FAwR1bS4hHCw5c2sDVT0Ct1BQ+tp4eAUmUFD7onh4BF5QUPxqeHgDllBQ/TJ4eALOUAJO/fp4eAIGUFD+wnh4yCEjMlBhRCEAAgD//qwJKQbMADUAawAAASImPQE0JicBLgIrASImNTQ2OwEyNj0BNDYzMhYdARQWFwEeAjsBMhYVFAYrASIGHQEUBicyNj0BNDY7ATI2NTQmKwEiLgEnAS4BPQE0JiMiBh0BFAYrASIGFRQWOwEyHgEXAR4BHQEUFgaqfIsaIP2gFzFFNzp8kI1/NxMXlH59ihsfAmAXMUY2OnyQjIA3ExeUfl1lPDVAYFxgXDpBWkIf/Z4qJltcXWU8NUBgXGFbOkJZQx4CYiomXP6sjn86SlsfAmAXGQqOf3yODxU0e5GOfzpKWiD9oBcZCo5/fI4PFTR7kVBhWzY7N2JZXGAPJB4CYip2WzpfXmFbNjo4YllcYA8jH/2eKnZbOl5fAAAABAFA/qwI6AbMAEIATACTAJkAAAEiJjU0NjMyNjc+Ajc+ATU0CgEnLgE1ND4BNzYkNjMyHgEVFAYjITceARUUDgMVFBYVFAYjIiYjIgYjIiYjIgYlJzY1NCc3FhUUBTI2MzIWMzI+ATMyHgEzMjY1NC4BNTQ+AzU0JichMjY1NC4BIyIGBAcOAhUUFhcWEh4BFRQGBw4BBw4BBw4BIyIVFBYBJzY1MxQBpCs5KiUYLxcXPFtELx0bLh0TC17TsawBINQ5abFs2sz9YiMVHBUfHxUoZFtXmREgWSYiIxMQNgI6KBgFMAf9jQw/EhokGg05QRgPVm0vPDMUFBUfHxUzFwLkqqxVjVQ00v7kpZ64TgwRFCUdETI+LkEgGSspHDUdGw0CCiBHMv6sNikkMRMMDCQ5LB4rJTUBCgF52V9JH12DYyoqOyBlqWWfsB49ijJvl3N0lG4+ejNHVhQgDAyoHiEqFxMMGR07hgwMEBAKCisiGE9bKXWed3KNZlukLIJ9UYROITooJk5kRxxPTpb+3vy8LzxPJx0oEw8YFA0MEwoLBW8mO09oAAcBDv6sCRoGzABBAEsAVgBiAKsAtgDEAAABIiYjIgYjIi4DKwEiJjU0PgI1NAoBJyERFBIXHgIXHgEfAR4BHwEeATMyHgEzMhYVFAYHBgcOAQcOAQcOAQEmNTQ3FwYVFBcBNCYnJiM1MhcWFTc0Jy4BJzcWFx4BFQcyNjc+ATc+ATMyNjUyPgE1NjU0JiciJicuASMiJi8BLgEvAS4BJy4CJyYCNREhHgMVFA4CFRQWOwEyHgMzMjYzMhYlLgEnJic3FhcWFzcmIyIGBy4BJzcWFzIXB3UjNBUVWURTnZWSkUnUvMgqNyoEDA0C8CsrElNtORYrNCkmSTcULlhLITdALSk2DAsGUQ0sKQ0yICA2+ulVVjxCQwTsIh4QcH4oTEE6G1MyDm1BJSvpCBcNESsVICUYFzQUFwoKBgUZKx0ZLSBTZDQUP1orJzEoEi51aBs0K/2/BAUDAio3Kpic1FOblJKSSzVoExQ2ASYFHR0fYQxsLD4NLA0pBgwHCiMeEDkdPx3+rBcWO1dXO6WeY4yDpXyLARYBDHj+Hsf+/00gUlYmDiUxJyMuFAcQCxgYVTMWLxRiLBEaCQgSBBwcAlxnaGpjNE5KTFD9yxomB0IyTCJNLTUQITMOMCBHDjwmOA0JDBQCBBokECUzFg4bER0HCxAOCg0SBxY4KSYwIQwfWGItVwEY0AGSKZzK3Wlzs5aMS3t4O1dXOxYXaxQeDTwbMBxFIzZXFAECFx0KMBQmJwAAAAMB/v6sCCoGzAAsAFoAZAAAASICETQuAjU0EjMyHgEzMj4BMzISFRQOAhUUFhUUAiMiAjU0JiMiAhEUBicyNjUQITIWFRQWMzI2NTQuAjU0PgI1NCYjIg4BIyIuASMiBhUUHgIVEBIBIic3FjMyNxcGBASvsTJCMtCyTpiIN0t0eE+0yzA/MBWHdWRpTT5hZj1EHRQBF2V2RzZLYQYJBjA/MJ+QRHV9UECOkEeOpDJCMpABo5ynJJOMf34ikP6sAdUBwD+PpcN03wECIyMjI/7y9IfFmIpNPbxa9f7lAQv6kLb+sP67YFZQJEIC5d64zOnzzR5faFgWWJ2ftnHU3iMjIyPSv2G4q55I/mn+UgYuUUhJPEhEAAAKAHj+rAmwBswAcwB7AIcAkwCaANoA5gDyAQcBEwAAAS4BJy4CJy4CJy4CJz4EMzIEFxYzMjY/AT4BMzIWFRQOAQcOAgcOASMiJjU0NjcuAScGIyImNTQ2Nz4BNTQjIgYVFB4BFRQGIyIuATU0NxcOAgceAhceAhceAhceARc+AhI/AQYKAgEuASc3HgEfASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBS4BJzcWFwEyNjc+ATc+AjU0JiMiBg8BBiMiJyYkIyIGFRQWMzI2NTQmNTQ2MzIWFRQGBw4BFRQWMzI2Nx4CFw4BFRQWASImJzceATMyNxcGAyImNTQ2MzIWFRQGBT4BNTQmIyIEByc2JDMyHgEVHAEHJSImNTQ2MzIWFRQGBYgihFhfkohSX3NBFhY+bF6U3KSAbDasAThwKixfn0q5PlU6OFJHtKV5pG8rVHE5RV0FBhk2GWZLQFs5MTQpKRISGxpLOTxlPToOTJmLNz5VORMWNlpLP5ytVkeHJj+Xln8nXSFdkdr+2F2dQR0+m15HMUhIMTFGRjEdKCgdHSoqATQvaDkVi2X+ryJRTEHHuJWrSCMZHEQwua3URENh/t2hc45VORgcM0A0OD8/JCc9LR8hVjkZS0saDg8vAUpDYg5DCjsrKywwQLkZJSkcGSUpAdIEA9fCkv79bERvASmskdp6Av74GSUpHBklKf6sTnAfIw4LHiOGqVVZooAleKluPhnAswdOUchDOU89NX/DnHK3kj13bl9JFC0ZDiEQTFlDO5tkaHomLRYPEiUrHDhLQWs/cFUhK2puMSN3k01UnXccFxMZHxllNTCl6QEvulWt/sz+6v8AA0UtRBg2FkQvzEgxMUZGMTFIMiodHSgoHR0qkitPJDhWXf66VGxc+q6NuHEjGSMuNMi7E6fCjHI+XRwXGzonL0FANj2fSlGUMiYsMjEYMSQHK0QaKS4D0ldMCjQ2KTA8ARwnGx0uJxscL9gdNBnF59jaIev2etuTDRoNHScbHS4nGxwvAAAABwCM/qwJnAbMAAsAGQAtADoATQCwAQQAAAEiJjUeATMyNjcOAQMiLgE1NDYzMh4BFRQGNy4BNTQ2NxcOARUUFhc+ATcXDgEFIiY1ND4BMzIVFA4BJyY1NDY3Fw4BFRQXPgE3Mw4BBwU0NjMyHgIzMjcnJTUlFzcnBSclFz4BMzIEFzcFByUHFzcFByUDPgMzMhYVFA4BIyImJxQOAhUUHgIVFAYjIiYnDgEjIicOASMiJjU0PgI1NCYnLgInDgEjIi4BNxQeATMyNx4CFx4BFRQOAhUUFjMyNjUeATMyNjcUFjMyNjU0LgI1ND4CNR4BMzI+ATU0JiMiDgIjIiYvAS4CIyIEDwEOASMiLgIjIgYEpV9sP5NUHkEkBHvlIVA5EwwnWD8hGkZKCQo0CQgkJBYhCy8LNwEeFiI6Vy0iNU17KwIBNgEBC2ZbAzcEdIH7QltIMj0pKRwVEAn+pAFliAhj/nIDAarBYvaHnQEVXdMBgQL+mnwCpgE7Af7lHRMgJTcqSFtKeUUNKhI3STc0RDSQhYi/ECs+KVpOEr2IhJA0RDQXGjNXOgkUJRBEeUtQNFg2OUoDM1g3Jh80RDRgZIyMLIE6LGBElIVlYDRENDtNOyZCGzdYMywnIicmOjRCWREWHKnyjLv+xFEHIlpAMzonKCEmLQKnhHsUFwQDYHsBgSc4GxANHzIfFhGBFGtIGDIeEhwqFClFFhQzGRUlTr8VEh4tGBsXNCRjPFsKFQoEChEIJyQ8dEtekUsuWWw1RDUJzTEIcIQOvAYIosVjaX5xuJoJFfwIk5MIGP78DzU3JmxZaatlBQROmpB/NCQ+Oz8mSVlyXg4MF15vWUwkPTYvFh0+IUHB0loGBWWraVWJUCBl49FJMlEmJDsyMBonLnFtEhsWHHdsLSUZNTxJLj6Fm7t0EA9QiVU6QDVENU5RZ4TJct7OElpTNUQ1QAAACQGQ/qwImAbMACgANgBGAG8AfQCBAJ8ArwCzAAABIiY1NxQzMjY3JREXJgI1NDY3Fy4DLwEeAxcOARUUEhcRBQ4BASIkJzcWBDMyNjcVDgETIiwBJzcWDAEzMjY3FQ4BAyImJyURNhI1NCYnPgM3Bw4DBzceARUUAgc3EQUeATMyNRcUBgEiJic1HgEzMiQ3FwYEARE3ERMRNC4BJy4BNTQ+ATMyHgEVFAYHDgIVES4BIyIGEyImJzUeATMyLAE3FwYEBjcRFxEF/1tTTmYdKBkB5TGRiwgPLiuNopY1ETqfq5o0Cgdyef3bJDn+UJ3+jLIQpwFvnCU+HiJADGn/AP73eBBkAP8BBm8aKRYWLHwWOiT923lyBwo1maufOhE0l6KNKy4PCIuRMQHlGigcZk5TAT4eQCIePiWcAXCmELL+jPzeTv4PHRQ0Fkt+TE19SxY0FB0PKUIgIELmFSwWFykZbwEGAP9kEHj+9/+bTv6sTlACTgMETwNJhYsBWdw1azFVGEhQSBdcF0lUTh1AUTfD/s5//KtYBgUBDi0oTyYuAgNRAwEBPRksHE8XLRwBAlACAf21BQZYA1V/ATLDN1FAHU5USRdcF0hQSBhVMWs13P6ni4X8t08EA04CUE4BDgEDUQMCLiZPKC0BdATDFPsp/fMDQGWKbjqX6UZLeklJektG6Zc6bopl/MAEAwMB0gECUAIBHC0XTxwsGTcE1xT7PQAKAb3+rAhrBswALAA3AGYAdwCFAJUAsgDNANgA3AAAASImJzceATMyPgI3PgM1NC4CIyIOAQcnNiQzMh4CFRQOAgcOAxMiJi8BNxcWFRQGAyImNTQ2Nz4BNTQmJy4BNTMXFAYHDgEVFDMyNjc+ATU0LgEjNTIeARUUBgcOAgMuAjU0PgE3Fw4BFRQeARc3JgI1NDY3Fw4BFRQWFycuAjU0NjcXDgEVFB4BFwUnPgE1NC4BIyIGFRQWFwcuATU0PgEzMh4BFRQGFzc+ATU0LgEkIyIGBxcHAzc+ATMyDAESFRQGEyYnPgEzMhYVFAYBJzcXA+1xmzRMKnRWMldlhV5sj1EiW6Taf4fmnh4ZXwEutZD3uWgjVZVzZJFzagQmPBpDUmx4Q3dFUSQjGBAcJScrVYYcGxoWRiNUVlM/QnBFXJRXSlpAWkmbhshtVqFwDpirZ71/D766mrAUpYywtgdohj9mZBpZWTx/ZAJ3SCYgY6xvlrtVWQF9gGu8eoXQeSW8D2luiuv+2Z5Yo002l0V4YLdfrgFFAQGWmC0+eA0eDkFbEf6oYyhf/qx7gxtrXidZmXKDxaCVUoPgp15mt3p7rr5qvv2TWKCr04t5o2IrAtE0KGt5NDpbNEP+0EpAJj4jGBwNCxkWFzgdoiJAGxoeFzpRbmmQUkdzRFBZl15frHJRYSsBwU/L4m9yxZAhMC3xmmbRvkoDlQERlobiSSlDzneL/o8aZ7CdSl+aOiwzglJDkKRjiiJOgUZ3umuriWmTNRAlonpyr2OA341OlEpoKaRzg/fGdBgfkl8BCCwjIYHb/uyUkdACb4xiBQdcQRkwAVAySjAAABQBxf6sCGAGzgAhACwAOABEAEsAWQBhAHEAfQCJAJUAoQCqAK4AuQDJANQA4QDlAPQAAAEiJj0BNDYzJS4BNTQ+ATc+ATMyFRQOBAceARUUBiMBJS4BNz4BFwU3FxMiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjciPQEzFRQnIiY2PwEXBw4BFjsBHwEiJwM3EzMHEyIuATU0PgEzMh4BFRQOAScyNjU0JiMiBhUUFjciJjU0NjMyFhUUBgUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFiUnMxMXAw4BIzc1IRUHIjURNDsBMhURFAE0JyY1NDYzMhYVFAYHBhUBJjU0NxcGFRQWFwEnJjc2HwEzNyEVIQcBJzcfAScmPwE+AR8BHgEPAQ4BBCkaISEZAp0zLC5HIw0pHFYMFBcYFQcCAhkX/FX+gBMMBQYhEgFPQCg1M0hIMzNISDMXIiIXFyIiFxkyGEJKAzC7D5wOAhgZnQ8JMQc1TTVyHbdDbUFBbUNDbUFBbUM8VFQ8PFRUPBIYGBISGBgCFzNISDMzSEgzFyIiFxciIv63LUAwTjEDIBckARkDGREQEfw8FgskGBgkBgUWARw1OUgxIij+HokWDw8acGZLAh/9/E4C6zkZOQRTJQUsAxsRUxEUAy0DHAE1HBscGh8CG1RGUuDrYiMlSB2DrbqqfRgKGwsrHv5zfQYdEBMKBm06Sf62SDMzSEgzM0hCIhcXIiIXFyIvG8/PG7JSaSOJWXEKJR5QITMBfRD+kFD+/kFtQkNtQUFtQ0JtQWFUOzxUVDw7VGYYERIYGBIRGMdIMzNISDMzSEIiFxciIhcXIsFQAXUP/n0WHUpQUNwaAS8UFP7RGgPdYh8QEhgkJBgJEQgkXf51ZHB1fytpYDJkPgFPfhMTFBRUPE89Al0WeRYYDwcf+RETAgwCHRH7EQsAABQAov7eCX4GmgAjACwAMAA8AEgAZwB4AH0AggCJAI4AkwCnALsAxwDMANEA1gDbAOUAAAEDETQmIyIGFREuAiMiDgIPATYSNiQzMh4BFxE0NjMyFhUBJSY/AT4BFw0BJzcfASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBSImNxM+ATcXDgEHAwYWMzI2NxMXHgEXBzQmJwcOASUnLgEvAT4BOwEHIyIGBx4BBS4BJyETLgEnNwEiNTQ7AQMFPgE3FxMRFw4BByIuAjU0PgIzMh4CFRQOAicyPgI1NC4CIyIOAhUUHgITIiY1NDYzMhYVFAYvAT4BNwEnIQ4BATceARclER4BFxMlEz4BOwEyFhcJY1AfGBYhU5KMSofluYsuVSad2wEHjkJ9djZOOTpN+GH++x0JBgMWDQEIAVGuG6qUT3BwT1Bvb1AtPz8tLT8//m5SQhlfP8xzFF+vOF8NFSQVJQdrTDAuDkUcJVEQTgHlRRBOT0o2jVmyEaExUiZlZAF/KTQGAVE4Q3ky7v0Ai5KfdAFFBjQp7ojuMXlsheqxZGSx6oWG6bFkZLHphnXNm1dXm811dcybWFibzHUxSEgxMkdHWu4yeUMBdu4BUQY0/unuKTQG/ndEeTFe/t4tDDsyOTI5EwGbAQsDcRYdHRb94TVCHk+e6ZsetwETuF0UJhsBjThNTDn5zlQKHBIKDwVVwDhLNthwT1Bvb1BPcFM/LS0/Py0tPwd9TgEgwOMiTh3Lqf7gJjsbFgFBHhM9R0pDQRLyLjnuKWhnIB5vclA1NSujYDJ5Q/53BjQp7gF5jYz+5/FEeTHu/icBUe4pNNlkseqFhemxZWSx6YaF6rFkUFibzHV1zZtXWJvNdHXMm1gBu0gxMkdHMjFI2e4pNAb9Oe5DeQEM7jF5RDgBUQY0KQHNMgFEVU8WGgAOAQT+rAkkBswAIwAvAEUAUgBiAHQAgACQAJ8AzQDYAOQA8wD/AAABIi4BNTQ+ARoBNxcKAQc+ATc+Ajc+ATc+ATMyHgEVFA4BIyUiJjU0NjMyFhUUBgchJgI1NDY3DgIHDgIHDgIVFBYBJy4CNxM3AwYWHwEBIi4BNTMUHgEzMjY3Fw4BBzI+ATU0LgEjIgYHDgEVFB4BASImNTQ2MzIWFRQGBSUuATU0NjMyFwUeARUUBicWNjU0JyUmIyIGFRQWFwciLgE1ND4BPwE+ATsBMhYfARYVFAYjJzI2NTQmIyIGDwElIgYVFBYzMjcXDgETNycmNTQ3DgEPAQUiJjU0NjMyFhUUBic2MzIXJy4BIyIGFRQWHwEiJjU0NjMyFhUUBgJbZJtYGjlgjF80kqonOKp0HDFGOl7Fel/ydqX5jJj4kft/KDk5KCg4OE8DlXmFDg9BbG1EMEo/I4+pSZEBhBYLCwECYVdqAQUKFgNuUIROUDlfOktzEE4Vn4CazWd31Y5q1lUTEHPM/VoPFRUPDxUVARX+30xaVTkfGgEuIylIKhMZIP7SDxAeKjUzhUJtQjldN6McUjtnMWobRQ5mTRM3Py8yGz4haf71PF5fQhcWQh43uDcVGgMKEgiQAbwQGBgQERcXezc1HhsyDSwmLjQIB18TGhoTExoa/qxPiVY6lsgBCwFb30v+pv5Bjic3EwUWNjJRVQJWX47+qLb9g8c5KCg4OCgoOXdLAQqpPIxNBCJHPCo0GgYXRmdKX38CbW05QyUMAa0a/icHKTN0/hJOgk85XjhgSxBnhLCD3IeS2nhVUFSUP5bmggWIFQ8PFRUPDxWUIwlUPkBSC3gOOSIuPEwCEg4dDHgGKyIiLQZXP2k/OmNBBasdOEJW3ywkRl1QJS4oORQVQoJYPD1aBjMTEAFPZCcxMBEQBxAIl8gYEBEXFxEQGKgaCaEoJC4jDRwOFRoTExoaExMaAAAACwIj/qwIBQbHACAAPwBLAFcAYwByAHYAggChALQAwAAAJSImJwEuAjU0NjcBPgIzMh4BFRQOAQcFHgEXExYOAQEiJjU0Njc+ATcfATcnPgEzMhYVFAYjIi4BIyIOAiUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjciJjU0NjMyFhUUBgMyNicDLgIjIgYHAR4BFwEXCQEiJjU0NjMyFhUUBgcyNjclLgEnLgIjIgYHBR4BFzc2FhcWDwEOARUUFiUyPgE1NC4BIyIOAQceARceAjciJjU0NjMyFhUUBgRUHDYR/rsyPRpOQgHiHo26YHXCdHK/dP26SEMLQgktUP7QQVsyP3WXMgqdRgcIDwceIissKTk4KiM0O10BPkBbW0BBWlpBLD09LCs+PisVHh4VFB4elyA9BUILVGkrHC0UAQ0GGVL+6EkBCP6rJTMzJSUzMyMMHAoCJzhTIx4mIhgIFwj+6w0aDkQPHwcRIp1XP14DG2OlY2GiYlCdeRorPyQiQlF5T29vT09ubk4VFwG5RW5eLVOKKgEzToFNcr91dL9yAsYlXjL+3iZCJ/5eMCMXFQIFSlGRJVyFAwM/OG5tDQ0ICghWW0BBWlpBQFsyPissPT0sKz42HRUVHR0VFR0BJyQYASIwPB0DAv4vCgePArMW/XcDEDMlJTMzJSUzVAMEuxx3Z1lYHQcFqgEHBykJBQ0dFF40SjJHX+5eoWJin18/aj8PYGhicS+ob09Pb29PT28ACQDL/xAJXQZoABoAJgA1AEEAWwBvAHsAiQCVAAAFIiY1EQEWMzI2NTQmJwEeAxcRFAYHAQ4BASImNTQ2MzIWFRQGAyImNSc0PgEzMhYXFA4BASImNTQ2MzIWFRQGATI2NwE+ATURLgMnARYVFAYjIicBERQWAzUyNiwENjcXDgEMBAYFIiY1NDYzMhYVFAYBIiY1Jj4BMzIWFxQOAQMiJjU0NjMyFhUUBgFRQ0MCnTM4JjUiJgJqafDirSU2OfjCISgBPjBDQzAzP0MXLkAEN1MpLkQHOlYCUktra0tKa2v72g4iFgctGyIlmcTQW/4KFGVGMzb9sSI8KcYBGAFJAVwBTgEg1DEWMtT+3f6w/qH+s/7lyga6MUZGMTFGRv6HSWwOSYBDRGgMR3SAMDo6MC86OvBWLQMjAfItJBYTKBgBYA1jkKNO/L0wUgz+dQcEAV1DMC9DQTEwQwIdJB8OITUeJCAkOyL+kGtMSmtrSkxr/kYGBAGHBigcAylBi31ZD/7jICM6UBv+SP0hKiUDD1AhOkpRUUc3Dk0OOEhRUko6IfZGMTFGRjExRgGyPjA7Yz07MkFjOAHzJRkaJSUaGSUAAAAMAdb+rAhSBswANwB+AIoAlgChAK0AugDUAPAA/AEIARQAAAEiLgInAy4BNTQ2NxcGFRQWFx4CFz4BMzIWFz4BMzIWFz4CNz4BNTQnNx4BFRQGBwMOAycyNjcTPgEzMhYHAzY3Ez4BMzIWBwM+ATcTDgEHLgEjIg4BBy4CIyIGBy4BJxMeARcDJjYzMhYXEx4BFwMmNjMyFhcTHgEBIiY1NDYzMhYVFAYXJy4BNzYfAR4BBwYDBi8BJjY3Nh8BFhcGLwEmNjc2HwEWBhcuAT8BPgEXHgEPAQYHICQ1NCYnNC4BJw4BBw4BFRQWFw4BFRQWBBcgJDU0PgE3JjU0Njc+ATU0Jx4DFx4BFRQEASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGAy4BPwE2Fx4BDwEGBRRt1bJ0DKESF0lAKmMTDS9qXR0sbDxHfSMjfUc8bSsdXmkvDhJjKkFIFxKhDHSy1W0UKBQRARYQEBkCEVZTMgMWDRAaBCs7TAaQQIg4JGhEJFNQICBQUyREaCQ4iECQBk47LAQaEA4VAzIoVSwRARgQEBYBERQo/noZIiIZGCIi5kIJBAkUGEIKAwkVaRoQKwYEDB0OKw/RGhArBgQMGhErBgVpCwYGLAUZCwwFBiwPjQFVAT9rVnXdnApgV3WDBAZsZ5oBK9j+lP5/Ql8rA6KOU0QEg+OtZQNcbv6U/n0ZIiIZGCIiAW4ZIiIZGCIi0wsHBywPGwsFBisQ/qwnQ1UtAmshVCVBdCtERVccQxkJL0AjJSNDHR1DIyUjQC8JGUMcV0VEK3RBJVQh/ZUtVUMnUAIBAU0TExYX/sQNGAFbEw8XG/7RFzQXAiMSVTYkLBswICAwGywkNlUS/d0XNBcBLxsXDxP+pQwTBgE8FxYTE/6zAQIEZyIZGCIiGBkiDzgIGQoYFDgIGQoXAUQOGksLGAYOGUsclw4aSwsXBw8aSwsYxAcZCkwKBwYHGQtLG3t7d0qJI2OzkTBAUR0mmWINLR41ZjQ8WzJOj4g9X0cYFxV9wi4aQTcRGBZkjKRWKqNZop4CvSIZGCIiGBki/owiGRgiIhgZIgEHBxkLShsQBxgLShsAAAoClf6sB5MGzAAlAC8AOQBBAE0AXQBtAHkAhQCRAAABJS4BNzYaAT8BFwcGCgEHBhcFISU2JyYKAS8BNxcWGgEXFgYHBSUnNhoBNRcUCgEFJgoBNTcUGgEXASU3FyE3FwUBIiY1NDYzMhYVFAYXIiYnNx4CMzI+ATcXDgEHIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWEyImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGBBz+zy4oCyg4KhOuK40SKjcoDDEBHgHGAR4xDCg3KRONK64TKjgoCygu/s/+PU4bIg9PECIBexsiEE8QIRv+I/7wLPwBWPws/vD+ox8oJiEgJyh6cNBaLS90hEZGhHQvLVvPcIHDbmLCjo3BZG/DgKW9vqSmvLunHygmISAnKHofKCYhICco/qyxGlovqgFOAW3Yd0Rgz/6c/remMRynpxwxpgFJAWTPYER32P6T/rKqL1oasToT7AGFAVqpBKz+n/506uoBjAFhrASp/qb+e+wEQLJDp6dDsgJmEg0NEBANDRLEPzc9Hi0YGC0ePTc/xFmndVmRVlaRWXWnWU6fiGyGhmyInwGMEg0NEBANDRJSEg0NEBANDRIAAAAHAn3+rAerBtAAGQAnAC0AQgBIAFQAZQAAASInJS4BJwsBJjY3JTYXBR4BBwMTFgYPAQYBIi4BNTQ2MzIeARUUBgELATcbAScWPwE2JwMTNCYnJSYHBQYXGwEWFwElNwUlFwUiJjU0NjMyFhUUBicRNDY3JTYWFxYGBwUOARURBdkaFv2GPEoBByEDODUBHTQ2ApwtHQENLAUyMPMk/mJEcUJvTUVwQm4BASQITwklQiAb8zsFLAwOC/1xGhr+40EFIQcCTAJx/O4TAvYBXyP+Wyw+PiwsPT1TPzUBlhMgBQUSFP5qExb+rAfAEl8/AeACSzpdGYUYDaoLLSn9iP30N1gdkhUCKlaSWWWQVpFZZpD+FwKMAjoM/b79dQsJEJIjPwIQAnEMEgOmBwyGHkX9tP4eThgD18NOvLlIHR8WFR8fFRYfSAFPN1ENYQUTFBQiBWMEHhb+swAAAAADAdH+rAhXBswASgCIALIAACUuATU0Njc+ATc+ATc+ATU0Jic+AjMUFhceARceARceARUUBgc3PgE1NCYnLgEnLgEnLgEnDgEHHgEVFAYHDgEHDgEHDgEVFBYXAScuAScGByc0LgEnLgE1ND4BNxcOAhUUFhceAR8BPwEWMzI2NTQmJzceARUUBiMiJw4BBw4BDwEuAScOATciJjU0PgE3PgI3Fw4CBw4CFRQWMzI2NTQmJy4BJzceARceARUUBgK5Z4FwUi9lMzVdJkEnAwUgWGMuGxcPTz0+iURrmW9aCjM8bnpEhj1GXxMTHAQZOBYCAjtEJ2E7MGAuWFFXRgJROgMODx4RNBo3LqOMHElDQUBCF3ZxQTYWsbNrISxlbFBkNHRclIkhGxAkDCw9CyINIBYOEg+cxRYpHTpGJwtPDCtJORomFJZ7fIs8OxorDU4LJhk/QrqPILh3dblMLFMkJksmQYFVLFksHzMgfu1OMmQuL3I7W9KAaKMdWRpwRVixZztwLjV6PkLEbwYhECVKInSYRCdPKSJPK1KbU1aMHf3NBiRLJSo/BitbQgUSeHYyXHhdLlxySR5QUxAJGyAeHn4NaGNPiVg9ZqRjiJEHCyURPXQyCCVBHyVHoKSeM3R8P3+pg0UMS5Gwejdxai6Bc3lnQbVzM2s3ETJeL3nJToaoAAAFAYD+rAioBswAPABJAE0AfQCKAAABJz4BNxcuAgI1NBIANz4BNz4BPwEeARc+ATcXHgEXHgEXFgASFRQCDgEHNx4BFwcmJzcOAQcjLgEnFwYDJgI1EBMXBgIVFBYfAREzEQE+ATceARc+ATceARcuASc3JAA1EAAlLgEnLgEnJiMiBw4BBw4BBwQAERQABRcOAQEnPgE1NAInNxIRFAIELGYVGQk6ffbLeZIBM/IlKQsHCgI/DRgNDRgNPwIKBwwoJfIBM5J5y/Z9OgkZFWZjLyEWIghuByIXIS/EOUbIR19gQDTcUP72JEIqGCgSEigYKkIkChEEPQEhASP+sv7OOUUQAwYCFRYWFQIGAxBFOf7O/rIBIwEhPQQQAiBFNT9gX0fIRv6sKDZWLjkgdbgBCrewAUgBCU8MPzEdSygNCB4VFR4IDShLHTE/DE/+9/64sLf+9rh1IDkuVjYoUU0HKEwnJ0woB00BV1YBBn8BIgFHJZn+3ol37VABA5T8bP6cIE04KlMqKlMqOE0gJUklEVABXP0BDAGWZBNbRg0eEAYGEB4NRlsTZP5q/vT9/qZSESVJARknUO13iQEimSX+uf7ef/76AAAYAGr+3gm+BpoAJQAvADsARwBPAFoAeACgANIA2ADiAOoA9QD9AQQBCwESAX4BhQG/AcYBzgHWAd0AAAUgLAECNTQSJDcXBgQCFRQSDAEzMiwBEjU0AiQnNwwBEhUUAgwBAT4BNTQmJwYVFAEgJCYnDQEtAQ4BBAEyNjUmIyIOAQceASc+ATcmIyIGJzY1NCYnDgEVFBYTIiYnLgE1JjU0PgEzMhYXNjMyFhUUBgceARUUBwYHIiYnLgE1LgE1ND4BNzYzMhc2MzIWFx4BFRQHFhUUBgcUBiMiJw4BJzI2Nx4BMzI2NTwBNT4BNTQmJz4BNTQuAScuASMiBgcuASMiBgcOAhUUFhcUFhceAQMyNjUiBhc+ATU0JicGFRQDMjcmIyIHFgU2NTQmJw4BFRQWBTQ2NxcOARUBJzY3Fw4BASc2NxcOAS8BNjcXDgETIiYnLgI1NDcmJzceARcGFRQeATMyNjceATMyNxYzMjY1PgE1NCYnPgE1NCYnLgEjIgYHLgEjIgYHLgEjIgYVFBYXDgEHJzY3JjU0PgEzPgEzMhc2MzIWFx4BFRQHHgEVFAYHFAYjIicOAQEnNjcXDgEFJzQmJz4BNTQmJy4CIyIGBy4BIyIOAQcOAhUUFhcnLgE1NDY3PgIzMhc+ATMyFhcWFRQHFhUUAyc2NxcOAQEuASc3HgEXJy4BJzceARcBLgEnNxYXBRj+0P4+/teTmwE47BzM/tybnwEnAZz8+gGYASaeuP6y4AgBDwFptpL+2P5B/BMJBg8PHQLs/vr+i94mAYoB9QH1AYol3/6M/NszPRAWH0Y1CBcuNiw6BgYMKjBDFQQFIhoguSQ6Ils3KD1nPho1IQ8SUXINCgIDbR5dVGIqdlcXF1GTZCdTPyYhLURuGVVuKg4/MGFJFAwrdTMzch4LHQgzPB87CwwaGSxROARWLxgpHxYpFBsqDkiEUw8aTF4uShA6TzhR7AkQFBsTqSUgHSssGygBDwYuHwICMwIDBQQ/BAL92CApIw8QHQKzOBUdLAwSdjkWHi4NFMI/ZxxGdEQCJhM9BSwaAzJTMQgPBw1PQmQ2GhI0OiA6DgsaGmJNDE8yEysWEjEbGScHCRMKT3MDARsnBjkSHgFIe0oOQCRBJR8rRWwaVWsqCAY9LmREDw8hV/1pKCMiGg8aAio+DRAFCCQlBkZoPSIoGBgzGCQ/KwYrRysSDFcKCXBHFkJMIjAuGDAfa60fUQoWECInKRESH/6XDR4QChcmD5QQHQ8JFyYPAnQQIBEQMCLIgdwBGJecASHiPEwzvv79m5v+/7tlZbsBAZuoARTAKU0t5P7Jqpf+6NyBApEUIg4WJBEcIy388mSoZK05Oa1kqGQCtEIrCR0rFg0LmQUqLwE8MUhBFSoTDDceKkn+riAoEGheRkRCfVEWHQN+WiBJHAwXC3ItXqYxKhuddTBkNWu9ewZIMRFcTCSfYlZGIiM4WQ9CXQMZH1AiGAIDSjECAwEFPisRKhEjRys2YEYLRVEIDh4YHRgDXaJqLU0nf3oSMSQB8SspLNgMKRYWLBIiJTIBIh8jJhx5FxUqOQ0KFAkuPV0aKhMSECMQAmg0GQk8BA79lSEpHC8MHKAfKxwvDBz9VSoiAkZ0RQ4IICpHJTwSGRswUzICARkyNAZTLAY7LhQqDSBIK1CDEzVBCAgfDyAfAQF2UA4eDQ80I0ciFwoVS3tJJR8xEU0+Ip1gWUEQIhI6Vg9CWQMYHQQ6LiANNwcSewglRRMIFggiJAE/YjgNEBILJDkgBTlbOhlDHyYjOxdidRcvQSIXDgmDaB9UHBUmMR7+7zgaCj8EDwF4BwgCPQQMCFoIBwM5AwwH/XwKCwQ/CRYAAA0ARP7eCeQGmgAYAB4AIgAwADcAUABiAHQAegB+AIQAigCQAAABIicBLgE9ATQ3ATYzMhcBHgEdARQGBwEGAScHJzcFByc3FwEiJwE3ARYzMjcBFwEGEycHJz8BFwMyNwE+AT0BNCYnASYjIgcBBh0BFBYXARYDBiYnASY+ATclNhYXARYOAQcFJT4BJi8BLgEHBQ4BFh8BHgEDJwcnNwUBJzcXAScHJzcXAScHJzcXBScHJzcXBUc9LfvTOjJnA6tCRUBCBBUyPi4p/D46/bOwjkfGAQY8SaZbATA5MPu1KARMISAjJAPaLvwoNl+wjkh+hsjXLiUDwhoeKSD76y4rKy78VUUcKgQuGTMjIBr+6xIBHhkBiSYhGwELEAUeFv5uAVkSEAQN6wYTCP6eEhAFDfQGElusiUfCAP8CT6wM5f5BoINEt/IBC6OEQrbxAQukg0O48v7eHQKgJE032W5KApcvJ/2QHWo3pi5dIP0XLQRxQTw+jZj+QXZj/aUeAqZC/VoUGwLvPv0RKQFHQDw/Ww91/S0cAukUPBymIkQTAnAcIP1pMEfZICoa/V8QAv0OBRkBFBJQSwqiEAkd/uQQTUgJT40HHCEN+gcEBJIHHSEO8wYFAbs/Oj6Jlf45PoGIAiI7ODuDjv77PDg6go7yPDg7hZAAAAgATf90CdsGBABJAE0AYgBoAGwAhgCeAK4AAAUiJicuAzU0NjcBFwkBFxYGBwEOASMiJicuAScuAScOARUUFhceARceAjMyPgE3JAAlPgE1NCYvATUXHgEVFAYHBgwBBw4BAzUzFTclPgE9ATQnJS4BBwUGHQEUFwEeAScBNwElFyURFxEHIi4DNRE0Njc2JDYzMh4DFRQOAgcFJT4DNTQuAyMiDgIHERQeAxMuAic3HgIXNiQ3FwYEA0xY4rhaazYSRGYDRgYBvQKbWR0FIPtkaXEqOINZXq9UDhwMCwsSGze3Z0tlWDcjTWtQATECYAEwLyggE8DgKjU5R/b+Ov6Jgo6aTTgBAV8XHiL+wBAtE/6sRhoBXQwnFf5fJAGFAaoTAQxQJymJmIlWDBTkAQ2AEh59lolZBQ4eGP3FAhkICgYDTnd+YxIKSI3eoUh0hHkadbCKPR03fql2nwEinhWi/tSMeYxFWUA9KDlDJQE1qf7MAVIqDScP/dkxHDc+QopUDh4QDhwSHCQaNZZGMj8dDSUjhgEalRcxJBoiCFNOZhNAMzFQI3jbrjY7JwENoKAOigktFzIsGesMBQZtFzQ8KhX+9AoBdQExK/7jmDMpAkME/cE2OVheTRACFw0ZB1VhKSQ4QToTwO+EOguz/AQ1d82bBykzMCAWMlE8/hcSQEpCKwIFQVk8FUkRN1Q/Q2QoSSxpAAAABwID/qwIJQbMAB8AKwA7AEsAVwBiAG8AAAEiJAI1ND4BNxcGAhUUFgQzMiQ2NTQCJzceAhUUAgQBJjU0NjcXDgEVFBcBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciJjU0NjMyFhUUBjcnEz4BNwEXAQYHNycmPwE2HwEWDwEGIgTY7v69pD9gMDlZX5sBIsjJASGbX1k5MV8/pP6+/cqcEBRDEg95ASSd84qK852e8oqK8p6IznRzzomIz3N0zoiLra+Jia+tfFirBxAJAYxH/nULB3VTDw4VDg9TEA8UBhH+rKoBIrSP2ZswOVj++52s/IiI/KydAQVYOTCb2Y+0/t6qATpfz0VvQxU+ZECmTQIyVZdjY5ZTU5ZjY5dVTkN0SkpyQkJySkp0Q4FPPT5QUD49T2IrAT8NGAoBr0P+UQwNfE0QDhYPD00PDxYGAAAJAQz+rAkcBswAYABsAHgAhQCRAJUAowC+AMwAAAUiJicuAyc3HgMXFjMyNwE+ATU0LgI1ND4CNTQmJyUmIyIHBQ4BFxYSFxYOAhUUFjMyNjUzFA4BIyImNTQ+AicmAicmNyU2MzIXBR4BFRQGFRQWFRQGBwEGBSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWEy4BPwE+ARceAQ8BBicuATcBNhceAQcBBgEDNxMBLgE/AT4BFx4BDwEOAQEiJyYkJzcWBBceATMyNjc+AzcXBgQHDgETLgE3Ez4BFx4BBwMOAQV/J1IsR6qvnjoQdLuagjtKPT1EAj1KQwMDAwMFA0lQ/ZRBO0FH/aRORQYMIxkHOlJBZlVNblBGeE2Fhj9ROwUVJQ4P0AJcVFBITQJsbGQLCVli/cNW/YhLXV9JSV9eSi87Oy8uPDp1DQIMuA0fDQ0CC7ge/g0DDAEPHB0NAwz+8RsCeRhQGAFpDQQLrQshDQ4DC60LIP5QUFy8/oi8J8ABcbUpRCIgPiJEwNC+QiOd/pPJK1HfDQQL/QshDQ4DC/0LIN4SEh1NVE4dUztdSjoYHiABDyNsUxhnf30tMGxtZCdZaRrPFhrgHW5Wt/5x3TpPPT0oO05fPTxrQ4VSPUw3OCrBAZjO5E3eHxrNJJZua9xxX8JjZpUv/vModkAvNEZGNC9APCMQFigoFhAjAloMIQ3IDgEMDCEMyB7gCyENASYdGgshDf7aHP1lBFwE+6QB5QsgDt0OBQsKIQ7dDgUCYyRKtWlGa7ZFEA4PEiRkal8gSEy4ahYU/oALIA4BQg4ECwsgDv6+DgQAAA0CZ/6sB8EGzAAVACEALQA5AEUAUQBdAIMAjACyAMIA0AD4AAABIi4BJwM3Ex4CMzI+ATcTFwMOAiciJjU0NjMyFhUUBiciJjU0NjMyFhUUBgUiJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgUiJjU0NjMyFhUUBgMiLgIjIgYHJz4BNwcOAQc3NjMyHgIzMjY1NCYnNx4BFRQOASUiLgE3EzcDBgMyPgEzMhYzMjY3PgEzMjcnBgQjIiQnBxYzMhYXHgEzMjYzMh4BATQuASMiDgEVFB4BMzI+ASUiJjcTPgEzMhYHAw4BJyAEFRcOASMiBgcOASMiJiMiDgEjIi4BIyIGIyImJy4BIyImJzc0JAUUd8J3B5NPkwRqolhYomoEk0+TB3fB2R4qKh4eKiqWHioqHh4qKgE2HioqHh4qKpYeKioeHioq/ugeKioeHioqAa4eKioeHioqHF2nlIM4ESYaEFHfkRxSpGYOEAg3hJWhVF6Ls6EZudBTjf76IkQpBFLYYgdeLTYzJiMrJA8yIhhOPR0PMUP+48/P/uREMQ8dPk0YIzEPJCwiJjM3AjZ76qWl6XyF65qa64X+vTE7BYQGJhwxVAx1AjvzASMBREYJRCw6NQ8xNCMrMRYUK0M6OkMqFRYwLCI1MQ81OixECUYBRP6sPGA0BHEK+48fQSwsQR8EcQr7jzRgPKMqHh4qKh4eKtIqHh4qKh4eKtIqHh4qKh4eKsgqHh4qKh4eKgECKh4eKioeHirLKh4eKioeHioBEztMOwUIeDI8DEkHKCwMAjpNOk41Ok8OQw1zWjpgOdQVHw4BCAv+wBUBZxsaGRgbEwsKeig1NSh6CgsTGxgZGhsBPBIvIyMvEhAqICAqBhAQAbYTFUAo/n8IDbxoStMnJQkLIhsZGhsbGhkbIgsJJSfTSmgAABEA0v6sCVYG/gAHAFoAbAB0AIAAjACSAJYAwADNANoA5gDyAP4BCgEbAU0AAAE0JiMiBx4BATI2NxQeAhUUDgIVFBYzMjY3HgEzMjY3HgEzMjY1NC4CNTQ+AjcXDgIVFB4CFRQGIyImJw4BIyInDgEjIiY1ND4CNTQuAjUXDgEjASIuATU0MzIWMzI2MzIVFA4BNzY3LgEjIgYlIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYFJxsBFwMHNxcHEy8BNxUXEz8BJzcvAQ8BDgEVBgcDFwMnNycTNjc+AT8DHwIHFwMHASIuATU0NjMyFhUUBicyNjU0JiMiBhUUHgEFByc3LgInNx4CFyImNTQ2MzIWFRQGAQcnBycHJzcXNxc3BTcXNxc3FwcnBycHARcFBy8DAzcTHwM3FwUiLgInNx4DMzI2NTQuAi8BJiQjIgQPAQ4BIzU+AT8BNiQzMgQfAR4DFRQGBVQRFyIUES39SSpYKCw5LDNCM15fgowGNocuKWs+Bo+CX140RDQYIx8GRAkmHzRENIyHiLkYKj4oV1AZuYaHjDNCMyo2Ki4gSiwDOE90PiQddExMdRwkPnMEPCMMGBMXEf79HCQkHBskJAFIGyQkGxwkJPwbKEYtKSy3FSkVKrcEQEyBMh47BBI1MikOCB0SFxoGRAYYGBobAg4NMT0wGEQbCEQfNv6cPV82WkllYlY+ISg7QyYwJ0AB9G4MKAcdHw1HESggehcjIxcXIiIA/ydFZRZKWTQ2Wh1BAdlpQyxRKDlLTiNhRgEADP65ZX3WljGcPpAhlu5GOxcCUylYV1EiSiNCPjsdLDVEX1QPLkH++tG5/upFMx9ZQyE4FTNNAUDU7gE1QyUUWmJGYANlLTEwEBf+zhwXe6t9aToiODEyHCkpbHARGhcYcW8pKR01OUUtITU2RjI/KEM4GCI9PEMpTFZqYA4LFl5pVkwoPjMtFi9fcI9fBxAWAU41SiAiKioiIEo1LA8hGxU02ikcHSgoHRwpKRwdKCgdHCk+CAECAWQL/p5d/QP+/IkRohBxBwLfZ+AwaDsYOwwUIRMEC/6lb/78M9F8AXAaCg4gFQ5JDBUjSlwz/u9w/XxOekNbdpN+YWpIRTdrXEE5LV0/Kx06CzF4cCQVMZaNmiMXFyIiFxcj/jEyMjxXVbMjZWh5JkZQKVlFUSWeRkQ5NwKQQkOevx6iCAGkIP56BqIjd2ED6h9Qj3AgZH1DGTgnOJumlDGT0b7E0ZtdUVACOkCb6d7q2XdAoK6qSkBkAAICxv6sB2IGzABJAFkAAAEiJjU0NjcRNC4BNTQ2NTQjIg4BFRQGIyI1ND4CMzIeAhUUIyImNTQuASMiFRQWFRQOARURHgEVFAYjIiY1ETQmIyIGFREUBhMiLgE1ND4BMzIeARUUDgEEYDBHIi8eHhggHDYjNC9YXaTVeHjVpF1YLzQjNhwgGB0eLyJHMTpPFhUVFU54V5BXV5BXV5FWVpH+rB4bF0E+ARAsXm5EP38tOll9N1FEYYr7w3Fxw/uKYURRN31ZOi1/P0RuXiz+8D5BFxseLDgBeBkeHhn+iDgsBaRWkVlYj1VVj1hZkVYAAAICiv6sB54GzABEAFUAAAEiJjU0NjcuATU0PgEzPgI3LgE1ND4BMzIeARUUBgceAhUUDgIVFDMyPgEzMh4BFRQGIyImJw4BIyI1ESEeARUUIwMiJjU0NjMyPgI3Fw4DAtMWIkZODAsrgYEIEBUOaH9allpcl1laTzZRLhQaFDorPTonKEowLykcOyM0bDLT/t8GBVa0OkM8MCxlaGQrwRNtnbr+rBoaJj8Yt8MyKEowrfqzQCOtbFyWWVmWXFmaL1DX4F+JtnpXKlMvLkZgKCQrGBYXF+oBOXvKW4MCzzgsKzAaT5yCkEmaglEADQBa/t4JzgaaACEAOABDAE8AWgCLAJMAlgCjALEAuwDHANMAAAUiJCc3FgQzICQ1EAIAISAAAhEUFwcuATUQEgAhIAASERAFIiY1NDcXBhUUMzI2NTQmJzceARUUBjciJic3FjMyNxcGFyImNTQ2MzIWFRQGJzI2NTQjIgYVFBYHIiY1NDY3PgE/AT4BMzIWFRQOAQcnPgI1NCYjIgYPAQ4BBw4BFRQWMzI2NxcOAhM0Jic3HgEVASc3ASc+ATU0Jic3HgEVFAEuATU0NjczDgEVFBYXBSAnNxYzMjcXBgEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgYD8v6JngmSAXP5Ab4Bvdn+cf7t/u7+cNkGSwYF8QG1ASUBJgG08fepLzsNNgcuICUZGjYgGUZpHDQOMQ4fEhMjIIJAUlJAQU9PQSgsVCguLtyeybbBUG42LDhLIjZAQ3FFIDlgOh4WFTEuLDt7Vaybn4JWkRlIEmOISxocNyAb/uutzQGAOQQDFhs3Hhn99yUpBQZHBwUkIASn/uuSN3r29ns4kv2AMT0+MDA/PwKkMD8/MDA/PxFKUVdWTNzZAVUB8gEP/vH+Dv6rJx0fFjEcAW8CFQEi/t796/6R/ftDOy0cFxkODCw1Lik6IRwlTC9GWTQXFiITCzAXUUo7PEpKPDtKPCciSicjIiftoYuGtkAaQywkLSJHNjl5Zx4+GFdiKBodGiYkMEgcOJVtbXlNQQc/XDIBhzpLJhorWUEBY1Zn/eURDRoQLUIoGStQMicBrUCLRCBEHh1FID17ONfNK7GxK80Bqk02NU9PNTZNTTY1T081Nk0AFAEE/qwJJAbMAC0ANwBDAE8AWwBxAH0AiQCVAKEAsQDBAM0A2QDlAPEA/QEGARIBIAAAASIkAAI1NBIAJDMyBAASFRQCByc/AT4BNTQCACQjIgQAAhUUEgAEMzIkNxcGBAMmIyIHJzYzMhcBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYBJz4BMzIWFx4BOwEVIyImJy4BIyIGASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASIuATU0PgEzMh4BFRQOAScyPgE1NC4BIyIOARUUHgE3IiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYnNTMyFhUUBiM1MjY1NCYjIgYVFBYBJz4BMzIWFwcuASMiBgUU2P6H/uKhoQEeAXnY1wF5AR6ial9IUAoyNZX++P6kx8f+pP74lZUBCAFcx8sBZIIejP6OQZ6JbGUfc32cqf1uNEpKNDRKSQS5L0NDLy9CQi8aJSUaGiYm+mhDIFxEFy8WFy8XW1sfNxkUJREoOwWYL0NDLy9CQi8aJSUaGiYmGi9DQy8vQkIvGiUlGhomJv5OZKRiYaVkZKRhYaRkUodQUYZSUodQUIdaO1JSOztTUgGIL0NDLy9CQi8aJSUaGiYmGi9DQy8vQkIvGiUlGhomJmeBL0JCLxolJRoaJib9kS1ilzw+WhlEEzUlLYL+rKEBHgF52NgBeQEeoaH+4v6H2Kz+x4InSUVi2nbHAVwBCJWV/vj+pMfH/qT++JWdh1SFmwHGRS1ENEwCG1tERFxcRERb+/lCLy9CQi8vQjIlGholJRoaJQU2FGtkCAYHCUYLBwUHSPsiQi8vQkIvL0IyJRoaJSUaGiWtQi8vQkIvLkMyJhkaJSUaGiUBaGGkZGSkYmKkZGSkYUBQh1JSh1BQhlNSh1B7YUZHYWJGRmH+ikIvL0JCLy5DMiYZGiUlGholrUIvL0JCLy5DMiYZGiUlGholreJCLy5DMiYZGiUlGholAaI1U0lVXxFHOEEAAAUBqf6sCH8GzABSAHgAhgCSAJ4AACUuASc+ATU0JicuATU0NjcmNTQ3LgE1NDY3JjU0NjceATMyNjc+ATMyHgEXMh4CFRQHHgEVFAYHBhUUFhcOASMiJxEnNCYjIgcuASMiBgcOASMBICQnJgoBNTMUGgEXFgQhMiQ2NTQmJy4BNREzERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGApdMQwYiIiEgNiYUExhRBgVhYQoyMAU8QSRLN0ebdnyrXQVEel82HRQUJzZCISIIQSMhHBdlWBQcBFtKZp9QluZlAoT+4P6sDwsRCFEIEQsNASIBA80BI5sMDRQWUBQSDg+x/rniVYo3Li9wSUlxLy02i/6WJTExJSYwMAHsJTExJSYwMPICJxsFNiQdSitHcE8rSSkwMVc9GC4VUWkYIiAsQhwzPBocJClGZzFGeJVPQz8pSStPcEdYOiQ2BRwoFgIcE4mMBUZVYT92Y/tDtZt1AREBRcG3/rb+6W15jkN1TBMlGilQLAJA/cAqRyUcKxplmVYCqkFBKDozNDkoQUEBOTgmJzg4JyY4OCYnODgnJjgAAAYB6v6sCD4GzAAnADUAQQBLAFcAfAAAASAkJy4CAjUzFBIeARcWBDMyJDY1NCYnLgE1ETMRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYBLgEnFjIzMjY3ASImNTQ2MzIWFRQGJS4CNTQSJDMyFhceAhUUDgEHJy4CJw4CIyI1ND8BBgQHBTr+3v6rDwgNCQRQBAkMCQwBLf3CASGhCQ4WFlASFBEMsf675lWLNzMvbkdIby4zN4z+qCYyMiYmMzP+RDhWIQcMBkmBNgMvJjIyJiYzM/xYFisctgFO46PmT1mHTCE+LAcyZFIZTrKTIBsUYur+unD+rK+dWLbSAQOlo/7+0bRWeYtBc0wRHhwtVCwDavyWJkYpICsYZ5dSAp5CQyw5MjI5LENCARQ4KCg5OSgoOAIcCX5wATU3/II4KCg5OSgoOEAldoI32QFIuXR3HY7LeTmJfyulHlx1Q0JlORsZMOdw7IwAAAgBpP6sCIQGzAB5AIEAjwCbALsA2gDiAO4AACUiJic+ATU0JicuATU0NjcmNTQ2NyY1NDY3JjU0NjceATMyNjc+ATMyHgEXHgMVFAceARUUBgcOARUUFhcOASM1NDY3PgE1NCYnPgE1NC4BJy4CIyIGBw4BIyImJwYVFBYXDgEVFBYXDgEVFBYXDgEVFBYXHgEVNzQ2NxcOARUFIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBhMyJDY1NCYnLgE1ETQuASM0JiMiBgcOAQc3FBoBFxYEBSAkJyYKATU+ATc+ATMyHgEXHgEVERQWFx4BFRQGBBM0Jic3HgEVAyImNTQ2MzIWFRQGAqhGTgstISUpNy4WExgjKgthXgoxLhZLMSREKDyjeHC6eQ1CdVozHBMVJjYjLCEtClBFOCYpJBYbFBFSilYDZqRkcIs4KFg2LVAaBQ0RbmcKDDUjDw8bFCsrJjfXNDMbKigBbVWKNy4vcElJcS8tNov+liUxMSUmMDDuzQEjmwwNFBYuaVlUT2eiUH3hbhoIEQsNASIBA/7g/qwPDBAId99/UL94PmM9BYCAFBIOD7H+uYsoKhszNKAlMTElJjAw7iAoCCciGkk1SXVQKkkqMDEvTxsnKlRqEx0gKkoZNzAcEx03OWRBBUl2kU1EPihKK1F0STBJHyInCCgglTJkNTlgRilBMyQ/H12fYwI+XTQxHBQiHRsRFhglHgpJRyI0HhY6JhgsGj1AI0ZfOjRkMwhBYSIlHUs3NUFBKDozNDkoQUEBOTgmJzg4JyY4/G1DdUwTJRopUCwCK2OCQEpNYj5haAsXwP6+/vRweY5QtZt+AREBT9sFY2M+cChGLQS5q/3MKkclHCsaZZlWAt83Sx0lImFBAQQ4Jic4OCcmOAAABwGp/qwIfwbMAFIAbQCTAJ0AqQDEANAAACUuASc+ATU0JicuATU0NjcmNTQ3LgE1NDY3JjU0NjceATMyNjc+ATMyHgEXMh4CFRQHHgEVFAYHBhUUFhcOASMiJxEnNCYjIgcuASMiBgcOASMBIi4BJxEeAjMyPgIzMh4CMzI2NxEOAgMgJCcmCgE1MxQaARcWBCEyJDY1NCYnLgE1ETMRFBYXHgEVFAYEAzI2NycHJwceAQMiJjU0NjMyFhUUBgciJiceATMyPgEzMhYzMjY3DgEjIi4BIyIOASUiJjU0NjMyFhUUBgKXTEMGIiIhIDYmFBMYUQYFYWEKMjAFPEEkSzdHm3Z8q10FRHpfNh0UFCc2QiEiCEEjIRwXZVgUHARbSmafUJbmZQJ4fPHJQhMzPiIzYGqBVFSBamAzMUocQcHpcv7g/qwPCxEIUQgRCw0BIgEDzQEjmwwNFBZQFBIOD7H+ue9dnRZpp8ROEqKsJTIyJSUxMWk6RAUSLBk3gIU+XshUGiwSBUQ7MXZ2MTB3dgIkJTExJSYwMPICJxsFNiQdSitHcE8rSSkwMVc9GC4VUWkYIiAsQhwzPBocJClGZzFGeJVPQz8pSStPcEdYOiQ2BRwoFgIcE4mMBUZVYT92Y/yaUY5bAUUsSSsmMyYmMyZRPv69WYdL/qm1m3UBEQFFwbf+tv7pbXmOQ3VMEyUaKVAsAkD9wCpHJRwrGmWZVgKkV1czBwgpXF0BVDcnJzc3Jyc32U80CAYYFy8GCDRPJiYmJtk3Jyc3NycnNwAAAAsCMP6sB/gGzAAcACgANgBCAEsAWgBoAIQAjQCZAJ8AAAEgJCcuAgI1NBI2JDMyBBYSFREUFhceARUUBgQlLgMnNx4DFxMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGEzUkABEXFAIEJyIuASc2ACUeAhcOAicyJDcuAicOAgcWBBMyJDY1NCYnLgE1ETQuAiMiBAIVFBIeARcWBAE0EjY3FwQCEQUiJjU0NjMyFhUUBhMmJzcWFwUB/sL+oA8JDQkFZrwBBaCdAQK6ZRQSDg+y/q3+QWGthk8DQARHdpRRv1WMNzMvb0dIcC4zN43+tCYyMiYmMzOfAU8BWkau/rHEovCeJiEBIwESuvuOFCaf8KLXAQY1FILenp7fgRI1AQTp2gEvngwNExdZpOWMvv7knQUJDQkMAS3+vHz6vBH++v4DDCYzMyYmMjKRNJ0Ztzz+rLSdWbjUAQSmtwEx33l41v7lo/04KkYkGy0bZplW0QZGboZHCDluXDsGAYlDQyw5MzM5LENDATQ4KCg5OSgoOP1KSg8BVAE2COH+wLC9euajrAEkVTi/1l2g5HpK5dFht5gzM5m2YdLk/hxFd0kUJxooTysCyJP+wGu//q7fpf7807ZWdpIDndwBX+8yO0b+Wv7LFDgoKDk5KCg4AeqLQzpQpAAAAAoBpP6sCIQGzAA0AE4AXQB3ALIAvADHANUA4QDvAAAFICQnLgEnFw4BIyImNTQ+ATcHLgE1NBIkMzIEEhUUDgEHJx4BFRQGIyImJzcWFx4BFRQGBAUiJjU0NjcXDgEVFBYzMjY1PAEnNxYUFRQGJREuAyc3HgQzEQUiJjU0NjcXBhQVFBYzMjY1NCYnNx4BFRQGJREuAicXDgIVFBYzMjY3HgEXFgQzMiQ2NTQmJy4BPQEeATMyNjU0Ji8BNTQCJiMiBAIdARQeARcREyInNxYzMjcXBgM1PgI3Fw4DASImJzceATMyNjcXDgEBJz4DNRcOAxMiJic3HgEzMjY3Fw4BBRT+5v6+FQYLBRMVOBtGTkBwSBQEA6QBKcjAAR+gAQICJJiASj4fNiMXBRMOFKb+xf3fYXQfGToWFE8+SlEBSAF4ARB49tGDBkcEWpO2wVsBF2t4AQFHAVFKPk8TFzoaHnP9iH7KiR4hOl83KycgRzAFDQcRARL8vgEYmRIOExI2UB8nK2hoIIj6ra3++5GE6JU+sXA3W4+PWzdwS3zNgAdFClqRuP5JMVERPQgwHh4xBz4UUAEBWmnQqWZJAl+fymMxURE9CDAeHjEHPhRQwqubK1c7EQ0PUDs0b3M7Kzt8PugBYsi8/rTYPFRKLSuFpkY7TwkPCBwiGTYgYpVTkks9F000MC4wChwkJyUEEAkJCRUIRk7LAnoOa5uwUgc7g3xkPP1Dy05GCBENCQoNBiUnJBwKMC4wNE0XPUvJAeAudYA8CitcWCYiIxgfYXg0dYpCc0gXMxojQyUgHxgjIjGCVVjpvgEoq6/+w9WgQ5mMMv3xA8eIL29vL4j+BkcshpZBGDx/d2UDIy4mHBQaGhMbKCz9dCwWa4yTPQlDl5F0AmsuJhwUGhoTGygsAAAKAgr+rAgeBswACwAXADUAYQB2AIIAkQCeALMAzQAAAREFFwMXBxcHHwETJSEDLwE3JzcnEyclASIvASY1NDYzMhYXIzQ+ATMyFhcHLgEjIg4BFRQGASImNTQ2Ny4CNTQ+ATcXLgI1ND4BMzIeARUUBgcOARUUHgIVFAYPAQYDIi4CNTQ2MzIWFx4BMzI2NxcOAQEuAyc3HgMXAy4DNTQzMhYVFB4BFzc+ATcuASMiJicOAQcXIiY1NDcmNTQ3PgEzMhYVFAciJwY3NjU0JiMiBgceARceARceATMyFhUUBhUUFgIKAvZ+9g9JTFwWOWT9XwJQVjobV0tMEe1Q/XcCVyYhNygkGx05GR5ik0kgl00kMnYkR2o6LAEnHyNKKB08KSJUTDkoOR4iQSwuTC05UChHIy8jHCRMKlMteHNLLxcUJhkgX0ovZCgXJH4BAkWkn38gKRt1lZtBmTxrUi5NHiQbXGAuLS8VChYLChgRBxcNV1uBDRwII4BMcJSCFxoqU1h2XD1rFB0yDhoPCwgcEyshBA/+rAggAtf+yz6VyJLKcP1VRgJQcPCIxJpHASqLAvpvKEMxKhwiKyOJq1AMC9UTE0VyRDdC/hEiGiY/CjuNjjksXohrywhcllxjmVhenF6PtUolUzIycWpSFBMpFCsYBJAZMkguHy8XFx08ExSKDBn+6Qlntf6fNKL/tGYJAXQOWn6LP2smJGKDXikWEi8iBwUCBxY0GUWBWycgDRIID0BJj2uLVQ0VQT1qWHAzMAkUChI0CQYFIB8OFgoNDwAAAAMBhP7eCKQGmgA7AEUATwAAASImNTQ3LgE1NDYzMhc+ATc+AjcuATU0PgEzMh4BFRQGBx4CFx4BFzYzMhYVFAYHFhUUBiMiJicGBAM+ATc+AjcOAQUmAiceAhceAQMxmqwfPUlCMDYgSGw2M2mLY3CQXJtdXppckHBkimoyNmxIIDYwQkg+H6uba9lof/7n7SOkURMaFAl7rARhO6x7CRQaE1Gk/t5BPRMfB0o1Mj8mUcqonb1kFx29dV6aXFyaXnW9HRdkvZ2oylEmPzI1SgcfEz1BGhkZGgEnCDMcSn+PYNv/NTUA/9tgj39KHDMAAAsAwP6sCWgGzAAtADsARwBjAG8AeACPAJkAqgDDAM0AAAEgJCcuAjU+ASQzMgQWFxEUFhcHLgEnLgE1ESYkIyIEBxQSFxYEITIkNwcGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGBS4BNTQ+ASQzMgQeARcHLgIkIyIEDgEVFBYXBSImNTQ2MzIWFRQGATcnPwEfAQcXCQEDCQEDIwEjAQM3FwcnBxczEyUBEwkBLwE/ARc3BxcnFyImJxYzMjY1NCYnHgEVFAYBJwMXLgMjIgIDBxIAMzIWDAEXFgYnJQUnBzcnFzcfAQcEOP7c/qoQCQ8JPtQBBYSHAQnWOxIQMQIMCRMXSf7Cysb+yE0UDQwBJAEK4gE1QTBe/um4VYw3My9vR0hwLjM3jf6VJjIyJiYzM/5wa4iR+AE4ppABFeulIUUNleL+9oOL/uvmi1VIA3wmMjImJjMz/ZsEOEcaJUgvBwKgASqcAXkBX12m/rxVAT+Ul4INS0Rmd0T++P7dlv7V/RcGPD4OLUQjHUOKKEMSJCc/RwYFHSdSAm5RHOdk2tfDTKr6XG1vAS/PY/MBCAEEdA4LFv7V/rgvSikbSDgEP0b+rLedWrjbjGORUFKTZP6HKEIjUw4dEyhPKwFUhZmTgbj+5X92lVtHhjI6AhpDQyw5MzM5LENDAT04KCg5OSgoODAKdFhetJJWQnOWUz9JjXNES3yXTDhEAig4KCg5OSgoOAJsGS8QQz8ENhv6NgJuATYBUf71/n39mQJeAQyGXFo7QoIBG8n+/f7e/ZAHA0QhHEMzCDw9DtIqIxFFOhImExFAKTpS/p8qATkWVo5oOf7O/sA6AYkBc0yKvG8OJgIbATsFPkYUL0snGgAAABIAZP8QCcQGaABAAFQAXwBqAH8AjADHANsA5gDwAPwBCAEPARwBPgFXAW0BeQAABSImNTQ2NxcuASczDgMjIiY1NDY3LgE1Fw4BIyImNTQ2Nz4DMzIAEx4DFRQGIyImJzcOAgcOBCUiJjU0NjcXDgEVFBYzMjY3Bw4BJyY3PgE3Fw4BBwYBLgEnJjc2Fx4BFwMmAjU0NjMyBBcHLgEjIgYVFB4BFxMnLgEnJjY3NjIXHgEBMj4CNzYSNx4BMzI2NTQuAicKASMiDgIHDgEVFDMyNjcOARUUFhcOARUUFjMyPgE3FhcOARUUFiUiJic3HgEzMjY1NCYnNx4BFRQGJwYnLgEnNx4BFxYBIic3FjMyNxcGASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGAQYuATclFwEnPgE3NjMyFRQHDgEBIiY1LgE1NDY3PgEzMhYXPgEzMhYVFAceARUUBiMiJwcGJzcXFjYvATc2Jg8BJyYGDwIOAR8CFBYlJz4BNTQmIyIGByc+ATMyHgEVFA4BLwE+ATc2MzIVFAcGBL1GVwMDIzpkMTMrOS43KUBYPjoQECEQIhNBUnqFF22hynP4ASEcAkBUP0g3MmQvQCB0kU4nKx0iOPxvaIDCuQaXmlJGLXpYD0h3QBAVSp9hAlORRxgBeHO9UxgVEhZZt2jQ1OeOcmsBDrAorP9YTWFkuHwQOw48OAkCCQgaBzZIAnUnIB0+RXGrKDJpJhkdPlNBAhf12mayjl8UgnpTFzEiBAMXEkY4LB4jLUNCX4YFBCwCnlS1WUU7mEBJWzcySjk2f0sWEBs+KiEsQiEQ/bRrPjoqRUUqOj3+0BskJBsbIyMBcBokJBocIyMBcAsRAgkBWRb+ShJLkE0IChkLT5gBgiUcIiAxIgcgIhojEAsaCiElKAkNJBsZJhsVETg5DhAHGycLCRNAIgoVAwo6EQQQNAEM/msf09dfTEbEeSGA0lJJcUFw1WQ0E0o8CAwaCGrwblEUIBQuEzksFTY0IVNAOGY5MGUyCAcFTT1Eo3GM97tq/nj+lxdAUWI6OkodHBSDzoYWCzpJRC34eF9j9H9ZcMFMQ0khJFsaG9wXEDtgLzomXjUTAwJBgU4UFRITTIA7/umxAVN/aIiHjkmLhFpHRsHVZwEeA0R6PQoXCQgKQ436wTtVURUjAQS7GyIhHDBRSEMhAUkBamSw54NokTRGDRAWMCAvYytFTDAlKjFKJV8nEyoUNkQ+U1QtPktbTDasYhZyrz5qg9oQFyZKLi8uUS0WAl91HlJSHXYBCSgcHSgoHRwoKBwdKCgdHCj+ewQVGwSMLwEGMiZeNgYbDQg3ZP56NjITHx8gHwosNCEeAgMkGh8vECMRFiYQGBQ3LxYFEA45Mw4RAgg1EQYRPxMGEgoeQgwJUEWD5mRGVz86Qz5DPmlBTrG4zgVKdzwIGwwIaQAACAB9/qwJqwbMABsAUABhAGsAfACIAKQAsAAAASAkJy4DNTQSJDMyHgESFREUFhceARUUBgQFIiQuAQInPgI3FQ4CBx4CFy4BJxYEFz4CNx4BFT4DNy4CJzUeAhcGAg4BBCMDLgE1Fw4BFRQWFz4BNxcOATciJzcWMzI3FwYXLgEnNx4BFz4BNTQmJzcUBgEiJjU0NjMyFhUUBhMyJDY1NCYnLgE1ETQCLgEjIgQCFRQeAhcWBAEiJjU0NjMyFhUUBgUY/sv+nhAJDQkFsQE/1pb+vGgUEw8Pvf6r/u6w/vrNtsB2gq+GQzhrhWFZl5FOEx4ElgFaoHLs21gTGStPUl86X4dzQEqOsoB2v7TM/v2v6CEsPAEBExAaKQ83IE2NrHEvXpCQXS9xDSxNIDcPKRoQEwEBPCz+DygyMigoMjLzywEyqw0NExhdp+CEvv7knAQJDgkNAS4CMCgyMigoMjL+vbaiW7DI+KL3AXzXddX+4Kv9WiBDJRwuHGmhXBFEj+MBPtAyOxsCSwIUKiWY8LpIKXg3CXJfRWhABRtBMjVvgZ9kJSsUAUsCGzoz0P7C449EAoFMoEkVBg0HIVQtHTwfDjhng4QtcHAthLIvZzgOHzwdLVQhBw0GFUmgAas6KCk6OikoOvvkS4FPFCkaKUwiAqabAQO+acL+qeKj98atWHmbBBs6KCk6OikoOgAAGgDD/qwJZQbMAHQAhgCYAKwAwADXAOkA+wESASoBQQFRAV0BaQGBAZIBpgG8AdQB7QIFAh4CTQJbAmcCcwAAAS4CJy4BJw4BIyImIyIGBzQ+ATM+AzU0EjYkMzIEEhUUDgEVFBYzMhYVFAYrASIuASczDgEjIiQmJzMOAgcuASMiBgc+ATMyFjMyNjceARceARc2NTQmJz4CNxYEMzI2NxcOASMiJCcOAQceARUUBgEiJjU0NxcOARUUFjMyNjcXBjciJjU0NjcVDgEVFBYzMjcXBiciJjU0NjcVDgEVFBYzMjYnFw4BFyImNTQ2NxUOARUUFjMyNjcHKgEnIiY1NDYzMhcHJiMiBhUUFjMyNxcOAQUnJjU0NjcXJgYVFBYzMjcXBiUiJjU0NxcOARUUFjMyNxcOARciJjU0NjMyFwcuASMiBhUUFjMyNxcGJyImJzcGFjMyNjU0JiMiByc2MzIWFRQGASImNTQ2NxUOARUUFjMyNjU0JicXDgEBIiY1NDcXBhUUFjMyNxcGFyImNTQ2NxcWFRQGJzI2NTQmIyIGFRQWEyImNTQ2NxcmBhUUFjMyNjU0JzcWFRQGJyImNTQ3FyIGFRQWMzI3FwYXIiY1NDY3FQ4BFRQWMzI2NxcOASciJjU0NjMyFwcmIyIGFRQWMzI3FwYXIiY1NDYzMhcHJiMiBhUUFjMyNicXDgEXIiY1NDYzMhYXByYjIgYVFBYzMjYnFxQGJyImNTQ/AQ4BFRQWMzI2NTQmBzcWFRQGFyImNTQ2MzoBMxcuASMiBhUUFjMyNjcXBgUzMjY1NCYjIiY1NDY1EAAhIgQCFRQeAjMyNjU0LgEnLgEnMx4BFx4CFRQeAQEiJic3HgEzMjY3Fw4BJSImNTQ2MzIWFRQGJSImNTQ2MzIWFRQGA8kzVEwnHyAJFFQsLkovIEApYalsDUNMN2e+AQWdxwEfmwsMSy9HZ4ltInvIghI7IopZnP71vScjG1pJAw4yCFyqGAobCjpCKy5SNA4zGjBgIhhfYQQzTilgAR6aX7FDLUzIbJr+2m4NJQVSXTf+2Cs6Ky4QFR0UERoKFR5MKzo3KhMaHRQKDBUTgis6OCkTGh0UGB8INQE6gSs6NyoTGh0UBhARHQQEdCs6OisZFQ8OERQdHRQiDS8KNAEqcwImHyIUHx0UHwsgGP74KzoTShIXHRQjBjQKM1orOjorKCMhBRcOFB0dFB8LIB3kHzMLLwoeGhQdHRQfCgQXFis6OgFkKzo4KRMaHRQUHAEDOAE6/uErOiUhEh0UGg8vHFUrOikhcw06KxQdHRQUHR3uKzo2KQYTHh0UFB0QMxE6Yis6Jj8WGx0UDAgZFbsrOjYrExodFBMcATIEOYwrOjorNh0mCyIUHR0UHg0pGjorOjorFhIRDAsUHR0UFR4CNAE6USs6OisIDgYEDwkUHR0UFR4CNDpMKzoIQg0JHRQUHRwXOS46UCs6OisEBgUKCgsEFB0dFBQbASscAWIiTFo4JlpuFf7Y/ve6/uOgW6LXfFd6K3NsgngFUAZhbnaGOGat/jArWRw2EzwbHzkNQhZb/v4dKiodHSoqAUEdKiodHSoq/qw/NyUhGyYZDxgSBAVwpVxMn6OjUK4BLN99xv6P/2CBYjJ5cVVBS2BlyJQrL1iyhV22uWIDBGpjBAESGRslOhQkKy0yNVCYMBtIOgdufjEsPzQ6dm0GIwo5mFNIgAG0OiszHiQCGhEUHRojUCEMOisoOQEvAR4UFB0GLgxsOispOQEzARsUFB0nGg0tOxI6Kyg5AS8BHhQUHQUKQ2I6Kys6DDQMHRQUHSEOICe5VQQKIjQKMAIdFRQdGCwa5zorJBYMAhsRFB0pHhwjZjorKzogORQRHRQUHRgsINsjHDsbKx0UFB0aQgw6Kys6/qU6Kyk5ATMBGxQUHRwUAgUJDis7ARY6KzEdKQ8WFB0VFzKhOisjNggvGBorOjQdFBQdHRQUHf74OispOQIzAR4UFB0dFBgLFhkgKzq5OisvICAbFBQdBCwM1zorJzIBKgEbFBQdGBMHJTOSOisrOiwmHh0UFB0aHy8EOisrOgkxBh0UFB0fFQYqOHs6Kys6AgE2BR0UFB0gFQQrOsU6KxQSBg8UCRQdHRQUHAEnHjgrOns6Kys6OgQCHRQUHRsULDc9MyggJpWlS6SGAWABhr3+stt+uXg6MSokKyETF2BTMTwUFTRKOY7KagNZLiMqFiAzKBU+Td0vIiIvLyIiLygvIiIvLyIiLwAMAVn+rAjPBswAKwA7AEcAVAB9AIsAlwCnALMA2ADqAPcAACUuAzU0EjYkMzIEFhIVEAIHPgE1NC4BIyIGBz4BNTQmIyIOAgcOAwMiJjU0PgE1Fw4CFRQWMwUyNjUiBgcuASMUFgEmAjU8ATcFBycWEhcBICQnLgEnFx4BFx4CMzI3FjMyPgE3LgEnLgE9ATcVFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYBNz4BNTQuATU3FB4BFRQGASImNTQ2MzIWFRQGATYSNTQuAiMiDgECFRQWFzQ+ATcyPgIzMhYXNjMyHgEVFAYBLgInNR4CFz4CNxcOAgEnNhI3BzUlHgEVFAIDGzRWPyJvxQEElacBF81xfpQODh9EOhYrGQIBSDo7gI6cVxAVDAU/krclJUoBJSOLcwJISkk9SgsLSj5T/aqdmQEBGgnFCoh/AlD+2/6qDggOBVQDCgdHiYQ/YlpbYUSLkU0EEAgSDlAYDg4Prf690lWMNzMvb0dIcC4zN43+lSYyMiYmMzMDUB9baSUlSyUlpv4UJjIyJiYzMwEELz1uv/eJhOawYyQyEh4SbKeMiE5KbgsHD05lMAT91W7CzoGC0sJpacPTgRCF1MYB+j6UnAq1AQEBAaO2NqLE0WW2ATHhfG7H/vGh/uv+bYl65WOEvGQGBgoSCDhERl1KAyqCuf7+BZx+SYWVXhVmlXc6XnHET0A8LS08Q0wCEt4BptYQHg+SUGa0/puz/WK0nVq8bTZMlz4HOjVUVDs9AQ8mECNEJSkIMTBHHRwyGmWaVgK4Q0MsOTMzOSxDQwE0OCgoOTkoKDj8304ObFE6e5hiEmGUhEh4mQMZOCgoOTkoKDj++V8BJsqh+KtYcMv+66Vp6JCZ5ac6SV9JUUQBadWjNG0B0WJ1NgJLAjJqWFhqMgJLATR2/OAxswF8wV5VhQ8eENz+UQAABwCv/qwJeQbMAH4AhQCTAP8BCwETAR8AAAEiJic+ATMuAS8BJjU0Njc+ATU0JiMiDgEPAQYEIyIkAgMXFhIEMzI+AT8BPgIzMhYVFAYHPgE1NC4BIyIGDwEOASMiJic3FjMyNj8BNiQzMh4BFRQGBw4CFRQWHwEWMzI2PwEnJj8BNhYfARYPARcWHwEOASMiJicGIx4BASYnNx4BFyUiJic3HgEzMjY3Fw4BEyImJzcWMzI+ATU0Jic+ATU0LgEjIgQCFRQeATMyNjcWMzI2NTQmIyIGBw4BIyImNTQ2MzIWFwcmIyIGFRQWMzI2NTQnPgEzMhYVFAYjIiYnFwYEIyImAjU0Ej4BMzIEEhUUBgc1FhUUDgIBIiY1NDYzMhYVFAYBMjcnDgEHFgEiJjU0NjMyFhUUBghsMn05DzIYFDkpQi5jZDUtKCM2a39VGY3+2MfB/tXFKmkirAEConLBslwZWY+FSEdPEhpZX0Z2SHvljApPczUqQRJHDi0iU0cMlQEDiF6dXqa/NVUxHBAwLBwOGw44DAgNJgcOAQoDDxYbEl+MGEItFC4YKjEXFfmRSxpBCyQbAQE2WxZCDjgfGzwTNhxYrUBoHFEmTTt6Ug4QOC2D34qz/vKXVpReg/dmJBosKjk4MY2ABGVIRmFlTjh3QSF1WjU6OCsuOQOVtz1QblQ3Gi4SQHz+8pB3u2tjtvuZpAEFmCwzGD1le/5WHSoqHR0qKgZBMB1YCRIKGvsWHSoqHR0qKv6sIyEOGQ07MU42OUBzPyJPHx0gPYt3I8W1yQF1AQJzsv7fqkacgCN9lkRIOxk5Ih11SUJkOYabC1dMJSA1KkFNDaGTTIhbc6MwDTVDIhgsDSUiDQsuGhMNJgcFCTUPCxFCKw0TPkQNEA8QKgRLMVkTITESck0+FSgzIBYqIy79jks4GUxRez8ZMBFXsmmX74yz/r7Wlu2JemgRMiImPENSPlhmT0dkLCk4SDguL0I7KQsMXFRiRENVEQ8IcoOcARGvrAEi13ac/u2zbbldJTA2QH5nPgN1LyIiLy8iIi/6WzsJEBgLEQV9LyIiLy8iIi8AAAALAan+rAh/BswAhwCUAJ8ArQC6ANMA+AEEARABKQE1AAABICQnLgEnLgEnNiYnBgcmNTQ2NTQnLgE1NDY3LgEnFjMyNjU0NjciJicWMzI3PgEzMhYXLgE1NDceATMmNTQ3HgEzMj4BMzIeARU2HgEXNx4BFRQGBx4BFRQGBy4BIyIHHgEXFjMyNjcUBgcOAQceARcmIyIHFBYXBiMiJicVFBYXHgEVFAYEJSIuATU0MzIeARUUBhciJjU0NjMyFRQGEyImNTQ+ATMyHgEVFAYBIiY1ND4BMzIWFRQGASInNxYzMjY3DgEjIiY1ND4BMzIWFRQOAQEyJDY1NCYnLgE1ETQuASMiBgcuASMiDgMHFAYHFB4BFxYEAzI2NTQmIyIGFRQWASImNTQ+ATMyFRQGJyIuATU0NjMyHgEVFAYjIiYnHgEzMjcXBicyNjU0JiMiBhUUFgUZ/tz+qhAIDAMpNBI/CTMrFAMeGxAPGRcTGwcfHiIrFDEmRQscEysiEDk0EhsMJSE8Bk9JDSQGKycjXIlkVYZNK2ZTDDoGCRYWQEoBAgcUChMTAgkHCiQPFAgmHQgmJhI3DxYWJBolGiEgCBsHFBIOD6/+vP3VGDMkNBlDMzVhChQqDREToVVlNVUwMVQ1ZAFlDhAXIxIRGSz83DcxHR8sMFAVFz8hOEs3VzA7RTxjARXIASGbDA0TFzlwUwcRCAlGUD54e4KPUicmCA8KDAEkHi9FKSMvRisCtB0/OUoZMU5vOmM8RTsxVjdLOCA/FxdOLywfHTFeIypGLyMpRv6stJ1Ro04CEQ0XeVYYFAkLIEESFBsQKRMpPxwRLh8OJignYhI4JQtFIDwEBRtEJEVCRFYeGjAkHCwqKTNhRQspTi49DSIVHUkcH2NHCRIKAwYLESgUHQUEMjoFSIQ9BCMvCRUZMA8PAgJFKkYkGy0bZplW7yg5GTQgLhYZMSITDg0nFxcnAbsbJh4/Kys/HiYb/nwKDxY8Lx4WLzcCTyMzGEoyGx1UPzhbNl9VUYdS/P1Fd0kUJxooUCsB1JbUcAECMTA5VVU6AlLJXUDU7mh2kgPDTDgqMUw1KDb+mioWECQaMx88plKHUVVfNls4P1QcGjdDGDMjwDYoNUwxKjhMAAAAGgCo/0IJgAY2AJoArQC3ALoAzQDZAN0A5wD1AQoBFgEiATIBPwFNAVsBawF7AYkBlgGiAa0BwAHRAeEB7gAABSIuAyMiBiMiJjU0PgEzMhYXByYjIg4BFRQWMzI2NTQmIyIGByc+ATMyFhc+ATMyFwcmIyIOARUUFjMyPgIzMh4BMzI+ATU0Jic1NC4BIycyFhcuAiMiByYjIgQHDgIVFBYzMjY1NC4BNTQ3FwYVFB4BFRQGIyIuATU0PgE3NiQzMhc2MzIeARceAR0BHgEVFA4BBw4BASIuATU0NjcXBhUUHgEzMjcXBicmNTQ3FwYVFBcBJzcHIiYnNx4BMzI2NTQnNxYVFA4BASc2NTQmIzUyFhUUASc3FwEiJzcWMzI3FwYTJz4BMzIWFwcuASMiBgEmNTQ2MzIWFRQHJzY1NCMiBhUUFwEuASMiByc2MzIWFwEuATU0NxcGFRQWFwEiJzcWMzI2NTQnNxYVFAYBLgE1NDY3FwYVFBYXEyc+ATU0Jic3HgEVFAYBNCYjIgYHJz4BMzIWFQEnNjU0JiMiByc2MzIWFRQBLgEjIg4BByc+AjMyFhcBJz4BNTQmJzceARUUBgEuATU0NjcXBhUUFhcnIic3FjMyNjcXDgEDIic3FjMyNxcOAQMuATU0PgEzMhcVJiMiBhUUFhcDMjY3LgEnJiMiBhUUFx4CNz4BNy4BJyYjIgYVFBceATc+ATcuASMiBhUUHgEG1lyJZ1FHJSSQV7PPVpBXSoYuQUl0QGxBnpJbbEc3KD4IRAxlQTJVGiF4RTQyICQiL1Q0el5PiXNfJCJMVS5CWS0wMlebZQQOIBAki7dnhHVaU5b+701agkdWQSwwLzAwOBgwL2BMQGk+WpddWQEeolNUe4SD5KQhe5UxLzlsTjrm+sdttGsmJkI+VZBXGSMOJLMeGkIWGALGLmRZYZscQBR4TFyDPChaT4X+UDgiRS9NbQKCYSJc/ZpUMjocMB8bLCs4Pje9YjtwKzQhVC5PmgHNS31WXG0JQwaDOlMs/ZkLZUI9MSZCUlqMEAEITGIFRANDMwEFV0goN0BIVghECn/82xwlLycgMBUOuhw7PyIlEj48UwPnTjcoYR4yJ340U3j8uDQdLSImHRopND5XAb8Zb004aEcKRA1bhElllR/+mz4LCFllCoB7DAKMOFACAkQCJhzUQ0UaNzdCYyA+KIXhKikYHxxOEkYNV71pkjJUMh8iJCAsQ2xJLRAjIWWWPg0REB0SHWJv1Rs0E0x3SA0QDxgYPmzCDhgJQlAcERg/UL4xSkkxHbipW5JWQTgwWUBuRYeKOS8nNTMnDkBSKCIyPxk+EShAJSo2KzgrIiNallpeoTcqca9lQwICO1kzKhFmUh1nfEBHXSMhJDg6JzAwOhcPFTJEMkJSQW9EUpx6HltnDyhKglY35p4NQa5ibK5wDoWcAeJqsWw5bzYuV1lWjVQFTgfoREJCSRg8NzUz/spHByJRQxwuPFU6Nyg6Pls7YTkCBSouQEFbRoVdV/4SGEkWAehIKCoVNiX+xSBsdS4wLiQjYv3qPV9IZVJHHR0VEhNTPik6JwObNEQfOitiTP6TDolZIRQOEBdAYgr+OjI6JlpHJDMMMzBkgwNJFEwmK0oTPhgyFiwK/sBAGns6KkEJRBBpQU6b/SQ1TCseMCk2dFMC2DAfKRokC0ARTTdE/u5ZYTBQMA5BaT5+cAFbIBcmEC0zEEYUWEcZN/1dBFM5CBIHEAoHHCsDHBtCF0pBHlNgARwPQgtrDE9WARUCZUgtSSwJSQ44Jig/AvqYAQQdRD0NGRESEh0sGR8MIRAYNy4JGRAWECs4axMmEwgyFhEVKB0AEQCq/qwJfgbMABkAHQAhACUAKQAtADEANQBNAFEAVQBZAF0AYQBlAGkAbQAAAQgBEjU0LgIjIg4BBy4CIyIOAhUUEgAFNwEHATcBBxMzESMBMxEjATMRIwEzESMBNwEHAQgBAjU0PgEzMh4BFz4CMzIeARUUAgAlNwEHATMRIwE3AQcBMxEjATcBBwEzESMTNwEHATcBBwUUAYsB8+xVmc13eeKvLi2w4nl3zZlV7AHzAecw+3MbBS8w+qUw2FBQARhQUAEYUFABGFBQAeww+kYwA/b+k/4w3X/aiYDaqTU1qdt/idp/3f4wAQUw+k8wBC9QUAIaMPrcMAQiUFABiTD8sjAC3VBQ2zD9BTADIzD94DD+rAEvAf4BwtV+26ZdXaFnZ6FdXabbftX+Pv4CxDQEMUj8gTQE7zT9XQRG+n0F2fkgBpf4iQZ4+wA0BUs0+WsBGwHjAafAk+2MasSGhsRqjO2TwP5Z/h3ZNAVBNPl9Bpf7ZTQEwDT6SwXZ++A0AxA0/G4ETv0lNAK+NP5fNAH1NAAHAK//dAl5BgQAHAApAEEAVQByAIMAkQAAJSIkJicmJCc2EjY3PgIzMh4DFx4BFRQCBwYFIiY1NDY3ARcBBQcGBSImJy4CJzUeAhceATMyNj8BFwcOAQEnPgM3PgI3Fw4CBw4DATI2Nz4BNTQmJy4EIyIOAQcOAgcWBBcWBC8BNhI2NTQmJzceAhUUBgIDIiYnJjU0NjMyFhUUBghOjf789nem/raxH0pTLD3R9nJw7d20cAgDAycrbPhtNkMnLgHUKv4sAQiwMAPSasdrV8DfhIrw0lxotFI/aEzgNOBVhP7eUAwyR1MtJ3KYXiddk2wkJ0tALgPuJkwmHiYDAwdnpMrWZGbevjYqSjwWlgEnlrMBcWpOJC8YSjJIJDwkHDEbFDEVZzMpO1oTijpcMUVxBKkBCb44Tn9LS4Gmt1oiQSFw/v+2E0NCLSFGHAElRP7bMmEb01k7MF0/A1ADRGMxN1EyQL4+vkk7AoUMScbMqCokT1YtRS1TSiEkmr+7/pkFBoDodh8/IE2hlHVERHFFNbfXZwxqP0t+ExC6ASHPPVbNZyJIlIw/SOj+2gQBBwQVIxQaNCINDgAAAAAGAjD+rAf4BswAqQCxAOsA+QEFAQ4AAAUnPgE3Jw4BByc+ATcnDgEHJz4BNycOAQcnPgE3Jw4BByc+ATc+ATc+AjMyFjMyNjMyFhcHLgEjIgYjIiYjIg4BBw4BBycWBBcHPgE3PgM3PgE3PgE1NCYjIgYHJz4DMzIeARUUBgcOARUUFjMyPgI1NCYnNw4BByc+ATU0JicuAiMgABEUFhcHLgE1NBIkMzIeARceARUeARUUBgQHNw4DEy4BJzceARcTNiYnIxQGByc+ATUnDgEHJz4CNzMVFjMyNjcHETQuASc3HgEdARQWFwcuAScHHgEPATYmJyMeAQcDIiYnNx4BMzI2NxUOAQEuAyc3HgMXEyc+ATcXDgIEvVgRKAs1DTUeSiMwDUQKNCRGITMPPBw6HUUjNxwrI1AeN1KONBsoERlDZEkpPiMeRSUhPR8eGTAXIEYmIUAfM0czFxY/IxeBAQ5lSyBKFwoWGR4SDiAQGiR0ZZXhU9AhbZCyZoC+aTwjIjktJi1uZUIiHjQMQjM6OEIHBxeV2YD+5v7RZXYuhXieASnSlPeoHQoLIyiM/u3MSRIuQVpmhfpcJErnm4wFAQZABQhPCQdGBhkORxUZDwM1gGtEi0Y7CiEhRjIiJSRUCRUHNQcDBE0EAwdCBgIFiiFDJRsbOBxQtFxksf4gH1tiVRg8FFRlXh9JRwhaQEElRC2YHiJiJBIfWiYiL08hHxxULCImTyUdLkocLCJDKyAiRBM1OYheMWlGZ6hlExMPEEoODRMUUo5cWJYwV1FmFSlO9Xc0VEpGJx0yFiZCJS43c27uU4FZLl+rdE52NjRtRzQ0N2qZYTlZGAhKlEMrSrJLGCkPNU4r/uj+/Hy3WT5k2I3FARWTN2REFk84InBDivicApBswMjxAYMgUjRAKlAm/N0vXicpaCEHL1QuDytfIB83orZTTg4KClgBFE6GgUggas+ByE/hhgskaSYIJmAwAjtaISBoLwIyBANIAwMRCkkNDgLkFlNqdTgxM3VuVRP+vARTyEYkIm97AAAACgA8/qwJ7AbMAHsAfwCDAIcAiwCPAQoBDgESARYAAAEmJCc+AjU0JicuATU0NjMyFhcHLgEjIgYVFBYXHgEVJx4BBBcHNhI3PgE1NCYjIgYPAScTPgE1NCYjIgYHAycTPgE1NCYjIgcDJxM2JiMiBwMnEz4BMzIWFyM+ATMyFhUUBg8BPgEzMhYVFAYHJz4BMzIWFRQGBwYCByU3JwcXNycHFzcnBxc3JwcBNycHJQMmAicuATU0NjMyFhcHLgE1NDYzMhYXIyY1NDYzMhYXIz4BMzIWFxMHAyYjIgYXEwcDJiMiBhUUFhcTBwMuASMiBhUUFhcTBycuASMiBhUUFhcWEhcnNiQ2Nwc0Njc+ATU0JiMiBgcnPgEzMhYVFAYHDgEVFB4BFwYEATcnBxc3JwcXNycHCIna/l2eCxEKFRcSG1JDa4ANTw9ZRiEfFxAcFDqO8wECplU7bkYYGSMeGSMOTkthCAsrJCEpClNNUQUGMStQDS5PKgUqI0EHIE8gB0tDMk0DJw1TPkhdAgImD0ArQ1YPEBsRNR08UR8WR2My+R9HMUjmRi9I4kYwRuBGMEYCOjBGMPvMUjFkRxYfUTwdNREbEA9WQyw/DyYEXUg+Uw0nA00yQ0sHIE8gB0EjKgUqTy4NUCsxBgVRTVMKKSEkKwsIYUtODyEaHiMZGEZuO1WmAQPyjjoUHBEWHyFGWQ9PDoBqRFEbEhcVChELnf5cBFAwRjD3MUgv+jJIMf6sEVc9L2VbH1mXUT96PExa79oDu8EqLDduOWGtSyckNi0ZStoBZrpAThwbIx4p2RoBGBgrEys0Jyn+rBMBXxgiEDE5dP53CAFzLDdW/owfAVpNTz8vQ0pjSQoTCgMmKVtHGTQdIBcYTTgkajvC/r2u7Au0CpgMtAuVEbMPixKyEf2SsxGy8QEgrgFDwjtqJDhNGBcgHTQZR1spJhQWSWNKQy8/T03+ph8BdFY3LP6NCAGJdDkxECIY/qETAVQpJzQrEysY/uga2SkeIxscTkC6/praShktNiQnS61hOW43LCrBuwPa71pMPHo/UZdZH1tlLz1X/sK1D7MxtQu0KbUKtAAAAAsAS/6sCd0GzABfAGsAdwCDAI8AmwCkALABBwEQARkAAAEiLgEnEwMuASc+Azc+ATc+ATc+AT8BFQcOBAcOAwceAhcBFwMeAjMyPgE3AzcBPgI3LgMnLgQvATUXHgEXHgEXHgEXHgMXDgEHAxMOAgEiJjU0NjMyFhUUBjMiJjU0NjMyFhUUBiUiJjU0NjMyFhUUBhciJjU0NjMyFhUUBiUiJjU0NjMyFhUUBgEuAic3HgEXASImNTQ2MzIWFRQGExE0Ji8BLgE1Nw4BIyImPwE+AT8BPgE7ATIWHwEeAR8BFg4BIyImJzceAwcnLgInNx4BMzI2LwEuAS8BIwcOAQ8BBhYzMjY3Fw4BFRQWHwEeARURAScuAScFDgEHAT4BNxcOAgcFFGm2zIs4/2rWTBpGTUofNGIkJ0ATDhUW1MsOKjdETSwcREhBGSFZYCkBJGI+Zq+sX2CrsGU+YgEkKl9aIBlBSEQcK05DOCoOydIWFg0UPyckYjQfSk1GGkzWav84i8y1/tkaJSUaGSQk0BkkJBkaJSX+/RkmJhkZJCTRGSUkGhokJP78GiUmGRkkJP6SAhUtJTs7PgQB7xkkJBkaJSWgKTPrNC9LJkQmR0YECAIUGZ8YJiG4ISYYnxoWAQgCHDQiHzwmLwULCwUBTgEJDwksKCwbFxcCCAEIDa72rg0GAQgCHiYjOjgyHxkYHdxQQP7dPigqBQEsBC0oAXwFPTs7JS0VAv6sChoXAlP95hRQMFvZ3shLfeVHTnUSDQwITlNLDkZtkbNoRLjNxlETJR4LAmYQ/VgPFAoKFA8CqBD9mgseJRNRxs24RGizkW1GDkpTTQgMDRJ1TkflfUvI3tlbMFAUAhr9rRcaCgGYJRoaJSUaGSYmGRolJRoaJe4lGRokJBoZJQEmGRokJBoZJu0lGxokJRkaJgFUOpKgTTN5+Xr+rCYaGSUkGhsl/LoEJTM2EEgQQjQbJSJUZN8mLReRFgwMFpEXLSbfPEsiICIVFU1VQgsBG2JtLCEnGjAs1xsXC5ycCxcb1zkwIjQwHyQQERcJRRlVUPvVBftDK9KKA4XTLP5cevl5M02gkjoAAAAKASf+rAkBBswAKQA2AEMAbACWAL8AzADZAOYA8wAAATI2NwE+ATc+AjU0JicuATURDgEjIiYnHgMVFA4BBwEOAhUUHgEBMjY3LgInDgEVFBYBMjY3LgInDgEVFBYBIiY1NDY3AT4CNTQuAScWMzI2NxEUFhc3Bw4BFRQfATcOAgcBDgEHMjY3AT4BNz4CNTQmJy4BNREOASMiJiceAxUUDgEHAQ4CFRQeAQEiJjU0NjcBPgI1NC4BJxYzMjY3ERQWFzcHDgEVFB8BNw4CBwEOAQEyNjc1DgEjIiYnFRY3MjY3NQ4BIyImJxUWATI2NzUOASMiJicVFjcyNjc1DgEjIiYnFRYFkEBiKAEzS1c0M0ckEg0PGUKgTzeLbQIFBQMHFRf+4zg9GEZ2/OI7Vi4Wb45GJSeEA8c7Vi4Wb45GJSeE/P1PbjxNAR0dHAgGBwNxbDl3MxYNGtsWGw1kQylETTj+zShKJ0BiKAEzS1c0M0ckEg0PGUKgTzeLbQIFBQMHFRf+4zg9GEZ2A6xPbjxNAR0dHAgFCANxbDl3MxYNGtsWGw1kQylETTj+zShK/mhFiz5Ci0FGfz6DgEWLPkKLQUZ/PoMD5UWLPkKLQUZ/PoOARYs+QotBRn8+g/6sKyUBHUVBExQ4SCorUCsycD4CjAIDAgJFtL+sPTlDLRr+uEBcTzBLekkBaSUiSpFrEC1ZNmGA/rYlIkqRaxAtWTZhgAFxdVMsaFkBSCE2UElm3MhHAwIB/cNAYiZMfg0lFBgb0lQQKD80/uMlI0YrJQEdRUETFDhIKitQKzJwPgKMAgMCAkW0v6w9OUMtGv64QFxPMEt6Sf78dVMsaFkBSCE2UElm3MhHAwIB/cNAYiZMfg0lFBgb0lQQKD80/uMlIwXYAgFQAQICAVAD3AIBUAECAgFQA/3aAgFQAQICAVAD3AIBUAECAgFQAwAAAA4B5/6sCEEGzAADACIAJgAqADIANgA6AE4AXgBiAGYAagBuAHIAAAERIREBNQ4BBy4BJz4BNyM1MzUzFTM3Fw4BBx4BFwcuAScRNzM1IzUzNSMHESERIzUjFQEhESEBMzUjAyIuAjU0PgIzMh4CFRQOAicyPgE1NC4BIyIOARUUHgETMzUjJzUhFSczNSMnNSEVJRM3EwHnBZz8ShMnFAQTCDRjHp1VPykMIg0lFxE2DSYJJA+VVFRUVDsBXj3m/ZYE/PsEAvdZWXlsvpBSUpC+bGy+kFJSkL5se8l4eMl7esp4eMrzWVmmAR7lqqpeAWQBgBUnvv6sCCD34AMB7hQiDg0lCSFtPjp7ewIXJEYgDjANMgsoEP7uUDsxOfUBKf7YGxz9TweA+4E7/ptSkL5sbL2RUVGRvWxsvpBSUHjJe3vJd3fJe3vJeAFGOVihoTE/VjU1bQJmOf1hAAgAeP6qCbAGzAARACMAMwBDAFEAaQBzAH0AAAEuAzU0NwE2FhceAgcBBicWNj8BLgEnLgEnDgEVFB4CJQEiJicuAScBBh4BFx4CATcGJicuAScHBh4BFx4CNzYuAScuAQcGHgEXHgEvAT4BMzIeAjMyNjcXDgEjIi4CIyIGARMBBRsBJQMTJQU3Fyc3BycHJxcCFkeSeksiA1Qy1IVIUwom/KsvXRgpC0A3ikM1Tw4mGztgdgEPAfc0g0g5Twz+ChUTQzA/dlkCTEg1hkYvVBQ7EhZCMTxxVa0VFUIwX6sfFBRDMGSiikE3cVA7XFBQLydMJzE0Yjg5WlBRLzdMAWR+/qwBj4VnAV/46f6C/wD125Ga10FYv63+rAFEbIE9Pi8Er0cXWzGEhzb7UkJNARYQWgE0LiVlOjA1IC5kVjfjAsI1MSZtN/0/HlhaISovAQM6ZQE0MSFjP1QZWF0hKDMH8xxZXSFDHi8eWVshRB23K1lOKjcqLCswOTgpNyk5/hoB9QFihgE2/uRw/qT+ipJouFPq1US0zkCvAAACASf+rAkBBswAYQC/AAAJASYjIgYHDgEjIi4BNTQ+ATc+ATU0JwkBPgEzMhYXHgEzMjY3PgE1NCYnLgE1NDY/AQEWMzI2Nz4BMzIeARUUDgEHDgEVFBcJAQ4BIyImJy4BIyIGBw4BFRQWFx4BFRQGDwE3PgE1NCYnLgE1NDY3PgEzMhYXHgEzMjcTASY1NDY3PgE1NCYjIgYHDgEjIiYnAQcOARUUFhceARUUBgcOASMiJicuASMiBwMBFhUUBgcOARUUFjMyNjc+ATMyFhcFhf51HxQTCgIKin1Ne0g/akAhJw/+fgEWGDcaRC4EBC4uIzsvLCZTJ0ZjSFDUAYsfFBMLAQqLfE17SD9pQSEnDwGB/usYNxpELQUELi4jPC4rJ1MnR2JIUM6cRjQqRE9mNzA5VzhQWgYFERAXFub+riNSPUNfblJcXQgENDcdNBr+p5xGNCpET2Y1MjxUOFBaBgQRERcW5wFTI1I9Q19uUlxdCAUzNx01Gf6sAYEeJRSCnkl5SUZ5UQcEHhgVEAG1ATUbGWhLPDktMS1HHDI5ChM9RixVQKn+gB4lFIKeSXlJRXpQCAQeGBQR/kv+yxsZaEs8OSwyLkUdMTkLEz1GLFVAP304ORIYHxIVZkczXzQ9O2ZaQiYZAQEBfyY0OkgHCHdJTm1yZTdLHRgBTnw3OhIYHxIVZkczYTI8PGZaQiYZ/v/+gSY0OkcICHdJTm1yZTdLHBkAAAAKAFj+rAnQBswAIAAtADkARQBiAG4AegCIAJQAoAAAASIuAjU0NwE+AScmNjc2MzIWFx4BFRQHDgEnJgYHAQYnIi4BNTQ3ATYkFwEGATI2NTQmIyIGFRQWNzI2NTQmIyIGFRQWARQeATMyNwE+ARcWNzYuAScuAgcOARcWBgcBBgEyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBjcuASc3HgEXHgEXBy4BASImNTQ2MzIWFRQGNyImNTQ2MzIWFRQGAeBLjG9CpwQiHxUBARgXHzJN2nh4jB8XSDEbNB/73aerKVE1ZgJChQEDgfy0ZQEUIzExIyMyMp4aIiIaGSIi/P1bj0+NjwQtKE4wNxkXLHdbWp5wFw0LAQIZKPvUkAPkEBUVEA8VFQFmIi4uIiIuLopXljUVR6dYW34aTBZvAYQ3UVE3OU9P6xokJBoaJCT+rEJvjEuwpwQjHzUaMUkXH4x4eNtNMh8XGgMCFR/73KfdNVEpUWYCRhgEEvywZgHFMiMjMTEjIzLeIhkaIiIaGSL+CUyQXI8ELigZAgEZF26dXFx3KxgOJR0vTSn70pAB5RUPEBUVEA8VAWsuIiIuLiIiLtNZcBZKHHxYW6xIDzOWATNQODhQUDg4UAYkGhokJBoaJAAACwBuAAoJugVuABkAJQAxAD0ASQBVAGEAcQCBAI0AoQAAJSIsASY1ETMRFBYMATMyLAE2NREzERQGDAEBMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYlMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYFMjY1NCYjIgYVFBYnMjY1NCYjIgYVFBYBICwBNTQsASEgDAEVFAwBJSAsATU0LAEhIAwBFRQMAQEyNjU0JiMiBhUUFgUiLAEmNTQ2LAEzMgwBFhUUBgwBBRT+/k/+vbRQoQEoAZf29gGXASihULP+vf5O/C4oODgoJzg4AbRRcnJRUHJyAjEpOjopKTk5OTNHRzMxSUkBxRwmJhwbJiYYLDw8LCs8PP6S/oz96/7jARwCFQF1AXUCFQEc/uP97P6LAV4B8AEI/vj+EP6i/qP+D/74AQgB8QQfKjs7Kio7O/1ov/6n/vWamgELAVm/vwFYAQuamv71/qgKO2yRVQK0/Uw8clo1NVpyPAK0/UxVkWw7AZ4WDxEWFhEPFmsuICAtLSAgLhgZEBAXFxAQGZkeExUcHBUTHpQQCgsQEAsKEIUZEBIYGBIQGQFJQoFgYYFBQYFhYIFCUDZfPj9fNTVfPz5fNv4tGBARGBgREBjBIjxLKChLOyIiO0soKEs8IgAACwLC/qwHZgbMADMAaABsAHAAiACMAJAAlACsALAAtAAAJS4BNTQSJT4CNTwBJyEeARUUDgIHDgIVFBYXBy4BNTQ+ATc+ATcjDgIHDgEVFBYXAS4BNTQ+Ajc+AjU0Jic3HgEVFA4CBw4BBzM+Ajc+ATU0Jic3HgEVFAIFDgIVFBYXJzchFSU3IRcTPgE1NC4BJzceAhczLgEnNx4BFRQGBwEnIQclNSEVJTchFwEuATU0NjchDgEVFB4BFwcuAicjHgEXNychByUnIRUEILal5wEJorJFAgEXAgFYkq5XorJGlLZVspNQxbDr1QR4BFXCqvTQobj+WgECWJGvV6ixQZmqUaiaKWSwiOrVBXgEVsSn9NCdtkO6pun++Z2zSQIBMhECtP2UcgFgUSACATaPh1pzikAEegSZqEitoAEC/PFlAksy/bECz/1nZQG0Mv3Vr54CAQEaAQI0ioBVbog/BHkEk6VAcQHpGP3hEQKlzXTqkbYBD39Od3xVDRsOECAPebmObCtRdm1GTJ93JXaxYFiKiVVy8Z5djoZSduycgdRt/bIQHw96u45tKlJybEhSpmYpZ7tlRG1jakJx8p5bj4pQdeycgdBtMnPrkrX+8oBNentRDR4PXE1Nv05O/uUOHA1DcH1TI0l8fkuP1l8vZ/ejECARAxZOTtBWVthOTgEdb/amDh0PDhwNP3F+VCdMgH5Hi9Blp01Nv01NAAAAABIA4v6sCUYGzAATACcAOwBPAFgAYQBqAHMAfACOAJoArgC8AMUAzgDXAN8A/wAAASIkAAI1NBIAJDMyBAASFRQCAAQnMiQAEjU0AgAkIyIEAAIVFBIABDcyJDYSNTQCJiQjIgQGAhUUEhYEFyIkJgI1NBI2JDMyBBYSFRQCBgQlJzc2FhceAQcBNTQ2MzIWHQEBNTMyFhUUBiMBJyY2Nz4BHwEBJzcXFgYHDgETJz4BNwkBPgE3Fw4BBwkBDgEBMjY1NCYjIgYVFBYTAyclNSUDNwUTMxMXBRUFEwclAycTFwMtAScLAScXDQEXJSImNTQ2OwEVASImPQEzFRQGBQYmJy4BPwEfASc3JwcnNxcHIiYnNzI2NTQmIyIGFRQWFyMuATU0PgEzMh4BFRQOAQTU1v6Q/u2ZmQETAXDW1wFvAROZmf7t/pHXygFaAQKQkP7+/qbKyv6m/v6QkAECAVrKrgEs4X9/4f7Urq/+0+F9fuIBLK64/sLwhobwAT64uAE+8IaG8P7C/Q9OTA8sDw8EDwG2IhUVIvx2axUeHhUFIUwPBA8PLA9M+0RLTksPBA4OLmkGF0EWAQIBRRxzQAYXQBf+/v67HHIBfh8qKh8fKioJUnv+nQFLtCwBHUs9UnsBY/61tCz+40sfQvydAST+22BEQvyd/twBJWADIhUeHhVr/K0VIm4iAiAPLg4OBA9LTrgvUWZOPYvWOggRCCI9VFU9PVcCAlIBAT5nPz9mPT1m/qyZARMBb9bXAW8BE5mZ/u3+kdfW/pH+7Zk8kAEBAVrKygFaAQKQkP7+/qbKyv6m/v+Qc4DlAS+vsAEv5YCA5P7QsK/+0OSAMofyAUK6uwFC8oeI8v6+urr+vvGI701MDwUODi0P/t9rFR0dFWsDJW4iFRUi/bFLDy0ODgUPTAQhS05LDy0PDwP8agVBehwBQAEEFj0XBUF6HP7A/vwWPQFlKh8fKiofHyr9/AFcglE9TgEiK7QBSf6kglE9Tv7eK7T+t4YBI58A/0VDYgEj/t2f/0VDYmUiFRUibgL2HRVraxUd1w8DDw8tD0tOGENTZUw0itZJAQFOVT09VlY9CBEICBEIP2c9PWc/Pmc9AAAACACq/qwJfgbMAAMABwC/AXcCLwLnA58DowAAEzUhFSURMxE3IiY9ASM1MzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMxUjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGAyImPQEjNTM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATMVIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBgMiJj0BIzUzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzNTQ2MzIWHQEzFSMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYjIiY9ASMVFAYDIiY9ASM1MzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMzU0NjMyFh0BMxUjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGIyImPQEjFRQGAyImPQEjNTM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATM1NDYzMhYdATMVIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBiMiJj0BIxUUBgERMxGqCNT3rYymFyOysiMXFyIVIhcYIxUiFxciayEXGCIWIRcYIhYhFxgiaiEYGCIWIhcXIhUjGBciFSMWFyOvryIYFyIVIhcZIhUiFxghFiIYGCFqIhgXIRYiGBchFiIYFyFrIRgXIhUiGRciFSIXFyOysiMXFyIVIhcYIxUiFxciFiIYGCG9IhgXIRciGBchFiEYGCIWIhcXIhUjGBciFSMWFyOvryMXFyIVIhcZIhUiFxghFiIYGCEWIRcYIhchFxgivSEYGCIWIRgXIhUiGRciFSIXFyOysiMXFyIVIhcYIxUiFxciFiIYGCEWIRcYIhYhFxgiFiEXGCIWIxgXIhYjGBciuyMWFyOvryMXFyK7IhcZIhYiFxkiFiIYFyEWIhgXIRYiGBchFiEYGCIWIRgXIhUiGRciFSIXFyOysiMXFyIVIhcYI0siFxgjhyIYFyEWIhgXIRYiGBchFiEYGCIWIhcXIhUjGBciFSMWFyOvryMXFyIVIhcZIhUiFxghFiIYGCEWIRcYIhYhFxgiFiEXGCKHIhkXIksiGRciFSIXFyOysiMXFyIVIhcYIxUiFxciFiIYGCEWIRcYImUiGBghFiEYFyJrIRgXIhUiGRciFSEYFyOzsyMXGCEVIhcZIhUiFxghayIXGCEWIRgYImUiGBchFiEYGCIWIRgXIhUiGRciFSIF/Yz+rPDwjweR+G/4IhcTUBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGFATFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIBOiIXE1AYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxhQExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciAToiFxNQGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYGBcjIxcYUBMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIiIXExMXIgE6IhcTUBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGBgXIyMXGFATFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIiFxMTFyIBOiIXE1AYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxgYFyMjFxhQExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExciIhcTExci+iAHkfhvAAAAAAsDG/6sBw0GzAAtADEASwBlAIwAkACcAKgAtgDAAMkAAAEiLgE1ERA/ATY9ARcVFAYHBhURFB4BMzI+ATURNCcuAT0BNxUUHwEWGQEUDgEBNTMVByYCJicuATUQJT4BFwcmBw4BFRQWFx4BEhclMjY1NC4BNTQ2Nw4BFRQWFRQjIjUOARUUFhciJjU0NjcOARUUFhcmPgI1NCc2MzIWFRQGFRQWMzI3HgEVFA4BATUzFRciJjU0NjMyFhUUBicyNjU0JiMiBhUUFjciJjU0PgEzMh4BFRQGJSIvAzcFDgElJjU0NyUWBgcFdW+6b+UPDlApK65dllVWllytKypQDw/kb7n9NumdERgTCgEBAQ0eSSsDVTFtVwIBCRMZEQG7KjwnJwkFKTUPDxgIDjosZ4gyKAEEEg0EHCggHwwSPVcKFRIhCxQaQW3+io2kV3x8V1h7e1g3TEw3Nk1NNg4WDxEEBhENFAEuDA6qJ5QNAZ8BGP5ZFxoBiw0fJP6sPmhAAxYBA0wFBQ9sDWcjKg46y/zqJkUrK0UmAxbJPA8pI2cNbA8FBUv+/PzqQGg+AfKjo7TRASvvdhMkEQF8GwMCAVMCBg2lihImFHbu/tfReC4mISswJhEtDBVIIxYaCw8mByoTJTM9jWg/ZxMIIAsZKQknNi4zJCklBmlMHysRFRkiEkMkOV85BI+dnY56WFh7e1hYek9NNjdNTTc2TUUVDhE7MDA7EQ4VVAZGSD0ZrRgliSAYJQ3EKUkSAAAADADW/qwJUgbMAAkAGQAlAC8ARQBaAGQAdACAAIoAoAC1AAABIiY9ATQ2OwEVFyImNRE0NjsBMhYVERQGIyczMjURNCsBIhURFDc1MzIWHQEUBiMBIQchFSEHIRUhESEVIREhFSEREyUhNSMiBgcOASsBIiY2PwE+ATc+ATsBASM1MzIWHQEUBgcjIiY1ETQ2OwEyFhURFAYnMjURNCsBIhURFDMnIyImPQE0NjsBATUhBRMRITUhESE1IREhNSEnITUhJyU1MzIWFx4BHwEeAQYrASImJy4BIwJCEhcXEi5LJjMzJkomMzMmSkoXF0oXrC4SFxcSAZb9YZQDM/x7VgPb/BID7vwSA+77wnwBEQKxiS45Gxk1OFcpDiEbHBgcEyFlXZ0C0i4uEhcXi0omMzMmSiYzMyYXF0oXF0suEhcXEi7+PAKxARF8+8ID7vwSA+78EgPbVvx7AzOU/WGdXWUhFBsYHBwgDSpXNzYZGzkuAbgYEXERGMPRNCUBUyYzMyb+rSU0QxYBUxYW/q0WjsMYEXERGAO0dVD+UP7qUP0JUAThAVnWiDdTTDYZJA8QDjE+a1D67MMYEXERGNE0JQFTJjMzJv6tJTRDFgFTFhb+rRaOGBFxERgC8VDW/qf7H1AC91ABFlD+UHXYiFBrPjEOEA8kGTZMUzcAABYA+v6sCS4GzAAPABkAIQApADUAQwBLAFMAXwBtAHkAgwCNAJUAoQCvALsAwwDLANcA3wDpAAABIiY1ETQ2MyEyFhURFAYjJSEyPQE0IyEVFBEzMj0BNCsBNSEyPQE0IyEBITI9ATQjISIdARQBITI9ATQjISIGHQEUFgEzMj0BNCsBNSEyPQE0IyEBITI9ATQjISIdARQBITI9ATQjISIGHQEUFgEhMj0BNCMhIh0BFAEhMj0BISIdARQBMzI9ATQrASIVATM1IyIdARQBITI9ATQjISIdARQBITI9ATQjISIGHQEUFgEhMj0BNCMhIh0BFAEhNSEiHQEUATM1IyIdARQBITI9ATQjISIdARQBITUhIh0BFAEzNTQrASIdARQBeEg2NUgHOkg1NUj4uQHWICD+CrwgILwB9iAg/goBTAI2ICD9yiABWgKIICD9eA0TE/2HvCAgvAH2ICD+CgFMAjYgIP3KIAFaAoggIP14DRMTAZkCNx8f/ckgAawB1iD+CiD6grwgIJwgBti8vCD6lAI2ICD9yiABWgKIICD9eA0TEwGZAjcfH/3JIAGsAfb+CiABWry8IP1aAjcfH/3JIAGsAfb+CiABWrwgnCD+rD9HBxNIPz9I+O5IP1Afxh/lHwFUILogUB+8H/28ILogILog/qwfxh8SDcYNEgPoILogUB+8H/28ILogILog/rYfvB8SDbwNEv62ILogILog/qwf5R/GHwZ8IMQgIPn0+iC6IAUoIMQgIMQg/rYfvB8SDbwNEv62ILogILog/rb6H7wfAUr6ILogApQgxCAgxCD+tvofvB8BSuQgIMQgAAQBLP8QCPwGaAAVABkALwAzAAAFIiwBAjU0EiwBMyERISIGFRQWMyERJREzESUhESEgJDU0JCkBESEiDAECFRQSDAEBETMRBXTx/m/+26GhASUBkfEDiPx55fj45QOH/cZQ/mIDOPzJ/vn+2gEmAQcDN/zI4P6L/vGUlAEPAXUCLlDwivsBWM/PAVj7iv2ts6ams/2tHgIX/ekyAbPgycngAbN95v7Fvr7+xeZ9BNMCF/3pABAB2f6sCFcGzAAPAB8ALwA7AEsAWQCeAKMApwCrAM8A6gD2AQIBDgEaAAAFAS4BNwE+ARcBHgEHAQ4BAScuAT8BPgEfAR4BDwEOAQEnLgE/AT4BHwEeAQ8BDgETIiY1NDYzMhYVFAYTFjY3ATYmJwEmBgcBBhYXARY2NwE2Ji8BBgcBBgcDIiY1NDY1NCMiBiMiJjU0MzIWMzI1NC4BNTQ2MzIWFRQzMjU0JjU0MzIWFRQOARUUMzI2MzIWFRQGIyImIyIVFBYVFAYXJzcHFwMnExcTJxMfASImLwEuAT8BNi8BJg8BDgEvAS4BPwE2MzIfAR4BFRQPAQ4BJzc2Ji8BJiMiBg8BHgEXNzYzMh8BHgEPAR4BASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBSz9ETcfIgIvI383Au84HyP90iKA/KASEAkKJwonEBMRCQsoCiYB3xMQCQooCyYQEhEICicKJhwlPSIaJT0iLBw+EAIwEQ8d/gEbPxH90REPHALvHD8RAi4RDh16AhX90BUlAxAdEQwMGRoTHC8FDQYQIiIlFhITDw4DJhsrISEVCREGGRkXERQeEAwfHage7yw9iDuxOWw7sTkXDRMJPxABBw8HC3ANCRkKIhktExIQMihEKyqrMh8WLAcMFCUZEy6lIyAVHg4sDiQEFxYSCg6XFgMOEhEX/SwnNjYnJjY2JxIbGxITGxv+Iyc2NicmNjYnEhsbEhMbG88BzSKANwOMOB4i/jMigTj8djcfAWALCyYQQREICgsKJhFBEAn+2gsKJxBBEQgKCwomEUEQCQNoXDcoM1w4JzP9axEQGgOMGz8SAToRDxz8dBw+Ef4zEQ8cA4odPhJLLCL8dCIVA9wVEAwkDA8wGhYtAgoOBg0WFyMcFh8RBQwKKiQTEBAMDQ8GGBEQICUKChoUExl3iDhNOQGBJQEbKP49JQEbKCEJBiwLFQ0aDQdGCAsiDwYQHAwiGU0+GWYePSEfJk0LCDNBKz0bYhUXFEIGGQYgHwhdDRsXIAcN+T03JSc2NiclNy8bEhMbGxMSGwECNyUnNjYnJTcvGxITGxsTEhsACAKo/qwHgAbMACsAPwBRAF8AbQB0AI4ApQAAASIkJjU0GgE3PgE3Fw4BBwoBFRQeATMyPgE1NAIDLgEnNx4BFxYaARUUBgQDIiY1ND4CNzYzMhceAxUUBicyNjU0LgEnJiMiBw4CFRQWEyImPQE0NjMyFh0BFAYnMjY3NS4BIyIGBxUeATciJxEzEQYnIic3HgIzMjY3PgEzMhYXBy4BIyIGBw4BJzI2Nz4BMzIXNyYjIgYHDgEjIiYnBxYFFOr+8XM5WTETamcUU08LXGJd69TV6l1hXQtPUxRoaRMxWTlz/vLrdZUqPj4UJyksJBQ9PyqVdVRmOUscEAoKEBtMOWdTbIKBbW6Bgm08TxMSTj49TxESUD0bFF8SN2V5UhlHQhERMB8tSSI6gC5ZMjMaESojJ2RGPlYlKTYXLCwaQEIfQSoiNxUXSiIeR/6sS7WdswFaAT+MNkkcURYuIf75/h/Vg5E5OZGD0gHfAQwgLxZRHUk1jP7B/qaznbVLAaqVdTZ3cVwbMjMbW3F3NnWVUGdTO4J2JxcXJ3aCO1RmA0E3MJ8wNjYwnzA3UQ8Pjg8PDw+ODw+aBQEH/vkF3Vm/BgoGBgUICCskxxsTCAsMFlASDA0KEjsfBggHBgcERicADQIc/qwIDAbMABUAMwBJAFEAWQBhAGsAcwCFAJcApwC5AMUAAAEGBCMgJCY1NBI3FQYCFRQWBDMyJDclIi4CJzU3FwcVHgMzMj4CNzUnNxcVDgMnIi4CJzceAzMyPgI3Fw4DAzUiJicVHgE3NSImJxUeATc1IiYnFR4BEyImJxEFJREOAQM1IiYnFR4BEyIuASc3HgIzMj4BNxcOAgciJi8BET4BJDMyHgEXEQcOAScyNj8BNSYkIyIEBxUXHgE3Ii4BJzceAjMyPgE3Fw4CJyImNTQ2MzIWFRQGB9Cf/tB9/vP+edTy07HOwgFo+JQBIYX9z0Sss6E5yzS0NpCclDw8lZyQNrU0zDmhtKxEPqSwoTsnNpSknD09nKSUNic7obCkNHDJTVHJbHDJTVHJbHDJTVHJYo7KYgG5AbtjyYRwyU1RyWSK8rUyGi2t6oWG56wtGjG174165lPLL7sBAZWW/rovzVLmenDPS6pM/trAwP7XTKhL0HB68cY7Iy606n1+6rUsIzjH8nk5UVE5OVBQ/vYqIIb9sNEBnqBajv6Qt5vddSUiPQwdNirXwzWskCAoFgkJFiggkKw1w9cqNh0MtwocMic8JC4ZCgoZLiQ8JzIcCgFMRhYYShUVtkYWGEoVFbZGFhhKFRX+LSYtAyo+PvzWLSYCiUYWGEoVFQEkIjgfPRw0ICA0HD0fOCKSIBzGARYjPScnPSP+6cUcIEsbGZjYJz4+J9mXGRv1IUIvOic8IyM8JzovQiGIFxUUFxcUFRcAAAATAV7+rAjKBswALQA1AD0ARQBMAFkAZgB6AI4AmwCoALQAwgDMANoA6ADzAP0BBQAAASAkNjU0JiMVMhYVFAYEISAkJjU0Njc+AhI1NCYnBxYVFAIOAQcOARUUFgwBAT4BNycOAQcXPgE3Jw4BBxc+ATcnDgEHFzY3Jw4BBwU3JiQAAicHHgIMASU3JiQAAicHHgIMAQUyJDYSNTQCJiQjIgQGAhUUEhYENyIkJgI1NBI2JDMyBBYSFRQCBgQlNyYkAAInBxYSFgwBJTcmJAACJwcWEhYMAQE+ATU0JicHFhUUBxc+ATU0JicHHgEVFAYHAT4CNycOAgcnNhI1NCYnBx4BFRQGBxc2EjU0JicHHgEVFAIHNz4CNycOAwc3PgI3Jw4CBzc+ATcnDgEHBXcBIQF5uZCLbl2p/qr+/P7Q/lrbREwtd3BKBgVOCkZsdC1RS4gBBwF9/dhGej5AOmo+uUh7OUQ0aT/lNmAxSC1TL/5PQkofPCQB1B64/pf+xeo5SjGx7QEWAS4BWB7e/m/+s/A7SjK09gEsAVT+v7oBR/iMjPj+ubq6/rr4jIz4AUa6qf7W4YCA4QEqqaoBKeKAgOL+1wHeGuX+b/648UVKObj1ASoBVgEiHNX+fP677kBKNbXzASMBSf0QISEXF0wqPNcsLCQjRh4eJyYB6HHGmy9EKY21aOMpKSQlSCEhKCflODcpKUomJjQ1VHrlrylGGWaInVEtXbaTKUQjgqBSGG+2N0QummD+rDNxW1NCUB8mOU4oZ8SMSsByRMv4ARONI0MiDDtAg/787sVEedhVfsGERAJgJG5VME9gIMkldlgsUWYgvSmAYCRZcSN1TJQgRl0jCkpK3wEKARaBIG3o49GuNEpW7wEZAS+WHn/+8t28/Iv3AUS6uQFF9ouL9v67ubr+vPeLUH/hASepqAEo4H9/4P7Zqan+2eF/7ExQ5gEdAUeyHJX+6P3ctFFMT+gBHAE9oxyK/vT53bUCZkqkVEeKQBxzgp6Eu0zldmjAPig1ql5t0UL+gQhIdk0qRWc8BnxxAQmBetZJJELCbnn9bI6SARaEcddnHmDIanz++Yw8Bkp4SSguUT8nBFAPVHlEKjtpSg6CF3hYKklmFAAAAAYA+P6sCTAGzAANADgAYABwAKkA2wAAAQYABw4BByc+ATc2ADcnDgIHBgAGFRQWMzI2NTQmIyIGByc3NjMyFhUUBiMiJjU0PgI3PgI3JwYABwYABhUUHgEzMj4BNTQmJzceARUUBgcOASMiLgE1NBIANzYANwEGAAcOAgcnNzYANzYSNwcuAicmNjc+ARcWMzI2NTQmIyIGBw4BBw4BJic+Azc+ATc2MzIeAhUUBgcOAgcOAgcGJjceATc+Ajc+ATc2NTQuASMiBw4CBw4BBx4BNz4BNzYzMhYVFAYjIicmIgcGFx4CBxxg/v2Kg/tvF2jqeYABEHBcUsrUYtX+/3MfFBYfHRQQHwwPLw8NNklMODZLZazZdF3HwE9bdP7hicX+355CbD5CZzxqUzlfdS0uLXI8VI9XrAEtwY8BLHYB7GP+8ZFz7t9fEjmJASuLjPhjLR4cEQ4FEBcgTjcPDhgdHg8ODgQJIhZBsLFFCz5LRRMUJRBviEqNcUQpKw0iHwwUNDYYJXEQFC0QCzo+DxE5ED1gkUtnWAYgHgUkTDpQrDgoERseKTJJTDcaGSYmCxEFDAwVA9Zz/uWJguRXVFTVeYABJoedQ7HGYtb+5qksGRsfFRUfERAWWANMNzhMRjdBqsncc1y6q0IyYf76icX+ze5gPGY/P2k+U4AMRR+fZTxzLi0tVIlPcwEOAUHBjwERY/4Sdv7ZkXPYsz4Nb2IBDIuMAQ12AR41XlwjQxYfAw8EIBMVIBkNHisWQRNNTgkxPzwTFCYQb0JxjUs5aSsNIB0MFDk7GSYJYRMFEAtARA8RNRA9V06RXFgGIB8FKEArPwY6KT0bHlQ0NksHCwsRJFNRKAAAAAwBi/6sCJ0GzAAnADsAgQCRAKUAugDHANMA3wDvARYBIgAAASIuAjU0NjcuATU0PgEzMhYXPgEzMhYXNjMyHgEVFAYHHgEVFA4BASImJzceATMyNjU0Jic3HgEVFAYBIi4BNTQ2MzIeARUjNC4BIyIGFRQWMzI2Nx4BMzI2Nx4BMzI2NTQmIyIOARUjND4BMzIWFRQOASMiLgEnDgEjIiYnDgIDLgE1ND4BNxcOAhUUFhcFIiY1NDY3Fw4BFRQWMzI2NxcOAQEuAicOAQcuASc+ATcXHgEXDgIDIiYnNx4BMzI3Fw4BASImNTQ2MzIWFRQGFyImNTQ2MzIWFRQGASc+ATU0LgEnNx4CFRQGATI+ATU0Jic+ATU0JiMiBgcuASMiBgcuASMiBhUUFhcOARUUHgITIiY1NDYzMhYVFAYFhXLYrGYpHSAsO2Q9MVcrLjIiPpQ2P0BEYzcxLQ4LddH9ric8GgwLPRosNhIYSRwVYP7gZ5lUkW1MfkxQNFk5TGKKem7BaiRZHx9ZJGrBbnqKYU04WjRQTH9LbpBUmGhSk4xKID0dHD4gSY2Soh8eYq90J2adWRkcA5RDYBUcSRgSNysaPQsMGjz+sAgSEAUdczIgNQ4TbmaPPlkoFk5YOUllCTEJRjdVHC8QVf76GyYqHRwlKqMgLiUlKTo5Ak5IHBlAdE45Vn5FHf3NeKtcDxEvNkxEITgjKp9DHTw2MlAhOlIpKB8sXJm57RsmKh0cJSoCzzFjlmUxgS4eYyw/ZjwmKAoGIxwlNmJCN2QkHkssdaha/V0YFkENEjcrIEIuHzdRKkxj/oBWlF14nE6CTTddOWxYao1tgQMEBAOBbY1qWGw5XTdNgk6ceF2UVi9pVQMDAwNVaS8CETRxOm/QlRZLDn2zYDFfK7ZjTCpRNx8uQiArNxINQRYYAW0fW2cwLG4kMWwyCCITCj5oPBYvJgG+RjcJKCw8ESsyASMtHyMyLSEiMapCHBQVIhceMPzlJStgMVGbeh9AKJCxXTpyAi5GhV4vViEkWS9BSRQaHSsGDSwlVTwsWCEshzVVeU0kASgtHyMyLSEiMQAACQDo/qwJQAbMABcAGwAfACMAOgBDAE0AZgB6AAABLAInNT4DNz4BMzIeAhUUBgcOASUnARcDJxMXEycTFxM+Ajc+ATU0LgEjIgYHDgIHNxYMAQEmJCc3HgIXNy4CJzceAhcTJz4BNTQuASMiDgEHIzQ+ATMyHgEVFA4BNycBNjU0JiMiBwEnATYzMhYVFAcF0P64/iH+sXJ+ya6nXZLTXjt1YDpNTB1F/K0yAVwyTznOOEVAkD8/FCssFUhJTnU7TLGAetbzpgdiASsBpgGaaP7pmBxm0btFJFaPnm8larCfUQsWIicqOxwdOisJQT1cMDNhPyU8WEIB+Qk5GhgL/gRCAfwkRD5jFf6sAV3BlzsCJFGJZqCWNFhvO1DTj2TZPzIBRzH+YSkBCSj+3h4BQB3+1zF3iEiJvUQ+a0KFkIqlTQUecahcAU96wztKJXybU3lZemAxRy9pgVYBEkQYSSEfNiInORszXTs4WTQlXETHLALeDg4gKA/9HSwC4DVbPSUgACEA//6sCSkGzABOAFYAZABsAHAAeACGAJQAmACmALQAwgDGAN4A7AD6AQIBEAEUASIBMQFTAWEBegGCAYYBlAGcAaQBswHAAcsB3gAAASAsAS8BLgE1NCQ3Fw4BFRQeAR8BJiQnFx4CBDMyJD4BPwEOAQwBIycyLAE+ATU0LgQjIgYHJz4BMzIXPgIzIBEUDgEPAQ4CBAEuASc3HgEzBSImLwEeATM6ATcXDgEBLgEnNx4BMxMDNxMDLgEnNx4BMwEiJi8BHgEzOgE3Bw4BFyImJzUeATMyNjcVDgEHAzMTAyImLwEeATMyNjcVDgEXIiYnNR4BMzI2NxUOARciJic1HgEzMjY3FQ4BBxEzEQciJCYnAxcTHgEEMzI2Nz4BNxMzAw4BBAEiJic1HgEzMjY3FQ4BFyImJzUeATMyNjcVDgEBJz4BNxcOAQEiJic3FjIzMjY3Bw4BBxMzCwEiJic1HgEzMjY3FQ4BATcuATU0NjcmJw4BFRQWASIvASYCJicOARUUFhcFLgE1NDYzMh4EFx4BFRQGIwEiJi8BFjIzMjY3Bw4BATMyNjU0JyYKAS4BIyIGBxYXHgESHwEeAQE3MjY3Fw4BBycTFwEiJi8BHgEzMjY3Bw4BFzcyNjcXDgEnNzI2NxcOARMmJCEiBgcnPgEzMgwBFwE+ATcuASMiDgEHHgEFPgE1NCcOAQceAQU+ATUQIyoBIzceAhUUBgceAQUM/uH+Sf7/DiEEAwEE3xvE8YbumhCx/vRNEweV/QFJu8YBTPeNBhJE3/7g/q+3DK0BSwEf2XtcncbY0llAgEAZRIxJbW8vg7+IAUgJCgMkCYb5/pT8xz1tMR4sWjIA/zptMgM1bj0GEwcIERP+7Ed5LhY1ZzcTPkk+YEyENh41cj0BFTpwNQQ2bzkHJQcFAx/XKFcgIVYnGEEaGUHhDEgNbDpzOgQ6eDsLFAoKFt8lWCEkWSYXPxkZQtUZPxoaQBkmWCAfWcJJJNz+m9wQgEt9DM4BSMNPmka57w1+SoAP3f6c/qolViEjVyUaPxkZQtgZQhoaQBYmWSQhWPwTIUfPfhV5yARZCBQRCAgSBzxwNAMzbJUNSQ3EGUMaGj8aJVgiIFj7+3UHCQkIKkISEhACY4UaIiBFTjEEAgsK/v4TFoysXJJzVj8sDwIBQz8COQcgAwUIJQc7dDkEOHX9YikfGQEWP1JrhVIiNx41KkdmUyghBygDgQQyWyseMG06ST9I/tcLFAsEDRUKO3U8AzpyvgU3aDQXLnk/BEB3NxQ2hKqj/mP+5jJmNA04bDXMAUEBCHT+HzB4ZxMnFzh7ayEgQgFsBgYaWm4sR4IBEgQE+QQJBQMyNRQDCi1KAhk/c065FxYHT3kiShxVLyJBNxJOE0ItaSdGNh8hN0YkZCc3IRBJDx8uPygfNCwiFwwEBEoEBAaDyXL+Oyx9aA7QNF1GKP3QAjMnRCUrnCQeTiAlAUoBAQEiBjgoSi4z/g8DSQP8twJyBTwrQik4/pkhHUscIQFLAQH4DAxJDAsEBEgEBpsDYvyeAmwfHU0dIQEBSwEB9g0LSQsLBAVJBQbbBgRIBAQLDEkMDKcDYfyfLU+NWwLvAv0gRXJEDQsdfEoC5P0PW41PAosMCkoLCwUFSQUG3AYFSQUECwtJCw0DGkIdLhBHDyv8DAEBSgEkHk4eIbkDYfyhAlEGBUkFBQsLSgoMA18nKVkrLlUkJQkbXDo7g/1Sb5SNAQDSRxwuFzZjIFhcoUOYm2y34+/dVQgQBzEz/lYBAUsBJB9PHyEB9AsSCQaHARsBBM54BwoRKUTw/s2nihwZ/X1QKyVEJzPOAwNJBP7sAQFLAQEhHUwdIJJPMy5KKDjNTTwtSis8Ad05NwIDSQMDHjcmAUx6oDMTFGKkYwIGPC5UJms4I41rCRhqK08lAXgWJlJjQB1jTA8jAAAABwIA/qwIKAbMACMARwBQAGAAdACEAJAAAAEmJCclJDURFx4BDAEXBhUUFhceARUUBgcOARUUFhceARUUBicuAScuATU0Njc+ATU0JicuATU0NjcmLAEmJzMRFBYXBR4CNyc+ATURNxEUASIkJjU0NiQzMgQWFRQGBCcyPgI1NC4CIyIOAhUUHgI3Ii4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWBq9R/vDo/vj+olIGuAE2AYzafQgIGBkLDgcFGBAWKgJPBBwaEhwIBwwLGBYKCCIi4f6C/uOiBU+PjwEGkrV2UAuttVD87OL+nM7OAWXh4gFkzs7+nOKJ/sh1dcn9iYj+yXV1yP6JUIZQUIZQUIZQUIVRYG9vYF5xcf6sIjorMUC+BWsKPXxtUBK0fxkvF0FzPCZeORsvFi5JJzOEShIoUy1iOilXPBk6IDVTIjlgQB06Hjt0Qhpbeo9O+p87WRsxGyUdIFAXWT0FgQr6dcIFS0J1S0tzQUFzS0t1QlAfMz8hID4zHh4zPiAhPzMfTBMsJCUtFBQtJSQsEz8RExMRERMTEQAAAAANALn/EAlvBswAJAA/AEsAVwBjAG8AjQCfALEAvwDNAOsBEAAAJQ4CBw4BIyIuAScuATU0NjcXDgEVFB4BFx4CMzI2Nz4CNwEUBiMiJjU0PgEzMhYXBy4BIyIGFRQWMzI2NRciJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgE+ATMyHgMVFAcOAQcnPgE3NjU0LgMjIgYHASIuATU0PgEzMhYXHgEVFA4BJzI+ATU0JicuASMiDgEVFB4BEz4BNTQmJzceARUUBgcBLgE1ND4BNxcOARUUFwEiDgEVFBYXBy4BNTQ+ATMyHgEVFAYHJz4BNTQuAQE0Nj8BFwcOARUUFhcBHgEzMjc+ATcXDgIHDgIjIiYnAS4BBrxrczkVXqVKOKjMbq/BYmEtUFVBln9WuaQ2QY5XGkJwYP2iiWZkjEFtQjVfIikWSyxGZGJISWBvQVpbQEBcW0EnNDYlJTU0A406UVE6OVJSOR4sLB4fKyv9XlaWK1LKyqlnOBthKS4yUBInYZy3sEIZnV4CwF+cXXWyXChOI0RPXZtfS3xKPzccOx9Lj11KfeZnVCUyIUg+Wmj5JycsPmk+DkZnPAGyVopQQDg3QEdjqmlqqWNBOjczOVCK/SlHR+w29TQ3JyUBuitaMXmmXPKuJISxejJjcVM3PHIw/j41NypCRyELMTQ1YkFp7Zpxx188UqVgWIqGUTZZNSwxDyZDOgMYYnp7YUJtQCwoQCMrY0ZDU1FFM1FAQFxcQD9SQSwkJTY2JSUr/pJROjlSUjk6UUErHx4sLB4fKwNCLCpId42OOktEIUcbQh8+FjAtLHV6aUAlMvn5XJxfW5BVEhQwlFZfnFxGSnxLRXclDQo/b0pLfEoCElCkcVRgQFlbmVl/wFMCBiViN0FyTglEC3RHUTkC0FmXXUmALC42mFVwtm1ttnBSkjUuLHpFXZdZ/FM1aTm8PcIpSiEcOxn+2xwaXjWbc0dZdUsaNDMQHyABLSRaAAAAFgC6/qwJbgbMADIAPgBMAFoAjACYAKoAugDIANgA5AD4AQQBEwEfASsBNwFDAWcBcwF/AZMAAAEnPgE3PgI1NCYsAScOASMiJwYHDgEHJz4BNz4BNx4BMzI2NTYyMzIMARYVFA4BBw4BASImNTQ2MzIWFRQGJSImNTwBNzYzMhYVFAYnLgE1NDY3Fw4BFRQWFwEiJicuASMiBiMiLgI1ND4BNTQmJxEzER4BFRQOARUUHgIzMjYzMhYXHgEzMjcXBgEiJjU0NjMyFhUUBgciJic3HgEzMjY3NjcXDgEHBgEiLgE1ND4BMzIeARUUDgEnMjY1NC4BIyIOARUUFgEiLgE1ND4BMzIeARUUDgEnMjY1NCYjIgYVFBYFIiYnNx4BMzI2NTQmLwEeARUUBgEiJjU0NjMyFhUUBgEiLgE1NDYzMhYXFhUUBgEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEnPgE3PgE3PgEzMhYXJz4BNRE3ERQGByYjIgYVFBcOAQcOAQMiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiUiJjU0NjMyFhcHLgEjIgYVFBYzBvUdQXlsT4VSpP7r/qi0EFY+GBc7LxdfUBtESxAhWi4LHQo2KwYWBs8BgAEwsWOmY2Zs/EkbJhwWGiYb/uouOAE2SCk5S4ieqVBJJzk9kokCWHOaMysmERIqHT2Vh1cdHTEbSiMtHx9Nc3ktHR8dI0IgNIRlx2MzeP6rNEhZOjRIWTBSxlseVLVMZpI3jU0fH2BAfv1IToFMTYFNToBNTIFOV3o5Xjo5Xzl6BC5GdkZFdkdHdUZFdUhNa2xMTGxsASs/XAZIAzQiJTQxIwFCXF79Oz1VbEQ+VGkBuB1JNkk6KFQOA0f8NFh+fVlafn9ZO1NTOzpSUgS7ExgpGhQXKP2eJzVCKyY2QQGcJVOnNCkrDQhBKRQsDicRFUo0LBIhEhwDGEJKPZZlJzZCKyU2QQEDL0NJMS9DSPk3SWdnSUZlBUkEOikqPTwrAipDHBoHBktyP0+afk8DN0AGJWQySR9EGjYkR2UQBgdBNAFVkrhjU5JfCAcW/VwxHxgjMh4YI/RQOwUJBCYoIS9LbEK6bUuELj4lYjhVlzv9bkAcGA8iSHB8Mx4gFw4TJgQBSf7jEzocHR0YFiJfWzwiHhIcN142cgKMKyUoNS4mJjPNLSZDJChESLomQw9kVqoCH02ATk6ATEyATk6BTEp6VzpeODheOld6/CtGdUZHdUZGdEdHdUZKbExMa2tNTGugUz0LIjA0JSM1AUkBXkNDXwQZLScqOS0mKzn+/iIyFyoqEg4KDDJXA119WVl9fVlYfklTOjtSUjs6U/wFIBkiOSAYIjoC3B8bHSUfGx0l/CQ+LzUEBAgFLD0PDwUJLB8BxR7+HThWDBUhFwsGFBUIBzIDmiAbHSchGhwo/u0pIiEtJyIiLqtnSklmXUQGKDY8Kis8AAAAABIBLP6sCPwGzAALAA8AEwAXABsAHwAjACcAKwAvADMANwA7AD8AQwBHAI8ArgAAASImNTQ2MzIWFRQGBSEVIQUzFSMFIRUhASEVIRUhFSEVIRUhJSE1IQEzFSM3MxUjNzMVIzczFSM3MxUjNzMVIzczFSMFIRUhJRQOAiMhIi4BNTQ2Nxc3FzcXNxc3FzcXNx4CMzI2NREHJwcnBycHJwcnBycHJxEHETMyHwE3FzcXNxc3FzcXNxc3PgE7AQMXDgIjIi4BJwcnBycHJwcnBycHJwYVFBYzITI+AQWHMUZGMTJFRf1IAtD9MAIMxMT99AJs/ZQD8gEc/uQBHP7kARz+5P2M/oIBfv6CXl7IXl7IXl7IXl7IXl7IXl7IXl7+rAFi/p4CnxA9gnL6plONVSYobXFzcXJycnJycnOAWGtMJ0FaZXR0dXZ0dXV0dXZ0dWpRGDs6LnV0dnV0dXV0dnV2dEsYIxYXYBAUMjceMlZnTHxycnJycnJydXBuWRR7agVaV1snBHBFMTJFRTIxRWtGbEZsRgGqRmxGbEayRv6BRUVFRUVFRUVFRUVFRWVEM7vyiTc4blEyeUZ6hIpzc3Nzc3NzdX1iby3gyAUBcYqDg4ODg4ODg4ODg3b57woGlkU2hoaGhoaGhoaGhoaNVRsS+RMDOT8YJ2BTenRzc3Nzc3N4hIFkMTBMWyBdAAAAAAcBBP6sCSQGzAATACcANwBHAFMAZwB5AAABIiQAAjU0EgAkMzIEABIVFAIMAQMyPgI1NC4CIyIOAhUUHgITIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciJjU0NjMyFhUUBgE+ARI3NiYjIgYHDgIHDgEXHgEBFjc+ATc+ATU0JiMiDgEHBhYFJ+3+e/7nmKsBKgGC1tgBcAESmZb+7/6K/YDgqmBirOGAd9emX1mi24tlqWVkqGVmqmZlqWhRiFJSiFFQhlBQhlI+XFs+P1xcARSQ5JIUAxUTEBgDFILLgxUPBQUf/GsdHEr8jBQVFRhcx684DwX+rJUBDAFq1uQBigEqp63+zf5t5tz+m/6IAXVfqOCBg/C7bWGw7IuF565hAR1nrmlprmhormlormhLVIxTU4xVVIxUU4xUlF9AQV9fQUBf/VU50AESmhccFBSK+8E0CB4PDwoFihUgVnwKAhQQEBNEbkESIQAAAAsBIv6sCQYGzAA+AE4AgwCLAJMAyQDYAP8BJgFHAVoAAAEiJicuATU0NjcXDgEVFBYXHgEzMjY3PgE1NCYnLgE1NDY3PgE1NCYnNx4BFRQGBw4BFRQWFx4BFRQOAQcOAQEuAicOAQcnPgE3Fx4BFyciJjU0Nz4BNz4DNxcOAwcOAQcGFRQWMzI2Nz4CNz4BNTQmJzceARUUBgcGAgcOAQU1MjY3Fw4BNy4BJzceARcBLgE1NDY3JTcXDgEjIiYnNw4DFRQeAhcHLgM1ND4CNz4BMzIeAgcDBQ4BFRQWFxMiLgEnNx4BMzI2NwcOAQEiLgInLgE1NDY3Ez4DMzIeARUUBgcGBw4BFRQWFx4BFRQOAScyNjcHLgI1NDY3PgIzBz4CNTQuASMiDgEHAw4BFRQWFx4CAy4CNTQ2NxcuAjcTPgEzMhYXFB4BFw4DFRQeARcDJz4BMzIeARcHLgE1LgEjIgYHAt9aYSwpIwcMTQwHISQiPkFEYRQUHQQCAwI7TEFLZHgTk4NQTUAzAgQDAhEaDx9+/uEKGRYIKF4uDChmMz0RKgwuN1ElCBILKTknHQxGDBciPDILFgsSHxkiXS8zU0AVDhUKD0gUDRIULmxQOnwC3itAKCUvVGlBUyA4HUA1/H5ARzo0AXw5MhtJNU+2PUoJGxoSRm98NilOj3BBDxcYCA1eVTh2ZDoFQf5mJiA5O+UygHQhFDyzRy5DFgkbPwOhTX1lUSMGBg0VsCBYZWsxRHRILiZVNQkJGBATEEBwTSVbX2A3UCsSFTB6lFWOKSULM08sMHhuIqUPDwIELGF3iEFgNGlnFm98LAk2OItORphEAQYGaLiOUChOOeAwPqpgKl1QFSsEBCJ6NT1lK/6sOkxHrHEdZkACSFkgZJs+OiMiICCzXx46Gh80GZHTcxx1T2iHOUk/rINhkidXzH0aNyAcNhs8i3UbNzYB6BU1OBcSHQtMCSEUHDdbFnFIMjY1DBoTRXZ3iFYlVIR1ekwRIg8aHRUcRjtArrZKMmk0IzkxMUNUJjR1Po/+7GdJUSdQGBxJHh1nESsiOBwgDgFYMnlANVkd1eYmDg0nHiwXU11RFSuElowyQkmhnoszEkxaURgmIhclKxX+9OUWMyEsVzICUxEeEUIcIAkLSgoG+RpFk+mjHSENHj83AdZUlXJAYJtaNHkwbJgaQCZCj0hUcCxGb0BQLkyLFHCXTVmjWMf8eJFERiMNQ3ZLZaVf/jEqNhkNGBHI9W8ERyFPVSg2ZTA/HTlFLwEWFxgWEm2JXSsYP0RAGhY4PyEByEcdHwoYFR07b0EIDw4PAAAABQKo/qwHgAbMADIAQgB3AIkAkwAAASE+AjcuATU0Njc+ATU0LgInLgEnFAIGIyImAjUOAQcOAxUUFhceARUUBgceAiU3LgInLgEnBx4BFx4CAS4DJz4BNTQmJy4BNTQ+Ajc+ATcUEhYzMjYSNR4BFx4DFRQGBw4BFRQWFw4DBwE3LgInLgInBx4CFx4CEzcuAicHHgIEfQEuN5auWkg3FA0NExopLxQrW0sWW2ZmWhdLWysULykaEw0OEzdIWq6XAglCJJfDaF64SylKs1tov5D+cyhmcW8wLUQVDQwTFyMnDw4kFyh9gIB9KBclDQ8nIxcTDA0VRC0wb3FmKAFGPyGLtGFy2JkVRRud1nBluogwE4GoYBhNHG29/qxPvsZZlNdaOHM4OGs0L5ywnS4SFQjI/vGKigEPyAgVEi6dsJwvNGw4OHI4WteUWca+zDGLnVgjIE5EQ0BKICRXmP6vOIKGezBf5HM9dTg2aDIvjZyKKgUJBLL+8JiXARCzBAkFKoqcjS8yZzU5dj1z5F8we4aCOAFmQHCwl0hWuuyfLZrpu1ZNn7gBOk1QlaNmCXa5pwAAAAUA8P/YCTgFPAAeACYAPABPAFcAAAUiLgEnLgUnEz4BMyEyFhcTDgUHDgIBEy4BJwMeAQEyPgE3PgE3AwYEIyImJwMeARceAhMyLAE2NycuASMhIgYPAR4BDAEBPgE3Aw4BBwUUIF9hJDqcraeOXQs9BkQ0BtI1QwY9C12Op62cOiRhX/zpZ1OTOyUzcQMyIF5oL0K6ZoB2/wCBgf93gGa6Qi9oXiB+AREBAdFACAQhHflSHCIECEDRAQEBEQN1O3EzJTuTUygDBgQHTnmTnJM7Ah01Ojo1/eM7k5yTeU4HBAYDAjIByAQJBf7GH1L97wMIBlC7WgIuBAUFBP3SWrtQBggDBCQFBwgESB8hIR9IBAgHBf2+L1IfAToFCQQAAAgAzf6sCVsGzAAXAEMAcQCHALMA4QD8ARcAAAETIxMyLAE2NwM3NiYjISIGHwEDHgEMARMuASMiDgIjIi4CIyIOAiMiJic3HgEzMj4CMzIeAjMyPgIzMhYXAxMuAyMiDgEjIi4CIyIOASMiLgInAx4BMzI+ATMyHgIzMj4BMzIeAgcuAycTJyYzITIPARMOAwcDIxMnPgEzMh4CMzI+AjMyHgIzMjY3Fw4BIyIuAiMiDgIjIi4CIyIGAz4DMzIeATMyPgIzMh4BMzI2NwMOAyMiLgEjIg4CIyIuASMiDgIHAyImNTQ+AjcXDgMVFBYzMj4CNTMUDgElIi4CNTMUHgIzMjY1NC4BJzceAxUUBgSRjBKNhgEjAQ/VNs4NAz0y+cszPgQPzjbVARABJIsrLxkVJy08KTQ6IyEbGCstNyMsPhUTGjQcGTAxOCIwMyAkIBosLDYkLz4mLGgQGiM4LitANh0eHx81NDA7MSIcHxcfHVwVTTQyQDAZGhsgPz4yOCkcFh4fLRhw7d62O8gPAR4GNR0BDcg6t97scKc+nCAmPy4kNiwsGiAkIDMwIjgxMBkdNBkTFT4sIzctKxgbISM6NCk8LScVGS8fJC0fHhYcKTgyPj8gGxoaMEAxNUwVXBwgFx8cITE7MTQ1Hx8eHDdAKy44IxoQ6kNKVI+zXhBRm35KIBkkQjMeSD9xAUhAWzgaUBsuOBwRFm2xZg1bpH9JQf6sAs39MyE6SyoGGMYyQEAyxvnoKks6IQGHdFslMiVAVEAlMiU9Q2paQCUyJUBUQCUyJVho/rECQRJCRzE3NzxOPDU1Kz05Df18MUQ4OT5RPjc2MUU+UwMdLjofBe7OHBzO+hIfOi4dAwOM/apfaFglMiVAVEAlMiVAWmpDPSUyJUBUQCUyJVv+nA0+RTE2Nz5RPjk4RDEChA05PSs1NTxOPDc3MUdCEgG+U0lduJ9wFE4SYoqeTioiOWuTWpHYeJxShZpIWIdcLhkfTJlzEFAPVnuQSD5KAAAAAwLa/qwHTgbMAB4AOwBvAAABIgIRNDY3PgE1NC4BJy4CNTQSMzIEEhUUBgcDDgEnMjY3Ez4BNTQCJCMiBhUUFhceARUUBgcOARUUFhMiJi8BLgE1NDY3JyY2MzIfAR4CFRQGDwEOASMiNTQ/AT4BNTQmJw4DFRQWHwEWFRQFF9bpAgIDAw4dFxUgEevS0wE4rBwTKSDo17e8HCoSHJf+7Lyuvh4hGi0CAwICvRwQGREVHzRUTh4HEw4ZDCaU1nQbDxUHFQ0kAhAJFbSnJzsnExQQKAP+rAEoAQQjORojSytbe2xCP3x8QOMBB8b+nexR/o/+xPv2UM3cAUOM90zWAT+w171SrWJOy5csTSAYNRzh+AKNGCAnOrJvjORSZxcaHl8pib55RqE3TRkRJwUMSyyCL3zPPSNxfWweJXMtcAkIIAAAJgCq/qwJfgbMABkAHQAhACUAKQAtADEANQA5AD0AQQBFAEkATQBRAFUAWQBxAHUAeQB9AIEAhQCJAI0AkQCVAJkAnQChAKUAqQCtALEAtQC5AL0AwQAAAQgBAjU0PgIzMh4BFz4CMzIeAhUUAgAlNTMVEzUzFQE1IRUBNTMVATUhFQE1MxUBNSEVATUzFRM1MxUTNTMVEzUzFQE1IRUTNSEVEzUhFQE1MxUBNSEVAQgBEjU0LgEjIg4BBy4CIyIOARUUEgABNTMVEzUzFRM1MxUTNTMVEzUzFQE1IRURNSEVEzUhFQE1MxUBNSEVATUzFRM1MxUTNTMVEzUzFQE1MxUTNSEVEzUhFQE1MxUTNTMVAzUhFQUU/nX+DexVmc13eeKwLS6v4nl3zZlV7P4N/Hdy12n8lAFE/j+JAToBRAFSmP4iAUT8ln3CfcN92X37PgFEAgFEDAFEAVN+/jEBRP6YAW0B0N1/2ol/26k1NanagInaf90B0P4lfcJ9w33ZfcN9+1ABRAFEAgFEAVM9/n0BRPyGVfl9w33affzN+g0BRAIBRP3Ofdp98wEw/qwBLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AoFQUP7yUFADLFBQAQ5QUP3jUFD941BQAQ5QUAMsUFD+8lBQ/vFQUP7xUFAEO1BQ/vFQUP7yUFD94lBQAQ9QUP2gARsB4wGnwJPtjGrEhobEaoztk8D+Wf4dBYBQUP7xUFD+8VBQ/vJQUP7xUFAEO1BQ/vFQUP7xUFD941BQAQ9QUAMsUFD+8VBQ/vFQUP7yUFADLFBQ/vFQUP7xUFACHlBQ/vFQUAEPUFAAADAAqv6sCX4GzAADAAcACwAPABMAFwAbAB8AIwAnACsALwAzADcAOwA/AEMARwBLAE8AUwBXAFsAXwBjAGcAawBvAHMAdwB7AH8AgwCHAIsAjwCTAJcAmwCfAKMApwCrAK8AswC3ANEA6QAAATMVIxUzESMVMxEjFTMVIwEzESMVMxEjFTMVIwEzESMVMxEjFTMRIxUzFSMBMxEjFTMRIxUzESMVMxUjATMRIxUzESMVMxEjFTMVIwEzFSMVMxEjFTMRIxUzFSMBMxEjFTMRIxUzFSMBFSE1ARUhNQEVITUDFSE1ARUhNQEVITUBFSE1ARUhNQEVITUBFSE1ARUhNQEVITUBFSE1ARUhNQEVITUBFSE1ARUhNQEVITUBFSE1JRUjNQEIAQI1ND4CMzIeARc+AjMyHgIVFAIABQgBEjU0LgEjIg4BBy4CIyIOARUUEgACs1BQUFBQUFBQ/uNQUFBQUFACOVBQUFBQUFBQARxQUFBQUFBQUAEdUFBQUFBQUFABHFBQUFBQUFBQARxQUFBQUFD7If7zAQ3+8wEN/vMP/vMBDf7zA0X+8wEN/vMBDf7zAin+9AEM/vQBDP70Ain+8wEN/vMBDf7zAin+8wEN/vMBDf7zAij+8wEN/vMBgG38If51/g3sVZnNd3nisC0ur+J5d82ZVez+Df51AW0B0N1/2ol/26k1NanagInaf90B0AanjNH+89H+89HMBXf+89H+89F3BDP+89H+89H+89HkBY/+89H+89H+89HPB1j+89H+89H+89HkBuyM0f7z0f7z0cwFd/7z0f7z0XcD1FBQ/iNQUP4hUFACzlBQ/iFQUAHfUFD+IVBQ/iJQUALOUFD+IVBQ/iNQUASrUFD+IVBQ/iJQUASrUFD+I1BQ/iFQUALOUFD+IVBQ8FBQ+q8BLwH+AcLVftumXV2hZ2ehXV2m237V/j7+AtABGwHjAafAk+2MasSGhsRqjO2TwP5Z/h0ABgCq/qwJfgbMAAMABwALAA8AKQBBAAABJwEXAScBFxMnARcBJwEXAQgBAjU0PgIzMh4BFz4CMzIeAhUUAgAFCAESNTQuASMiDgEHLgIjIg4BFRQSAAF0NwNqN/wLNwI1N9c3BYI3+R83Bdg3/Kb+df4N7FWZzXd54rAtLq/ieXfNmVXs/g3+dQFtAdDdf9qJf9upNTWp2oCJ2n/dAdACbzsDJzv+7DsCCjv5IDsFFTv8LjsFajv4UwEvAf4BwtV+26ZdXaFnZ6FdXabbftX+Pv4C0AEbAeMBp8CT7YxqxIaGxGqM7ZPA/ln+HQACAmz+rAe8BswADwAhAAABIiQCNTQSNwkBFhIVFAIEJzI2NTQmJy4BJyYjIgYVFB4BBRTS/s+lhosBlwGXjIWl/tDIFhsYFKPDEAUoFRh30P6spgEtyqoBd90Chf173f6Jqsr+06b6GBUUGAELw6EsGxaCzXUAAAAYAQT+rAkkBswAFwAjAC8AOwBHAFMAXwBrAHcAgwCPAKUAqQCtALkAxQDRAN0A6QD1AQEBDQEZASUAAAEiLgI1NDY3AT4BMzIeAhUUBgcBDgEBIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYDIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYnIiY1NDYzMhYVFAY3IiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYDIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYXIiY1NDYzMhYVFAYBMjY3AT4BNTQuASMiBgcBDgEVFB4BCQgiJjU0NjMyFhUUBhciJjU0NjMyFhUUBhciJjU0NjMyFhUUBgMiJjU0NjMyFhUUBhciJjU0NjMyFhUUBjciJjU0NjMyFhUUBiciJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgMiJjU0NjMyFhUUBhciJjU0NjMyFhUUBgLYX6mCSkJBBJRBoFVfqYFKQUH7bECh/vEUHh4UFB4edxQeHhQUHh6FFB4eFBQeHgERFB4eFBQeHqUUHh4UFB4eDRQeHhQUHh53FB4eFBQeHoMUHh4UFB4efRQeHhQUHh59FB4eFBQeHv6aRIM1BJU1NW6xZUSDNftrNTZusgJ//noByQGG/jcBWP7r/qgCIBQeHhQUHh59FB4eFBQeHn0UHh4UFB4egxQeHhQUHh53FB4eFBQeHg0UHh4UFB4epRQeHhQUHh4BERQeHhQUHh6FFB4eFBQeHncUHh4UFB4e/qxMg6hdVKBBBJVBQUuDqV1UoEH7a0FBAXIeFBQeHhQUHooeFBQeHhQUHgE+HhQUHh4UFB7+3B4UFB4eFBQekh4UFB4eFBQerB4UFB4eFBQeih4UFB4eFBQeAT0eFBQeHhQUHpEeFBQeHhQUHpEeFBQeHhQUHv5/NjUElDWDRWmwazY1+2w1g0VosWsCHwF/AcP+gf6uAVIBDv6uAf0eFBQeHhQUHpEeFBQeHhQUHpEeFBQeHhQUHgE9HhQUHh4UFB6KHhQUHh4UFB6sHhQUHh4UFB6SHhQUHh4UFB7+3B4UFB4eFBQeAT4eFBQeHhQUHooeFBQeHhQUHgAADAEC/qwJJgbMACAAQwBgAG4AegC4ANQA4ADwAPwBCAEUAAAlIi4BJy4BJzceARceAjMyNjU0JicuASczHgIVFA4BJzI+ATU0JicuAScjHgEXHgEVFAYjIi4BJy4BJwceARceAgEWJicuAScuAicuAjU0NjcVJgYVFBYXHgIXBSIvAR4BMzI+ATcXDgEBIiY1NDYzMhYVFAYBBhUUFhceARUUBgQjIAM3EiEyPgE1NCYnLgE1NDY3Fw4BFRQWFx4BFRQOASMgAwcSITI+ATU0JicmNTQ2NwUnLgE1NDY1NCYjIgYHJz4BMzIeARUUDgEVFBYBIiY1NDYzMhYVFAYBIi4BNTQ+ATMyHgEVFA4BJzI2NTQmIyIGFRQWNyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWBJBsoYI+HxwMiRkpHzBXZkVUXwwJCAgBrgkWEF+nbFuMUBgMAQIBPQIIBQoLgG5WfGQxEhsMLQgWD0p/gf51BQMCAQEBFE1aKj5cM6uZZIptTipZTRYBHFNXKC5sMkJ7YBkYOq3+ACg5OSgpODgFCBBYXnRllP7+pv6M0KObAQJ5t2ZAWIF2Dg0xBwlqdmJNdtKK/umrMLwBOpbng1ppzAYG/klXCQ4PV10oUyk3OWg6Vnc9BgcN/hkoOTkoKTg4A8hDbkFBbkNEbUFBbURMampMS2trSyo6OiorOjorFR0dFRQeHiFpuXc9LAyAJUM8WoxPe20hak1GVCJElooyd7pqO1qfZzaoWAsSCBU8KU5uI4adX5xaIS8TKw8nHYylSAHHCwUEAgQBKX2FM014ckF+hgJVAllaT5VfM397L9UnZiAoPmlAaldrA+05KCk4OCkoOf6ROy1SkUpbvn6i/ZEBmTb+22KxdFZ1RmjPeitXLjUePSBttWBPjGWFy3MBKRD+tYDiknClU6G7FzQc4wE7glpKhWJ0kiQdQywrYKFhQGBYNF2EAn45KCk4OCkoOf4UQW5DQ25BQW5DQ25BPGtLTGpqTEtrUjoqKzo6Kyo6Mh4UFR0dFRQeAAAAABUBBv6sCSIGzAAPABcANQBCAFYAdACCAKoAzQDwAQABDQEVAR0BMQE1AUMBRwFLAVMBYwAAASImNRE0NjMhMhYVERQGIyUmJxE3FBIXJTI+ATcnDgEjIiY1IxQWMzI2Nw4CIyImPQEnFRQTMjY3Jw4BIyI1IxQWNzI+ATcnDgIjIiY1NDcnBhUUFgEyPQEHFRQGIyIuASceATMyNjUjFAYjIiYnBx4CATM1IyImNTQ3JwYVFBYBMzI3IRY7ATI2PQE0JxE2PQE0JisBIgchJisBIgYdARQXEQYdARQWJSYCEQcRPgEzMhYzMjc+ATUhFBYXHgEzMjYzMhYXEScQAgcBMxMWMzI3JwYjIic2JDc1BgQHJiQnFRYEFwYjIicHFjMyNwE1NjchFAYHDgEjIiYjIgYBMjY1IxQjIiYnBx4BATYSNRcRBgcBPgEzNSIGBwEyNjU0JwcWFRQGIyIuAScHHgIBMzUjEzMyNjU0JwcWFRQGKwEDMzUjNTM1IwE3LgEjFTIWJS4BIyIGIyImJy4BNSEWFwGTPVBQPQcCPVBQPfkuAxNFMioBAU17dUQ4VahWQ0g8a1xJlkA0V1czOj08pVixcCRqnU6RPGyxM01XQRc8T0cvTWY1IVCHA7CzPD06M1dXNEGVSVxrPEdEValVOEV0e/1zrKxOZTAlR4f98hsVCgaiChUbERUXFxURGxUK+V4KFRsQFhcXFgEVMS15NHxQN4I/aWINCAEKCA0xZjQ/gjdQfTR6LDH9Yy0MNUpnQS8uSzMfjAEjssn+uKCf/rjKswEjix8zSTAvQmZKNvy7EwMCgQYGID8qQH07TIgFBGJrPJFOnGskcbABSyoyRRMD+5omSjQ7UywCrmiHUCE1Zk0vR088F0FXTv5ojo6wrGiHRyUwZU6ssI6Ojo4BXBYrVDs1SgJ3NodNOn5AKj8gBgYCgQMT/qxQPQcHPU9PPfj5PVCuEgcCmj/P/o2wWWj10xt/fVFPbXBQSYmhRlhUGQMX7AH8S1UvT0Sxc3rRChsZORgaCTsrLyQyOE1HW/0z7BcDGVRYRqGJSVBwbU9RfX8b0/VoA5Y8OiwpJDA2R0Zc+80SEhQQGBkIBpIIGRgQFBISFBAYGQj5bggZGBAURNEBwAELfAJhODQQJTdJQkJJNxMSEDQ4/Z58/v3+OdECSQJoJlAlORM5PgU8BkxISEwGPAU+ORM5JVAmASzOBxIvNyAKDBAs/El6c7FETy9VS/2rsAFzzz/9ZgcSBX4UDTIRFv18W0dNODIkLys7CRoYORkbCgIkPP5pXEZHNjAkKSw6AaE8PDz+/iwWETINSy8sEAwKIDcvEgcAAAYBCf6sCR8GzAA1AEkAXgB/AKIAugAABSIuATU0NwE+AT8BPgE3ARcBDgEPAQ4BBwEGFRQeATMyNwE+AT8BPgE3ARcBDgEPAQ4BBwEGASIvASY1ND8BPgE/ARcHDgEPAQY3Ii4BNTQ/ATYzMhc3FwcWFRQPAQYBIicuAScuAScuAScuASc3FhceARceARceARcWFRQPAQYBJz4BPwE+ATcBFwEOAQ8BDgEHJzY/AT4BNwEXAQ4BDwEOAQEiLgM1NDYzMhYVFB4DMzIWFRQGAw4pXkMWASQcFAcHCjkwArky/UYnLggHBx4o/uQFLTwVBgcBBzJdOSY5WygCyDL9ODFtQSUzUSP+8hT+VxQRRxERGxQ4GhdaFhkFEhsRbxY1JgQxEBAHBX1hegILNAkD9gwEBhALFUQVER4SBw0ITAcIGjQZFSIVCRoMCwY2B/3uNS4uCgcIIR4Cty/9SRQbBQYHMikSWV0lIz4cAr4v/UMlTS4mOF4EniF+koZWMCAhMD5fZlYTITAwEUJcKBwYASsdRCwuP24vArAy/VEnWjguMVYp/twFCBU5KwUBDTIjCQYJLCgCvDH9RTE3CwYIHCX+6xb+vRFHERQUERsUAxkWWhYZPBIbEZMoNREIBDYTBH9geggFDQw1CQNWCg4ZDBYmFhIzEwgKBE0RCBkYGRU8FwoTBQULBQg5B/7rOCNXQC4zSR0CqTD9VxQ5Jy46XSckQRAGBh4cAq4v/VIkJwgGCSwC01SCj3sgITEwIhJSY1s8MCIhLwAACAE0/qwI9AbMABEARgBaAGoAfgCUAKMAswAAJSIkJgI1NBI2JDMgBAAREAIEASImNTQ2MzIWFx4BMzI+ATU0JicuASc3HgEXHgEVFA4BIyImJy4BIyIGFRQWMzIkNxcOAgMiLgI1ND4CMzIeAhUUDgInMj4BNTQuASMiDgEVFB4BFzIkNhI1NAIuASMiBAYCFRQSFgQDBiYnJjY3PgEzMhceAQcGJy4BIyIGAT4BEjU0AiYnFhIVFAIGAwYnLgEnJjc+ARceARcWBgRVrP7c2Xh02AEuugE2AdgBCfL+Jf7YWWufhFKRRkKFRnquXVkyOF0XQh1bLEFgctOQT49EQ4dKYXI8OIoBQeMsl/7d3Gy+kFJSkL5sbL2RUlKQvmx6yXl5ynl5ynl4yrKZAP+7Zmm9/pSb/vvBamnAAQWHDRkIBwgOQYpPTlcQDwQIJydHJUZ5AoCS742F44zU5HDRshcVDycVHBEIGgwXLRILAjeC5AEqqbcBOeqCqf6V/t3+8P5+zP51SD9QXB4TEhtNj2RmoEVNll4aYZE7Vqx3e7NiHRMSHDQoGR6vk0Ril1UCgVqf0XZ2z59aWp/QdXbRn1pQh+GIh+GGhuCIiOKG9nDOARuspgEUyW121P7kppb+9NB3BSgHBAoLGggmJhUEFwwcCQkJIfrNLM0BMcHFARy2KnL+oO+S/t/vBGEQGhMmEBUYCwMKEysXDRsACgDI/qwJYAbMABMAHgAqAEAATABYAHkAhwCTAJ8AAAUIASc+BDceAxcGCgIHEyc/AR4BFw8BFwYBJz4BGgE3FwYKAQYFNhoDNy4DJw4EBx4BGgEXJgoCJzcWGgIXJS8BPgE3HwE3HgEXASIuASc3HgEzMj4CNTQSNjM6ARcHJiIjIg4BFRQOAgE1NiwCNjcXBgwDAS8BPgE3HwE3HgEXNy8BNx4BFwcfAQ4BBPn+xv3e1SyNqauXM1bK4fOARYqBbysxEwyeIisPrwdDNvucLmTUwZIiTCSYyd0DTR5OWWBhL2DQzLdIKoCVknolZuTy/GsqZGRYHk8fV2NjKgH4FbIROippDLoXGwX9vj50VRJMIm0/R35gN0jFvA4iEAYQIg+injJDdpv6v5MBRgFGAS77VStc/vf+xv6w/rgF5hu/CzElbQ6FHSsMZYUDNCA4E1ICfAojIAF1AmPXIWyCh3otHD5CRCO4/nb+d/6Qnv68+hSmETIoaRGkKAJWQkbZAP8BBXIYd/7w/vXj9XIBBgEYAR0BE3wbOjs1FiRndXFdG2j2/u7+2u2SAY4BxwHU1gzW/jD+PP51kB4Nox8sDaoHVxk9Kf7ZNls2GD5RWZ/VfM4BDoUCUAJ16rGO87VkBRpQARwySVw3RDtiSjQb/cwDeyI1FowCchU4I9CRE7oCGBSADE4dLQAAAAALASL+rAkGBswASwBTAGwAdAB8AIkAkQCdAKUAsQC+AAABIiY/AScmLwEHBiMiLwEmNTQ2MzIfATcnATQSPgEkMzIEHgESFQEHFzc2MzIWFRQPAQYjIi8BHwEWHwEWBiMiLwIHFx4BFRQPAQYJAS4BIyIGBwE3PgE3JjU0NjMyFhUUBx4BFzcuASMiBgcnEy4BIyIGBwE+ATMyFhcDJTYSNjcGBA4BBzYzMgkBLgEjIgYHJT4BMzIWFxEOAwkBLgEjIgYHJT4BMzIWFy4DJwE2MzIXLgMnHgESBRwREAMTMBADBjcKBwoNUw0UDAoHShY9/MVpvf0BLKOjASz9vWn8xToUTAgLDhANVAsMBgg6BU8LBBYDEg0ZBRZKGxwFBQMRBf7j/vQVe009Yx0DWxMIDwgsKBsaJyUMGAw2G0QjI0QbG2ocb0RCbh0BcBcvGRkwFl/96wZYnGqR/wDJgxVGdoUC/wEyHW5CQ28d/fwoazxFcSlYmHNGAsoCphxkPU17Ff4ZKXFFPGsoBUZzmFgB8k2FdkYVg8n/kmqcWf6sFg5UWB8kYBMECT4JDwwSBjgHwAIbkQER7LFkZLHs/u+R/eW5BzkHFQsPCT4IAxRsUAwTcxAVGnZIEDcKDQgIDE8XAtYBnikmFxn9HgYCBAESLRomJhopEwEEA60NCgoNSAHaHh0cHf4lBgUFBgGnf6IBI+VDGoTF9own/aoB3B0cHR5MFxkaGwL/HI/O+v17Ab0ZFyYpWxsaGReH+s6PHP0HLyeM9sWEGkPl/t0AAAAABgDm/qwJSgbMABMAPwBMAGEAbgCDAAABIicDAi0BLgE1NDYXBQQbARYOASUiLgE1NBoBNxcGAhUUFjMyPgESNxcGAgwBIyImJxQXHgEzMiQAExcGAAwBAyc+ATU0JzceARUUBgEyNicDLgEnJSYGFRQXBR4CFxMWAyc+AjMyFwcmIyIGATYsATMyFhUUBgc+ATU0JiMiDAEHCJGAI/xR/ub8lUxPcV0ESgFqR/QMKVf5nHWsX1eldlqUs3N5Y/L97F1BZPz+8f78bG6KJQcRloG2AY8Biq1Bhf7R/sL+xitSExUNSAsKFAWzLzgJ9B6qm/u0OkFTA2p6qW0g/BJuQAdQczokGxAXFTx8+zuLATsBNYJ/iEk4FRpfWW3+9P7sev6sdgNGAQ0ZUAdWSVFfAhIG/rv7pDVeOk5mtHN+AR4BNqAGwP6fj15pgOEBJqYks/7J6oNMUD83fo/cAZcBFinX/qX3hAUKDh1bJy0RJRM1Hyta+tRBKwRciYECEgEyLU8HUAtUlGv8uj4BNR8sRikITAU7BKaDzHZeUDxTCx08IjtFYqpsAAcBBP6sCSgG0AAHAA8AFQAdADYATwBoAAABLgEnAR4BFwEuASc3HgEXBQEmJwEWAS4BJzceARcBBiYvAiY0PwEnJjYfATc2Fg8BFxYGIycBBiYvAiY0PwEnJjYfATc2Fg8BFxYGLwEFBiIvAiY0PwEnJjYfATc2Fg8BFxYGLwEBxUFpFwXXRWgU+xIZMTEZP08e/r4Fhxwz+nkgBI4ZMTEZP08eARAFEwMdbQoHXQcBDwlbZwoMBCdECAkJcv3KBRMDHW0KB1wGAQ8JW2cKDAQnRAgJCnEClQcVBCWDDAhwBwESCm5+DQ0FMFMKCQ6I/qwaaD0F1hZlRPtbMDEWTBlMQO0FhzAd+nkyBBowMRZMGUxA/lsJAgttHwMTBDlzCQkHRScEDQlnWgoNBANJCQIKbSADEgQ6cgkJB0UnBA0JZ1oKDgEFpAoNhCcEFgVHigwLCFcwBQ8Lfm0NEAEHAAAcAQT+rAkkBswAjACcALQAwQDJANAA1wDrAPkBAAEEAQsBDwEXASsBewF/AYMBkgGgAa4BtQG8AcMB0AHfAe4B9gAAJSImIyIGIyIuAScmJy4BNTQ3LgE1NDY1NCYnLgEjIgYHLgE1NDY3LgE3LgE1ND4BNzYmNTQ2MzI3NiY1NDM+ARc+ARc+ATMyFjMyNjMyFjMyNhcWBgceAQceARcWNhceARc2FhUUBgcWFRQGFRQWFRQGFRQWFRQGBy4BIyIGIyImIyIGBwYWBw4BFRQGASIuASc3HgIzMjY3Fw4BASImJy4BNTQ3FwYVFBYXHgEzMjY3Fw4BNy4BNTQ2NxcGFRQWFwEGJic3HgEzAScBFwElFxMnAxcbARcTIiYnNx4BMzI+ATU0JzcWFRQOASciJic1HgEzMjY3Fw4BCQE3BQclEwEnMxcJATcFAzcTASczFwEnPgE3Fw4BBy4BNTQ2Nz4BNxcOAQcOARUUFhcBJjU0PgE1NDY3PgE3PgE3NhY3PgEzMhYzMjY3NjUGIyImJwYjIiY1LgE1NDciJjU0NyIOAQceARcWNhceARceARcWBhceARUUBhUUFgceAQM3MwcnNzMHJy4BNTQ2NxcOARUUHgEXASc+ATU8ASc3HgEVFAYXJz4BNTQmJzceARUUBgE1LQE3BQcBJxMXEwcDAScTBSclFyUuASMiByc+ATMyFhclND4BMzIWFwcuASMiBhUBLgIjIgcnPgEzMh4BFyUuASc3HgEXBW8ZHxEWGRceHxQPERkWIRoSDAopEREdIA8eDgcPHA8MAgUSJiInBQQLFxIXBAUDPwUrGBBPNwYTFhEUCgkQExUSDw4iFg8DDh8LDw8DDAg7GhskCg4xDw4dFhAdDxoUBxIMEygRCRgMCxgJDwcXDQYx/lI9hW8gPhpabTQ5PhVGGWv92jxuJB0gDUcNGhkaTCkLHAwoEy0JNz0FBEcGLi4CHVqjMjI7eEz9whcBVTL+2gHMEDg5GEEOyzxTEB4RBwsbEUyGVBQ+HmanLw0aDQwTED1pNDIvivzY/tAmAc4w/qLiAaESWxIBs/58JwFAgDib/RsSWxL9rkMbeF8eVGBXJy0YFzSGSxVDcikSEiEUAsgGFhcDCA4dDg0DEBEeDhQRHgwSDgoaDwgNExYqCRQXJTAmOgkWHhZkrXQRBw8KESsTFwQQDygSDgYNDSISERUgOhQSWxLIElsS1x5CIiFBHh4cKBEDuDU5NQJEBAM8Ey5BUToqCEpZYf4sAUn+sR0BmxL8P0SFPaw5jwG1N8X+fB4B1yT+kzBWMjMzEyI9HD5lN/6FQHBHU5k3LjR2SkxnA6kDRWk7KCY2G0ElUopYBP72CENNJVlaBqgYExwiCQsCARMVFxkOHw0NIAsVDRARMQcQBRMNFBwDCCAMBSgiJx0MDAkWDxEeBQQPCS0aFggvIg8OFhQbHwwSDDwgCjoXECQNCQgICCoCBRkmDw4HEhQQERAJEBIVDxMIIxMUHgcRFCYFBwoQPhoOHBQqJ/4FOGA6JzNQLyk0EkpIAfBGQDVvOTYtDiYxLV4sLzMHCEIKCy80gEMRJxgFGyI6bC/+LQJWTStGPgE9OAGOJP6rZzz9/BQB2w7+jQFOG/3pAwJJAwM9YDYeIC4xO0uBT78CA0YBATc7LkNKA3cBbS5rM1H++P6wXFz+GgEQLt4BeSL+IgK6XFwBjRhfeB1BHF92G1ozJksiTWMPRQ1SQRw4GiE/A/yNBhAWEhIUDh8KEQEWEyMNDgYPFCYKDQMkMQcbGggwIQc5KhQWJxoeFlOaaQwVAwUHDQ4dDg4FFA8qERARHh4ZHRMoIgkIAYpbW+BbW4g1131WpEUbQplNRYpyIvzNMS9rRwsWCgQNHBNOee03KplMNVgKTBZ8U1m6AVlBPKw42DkCPQYBzQb+VBIBX/1gHgGRyDfvMLMjHxNICwwmLBk7XTU4NTcwLEgv/b1PkFwdMxkYa65jElZsMTowjGQAAAAADQGQ/qwImAbMACgAMAA4AEoAXwB/AJcAnwDXAN8A6wD5AQUAAAEiLgICNTQ2JDcVDgIVFB4BBDMyJD4BNTQuASc1FgQWFRQCDgIjAS4BNRcUFh8BLgEnFx4BFwEiLgEnFx4CMzI+AT8BDgIHMzI+ARI3Fw4BBCMiJCYnNxYSHgETIiQmNTQ2NxcOARUUHgIzMj4CNTQmJzceARUUBgQlJyY1ND4BMzIeARUUDwE2NTQmIyIGFRQBJz4BPwEOASUnLgE1NDY3PgE1NCYnLgE1ND4BMzIeARUUBgcOARUUFhceARUUBg8BPgE1NCcuAScOAQcGFRQWBSc+ATU3FAYBIiY1NDYzMhYVFAYXMjY3LgInDgIHHgE3IiY1NDYzMhYVFAYE03jv1qdfnwEevKT8j4fpASmhoQEp6YeP/KS9AR2fX6bX73j9WiknRikr0xkhDkYOHRYBCXG5dA1KDmSWWVmWZA5KDHW4s4J499iTExE8+/6yurn+sfo9ERSS2Pe5yf7Hs5SLD2eBZa7gfHzgrmWAaA+LlLP+x/5/Sg5He05Oe0cOShJ0VlZ0AhI/Fx0NRg4h/RFHCAccKyk1BgcHBlSbamqbVAcGBgc2KCodBwhHCAgVh9AyMtCHFQgD+0orKUYn/PgTGxsTExsbZ3WJCjduUxAPU244ConvExsbExMbG/6sbsH9AR+UYK2CIEgcbY9PS4tuQEBui0tPj20cSCCCrWCU/uH9wW4CrVSxVQhSpVBoNHFSBkpjL/6QZrFxEVmKTk6KWRFxsWavgtwBF5QGUYhSUohRBpT+6dyCAqtHfVJJcx9CGE00KEg5ISE5SCg0TRhCH3NJUn1HLAQzNGObWVmbYzQzBDU2dpqadjb+/hUvY0oGUnHRAzRcJkpuOTddNB08JSU7F2KiYGCiYhc7JSU8HTRdNzluSiZcNAM4WidPORmBVFSBGTlPJ1rgC1ClUghVsQNIIRgYISEYGCGUl3wDM1Y2NlYzA3yXlCEYGCEhGBghABcAgv6sCaYGzAAnAC8AZQCSAJ4AuQDVAPUBBgE0AWABbgGWAZ4BqgGyAbwB6gIEAiACQAJ2AokAAAUiJicuAicuAicuAjU0PgEzMh4CFRQGBw4BFRQWFx4CFRQGAS4BJzceARcvAjYzMhYVFAYVFBc+ATc2MzIWFRQGBw4BBxYzMjY3NjIzMhYVFAYjIiYnLgEnHgEXHgEVFAEyNjU0LgEnLgE1NDY3PgE1NCYnDgMjKgEjHAEVFB4BFx4CFx4CFx4BASUeATMyPgE3Aw4BAyImNTQ3PgE3PgE3PgEzMhYVFAYHBgcOAQcGFyImJy4BJy4BJyY1NDYzMhUUFhceARceARUUBjciJy4BIyIHBiMiJjU0NjMyFx4BMzI2Nz4BMzIWFRQGATI3PgE3NjU0JiMiDgEVFBYFIiY1NDY3PgE3BgcOASMiNTQ2MzIWFx4BFy4BJy4BNTQ3HwEiJicuAScOARUUATI3PgI3PgI3PgE1PAE1KgEjIi4CJw4BFRQWFx4BFRQGBw4DFRQWAy4BNTQ2NxcOARUUFhcTIiY1ND4CNz4BNTQmJy4BNTQ+AjMyHgEVFAYHDgIHDgIHDgEBNCYnNx4BFQEiJicDHgIzMjY3AS4BJzceARcBJz4CNxcOAgEiNTQmJw4BBw4BIz8BFhUUBgcOAQc+ATc+ATMyFhUUIyImJyYnHgEXHgEVFAYFIicuAScmJy4BNTQ2MzIWFx4BFxYXFhUUBgciJjU0Njc+ATc+ATU0MzIWFRQHDgEHDgEHDgEnIiY1NDYzMhYXHgEzMjY3NjMyFhUUBiMiJyYjIgYHBgUmNTQ2Nz4BNw4BBw4BIyImNTQ2MzoBFx4BMzI3LgEnLgE1NDYzMhceARc2NTQmNTQ2MzIXBwEyNz4BMzIWMzI2NTQjIgYVFBYEmUBkHSQmJiQWK0Y/pMBScLxzYq+IThILCg4wQFVfJ2/83nmoMDYsm3aGVSkMFhcUCAIHCwYXJREZHyAMFQkFDAkQCwsSCBIeFhEMGBQNGw0FEAoOEAMZOEMkWE9HORAKCxBmUCV9mZ1FBAoFSq6WRFM3GScoIyEVPf5d/rcNGw5z8Mk3Ky6R2REbNBUZCgoMBAUWGRIaGhomEgoLBQ9XFhcDAQcGBhQTKhoRLwcHBxQTFhQaOhclFiMPGyoeExYYFxIWJRYiDRMeFxAcDBEWFv4wEgkPLyMPEgwVQzQVAjoRGhMVEQ4GEiANIA0pFxQJGRATFBAJFw0cGCNuOh8fBgMGBgMEAnhXJR4TFyIZPnFkinwDBwNFoJp9JE9gFBoXFDAyPEYhCkNdDAodGjgZGgoKWltvDSVJPC4qERccFUyGsmZ1tWiSmF9mMxUeGRYdGGf+IjcyMjY9AsFmgSBJOMjwcw4bDfxEBzEoNik2BwMfIjBZTR0qEVFm/h8xBAMGBgMGHx86biMYHA0XCRAUExAZCRQXKQ0fDiASBg4RFRMaASglDwULChImGRsaEhoWBAULChImNBuNEBsUFhMUBwcHLxEaKhMUBgYGAgMXYRIWFxAOHQ0UHxUNIxUhGhIXGBYTHiobDyMWJQGdERAOCw8FDRoOExkMEBceEggSCwsQCQwFCRUMIB8ZESYWBgsHAggUFxYMKf5OCQcXMhwKHgcMEkFAXQ9cST1Om55QMj01JWKvwnx4xXZdnsZqM3M3MVojPYVWcZJiLFR1AuZRo1wcVZZP9p2eEyMWFx0UCwYIFxA/GhEQIAwEDAUBAgECFxUTGgoQCxIGDR0OExwLF/w1QjcgU4VpX6FIKWIzNWoucs1DM1xJKgEFAm6rmlcnQUw6WKGVRywsAsniAgJMiFv+azdBAVYYEhwhDhYNDh0ZGS8ZEQ8eEBgXDSAZSAsmKxofEA8ZECIcERlRGSAODxoREx4NEhhoFAwNDQkXEhEZFAwMBQcFBBcREhkBHhMfNxQJEwwQPEkTDRCgGBANIBMQDwkBFAgKKRIaBgYHAwILEAcRHRAjBXW3IigUGAsMFQ9T+g5kUZieWkFdXUJc15EDBwMrSV8zP8h1LGlcUmElQJxWZ31FKhU3QwQsNFUoSo9AFj2BRSVNMft2dVUdNlGDaU+FNh9UT192Mm7Fl1duxoSm/GU/UU05Up+eUkZSBfpcs1EgVsZk/UVDNwGTW4hMAgICDlWhTBxPsFv8pzIeQEEeKxNDTAJ0Uw8VDAsYFCgit3UFIxAdEQcQCwIDBwYGGhIpCggUAQkPEBMgDRAY20gZIA0XGBAeDxEZLxkZHQ4YGSEcEhgLGBINHhMRGg8OIBlRGREcIhAZDxAfGismaBkSERcFBAYGCw0UGRESFwkNDQwUvg0XCxwTDh0NBhILEAoaExUXAgECAQUMBAwgEBEaPxAXCAYLFB0XFiMTngHVAwsMBBENIyEaChIAAAAACgEe/qwJCgbMABQAIAAsADgARABQAFwAaAB2AIIAAAEiLgE1NDY3ATYzMh4BFRQGBwEOASciJjU0NjMyFhUUBgcyNjU0JiMiBhUUFgEiJjU0NjMyFhUUBjciJjU0NjMyFhUUBgkBLgEnAToBMzIeAQEiJjU0NjMyFhUUBjciJjU0NjMyFhUUBgE3PgE1NC4BIyIPAR4BNyImNTQ2MzIWFRQGAhFGbj8kIAYmMkpFd0oTEvnOIFZAJzsuIic7LRQ4SVpEN0pbAXIfLS0fHy0tqh0rKx0dKyv++gQ0FXVQ+78DBgM5ZD4BshwoKBwcKCiuGyYmGxsmJgIX3wsHNVQvJh3MSnU4GSUlGRokJP6sP2xFL1ghBlUzRnBBHzMT+X0iH4M6KCIuOigiLjNJOEZaSThGWgGzLR8fLS0fHy3PKx0dKysdHSv+UARsVG8O+54+ZAJFKBwcKCgcHCjPJhsbJiYbGyYBn+oLGA0rTTAd0hBxfyUZGiQkGhklAAADAHD/dAm4BTwALABAAFQAAAUiJjU0PgE3Fw4BFRQWMzI+ASQ3NiQ+ATU0JiMiBgcnNiQzMhYVFAIABQwCJSIuAjU0PgIzMh4CFRQOAicyPgI1NC4CIyIOAhUUHgIBHUlkh/ipJZGOOis3uO4BEZCtARvLbjkrOrNqMrgBUHBLYPT+NP67/vb+Pf6lA3eO+bxqa7z5jY75vGpqvPmOfdymXl6m3H1926deXqbcjDo5Q7rWbF5Ynj4vIzFdhFJiw7COLiYqMzJOYmo4PVv+8P6wvZrUbWdrvPmOjvm8a2u9+I6O+bxrTl+n3H593KhfX6jcfX7cp18AAAwCdf6sB7MG0gADAAcAHQAxADUAQQBFAEkATQBgAHEAfwAAATMRBwURMxEBFAYHBQYmJyUmPQE0NjclNhYXBRYVBzU0JyUuAQcFBh0BFBcFHgE3JTYFESMRARcFBiYnJTcFHgE3BREjEQURIxElESMRAxE0NjclNhYVERQGBwUOASMiJjcHLgE1ETQ2NxcHBhURFBYzNxQWNyU2NRE0JgcFBhUE52Rk/lpkBA43LP2hN1kw/sJKOCsCfyk5JQFjPlAU/p8aHx79giAeAT4lPysCXyD9XWQDIA79ZTdZL/6eIwFiJT8rAntk/ulk/d5kgyUiArAtPyUk/dgjQiM4Mq8BFA8KChFLFREMbRMMAgYUEwz9+xUEzP7AGUYBSv7B/ucrQQhrCgwYniVTVSxBB3AICBOwH0ZiYhQKrw0EBXAFIFUhD54SCAdrBZv9SALeATBPdQoNF7NJtBMHB2X9RQKbRf5WAaqa/U8CsQKdAVYgMAVtCDQs/pclLgZfBgI0HCIGHAwBZw4ZBx8KAxX+ugsPJQwQAlkEFAFJDBACUAMVAAAAAAcBYv6sCMYGzAATACcAKwA7AEsATwBTAAABIi8BJjU0NwE+AT8BAQcOAQcBBicyNwE+AT8BJwcOAQcBBhUUHwEWCQE3AQMBJjQ3Ez4BFwEeAQcDDgEnFjI/ATY0JwEmIg8BDgEXCQE3AQcBNwEChkNDSFYgArUbLxmeAQS9DBAH/ZEkQxoSAmgLHg6OlnQUMxn9Sw42Si4FHP2XMQJpuv1HKin7KVwqArgqASn7KVwMHjccyB0e/XweNh3IHAIeA1X9djsCh+j9lzACaf6sNDhCSSsqA4AjKRFs/v+cChIK/GM1URsDlREcC3WVTg0wIPyCExEhKTgjBD4CWBz9qP72AqEpXSoBAyoBKf1fKVwq/vwqAXwdHtAeNxwCbh0ezx42Hf5oAno2/YnAAlgc/agAAAAABAEA/qwJKAbMADkAQwBhAHEAAAEiJicuAicuAScuAi8BNxceAhceAxceATMyNjU0JyYCLgEnLgInNx4BFx4CEhceARUUBgE3JgInDgEHFBIXLgECNT4DNz4BNzYzMhYXExYVFA4CIyIOAQcDMj4CNTQmIyIOAhUUFghYgKQWIV12RiBDI0NUQyorRi0rQE4/Q4Z8aCURdmU9QwQ5nqeTLzdtYSZHTpI8IpK0rj4DBXL6PlWfqx0iSSbO9rnscGWSgZJjOGQ0Ni8iOQ2dEkZtfDYSLkMyDh1laUgUDx5laEcT/qxfaqPIiEIfRChPdHhUViZXU3RuS09/k9mqTzoyKwoP0QEy144tNZ+tSiia5TwikOf+utgKHAlNYAP1kVMBBs0MGQvp/srPT9wBM9MWKzRIMx0uExMgHP69JhouW0ssK2RWAqchMTUTCwsgMTUUCwsAABMBLP6sCPwGzAArADUAQABIAFMAXgBqAHYAgQCQAJwAqgC0AL8AygDUAN8A+wEJAAABIiQmAjU0NiQzMgQXByYkIyIEDgEVFB4DMzIkADceARUUBgcOAQcOAgEiNTQ2MzIVFAYXIiY1NDYzMhYVFAEiNTQzMhUUASImNTQzMhYVFAYBIjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgEiJjU0NjMyFRQGJTI+ATcuASQjIgYVFB4BAyImNTQ2MzIWFRQGEyIkJjU0JDMyBBcVBgQDIiY1NDYzMhUUASI1NDYzMhYVFAYBIjU0NjMyFhUUBhciJjU0MzIWFRQBIiY1NDYzMhUUBjcuATU0NjceARUUBgc+AjU0JicLAQ4BFRQeARciJjU0NjcTMxMWFRQGBKe0/r/4jtgBdeuVATm7E7L+2pud/vDMc2qv09hbvwF+AU51EQ81LT5QI3vn//0KMxsTMxuTGBsbFxga/tE0NS8BuBgeNhofHf5FIh8YERUjAnwZHh4ZGR0f/fkQFh4WEhYgAuMRFSoaKSr+tI77xj5v+P8AfbzceN5pExYcFhQXI/Cx/v+MAQfhzAGh87z+gPoXGxsWMgIGISUWDhIm/oY5GBQbHhWsGCElGR4BMwsSJRMcJB8ICSIoKh4JCDBGJhAPtrQODyNEaYadExLtJO8mn/6sedUBGqCY5oI+RFJHPz5xmVpek2xHIokBDsYiNx0rZSs6XS+iwVUCPCYQFyYQF20YFhIUFhQqASkkJiQm/poWEiwWEhUXAhchExgTEBEY/d4WERQYGBQQFwKHEg4RFRMRDhT9rxQQEx0hFR6bQWIwMUMkW008WC8B4hIOEBQTEBMO/dBCelRzhGNqGpKOAjgSEBAUIyP92h4SHRINEB4CESMQERIQERE0FRAgFBEg/p0RChEgHBEf3hw3Gj11TE9oRhk4HgtBZD4qXjACSf25LV4sQWI/Y66UNW83AuT9HHhjlK4AEADc/qwJTAbMAEMASQBNAGMAZwBrAH4AjgC4ALwAwADPANsA5wDzAP8AAAEnAT4BNz4BNzY1HgEzMjY1NCYnLgEjIgYVDgEHDgEHAScBPgE3PgE3PgEzPgE3PgEzMhcWFRQHDgEjDgEHDgEHDgEHASc/ARcHFyc3FwEiJjU0Njc+ATMyHwEOAhUUFhcHBgEnNxcBJzcXAyIuATU0PgEzMhYXNx4BFRQOAScyPgE1NC4BIyIOARUUHgEXIi4CNTQ+AjMyFhcHLgEjIg4CFRQeATMyPgE1NCYnNx4BFRQOAgEnNxcvATcXLwE3Fw4BFRQWFx4BFRQGAScmNTQ/ATYzMh8BEyIvATcXFhUUDwEGAycmNTQ/ATYzMh8BEyIvATcXFhUUDwEGBJAgAx8OLSMZGAQaDhYXKTghHBQzFRwgOz4IByEP/Lg1A1AKEQQHDQcROSUCEQ0RKh5JRlUiFDozBBMOCi4bHCIM+hd+JLKJuv5DCEH+GSAeCwsXVjEQFRAYRTUFCAwPAu5hO2D+y6JLolh+0X180X9KjSwMWGV80X9ssWlpsWxrsWpqsbV2zp1YVpnMdk2dNTk5cD5qs4NJfOCWht6FOTs5RkNYnM4BSbEdsYEDsQMDd7cVEQoHBQUGJQHGPhAMGQoMEw8r6RMPKzo+EAwZCqE+EAwZCgwTDyv6Ew8rOj4QDBkKAa1KAxgOEQcFCAQXQwEBHBMRNBkTFz47BB4bFyYO/QsyAvgIGxAXGgcREiMxEBMRPkxCLSETEBcoEAoSBQUPC/oiftKwjrfmArkCAP9NOSZUKliEDQoSZZBTJUUkAwT+a7EfsAGap0qn/mN90n99y3krJQNDx2qA0nxGarJsa65oaK9qbLJq7lmez3Z71J9ZKCMoGhhXk7Zel+R+iueKUJdIMleyYnbPnlkBKVw9Xv1DBUJ9pawVECYODRoODRwQG0kEDS8MEA8MGQoXQP69F0AyLwwQDwwZCgGRLwwQDwwZChdA/roXQDIvDBAPDBkKAAAHALT+rAl0BswAKgAyAEYATABhAI0AtQAABSImNTQ2Nz4BNTQmJy4BNTQaASQzIAATHgEXHgEVFA4BBw4BBwYEBw4CBS4BJzceAR8BBiMiLwEmNTQ3JTYzMh8BFhUUBycmJzcWFwEuATc+Azc2FhcWBw4DBw4BAzI+ATc2JDc+ATc+AjU0JicuAicmACQjIgQGAhUUFhceARUUBgcOARUUJQ4CIyImJzceATMyNjU0JiclHgEVFA4BIyImJzceATMyPgE1NCYnAWVPXhwRFCERDiIliPkBUskBEwG3wS2SRT5XbrhwV7takP7xhXn0+gHGJy0PTA0nHz8NEhMPUgwQAQMOEhMPUQ0R2jYkSiIu/UkRFgILTG+DQxggBQskOXNkRgsCF4Z55+d2hgEaml/BV4WSOiQ/K2xrKnv+/f7hqLn+y+J8JR4OFTYUEAgGQAR1vXBGby84HVs0XXIoKQEXMS924J9Yz1c7R7BMf8l1BQU9PDwgJw8RLzAUPShmv2vOAV4BBZH+tP6lUVoaFzw8OkQpEg0jGSiJTEV8ThQ4VioaJUkv0gwQWw4SFA/mDBBdEBEUDklHWx5UOgK2ARkSWraieh0LDRMmDhZskqRQEBX87Ul2RE2PKxokDRUiIREUHBUPMlxK2wEbiYXv/r2/Y7VbKksdQ08SDwwHKPF0r2AlIEkeIH5eRKJYRWjHWpPlg0ZCOTY7csF2FzAYAAAAEgEO/0IJHAY4ADsAlwCbALgAvADIAMwA2ADkAPAA/AEIARQBIAEsATgBRAFQAAAFIicBJjU0PwE2MzIXJz4BPwE+AT8BHgEzMjY/AR4BMzI2Nwc+AR8BHgEHAw4BLwEmJxcOAQc3FAYPAQYnHgE/AScHJzcnByc3JwcnNycHJzcnByc3JwcnNycHJzcnByc3JwcnNycHJzcnBwYUFxY3BhYXFjcGFhceATcGFhceATcGFx4BNwYWFx4BNwYWFx4BNwYXHgE3BiUBNwEHJz4BNwcTFwYjIiYnDgEjIiYnDgEHDgEHNwEeATcBNwElMjY1NCYjIgYVFBYHAzcbATI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWAzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWAzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWAzI2NTQmIyIGFRQWFzI2NTQmIyIGFRQWNzI2NTQmIyIGFRQWBGw0N/05LC7SKjEdHiVlXwwsWHkYIhcsFDx3KSMdWCUybTYvAiYu+lBgAhkCakr8QA05drdXEBMYwjZpEzsTXR9fI14XYCRgF2AjXkBdJFwVXyNcQF0jXBhbI1kVWyRaQFklWRZZJFgbahEQGicGDA0bJQMJDQ0kDQMHDw8fEwYVDCQWAQcNCiIWAgcKDiMRCR4OIBYPAcv9Rz4CuWosX8hvJRweYWAuTiAijUsQJBEhnFMJY2gJAt0IDYP+E0YB7QEdERYWERAVFfbwS/DEEBYWEBAWFnEQFxcQEBcXTBEWFhEQFhZ0ERYWERAWFnEQFxcQEBYWrw8XFw8QFxd0DxcXDxAXF3QPFxcPEBcXTxAXFxAQFxd0EBcXEBAXFxUQFhYQEBYWvjUCuiowMjDZKxEGK3FaGwJWTg4EBjcxBg0MERo0IygCCwRgS/xiS2YDCQI7FBBeVjguRRrOOZ0TARVjHl8iXxdeJF0WXSNdP18kXxVdI10+XCNbGF0jXBVbI1s+WyRbFFkjWRtoECsPGQsTIwwXCRseCwsIBBIiDQ0EBC4VDAUBEyAOCggCGhwLDQcDIxsNDAYf8AQPKvvwOAVaYw0mBFgSKQ4NMz0FBVZYAlV6OCP9PAgSSAR5H/uH0hUQERYWERAVwwS7EPtFAW4XEBAWFhAQF10XEBAXFxAQFwEYFxAQFxcQEBdcFhARFhYREBZdFhAQFxcQEBYBdBcPEBcXEBAWXBcPEBcXEBAWXBYQEBYWEBAWARYXEA8XFw8QF1wXEBEWFhEQF7sWEBEWFhEQFgAACgFA/qwI6AbMABcAPQBBAEcATQBRAFUAawCPAKQAACUiJyY1NDY3ARcBDgEVFBcWMzI3ARcBBgEiJicuATU0Njc+ATcXDgEHDgEVFBYXHgEzMjY3PgE3Fw4BBw4BCQEnAScHAScBNwEHAScBNwEnNRcBFwcnFyIkJy4CNTQ3PgEzMgQXHgIVFAYnMjY1NCYnNxYVFAYjIiQnJgI1NDYzFS4BIyIHBhUUHgEXFgQ3MjU0LgEnLgIjIgYVFB4BFx4CBS2jqssaGQEJSf73FReukohnfAIwPf3Ajv2gSKtTYGlpV0enWDNeskVHTVpRSJI6TjkZF1FZR1VOFyBjArD9szoCS4et/qVBAWC6Ad5L/ak2Ak1C/irXzAL1IFAiI3v+zZJvpVoyIGVAfgE2kG+iWINyUVUPETMPV0he/v2Aka5VTBkzFlwsH1SYZYYBG5ZVS4RYTpyKNSgySYRXT6CP5Y+sxDJsPAJ5IP2HM10qoJN8UAFqN/6KXf3HTkZQtE9cXi4lbGk/bXMjJT4+PJNFPUVhVUvCbSdnuE1tgAWU/T0zAsCgZf1XLAKzbf5tzP4iOgHUtwHcBVAE/X/BDMrni3pdz8pVVT4nKo96Xc7IVWp5UExHIEgoHx8nQEt+a3sBAV1ESzwGCDQlO0i1vFVwgrtHMomZSUJkOCMnMYqaSkJiNQAAGgFK/qwI3gbMABMAFwAbAB8AIwAnACsAQQBFAEkAVQBZAF0AYQBtAIEAlQCpAK0AxADIAMwA2ADbAN4A4gAAASIkAAIRNBIAJDMyBAASFRACAAQlJzUXLwE1FwEnNR8BJzUfATUzFTc1NxUlMiwBEjUjFAIGBCMiJCYCNSMUEgwBAzczFwE1NxUBMzQnETY1IxQXEQYTJzMHEzczFwE1NxUBITQnETY1IxQXEQYTMiQ2EjU0AiYkIyIEBgIVFBIWBDciJCYCNTQSNiQzMgQWEhUUAgYEJzIkNhI1NAImJCMiBAYCFRQSFgQTJyEHATU3NDcRLgE1IzUJAQcjFAYHERYVFxUlNzMXATU3FQEzNCcRNjUjFBcRBgElDQEhARMnMwcFFLv+pf7toZUBCQFhy8sBYQEJlaH+7f6l/OsvL50mJgFSLy/PLy++ML4v/vuyAUoBBJgCkP7+tLy6/rT/kQKYAQQBSvEL4QkCUy/8iPYVFfcWFQgI+wgyC+cKAd0v/PgA/xUU/RMUgLkBQvOKivP+vrm5/r30iYr0AUK5pv7e3Hx83AEipqUBItx8fNz+3qWbAQ/NdHTO/vKbnP7xzXR0zgEPIwgBAAn9PGcTDAhbAkECQQ5NCAwTZ/5hCuELAVQm/ZH2FRb3FRX+RQENAQ38+QP0/gaxCPsI/qyMARIBkwEG2wFuAQ2Tk/7z/pLb/vr+bf7ujPcmmicOP6Yy/i8YmRnkC5sLqo+PD5sLmwSA+QFq67n+vfSKifQBQ7rq/pb6gAMmKyv9F5gZmQKXNhEBKA46OBD+2BEBGCws/uwrK/2OmSeaAhI0EwEoDzk5D/7YE/14ivUBQri3AUL0ior0/r+4uP6+9YpbfNsBIqWlASHbfHzc/uClpf7e23w0dM4BDpqbAQ7MdHTM/vKbm/7yzXQDEyws/kY4MzIjAQwSJh9QAT3+w1AfJhL+9CMyMzimKyv+NbMypgFSNhEBKBA4Ow3+2BEB+o+PPQEX/kQsLAAABgDn/qwJQQbMADoASgBbAHUAjQCZAAAFNQc3BzcHNwc3BzcHNwc3JzcnNyc3JwEWCAEXFSM1JAADBRcHFwcXBxcHNwc3BzcHNwc3BzcHNxU3FwUiJjU0PwE2MzIWFRQPAQYnMj8BNjU0JiMiDwEOARUUFhMiLwEuAT0BNDY/AT4BMzIWFwUWFRQHAQ4BJzI2NwE2NTQnJSYjIg8BDgEdARQWHwEWATI2NTQmIyIGFRQWBSCNEZgcnCOUMqI8nUaeT5VSmVeOY6oCF3wBNgFszFD+2/4lt/67a1uJUZJMkEmVRJM4mS+GIZUbjg5+ZzABSDRDFH8lRTFGFH8mRxoOhQgZERkPhAQFGCJEQ6g1Lh0fdyBcNCBAHQFfRBj+1R5fMR06EwErDCD+oCwpPCt3GxUdJqYs+4wWHx8XFiAfKac/njadKpkemRaSBowDiwyEGH0lfjgBFNb+gv7Ae04huQHwASqoHXQjchd6C38DiQeHFI8ckSmTM5I5kUFCo0ovIyHKOkcyIyHJO0kW1A0MFhYX0wcMBhIa/qQxfCdiSq86XjG5MjIUFOguUSwm/jMuOVAlHgHNERUmFegeQrkpRDCvNz8dfCEGeR8YFx4eFxcgAAAABgD2/qwJMgbMAEsAVgBfAIQAkwCiAAABIicBLgEnLgEnLgEjIiYnLgE1FxYXHgEzMhceAhcBFjMyPwE2NTQnAS4CJy4BNTQmJyYvATIWFx4BFxYXHgEXHgEXARYVFA8BBgkBJzcXARYGBw4BJzY3NjcBJwcXASImNTQ2NxcOARUUMzI2Nz4CNTQjIgYHJz4BMzIWFRQGBw4BASInASY2NzYyFwEeAQcGNyInASY2NzYyFwEeAQcGB+1kVv4oKCIIBwkFBQ8RL0AbGB9SAxoQIx8+HRsQGCYB2D5ER1AWSDv+KCVMRBsQDQYUGxkKITwZKAkBAQcEFBkjUyYB2FNgFmj8F/0il5/NAscFIB4dSwMaGRgF/VqNR3ECiyEoJSMzFhwPGWUuITYhEhBDJSYyXSEhKEtDQIEDXw8L/kkLAQoKHgsBtwsBCw5sDwv+SQsBCgoeCwG3CwELDv6sVgHYKVMfGRQFBQMWGxg7JQoaGhALHBlFTCf+KD5QFkhNQT0B2SUXERoRKx8aJRMbA1IfFyVPGRkKBQkFByYm/idVYW1gFmgD/wKm2qGN/S0bRSAeJFgIGhkTArFkRZ38iykhH1YuKh82DhI7LiFKQBAOJR41KCooISx/Q0BN/VgLAbQLHQwLC/5LCiAJC3gLAbQLHQwLC/5LCiAJCwAAAAwCsv6sB3YGzAADAAcACwAPABMAFwAbAB8AIwAnACsALwAAAREhESczESMBNSEVJSE1IQERIREnMxEjEzUhFSUhNSEDIRUhNxUhNQEhFSE3FSE1BlQBItKCgvzgAyD9MAKA/YD+3gEi0oKCggMg/TACgP2AUAMg/OBQAoD9MAMg/OBQAoD+rAgg9+BQB4D5APHxUFH+kAgf9+FQB3/63PHxUFEEA/GhUVH+dPGhUVEABQI6/qwH7gbMADgAcwB/AIsAowAAASIuAjU0PgE3PgE1NCYnLgE1ND4BMzIWFRQGBw4CFRQWMzI2PQE0NjMyFhUUDgEVFB4BFRQCBCcyJBI1NC4BNTQ+AjU0JiMiBh0BFAYjIi4BNTQ+ATc+ATU0JiMiBhUUFhceARUUDgEHDgIVFB4CEyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWATYXHgEHDgEjIi4BJyY2OwEyFx4CMzIE+ZL/wW1bp3E+JhAOHylcoWWowk5cbJNKiWiLc4lrOU4pKhcXsf6828UBH5wXFhkgGR8YSlqgrlyRVFOeblNBlIZ4miUkDhAVNjJvm1Fgq+KOOFRWPT5WWT4jKyohICooAVQZFQsCDD6vcYPUgwwBEg8CHwMLcbVxyf6sYq/ohaHwzm08Kw8NGBIpYz1ln1y8o1KUYXKpl1ZkhYamL3WUPjUrNzMmM1xkQcX+26FQiwEBrz9dWz0xNR4bFxQUZFUvxbdSjlllsbhyVXhCgo2ZdzReKA8mFBcrOzBsvdaTdcqZVgXTW0NDWlpDQ1tKLyUlLi4lJDD7JhYVCxwLNzNxxX0RFCJrp2AADAFU/qwItgbMADcAQQBNAFkAXQBoAHwAhgCKAJYAogCsAAABIiY1NDcuAQInBiMiJjU0NjMyFzYSNjcmNTQ2MzIWFRQHHgESFzYzMhYVFAYjIicGAgYHFhUUBicmJAInMxYSBB8BMjY1NCYjIgYVFBYBMjY1NCYjIgYVFBYBJwEXAzU2JBI3MwYCDgElMj4BEjU0LgIjIg4CFRQeAgE2EiQ3FQYEAgcFJwEXATI2NTQmIyIGFRQWATI2NTQmIyIGFRQWASYCJCc1FgQSFwUFR2Qgi+SXGiY1R2RkRzUmGZjkiyBkR0dlIYvkmBknM0dlZUc0JhmY44sgZdKs/uG9GkQZqwEAmoslNTUlJTQ0/R8lNTUlJTQ0Ap81Aew15Z8BCa8YQxN4uOr/AH3apV5epdp9fNulXl6l2/1PGb8BI6+d/vusGQK9NQHKNQFoJjQ0JiU0NP0gJTU1JSU0NAMOGaz+/ZyuASG/Gv6sYkY1KSK4AQmbHGJGRWEcnAEKuCIrNUVhYUU2KiK4/vecG2FFRmIcm/73uCIpNUZidCPgAU3Gs/7SzSNrNSUlNDQlJTUDaDQlJTQ0JSU0/lgpAmgp+/xDIM4BNbiY/vTWjMduwQD/kZH+wW5uwf6Rkf/BbgNByAFQ4iFEIc/+z7aSKQIxKf2FNCUlNDQlJTQDaTUlJTQ0JSU1/Xe1AS/OIUMh4P6yxwAAAAoBOP6sCPAGzAADAAcACwAPABMAFwAbAB8AIwAnAAABESERJSERIRMRJREBEQURASURBREFESUBEQURARElEQEFESURJREFATgHuPiYBxj46KACnP1kApz9tAH8/gQB/P4EAuwCnP1kApz9tAH8/gQB/P4E/qwIIPfgUAeA+SACzwL9MQNvAs8C/TH84QICLwIBQgICLwL6EgLPAv0xA28CzwL9MfzhAgIvAgE+AgIvAgAAAAUA//6sCSkGzAATACMAMwBIAGAAAAEnATY1NCYjIgcBJwE2MzIWFRQHASInASY1NDYzMhcBFhUUBicyNjU0JwEmIyIGFRQXARY3JzY1NC4BIyIHJz4BMzIeAhUUBhMnNzY1NC8BJiMiDwEnNzYzMh8BFhUUBwWuOQNQFCgaFhb8sDkDUCw5O1cr+5c/Mf0LMVg8PzAC9DFVPRsnGf0MGR4bKRkC9RpdOJh/1oHNgztLzXNxx5hWXBktThoYVhoiHxpQR14yQEMyVi8xAok4A0wUGBopFPy1OANLLFg7OSv41zEC9jE+PFgw/QkxQTxVUCYbIBkC9xkpGx0Z/QoahDqY0HrLeZE3UlhSkr5sc9oB2URNGiEgGVgaGE8rXDAyWDFAQjEAAAAABQEI/qwJIAbMAAsALwBJAFQAXgAAAScBPgEzMhYVFAYHASImNTQ+ATMyFhcHLgEjIg4BFRQWMzI+ATc+ATcHDgEHDgIBIiQnNx4CMzIkPgE1NCYjNTIeARUUDgEECQE+ATU0JiMiBgcDBi4BNwE2HgEHARsTBhVZqVBRYHVs+oOyynTHepzMEFANnn1kol+bkUqjyoJ2wFgoVaNQhM2uAoj9/rGBPE+47Z2UAP/AbHxwYo1NeNb+4/yIBT1eZzIvPYpPLiI2CCEBER00DR/+rBEHPmloXE1EqV7+6cCpdrxvpIwIbHxZmGCHkh9ENzJHE1wWQiM6Rh/98ICYNFtvMkuGsWaGjlBVn3B4z5pX/sQEn1ONLysuWVz+2SIHNiEBER0KMB8AAAAPAqj+rAeABswAKQA3AEUATQBXAGUAgwCLAJkA2gDiAOoA8gD6AQIAAAEiLgEnLgEnLgE1NDY3Fy4CJyEeARc+ATcfAg4BByceARUUBgcOAgEnBy8BPgE3HgEXDgIDIiYnNx4BMzI2NxcOARcnPgE3Fw4BAS4BNT4BNxYSFwEnPgE1NCYnNx4BFRQGByIkJjU0NjcXDgEVFB4BMzI+ATU0Jic3HgEVFAYEAS4BJzceARcBPgE1NCYnNx4BFRQGByU+Ajc+ATU0JicuATU0PgE3Iy8BDgIVFB4BFwcuAScOAQcnPgI1NC4BJyMeAhceARUUBgcOARUUFhceARcDLgEnNx4BFwUuASc3HgEXAS4BLwEeARcBLgEnNx4BFzcuASc3HgEXBQYyemwfECYVNE9OWAIkRFdCAaU9Xx0eZDnADPNOoDIJUGQ0QzRsi/7FHlwST0VeEC9+NQczT9cqUx8hF0AhHC4SHRo8Ewg1bxtJJ44Bli9aOIIuFmU3/vg4HCAEBU0FBSnKnP7/mSwqKhIeg92Ght2DIi9INCWZ/v/+4hxzMiw7fRwB4QQENSQwMTYHCP4fDEFPITcyBgUGBzFPLGwNVS5SMytaRjw/YB0ZVEo8QFowK00z4xgrJxEdIQkFBAZINDtJEQtMskcTT7tHARBPmjQhNolH/pJiplkEaLVRAWJSjC43InphHF2GMToqdVUBYiJGNhxAIVOnaWepPidljn5KM6pcY6w0FFIIL6yALC6peE20blZ6P/2EQBFLBESsVhMhAjeXkgKlEA9HCgwHB0sKCfNPBUs0I0lf/d5Y8IgCFxKS/vliAc81GVszEiUSFRgvF0ZxQH3SgUSRQlQnYjpqr2dnr2o6c1kiZIBEgdJ9AuNLdB1EJIJX/fIXIQ1GZh9BJHRIHSgbKjqBeStIc0oXJRMWMiM9hHstYQc0obVRWouASzRCgE0/fVc0TYKMWU2qnTciQ0gtSnsiIzQXEyUUT5BHT5JdArFhZhpOGW1a4Qs1I0slMAkBfUM2BU4FPDX+sCdjPTwxXS+dHlExOCxFGwAHARD+rAkSBswAGQAdADIAWABsAIAAlAAAASIuAi8BHwEeAzMyPgI3ExcDDgMBAzcTFzIsATY3NjU0JiMiBwYMASMiJx4BFyIuAS8BJjY3Fw4BFRQXPgE3FwYHFjMyLAE3NjMyFhUUBwYMAgEgJCYvASY2LAEzMgwBFg8BDgEEJTIkNj8BNi4BJCMiBA4BHwEeAQQTIiQuATU0PgEkMzIEHgEVFA4BBAU8jv7IeAkSUw8HbLPjfH3is2wHeVF6CXjI/vx0UVFSQmMBBAEQ9FIRJRkRDqn+qf7Dg59bH6eDZrR5DxAQfIQOT2M0DjxGJWMKP1x4ASwBSKAlLThXJVf/AP7g/uoB/v7l/mPnDCMHigEHAWvZ2QFrAQeLCCMM5/5k/uT4AX7dCB4Hhvf+uLu7/rn3hQYdCN4BffiP/u7dg4nhARCHhwEQ4YmH4P7w/qw5ZYZNoxKHPGxTMDBTbDwERwr7uU2GZTkC1QLkCv0SrVeTuGAUGx0xDZjcdUNkaFBFkXB4ddx4YVGqR0ksNXlhWIlcGG/SlCJiPjYsaMKaWgNEPndV+jZdRicnRl02+lV3PlA0WTnWMEw2HR02TTDVOVk0AVAKEx0TGyseDw8eKxsRHBULAAAADAC2/qwJcgbMAAMADAAUADIANwA8AEAATABYAGQAagBuAAAJBDMXBxEjESc3FycHFxEzETcnIQEhATMXIQEVCQEhCQIhAREzERczBxEBNSEBIQERARETBSUDFSUFJwEXByImNTQ2MzIWFRQGByImNTQ2MzIWFRQGEyImNTQ2MzIWFRQGATcTAScBGwEhAwW3AlcBCP3b/FCMWq/ggdoiR0xiTGqQAmkBOfw7/p/lKf71AS3+VgGvBEwCbf67/Wf7IgIEmXygMQJnAQH9zP4FA0v9Yq4Buv5hkwIy/cEWAl8W6xomJhoaJia1GiYmGhomJhwaJiYaGiYm/nVE3v7qSAED4Pn+VvkEOfycAkgDO/35PIP7JAUA8Ezlihq0+zcEt1ZSAh3941D+T4wCZAKW/Fn9Nf5SAVj+2AKgq1j+zwEVdQM9/aT+l/7aAUkBSjoE/t3o+D8xAScx0CYaGyYmGxom6SYaGyYmGxomAZAmGhsmJhsaJgLcKP62/bokAhwBT/6MAXQAAAAEAQv+rAkdBswASgBeAHIAhgAAASc+ATMyFhcWFRQHAQ4BBw4BBwEGIyIvASY1NDcBPgE3By4BNTQ3Fw4BFRQWFw4BBwEGFRQfARYzMjcBPgE3PgE3ATY1NCYnJiMiFxYVFAcBBiMiLwEmNTQ3ATYzMh8BJyYjIgcBBhUUHwEWMzI3ATY1NCc3FhUUBwEGIyInNxYzMjcBNjU0B+Q6GEEiHzsXh1r+9xw7IyleQPxHdlk4LFcrRAOCLLOINAYDHEQHCQYGgawh/H4sFVcSGTdfA7lHay4eLRYBCUI1OBckKWAsJv8AKj46J54sJgEALTs5KGaeDxkdEv8AEBSeDxkdEgEAELI+JSX/ACs+NSMwDhkeEgEAEAYXNxcXExR2e2Va/vccIg4RNT78VXUuWy46S0EDYilLJTUjMBoyOyYTJg4cQCgiRSD8niopGhdbFF8Dq0Y8EgwYFgEJQkUsWy4TJSw9Nyj++ywnniw8OSYBBS0o1p4PFP77EBgbFJ4PFAEFEBgbsjArNzgl/vstIj4OEwEFEBgbAAAKAab+rAiCBswAFQAZAB0AIQArADoASABSAGAAcAAAAREzETMyNjc+ATMhMhYXHgE7AREzESUzNSMFITUhJzMRIwEnByc1FzcXNxUBIREjIiYnJiMiBw4BKwEBJwcnByc1FzcXNxc3FRcvAQc1Nx8BNxUBMzI2Nz4BNyMiBgcOAQE1Nxc3FzcXNxUHJwcnBycBpmRPTD0VMs6RARiQ0C4WRUJTZPl0yMgBGAUk+ty0yMgC1V1KIiVHVCr+IgRcE05sH1Dy8FUcY1YUAtZFbTl+LymKPWc/RiYtNVVVPyg3/CpdRz0WF0U4JWikLwgVAUBZfkNCV1OCiE1dQDmA/qwBcAUrLjqLko+GPjL61f6QUNDQ0FAE2/2GFhIQPwkQFA1D/Y8E3E1W4elOTf4/DwYNCwdCBw0PBw4TRM0KBAhDBwQKBEICxi46PWgocncVJ/6aRhULEBoXFA5DDxQZGgwLAAAAAAYBuP6sCHAGzAALAA8AEwAXABsAHwAAJREhNSEVIREhESERJSERIQE1IRUBNSEVATMRIxEzNSMBuAKPAZoCj/1x/mb9wQYY+egBcgM0/MwDNP3p+vr6+vAE7e/v+xP9vAJEUARN/QdQUAFVUFD7EwH0BO2fAAAAAAcAw/6sCWkGzAAoAC4AMgBdAGMAaQBtAAABIiYnJS4BLwEDLgE1NDY3Ez4BNyUBNj8BPgEzMhcBHgEPAQ4BBwUOASURATcBEQkBNwEDMjclPgE/ATYuAScBLgEjIgYPAQ4BBwEFDgEHAw4BFRQWFxMXHgEXBR4BFycTARcJAScTAzcTJQElAwYFKGg//ZkWLBfTtg8bLj+jFDwkATMBJiM3xx05FkovAmosLQUKA21R/g4oUf4R/eMmAkcBsP7zOAENckRAAfI8UQIKAw8hGf2WDxYSDCYoxxAXC/7U/sMdLg+jOicPE6q7Gh4KAmY/YYRMigKHLP2P/kZOgRhQGP4LAP8Bc7v+rA0KXwQRC2gBgyBJJTt6aQEPIEAWwQE5Jg0vBwtJ/FZDyW7dR4cgyBAQZAIlASNG/sf9qwGTARA4/vD+IRrIGGAw3UJ6aCYDqhcOBwkvBAwL/r/HEi4a/u9hYzATMSj+l1wNCgJfCgwjGgGEAa1C/mECABICLQF0Bv6ArwEmTv8AAAAAADIA3P6sCUwGzAATACMANwA7AD8AQwBHAEsATwBTAFcAYQBlAGkAbQBxAHUAfwCDAIcAiwCPAJMApwCrALcAywDfAOMA5wDrAO8A+wD/AQMBBwEKAQ4BHAEgASQBKAEsAToBPgFCAUYBSgFOAWIAAAEiJAACNTQSACQzMgQAEhUUAgAEBS4BJzU+ATczHgEXFQ4BBycuAic1PgI3Mx4CFxUOAgclLwEXJwM3EwElAwUlAzcTAQM3EwEnExcBAzcTAScTFwcgJScEISAlBwQBJxMXJScTFwETMwMBJxMXASc3FyUgJScEISAlBwQBJzcXARElERcnExcBJxMXJScTFyUuAic1PgI3Mx4CFxUOAgcBETMRJyAlNxYEMzIkNxcEATIkNhI1NAImJCMiBAYCFRQSFgQFLgInNT4CNzMeAhcVDgIHAScTFwEDNxMBJxMXARM3AwEgJTcWBDMyJDcXBBMRMxEBJxMXAREzEQEnNwEDNxMBIiQnNxYEMzIkNxcGBC8BExcBAzcTARM3GwEDNxMBIiYnNx4BMzI2NxcOAQEDNxMBJzcfASc3FwUDNxMXAzcXES4CJzU+AjczHgIXFQ4CBwVNzf6Y/vCamgEQAWjNzgFnARCamv7w/pn8GwwrPz8rDAcMKz8/KwzfCRkxLy8xGQkGChkxLi4xGQoCDNAkxdgoMSgChv7uLgEk/lIiMiIBfBgwGP2p9TXrAWAaMhoBfjIYMuP+YP6SLgF7AcEBvwF8LP6R/QsyGTL+cS9iLwKPBTIF/egyLDIDMjE7Mf4n/iX+PQgBwgHkAeQBwgj+Pfs4fqVpAf0BNJYyGTL93DIJMv6yL18w/gYNJEhCQkgkDQgNJEhCQkgkDQQrLeD+O/4RB/gB2dzdAdj4CP4T/je9AUv7jY37/rW9vf62+42N+wFKBBQLHz05OT0fCwcLHz44OD4fC/vzMR0xAQgVMhX9PC2PLQOfI+Eu/Rn+Mf5eG80BqOHhAajNG/5cCjL84TBJMAEIMv5VrNwCmhwyHP5C1f6gpB6cAVDPzwFQnB6j/p/ULRItAt4dMR380g32KHU1MDX+PHvzjCZ94XZ34XwmjPMCGUIwQv0QMigynBwyHAEpbi1umWF6lAocNzQ0NxwKBwsbODQ0OBsL/uCZARABZs3NAWYBEJmZ/vD+ms3N/pr+8Jk0SjQNBQ8zSUkzDwUNNErvNjoeCgYLHTs1NTsdCwYKHjo2AolxTEUBIAj+4P5vKwEEEisBHQX+4/61ARUE/usCeE4BI079dgEiBP7e/u4EARsEK5JUqqlTkgFKBQElBVYRARUR/EUBGP7oAl0IASAI+7UL9wvQtEW9vUW0AuE7/Dv8PAElAv7b/gQBGgQBAgIBHgItEQEPD2FNUysPCRAqVE1NVCoQCQ8rU038LwEb/uXz0j5qampqPtL8/o36AUq9vQFK+o2N+v62vb3+tvqNf0JHJQ0HDSVIQUFIJQ0HDSVHQgS+BQEcBf3EAR0C/uMCfRkBBRn6lwESKv71Aq/XNmloaGk21/4cASz+1AMmDAEeDP3BARz+5AJZM078LgEPCP7xAedXWzRYUlJYNFtXHAIBHAL8FAEqBf7WAtEBFhH+6v77ARUM/usB3icuMygkJCgzLif9OgEaDP7mAtkK1grPzgjO5QEKFP725wEINPYBMjxBIgsGDCFCOztCIQwGCyJBPAAJAIz/pgmcBdIAEwAqADoARgBKAE4AWABcAGAAAAUiLgE1ETQ+ATMhMh4BFREUDgEjASY1NDY3LgE1NDYzMhYVFAYHHgEVFAcFIiY1ETQ2MyEyFhURFAYjJSEyNRE0IyEiFREUBTUhFSU1IRUBITI2NREhERQWATUhFSU1IRUBiUdzQ0NzRwcWSHJDQnNI+QwGa1s+R1tMTVtGQFxrBf5AJSsrJQG5JisrJv5dAY0mJv5zJQKYAWv+lQHa+3UHFkpj95BkAvoC1/0pAiZaRXZHBChIdUVFdUj72Ed2RQFdDxYsPwkQaVBca2tcUWgQCT8sGA0zKyUCXCYrKyb9pCUrQSUCMCYm/dAlP0ZG5kZG/jlsSwQD+/1LbAKtRkbmRkYAAAAACAL4/qwHMAbMABMAJQA1AEUATwBdAGkAhwAABSIuAjURND4BMzIeARURFA4CByIuATURND4BMzIeARURFA4BJzI+ATURDgEjIiYnERQeARMyPgE1NC4BIyIOARUUHgETMjc1BiMiJxUWEyImPQE0NjMyFh0BFAYnMjY1NCYjIgYVFBYDNR4BMzUeATMyNjcVMjY3FQ4BIxUOASMiJic1IiYFFDh9bkVYoW9volhFbn44lvWRkfaVlvWRkfSXfdF+RPSUk/VEftJ8etKAftF9fNJ+gdJ5gVdXgYFXV4FYfX9WVn98WT5FSzg3S0WbImklCRMMDBMJJmgiImgmCRMMDBMJJmiUFiEkDQEWMj4eHj4y/uoNJCEWwEl/TwXEXJNWVpNc+jxPf0lQOFs0BSxBT09B+tQ0WzgFszhiPj5wR0dwPj5iOPskJlEmJlEmBaZGOCs7SUk7KzhGZCgeISUmIB4o/OxQCAigAQEBAaAICFAICKUBAQEBpQgAAAAIAZn+rAiPBswAIwBJAFUAYwBvAHsAhwC9AAABIAADJy4DNTQ2MzIWFz4BMzIWFz4BMzIWFRQOAg8BAgAlMj4BPwE+AzU0JiMiBgcuASMiBgcuASMiBhUUHgIfAR4CNyImJz4BMzIWFw4BJzI2NxUuASMiBgc1HgE3IiY1NDYzMhYVFAYnMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYBETQ2MzIWFREjETQ2MzIWFREjETQ2MzIWFREjETQmIyIGFREjETQmIyIGFREjETQmIyIGFREFFP79/tJSGBxMSS99XV2tK0HEZ2fEQSysXV19L0lLHRhS/tL+/ZjXkjIYHEpGLkY+W5MvabBra7BpLpRbPkYuRkocGDKT1piL5DY25IuL5DY25ItzvS8vvXNzvS8vvXNXfHxXV3x8VzlSUjk5UlI5GiUlGholJf3KeFVUdFB8W1t8UHRUVXhQRzY2QlBJPj1KUEI2Nkf+rAECASFVZXtOPydOZ2xTNEBANFNsZ04nP057ZVX+3/7+UGDWsVViglI1FS82cmtQQkJQa3I2LxU1UoJiVbHWYPeiiImhoYmIokqFczBzhYVzMHOFDXxXV3x8V1d8SFI5OVJSOTlSTCUaGiUlGholAiYCKFRyclT9wQMKW3p6W/z2Aj9UcnJU/dgCHjhISDj9vgMNP1BQP/zzAkI4SEg4/eIAAA0Agv+wCaYFyAAVABoAIwAwADQAOAA8AEgATABRAF0AaQB2AAAFIiY1ND8BATYAJCEgBAAXARcWFRQGAwEOAQcBMjU0JiMiFRQBNicDJgYHDgEXBRY2AQMGBwETBgcbASYnJTYnAy4BBw4BFxMWCQEmJwMlLgEnATI3EzYmIyIGFxMWBRY3EzYmJyYGBwMGBR4BNyU2JicuAQcDBgUUTGsSXvu1WQFaAdIBDQEOAdEBWln7tV4Sbeb++RcmEQHxHxEOH/4vFxf8EzYeHQYYAT4MGwGal0Q6AVECT0nclklP/tkdDIAKNSYlGBDUEgGAARU6RFoBVRAnF/5dHwMuBCspKSsELgMBJRsS1BAYJSU2CoAMAQcJGwwBPhgGHR41FPwXUDshFAo2AmbsAVq8vP6m7P2aNgoUIjoBMAExGjwh/qcfDhEfHwIVEx4BPRgFHRw3E/0KAf61AZMfN/7rAaQFGv57AYUaBTgNIQGAHQ4REDMa/qYe/gkBPTcf/kq6ITwaASYiAZMfIyMf/m0iMA0eAVoaMxARDh3+gCG+CAEK/RM3HB0FGP7DHgAAAwEO/rYJGgbMAIkAlQC8AAABIi4BNTQ2Nz4BNTQmJy4BNTQ2NwE2MzIWFRQHAQYVFBYzMjcBNjMyFhUUBwEGFRQWMzI3ATYzMhYVFAcBBhUUFjMyNwE2MzIWFRQHAQYVFBYzMjcBNjMyFhUUBwEGFRQWMzI3ATYzMhYVFAcBBhUUFjMyNwE2MzIWFRQHAQ4BIyImJy4BIyIGBwInMjY1NCYjIgYVFBYBMjc+ATU0JicuATU0NjcBFjMyNjU0JwEOARUUFhcWFRQGBwYVFBYB90dpOWSJem8FCgsQLycDPQkLCQ0J/TIMFRAPDALpCQsJDQn9MwoWEAwMAuoJCwkNCf0xCRUQDQsC6gkLCQ0J/TIMFBAQDALqCQsJDQn9MgsWEA0MAuoJCwkNCf0xChYQDQsC6QkLCQ0J/OsuZzUiTjExRh1YciVWwSEvLyEiLi4BdxQJDAsMDwwKBAQBYQwPCxEM/mkbHg0MGAcKBBX+tkJrPF94OjN0WBgwKC1fJElhJQMlCQ0JCgn9EA0OEBUMAtIJDQkKCf0RCwwQGAsC0wkNCQoJ/REJDRAYCgLSCQ0JCgn9EQ0OEBUMAtQJDQkKCf0PDA0QFQsC0wkNCQoJ/RALDRAWCgLSCQ0JCgn8vDAlCwoLCWZv/v2ZLyEiLi4iIS8B9hcdNxgXOy8mPRwOGQv+mQwQCw8MAZ0QUDYgSiNFKhUkGgkKEA0AAAAABAEE/qwJJAbMAA8AGgCyAL0AAAEiJjURNDYzITIWFREUBiMBLgE1NDY3HgEVFBMyNjU0JyY9AR4BFx4BFx4BMzI2NTQnLgEnPgE3Fz4CNz4BJzYmJy4BIyIVFBceARUUAgc1PgE3NicuASc+ATU0Jic+ATc2Jy4BJyYHDgEHBhceARcOARUUFhcOAQcGFx4BFxUmAjU0Njc2NTQjIgYHDgEVFBYXHgIXNx4BFw4BBwYVFBYzMjY3PgE3PgE3FRQHBhUUFhMmNTQ2Nx4BFRQGAalDYmJDBtVEYmFE+/NKUk5IGRh3IS8WECxBBgcDAQQgGhsjVA4sHCJEIakVHh0RX1YBAXllECYFBQgcPuzuIWskBQMHDwZfb2lgBg4HAgM6fSUDAyV9OgMCBw4GYGlvXwYOCAMFJGsh7uw+HAgFBSURZHpWXxIcHhWpIUQiHCwOVCMbGiAEAQMHBkEsEBYvwysYGUhOUv6sYkMG1kRhYET5KUNiA8EqjVVUiStJjESA/NgoHiAbEhJLERoHBxEKHyIkHDQzCBULDiUUqEVUMxNpznxixkELEQUECR+PZsj+yVt7Cy4RAwUOGw0xuG1tsTYRHg8EAR1XMQUFMVcdAQQPHhE2sW1tuDENGw4FAxEuC3tbATXKZo8fCQQFEQtBxmJ8zmkTM1RFqBQlDgsVCDM0HCQiHwoRBwcaEUsSEhsgHigCrXuARIxJK4lUVY0AABMBkP6sCJgGzAAcACQAMgA6AEsAUwBfAG8AewCYAKAApAC1AMUAyQDNANEA1QDZAAAlIi4BNTQ+ATc+ATcTNjMyFzMyHgEVFA4BBAcGBAEnNxE3FwcVFyc/Aj4BNTMUBg8CAyY3NhcWBwYTMj4BNTQuAiMiDgEVFB4BNyY3NhcWBwYBJwMuASc3HgEXExc3JxEuASMiByc2MzIWFxEXASY1NDY3Fw4BFRQXBy4BNTQ2MzIWFx4BFQc+ATU0JicuASMiBhUUFhcTJz4BNxcOAQEnNxcFPgM1NC4BIyIGFRYVFAY3Jz4BNz4CNxcOAgcOAQUnNxcBJzcXAScRNyUnNx8BJzcXA6Gf7oRlr24qXzDBh9m0cxxtolp61/7ony7+9f2xQjxlN0yrRT0x1QgEUAwR0ir3cjg3cW82NulwrWNOhqpcYaRidsuEcjg2cnE4NgJQfxclWjgiSXEpF3Gjqi5ZK0hBD0tNPYJDfvvIPzIxSC0uOec8SHpkNXNjYlWDJQ4/X1xbHTtTQUZSN0SbPyU8kAQXhhuH/fiB8sFxUYNKytk6DgZFJXw/RHhPCE8KXoREP24CB5UPlf02Ny83AV5QUP7xBzIGZi03LnFwxoJysmoGJCsJAT5yUStNNEbH4uFgjpn+kC1XAQNgOkj6wChrjYYTJB8uOiWEeQLtKJiXKSmXlf7bRH9YTZFyQ0+RZG6jWconmZUnJ5mV/XKpATMxSRlJImI7/s2Wn1YBXQsKDU8OExT+lkADhJ6ybtxhJFnGaKOPDVPnh7LaTV9ecTZuNS8KHFRbWT+vj3TXYAEpOkFzIUcfbP11VCpVllPGxaMwHzQgvLRxiy1cpCk+cTI3aXJCClKJdjcyZRMvMC8CaIQShv45BAFEBIWUA5QbEogTAAAMADr/pgnuBdIARgBWAGIAbgB4AJEA2gDiAPABAAEOARgAAAUiJC8BLgEjIg4BIyImNTQ2MzIEHwEeAzMyNjU0LgEvAS4BNTQ2MzIeATMyNjMyFhUUBiMiLgEjIgYVFBYfARYSFRQGBAEiJjU0MzIWMzI2MzIVFAYnIiY1NDYzMhYVFAYzIiY1NDYzMhYVFAYBJz4CNxcOAgEiLgEnJjU0PgE3PgIzMhcFHgEVFA4CJTI+ATU0Ji8BLgI1NDYzMh4BMzI2NTQjIgYjIi4CIyIGFRQWHwEeAhUUBiMiLgIvAS4CIyIGFRQWMzI+ATMyFh8BFgQlNCYnNx4BFQEuASMiBhUjNDYzMhYXAyY1NDYzMhcHJiMiBhUUFwUnPgEzMhYXBy4BIyIGAyc2NTQnNxYVFAbfo/5+5jyYtzwoNz0zdJDGr5gBVOY8ibN2UyhdaDWFeUG4rNOzbuLZYjI6HzJJw7ZGmI00JB4/R3fY5Jz+6PmYGy4RByASFBsMETCIEhkZEhIZGasSGRkSEhkZAVMfNVk6BkYHRGoCPiiOqlIIN00hICghEwYIAU4XFitGVQFPofSJwcx3MlMwWTktl6E6jKAuKzEvRKmyqESSpI+jQ4CcR5h9Llh6wJg8mvHDWY+WY1EnPUArTcqePM4BbgHLTEUgV2D+ISVoODdERnVNP4M0EQh/VTYzICUkOlQFASBEFW5DMWInNxtEJDBEzEQJNTVGWoSaKGZVFxaaf4+cj5YnWXE/GE9HKkxUNh1SvXuUsCwsCisyVVwSEREJDSQgNmL+7bae+o8CdhwPEQwLERAaah0WFh0dFhYdHRYWHR0WFh3+6j8ZZoJCBk6XeP5QPGhBBgcRNE00MmREBc8OQyAucmlEFXnVi5j4VzMWKTQlODAREjUlGAoaIhqDcWGbRx03Y2pDa3kVPnhjJ2V7OHJrX2wWF15qKImIFGKQIz4ssnUELycsKx5DSjE1/pEZHVJwGjcSUTISD94TTVIvMSwiJDoCUxIfG0c8LlBhIgATAP3+rAkrBswAMgA6AEIASgBQAFkAaQBxAH0AmQCsAL0AyQDXAN8A5gDsAPQA+gAAJSIuAzU8ATUXHgQzMjY1NC4DJzcWEh8BHgEzMjY1NC4CJzceAhIVFA4BBSc3AzcXBxMBAzcDHwEHFwEvATcfATcXASc2NxcGAS4CJzceARcBJic3HgEXNjMyFwcmIyIGAS4BJzceARcBMjY1NCYjIgYVFBYXJy4BNTQ2Ny4BNTQ2MzQ2MzIWFz4BMzIeARUFAyImNTQ+AzMyHgEVFA4DJzI+AzU0JiMiDgIVFBYTMjY1NCYjIgYVFBY3Jy4BJy4BJzceARceAS8BPgE3Fw4BAS4BJzcWFwElJzcXBQEnNyc3FwcXAS0BNwUXBfhu5tOoYkwGY5q2t01ZgENykZ9NKczmPyI7NBMyMGGn1HQMfuu6bYDe/INNKDRZNTgxAb1xC6h0fwdq/O16sQ/ZaI0i/mwuITMaKAMmLUE6Iz0oXUL8/klZISlIHCskEQ0MDAYTLgLfFDIXOxUvGf2SFR4eFRYeHg8xFhgDARQfHRUiEQ0uExEnEzl1T/70ATthRnWRmUU3XTlSh6GgQTKHjXpLSTRGpJJeMFcVHh4VFh4eY0kCBAIlSSkrK1MqBQlpLg0YDUEKJAMYIEQvL2E3Ao/+sBo3HAE8/C1DBrNCSzTUArT+9f68KgE+80pOibPMagQHBAZovZ51QVVbJH6aoI8yO43+/10yVjFgVHnov3oMSgeB0/74jY/cfVwUpQFMVTQ9/sb+DwECdQEbIeB78wPW8CNOLs4+RwGaJC0gNxn83ihARC0wNGQ9AshbKj8ROikcBkQGFP2zFjofMRo3GgJFHxUVHx8VFR+oRB9LKxUlERMtExUhEyUWFwQDHS8a+v55alE+iYJpPjROKDWHinRHTj9mdnAoHT1TgY89K0ICAh8VFR8fFRUfgQgOHxETMyQ0JDgYIjdVKw4qJRYfPP0jJjwfPUJD/XayMUxIogOIQy6Pvh6Hlv6MHK9LrxkAAAAQAOz+rAk8BswAHwA6AEIASgBSAFYAYgCgAKgAtADAAMQAzADUANwA9gAABSIkJy4BJy4BJy4BNTQ+ATMyHgEXFhceBRUUBgEnNjU0LgE1NDYzMhYXFS4BIyIGFRQeARUUBgEnEwM3FwcTAQMnNxcHFxMBJwcnNxc3FwEnNxcBMjY1NCYjIgYVFBYBMjY1NC4DJzceARceARcHLgEnLgMnLgIjIg4BFRQeARcUHgIXHgIXBy4CJyYkJzUeAhcWBAEnPgE3Fw4BJS4CNTQ2MzIWFwc3MjY1NCYjIgYVFBYBJzcXASc3JzcXBxcBJScHJzcXBQEnNwUlFwUnJSY1NDYzMh4BMzI3FwYjIi4CIyIGFRQWFwfNZv6w34B9CwoTBWB5UIJLOnRgGB0QO5mkm31KZfk/QCssLJyGOnFASWo4YXEsLB0CcFAleukstWkBzJ/NUko/r6f8y7pnDIq4jCYEQS4mLfsmExoaExMbGwSgLzc9a42jVQdebh0FEQZFBQ4LG2NyZh8ETGcuNV45NWBAa63NYTk8KBkMFiozJXv++ZgXO08xygFD/PUtU4o2QjmX/qEWOy1rTUt3Jd4MFh8fFhYgIAUrgA1//DZLN80XTxHVA8P+iJGqJOerAWr8Tj2xAREBMgn+u+79QUOjiVjHzV93QS1VkDecqJo2aXMeKMjJxnKTQAoWESehXEyBUDdcOg4fE3iqxcKoN0xlAREqQHhg0MhTi6QjJ1YsJnRtUcfRYkhs/twMAUgBK51Fd/7+/fsBQbvVIZyg/rIDe9UMThLKPkj8M4ANgAURIBYWHx8WFiD7kz0mMo+nsKdHBZv3cRFSJAwjRyRd18GABy9dPTtfNjJhSQ4cX2pdGg8PCARFAwcMCiJ4ZgYaPEkuusUCqj8/kVEqVp7lET1VM01saEUDNBsTExoaExMb+ykuJi4EThyUx6gLgM/8pL/GTEdm6LcBozTQYyFQI1fHdm+GmiwtLEA6GyMbb2MvX0cAAAUAdP7eCbQG1gFoAj4C4AOSBEYAAAEiJjU0NyYnBiMiJw4BIyInDgEjIicOASMiJjU0Ny4BNTQ2NyY1NDY3JjU0NjcmNTQ2NyY1NDYzJjU0NjMyFyY1NDYzMh4BFRQHHgEVFAYHFjMyNjc+ATc2FxYGFRQWMzI2Nz4BNzYXHgIVFBYzMjY1NDY3NhceARceATMyNz4CNzYXHgEVFBYzMjc+ATc2Fx4BFRQWMzI2Nz4BFx4BFx4BMzI1NC4BNzYWMzI1NCcuAicmNzYzMhYzMjY1NC4BIyImJyY3PgEzMjY1NCYjIgcGJy4BNz4CNz4BNTQmIyIGIyImNTQ+AjU0JiMiDgEjIjU0Nz4CNzY1NCYjIg4CJyY3PgI3NjU0JiMiBhUUFxYVFAYHDgEHJz4BNyY1ND4BMzIWFRQHNjMyFhUUBzIWFRQHHgEVFAceARUUBx4BFRQGBx4BFRQGBx4BFRQGIyImJwYjIiYnBiMiJicOAQcWFRQGJTI+ATc+ATc2Fx4BFxYzMjY1NDY3NhceARcWMzI3PgM3NhceAhcWMzI2Nz4BNzYXHgEVFBYzMjY1NCY3NhceARceATMyNjU0Jjc2Fx4BFRQWMzI2NTQmJy4BJyY1NDY1NCYjIgYVFBceAhcWBwYuAiMiBhUUFx4CFx4BBwYuASMiBhUUFhceARcWBwYmJy4BJyYjIgYVFBYXHgEXFhUUBiMiLgEjIgYVFB4BMzIWFxYHDgEjIg4BFRQWMzI2MzIWFRQHDgIVFD4BFxYOARUUASImNTQ3IyImNTQ3BiMiJjU8ATcuATU0NjMyFhc0NjMyFhc2MzIWFzYzMhYXPgEzMhYXNjMyFhcnJiMiBgcjNC4BIyIVFBYVFCMiNTQuASMiFRQWFRQjIi4CIyIVFBYVFCMiLgIjIhUUFhUUIyImIyIGFRQWMzI2MzIVFA4BFRQzMjYzMhUUDgEVFBYzMjYzMhUUDgIVFBYzMjY3Bw4BASIuASMiByc2Ny4BNTQ3JjU0NjcmNTQ2NzQ2MzIXPgEzMhYVFAYHHgEVFAYHHgEVFAceARUUBgceARUUBg8BNjU0JiMiDgEjIjU0PgI1NCYjIg4BIyI1ND4CNTQmIyIGIyI1ND4CNTQmIyIGIyI1ND4BNTQjIg4BIyIuASMiBhUUHgEVFCMiLgEjIgYVFB4BFRQjIi4CIyIGFRQeAhUUIyIuASMiBhUUHgIVFAEnNjU0LgE1NDMyHgEzMjY1NC4CNTQzMhYzMjU0LgE1NDMyFjMyNTQuATU0MzIWMzI2NTQmIyIGIyI1NDY1NCYjIg4CIyI1NDY1NCMiDgIjIjU0NjU0JiMiDgEVFCMiNTQ2NTQmIyIOARUUFhcHPAE1NCYjIgcnPgEzMhc+ATMyFhc+ATMyFz4BMzIWFz4BMzIWFT4BMzIWFRQGBxYUFRQGIyInFhUUBisBFhUUBiMUBgUUpcsJgEQfHB8fCy8eFxcEKR4QFBBCIB8iCxQbIh8EMSQHQCoDYkMDUTsDOSkVFwNXLTljPAczKg4MDxEmHAQCBgwIDAsGIBweHwQCBggFBQcGAiAdIyEDBggLDAgBAxMYDwoMDwwFBQgLChQWFAoQBAoJCQgEDhIXEQoCBgQHBQECKyAXIB0GBioSFyAVPjgOBgQGGgweDRUUPlMfLCQHBAQFJhchUUkqQD8cEgQEBAg0PRQTG0EjOHQgBg8yQDIwGiNDOhcUBgwyNAwGIQ8gREE2EgoOCzU3DQcyGEFsBggHBxchEhwOGRMGPGM6MFECFxYsOAM+TAJBYwMvPwcfNAQEHyQcFAcIJRolQA4VFSAlCRUVGS4LImI9Ccv7VBEeFgQCAwcGBgcGCAkTEw4FBwgLDAQOCxIMCg8JAQYKBwYGCw8MCw4YEwMCCQoLCAYDJxwjGwEQBQUIBgIFHh4dHwYLDAgMByAfFyETEgobEw4ObT4aMwgNNzULDgoSNkFEIBEfBg0zMwsFAQgXPkcnGTEhHB07CwoLCBAMEiYTMS8xQB4QFDsYKQ8LCDZCGyxDJjUUHR8FBQQHKjogSTMZEg4dCw4SAxtYRiEmCAUUGAFHLTwLBS06BAYMKjQBOVw/KwgQBysfGS8WGSIdMxYaJyQ3Ew0dEi5EExgxNC8POAovFiMFMB0sGCgKCR8bLRwkGAcOFhwsJCchBgkaIioaIBwGCjQlGSNCLR0yDhAkJCYgWxsVMzMeGCdsHxkwPzAfGCJhLAgwYAKLEzI0GCMGMw02ExY+DioeAyIfKScYExQxGyApFhQZEhEPFB4fISYbDSAxBQQ9FSoaHkA2Eg4+Uj4aFxYzLQ8OLz4vHREWLxMMJzMnGREPGg4QODcZFhoWEAoNDw0NEhoZCBAYGBAKETQzCQkhJiMNEBIsOiwJEzU4FxMRNUQ1AtkhGTw8HxolKB8YHzA+MB0iYyg2MzQXHFMgLyQlEA4qGTQ4GxQfNgsFGAwQGSskHgsHKCEkLx8XDQgXDxUcLBodDwsXEhgsGwMBMBcgLQ0zCzgqJxgTRC4THg0UNSMnGhYwHBIjCxUsGSEsCA8IKz9bOAE1KwwGBDotBQs5LBf+3mBMEw9XfhAWJCUMJisKLjksJiAeCSYWGC0UCw0pNA0PEyg4Bw4LOzEDDAw+LgkJJCsICAcjLzFWOBkYJWpKIj4WBUJXIToQDAkJaz5MVk1ZJT4KBgQEFEBGUFdHTBgoCw8JCk4tWUEMDkJACQgDBCY2RjcPFzsQDgcGJD4uIyMpBwQDBSUYKEkSEjUvCAgMEhkWDw4JBgMGCgMLCxkXCAQHBAYHBA8cHx4VCQkCCQYKCwgFBRITGiEuCAkPFRMcFxkeKSoPCQcQHR0RCAsUECs1IQsGFhInJxIKChoRT0EQERYHBQgCBiMaLhMaCxcVOFgzLiQKBQYsIwgJMTwPCAM3NQwMBzsnEw8MLx0KFQgWLhkaHwkUKBEiJEQoCSsfCiEYPGYpDRRMYO0fNyQWIAQEDA0kDg4lMSA+BggPED4UDwcLPko7CAUKCUBCDgw8XUQ7BwkPCygYT0NXUDZdCgQGCj4lWU1WTD5rCQkMEDohT0pGMiZOGQ8bBAMNDhkWQVAUFgsLESgnEhYGCyE1KxISCwgQHh0QBxMDCCkwHhkQHAkKDxAOCQcBBAYPBQ0fGRURBAQJBQkPBgoNDBwgEhEFBQYHBAcEChgWDQoDBwYDAg0OHCQUBQwNCCkxExoC2i8rGRgsKhQNASwlBgsHBTMrKScBASIrHBQUJRwXNSkLDVo9FU5gGmAgIi9bOz4eTSEaOj9uRC4dUiMTTWRNIRlBDgk1RDUQGywOAxsNEBMdDA4OCxQcHiMUEBUeHxEPIBAMFBgjHBcSGg47DhABCCkpIgs1FB07G0cYIh0mNgURESc5CjNDDxwkLSAZMhoTIRIWHBEJKxcjIggxHRQvBQozIAsXCwUdEhUdKCgMEC0zNBYRGh0eDgskKisSERceDQweIiIQDBIUCw4nOCUfMjEaGSITGTkxDgouLR0YI1JFEgsmMyYgEhxAPjQPCjw8HBI0SjUnEAz+jBsZFSEhFAsQExQSFx4jFhIMECAjHh4WEBIiHhwVDAwODSATEQsbBwssDwwNNUU1DQ9BGRxMZUwLI1kfFRlEbj86HCBMHh8eP14wECQRAgQIBEJASBctNxI9WAoKKTEYHCYMDhkdKiIBAScqKzMFBA4GJSsBDRQpLRkZKjAeNQAIAeD+rAhIBswAPQBAAE4AXgBqAHoAigCaAAABJwcmLwEHLgE1ETMRFBYXNxMeARc3Fz4BNREHND4CNzY1NCYnDgEjIiY9ATcRMjY3HgEVFAcOARURFA4BLwETBS4BNTQSNxcGAhUUFhcTMj4BNTQuASMiDgEVFB4BNyImNTQ2MzIWFRQGAyIkJjU0NiQzMgQWFRQGBCcyJDY1NCYkIyIEBhUUFgQ3Ii4BNTQ+ATMyHgEVFA4BBSGft3NTIl1JXVAyKi6UHj0ev6W4nm1QiKtbBiUaN1AsND3BEUYqNzoYd2+X/HfTF/7fFhcXF08WFxUU41SPVlaOVVWPV1ePVUBdXUA/XF00w/7Cu7sBPsPDATy7u/7Ew6gBGamp/ueoqP7mqqoBGqhywnZ1wnNzwHV1wf6sKyAJJlQvJnM2Baz6VBk4GvH+vQcMAyItAklUAW5jUcXEoy4GGSxcExoWNSSnq/6zGhUygUU1Ho7YWv6CU4xUITUCN11LynZ5AQ6MDon++nRwvUcEGCM4Hh84IyM4Hx44Iz0mFhcmJhcWJv73VZNdXZRVVZRdXZNVUEVwQEFwRUVwQUBwRVEvTCkqTC8vTCopTC8AAAAHAUL+rAjmBswABwBCAIkAmACtAMIA1QAAAQIAATcIARMlIiYnLgE1NDcuAicuAic2NTQmIycyNjU0LgI1NDYzMgwCHgEXPgEzMh4BFRQHHgEVFA4BBw4BJzI2Nz4CNTQmIyIHPgE1NC4BIyIGBy4CJyYsASMiBhUUHgMVFAYrARcyPgEzMhUUBgceAxceAhcGFRQeATMeAQEiJic+ATMmNTQ3HgEXBhciJic+ATMyFyY1NDY3HgEVFAYHBgEiJic2MzIXLgE1NDY3HgEVFAYHBgEiJz4BMzIXJjU0NjceARUUBwYIh9r8df1eGALGA6HZ/stvbg6gmAhZlKBrIzhQRwkhHNMhLDFAMYmMgAElAS4BH/e1Kw0aDR8uGgQXGCZELhBcPyNKEx80IA4RCA0GAwkRDAorDiCc3oOO/sX+x4xtWDxZWTwMFWV2J0AvDA4rNi1JQkYoSYeRWAkkd3wCW/tUDx0OHDAoFBYlJwtJ4xYsFSJSIA8LEBcWJy4EBF4Cl0OQP2FKJxIBAj4uFBMYFxX+NUJDKlwkFQ8NIx4jJRJZ/qwCnwPOAQw3/uX8Nf1g+icnAiYsDhUkj81+Kjg8MREPHxLHEhMSKUFnUIF5UpLC5PZ7FBQ/ZDgdFw1QNjmMgCgHE1AJBh9lcjIVMws9MRwWPjE5HXz05WRtqGFOXEFjSzkuFAoNcRQTExY8Ix84P1A2YqF2JAwWERkNKCUFOgMDNCEcHiAhFk1KKfAGBjlDBxMjH0UcGms6ECAPOf2oNjFIGAUKBiZYGx5RKy9ZHwQBcRk4QAwTHSNTHx1kODYwKwAQAOb/EAlCBjYAWwCPAJ0AuwDXAN8A7QEEAQwBFgEeASYBQgFgAW4BogAABS4BJy4BJw4BIyIuAiMiBgc+AjcXIg4BBz4BMzIeATMyNjcXDgEVFBYXHgEXPgE3PgE1NCYnNx4BMzI+ATMyFhcuAiM3HgIXLgEjIg4CIyImJw4BBw4BASImLwEuAyc+ATMyFhc+AjU0JiceARcHLgEnFhUUBhUuASMiBgceAh8BHgEzFw4BNzI2Ny4CLwEGFRQeAS8BPgE1NC4BJwYUFhcHLgE1NDYzMhYXBx4CFRQGEyIuATU0NjceAxc+AzceARUUDgEjIicGAzI1NCMiFRQBMj4BNTQnBw4CBx4BASc+AjczHgIXBy4BJy4BJw4BBw4BEzI1NCMiFRQLAT4BMzIWFwsBFzI1NCMiFRQXMjU0IyIVFCU+AjceARc+ATceAhcHLgEnDgEHLgEnDgEHAS4BNTQ+ATcnPgEzMhYVFAYHJz4CJw4CFRQWFwEnPgE3HgEXBy4BJw4BASImJzcyNj8BPgI3LgEjIgYHNCY1NDcOAQcnPgE3DgEVFB4BFz4BMzIWFw4DDwEOAQUUJkcmNVUMIl09QnFmXi8YQigOfqhMPDSFcRgMEww3fIhISWUjQgoLVToZLhERLhk6VQoLQiNlSUiIfDcMEwwYcYQ1PEyofw0oQhguX2ZxQj1dIgxVNSVI/lGR1VETIjEsNScwcEEwXiYCBwcMFKfhRiswnm0GFUVuShQnGRYoMyQTR7B2VRYo4hQmExdJZEJXOVeWATcBAUFQGQYRETUSEyQfIFARLx1BLgJbcbhrQTojdoJyHyByg3UiO0Brt3JDUFCXIyMiAZxdlVc5V0FlSRcUJv6eNRBSbz0SPXBREDUKMiQbRSIiRRsjMkIdHR5KmjjRjo7ROJr9lR4eHW8iIiP94RErPCswWy0tWzArPCsRSxUqJiRMOztMJCUrFQIAAQMuQhwvEVAgICMTEjUSEAEHGFFBAQH+az0iUjc3UiI9GDYgIDYB3xMoF1V3r0cTJTIpFRknFEpuRRUGbZ4wK0fhphQMBwgBJl4wQXAwJzUsMCMTUdTwRl4nN29DMS8nMycFCF+TXxBIOFkyAgE/QHF5CyQ9G1V7ORk0Gxs0GTp6VRs9JAt5cUA/AQIyWThIEF+TXwgFJzMnLzFDbzcnXgJHl6ooSF06JxItJxcWHlZeKyNMNwVaXk1NXg0nL2G9XS4xBQYVNVpNKJZ/RgQEHwMCMldXM0RCRztgOP4YCBAHR4Z1LhVbgE4NSIQ0RE03FhsnZ3xIDBr+p02DUT18NCRVaYZWVodqVCM0fD1Rg00REQJsGhkZGv3iOGA7R0JEM1dXMgIDAQcOPm18VFV8bD4OJEgqIFk0NFkgKkgBOxcVFRf+0AFINzExN/64AU4eFxUVF0gaGRkaeUt3azYvWSoqWS82a3dLBlRqOiVNOztNJTpqVP5tDRoMSHxnJxsWN01ENIRIDU6AWxUudYZHBxAIAmQrQWMxMWNBKy9HIiJH/DgEBEZ/lihNWjUVBgUxLl29YS8nDV5NTV5aBTdMIyteVh4WFyctEiY6XUkoqpcADQC+/qwJagbMALIA1ADjAPIA/gEgAewB9gIYAicCSQJTAl0AAAEiJjU0NjcXLgInLgE1NDYXMhYXHgEVFC4BJy4BLwEmAjU0NjMyFhUUHgEzMjU0JjU0NjMyFhUUHgEVFAYHHgEXPgE3By4BJyY1NDYzMhceARceATMyNjU0LgE1NDYzMhYVFAYHNhYVFA4BDwEOARUUFhcnNjMyFhUUDgEzMj4BNTQuATU0NjMyFhUUBhUUMzI+ATU0NjMyFh0BHgEVFA4CBzcOAQcWFz4BMzIWFRQGIwEiNyImNTQ3JjU0MzIXPgEzMhYVFAc6ATMyFhUUIyInFAYBIiY1NDYXByY2MzIWFRQBIiY1NDYXByY2MzIWFRQBIiY1NDYzMhYVFAYFIiY1BiMiNTQ2MzoBMyY1NDYzMhYXNjMyFRQHFhUUBiMWASEyNjU0JiMiBy4BJzY3PgM1NCYjIgc+ATU0JiMiBhUUDgEjIjU0NzY0NTQmIyIGFRQWFx4BFRQOASMiJjU0Njc+ATU0JiMiBgcuATU0Ej8BPgE3PgE1NCYjIgYHPgE1NCYjIgYVFBYXHgEVFAYjIicuAScmIyIGFRQXFhIXDgIHJic2NTQmJy4BNTQmIyIGFRQWFx4BFRQGIyInLgE1NCYjIgYVEAUXHgMVFAYjIiYnLgEjIgYVFBYXHgEXHgEVFCMiBhUUFhMiNTQ2MzIVFAYnIiY1NDcqASMiJjU0MzIXNDYzMgcyFhUUBxYVFCMiJw4BBSImNTQ2FwcmNjMyFhUUASImJwYjIjU0NyY1NDYzJjMyFhU2MzIVFAYjKgEjFhUUBgciNTQ2MzIVFAYBIjU0NjMyFRQGBBlldzYwCicxJBRANk43ImMoCwwxRB4uUSdlyMxVOztVKjIKCiBQODhQDAsGCAcVEBpDIAQTV0wWVTtWKCpKFREOCg4LFBRVO0tUAgU7VDxjPRFygwsKGipNO1UbDxAdQi4YGVU7OlYFKjtcNlU7O1UjK1SUwGsnMopQAQMRKhE1Tria/NUdAhIZFRMPExEBDQoKDgUEBwQQFiYJBBH+UxwmOiQmCBkUEBcDTBwmOiQmCBkUEBf+9hAXFxARFhYCWAsRBAkmFhAEBwQFDgoKDQEREw8TFRkSAv2nAdp3ix8UIC8fNBvPZV6th08VEhUiBwkmGhslSIBVegMCJhobJQkHCxZHazciLAkKBQwmGiAtAzM/kX4RHTcYNCIfFRErMQwNKCcZJwcKCA83MkIdIk0qEyUbJQlMYRUaNy8PgDsUBQUGByEXFiIJBwgIKSUrIkQxJhobJQFsZXiKQREjHBo/JB8hDRUeHSUwUB8lH0YfKknLHywZHyzOCg4FBAcEEBYmCQQRCx0CEhkVEw8TEQENAZAcJjokJggZFBAXAn8KDQEREw8TFRkSAh0LEQQJJhYQBAcEBQ7zHywZHyz96B8sGR8s/qxTSTJODxkRFhAIHjsoOkgCLBsIDQQMFiwRHS4VOG8BTNM7VVU7WXo+EjSCQzhQUDg5U080HzwaDBIMYM1MMo/1cyMpO1VMTZEtIxUtISFmZh87VY59CiYvAU44NkBBORBr6l8ZLBcCQlI1HT4pVXYxY3xeNjtVUjsfTSA0dMuCO1VVO6AINyVInJR2IyFwxlECAg4LTjVofALVKBAKEQYSERAUFB0eFA4PEAseAg4VAbkYEBQZCScmOSYcQvzqGBAUGQknJjkmHEIBJyIZGCIiGBkiahUOAh4LEA8OFB4dFBQQERIGEQoQKP4bUUMUHzIUNi696B5ofoE3ERMXNYBNGyUmGpvvh4QkHxQiDR0mJhoZLx0rfmVOmmcoIQ8lFwoiDhslPTgdeUdwAQd3EBsrESYkFRcfERxBbC5XZCYaDTEyKFUfR1c9SppMIiYaERF//v+PPp2hRS5aOUYgNB0iSzEXISEXGzwjIUAeLjslSpVkGyUmGv6J0TpFUi8hExojHhkWER4UERcNER4OEB8SNiwhJCgE9h8ZKx4XLq8eFA4PEAseAg4VKA8LEQYSERAUFB2BGBAUGQknJjkmHEL+qx0UFBAREgYRCw8oFQ4CHgsQDw4UHq4fGSseFy79fx8ZKx4XLgAAAAAHAMr/kgleBeYAVABxAHkAhwD4ATcBPgAABSImJyImNS8BLgEnLgEnLgE1NDYzMh8BPgIXPgE3IiY1NDY7AT4BMzIWHwEzNjMyFhc1NDYzMhYXHgEXHgEVFAYHFhUUBxYVFAYHFAYHDgIHDgEFIjU0PgE3Fw4BBw4BIyI1ND4BMzIWHwIWDgIBLgEnNx4BFwEqASc1FjIzMjY3Fw4BBzI2Nz4CNz4BNTwBJz4BNTwBJz4BNw4BBzU+AjU0JicuAScuASMiFRQWFw4BBy4BIyIGByMnJg4BHwEhIgYVFBY7AQ4BByYjIgYVFBYXJwYWFx4BFx4BMzI3Fw4BIyImJxcGFRQWMzI2NxcGBx4BAyImNTQ2Ny4BJyImJxYzMjU0PgE3BhUUFjMyPwE+AjMyFhcyFhUUBhUUFw4CBz4BNTQjIg4BBy4BIyIOAQU1MjY3FwYFTGHIM1VY6RZGXgNAVAsZGyMfDhU5AjhWLgIFAjc3QzDaBDAfERoQSIJzjVy0UjwpLGc1R14MVGQaHQcxAk1EWUY0QTcmbdn8Jg8vTy8YSWElMWcbEU53PQ8eD5huAkdxfQFQSXQpOh5UOgKBChMKDBcLRHExITmH52fKYB1CSSdBNQJGSgIREwExeDxRgUtRSgtXQDlNGRoQEBkpGjTNb0B9MpxjCxcKBxj+zA0TEw2aJDARHx4xSAUIowUUHA5XOAiCbY5dLzaVTwgeE+4JMCIzZCM2OUkhkr0xKjoUfa8+Oj4IBwcOFjIpCBQOEQ0PPqW/ZJHvSV97JQUPQ04gKTUmHj1cTjxZNxlEZAGSXIM3KH9ZMEMrKY9BIohMMW0xG00nM0QNIkZhMAUFCwM6LjI+GisKCzA3LzggJzhHTBNUMyGLWjRgLxwiVkIJDTpkHTJqHhYeHxlGNhURU5RrFR0EBQEBGQsnTjMEBYsxPWpRLQJXAiswLiIdAf6hAUoBGhlDGiDeMz0TJiYSHkUgCRAKEVI2Bw4IEisgJzADSwNRiFVIaR82Sg5QNRoLLCAJFhU+Tx0aRQgLFgshEg4OEyJVOw9XQRJLKV8gRCUpaS5teEQ5KC0BBJEIBhMUKB80NxcdHAJUCQcIEgoDMjRERgQaHTspAgkNERgPEUddLjdAVUIoPBcHChIwLAswaiIqQHlXBAUgH6xKICA+TAAACQDK/5IJXgXmAFQAcQB5AIcAlQEGAUUBTAFcAAAFIiYnIiY1LwEuAScuAScuATU0NjMyHwE+Ahc+ATciJjU0NjsBPgEzMhYfATM2MzIWFzU0NjMyFhceARceARUUBgcWFRQHFhUUBgcUBgcOAgcOAQUiNTQ+ATcXDgEHDgEjIjU0PgEzMhYfAhYOAgEuASc3HgEXASoBJzUWMjMyNjcXDgEBPgEzLgIjIg4BFR4BEzI2Nz4CNz4BNTwBJz4BNTwBJz4BNw4BBzU+AjU0JicuAScuASMiFRQWFw4BBy4BIyIGByMnJg4BHwEhIgYVFBY7AQ4BByYjIgYVFBYXJwYWFx4BFx4BMzI3Fw4BIyImJxcGFRQWMzI2NxcGBx4BAyImNTQ2Ny4BJyImJxYzMjU0PgE3BhUUFjMyPwE+AjMyFhcyFhUUBhUUFw4CBz4BNTQjIg4BBy4BIyIOAQU1MjY3FwYDNzYzMhcuASMiBgceAhUFTGHIM1VY6RZGXgNAVAsZGyMfDhU5AjhWLgIFAjc3QzDaBDAfERoQSIJzjVy0UjwpLGc1R14MVGQaHQcxAk1EWUY0QTcmbdn8Jg8vTy8YSWElMWcbEU53PQ8eD5huAkdxfQFQSXQpOh5UOgKBChMKDBcLRHExITmH/tYUJxkKV4BGQ3BCLu7vZ8pgHUJJJ0E1AkZKAhETATF4PFGBS1FKC1dAOU0ZGhAQGSkaNM1vQH0ynGMLFwoHGP7MDRMTDZokMBEfHjFIBQijBRQcDlc4CIJtjl0vNpVPCB4T7gkwIjNkIzY5SSGSvTEqOhR9rz46PggHBw4WMikIFA4RDQ8+pb9kke9JX3slBQ9DTiApNSYePVxOPFk3GURkAZJcgzcof+GSQjwIBCBrPkaOMhQjFlkwQyspj0EiiEwxbTEbTSczRA0iRmEwBQULAzouMj4aKwoLMDcvOCAnOEdME1QzIYtaNGAvHCJWQgkNOmQdMmoeFh4fGUY2FRFTlGsVHQQFAQEZCydOMwQFizE9alEtAlcCKzAuIh0B/qEBSgEaGUMaIAHYEQxnsGxhomEdH/1KMz0TJiYSHkUgCRAKEVI2Bw4IEisgJzADSwNRiFVIaR82Sg5QNRoLLCAJFhU+Tx0aRQgLFgshEg4OEyJVOw9XQRJLKV8gRCUpaS5teEQ5KC0BBJEIBhMUKB80NxcdHAJUCQcIEgoDMjRERgQaHTspAgkNERgPEUddLjdAVUIoPBcHChIwLAswaiIqQHlXBAUgH6xKICA+TAEgu1UBNjk/NSBhYSIAAAAMAsH+rAdnBswAEQAsAD4AUABtAKEAwgD2ASgBQQFTAYUAAAEiJjU0PgQzMhUUDgMnLgM1NDYzMh4CFwcuAyMiFRQeAhc3Jz4BNTQmJyY2MzIXHgEVFAYHMj4DNTQjIg4EFRQWASImNTQ2NTQuAjU0PgE1NC4BNTQzMh4BFRQOARMiJjU0NjU0LgI1ND4CNTQmNTQ2MzIeAjMyPgEzMhUUDgEVFB4BFRQjIi4BIyIOAiUiLgEnLgE1NDc+ATMyFRQOARUUHgEVFCMiLgEjIhUUBgEiLgIjIg4BIyI1ND4BNTQuATU0MzIeATMyPgIzMhUUBhUUMzI2MzIVFA4CFRQWFRQBIi4CIyIGIyImNTQ+AjU0LgE1NDMyHgEzMj4BMzIVFA4BFRQeAhUUBisBIg4CASImNTQ+ATU0JjU0MzIWMzI+ATMyFhUUBgEiJjU0PgEzMhYVFAceARUUBiUiNTQ2NTQmJy4BNTQ+AjU0JjU0NjMyFhceATMyNjMyFRQOARUUFhUUIyIuASMiDgEE7TdGQW2Dh3coS0JxjpqkTaSLVi8xMImYjTMyJH2QgyoRUX6NPJVGAgEMCQMVEB0FCwwBVDmBe2U8ChdbcnRjPRn+qA0NCCg1KDc3HR4ROWA6LTy2DA4MNkY2NEU0AxAWFiMiJRYRNDkZGy4uNjYrJkY2DQ8fIScBxgsOCgYHClEvRgwQHh4gIBMKKiUECSD+PBMdFxQKCi06HxUjIiQkEQwxMQgKFBohGB0HGh0/Gh0sOSwFAVAZEQUOFR5XIRskKTcpGxwYFjgzDxMuMxgZEBAvPS8yQioQDwwV/r9BWjMzKB0dNw0MDhISFR5FAhIzUSs5Fg4PExwrJ/5XFBcUJCskKjcqBAoNFycNDhAOICoaGisrLBARKSQMBx8r/qwxKCFrfXxnPlREmpJ4R1cdcIeEMSc0N1pqMzwkYFw9ECBrdWIXfAYVPhYmcS4QGhwybTgkMec/aHx+NA45W2xpURMKDANVFQ8WJg8JBgQMEBYdFAYHIisUEi5NLSRYQf6uDgoRQRAeGAkOFRQYFRwYGiwTLDkyQzIaGhoeOy8ODTI2FBkbGiYzJmMnMQ8UJRNDEwseFh0lFgcHHSQSDwoJCSc3AhEzQjMjJBIdOzALCyo5IRgcHCo4KigiNBIfExgZJR4ZDhA1HWj++DFAMRERDRAhIiANCzk/FBgpKjo7JRo/MggNGBkfFBEPN0k3AyghFxERDgkMQBkeLjo5XUlORf4MMiQbQzEVESEsDTAREBTdFRlREAgLCAoUDRMUDxQTDy0PGiY2Hh4SFBIULykNDFApGyUlNjYAAAAACwJE/qwH5AbMACAAQQBjAIQAiACqAK4AvgDCAOQA8gAAASInDgEjIi4BNTQ+ASQzMgQeARUUDgEjIiYnDgEjIicGAS4BNTQ+ATU0LgI1NDY3Fw4BFRQeAhUUDgIVFBYfAS4BNTQ+AjU0LgI1NDY3Mw4BFRQeAhUUDgIVFBYfAS4BNTQ+AjU0LgI1NDY3MwYVFB4CFRQOAhUUFhcBNTMVAS4BNTQ+AjU0LgI1NDY3Mw4BFRQeAhUUDgIVFBYXATUzFQEiJjc+ATc2FhUUBw4BBwYBNTMVBTI3MxYzMjY/AR4BMzI2NTQmJCMiDgIVFBYzMjY3Fx4BEwYmNTQ2MzIWFRQGBwYEY2E9GDwfXXg5bcMBBpqZAQbEbUd9USVBGx1aPVpESf7fEBQ2NTVENRYNSg0QNUQ1ICsgEAy0GiAoNig1RDUHBFAEBzVENSg2KBwWthkrKDUoLzwvAgFSBS88Lyg1KCMV/dRQAmgSECUwJSw7LAIBUQEDLDssJTAlDhD+LVD+CBYUDCp0RxQnHTRiJwwC21D970A5PjFRNkITQRMuJFhvqf7ftovrq19ZZRwuEEIMQ04NGSUaEhgUCw4C6T0OEFqSU4nrr2JcpNuAZZ9aCxAYIi04/FodYClHZmI/O05IXUkvRx8gHzUhOVBJXUY6V0pJLB1PGIA7gjE/Y1VTLzNRUWVJFx8NDCAXPVdPXkI8XVNXNilwM1sogEtSdGFlQzxXUGFGBxAHDRE5VVFjSEtvYWxIP2cjBGSRkfvYNWQlRWNVXT1CVk1mUgcbDQscCEhYS2FRSWZTWTwgVDAEDpGRAacnFUlpIwoTFxwOGVlAFf5ZkZEBNisgFQMPCpd3leyKVJnOemqFEA8KFh4CngMXERUbFxEQFgEBAAAAAwCC/vIJpgaGADYAUQDEAAABIi4BJyYkLgEnLgEnLgI1NDYkJTYsATYzMhYVFAYHMhYVFAYHHgEVFAYHHgEVFAYHHgEVFAYlNTI2NTQmJzUyNjU0JiM1MhYVFAYHHgEVFAYXMj4BNTQuASc1PgI1NCYnNR4BMzI+ATU0Jic1PgI1NCYjIgYHNT4CNTQmIyIOAQQHHgEVFAYHHgEVFAYHHgEVFA4BIzUyPgE1NCYnNT4CNTQmIzU+ATU0JiMiBgcMAQYVFBYXHgEXHgQXHgEFMSM+OB3N/vmkbDIKLyQ0OhjfAfQBn7YBSgEZ1T9ARbaDaoHKuDhKsKcyLY53R0zy/e0zNk5SXmZfWHmOMCoZHWLxaaVfOnxkZ7VwbncgNxNup16biZ74jnFxLWY7ieiNHBksqOf+6psiJUtLSE52cxESc8qDZadkQUhemFmvm5uvTjwMHRz+g/46yC06MjYQJklgj9acL1b+8gMEAxZCeM2gIk0oOltcOqTtq0AcWls+Rj5fnDtWRVWIJBRaNVRoDhxFL0BoGBlUNmF9mk4aFhwrBkYoHx8iTk5BJUASEDMgOEZKJ0EmHi8qFFACJz0iLEQdUAEBIDolND4LUBBDVi4nJwcIUCZkd0EWHi5IUCMTQio5Vx4SSDRAWxwSKxlBZDlQJkEnHR8EUAQkNx4qLlAOTjgnNAEFP5jIiUVkQTdYMXeka0MqEgUFAAAABgG4/qwIcAbMAEUAVQBsAIQAwwDPAAAFIiYnLgInLgE1NDY3PgE1NCYvASY1NDY/AT4BNz4BMzIXPgEzMh4BFRQGFRQWFz4BMzIWFx4CMzI2Nw4CBw4CBwYBIiY1NDc+AT8BFw4BFRQGJSImNTQ3PgE1NCYnNxceARUUDgEHDgEDIi4BNTQ2NxcOARUUHgEzMjY3JzcXDgEFMjY3Mj4BNz4BNyoBIyIuAScuASMiBgcuATU0PgE1NC4BIyIGBw4BFRQWFx4BFRQGBw4BFRQeARceAhceAQEiJjU0NjMyFhUUBgTzVmwyCitGM0xIMjQsJEdV/CMRDWsQGQwLHxILByBUH1uTVh4YIhUtFU6kalNrZEg1RiExOyMON5renUH+3mpNT1lBEDelGzVfAaBMMiFHJzMypzkZNyU1Gg0tppTlgwcETgMGbsF9SYU0SDCUXLb+zB83IJnMhzIMMR8KEglEaXZZY41EHzcaPTQPD0FuRRxOCwIDBAR6ZCoyLysZNy1BSycJJkn+ohIYGBISGBhKTmMUNUkzTa5zRJdcTW47RlAbKwUkDhkHPAkeGxcbBREWYKRoU7I+NEQmBAQwOCssDgIBUGxPJpS3VQI0/vYeHiUTFiUicwQkeDdBLA8bGxoNGh0YHVtGI2kuLCATPTsRCQUCIme1dBsyDRAILxNdkVI1MDdAb2Na1xgcRaCJIWw1EjEtMyoICzlzTS5wczJRgUoYDA8gEhYlFCpzZEaBWVOBOUFrXS1BUTMUTDkF9hgSEhgYEhIYAAAAEAHl/qwIQwbMAC8AOgBKAFUAegCGAKQAwwDRAO0A9wEHAUwBYAGZAZ8AAAEiJickADU0NjcXBhUUAAUeAjMyPgE/AT4BNTQuASMiByc2MzIeARUUAg8BDgIBIiYnNx4BMzIVFCUiJjU0NjU0JzcWFRQGBwY3IiYnNxYXFhUUBgEiJicmNTQ2MzIWFx4BMzI2NxcOASMiJiMiBhUUFjMyNjcHDgEBIicuASc3HgEXFgYBIiY1ND4CNTQuAjU0PgEzMh4BFRQeAhUUDgEnMjY1NCYnLgE1NC4BIyIGFRQWFx4BFRQGBw4BFRQWASImNz4CNTcUDgEHBgMiJjU0Nz4BNTQuASMiBhUnNDYzMh4BFRQGBwYBIjU0NjMyFRQGASImNTQ2NTQnNxYVFAYHBgE0PgE3JyY1ND4BMzIfAQcnJjYzMhYfASM3PgEzMhYPARYXByYnNzYmIyIPAS4BIycmIyIGHwEOAQcnJiMiBh8BDgIVBSc2NDU0LgEjIgc1NjMyHgEVFAYlLgE1NDYzMjY1NCYjIgYHDgEPAQ4BIyInDgEVFBcHJjU0NjMWMzI/AT4CMzIWFRQGIyIGFRQWFzcnNjUzFAa9N+V9/t/+0gkHTg4BFQEMQY1/KhUjMikhPUU1WTU6QixUVE58SUk/IS9CP/5fTH9DRDVgPSj+oQwUDSA6IgcIB5ctch0wMWEcEf4EPVorMjcuDBgKEi4mJjkfDyBEKVI1FwwRXlgjNR8QFjMEBxIJFiILNgkjFwkV/Nl2jx0mHSErITxfNDtSKig2KEFxSEpgIBUnICA0HTpFDBIpJhMaHBdiAtcTEAwiJA48EiomCi0PEwpAPVaQWFFgUJFwbrRsTEQT/RMWLBQWLAO+DRACXCR0AQID/NsKHh17CSU4GyQSdBElBzc+IywDHQsZBCoiLz4EGBoZKh4rGQIRER0DIA0uISEDIRYUAywTIhCOBAsSJweJICMMA3hQAkNuQSYwLydXk1gB/pInN+GwExQwHg8WGgwjE9gQIg0YHCg/GkwecFIbDg8W1hEtOyRBXUkukLEoGCYwGzz+rDg8igGB5x8+HRYyMs7+o38eMR0eYWNPkfhHWJBVK0I5a7RuT/74l09xdywBKoGXAndnHh7MEQ0GLBtCXxJnTBctFRIMQyciQwwDGxAPAvQTFRk5O0QFAwUIGhZMEhgVHRUcHwsOUQcH/J4RLWFAHkFdMhMaAUGikE9zXVYxP040MyQrTTBqwYNOfG1rPkl5SFBtTSxeNGGEPWahXEAdCR0XNWs7KlZES2I1cHL+dyQOKGaqjg6VvHgwDQE7Fw4PCkBtKz9oPj0zB1diU4xWPYJEEwPeEBMbEBMb/BoUDgsTCndEMFSXDBcMGwJXS25iN8EPEBkuHhuoCs4nOyYWxbgaIC4k1g8ZKh4S7Q4TGeMFBeEdFA/uBxEOzAckC9Q4Wm1VzwgIDAZAbUMOUwtYklYJESogbDqAjyAYKTANFgoVB04GBggEbU4+URhfSHSbCAhOBiYhYUg4UGVaKlgUwSQiU2YAAAoAWv6sCc4GzACZAMkAzQG7Ab8BzQIFAhMCIQIvAAAFIicOASMiJicHDgEjIiY1NDY/AS4BNTQ2Ny4BJzwBNy4BNTQ2Ny4BNTQ2NyY1NDYzMhYXPgEzMhYVFAYHFz4BPwERPgEzMhYXERceARc3LgE1NDYzMhYXPgEzMhYVFAceARUUBgceARUUBgcWFBUOAQceARUUBgcXHgEVFAYjIiYvAQ4BIyImJwYjIiY1NDY3LwEPAR4BFRQGASAAETQaAT4BMzIeARceARcHLgEnLgIjIg4BCgEVEBIzMj4BNTQmJzceARUUAgQDPwEnEzI2NTQmNTQ2PwIfAR4BFRQGFRQWMzI2Nx4BMzI2NTQvARcWMzI1NCYvATMyNTQvAS4CLwE3FxYzMjU0LwEuATU0MzIWMzI2NTQmLwEuAjU0NjceATMyNjU0JiMiNTQ2PwE2NTQmDwEnLgEjIgYVFBYXFgYPAQYjIiYvAREuASMiBgcRBw4BIyIvAS4BNz4BNTQmIyIGDwEnJgYVFB8BHgEVFCMiBhUUFjMyNjceARUUDgEPAQ4BFRQWMzI2MzIVFAYPAQYVFDMyPwEXBw4CDwEGFRQ7AQcOARUUMzI/AQcGFRQWMzI2Nx4BAScHFwEiJjU0NjsBMhYVFAYjASIuAS8BLgEnNDY3Fw4BFR4BHwEeAjMyEhE0CgEuASMiDgEHDgEHJz4BNz4CMzIeARoBFRAAASImNTQ2OwEyFhUUBiMnIiY1NDY7ATIWFRQGIyciJjU0NjsBMhYVFAYjA2Y1FRMsFyQxByQfMxYnLy5AKTAxR0kZFAIBSURRTyAkKBwvOikKFQ4PNSgmMggEeAwaDqAiPB4ePCKgDhoMeAQIMiYoNQ8OFQopOi8dJyQgUFBDSgEBFRlKRjEwKUEtLycWMiAkBzEkFysUFTUyMAEDjsLCjgMBMP7o/vr+4FSUwdpwSmxSIQUKBEYHDQcePkwzYcGth03x5bffZAkISwoMef79iDw9G0IUEgYHBJTv75QFBgYSFBQZBSkvFg4SCEnUKxoaLDCUdkRKRztAHwqRwFQbGx0JCAUPCAsuFC4sRTstRUgbDw8LGg1PWi8pRRUaPxogEksPCBoSDQ8HBAIHBXwNHRY1Ga8KJREQJgqvGTQXHQ18BQcCBQYPDRIaCA9LEiAaPxoVRSkvWk8OGQsPDxpJRS06RiwuFC8KCA8FCAkdGxtUwJEKHz88R0pEdpQwLBoaK9RJCBIOFi8pBRkEEF4bPf1+DRISDeANEhINAiaQtVwLHwpCMwoKSwcIMkELHwdFlH3k8E2HrcFhMk0+HgcNB0YFCgQiUWxKcNrBlFT+4/vzDRISDeANEhIN4A0SEg3gDRISDeANEhIN4A0SEg0eMRMULiYbGBQwJSBEPScJMCQqNw0NIxwFCQQEMCwsOAwOKyAgKgweNiY1BAQyOjYrGUEWwAIREK8ClhMRERP9aq8QEQLAFkEZKzY6MgQENSY2HgwqICArDgw4LCwwBAQJBRwjDQ03KiQwCSc9RCAlMBQYGyYuFBMxXmsyQzPJr6/JM0Mya17+ygE+ASGxAVwBNe6IVbaSEy4ZQSdGHICaRYDg/t/+vKP+//7ybfHHS6ZTOWDFWNz+6oMDSRFEAv3SPVAtXg4PGQfR2NjRBxkPDl4tUD1ENkIuEhANEIydIRkQOC6NIh0ODQsODwuhC1wcHQ4NDAgXBQgHEhITHQcFCAkKBggeGQEBHhERFhIJEA4jDxgQEwUTMxwpFBETORoNFwnGFR4bwAJ9BQkJBf2DwBseFcYJFw0aORMRFCkcMxMFExAYDyMOEAkSFhERHgEBGR4IBgoJCAUHHRMSEgcIBRcIDA0OHRxcC6ELDw4LDQ4dIo0uOBAZIZ2MEA0QEi5CNkQB11cCRAKIEQ0NERENDRH6HiVVR8lGaRxwzWA5U6JEKHlJyS03GQEOAQGiAUQBIeCBRZqAHEYnQRkuE5K2VYjv/sv+pLD+3v7DBloRDQ0REQ0NEXgRDQ0REQ0NEXgRDQ0REQ0NEQAAAAAIATb+rAjyBswAFQBOAGAAcQB8AIoAmQCuAAABJTQaATY3Fw4CAhUFETQCJzcWEhUBER4BMzI+AzU0JiMiBgcOASMiJicBLgE1ND4BMxUiBhUUFwEeATMyNjc+ATMyFhUUDgMHFQMiLgI1ND4BMzIeAhUUDgEnMjY1NC4CIyIOARUUHgIlNzYzMhYXByYjIgUyPgE1NCYjIg4BFRQWFyImNTQ+ATMyHgEVFA4BEyc2NTQuASMiBgcnPgEzMh4BFRQGCPL4RBk6YEg7QFk1GAccn4hKjKH7UwgSCUehnX9NJCAxfVNKYSAVOxr+AiMtP2Y8O1YuAf8OIgoUUjpzgTk+VkyCo7BTE2G4klZrtG9eqoNMW6Fof5o/b45QW5BTSHybASgnVFcuVysYSU9tAXAqTDE1ICFMNywmQ1VJbDUqSzBGcFNGHledalKGLzM4omB/wW4U/qwC8QFjAQK7SDNCqOb+x9ICAdimARpVLmH+z7H+BwEZAgJIeJKWQCgtZFZOQRcUAY8cVS47YjtLUjtBJP5xChBHOnNVWkZJpJ+FVwnMA91jqtZze8RzYKbWd3/GcEvKoGe7klRdomhku5VXIloVCwtHEkMfMBsoQTJGHh0gS0s9M2hGM1IvMFIzAR0oVmSLz3JIQjhNUIfxnzxyAAAA//8CWP6sB9AGzBIGBXYAAAACAlj+rAfQBswALgA8AAABLgE1NDY3PgM3LgI1ND4BMzIeARUUBgceAxUUDgMVFAYjIiYnFAYHAz4DNTQmJw4BFRQWAyVgbaClI0tRWC56yHd5y3p8yXicf2TNrWkxR0gxUzkSKB4CAhgUSkw1aVwUJBL+rEOvZYbrdCNoblwWBnjGeXrKeHjJe4vnOBZ7qrdSOFJERFQ6RUwLDyInFgFLKVNPRRstWyJJpU0mTgAAABMB4P6sCEgGzAAnADUAQQBNAFkAZQBxAH8AhgCqAM8A2wDnAPMA/wEGARIBHgEqAAABICQnLgM1NxQeAhcWBCEyJDY1NCYnLgE1ERcRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYDIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBIiY1NDYzMhYVFAYBJzYkMzIEFwcmJCMiBBM+ATU3FhcBPgIzMh4BFz4BNTQnExcOAiMiJicOASMiLgEnNxMGFRQWBy4BNTQ2NwM3HgEzMj4BNzMeAjMyNjcXAx4BFRQGByYkIyIEEyImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGASImNTQ2MzIWFRQGBSc2NxcUFgEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBgUiJjU0NjMyFhUUBgUi/tz+qQ8IDQoFUAUJDggMASQBCsgBIZsMDRMXUBQSDg+v/rz4VYw3My9vR0dwLjM3jP6mJjMzJiYyMv4TGSUXERgkEygfKysfICoqAV0WIhoUFiIaAlUmMjImJjMz/D4NdAFj1tYBZHMNj/7B0tL+wXQODyYqUP5aY8TbhIXaxWITCC1MGDleXDWA60VF64A1XF45GEwtCAUmKxITTDtKj1JXoX0fOCB8olZSkEk7TBQRKyaC/r/b2/6/qCEuLyAgLy4BUyAxMSAgMTEBTRQaIhYUGiL+fSUyMiUlMjIBeL1QKiYQAUUTEyQYERcl/oYhLi8gIC8uAVUfKysfICoq/qy0nVOqwemRCpPrwqpRdpJFd0kUJxooTysCURX9xCpGJBstG2aZVgIcQ0MsOTMzOSxDQwE6OCgoOTkoKDgCRzwoHihAKR4jAT0rHx8qKh8fK/7jJxwXIygcGCH9mTgoKDk5KCg4AcM9HTQ0HT0dLi4BYShRKw1XJP3eFh4PDx4WFx4KNhUBtRsnLhNtW1ttEy4nG/5LFTYKHm0aRS4dMxABySU+OzpmQkJmOjs+Jf43EDMdLkUaICkpAqUyIyIxMCMjMv6/OisrOjorKzocIRgcKCMXHCcBtjIlJDIyJCUy3DYkVw0rUf7eIx4pQCgeKDwBfTIjIzAxIiMyQCsfHyoqHx8rAAAAAAUAtP6sCXQGzABqAHUAfQCJAO0AAAEiJCcDDgEjIgMOASMiJic3HgEzMjY3HgEzMj4BNTQmJzcTFgQzMj4CNy4BJy4BJy4DJzciDgEHDgIHDgEVFBYzMjY3Fw4BIyIuATU0Njc+Ajc+AjMHHgMXHgEXHgEXDgMBJzY1NCc3FhUUBgUnPgE3Fw4BAyImNTQ2MzIWFRQGNyImJy4CJy4CNTQ2MzIWFx4BMzI2NTQuATU0NjMyHgEXHgEzMj4BNTQmNTQ2MzIWFx4BMzI2Nz4BMzIWFRQGFRQWMzI+AjMyFRQGFRQWMzI+ATMyFhUUDgIEBw4BBw4BBuXm/tApPxZkQolPL1ojPlkPTQstJCNyRx5ZLiA4IgICb1pCAQO2R5eUgzQ0iFwlTSROc2VxThlut6BMQGd4W4SBSDlJiDVAPqxcPF82qp9OaVw6XbrtpyJLZVpvVCFJJGmwLUKbqrH6aEMYDUkUFAIVFGuMLkk2pGIXIiIXFyIiYSUwDw82XkyIxWokGyNHKzNWKxIbHh4pGyE0NCA3WjoqOh4LJDUuMA0KHhoaKBwjPygjJxIWEx0gHCklPhEPChUxOB4WHGi06f75hCE/EihM/qwPDQFAYnEBDBodTEQSKig0MZKoSHVCBhERJ/46CAkKERgPe7pnKVkuZodgUC6MJlJCN0QwGiWLaDtLT0kvV2I4YT2GuCoVKT4yUFsmszBJV4dtK1Modf+XFiIYDQJoKicgFhogJCwfOs1OF2FpIHl5AewiFxciIhcXIn8tLzBIPSA6jJdIIy0wMz04ERofTFIoJyonXVGJaS5aQjRDLjdXSFtGNDJBUkMsHRg0FBMWN0c3QBc6EQ0NNDMkITuLjoFjGwcsHUA2AAAAAAgAlv6sCZIGzABaAGoAcgB2AH4A1wEdAUQAAAEiJic+AzUPAR4BFRQGIyIuAScuAScuAScuASc+Ajc+ATc+ATMyFhc+ATc+AjMyHgEzMjY3PgI3PgI3Mh4BFw4BBw4BBw4CBw4DBw4DBw4BASImJzcXBx4BMzI2NxcOAQEiJic3FwcGEyc3FycuASc3HgEXATI2Nz4CNz4DNz4CNz4BNz4BNy4BIw4BBw4BBw4BIyIuASMiDgEHDgEHDgIHDgEHHgEzMjY3HgIXHgEzMjY1NCYnNjU0JzcWFzceARUUDgEHHgEBIi4BJy4BJy4BJw4BIyImJzceATMyNjceARceARceARc+ATU0JicuAScuAScuAScuASc3HgEXHgEXHgEXHgIzHgEVFAYBJz4BNTQmIyIOARUUFjMyNjc2MzIVFAYjIiY1NDY3PgEzMhYVFAYEVDFNEBsrHxEoFAUHWVs7SzgfKlYgIyUPRnYyJ0NNNxKPYRRtPg8dDiloPFyNg0xBTDokECkNGi42JTE7Kxg1cFcPPbeGHiQMNFBKLA5MaXI0BxghJRQhTfzvJ1ZOozBCER4OJjoQLSFRAY8nRxI/2jU2Fy8eL44cJgI6BhkRAUwWKBASIB0LNHFrVBY1SkYwDjQqRXAwBzMXIkFJGkEXF0EfNz9BOkJrellJeyVEh45NMYAoLEsqFB4KCjRRNSBBPTYrEAsMOTI8EpMCAw8gGg4YBGIdamgbIEkVCBcQIEglGCkQHAsaDyxlIxQsDREoGQ82KAICAwINFggfKAgGFAgHIiIaMkANBxIEAxEKDDk4CAgfDvybJYaoNi8rXkANChQoCgsQE1lEND5EODRlOU9ltP6sEQtInZ2RPQtcGTccW2UkYl0aQSgFFRYIOi8jLR0KTWwIOEIEBDl9PV5qLR0dGA0cJxgDBBYxLClBJEB4Ow0iD0RVNBIvfoRzJF3Dup85DQ0B9x0qeTozBAUcDD0ZHP45DQvMBtIMARo1GzbdEUAkCRkqDv4qAwJAuuV/HmuFiz4TLU5DEzQPGDkjFCkjGAQBMBcYIx0dJGBZSaA1E0hrSgEhFRMTAwEjR0QffFRHMSZQIyYeQi4+MUUfESoYRJKmZAEBAnAGDAgLOyEOLSIRFgkGSgQFMhoxYhUaIwgFCAIOHA4LEgkBAgEGMR8YViMjJwtLDkk5HlYVDxACAQMCB0krJU8C6UVFqEMmMyg6HA0NHhQVGlNuRDgyXyApJmFHW8IAAAkA5v6sCUIGzAATACMALwBVAHIAigCtALkA2AAAASIuAjU0PgIzMh4CFRQOAicyPgE1NC4BIyIOARUUHgETMjY1NCYjIgYVFBYHIiY1NDY3LgE1NDY3JjU0NjMyFhc+ATMyFhUUBgcyFhUUBiMOAQE0PgI1NCY1NDYzMhYzMj4BMzIXBh0BBy4BIyITLgE1ND4CMzIeARcHLgIjIg4BFRQXASImJzcWMzI+ATU0LgEjIg4CFSM0PgIzMh4CFRQOAgMyNjU0JiMiBhUUFhciJiciJjU0My4BNTQzMhYXPgEzMhYXHgEVFAYjFAYDZIformFhruiHh+euYWGu54ee/JOU/J2d/ZST/SMsPzsrLD89GCEmBAQ0PkE2Gh8YFzkNCzcZHisBAigsVkcYV/6UKjcqBy0fGCULFxokJBINJd4JORoqj0ZLWp3OdITnoxtOF4zHcYbehXwEh1WjRymAlpXxj4/zlW3BklNQX6jefoDfqV9fqN4DLTtNMyw9TWIwWQxJb1sIBz8jRhkiLBInLgQpSmFBIv6sX6rkhITkqmBgquSEhOOrX06R+Jqa+JKS+Jqa+JECjTwoKDc7KSY5fiMfCxgNBiscHSwGLyscJCodMkdYQBITCB8eK1clMQSDIiYYFxMIGQ4fKBktLAYrTSWfBwn9UUzCaXTKmlZyxn4RbKligtmDvIT9hS4rQ06N75GT745Tkr9sfdunX12m3H9+26VdAsM3KjBIOSovR5JOMlE2QB0wFE8uKRoUUUoGPx0fLUY/AAAABgIQ/qwIGAbMACwAQAB8AIwAoAC2AAABIiYnDgEjIiYnLgEnLgE1ND4BNz4BMzIWHwE+ATMyFhceARUUDgEHDgEHDgElJz4BNTQuATU0NxcGFRQeARUUBhcyNjc+Ajc+AzU0JiMiBhUUHgIVLgEjIgYHLgEjIgc0PgI1NCMiDgEVFBceARceATMyNjceAgEmIyImNTQ2MzIWFxYVFAYFBiY1NDc2MzIXHgEVFAYnLgEjIgE+ATU0JiMiBiMiJjU0MzIeARUUBgcGE0+KJzV4N5CbIRdAKiQuYJtaKmo1LF0fmyl6Nzx9L3prLj4YFiUVG6b+tE0MBiwsB0wFLS0HzlR9ExEZFw4OKyseh1cWISYyJjR4QGjOUzOUWjEvJTAlJFmKTkwrQxgdcW86fzcOSWb9/jpAERQUDyZRIhUfAcwTJQ90hSYnEhUbFBMiEHf+ugYHYlUcLhsnLmmPwGIEBf6sNiolKKi+hdNqWsFZaolNESEdGA4aISckHiKwd3PHvmhe20xgdooYTHUrXo6QYS4kEiAjU5KZXDGCi1ZGPIKFPj2Pm51KdIkQDg0dICcZGBdESVBKCg8WExQMHUh3SZi+bN2JpIA3LyE3IQQXGBIQEBQRDgkUFBYtDRQWEwlMBgMTDhATAgIDAZgdOh5mdxg6MXJ6wWwkQCAAAAsAtv6sCXIGzAANAB8AMQBZAGUAeACEAIwAmACpALkAACUiJAACJzMWDAESFRQGBSImNTQ+AjMyHgEVFA4DJzI+AzU0LgEjIg4CFRQWASIuAjU0PgEzOgEXByYiIyIOARUUHgIzMj4BNTQmJzceARUUDgEBIiY1NDc+ATcXDgEBIi4BNTQ2NxcOARUUFhcWFRQGAyYsASYnNx4CBBcBJgAnNxYAHwEyNjU0JiwBJxIABAEiJCc3NiwBNzYzMhUUDgEEJzI+AjU0BgcGDAEGBzcWCLWQ/tn+5vpjZu0BogFAtmH4snaXV5S7ZWaybUyCprZZS56SdERXjVFUnn5LawQrVK6RWWm0bg4ZDQkHExFZj1NNfJBDRXpLAwRPBARfnf0eDRURUmgVTGSGAfkWNSUICkcHBCcdBRcLk/7d/vvQP4Y/xPIBB4ICoLT+WfYs+AGrt3A8Mab+3f6D134BPAFU/geF/vd7PJYBSgFXp0UrUXnP/v+JdOS6cBssf/77/v7wahPCOJIBEAF86jG88v70gkpRMue+hfXBcGmsZmXOu5JVTk2Fp7dXTopVZazYdJq9/lh/0Pl6e8NwAk0BXZ9kaNy8dIHVfR05HgoePyGV+JQEhxgMERZomDUfs67+71uJRBY5NEArHQc/bzsKCAoXAbU7l6itUX1Ss7OiQf0CrwFXrESu/qOx5ycmb+vcrzH++f561gNPV1dJClaWaCtmYL+cX05Rh6NRFgQbT35bOAgYcwAAAAAFATz+3gjsBpoAJgBMAFAAVABYAAABIiQnLgInLgE1ND4BNz4BNz4CMzIWFx4BFxYSFRQHDgEHDgInMiQ3PgE3PgE1NAInLgEnJiMiDgEHDgEHDgIVFBYXHgIXFgQBJwEXAScBFwUnARcFcKP+s4A9dmYnPEggOSU8vGFGztxZQYM5cfNaZXArJGlUT8HggIkBEpxAYyoUFGVaTd52dWtd0bc5YKk1IjUdO0AvYmIsZgEo/vY5Atc5/mg6Ams7+4Y4Ans4/t40RSFxgjyL7IlLurNCa8A+LUAjHRYrmV9q/tSin5B451VQmWJQlZ5Bw49Dj0aUAQ9eUo8uLiM7JT6yXT2mqkNz1ZVIeFgYNjkCOTgC2jn8UjcChTZZOQJ4OQAOAOv+3gk9BpoANABFAE0AYQBoAG8AdgB+AJAAqwC3AL8AyQDRAAABJz4BNz4EMzIeAxceARUUBgcOAgcnPgI3PgI1NCYnLgQjIg4DBw4BATUuAzU0NycOARUUHgIDPgE3Jw4BBwEiLgM1ND4BMzIeAxUUDgEBPgE3JwYHATcuAScHFgE3LgEnBxYXPgE3Jw4BBwEnPgI3Fw4BBw4BIyImIyIGASInNy4BJy4CIwcmNTQ2MzIWFx4DFRQGASImNTQ2NxYfAQ4BJyYCJzceARcBJxM2MzIWFRQHJSc2JDcXBgQBm1VDw2pdwLefeSBS2uTJiQ8FBQsPKoGTRik1dHw/CAgDBAQMfbvSxkcMR3en2IVqtAIrXdS+eAE9AQOBz+y9AgoHPggOBAFtZtvOpWJ0uWlm286lYnO6/dwOIxAcKCUCWkMHDwJCA/7bHhItGgsmeREhEAUTLBcCAiRDgo9YfEdmCAchIA4sGjlJAYIgGkFz2IlcvYcKaxRLPlv+gW7AkVNM/gNUeUMjj2IICVeTVoAqaSRfQAIxQOsTGxopEv01Fo8BCX1Ehf7dAaAZTemAcObRpV9HdI2PPBNHJy9YES59hz5SK2NzQwkvMAojPQ4we35rQjx6uv2hgNj9Y0IDP2mJTAwGCwgSCFyfeUYBcRMsEBQSLBr+GDhliaRaXXo8OWaJoVhcfD4CcAwXBTcNHf4iGhEsEg8qAXE/CA4ERgV6CAgDQQEJC/59kHjDv3CRQ4RTT1ENYAHJEGt0r1U6TSdcKSE0PmhQQ46Dah8rQQH7VDoiVwsLYzMuQ6BrAQabI5n0Zf3tRQFBGikcGhNQUSR9W1dYewAAAAAPAKf+rAmPBs0AHgA6AEwAWABkAIAAkgCwAL8AwwDPANMA1wDnAPUAAAEiJCYvAS4CIyIuATU0NjMyFhc2JCEyBBYHAw4BBAEiJicuATU0EjcXDgIVHAEXBz4BMxUiBgcOASUiJj0BNDY3HwE/AR4BHQEUBicyNjU0JicOARUUFhciJjU0NjceARUUBgEiJicuASM1MhYXJzY0NTQuASc3FhIVFAYHDgEBIiYvATcXHgEzMjY/ARcHDgEDMiQ2NxMGBCMiJCcuAiMiBhUUHgEzMhYfAR4BBAEnJj8BPgEfAR4BDwEOAQkBNwE3ICQ1NCQhIAQVFAQXJwEXAScBFwUnJjY/AT4BHwEeAQ8BDgEFBiYvASY/ATYWHwEWBwWr7P7ihAcIAjl5ZHyTQHR8TaBHGAGGAULhAU+0CTkIif7d/UEdRgkOCG9oeUVhMgEKStRwW5M9FCIBt2JuQzgVQEAVOENuYhsZFx0dFxkbOkBLLy9LPwGWGSMUPZNbcdRJCgEyYEZ5aG8IDglG/hL/0wMGUAQ1r6OjsDQEUAYD0/+3AQaQBitY/rje9v6mUjd4gENYSCpuZ8WbCAgFigEB/X2+HRkVCyMNvg4BCxUKIwIq/UgzAtypAS8BRv67/tD+0P67AUbcOgH1NP7qMAL3MP28HAwCDLAMIg0bCwMMsw0iAawPIgoaGCDVDiMKGRcfAgo9ZT1NFhsMJVZIWVQeG1JFI0w+/lU9ZT38oiYPF1A0mwERgyBXrL50ChYLBmWLa2pVHCPwHCiGGxkENTo6NQQZG4YoHMQcFiBMMTFMIBYcPDoqRIw+PoxEKjr+iCMcVWpri2UGCxYKdL6sVyCD/u+bNFAXDyYCrUk3egN7Fx0dF3sDejdJAP8qRysBOiUhKCwcJhUqMy4yEzlMTSlGKgNhnhggHA4CC50MHw4cDQT+TQJAP/2gHUEdHUJCHR1BQzgCEz398z8CIkBjHQ0gDbYMAg0bCyAMuw0BEgsGDSUhF5oLBBAkIhYACQBm/0IJwgY2AFgAZgB0AIIAkgCkALYAwgDOAAAFIiQnJAA1ND4BMzIWFz4BNxcOAQcuAiMiDgEVFB4BFxYEMzIkNx4BMzI+ATc+ATcGIyImJw4BBw4CBy4CJzceARc+ATc+ATMyFhUUBgcOAQcOAQcGBAEuATU0NjMyFhcGFRQWJzwBNzY3LgEjIgYVFBYBIiY1NDY3BSUeARUUBgEuATc+ATc+ARcWBw4BBwYBIi4BNTQ+AjMyHgIVFA4BJzI+ATU0LgIjIg4CFRQeATciJjU0NjMyFhUUBgUyNjU0JiMiBhUUFgUu3v6sYP7Y/vJLgE1aq0gtWyMvM3krN3JxNjZeOnHzwlgBN8nzAVpABw0HQ25JCwg+IAYMHjkUECAUFy9CNhpVZzUtSosvGSATL2dkRFARFyg/CBSydVP+jvx7ycBFNj5/TwsGUQEDCUBjIA8gbwNWt88dGAFRAVEYHc/9ZxEVAw5FNQsiDRoWLj0NBwG+kO6NXZm5XFu4ml2N7ZB/w25MfZlOTpp+S27DgERcXERCX18Dvh4tLB8fKyxzoI19ATTZbLFohnY9XBlBI4tNYoxKU41Xg8+tUoeRzbYBAWa5fFqlQgEPDRVLPUhTNR1MkHUjQjGtYhU/O4+GOiINKSE8uE3Z+w6zzQIIVM2HVWyWtjkxNFZVDhgLJyuUiEA1WJL87zwoFCMTMjITIxQoPALJAhoRW5tADgENGhs6g04oAcMtTzIvXEsuLktcLzJPLU4kMhQVOzclJTc7FRQyJNteQkReXkRCXoMTDg4SEg4OEwAABAGF/qwIowbMABUAMQBGAFgAAAEiJwEmNTQ+AjMyFwEeARUUDgMDIiY1NDY1NCYnASY2MzIWFwEeARceAxUUBgMuATU0PgI3AS4BIyIOAhUUFhcBMj4DNTQmIyIOAxUUFgbfGxD7LFtDbYA9EQ0FEkU8M1l0giAgJxAXG/tVExwiNaNeAsZFeh8YIBUJJ9IHBTdeeEL7lQoiCCxkVzcXFgTgLGVhTzAlKyxlYVAvIwE6CAJEKq5p27lxBP6eE4dsX9vVrmn9ci8nX8CIUmwQAj0KFSon/twcTCIaYaX8tiguAx4qNRll4terLgE2AwhpqL5WNEcL/bxfnsDHVllXYKDDyVdAZwAACQDD/qwJZQbMABcAMQBKAGQAeQCMAKEAtQDIAAABIi4BNTQ+ATc+ATc+ATMyHgEVFA4DASIkJjU0PgEzMhYfAR4BMzI2MzIeARUUBgQnMj4BNTQmIyIOASMiJi8BLgEjIgYVFBYEEyImJyY1NDYzMhceATMyNjc2MzIWFRQHDgEBMiQ+ATU0JiMiBgcOAQcOAhUUFhMiJjU0Nz4BNzYzMhYVFAcOAgEiLgECNTQ2MzIWFx4BFx4BFRQOAScyPgE1NCcuAScuASMiBhUUEh4BEyInLgEnJjYzMhYXHgEXFhUUBgJce7hmV8KgJ1FJVIZHWI1TXaLT7wFny/69uk6HVjZzUBcyQTExbzZinFqU/vusleF/lnIpP0EtO1E3F01iK198pQEetSVCIDMWEg0ZGzQeCxYKDgkRFh8QJP4JhwEJ2YGEZDhrSlBeL4+pSbDrExYnO2UoCxUQFgghVl4FPXTbrmeojmiSOCMuHGtvWZZcRnJDwSEzKjFrTmt7W5i+LQ0LQFsVBBYTDhYEGkY0DhcCvlmga16McTQNOUNNRVqaYGfKsolO++6E5JBdkVMgIwoWEQVTj1t1s2VQUY9dZ4cCAxYYCiIaiGp5wG8BeQoJDh4RFgkKCAECAxQRHwYDBAKZa7PccHCUN0RJQg8tXXBLgJQBnhMSJAICQjkSFA8OCy5HKfvWiekBJJqtznyHU08bZstkX5tcUEZ3Saa1H1lhcWCfjIn++dN9AdcJNpJbFBwRDlJ5LAsTEBgAAAAABgIw/qwH+AbMACEAMQBGAFoAbAB6AAABIiQmNRE0NjcXDgEVERQWBDMyJDY1ETQmJzceARURFAYEJyIuATU0PgEzMh4BFRQOAQEiJjURNDY3NjMyFhUUBw4BFREUBgEyPgI9AQ4CIyIuAScVFB4CFyIkJj0BNDYkMzIEFh0BFAYEAzI+ATcmJCMiBAceAgUU3v6zuV1XQ1NUsQEst7gBK7FUU0NXXbn+s96A3IaG3ICB3IaG3P3PEBYbGg0WEBYGFhcVAaBtyp9dQ7PPbm7PskNcn8ptxP7gnp4BIcPEASGenv7fxF2wmTtG/v+amv7/RjuZsP6sRHlRBARwy0sqR7Bl+/wzWDU1WDMEBGWwRypLy3D7/FF5RNAgNB8fNCAgNB8fNCACBRUQAZtBcS8XFQ8LDChdOP5lEBUDhhMeJxOfFiISEiIWnxMnHhNQLVA2sTdPKytPN7E2UC0BYAwXEBQeHhQQFwwADwEO/qwJGgbMAE4AXABwAHcAigCYAMQA1ADfAO0BNQFNAVoBawF3AAABIi4CNTQ2Nz4ENz4CNTQuATU0NiEyHgEVFAYHHgEXHgEVFAYHDgEHDgEHHgEzMjY3PgEzMh4CFRQGBw4CIyImJw4DBw4BJzI1NC4CIyIVFB4CJS4BNTQmIyIGByc+ATMyFhUUFhcBJz4BNxcGAS4BNTQ2MzIWFwcmIyIGFRQWFwEiJic3HgEzMjY3Fw4BAyYCNTQ2Nz4BMzIeARUUBgcOARUUFhcHJjU0Njc+ATcOASMiJicOARUUEhcBLgE1ND4BNxcOAhUUFhclLgM1FxQeARcBMjY1NC4BIyIGFRQeAQE+AjceATMyJDciJy4CJw4BIyIuASc+Azc+ATc+ATU0JicuASc+AjU0LgEjIg4BFRQeARUUBgcOAwceAxUcAQEuAScuAiMiDgEHJz4CMzIeARceARcBMjY1NC4BIyIVFB4BASc+Ajc+AjcXDgIHDgEBJjU0MzIWBwYVFBcCwkuQdEUrHjiHi3tYECQrFA8P7wEb1vpsBwYpTxkYFTQnIoE+Sc2CFBYQXm8rGVcwN29dOTU9Tqi5Z2vWai50d2ciFj4fdDhgekJ0OGB6AiNGL19dHCQOMxs7K32PIyj9XEQ/pVsOmgISAwaJZQwXCgwPEkRaBAP9WD2qUzJEiz0wZx8WIHYcuLQYExGHY2enYyITFRQsLzhzGBcIDQQfTSxmpzAFB5a4AyUEBw4mJD4eHgoHAgGDM1xGKVA3WjP671VZU4RKVVlThQE3OYJwHHfSbY4BBFsFCjdqUhQxiGolSUIeUZKAaylBjyAUHQQFGHIxBggFWta8psJSDw8yOxNcgJVMTYppPAN7QYNjQ19QLhxPSRRAHltiKDtjcE9XbDQBfhoZTG0zM0xu++xGJ3zEkYyzdi5BN4fIm8XBAudIMBQWBAY4/qxQhKJRM1EVKHB9emMcP29mMT5VVj6xlTN2ZSt/RggbDw4/LEh8FhMkDoX3cAYDYFIwOjRWZjIqXT5QajRBQCtYTjoMCAxQaEGEbkRoQIVuROkmmFyXrBMNPBoa07lbahYCESpieg9OGf0XECgSZYoCAlAEW0QNHxADdytAQDUmFwhMChn+HpUBfOUyiEI3QTZcODJ8MTZgLjliMThzkTRyPBQlEAwNNiwbPyG//p2W/aoUTBM8UEctMiY4PjIQRRIDDk9pbzAEMHZfDgUaJRwfOCMkHR84I/o+IlxcIU5Ie20CC0FdMlFbFSIRPoiTm08OJhELVjMbFwQQHQdBdF4eSVIjLmtdNWFeM1O1ZSBpf4c+DViBl0sJDQMAB0FNNTkXCxwbMiUqERpDPkQ2Bf5HFBctYUQrLGJEA0MmR1gsBQUkTkIuTlwrBgdK/p1ifGsdFBweYk4AAAAIAPf+ygkyBq4AigCYAKcAuQDJANgA5gD0AAABIiQ1NDYaASwBNy4BNTQ2MzIWFx4BMzI2Nz4BMzIWFRQGBw4BFRQWFx4BFRQGIyImJxwBFRQGIyIuATU0NjcXBhUUHgEzMjU0JjU0NjcXFB4BMzI2NTQmJy4BNTQ2Nz4BNTQmIyIGBw4BIyImJyYjIgYVFB4BFwYMAQACBhUUHgEzIAgBExcKAQAEAS4BNzY3NhYVFAcGBwYHPgI3JicmIyIOARUUFgciJjU0PgIsATY3FQYCAAwBAT4CNy4BJyYjIg4BFRQWNyImNz4BNzYWFRQHBgcGJT4CNy4BIyIOARUUFjciJjc2NzYWFRQHBgcGAvP1/vlqu/UBGAEliyo5PTUdMRkaKiIscFVHXy0/RRkgFxwjKy8kTkI+Whc4JjFUNGdVJ5IdMBoaBgYERh9KPh0mGR80NR4fGhUdFxxJNVuPQjdOIhYRDxAcRz6N/tH+2v78yHJpwIMBZwIoAV02TS/r/pn+K/72CgoGEz8OFBweDApvOoF8L0sdIhs5XTcIthsgaLXpAQUBCfNhILH++/7A/p4ByziHfCgwUBQjIEp5SEMlCg8CCk0/DhMcXQwDAZ4qSzkNFDIXPmY8SAQKDwMUbQ4SGksLA/7KcmpT4AD/AQb1y0QsbjRIUyMsLiY9TD8+TzAjVEYyWhglQyAiNCAxOiIZAQQCJTBPf0hWmytEV4ErXD8mHUcTHSsPBUNcLw8MCBwWJmQ6J2FDNkYaFxgzMlVMOEArKiAmQEgyPMbz/vj/AN5QKz8iARoCEgFzH/7d/jf+wqYBxQIXDjELAg0LGQIBHRdrCSg0GkVMCTddORonbR8aNrLb6d24eQ69q/6//uzQdAEYIW15MxpbNwhIeUpGd78UDz5PBwIOCxcEDF0cpTeOlEALCTxmPkBzthIObhQDDgsWBQ9IGgAAAAUBoP6sCIgGzABWAK8AuQDFANEAAAEiJjU0NjU0JiMiBiMiJjU0JiMiBhUUBiMiJjU0PgE1NC4BNTQSNiQzMgQWEhUUDgIVFBYVFAYjIjU0IyIGFRQWFRQGIyImNTQ2NTQmIyIGFRQWFRQGJzI2NTQmNTQ2MzIWFRQOARUUFjMyNjU0JjU0NjMyFhUUFjMyNjU0JjU0PgE1NAImJCMiBAYCFRQeARUUDgEVFBYzMjY1NDYzMhYVFBYzMjYzMhYVFAYVFBYTIic3FjMyNxcGASImNTQ2MzIWFRQGBSImNTQ2MzIWFRQGBNA/RwEJChQzKUlJFBkYFU1ARFgODRcXh/IBQbq6AUHyhxQaFAdSSpwyGRwESD43SgYdFxceEE07GiMQSTc4RwMDHxcYIANJOTZJIi0oJgcgIHzc/tyoqP7c3HwXFw0OJiYnIEIxNT0eLypAJRolAR2d4M81vL+Eiyed/g4uPz8uLj8/AdAuPz8uLj8//qxQTDAzGxINIV5OLi8rKE5bZVEfTHVaTHSAXLkBP/CHh/D+wblRgX2VZyVEHVJYxE4oIWGIHD1FRDQpTiIZICEYQ29ZN0dLIxpAjjw2RUQ3DEA/DRcgIBcOeWtLXFBAQEE1Mx1BJXzCrFqoASLbenrb/t6oTH2AUzGDcRcyNjYyRE9HQ0I8JiIjLlEqJSwDQ8w7t1REYAIFSzc3S0s3N0ucSzc3S0s3N0sAAAAIAOP+rAjyBswAJAAwAD0AewCZAKUAvQDVAAABIiQAAjU0NxcOARUUEhYEMzIkNhI1NAImJCc3FgQaARUUAgAEAyImJzcWMzI3Fw4BASImNTQ2PwEeARUUBiUiLgE1NDY3PgIzMhYVFA4CByc+AzU0JiMiBgcOAQcOARUUHgEzMjY/AT4BNTQmJzceARUUBg8BDgEvAT4BMzIWFzc+AjU0Jic3HgEVFA4BDwEuASMiBgEiJjU0NjMyFhUUBgEnPgM1NCYjIgYHJz4BMzIWFRQOAhcnPgM1NCYjIgcnPgEzMhYVFA4DBRTU/pj+9JQjQwoMiPUBS8TFAUz1iHPS/uGtGLkBM+J7lf70/pfUU75xDduam9oOcL7+VjNLAwKtISlK/mp0qly2vXCPaTUxOT9jbjApHWNmRxoUEzM4L4VcpZJPilZKq2SdLzQJBysYGEtBnmfCQiE2cjodRSXcank0DwgEJjM5inr7K0YXMl8DzjRKSjQzS0v9GC8ed4BaEg4NPEEeT0ccJTJbhH9LJiODiV8SDhctHyA0FikxQ2l1aP6slQELAWXRjIE/MWg1wv639IeH9AFJwrIBM+2VFUkZpf8A/re+0f6b/vWVAhoTE08lJU8TEwHYWT0KFAlhEkktPVlrZatplMc6Iko0QiwvQDM1JCsaMjEzGxYcEx0ZPhwxon5Xi1E5PF8dOBULFAguCi8cI10nXz5A6zclJxAOgz9XQR4PCwE6BC4hK1BkSpcTECL+il49PlRZPj1ZAmsiJVFUTyIQFSMyND4kOCc4XVNQaSQlU1tgMBQTKjQfGDgrM1tRSUQABQEE/noJJAbMACYAXgCgAKwAuAAAATc2JDYSNTQCACQjIgQAAhUUEh8BJgoBNTQSACQzMgQAEhUUAgAEBSIuATU0Ej8BPgIzMhYVFAYHJzc+ATMyFhUUBgcnPgEzMhYVFAYHJzIWFRQGByceARUUDgMnMj4DNTQmIyIPASclNjU0JiMiBwUnJT4BNTQmIyIGBwUnNz4BNTQmIyIGDwEOAQcnPgE1NCMiDgEPAQYCFRQWAyImNTQ2MzIWFRQGISImNTQ2MzIWFRQGBUGmoQERy3CV/vj+pMfH/qT++JXGpiGP13ehAR4BedjXAXkBHqKa/u/+l/50meaBkYUaIzVJPz1IDxQNdVZ1KzQ7BAMUGDUWOEYdKCI7RDg1Iyk5Y6XHylZArbWcYRoVEhfDKAE7NhwSGyv+6iwBAFVJFxQRKh3+mi/uOC8bExpnPh5MbTILKikzIjA2Kxh2gOwMM0pKMzNKSgKNM0pKMzNKSv6tZiSs+gEzrMcBXAEIlZX++P6kx+X+d4N6XQEMAUq42AF5AR6hof7i/ofY0v6P/uWoPGu+f4YBJ4UaI2FKTUIiPy0YTTgyQTMKEQgZExJHOCQ5LB9EMS9SIRwBPzY5fHZeOFAzU2FeIxcbDXVFvyEoFBkbsUKlN0khExgWFPNBnyYyFxIXMCoUMzgUE0pzKUI+WSsYdv76dJ27BGBZPT5YWD49WVk9PlhYPj1ZAAAACgCq/qwJfgbMAFkAZwC+AMsA6QEBAQUBEAEfATUAAAUiJicDJzcXExYzMj4BPQE0Njc+ATU0JiMiBgcGBwYmJwMuASMiBhcTBwMuASMiBhcTFgcGJiclJwU3AyY2MzIWFwc+ATMyFhcTPgEzMhYVFAYHDgEdARQOAQUiJCc3FgQzMiQ3FwYEJSIuAT0BNC4BJy4BNTQ2MzIWHwE+ATc+ATMyFhUUDwE+ATU0JiMiBgcOAwcnLgEjIhUUFhceAh0BFB4BMzI2NzYSNTQmIyIGByc2MzIWFRQCBwYEJSInNx4BMzI2NxcOAQEnPgM1NCYjIgYHDgEHJz4BNz4BMzIWFRQOAhcnPgM1NCYjIgYHJz4BMzIWFRQOAgUnNxc3IiY1NDYzMh8BBiUnPgEzOgEfAS4BIyIOASUnNhIsATMyDAESFwcmAiYkIyIEBgIHW1mYOMh+HZzKW5V+wG0LEwgGFBY4SBIDDhAmBpYGHxQdHgd5SIUGIREZHQdtDB4PKhr+2wQBKxVgED1FGzsSFAtBHylFDHcXaEMxOwYKDguC5f0mvf6zhW10ARSakgEIcG6C/r787IPYfwUMDQoINjE7ZBMRMkgYFU42NUQDRwIDHRcbLQ4XQEZBFzQNPCMhBAcQEQZrtW+R/FBNVhcUDRYJQiVJMz5WTlj+3QG5W2IeNEkiI1o+K0lq/nk9GjQsGxwaJDgTE0AvPSg8Fh1WQTlDHC44ijsaMikZFRsZJAtFEUc1OzsaLDcBhNwb7kw2Tk42FQ4xIv7HOxeWaQYMBw8KFAo8ZDv78kcquQEKAUq6twFFAQi7LEYmq/b+z62v/sv5qZ5STwEdd0mU/t+DediOYWKeQB0wEREZiHYWCQsMFwI3GBouIP4OEwIeGhctIf3cOBYLCBDCWMkOAd5QbRomAiAkNC/+OVdwPTEWNiIyiXNhofqOtntpEE5WTkcSYXLEh+aQOHmVVx0XLBMvNWRJP2C8W1BXWEMQEQELEQgjMD02V6mOXAq8MkcjCBwRJmOZejh9yHTGsakBCEIiKREVGFRRQEz+6K3C3dIpQxMOFho9IhwCTiEykJmGKCouaWFfwlogT7NnhH5XRyyOopihJCx3fW4jOCstLQxHTVRVKHeHf6GnS7egTjY3TQXpGqcsZ4QBPwICO2MeLaoBHtJ0cM3+6qYtnwEJw2tuyf7vAAAFAQT+rAkkBswAEwAXACMANwBDAAABIiQAAjU0EgAkMzIEABIVFAIABAEnJRcBIiY1NDYzMhYVFAYBMiQAEjU0AgAkIyIEAAIVFBIABAEiJjU0NjMyFhUUBgUU2P6H/uKhoQEeAXnY1wF5AR6iov7i/of9bxUD4hX8eDRJSTQzSkkBLMcBXAEIlZX++P6kx8f+pP74lZUBCAFcAic0SUk0M0pJ/qyhAR4BedjYAXkBHqGh/uL+h9jY/of+4qEB9039TQEcWD4+WFg+PVn8QJUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQPAWD4+WFg+PVkAAAAADwD//qwJKQbMAAsAFAAdACUALgA1ADkARQBNAFUAXQBkAGsAdAB7AAABIiY1NDYzMhYVFAYBLgInNx4BFwEuAic3HgEXAS4BJzMeARcBNT4BNxcOAgE+ATcXBgcBNSEVASImNTQ2MzIWFRQGAyc+ATcVDgEBJz4BNzMOAQEuASc1HgEXASYnNx4BFwEuASc3FhcDJz4BNxcOAgEnNjcXDgEGVjRMTDQ0TEv7/C9EPCVKJlo0AeI7YF01KT2BRvyqGR8GVgUbFAQMRoE9KTVcYfs6CyodSzEVAogCVv2TNExMNDRMS00pPYFEOm0E/0wUGwVWBh/9ajJtOkSBPQIwFTFLHSoL/twlVC8qclekKjRaJkolPEP6XUtXciovVAKvWj8/Wlo/P1r80yU+STQrN2Mp/uIHFSEWRxknCAJIQ5RMQH07/TtRCCcZRhchFQS5R4lAK214/dpQUAFqWj8/Wlo/P1oDlkYXIwdRBh367io7fkBMlAS7Ex0HUQcjF/zgeWsrP4lHAb8tTiJKUmn6K0kpYjcqNEk/BYUraVJKIU8AAAAABQBiAAoJxgVuACoAMgBNAHUAiQAAJSImJCcuAicuAicuATU0Njc2ACQzMhYXPgEzMgQAFx4BFRQGBw4BBwABLgEnNx4BFyUiLgEjIi4CJwcnPgE3PgMzMh4CFw4BATIkNz4BNzY1NCYnJiwBIyIGBy4BIyIMAQcOARUUFx4BFx4BFxYEFgMyPgI3LgMjIg4CBx4DBm5l0v7zwGmRajBHZlYwHiMyQ3kBGQEfgkCNPT2NQIIBHwEaeEQxJB4TLBr+6fzrI3xEG1WUKQHXTaO1Z17Y1rk+eQctYixLt8G4TW328tFIZaz+/cQBMogcNRwdLzhw/vr++XRCjzk5j0J0/vn++3E4Lx01pUFOu6C2AP/H+1PAu5QmQKazqkVGrbWmPyOXwcQKKmRVLzwlDBISGh0TPB8gXmKwAQCMKSUlKYz/ALBiXiAfOxQNNSP+iwEeUnYQTBeOYTs4NxQmMh4MPQscGSxKNx8zXH1LfWL+2aK1JUIQERkRUVKk8IQyLCwyhPCkUlERFxMiIBETSUdRXikB5hEdJRQoRTUeHjZGKBMkHREADQDT/qwJVQbMABMAJAA0AEQAVQBlAHkAjACYAKYAtgDGANUAAAEiLgI1ND4CMzIeAhUUDgIBIiY1NDc+ATc2MzIWFRQOAQciLgE1ND4BMzIeARUUDgEnMj4BNTQuASMiDgEVFB4BAyImNTQ+ATMyFhUUBw4BBwYBIiY3PgE3NhYVFAcOAQcGATI+AjU0LgIjIg4CFRQeAjciJjU0Nz4CNzYzMhYVFA4CASImNTQ2MzIWFRQGASImJyY1NDMyHgEVFAYBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeAQMiJjU0NjMyFhUUBwYHBgOIkPu/a2y++5CQ+75rbL77ApAQFSQmPBMPGA4VRFlRcrtwcLtycrtwcLtyXJdaWpdcW5haWpdgDhg9UyAQFSQhMhQS/AsTGAIRv4sXHiRwmw8FAYx+3qlfX6nefn7eqWBfqd6zERcoWY9eDwciERhKfJYCyQ8WFg8OFRX9aQ0nJyImFjwtFQO2WZVYWJRaWZRYWJNaRG9CQ29DRHBCQ3AXDRU1Fw0VFxAJDQFibL78kI/7vmxsvvuPkPu/bP3hEw8hCAgxHxkTERxHNZdwvHJyu3Bwu3JyvHBQWphcXJdaWpdcXJhaAZoWDxY9LhMOIQkIIhoXA5UaE5HZKQcZEiALIrN1J/2HYKnef37eqV9fqd5+f9+pX4YWECcFC1+UWScXEUqWfUv+wBUPDxYWDw8VBIUUCwofKRQiFQ4Y/GhYlVlak1hYlFlalFhQQnBEQ29DQm9EQ3BDAQQVDhc0EQ8RDgkQFgAADQAy/mEJ9gcXABMAGwAsADsASgBYAGYAegCKAJsArAC9AMUAAAEiJAACNTQSACQzMgQAEhUUAgAEBSYAJzcWABcFJiQKATU0NxcOARUUGgEEFwMiLgI1NDcGFRQeARcGNyIuAjU0MzIXFB4BFwY3Ii4CNTQzMh4CFRQBIi4BNTQ2MzIeARUUBgEyJDYSNTQCJiQjIgQGAhUUEhYEASIuAjU0NjMyHgIVFAY3Iic0LgEnPgEzMh4CFRQGNzY1NC4BJzYzMhceAhUUBgEnPgE1NAoBJCc3FgQaARUUEyYAJzcWABcFFM3+mf7wmpoBEAFnzc0BZwEQmpr+8P6Z/Fq7/vE/MD4BA7QBnLn+xumBFTsJC3ncASux4iNNQykfAT5iNgtVI01DKUEHDDdZMw5oI01DKUEjTUMpAaU9aD9xUj1oP3H+xL4BSvqMjPr+tr6+/rb6jIz6AUoBlyhOQCYfIidOQCcfcgYKOFs0BR0aJ05AJyNqAURmMgwPGSEuSSsMAmQ7CQt53P7VsRC5ATrpgTQ9/vy0HLsBDz/+3poBEAFnzc0BZwEQmpr+8P6Zzc3+mf7wmlCAAXTfDtj+nHtXMNEBKAFpyXBqDDJnNb/+qf7oxS4DADhaaDA8FAcNQJF3GgQ5OFtoMFoCPId0Hi5VOFtoMFo4W2gwWv5PQ21AVnRDbUBVdf62jPoBSr6+AUr6jIz6/ra+vv62+owEDD1eZykjNzxeZyskNVYCPIZzHhEgPV5nKygxRQkHRZR1FQYSGmJwLxUq/gAMMmc1vwFXARjFLjow0f7Y/pfJbwG82AFkeyp//ovfAAQB/v6sCCoGzABGAFwAcQCIAAABIiwBLgE1NDYSPwE+AzMyFhUUDgEHAScBPgI1NCYjIg4CDwEGAgYVFB4BDAEzMjY3EzY1NCYrASczMhYVFAYHAw4BASc3PgE1NCYjIgcnPgEzMh4BFRQGBwEnNz4BNTQmIyIHJzYzMh4BFRQGBwEuAzU0NjMyFhcHLgEjIgYVFB4BFwYzkv7Q/urdgFOWYi17pHBVLVdtQl4r/pBJAXAsWDo+MCRJY5NsLVyNTnjNAQIBFYOGmxxOGEhGEwQVbHgNDVchxP62SkkwKlpAFCAVFiIRQW1CMjUBDEwzKiJjRyghJjY5RXVGKiz7/g0qKx1xTlOcNDwqfEEuOyk1Ev6sWZi+zWBa8AESjUCv1m8nbU4+eYJN/WsoApNPfWctLj0rb8icQYX+/t1RU7WqiVFsZwEkXD9QU1CAcClTL/6/en8Cmh+mbpI8P1gLTQgGPmlAQKF7/sUciHB9MEVhD0UaQnBEN411Asp0oHBXLUpjf249Yng0KSRnrIwAAAAHANf/dAlRBgQAUQBZAGEAaQBxAIEAkwAABSIkAjU0Ej8BPgI3PgEzMhYVFAYPAQYWMwUyFhUUBgcnMjY1NCYjJSImNTQ2Nz4BNTQmIyIGBw4CDwEGAhUUFgQzITI2NTQmIzceARUUBiMlIjU0MzIVFCciNTQzMhUUAyI1NDMyFRQDIjU0MzIVFBM1ITI2NTQmIzceARUUBiMBNSEyNjU0JiMhNSEyFhUUBiMDbMb+1qXawD+qyWgZH0UkRFhsezAIBQoDLEZiXUEUKTk5KfypJCo6QHNWJyAWJRocctKuP6y8jwEGsgOlKDk4KRNBXWJH/VZMTEtFXFxcVGRkZXVUVFTIAlUpOTkpFEFdYkb9oQMUKTk4KfzrAx9GYWJGjJkBFLfSAVRYHU9tUiQsM2dNSJlQIAUTBGJHQWAHSTcoKDYEIBoiOStNbzgsPSMlJ1p2UB1P/ta8o/GFOCgoN0gHX0FIY5QbGhob0iEgICEBEiQjIyQBBCAfHyD9jUs4KCg3SAdfQUdkAQlLOCgoN0tjR0dkAAMA1/90CVEGBABVAGUAdwAABSImNTQ2NxciBhUUFjMhMiQ2NTQCLwEuAicuASMiBhUUHgEXHgMXBy4CJwUiBhUUFjMHLgE1NDYzJQcnLgI1NDYzMhYXHgIfARYSFRQCBCMBIiY1NDY3FyIGFRQWMyEVASImNTQ2MyEVISIGFRQWMyEVAw1GY15AFCg6OSgDpbMBBY+6rT+s1HMcGiUWHyg8jnwLU3eIQBdds4Qa/IApOTkpFEBeYkYDZwZJU3E4WUMlRR8aaMiqP8DZpf7Xx/uCRmJeQBQpOTkpAlX84kZiYUYDH/zrKDk5KQMUjGNIQV8HSDcoKDiF8aO8ASpPHVB0WygmIj0sN216TSBeZVcaQiRzfzcENigoN0kHYEFHYgQpLzZ8fDVNZzMsI1JuTx1Y/qzSt/7smQEJZEdBXwdINygoOEsBCWRHR2NLNygoOEsAAAADAQ7/pgkaBdIAXAB6AJMAAAUiJicuAS8BLgI1ESU+AzMyFhUUBg8BPgE1NCMiDgIHBREUFh8BHgEXHgEzMjY1NCYnNiEyFjMyNjU0JiMiJCc3FgQzMhYVFAYjIi4CIyIEBzceAhUUBgEnPgE1NCYjIgYEIyImJzceATMyNjc+ATMyFhUUBgE1PgI3NjMyFhUUBg8BPgE1NCYjIg4BBAPeOUk4NEEqKIGSPAJZhOnFoDo/QwoIYQ8QNSyZy/GE/fekjCcxUyMsMCUlLkVH7wFvfuZei3taepb+h7IUlAFvqqd9orQedIl/KKz+/VUKIzkhWgOXCmNtHxovsv75ritUKQYnUimj/FpHQBw2TZD8Iqn0qzpTNUFSERJuICEmHSFssv71WkhnYVwgH2SEVBwCkQQBLTosPjYVMBcIGSsWMy08LwEE/cEWkW8fJmxJW0hCOUfhnWUNMDosFi4rRCIrQVFhWQQFBCcjJU+gkDphaAOeSQ9ONBshJycDA0UDAyYVEQtLOFV4ARpEAS9AGSROPxwrFAoXMxsfJDJBMwAAAAUA1wA8CVEFPAAqAFUAZQB3AJAAADcRMj4CPwE+ATc+AjMyFhUUDgIHJxYEFyckBBYVFAYjIiQjIg4CIyUhMj4CMzIeATMyNjU0JCUmJCcmNTQ+AjU0IyIOAQcOAg8BDgMHBSc+ATc+ATMyFwcmIyIOARcnPgE3PgEzMhYHIzYmIyIOAQUnPgI1NCYjIg4BByc+AzMyHgEVFAbXNFFSaUsoQ580KztDNUFSSWRUCxiyAV2VSwEZAVacWk9Y/vOjbvfz1Uz+AAIARtj6+mdgx603Kyr+u/6vlv6ZtwRSa1JDHDY5ICVnZyUpWGtGOycEKFYgSy5ImUNuPEAmRC94gXFSYJ1DQXY3SV0BSgEyKjWFrwJNVTg7F1ctIk2Kf2IneIiCMTRePDk8AtcPJ0k6HzRTKyRJMldJR3xtYSwVIWlECgI7gGY4OiAoMyhQKDMoEBAbHGBZAURpHw0SQHVxcDtQL0EcID07HB9CTSYPBVAqDCsdLVFrJUY9U2E2F0wlIzVfSyw0SWCnMhIYEwkdOBQ8PSkMOD4sLUkpKzMAAAAABwDy/qwJNgbMADYAPAB8AIYAkADDAMsAAAEiLgM1ND4DNTQ+AzU0PgEzMjU0PgEzMhYVFAYjIiYnNx4DFRQOAQcWDgEnFA4BASQDNxIFATI2NyYkJzceAzMyNic3FjY1NC4CJyYnNx4BMzI2NTQmIyIOARUUBiMiDgEVFA4DFRQOAhUUHgMBJzYzMhcHJiMiLwE2NTQnNxYVFAMiJic3HgEzMj4BPwE+AzU0LgIvAS4DJzceAh8BHgQVFA4CDwEOAwEnPgE3Fw4BBENr6t60ahwqKRwsQkEsYaBeI1mZX5u6m4QKEwsgbrqIS0F1TgJNgExEbwGZ/rb3OuwBRf36R14FcP7fnDpTo5iEM1J0BRl3blOUxHByI08UYU9iZ4V6SHRFNThMfkssQUIsKDUoYaTI0QM8NUdmQTYoJSpFazA5DEMTeEZuF0MHSzcvSkQnLCtdUDJhjYwqFhw+PjcXAjtgWC8WE2V/d05FZmQgLBw0PVD9uz80hmEET2f+rFeUt8JYQE40L0E2UF41IygiZaJeKEeEVNGzorgBARlbv7WaN0hxRANNekQEL1M0AbjhATgu/tTf/lxCNSXyvDBkpXhBbGQxAWNSMJu7wlg4mg9WVoiClKA8Z0IuNEp8TDk+JipJQ0lfR0cyS6mjhk8CxDRJIT4VJDY2SR8eIC4vb/zxU0NWTFBLYSAkIyYtVlRsr4xvKxYdZnJkGpNPsJ0zFhRQcpGuY2h3PycaJBhJSjIF+SdNSwdKBjkAAAAEAIL/dAmmBgQAbQDbAOsA+wAABS4BJzceARcRJy4BJy4CIyIGBw4BBw4BFRQWMzI2NzYzMh4BFRQGDwEOAhUUFjMyPgIzMj4BNxcOAiMiDgIjIiY1ND4BPwE+ATU0LgEjIgYHDgEjIiY1NDY3Njc+ATMyHgIXHgIXESERPgI3PgMzMhYXFhceARUUBiMiJicuASMiDgEVFBYfAR4CFRQGIyIuAiMiLgEnNx4CMzIeAjMyNjU0LgEvAS4BNTQ+ATMyFx4BMzI2NTQmJy4BJy4BIyIOAQcOAQ8BET4BNxcOAQcBJyYjIgYPASc3NjMyFh8CJzc+ATMyHwEHJy4BIyIHCVdMh1MjR4E6LiI7I2zRoiUWYDI3QwgdIQ4aIzMpTm1Nf0yarR5odjAgFxxReKhzYWs9G0gjVIduc5ZpWDY4STuJdB6VgjZaOCc5Gi9UPUA4KBoaiURtIiB6nqpPIzZDNfbcNkI3Ik+qnnsfIm5DiRoaKDhAPVQvGjknN1s2gpUedIk7STg2WGmWc26GVSNIGz1sYHOoeFEcFyAwdmgerZpMf01tTik0IhoOIR0IQjgyXxclotFsIzojLjuBRiNSh00EHchZSSJPJsQmw2NbMGc3wSclwTdnMFtjwybEJk8iSVmMWG8rSCRaPQP2Pi85GEp6SS0jJ0YYVbA2PStJZDhal15/vVwQN1lUMx0nPVE9Ezc2IkhLGz1RPU5GSXRqOg9LnWdHc0UPDm9ZXFw+vlVVWy0yLk9mOBg0VU37eQSHTVU0GDhmTy4yLVtVVb4+XFxZbw4PRXNHZ51LDzpqdElGTj1RPRtLSCI2NxM9UT0nHTNUWTcQXL1/XpdaOGRJKz02sFUYRicjLUl6Shg5Lz78Cj1aJEgrb1gErpNBGhd0QHQ7JimPQECPKSY7dEB0FxpBAAMBkP6sCJgGzAAyAHQAowAAASImLwEuBCcuAScuASMiBhUjNDYzMhYXHgEXHgQfAR4BMzI+ASQ3Fw4EAS4EKwEiDgEjIi4BNTQmJy4CNTQ2MzIWFx4CFwcuAicuASMiBhUUHgEXHgEVFB4BMzI+ATsBMh4DFwEuAScuATU0JiMiBhUUFhceAhUUBgcnPgE1NC4BJy4BNTQ+ATMyFhUUFhceARcFITphF1QrPikZDwQCBgQEIiQwNFBoTEFUBQMGAwYQGiY6KFMOOiM7eLIBHuIGsPuxfmMDR1jAuaF5HSc+nJo7td9lBQYEEw9nUDg8BggdMCJEJTIgDAQUGCs2DhIECAVQup86mZ0/Jx57o7m9VvqMJzAHAwEXJS4xAQEEDQoDAlACAwoNBAEBKU83SUMBAwgtJQECRDnYb6qPhpRcMl0oKiY+PlpyVEQpXTBimISHn2fUJCkFDhwWUBIYEAgD/aoGCwkHBAMEW8iiM3cZFGJzKmB7REJZkn06Kj96mm8lG00+JmtdEx+BM4ykRwQDBAcKCwUEB3flTCNrLk0yYFwMGAwokZIsIzUWChQvISqPjigPHQxVeD9jbC5mIE/ZbgAAAwGQ/qwImAbMADIAdACjAAABIi4DJzcWBB4BMzI2PwE+BDc+ATc+ATMyFhUjNCYjIgYHDgEHDgQPAQ4BATU+BDsBMh4BMzI+ATU0Njc+AjU0JiMiBgcOAgcnPgI3PgEzMhYVFA4BBw4BFRQOASMiLgErASIOAwEnPgE3PgE1NDYzMh4BFRwBBw4CFRQWFwcuATU0PgE3NjQ1NCYjIgYVFAYHDgEFBzBjfrH7sAbiAR6yeDsjOg5TKTkmGhAGAwYDBVRBTWdQNDAkIgQEBgIEDxkpPitUFmH8Tla9uaN7Hic/nZo5n7pQBgcFEQ41LBgUBAshMSZEIy8dCAY8OFBnDxIFBgVl3rY6m5w+Jx15obm/BRtMJi0HAwFDSThOKQIEDQoDAlACAwoNBAIwLyUXAQMHMAECAwgQGBJQFhwOBSkk1Gefh4SYYjBdKURUclo+PiYqKF0yXJSGj6pv2DlE/apQBQsKBwQDBEekjDOBHxNdayY+TRslb5p6Pyo6fZJZQkR7YCpzYhQZdzOiyFsEAwQHCQsEURpu2U8gZi5sYz94VQwdDyiOjyohLxQKFjUjLJKRKAwYDFxgMk0uayNM5QAAAP//AHz/QgmsBjYSJgdRAAAQJgZGAAAQBgYyAAD//wB8/0IJrAY2EiYHUQAAECYGUQoAEAYGNTIA//8AfP9CCawGNhImB1EAABAmBkIAABAGBjQAAP//AHz/QgmsBjYSJgdRAAAQJgZAAAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGRQAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBkNaABAGBiRQAP//AHz/QgmsBjYSJgdRAAAQJgZBAAAQBgY1AAD//wB8/0IJrAY2EiYHUQAAECYGTgAAEAYGNwAA//8AfP9CCawGNhImB1EAABAmBj8oABAGBjDsAP//AHz/QgmsBjYSJgdRAAAQJgZHAAAQBgY0AAAABQEE/qwJJAbMAA8AKwAvAD8ATgAAASEyNjURNCYjISIGFREUFgETIzUzEyM1MxMzAzMTMwMzFSMDMxUjAyMTIwMTMxMjASImNRE0NjMhMhYVERQGIwUhMjY1ETQmJwERFAYjIQGqBtVEYWFE+SpDYmICVj3J3jPW6UB0QOZAbkDL4DHb8EJxQeQ/VOQy5fz5IzMzIgbWIzIyI/j/BxgtQQUQ/vQ5KfsJ/qxiQwbWRGFhRPkpQ2EB2wFOawEAagFT/q0BU/6tav8Aa/6yAU7+sgG5AQD7vDIiBtcjMjIj+SoiMxpBLgaSLi4U/vT7DCo6AAAAAAQBBP6sCSQGzAAPABwALAA7AAABIiY1ETQ2MyEyFhURFAYjATMRIwUXNz4BNw4BFQEhMjY1ETQmIyEiBhURFBYHASEyNjURAR4BFREUBiMBqkRiYkMG1kRhYUT8a4p1/stKeSAsGQQE/MAG1SMyMiP5KiIzMwkBDAT3KTkBDBAFQS3+rGFDBtdEYWFE+SpDYgIWBHfwX2MaJhotVUT7GzMiBtYjMjIj+SkiMhoBDToqBPQBDBQuLvluLkEABAEE/qwJJAbMAA8AHwAuAEsAAAEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWBwEhMjY1EQEeARURFAYjASE1ITU3PgI1NCYjIg4BBxc+ATMyFhUUDgEHAQGqRGJiQwbWRGFhRPkrBtUjMjIj+SoiMzMJAQwE9yk5AQwQBUEt+tsC9P2+7leESrqfSX5rLUtCflRabz12Vv7U/qxhQwbXRGFhRPkqQ2JQMyIG1iMyMiP5KSIyGgENOioE9AEMFC4u+W4uQQHggAbsV5icWY6iJDwmXjM5Yl5NgYZX/tIABAEE/qwJJAbMAA8AHwAuAFkAAAEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWBwEhMjY1EQEeARURFAYjATI2NTQmJzU+ATU0JiMiBgcXPgEzMhYVFA4BKwEVMzIWFRQGIyImJxUeAQGqRGJiQwbWRGFhRPkrBtUjMjIj+SoiMzMJAQwE9yk5AQwQBUEt/Bvj04eJbIGvs3O0PkdAhFxgcEGAXnBvl6mImkynSEeZ/qxhQwbXRGFhRPkqQ2JQMyIG1iMyMiP5KSIyGgENOioE9AEMFC4u+W4uQQHQv5ZxjRAHFYlzeqFGMGAqNltTQWE2eF9rangoJIQiHAAAAAAFAQT+rAkkBswADwAfACoAOQBEAAABIiY1ETQ2MyEyFhURFAYjJSEyNjURNCYjISIGFREUFgEzETM1IxEjARUhCQEhMjY1EQEeARURFAYjCQE+ATczDgIVEQGqRGJiQwbWRGFhRPkrBtUjMjIj+SoiMzMDyoinp5H95gIj/C0BDAT3KTkBDBAFQS37IgFWEScNBgEEA/6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMgHGAQN/AvT9BXj9HQENOioE9AEMFC4u+W4uQQNiAeMYRx4jS1c4/p0AAAAABAEE/qwJJAbMAA8AHwAuAE0AAAEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWBwEhMjY1EQEeARURFAYjATI2NTQmIyIGBxMhNSEDFz4BMzIWFRQGIyImJxUeAQGqRGJiQwbWRGFhRPkrBtUjMjIj+SoiMzMJAQwE9yk5AQwQBUEt/CXK4tGvOVwbGwHF/cMrRiNyLpWKnH5MpDo1m/6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMhoBDToqBPQBDBQuLvluLkEB0cuyoLANBQFKgP3mLQkPeHB+eCkihR8fAAUBBP6sCSQGzAAPAB4APQBNAFwAAAEiJjURNDYzITIWFREUBiMBIi4CNTQ+ATMyFhUUBgcyNjU0JiMiBgcjPgIzMhYXNS4BIyIOAhUUHgIBITI2NRE0JiMhIgYVERQWBwEhMjY1EQEeARURFAYjAapEYmJDBtZEYWFE/Fw8XD4fP3BLbm99Y6fEtpVnhCQJBkSjlCRKHBpRIqHNcSw8ao39HwbVIzIyI/kqIjMzCQEMBPcpOQEMEAVBLf6sYUMG10RhYUT5KkNiAn40VWg0M2A/f26IgnbOsqa1Tjh90n8JCngIBnPC7nuAvn09/kgzIgbWIzIyI/kpIjIaAQ06KgT0AQwULi75bi5BAAAEAQT+rAkkBswADwAfAC4ANQAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYHASEyNjURAR4BFREUBiMBMwE1IRUhAapEYmJDBtZEYWFE+SsG1SMyMiP5KiIzMwkBDAT3KTkBDBAFQS37eJsB0P0BAmj+rGFDBtdEYWFE+SpDYlAzIgbWIzIyI/kpIjIaAQ06KgT0AQwULi75bi5BAeAECmyAAAAABgEE/qwJJAbMAA8AHQAtAEoAWQBlAAABIiY1ETQ2MyEyFhURFAYjASImNTQ+ATcXHgEVFAYBITI2NRE0JiMhIgYVERQWATI+ATU0LgEnPgE1NC4BIyIOARUUHgEXDgEVFBYJASEyNjURAR4BFREUBiMBLgE1NDYzMhYVFAYBqkRiYkMG1kRhYUT8Wnt2MWFGGW6CfPxdBtUjMjIj+SoiMzMDVXKpXEVzR1mBWJpkYZtZNVs4Xo/G/VoBDAT3KTkBDBAFQS38SFh5cVhccXL+rGFDBtdEYWFE+SpDYgJ3b1M6WUgeCShxU1dv/dkzIgbWIzIyI/kpIjIBt0yMYE5wVSIug2dZeT8/eVhGalEgK5N0kaL+LwENOioE9AEMFC4u+W4uQQR0Jl9YUFVVUFZkAAUBBP6sCSQGzAAPAB8ALgBNAFwAAAEiJjURNDYzITIWFREUBiMlITI2NRE0JiMhIgYVERQWBwEhMjY1EQEeARURFAYjATI+AjU0LgIjIgYVFBYzMjY3Mw4CIyImJxUeARMiJjU0NjMyHgIVFA4BAapEYmJDBtZEYWFE+SsG1SMyMiP5KiIzMwkBDAT3KTkBDBAFQS37v6LNcSw7aoxRpsazlGiDJAoFRKOVJEwdGlajb2x+ZD1bPR89cf6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMhoBDToqBPQBDBQuLvluLkEB0nPB7nuAvXw+zrOltE43fdF+Cwp4CAgCKX5th4M0Vmc0MmA+AAAFAQT+rAkkBswADwAfAC4APABKAAABIiY1ETQ2MyEyFhURFAYjJSEyNjURNCYjISIGFREUFgcBITI2NREBHgEVERQGIwEyEhE0AiYjIgYCFRASNyImNTQ+ATMyHgEVFAYBqkRiYkMG1kRhYUT5KwbVIzIyI/kqIjMzCQEMBPcpOQEMEAVBLfxczbBUqYCJpku5v4JrLmlWVmgwbv6sYUMG10RhYUT5KkNiUDMiBtYjMjIj+SkiMhoBDToqBPQBDBQuLvluLkEBzwE4ARW6AQaLjP76uf7r/sh46uuc0Gdn0Jzs6QADAFj+rAnQBswAWQBnAHMAAAEiNTQ+AjU0LgEnDgEHHgEVFAYjIiY1NDc+ATU0JicuAicuAS8BIiY1NDY3ND4BMzIeAR8BHgEzMjY3MgQWFwEeARUUBgcOAQcOASMiJAMHFhIXExYOAgEyNjU0LgEjIg4BFRQWJTI2NTQmIyIGFRQWBEw0P1E/CAoFN0AwBQ9ybismQFBGDAuG46oxJxQTHU13VjyI44pqvZgyGydpOj2AUsUBJtZL/ZYvJy0tGlI3MmhDrf7giUVn55YeAzRSWPy5LTMdKhUSPjNQAcQiMDAiIjAw/qwlFjA7TDASSU0YDQgDCl0jVVoSFigHCTguFjwjBFiebVixT3hEMip0IY7cflusekFda42pRpd5/k8XMyYrNxAxMQYyK/0BCyfN/vtB/wAXTlA3BVIcGBs2JDA5EBMdcDUnJjY2Jic1AAAFASz/pgj8BdIAHgA9AE0AXQBtAAAFIiQnDgEjIiwBJic+BCQzMgQeARcOAQceAycuAjU+ATcuAyQjIgQOAgceAwQzMjY3HgEBIi4BNTQ+ATMyHgEVFA4BJzI+ATU0LgEjIg4BFRQeATciLgE1ND4BMzIeARUUDgEIYZ/+7U1MrVHH/rP+/q0pDT5rndYBFa7AAT77tTY3nWoCIDE4bR00IGegNBJTi87+57e5/uXQjVMSDk2K0AEhwFu/UTm2/aaJ44iI44mJ44iI44l1v3Jyv3V0wHJywHRFcENDcEVFcENDcFp0ahUXesnyeCCCoqaNVnnM/oWS6lUibHprNDB2fz5N34EqmLCgZmehsZoqJZCqmmQfGVh6ARSI44mJ44iI44mJ44hOcsB0db9ycr91dMBysEJwREVvQkJvRURwQgAAAAACAcz+rAhcBswAEgB3AAABLgI1NDYzMhc2MzIWFRQOAgcnPgM1NCYnNw4BIyImNTQ+ATU0LgEjIgYHNx4BFRQOAQcOAgcuATU0NxcGAhUUEgQXByYkAjU0EjY3DgEVFBYXBz4BNz4BNTQnPgEzMh4BFRQOARUUFjMyNjceARUUDgEEBQjG00+Lbo1wbYxuizV3xT4Fk/y+ajI7RRN0TWJvFBRlsHEaPSQeOTk7WC46PBcEf3MLLl9vogE02Qfv/qy1VpVgCwxNUUMFRlJBbIAkZzGF1HwUFD5DOFEfWkt41P7p/qyS7Mlde5iOjph7S5ejtgxKDHK1435yqEAZRVJwZkBwfFFopF8HBz5AjkxViHAyP2FtU0nCgDkxHVf+1afd/rHMGkof4AFs8ZUBD8wvLF0ubZUvGVqQW0eeZ4iMEBJzxn1Rg3E4R0Q/SmDBj4v8yn8ABgCq/qwJfgbMABkAKwBDAFMAYwBxAAABCAESNTQuAiMiDgEHLgIjIg4CFRQSAAE+AzMyFhc3LgEjIg4CBwEIAQI1ND4BMzIeARc+AjMyHgEVFAIAAT4BLAM3JwYMAwYHJz4BLAM3JwYMAwYHJT4BMzIEFzcmJCMiBgcFFAGLAfPsVZnNd3niry4tsOJ5d82ZVewB8/1bK5zI2mhYnDsfPa1iat7LoCwEPP6T/jDdf9qJgNqpNTWp23+J2n/d/jD7iB69ASABZgGOAZvEEMf+YP5s/pb+3cAemijSATIBcQGRAZC1ELj+a/5r/on+y9UoBB0/3IKSATmBBIL+x5RhrEP+rAEvAf4BwtV+26ZdXaFnZ6FdXabbftX+Pv4CBLIGDAkFBAVOBgUFCQwG+i4BGwHjAafAk+2MasSGhsRqjO2TwP5Z/h0BgxJhiJuagipOK4SbnYpjEvIXbZKjnYImTieDn6SVbRcMBwYHBlAGBwMEAAAAFgBm/qwJwgbMABUAIwAvAEIATgBnAIAAoQDBAM0A2ADkAQgBFAEYASMBLwE7AUMBYQF+AYsAAAEgJCcuAQI1NxQSFhcWBCEyJDcXBgQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBgEiJjU0Njc2MzIWFRQGBwYHDgEBIiY1NDYzMhYVFAYlIiY1NDY3NiwBMyAFHgEVFAYnJiQjIgQHJzYsATMyBBcWNjU0JyYkIyIMAQcOARceAQEiJjU0PgI1NCYjIg4BIyImNTQ+AzMyHgEVFAIGBCcyPgI1NCYjIg4DFRQWMzI+ATMyFhUUDgIVFBYBIiY1NDYzMhYVFAY3MjU0IyIVFBYXFgEiJjU0NjMyFhUUBgEuATU0PgEsATMyBBYVFA4BBy8BPgE1NCYkIyIMAQ4BFRQWFwEiJjU0NjMyFhUUBiURFxEFMjU0IyIVFBYXFhciJjU0NjMyFhUUBjcyNTQjIhUUFxYXFgM3LgEjBx4BEyc3LgInDwE3PgE/ASY1NDYzMhcOARUUBg8BFAcTPgE1NCY1NDY3DgEHJjU0NjcOAQc0NjciBhUyFgEyNTQmIyIVFBcWFxYD2P7c/qoQCxEIUAgRCwwBJAEKqgEEUhhe/vHDVYs3My9uR0hvLjM3jP6fJjIyJiYzMwNcGSceJSoZHyYUERkPCiD+gSYyMiYmMzP8Ojc8FR2qATcBGX0BHgEbICZMK3/+/IWz/pDOPX4BHgEaeIkBD4IPFBaI/u2Mef7j/t2EDQwEBBMFkm+dM0IzDQwdOUUxWGxfoszfapvac4DZ/vSMe+/DdNbCXca5k1c8OCpBPSQrPjNCM20BPB8iQi4jKFAZEykSGwEB+oQiL10wIy1c/oVYWILgASABQJ7CASuqJUo2CRUzMpf+/qCI/uD+9tR8IhYGMR8iQi4iKU/+wVABBxMpEhsBAfUhL00vJSxMDBczFg4RAwMCIw4zHj0aSAZFIgs6RBxAU1kGJxdcBZF9XUccHERQOSdBLSYEAgUWJAMGDwsbKQ0bEEJLKEz9vRgbFxUNEAMD/qy0nXb5AT3aCdz+wfpzdpIzK00uMwKmQkMsOTIyOSxDQgE9OCgoOTkoKDj+MTQcFy8PEScdEyMFBxQODgHPOCgoOTkoKDjIOigTLQ1KTRtPCTEgMDkNJiU7Rys4Qx4jJwQPDRUGJyYhRjYFFgkKCvsLV0UtPCgdDwgMJCVnXFm+sY5Tc8d+if780HtQb7rmeJ3MS32dpkxCMyUkOCopNCYkGCMpATEnIC45HCEtREkbKAkKEBEPBachGik8IRopPP1zGWtFWbOhfkhvxYA6ZVEfHTEebDdknVxDcY2WRSUuC/3CJyAuOSUiLTq1AX4S/s+nGygJChARD7YkHypFKCArP0YjMQ0LCAoWFAJqahQWYAQf/usRSBAfGAKQD8YdPxSSIBeDli4aQzhsbhupRDQBVg8vJQ8cDQkUCgMxIhQTFygNCioYHT4NaVYh/F0fFhsNCwcJFRMAAA8Avv6sCWoG/gAlADkAVwBvAH0AiQCXAKsAvwDLANkA7QDxAP0BCQAAIS4BAjU0EgAkMzIEABIVFAIGDwE+ARI1NAImJCMiBAYCFRQSFhcBIiY1ETQ2OwEVIyIGFREUFjsBFwEiJCcuATU0NjMyFhcWBDMyJDc+ATMyFhUUBgcGBCcyJDY3NjU0JgcGBCMiJCcmBhUUFx4BBBMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGBScDJCEgBQMHESQhIAUBIiQmAjU0EjYkMzIEFhIVFAIGBCcyJDYSNTQCJiQjIgQGAhUUEhYEASImNTQ2MzIWFRQGAQYuATc+ATc2FgYHDgEBNzMyNjURNCYrATUzMhYVERQGIwMnETMHIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYDDIPBaJMBBgFYxMQBVwEFk2jAhKWe64OI8v7Ctrf+wfKIg+yd/ZU9S0s9bmMiJiYiXygDPLn+ibY2MlI9EiMRkAFGo6MBRpARIxI9UjI2tf6IuXMA//ViNTQrqf6yqKj+sqkrNDVj9AEAclSNNzUvbkZGby41N43+oiczMycmMzP+oYYsAYIBcwF1AYAshv7c/uH+4/7aAkSi/uTXenrXARyioQEb13p61/7loZMBAsRvb8T+/pOU/v3Eb2/EAQMBnSYzMyYnMzP9FQwjEA89klMXFgQTT4QEwShfIiYmImNuPkpKPnBZWSwzR0czMkdHMhgiIhgZIiJX9gEoosQBVwEFlJT++/6pxKL+2PZXDUX0ATuwtwE/84mJ8/7Bt7D+xfRFAc5OSQFqSk1EJyL+giInRPzrQ0QUTi86WggGM1BQMwYIWjovThREQ1AhOicVLCEsDjZRUTYOLCEsFSc6IQHyQUMuODMzOC5DQQExOigpOTkpKDra7wEzq6v+ze8CFGlp/Lp61wEboqIBG9d6etf+5aKi/uXXekRvxAEDlJMBA8Vvb8X+/ZOU/v3EbwHIOigpOTkpKDoCRhIHIBRQcR8JGyQHH2P9EkQnIgF+IidETUr+lklOAr58ATYmRzMyR0cyM0c+IxkZIiIZGSMAABEAWv6sCc4GzAAlADMAPwBLAFgAYwBvAHgAkACoALIAuwDLANcA8AD9AQoAAAEgJCcuAQI1MxQSFhcWBCEyJDY1NCYnLgE1ETMRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYBMjY1NCYjIgYVFBYBIiY1NDY3HgIXDgEBIiY1NDY3ExcDBgEiJjU0NjMyFhUUBgEuATU0NjceAQEnLgE1ND4BJDMyBB4BFRQGDwEmJCMiBCc2JDMyBBc3PgE1NC4BJCMiBA4BFRQWFyUmNTQ3HgEVFAYXPgE3HgEVFAYBIi4BNTQ+ATMyHgEVFA4BAyImNTQ2MzIWFRQGBzI2MzIWMzI2NTQmJy4DIyIOARUUHgE3MjU0JiMiFRQXFhUUASImJz4CNx4BFRQGA8L+3P6pDwsRCFAIEQsMASQBCsgBIZsMDRMXUBQSDg+v/rzrVYw3My9vR0hwLjM3jf6fJjIyJiYzMwRpERYWERAWFvq1RVMgIQgfPjUSIgVMHy0HBq2RtRX9VSYzMyYmMjL+IFBkExQRS/48FlhOhOsBOLW2ATfqgk5YFpr+pKem/qFWiAFAk5MBPYgQVUx72P7nnZz+5tl9TFUCiDY2GhsbrTJKERQTZANTbrhtbbhubrZtbbZ4M0dIMjNHR1YbNhkXIBM8TEEfEx8nPTM/Zz0oXKoTIxYSDhf9ahAhEjU9IAghIFP+rLSdd/sBQN3c/sH6c3aSRXdJFCcaKE8rAqD9YCpGJBstG2aZVgJ9Q0MsOTMzOSxDQwE0OCgoOTkoKDj8dxYQERYWERAWBbpPOyNLJEdfSCUFBPogLCAJFw8BxC7+JTYDrzgoKDk5KCg4AnEFcEkeOxpMoP5Hrkh3Ql+ke0VFe6RfQndIriosLDYgJiYgekRdNEmGaDw8aIZJNF1ErkJnZkMfWTExWDRFoEwaOx5JcPvIbbhubrZtbbZubrduASJIMjJIRzMySJkYClQ6RVUrG0hDLF2JQjd9V/UdIC8PDggNHR0CdQQFJUhfRyRLIztPABQAgv6sCaYGzAAlADMAPQBJAFUAXwBpAIMAoACqAL8AyQDTAN0A7gD2AP4BCAEgASkAAAEgJCcuAQI1MxQSFhcWBCEyJDY1NCYnLgE1ETMRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY9ATQ2OwEHASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGASI9ATQzMh0BFBciPQE0MzIdARQBJxM+Azc+ATMyFhceAxcTByYkIyIEJz4CMzIeARcDLgMnFRQGIyEiJj0BDgMHJSI9ATQzMh0BFAE+ATMyFxY2NTQnLgEjIgYHBhUUFgEiPQE0MzIdARQ3Ij0BNDMyHQEUBSczMhYdARQGIwEiJj0BNDY7ATIWFwcXDgEjNwYmNTQ2HwI3JyYGFRQWMwYuATU0PgEfAQERNDc1NDcRNDYzMhcVIgYVERYdARYVEQMzETQ2FzUmFQOu/tz+qQ8LEQhQCBELDAEkAQrIASGbDA0TF1AUEg4Pr/685lWMNzMvb0dIcC4zN438qxEWFhFlGgGfJjIyJiYzMwHsJjIyJiYzM/2YGxsbhRsbG/3YTT8vQDM0JG7NjY7NbiQ0M0AvP02T/p2/vv6dgHDw5F1e5PBwMyUwIRoPFhH8rxEWDxohMCUCZxsbG/6KLVcrGxwPExoQIREwXy8WFgINGxsbhRsbGwFjGmURFhYRAUkQFhYQUhAVASYmARUQgxwqKhwmDEpKOF9fVjZtSEhtNoz9Nh4eYVobHisbHh60QiociP6stJ13+wFA3dz+wfpzdpJFd0kUJxooTysCyP04KkYkGy0bZplWApxDQyw5MzM5LENDAuAWEaURFvP+XTgoKDk5KCg4OCgoOTkoKDgCjBw0HBw0HB4ccBwccBz+NmcBfoOgViIFEQ0NEQUiVqCD/oJncXBwLUxvPT1vTAExZX1HIwplERYWEWUKI0d9ZRkcNBwcNBwBCwsOAwEUDRgDAgEMDgcUDhX+2xxwHBxwHB4cNBwcNBzp8xYRpREW/qgWEIoRFRUQQkoQFVYTEBwcEBMZOjo6LCg+PSkoBko+P0kGKGb7mQH0HgcMIQwBgGt1BqIVI/6ADCEMBx7+DAJVAX04MQJDA60AAAAACwC+/qwJagbMADkARwBfAGsAbwBzAH8AjQCZAMMA0AAAAS4CNTQ2MzIeARc+ATMhMhYXPgIzMhYVFAYHJT4BNw4BBCMiJCYnFgwBMzI+ATcVDgIjIi4BJwEiJic3HgEzMjY3Fw4BAyAkJy4CAjUzFBIeARcWBCEgJDcXBgQBIiY1NDYzMhYVFAYBETMRJzUzFQEiJjU0NjMyFhUUBgEyPgE3LgEjIgYHHgIBIiYnAzchFwMOASMlITI2NxMnIwcDFCMiNRMnIwcDFAYjIjUTJyMHExQGIyImNQMnIwcTHgEBPgEzMhYXLgEjISIGAkJrsWhKTiV5ijw7wXUBQHbBOj6GeChHVwEC/r4mSCNG+f6uzs7+rvhHiAEJASKtaquhWlWfr253y816An5VjDczL29HSHAuMzeNRf7c/qkPCQ0JBVAFCQ0JDAEkAQoBFQEWGVAc/sD9rCYyMiYmMzMEDEZniP2AJjMzJiYyMv7JT4yCP1zKZmfKXT16gQMJVWQCES8CXSskA2JW/vQBDEM4AiQWHhofJCIQFCIYEBURJQEWIhYCDhUUDxAYHhgRATr76lnSeXnSWTKJSf7ASYkCPUrT3lpPXBAVBsnx8MkGFBBdXQoTCwshSCYPIxgYIw+OslQaPDJXLzYWHlhV/PZDQyw5MzM5LEND/dS0nVm85wExzs3+z+a6VnaSgmILhqMDYDgoKDk5KCg4/KMBFv7qromJAq84KCg5OSgoOALvAwUDJiIiJgMFA/q/V04DeqOp/IZOUT41LwNzb2v80BUVAy5tbPzRCA0VAy5tbfzUCgoLCgMxaWv8iy85BV8kIyMkhaCgAA0Bq/6sCH0GzAAhAEcAVQBhAG0AfQCPAOwBBQEpATUBUgFcAAAlLgE/AT4BJCEgBBYfARYGByc+ATU0LgEkIyIEDgEVFBYXASAkJy4CNTcUEhYXFgQhMiQ2NTQmJy4BNREXERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGJTYkISAEFy4CJCMiBA4BJzQSJDMyBBIVJzQCJCMiBAIVATI/ARcWMzI/ATY1NC8BNxcWNxQfARY+AS8BJiMqAQcmLwEmIyIVFBcWFyIPAQYVFBcHJzY1NC8BJiM2NzY1NCMiDwEGByYjIg8BBh4BPwE2NRY/ARcHBhUUHwEWBy4BNTQ+ATU0Jic/AQUXDgEVFB4BFRQGByc+ATc+ATU0LgE1NDcnBiMiJicOASMiJwcWFRQOARUUFhceATciJjU0NjMyFhUUBgMyNTQnFCMiNTQ2NTQjIjAjFhUUBhUmNTQ3BhUUJzU0NjsBMhYdAQKSc3QRHRSuAV4BGwEcAV6uEx0Rbm8rVlB/2v7qmJf+6dp/V08CZv7c/qkPCRAKUAkQCgsBJQEKyAEhmwwNExdQFBIOD6/+vOZVjDczL29HSHAuMzeN/pUmMjImJjMzAewmMjImJjMz+/RgAWoBIAEfAWtfD16u/vLAwP7xrl40wgFh7O0BYMJXrP7H09P+x6wCjQcDISEEBQYEDwYEKjAXBQQECAcZEQULBAUBAwEDCigTHgoOCwYFAwQECjMzCgQEAwUGCw4KHhMoCgMBBAQFCwURGQcIBAQFFzAqBAYPBDSCeBoaGxph/gEMUxobGhp3g2QLHxZuYBoaIzIkIitAGhlBKyIkMiMaGmFtFx4LT3BwT09wcE8gBgUGARQBAQMNBgELgxkT7hMZjkPHdMWEl0BAl4TFcsNETDR7TGh+QhYWQn5oTIAv/c20nWTP+aEtr/741mZ2kkV3SRQnGihPKwH8JP4oKkYkGy0bZplWAfxDQyw5MzM5LENDAT04KCg5OSgoODgoKDk5KCg47VFLSlFKZDsaGjtkMf4BfdTU/oP+DOMBULq6/rDjAVYEKSkEBA0EBgUEKzsUBAMIBAcGExsFCgMBDQchDwcHBAMKBAUEBgUKNDQKBQYEBQQKAwQHBw8hBw0BAwoFGxMGBwQIAwQUOysEBQYEDQSyGHVNLDguHRg2CnYmJnYKNhgdLjgsTXUYNgUGBBJIOyQzNCU1IT8HGBYWGAc/ITUlNDMkO0cTBAZIcE9OcHBOT3ABGhsLBAQHAgcEGAYFCgoMBQYFAgcRIdgtExkZEy0AAAAAEwFN/noI2wbMACIALgA6AFMAXwBrAHgAjwCkALsAyQDXAOMA7wD7AQkBFQEhATYAAAEuATURNC4CIyIEAhUUFhcnLgE1NBI+ATMyHgESFREUFhcBIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYHIi4BNTQ2NTQmJzMeARUUBhUUFjMyNxcGJSImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWASc+ATMyHwEuASMiBgczLgE1NDYzMhYfATcnLgEjIgYVFB4BATU+ATU0JicuAic3HgEXHgEVFAYBLgE1ND4BMzIWHwEHLgIjIgYVFBYXAy4BNTQ2MxcOARUUFhcBIiYnNR4BMzI2NxUOAQUiJjU0NjMyFhUUBicyNjU0JiMiBhUUFjciJjU0NjMyFhUUBgEiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGEz4BNz4BNTQmIzUyHgEVFAYHDgEHB4kUB1ie1n+t/vOaAQNRAgFktveTkPO0ZAcU+rkpPDwpKTo7KBEZGRESGhpaPkYdCAkFQAUJCSc3GiEVJQFUKTs8KCg7OikRGRkRERoZ/lIQImE2NCIfGTscN2FjLg0ITT0yWT0eJhpCakJSaQUKAkMrJSc+GDcvDjQVPjdCMEv9UwsRQGtDSok6PXxESCsbKC8PDj8iG5eBBGFmFhQDLUN8NzV7RlWXQUOWAXlUdnZUVHV2VC9CQi8vQ0MvGCIiGBciIv4OVYw3My9vR0hwLjM3jf6fJjIyJiYzMwHzJjMzJiYyMoEFbHxzWYltYpJSboRqWAUBVSVONAHEk/7Aa7/+rt9ptE8yRZ1YtwEx33l41v7lo/48JUQW/P08KCk7OykoPDkaEREaGRIRGiMwVjk3Qys3TiIiTzUpRzhCPA86FB08KCk7OiopOzwZEhEaGhERGgHlSDE8FUYRFktMYEsYQVZQYzEeLHBXbVYPRVD+F0MGKygnRkccTU4dKjJfR1RaLENRAYpNhSlFb0JiZ2tYcGkgNS8pe1YBoDZGIlxuTwM5Pxg2IP0+CgpRCgsNDVEMDaJ2U1N2dVRTdldDLzBCQy8vQzkiFxgiIhgXIgJzQ0MsOTMzOSxDQwE0OCgoOTkoKDg4KCg5OSgoOP06SpNiW3s6VlNQOm9QT6VnUmw2AAALAJv+pwmNBswAGwApADUAUABiAHQAgACEAKoA0gDWAAABICQnLgECNTQSPgEzMh4BEhURFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYTMiQ2NTQmJy4BNRE0LgIjIgQCFRQSFhcWBAUnLgE3Ezc+AR8BHgEPAQMOAScWNjcTNzYmLwEmBg8BAwYWFwEiJjU0NjMyFhUUBgUnExcBIiYnBiYvAS4BJw4BIyImNTQ+ATMyFhc2HwEWFz4BMzIWFRQOAScyPgE1NCYjIgcnNiYvASYGByc2JiMiDgEVFBYzMjcXFh8BFjcXBhYHJxMXA0n+3P6pDwsRCGS295OQ87RkFBIOD6/+vORVjDczL29HSHAuMzeN/pUmMjImJjMz8MgBIZsMDRMXWJ7Wf63+85oIEQsMASQE4XEuIhWlOAorJ5MgExBaYA1OIhsfBl5XCAYTVhUUBTegCgsf/XAmMjImJjMzAwY0WjQBHhktDgobC94QIQoIDQc0OC1LLBwtDiclvicZBw0GMD0sSy8ZLx4bFxsREwEVFr0TIwkxAxESFy4eFhUWCxoFKt4lFgcBHiMzXTT+rLSdd/sBQN23ATHfeXjW/uWj/TgqRiQbLRtmmVYDJ0NDLDkzMzksQ0MBPTgoKDk5KCg4++xFd0kUJxooTysCyJP+wGu//q7f3P7B+nN2kkUnEEgwAXfeJyEMLgo3JdL+czQpTwkUGAGKyxIWBhwHERTV/pQYIwsD/TgoKDk5KCg48A4BHhH+PxgTAgQDRgUTCgQBUDo7bkcYFQ0MPAwlAgFNOTZwS0A5UyYgJhYGEyUHPAYIFBISGzVQKiInGgQoDkYLFwQVIQgSARsQAAAACgBu/qwJugbMACcANQBBAE0AWQBvAIkAoQDAAOEAAAEgJCcuAgI1NxQSHgEXFgQhMiQ2NTQmJy4BNREXERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGASImNTQ2MzIWFRQGJSImJzYkMzIEFw4BIyIuAiMiDgIFLgE1ND4BJDMyBB4BFRQGBzUuAiMiDgEHJz4CMzIeARc+ATU0LgIjIg4CFRQWASImNTQ3AS4BNTQ+ATMyFhcHHgEzNx4BFRQGBwMOAScyNjcTPgE1NCcHBiMiJic3IgYHDgIVFBYXAQ4BFRQWA1b+3P6qEAkMCQRQBAkMCQwBIwELyAEhmw0NExZQFBIOD6/+vO9VjDczL29HSHAuMzeN/pUmMjImJjMzBMAWICAWFyAg/RUmMjImJjMz/ThSWxChASqZmgErphBbUyhTY31ST3tiU/7yLiBxygEMm5sBDMpxJzN61Mtvb8nRfAKFzcJzc8LOhAYFaLbuhobutmgFBldMdBoBITxIWZZbGzUWjQxSNpAuNKF/yhJeSS5CDdR3mh5sGxVPcRFpBw0HQWs+TkH+zgoKS/6stJ1XtNkBGr0Zxf7d3bNVdpJFd0kUJxooTysC8B/9LypGJBstG2aZVgKJQUMsOTMzOSxDQQExOSgoODgoKDn83SEWFx8fFxYhAyM5KCg4OCgoOeNRSUtWU1JGUBojGhojGidHojWI7bJlZbLtiD2wVKk+TiUjTT5LPEojI0o8EScSd9CdWFid0HcSJ/qlYEcuSQM9L5BMWphcCQveKjTlLoFBdrMX/JZNYkFEOQOWB5dnQjmsBV1MpgIBCEtyQ0mHIfySHywTLTwAAAAKANL+rAlWBswAagDVAOMA7QD7AQUBEwEdASsBNQAAASImNTQ+ATU0LgE9ATQuASMiDgEVFBYzMj4BNxUuATU0PgIzBy4BNTQ+ATMyHgEVFAYHNR4DFRQGBzUeAjMyNjU0LgEjIgYdARQeARceARUUBiMiJicuAScuASMiFRQeARUcARUUBiEiJjU0PgE1NC4BPQE0LgEjIg4BFRQWMzI+ATcVLgE1ND4CMwcuATU0PgEzMh4BFRQGBzUeAxUUBgc1HgIzMjY1NC4BIyIGHQEUHgEXHgEVFAYjIiYnLgEnLgEjIhUUHgEVHAEVFAYDLgE1NDYzMh4BFRQGByc3NC4BIyIVFBYFJy4BNTQ+ATMyFhUUBic+ATU0IyIOARUFLgE1NDYzMh4BFRQGByc3NC4BIyIVFBYFJy4BNTQ+ATMyFhUUBic+ATU0IyIOARUGyzI7Ly8gIQUPDxg0Iy8XDSUtF4SpSXaKQQNWdFGGUVOHUW9dOnxsQ6mFGC0lDBcvKDcXHww7XDA/QiggJEg7SGATHx4SJw8OSvscMjsvLyAhBQ8PGDQjLxcNJS0XhKlJdopBA1Z0UYZRU4dRb106fGxDqYUYLSUMFy8oNxcfDDtcMD9CKCAkSDtIYBMfHhInDw5KF0BQGBYrTTEFBVQvJi4NEyYBDj0FBTFNKxYYUCkfJhMNLiYD5kBQGBYrTTEFBVQvJi4NEyYBDj0FBTFNKxYYUCkfJhMNLib+rCYgHCgrIEWYrWKcUFwnIjIXHjMbHQLSA4NmP3BWMRMdnGJShlFQh1JemSYUAjNVbT5mgwPSAxwbMx4WMiNTYolNmYw8LVskHylHYEVwME82UCpPa1UaPRwtOCYgHCgrIEWYrWKcUFwnIjIXHjMbHQLSA4NmP3BWMRMdnGJShlFQh1JemSYUAjNVbT5mgwPSAxwbMx4WMiNTYolNmYw8LVskHylHYEVwME82UCpPa1UaPRwtOAa8JJJTJjVDcEYTLRo+FUNVKiksZmsRGi0TRnBDNSZTkiscZiwpLFZAZCSSUyY1Q3BGEy0aPxRDVSopLGVsERotE0ZwQzUmU5IsHGUsKSxWQAAMAHj+rAmwBswAKwA5AEUAUQBVAFkAcgCIAJoAngC0ALgAAAEiJCYnLgECNTQSPgEzMh4BEhURIxE0LgIjIgQCFRQSFhcWBCEyNjcXDgEDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgERIREnMzUjASImJy4BNTQ3PgEzITIWFx4BFRQGBw4BIyUhMjc+ATU0JicmIyEiBw4BFRQWFxYBICY1MxQeATsBMj4BNTMUBiEBNTMVJyImNTQ2MzIWFRQGIyInLgEjIgYHBgU1MxUDJsL+46EKCxEIZLb3k5DztGRQWJ7Wf63+85oIEQsMASQBCoHZWyVk65lVjDczL29HSHAuMzeN/p8mMjImJjMzAfMmMzMmJjIyAlUBKeWhof57P04LBwgOBlFAA65BUAYHBwgGCFBB/FYDqkwJBQkGCAlK/FJMBwcHBgcMAbL+9/g+Xcmh0KLIXT73/vb+1EVXDhOLamiLEw4HDjBSOz5SLQ8BSEX+rFGXaXf7AUDdtwEx33l41v7lo/6JAXeT/sBrv/6u39z+wfpzdpIfHkgiIwM5Q0MsOTMzOSxDQwE0OCgoOTkoKDg4KCg5OSgoOPyrAU7+skTG/d5DPim2bb6aRk1NRkuyW2e4LD5EREYstmFar0lVVUmvWmuwJ0cBXbTEcIc9PYdwxLQB/4KCThYRL0FBLxEWBhUWFhQHToKCAAAEAjj+rAfwBswAFQBRAF0AbQAAASIkJjUQEiQzMgQaARUUBiMiJicOAScyPgEzMhYXJiMuASc+ATU0JiceAT8BFxYzMjclNi8BLgEHBQYVFBYXBw4BBy4BIyIOARUUHgEzMh4CASImNTQ2MzIWFRQGASIuATU0PgEzMh4BFRQOAQSF3/7+bKYBJL6jASbkg05HOFwZFf/FK05ZOyVCHDhtN5FlBwkBAxEmEBEEDBIIBwF5IQ01BhoO/oYWBgITDRUIHX9ERHBCQnBEJlFPRwGMMUZGMTFFRf4GfM16es18fcx6esz+rDSGewEUAZTbmP74/qy8hXIyKjozzyQkCAtlSkEBFjATCBIRBwQHCAgXBKAPHn4OCwagCRYFDwUIBRgUSktCcEREcEIpNykBc0QvL0NDLy9EAll6zXx9zHl5zH18zXoAAAAAEwH//qwIJQbMAEYATgBSAF4AagCJAJoAngCiAKcAqwDNANkA4gDmAOsA7wDzAQEAAAUnLgE1NDYzMhcaATMyFhc0LgE1NDY3Ii4BNTQ+ATMyHgEVFAYHMh4CFyc1NDYzMhYVEScRNCYjIgYVES4CIyIGBw4CBycmPwE2HwInNx8BIiY1NDYzMhYVFAYnMjY1NCYjIgYVFBYFIiY/AT4BNxcOAQ8BBhYzMj8BFx4BFwcuAS8BBw4BJScuAS8BPgE7AQcjIgYHHgEFJic3ByYnMxM1Fw4BATY3FxMiLgE1ND4BNxcOAhUUHgEzMj4BNTQuASc3HgIVFA4BAyImNTQ2MzIWFRQGJT4CNwcOAQcFJzY3EyczDgEnNRYXBzcWFwEiJjU0NjcXBx4BFRQGAw+TFhNDNi4lO8KPKXorJCUSGFKIUUx/TE5/TDcyJGBlWh4YPzEyPjwdFxYfNlNbQp3MTFmPdDn7EAUNBg7+94MUb1wySEgyM0lJMxomJhoZJSX+8jY5EkAxqnYRZJgsQAkVGR8LR0AkIgkxBRMUDzYKMAFSOwU9PSshXDpqCFshMhdISQGnXz6duz0F4EmeH1H+qQQ+njRyvXFdoGQgWI9UXZ5fYJ1dSn9QJVqOUnG8cx0rKx0eKir9sCOP0IQJr9g5Ad6dQ1rnneEFIthdQYCdOQv+/So5GBNtDxwgOZY7CSEPIS4OARYBGwoHaauHNClFIkh+UE1/TEx/TUByJ0qDrmQBZC88PC/9BowCZhgfHhn+xx8gC6CEBWXOx1kHDSQRBlqZLEIkjkgzMkdHMjNIPCQbGSQjGhskFlg2v5KrEUAGkoTAHCci1hsPJzUbKyIIBqMfLKMTTFEWEElKPBsgHHmXCzmdgEJd/wDhnRwjASdYRZ3+SnC9c2ivdQ9DB2CXWl+eXV2eX1WPYQ8/FnWnYXO9cAFYKR4fKiofHimzk9R6DD4V08Q8nj0G/jifLlLI4QY9up0/XgEeQjQjbjdMNQsyHSk6AAAAABUCEv6sCBQGxwAsADcAQwBPAFgAaQByAIEAjQCZALUAwQDNANcA2wDoATIBTwFoAXgBjgAAJSImPQE0NjMlLgE1ND4BNzY3JjcTPgEfAR4BBwMGBxYVFA4DBxYUFRQGIwElLgE3PgEXBTcXEyImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWNyImPQEzFRQGJyImNTQ2PwEXBwYVFBY7AR8BIicDNxMnMwcXIi4BNTQ+ATMyHgEVFAYnMjY1NCYjIgYVFBY3IiY1NDYzMhYVFAYlJy4BNTQ2MzIWFz4BNxczPwEVMz8BAwUHAw4BASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWJSczBxMXAw4BIzc1IRUHIiY1ETQ7ATIVERQGASY1NDcjByMnJjU0NjMyHwEuATU0NjMyFhUUBgc3IQchByM1NDY1NCYjIhUUFh0BIycmBh8BMzczDgEVFBczJjU0NzMHIwYVFBcFJTI2PQE+BDU0JiMiBw4CFRQWFyEiHQEUEz4BNy4BNTQ+ATMyFhcDDgEHHgEVFAYPARMWNj8BNiYvASYGDwEGFhcBNDYzMhY3PgE3Bw4BIyImIyIGIyImBDQpNzcoAhEHBiY9IQoNHAg2BzAiXSQiBzcGGAQOFxoZCAEvJPyk/qIODAQFGA4BPToeMy5CQi4vQkIvGCEhGBghIRgLDzQPCjdAHh2VFIMfHRiFCAwqBSlHKR2GEps6YDk5YDo7YDl8WDhPTzg3T083EBYWEBEWFv1RjCUYPTkRLBIxYUMXg0N7cwi0GP2uDJ4NGwR4LkJCLi9CQi8YISEYFyIi/rwZYRwmSCYCGxQdAQEFCg8SDxIP/YYaDmBLiogRHBQWFz0ICTAiITADBxgB1AL+QD4cChMOIQogVQ0QCnJkS6gODwxWDyCjA44UKv5uAoMOFQgXGxcPGhMlDik+IgMH/dky7iByU1JeRXNGUIIcShMvFAsLCAQi1g8WBDEECg44DREDMQMPDfyHN0gsWFQ3dk0WPINMIVUcKCUSFSrCOCkjKTgCDzoqT9beWxsVGioBFCIjBQ8GNCD+6iASDBYgmMTFnSQSJhAnOv7QcwUZDQ8LBWg1Pv7WQi8vQUEvL0I4IRgYISEYFyIsDwu8vAsPqjoqGjUWbUFhFhkPFUEfKQE1A/7VDELvOWA6OmA6OmA6WHtMTzg4T084OE9oFhARFRUREBaOKAsxDyQkBQXd8CkyPAbu6Qz+3wM//tgZGv6+Qi8vQUEvL0I4IRgYISEYFyK3QgsBHwP+1xMXP0hIyg8LARgSEv7oCw8Cd0VMNTo6sRcVExwQKxMeEiEvLyEIFBQUMjQyFyQWERMkGB4bMkQLDA2WOi5QIy8wLTJGWzI7NElIhAIVDlEclcLAkxkZFCVv3Ls+Kzk5JjAmAid331odgFJHc0RaSf7jEBYECyshIUQX3gGTAhMQ7xEPAgoCChHzEBcC/uceOA4PCjBJ0h4cDxcmAAAAAAMB5P6sCEQGzABiAH8AiAAAASIuATU0NjMyPgM1NCYjIg4CIyImNTQ+AT8BPgI1LgE1ND4BMzIeARUUBgcUHgMVFAYjIiY1NCYjIgYVFBYVFAYHHgEXHgEVFA4BIyImNTQ2NTQuAiMiDgEHDgEhIiY1NDY3ARcBDgEVFBYzMjY1NCYnARcBFhUUBgE+ATcmJwYHFgR/MV07RTcqWFFAJQoRGisxRDMrNDldNQorWT1eclyZXV2ZW1lOTXNyTTY0MTIpIg4TIgoIJmU7NCgxSyctPA1FZWQeHklfQCw5/aosQSsiAe4p/gYYICMYGCMBAwH3Kf4VAUACJAcQBjYjEwsk/qw0UiwpLm+tvZ8oGBtDV0MzJyhFUzoLMIBvFS2qZ12YW1uYXVucNCRXbYalZERLTVRRYBURHFo7Hz8fT4tJQE4lMFs8PC0XLRYgamxKSaCEWztALSQ5CwKvHv1CAiIXGCMjGAMIDQK8Hv1XBgctQANMCBYKFCsUEysACwI9/qwH6wbMACYANABAAEwAUwBbAHwAkACXALcAvwAAASAkJy4CAjUXFBIWFxYEITIkNjU0JicuATURNxEUFhceARUUBgQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgEzLgEnIxYnMy4BJyMeAQEiJCY1ND4BNy4BJyE3HgEzMjY3FyEOAQceAhUUDgInPgE3NDY3Jw4BIyImJwceARUeATczNjcjDgEFJz4BNTQmJCMiBAYVFBYXBy4BNTQ+ASQzMgQeARUUBiUzPgE3Iw4BBRf+3P6pDwkNCQVQCBELDAEkAQrIASGbDA0TF1ETEg4Pr/687VWLNzMvbkdIby4zN4z+qyYyMiYmMzMB1iYyMiYmMzP98mEBBQWqJk/DCBANxAcVAXS8/s61MV1ACg8HARc4MkgpKUgyOAEXBxAJQVwxaLjyjBUfIiUiHiE/Hx8/IR4iJSIfoGEuJqoEBgH8TSMbp/7itLP+4qccIk0mIW3DAQaYmQEFxG0h/fjDChUHxA0Q/qy0nVm75AEqx1rc/sH6c3aSRXdJFCcaKE8rAsgm/RIqRiQbLRtmmVYCV0NDLDkzMzksQ0MBMTgoKDk5KCg4OCgoOTkoKDgB3Q4eDiZUERoPDSH+Rk2BTSdJQRoOHQ+VGxcXG5UQHQ0aQUknOmZOLe8XFg83dC9TCg0NClMvdDcPFkAUJg4eESE+Uyhxt2xst3EoUz4hRGUxZLCFS0uFsGQxZScMIQ0PGgALAVT+rAjUBswAKQAzAD0ASQBmAH8AiwCjAMAAygDWAAABICQnLgM1NBIkMzIEEhURBxE0AiQjIgQCFRQeAhcWBCEyNjcXBgQBJj0BNDcOAQcVASInNxYzMjcXBgEiJjU0NjMyFhUUBgciJi8BNT4CMyEyHgEXFQcOASMiLgIjIg4CJzI+AjMyHgIzMjY9ATQmIyEiBh0BFBYlIiY1NDYzMhYVFAYBIi4DNTQ3ARM+ATMyHgEVFAcDERQGAzI2NzUnNxc1Nyc3FzcnNxc3JzcXNy4BJwMBHgEDNzUuAScWHQEUJTI1NC4BIyIVFB4BBB/+zf6eEQkOCQWwAT/X0QE7sFCb/um6v/7lnAQJDgoOATABGJXwWFVk/uX9bQkJIFojAn2SaC5UeHhULmj+ZyUwMCUmMDBWO2s0iS1waiIC4iJmbCt/NGs7OVtJPhwcPklaOjZOQ0UrLEVDTjU7MRoY/R4XGzICeCUwMCUmMDACL0KgnoVQIQGH3wssHy9gQgXJSsg3ayuGEnQWaBJoIWYSZiFlEmQiK14Zxf7qT3y+miRWIQkCbyAzRh0gM0f+sbymXbLF8p7+AYDXyv6Y7f3nTgJn1wFDtcH+pOif88KuWn2dJSIxLzcEABofnBkSCioXO/4eXDVLSzVcAXE3JyY3NyYnN7E8K3DPHDIfHi8b22krPCo2Kio2KksqNioqNipERbQcJCQctEVEZjcnJjc3Jic3+/IqRVRXJSshAYcCChoVKT4eDg796v3ILi4BqhEMhDgvMCA7Ky8rWCkvKlcpLylZBScc/jP+6hgUAlt6OxcqChIZnCKREg4lHRINJh0AAAAACgD//qwJKQbMAG8AdwCDAJMAnwCqALYAwgDKANYAAAEgJCc3FgQhMiQ2NTQmJy4BNRE0JiMiBy4BIyIOAwcRBy4BJz4BNTQnLgE1NDY3JjU0Ny4BNTQ2NyY1NDY3HgEzMjY3PgEzMh4BFzIeAhUUBx4BFRQGBwYVFBYXDgEjIiYnNxUUFhceARUUBgQlAS4BJwEUFiUiJjU0NjMyFhUUBgEuATU0NwE+ATMyFhUUBiM3MjY3LgEnDgEVFBY3NjU0JiMiBgceASUiJzceATMyNjcXBgEyNjU0JiMiBhUUFgcnNwcTJQE3EzI2NTQmIyIGFRQWBcX+6P6uF08NASIBA80BI5sMDRQWZVgUHARbSkqWmZydUHQpJwUiIkE2JhQTGFEGBWFhCjIwBTxBJEs3R5t2fKtdBUR6XzYdFBQnNkIhIghBIwwZDC0VEQ4Psf65+tQBuCQwBP5hJQE0DRQUDQ4TE/7bOkYDAdwUbkZUc4dlEgspDCdVGhIRSKQlTzUNHw4bVAHklmcsLGVAQGYrLGf+XiUxMSUlMDA9BxJ15AIJ/qSnrCUwMCUlMTH+rKuUGHmOQ3VMEyUaKVAsAkCJjAVGVUdqbVEI/fZpCCIUBTYkPFZHcE8rSSkwMVc9GC4VUWkYIiAsQhwzPBocJClGZzFGeJVPQz8pSStPcEdYOiQ2BRwoAQQdHCtHJRwrGmWZVlABExFKJf7FHTTiFA0OExMODRT+zw5cOw4SAWZHXHBOW3BBCAUpbysUNRo0OS4iNDlLCAgwb6hnNS4oKC41ZwFONiYmNzcmJjbyAq0GAn2g/jcj/tI2JiY3NyYmNgAACgDZ/qwJWgbMABMANwBFAFEAXQBnAHcAgACMAJAAAAEnNDY3JTUJARUFHgEVByYkIyIEASAkJyYCETcQEhcWBCEyJDY1NCYnLgE1ERcRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYhIiY1NDYzMhYVFAYBJyQhIAUHJCEgATYkMzIEFzQmJyUJAQUOAQEiJj8BMxcWBiciJjU0NjMyFhUUBicRMxECjjwWD/5iBBoEFf5oCw06l/7mqqr+5AHL/t7+rBEQD1AOEQ0BKQEByAEgmwwNExdQFRENEK7+vN9VjDczL29HSHAuMzeN/pUmMjImJjMzAewmMjImJjMz/IkkATQBPgE+ATQk/uD+0v7S/tqSASCipQEeixUOAZ/8NvwxAasSGQY/LkgOPFc9D0gvKzw8Kyo9PVBLAwcmVp80bF0Brf5TXWw7nVkWdGZo+yu0nZsBgwEYIP7d/nCcdpJFd0kUJxooTysCXC/90ypGJBstG2aZVgJ0Q0MsOTMzOSxDQwE9OCgoOTkoKDg4KCg5OSgoOAHrQrW1Qqz+fWVeXWRKmi5uAY3+c3AflvzaKimrqykqxD0rKzw8Kys9nQLy/Q4AAAAOAGT+rAnEBswALAA6AEsAVwCJAJcAowC5AMoA4QDtAPEA/gECAAABICQnLgICNTQSPgEzMgQWEhURBxE0LgIjIgQCFRQSHgEXFgQhICQ3FwYEASImJzceATMyNjcXDgEBMj4BNTQmIyIGFRQWFx4CNyImNTQ2MzIWFRQGByImLwEuAS8BNT4BMzIeARc2MzIXPgIzMhYXFQcOAQ8BDgEjIiYvAS4BIyIGDwEOAQEuATU0Nj8BDgEVFBYXASImNTQ2MzIWFRQGATI3AS4BJwEOASMiJicBJgcGFhcBFgEyPgE3PgE1NCYjIgYVFB4BASImJwEuATcBNhcBHgEVFxYVFAcBDgEnHgE3ATYmJwE3AScTITUhEzQCLgEnITIWFRElBwEhNSEDEv7c/qkPCQ0JBWS295OQAQfOd1BruOp/rf7zmgUJDQkMASQBCgEXAVIXSSn+iv7mVYw3My9vR0hwLjM3jf6AT1Qfbm2AWAkGCyhZXyYyMiYmMzM2gnIPIAQNExlVpVRjcjsNERobEA46c2JUpVUZEwwFIA9ygnB+EA4DGQ4OGQMOEH4FXRMaCw1MFgsSDfxaJjMzJiYyMgM/KB8BhQgRBf6VEisXDSAV/hcfEAcHDAJCDfy0VlkoCwYJWIBtbh9UA7kPIhf9tyIUFQG9K0wB/iAUKSgM/mgTNHIgKRABWg8GFP4RPv48DScBSf63CB5LhGUDli1A/qqB/toCQf2//qy0nVm41AEEprcBMd95eNb+5aP9cDgCyJP+wGu//q7fpf7807ZWdpKDYyV8lQLkQ0MsOTMzOSxDQwE+LGldVCcnOSU+Hzk8Flc4KCg5OSgoOJk+PYUSEAsPihcUHDQlDw8lNBwUF4oPCxAShT0+TnFkFxUVF2RxTvwqEjAeETEXFSMsEBMsDARLOCgoOTkoKDj70TUCoQcVEP2MHxoKDAEZERwLHAf+vQgD2BY8OR8+JTknJ1RdaSz73gkNAUcTSSUDA0or/tsTKBcZGSsVFf0/Ih/9EgMcAlYaKgsBHRX88z4DgTz+M40BCPDTWkAu/OPN9AJdPAAAABUAeP6sCbAGzAAjADEANQA/AFsAXwBjAGcAawB3AHsAfwCtALkAvQDBAMUAyQDNANEA1QAAEyImNRE0NjMhMhYVERQGIyE1ITI2NRE0JiMhIgYVERQWMyEVASEuAScuASsBIgYHDgEBNSEVAxE0NjMhMhYVESUhNz4CNz4BOwEyFhceAh8BIRE0JiMhIgYVAzUzFTM1MxUlNSEHJTUzFQEiJjU0NjMyFhUUBgE1MwclNSEVATU+ATU0JicuATURNAIuASMiBAIVFBYXJy4BNTQSJDMyHgESFREUFhceARUUBgEiJjU0NjMyFhUUBgU1IRUlNSEVJTUhFSUnMxUzNTMVJTUhFTM1MxXdKjs7KghuKjs7Kv4oAdgOEREO95INEhINAQQBcQFVFhIFAR4chRweAgQS/bcBN7NUOwOoPFP7hQEfDAoQCwECQzaFNkQBAgkQCgwBMyof/GIeK7tsPHH+0wFaBf7MngHZKDIyKCgyMv5ApwX+XgGrA3m1rg0NExhZo+GIwf7inQICTwIDsQFC2Zr+uWQUEw4Q1/7JKDIyKCgyMgF0AYb+egEi/skBHf6YCtxVff5pASI3gAFMPCoEtCs7Oyv7TCo8RhMNBLQOEhIO+0wNE0b9q1OzSRoeHhpLsgMUNzf8TwKhPFNTPP1fSy4mam0oMEREMChtaiYuAlEfKiofAd03Nzc3yDc3yDc3/hA7KCk5OSkoOwHwNzfINzf5T08kgE0UKRopUC0CD50BBsBpwv6l5VmVPwJBlFf7AXzVdNT+3q398StIJBwuHHKmA9E7KCk5OSkoO2c3N8g3N8g3N8g3Nzc3yDc3NzcAAP//ANL+rAlWBswSBgXfAAAACQEn/qwJAQbMAI0AlQCjAK4AtAC6AMYA0QDjAAABIiY1NDY3PgE/AS4BJw4BFRQWFRQGIyIuATU0Ny4CNS4BJy4BNTQzMjY3PgIzPgEzMh4CFR4BFRQOARUUMzI+ATMyFhc2NTQmJy4BNTQ2MzIeARUUDgEHHgEXHgIXHgEVFAYjIjU0NjU0JicUDgIHDgEjIiY1NDY3PgE1NCYnLgEjIgYHAw4CASc+ATcXDgE3LgEjKgEHNTYyMzIWHwEyPgE1NCMiBhUUATcmJwcWPwEmJwcWJzI2NTQmIyIGFRQWJy4BNTQ+ATMyFhcFMjU0LgIjIg4CFRQWFx4BBERALRcKFikJLhwwGRAfEC0aIDokSw8dEgpPbjY+dBQYDTZsmnk9hiYcNisaGhU3NxYOTIhnKlcurnJlTEM0PWm4cVZxKyY2CgUwLwECMzxDSCxUbRomJw4KSB40KBwiIig8PAcwHy5yLmoZKTX8zhY2dEAIPG6bJUgjEB8RER8QJWEkEyNJMmkgGQHHOFBkKFusLE1xHGeoJDgfGSI6H04JCRgqGx9tOQFLHg8YGwwLLjIjOB4gOP6sHBkQLQ4dcCnRAw4NHT8LFk0VPU5SdTVbjhhoezMdTkoleESRDBZaai+All6auFkfRiVDelwWDxsbBgdQdDtXEw8oJCMkX5xdTn9cGk3YXScsIRk/k1hMOykdXEM6UyYVZXRdDgoREhEOIx8gfCgaNyEEAwcH/r5MShYE+kMSGwpGCBuABQUBRQILDJAfLhUjIi0g/r0sY0U5Pzw3PTBAK5xBKR0lQigcJvsOOCI/jGOVkbBrKmFYNztRSg8NKBocNQAAAAALAG7/EAm6BmgAHQAyAEAATABQAGIAcgCQAJwAqAC9AAAFICQANTQaAT4BMzIeAjMyPgIzMh4BGgEVFAAEAS4BNTQ+ATMyFhcHLgEjIgYVFBYXASc+ATMyFhcHLgEjIgYBIiY1NDYzMhYVFAYBNTMVAyIuATU0PgIzMh4CFRQOAScyNjU0LgIjIg4CFRQWEyAkEjU0CgEuASMiDgIjIi4CIyIOAQoBFRQSBAEiJjU0NjMyFhUUBgEiJjU0NjMyFhUUBiUnPgE1NCYjIgYHJz4BMzIeARUUBgUU/qb+Bv7tY6va73RATzYzJCQzNk9AdO/aq2P+7f4H+ttmdkR1Sk21RTs8lzlNZmNZAtc+LoxHR4wuPiNqNjZq/rUjMjIjIzIyAaBQKJzrglqYuV5fuJhaguuczO1OgpxNTZyBT+3MAUUB1f1dnsfVZD9PNzQjIzQ3Tz9k1ceeXf0B1gFEW4SEW1yDgwGPIzIyIyMyMgG8MFljZk05lzw7RbVNSnVEdvC4AVLmjwEuARjfghMaExMaE4Lf/uj+0o/m/q64BMJMymhQfkpjSzZBU3FXU6lC/WczLzg4LzMhKSkCDzIjIzIyIyMy/ijx8f5lbsqJd+a9cHC95neJym5QyKlmyadkZKfJZqnI/tqkAS7OhQEXAQPOeRMaExMaE3nO/v3+6YXO/tKkAwFiREViYkVEYgFIMiMjMjIjIzIpQEKpU1dxU0E2S2NKflBoygANAKD+rAmIBswAVQBiAGYAewCHAL4AygDaAOYA8wEkAT4BQgAAASImNTQ+ATURLgEnAzMTHgIzOgE3ERQGFRQWMzI2NxMyPgI3HgMXHgEfARYOARUUMzI2NTQuAScXHgEVFAYjIjU0PgEvAS4DJw4CBwMOASUiJjU0PgE1ERcDDgEDJyUXASImNTQ+AT8BNi4CNTcXDgEHDgEBIiY1NDYzMhYVFAYHIiY1LgE1ND4BNz4DMxc3PgEzMhYVFAYHJzI2NTQmJy4BBw4BBw4BBy4BIyIOARUUHgEzBwE1JxEnPgEzMhYVEScyPgM3IyImJw4BFRQWAT4BMzIeARcuASMiBSImNTQ+ATMyFhUUBgEiJicuAyMiDgIjDgEjIiY9AS4CNRc3HgIXHgEzMh4BFx4CFx4DFRQGASImNTQ2MzIWFzQ2MzIWFRQGIyInFhQVFAY3JwEXBK5LVhcXgsslk1ONFWKOVgcMBy4jLiwuARwrcX9/NwYeMkoyJjICDAMYGyA4NQYNClcJDWFccBkZAg0BQFtUFTx7cjAaAlv+Kys1NDS1EwVMnw0BRS0B7y8rJSwJGA8OIRzdQQc1Jhw9+8AQGBgQERcXuhkwSFpTbSYJGzBSQDA4MmwlRCYaFI8+Lw4GAhEIGjwYJxsFDzsgK0gsMlMxKAMBEiwCJhgjF7EpUU1FNxPFO4kqGxhM/WIgKh4UHyQZGzcbNgECDhYgJwwEBB8F8W1+HxkaGjIwKmF3kVkuUjlubzRWM1AsGTw5EkOGQG6SVxWGvX8nEUJGMS38VBkjIxkMGRAcExIbGxIUFgEjgB8CqSL+rDs3FzMuDQFEDqGJAir96050QAH+cCRKFw8VEg0CUTVFNwEmTFBbNSg8F20aOTENGENMGFyKWy5Yqilqc2YYNS4NeAg7YH1LDDs+Ef3vLjs/FhgdLDw0AbVV/oJnYgMySmVG/HYQExQmLBxOMENNemZe1KDfRjQkBeAgFhYfHxYWINgQFhdwWBMWGBQFMz8uDzw1TaqDQWMeQD9DTGcbCgYFEDYYJz4aGic8Wi4tUzVF/V7oFgGuECwuP0P9jeZCZGtUDw4KOGYrT3QDTKN0LnZsDQ6NFg8SOi0QFjZC+0tbX0y1pGlBVEFCKpxwEjd8pXIWWRlXYCYTFQQFAxB55rRPdE4vDA4KA7AjGBgjCxIaHhsSExsWBAgFGCNQSAEkSQAAAAsAzf56CSQGzAArAEsAbQB5AIgAlQCZAKAArQCxALgAAAEiJic3HgEzMiQAEjU0AgAkIyIEAAIVFBIXJyYCNTQSACQzMgQAEhUUAgAEJTI3HgEzMjY1NDY3DgEjIiYnLgEjIgYVFBYXDgEVFBYXIiY1PAE3JjU0NjMyFhceATMyPgI3DgMVFAYjIicGASc2MzIXBy4BIyIGJzUjJjU0PgEzMh4BFRQjASImNTQ2NzMeARUUBiU1IRUBNTI3Fw4BASImNTQ2NzMeARUUBiU1IRUDIiYnNxYzBRSI+28Ia/mGxwFcAQiVlf74/qTHx/6k/viVYlhiT1mhAR4BedjXAXkBHqKi/uL+h/v1PysVHBYpOyYuK04WK1EkIj0dNkswKwcFRDBRcwFQe1YqTiQhQB8VV3SDQFFsQBtpSxsbNwHqDFhQVVIMJU4oJk2ybANtrV9otXA//TcuRwEB5gEBR/7bAdj+iep0PETSAywuRwEB5gEBR/7bAdhZgtJGO3jn/qxCPFhARpUBCAFcx8cBXAEIlZX++P6kx6D+3ncCegEgndgBeQEeoaH+4v6H2Nj+h/7ioR4/Dww7KU1pNQYHFw0NEks2KEQSFBcML0RQc1AFCQQ+ZVZ7FQ4NEwcPGBA5VU1XOktpCCwBEEEREUEICQmkLgsOJkYtNVItLAIUVUkIEQcHEQhJVZtQUAEmUH02SU7+P1VJCBEHBxEISVWbUFABME5JNn0AAA0BE/6sCRUGzAAeACgANQBCAE4AXABxAH0AhwCTAJ8AtADHAAABLgEjIgYHLgEnLgIjIgYHJzYkMzIeARc2MjMyFhcBLgIjNTIeARcBLgE1NDY3FwYVFBYXAyInNxYzMjY3Fw4CASImNTQ2MzIWFRQGAS4BIyIGByc+ATMyFhcBIiYnNx4BMzI2NTQmJzceARUUDgEBIiY1NDYzMhYVFAYTJz4CMxUiDgEBIic3FjMyNjcXDgEBJz4BNTQnNxYVFAYBIi4BNTwBNxcGFRQeATMyNjcXDgEBIi4BNTQ2NxcGFRQeATMyNxcGBwIWjloXLyEBAwITis54ju89SEcBFaaF5qEeChIKdrkd+00Rb6FeccKFFf7AEA4LDE4VDhF9OTMSKjB3wyVMHoCsAhEsQUEsLEFBA+I3vGxlsjJEPtZ5geBC+ulcnCNKGnNEXoUREkQXGFOLAwAsQUEsLEFBn04fn918ab2I/UZRRSg1OUFpG0glkQO7TgcEHE4eBP4mcrtwAVABWpdcWZssRjfBAS9TiFEKBlERO2Q9NC0iPP6sVm8JEA0ZDXe4apR/IpStcMWAApFwAkdcjlFQYqtuATNKbDUuVzUSXEwxZlABcQ5ODI5yGF2MT/6TZkdHZmZHR2b+LVxqW04sX25+bgQraFUeP0xxXiFLHCojZCtUgkn9fmZHR2ZmR0dm/vwUfb9sUF2kA74oRh5BNyJMWv1cEB8iEXJnFHJ7ECkCJGu3cgQLCQgHCVyTVVlNKF9v/tFRiFMdOA4OKC09ZDsVSB0AAAAFAQT+rAkkBswAEwBBAHQAiAC7AAABIiQAAjU0EgAkMzIEABIVFAIABAEiLgEjIgYHJz4BMzIeATMyPgEzMh4BMzI+ATMyFhcHLgEjIg4BIyIuASMiDgEDIiY1NDYzMhYVFAYjIiYnNxYzMjY1NCYjIgYVFBYzMjY1NCYjIgYHJz4CMzIeARUUBgEyJAASNTQCACQjIgQAAhUUEgAEASIuATU0NjMyFhUUBiMiJjU0NjMyFhcHJiMiBhUUFjMyNjU0JiMiBhUUFjMyNjcXDgIFFNj+h/7ioaEBHgF52NcBeQEeoqL+4v6H/g8xV00jFCIROB0/Iy9ZUCAqWWE2NmFaKSFPWi4jQBw4ESIUI01WMjpjVicnVmK7a4hwVD5RRTQPHxkSIRMaJC0mN0xhUWJqkWpeoRceBVeKUVuPU5cBIMcBXAEIlZX++P6kx8f+pP74lZUBCAFcAntakFOXemuIcFQ+UUU0Dx8ZEiETGiQuJThLYVFha5FqX6EWHgVXif6soQEeAXnY2AF5AR6hof7i/ofY2P6H/uKhAesrKxAROhscKys8PDw8KyscGzoRECsrPDw8PAHIdl5UeEg4NEMHCjQLIxodJVU5QFF6WnaEdGoHUoJLUpBdfpz8nZUBCAFcx8cBXAEIlZX++P6kx8f+pP74lQNjUpBdfpx2XlR4SDg0QwcKNAsjGh0lVTlBUHpadoR0agdSgksAAAACA8cACgZhA94ARQBRAAAlIiY1NDY3NTQmNTQ+ATU0IyIHBiMiJzc+ATc+ATMyFhceAR8BBiMiJyYjIhUUHgEVFAYdAR4BFRQGIyImPQE0IyIdARQGEyImNTQ2MzIWFRQGBLwVHhAWHQQEFAkSNzggFTUdLBYmYTIyYSYXKx01EyI5NRELEwQEHRURHxUeIBoZITpGY2NGR2VlCg0LChwWgxxGKRI0NhUZDiwYOgITFSMdHiIUFAI6GCwOGRU2NBIpRhyDFhwKCw0SFbAeHrAVEgKBY0ZHY2NHRWQAAgQMAAoGYQPeAEUAUQAAJSImNTQ2NzU0JjU0NjU0IyIOARUUBiMiJjU0NjMyFhceAR8BBiMiJicmIyIVFB4BFRQGHQEeARUUBiMiJj0BNCMiHQEUBhMiJjU0NjMyFhUUBgS8FR4QFh0IDw8VCxYVEBWEhDJhJhcrHTUTIhs5GhELEwQEHRURHxUeIBoZITpGY2NGR2VlCg0LChwWhBxGKRtWIBkzRh0iHRcYip0eIhQUAjoYFhYOGRU1NBIpRhyEFhwKCw0SFbEeHrEVEgKBY0ZHY2NHRWQAAgPKAAoGHwPeAEUAUQAAJSImNTQ2NzU0JjU0PgE1NCMiBw4BIyInNz4BNz4BMzIWFRQGIyImNTQuASMiFRQWFRQGHQEeARUUBiMiJj0BNCMiHQEUBhMiJjU0NjMyFhUUBgS/FR8RFR0EBBMLERo5GyEUNR0sFiZhMoSEFBEVFgsVDw8IHRYQHhUeIRkaIDpGZmVHRmNjCg0LChwWhBxGKRI0NRUZDhYWGDoCFBQiHp2KGBcdIh1GMxkgVhspRhyEFhwKCw0SFbEeHrEVEgKBZEVHY2NHRmMAAwPHAAoGYQPeAC0ASABUAAAlIiY1NDc+ATU0IyIHBiMiJzc+ATc+ATMyFhceAR8BBiMiJyYjIhUUFhcWFRQGByImNTQ2NzUzFR4BFRQGIyImPQE0IyIdARQGEyImNTQ2MzIWFRQGBRRQeQsjIRQJEjU6IBU1HSsXI105OVwkFysdNRUgODcSCRQkIgx5qxUeEBbKFhAeFR4hGRkhOkZjY0ZGY2PbMBoLDCVyKxkPLBg6AhQUICEiHxQUAjoYLA8ZK3IlDAsaMNENCwocFpCQFhwKCw0SFYEdHYEVEgKBY0ZHY2NHRmMAAAMD3gAKBloD3gA0AE8AWwAAJSImNTQ3PgE1NCMiBgcOAQcGIyImNTQ2Nz4BNz4BMzIWFx4BMxcGIyInJiMiFRQWFxYVFAYHIiY1NDY3NTMVHgEVFAYjIiY9ATQjIh0BFAYTIiY1NDYzMhYVFAYFElB5CyIiDAkNBw8XFBUZEBkMCgsbDCF6UTldHx0oGDYWHDU3EQsTIiMMeasVHhAWyhYQHhUeIRkZITxGY2NGRmNj2zAaCwwmcSsVGhYxNhwdFREMFgwNKyRjQyAdGhM6GCwOGSt0IwwLGjDRDQsKHBaQkBYcCgsNEhWBHR2BFRICgWNGR2NjR0ZjAAAAAAMDzgAKBkoD3gA0AE8AWwAAJSImNTQ3PgE1NCMiBwYjIic3MjY3PgEzMhYXHgEXHgEVFAYjIicuAScuASMiFRQWFxYVFAYHIiY1NDY3NTMVHgEVFAYjIiY9ATQjIh0BFAYTIiY1NDYzMhYVFAYFFlJ6DCMiEwsRNzUbFzYYKB0gXDlReiEMGwsLCxkQGRUUFw8HDQkMIiILeagVHhAWyhYQHhUeIRkZIThGY2NGRmNj2zAaCwwjdCsZDiwYOhMaHSBDYyQrDQwWDBEVHRw2MRYaFStxJgwLGjDRDQsKHBaQkBYcCgsNEhWBHR2BFRICgWNGR2NjR0ZjAAAAAAIDjgAKBpoFbgBDAE8AACUiJjU0Njc1NCY1NDY1NCMiDgEVFAYjIjU0PgEzMh4BFRQjIiY1NC4BIyIVFBYVFAYdAR4BFRQGIyImNRE0IyIVERQGEyImNTQ2MzIWFRQGBJseKxceKBAbFCcaHx40bLJoabFsNB4fGScVGxAoHhcrHigvIiIuUFJ1dVJTdHQKEg0PKyjfLmJDKVIcLTxXKzctO4bUfHzUhjstNytXPC0cUilDYi7fKCsPDRIbIQEjKyv+3SEbA9d0U1J0dFJTdAACA44ACgbGBW4ASwBXAAAlIiY1NDY3NTQmNTQ2NTQjIg4BFRQGIyI1ND4BMzIWFx4BFxYVFAYjIiYnLgEnLgEjIgYVFBYVFAYdAR4BFRQGIyImNRE0IyIVERQGEyImNTQ2MzIWFRQGBJseKxceKBAbFCcaHx40bLJobbgyESIPGSEaDh4MFCkSDhYPDQsQKB4XKx4oLyIiLlBSdXVSU3R0ChINDyso1S5iQylSHC07UyYxLDt4z36IlDFCDxkYEx4MDhlZNywiFREhVClDYi7VKCsPDRIbIQEZKyv+5yEbA9d0U1J0dFJTdAAAAAIDYgAKBpoFbgBLAFcAACUiJjU0Njc1NCY1NDY1NCYjIgYHDgEHDgEjIiY1NDc+ATc+ATMyHgEVFCMiJjU0LgEjIhUUFhUUBh0BHgEVFAYjIiY1ETQjIhURFAYTIiY1NDYzMhYVFAYEmx4rFx4oEAsNDxYOEikUDB4OGSIZDyMQMrhtabFsNB4fGicUGxAoHhcrHigvIiIuUFJ1dVJSdXUKEg0PKyjVLmJDKVQhERUiLDdZGQ4MHhMYGQ9CMZSIfs94OywxJlM7LRxSKUNiLtUoKw8NEhshARkrK/7nIRsD13RTUnR0UlN0AAAAAwOOAAoGmgVuAEAAWwBnAAABIi4BNTQ3PgE1NCMiBgcOAgcGIyImNTQ2Nz4BNz4BMzIWFx4BFx4BFRQGIyImJy4CJy4BIyIVFBYXFhUUDgEDIiY1NDY3ETMRHgEVFAYjIiY1ETQjIhURFAYTIiY1NDYzMhYVFAYFFEBwRBEtNhoQEggJHiIPFSQTHhEREysUNHRqa3M0FCwSEREdFBMaDA4hHgoIExAaNS4RRG+lHiQWH+IfFiQeHyMiIiJESmpqSkprawF+HSwVCxQzgzMqJhwgU0oVHhsUER0TFUc9nouLnj1HFRMdERQbDBIVSlMgHCYqM4QyEwwVLB3+jA8NDR8ZAUr+thkfDQ0PFBkBHiUl/uIZFAP9aEtLaWlLS2j//wKUAAoHlAVuECcF+P8GAAAQBwX0AXUAAAAA//8BmgAKCI4FbhImBfgAABAnBfP9jgAAEAcF9AJvAAD//wKAAAoHqAVuECcF+P7yAAAQBwX3AV4AAAAA//8BhAAKCKIFbhAmBfgTABAnBfb9pgAAEAcF9AKDAAD//wFyAAoItgVuEiYF+AAAECcF9v2UAAAQBwX3AmwAAP//ARgACgkQBW4SJgXyAAAQJwX4/YoAABAHBfgCdgAA//8AMgAKCfYFbhAnBfj+mAAAECcF+gFiAAAQJwXz/CYAABAHBfQD1wAAAAD//wEYAAoJEAVuECcF+P2KAAAQJwX4AnYAABIGBfUAAP//AB4ACgoKBW4QJwX4/qwAABAnBfb8QAAAECcF+gF0AAAQBwX0A+sAAAAA//8ADwAKChkFbhAnBfgBYAAAECcF+f6jAAAQJwX3A88AABAHBfb8MQAAAAD//wEbAAoJDQVuECcF+P2NAAAQJwX7AnMAABIGBfIAAP//AEYACgniBW4QJwX4/q4AABAnBfsBUwAAECcF8/w6AAAQBwX0A8MAAAAA//8BGwAKCQ0FbhImBfUAABAnBfj9jQAAEAcF+wJzAAD//wA3AAoJ8QVuECcF+wFhAAAQJwX0A9IAABAnBfj+xgAAEAcF9vxZAAAAAP//ACMACgoFBW4QJwX7AVEAABAnBfcDuwAAECcF+P6wAAAQBwX2/EUAAAAA//8ClAAKB5QFbhAnBfv/BgAAEAcF9AF1AAAAAP//AZoACgiOBW4SJgX7AAAQJwXz/Y4AABAHBfQCbwAA//8CgAAKB6gFbhAnBfv+8gAAEAcF9wFeAAAAAP//AYYACgiiBW4QJgX7EwAQJwX2/agAABAHBfQCgwAA//8BdwAKCLEFbhImBfsAABAnBfb9mQAAEAcF9wJnAAD//wEbAAoJDQVuEiYF8gAAECcF+/2NAAAQBwX7AnMAAP//AEYACgniBW4QJwX7/qoAABAnBfsBVQAAECcF8/w6AAAQBwX0A8MAAAAA//8BGwAKCQ0FbhImBfUAABAnBfv9jQAAEAcF+wJzAAD//wAyAAoJ9gVuECcF+/67AAAQJwX7AWoAABAnBfb8VAAAEAcF9APXAAAAAP//ACMACgoFBW4QJwX7/q0AABAnBfsBUwAAECcF9vxFAAAQBwX3A7sAAAAAAAcCTv6sB9oGzAAlAEAASgBWAHEAfQChAAABICQnJgoBNTMUGgEXFgQhMiQ2NTQmJy4BNRMzAxQWFx4BFRQGBAMiLgEnER4CMzI+AjMyHgIzMjY3EQ4CAzI2NycHJwceAQMiJjU0NjMyFhUUBgciJiceATMyPgEzMhYzMjY3DgEjIi4BIyIOASUiJjU0NjMyFhUUBgUiLgE1NBIkMzIEEhUUDgEjIi4DIyIOASMiLgEjIg4DBQr+3/64DwsPBlAGDgwNARYBBckBHpkJDRQWAVABFRIOC6/+veR88clCEzI+IzNgaoFUVIFpYDQxShxBwel+XZ0WaafFTRKhtCUyMiUlMTFgOkUFEywZNoCGPl7HVRorEwVEOzF2djEwd3YCGyUxMSUmMDD8bhYgEqMBON/eATaiEiAWJSESGzs7MHiOU1GNdjE6PBsSIf6stZt1AQoBUdzb/rD++HJ5jkN1TBMlGilQLALC/T4qRiYcKxplmVYBV1GOWwFFLEkrJjMmJjMmUT7+vVmHSwFNV1czBwgpXF0BVTcnJzc3Jyc32k80CAYYFy8GCDRPJiYmJto3Jyc3NycnNwRSjVfoAVS5uf6s6FeNUk91dU8VFhYVT3V1TwAAAAYCF/6sCBEGzAAhAEUAUwBfAGsAjwAAASIuATU0EiQzMgQSFRQOASMiJicuASMiBiMiJiMiBgcOAQEgJCcmAjUzFBIXFgQhMiQ2NTQmJy4BNREzERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGJTI2Nz4CMzIWMzI2MzIeARceATMyPgE1NAIkIyIEAhUUHgECnzE8G7kBWOztAVe5GzwxMT0NDzQvSsB+f79KLjUPDTwCR/7i/qwQDQ5QDg0MASUBAc0BIpsMDRQWUBQSDg+x/rnhVYo2LS9xSElxLy02i/6WJTExJSYxMQHsJTIyJSUxMfxkDRgICyhNQFPCc3TBU0BNKQoIGA0SGQ2l/s7W1f7NpQ0aAjlLoYD5AWrExP6W+YChS2FccF0rK11wXWD8c7aagwEsycf+1X95jkN1TBMlGilQLAF2/ooqRyUcKxplmVYCeEFCJzk0NDknQkEBMTcnJzc3Jyc3NycnNzcnJzc2Pz1NeUYrK0Z5TT0/Pn5e4wFFr6/+u+Nefj4A//8CTv6sB9oGzBIGAlYAAAALAhf+rAgRBswAIQBFAFMAXwBpAHUAgACkAK4AuAC+AAABIi4BNTQSJDMyBBIVFA4BIyImJy4BIyIGIyImIyIGBw4BASAkJyYCJzMWEhcWBCEyJDY1NCYnLgE1ETMRFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYBJz4CNxcOAgEiJjU0NjMyFhUUBgEnPgI3Fw4DATI2Nz4CMzIWMzI2MzIeARceATMyPgE1NAIkIyIEAhUUHgEBJz4CNxcOAhcnPgI3Fw4CFyc2NxcGAp8xPBu5AVjs7QFXuRs8MTE9DQ80L0rAfn+/Si41Dw08Akf+4v6sEA0PA1ADDw0MASUBAc0BIpsMDRQWUBQSDg+x/rnhVYo2LS9xSElxLy02i/6WJTExJSYxMf63HjV8bh4wIHSDAv0lMjIlJTEx/VUcSJt7GDATVXB6/tcNGAgLKE1AU8JzdMFTQE0pCggYDRIZDaX+ztbV/s2lDRoCMiJBemEaMBtlgOIkL1hEDzIQSF6vJGIbMh8COUuhgPkBasTE/pb5gKFLYVxwXSsrXXBdYPxztpqDASzJx/7Vf3mOQ3VMEyUaKVAsAXb+iipHJRwrGmWZVgJ4QUInOTQ0OSdCQQExNycnNzcnJzcB2CgpjrBZEF25l/39NycnNzcnJzcBdyovs99wClizon/+mj89TXlGKytGeU09Pz5+XuMBRa+v/rvjXn4+ASAkP7rUZgxq3sEqIjKYrE8KU7WgJiF3pAi0AAkAUP90CdgE2ABjAHAAfACMAJsApwC0AMAAzAAABSIuAScXDgEjICQ1NBIkMzIEEhUUFhcHLgE1NAImIyIGAhUUITI2Nx4BFwcmNTQ2Nz4BNTQSJDMyBBIVFAQhIiYnNw4BByc+ATcWMyA1NAImIyIGAhUUBgcOARUUFjMyNxcOAQEiJic3HgEzMjcXDgEBIiY1NDYzMhYVFAYBIiY1ND4BMzIWFRQGBw4BJzI2Nz4BNTQmIyIOARUUASImNTQ2MzIWFRQGBSImJzcWMzI2NxcOASUiJjU0NjMyFhUUBiUiJjU0NjMyFhUUBgUcRHVjKSVOrWL+3/7SmAELrK4BCJUiHyo0LoPml5XngwH/arFPGEwqIwcuKixNlQEJra0BCpj+0/7eYa1NJgoaETgUGwqP2gH/g+aWlueDXS8oIj8yDAwTCRn9iluSHjsXcEl9ODYjff7sHyUpHx8lKQNYIi8/XzAiKiAcH0wgFDQWFRoMChtCMP43HyUpHx8lKQPMS30jNjh9SXIWOx6S/tYfKSUfHyklAXsfKSUfHyklgk6WahEXFaOd4QFfycn+ouJFWyotMmxZzQE/t7j+wcz6GhhJlTIXERUtUjQ4glziAV7Jyf6h4Z2jFBgZIT4dJiFGJDT6zAE/uLf+wc1rmTkxPB0nIgM+AgQCJ1JFGjM9USQ0OgEDNSEmNzUhJTj8zC0iMmlIMyIeSCMmLj4hHBo1FQsON0whFgLYNSEmNzUhJTjlOjQkUT0zGkVS5TglITU3JiE1HjglITU3JiE1AAcCU/6sB9UGzAAbACkANQBQAFwAbwCDAAABICQnLgECNTQSPgEzMh4BEhURFBYXHgEVFAYEAyImJzceATMyNjcXDgEBIiY1NDYzMhYVFAYTMiQ2NTQmJy4BNRE0LgIjIgQCFRQSFhcWBAEiJjU0NjMyFhUUBgEiJjc2Nz4BMzIWFRQHBgcGBwYBIjU0NzYzMhYXHgEVFCMiJiMiBgUB/tz+qQ8LEQhktveTkPO0ZBQSDg+v/rzmVYw3My9vR0hwLjM3jf6VJjIyJiYzM/XIASGbDA0TF1ie1n+t/vOaCBAMDAEkAgEmMjImJjMz/XUQGAk5bhc6DQ4UFiIjXC8KAVAiHhcXCxYLDhEmBxYLDBT+rLSdd/sBQN23ATHfeXjW/uWj/TgqRiQbLRtmmVYC9kNDLDkzMzksQ0MBPTgoKDk5KCg4/B1Fd0kUJxooTysCyJP+wGu//q7f3P7B+nN2kgPjOCgoOTkoKDgBxxwUgU0RHhUPFwkOGD9sGAEEIx0FAwECARQNIwICAAAAAAUBTP6sCNwGzACXAL0AywDXAOMAACUiJjU0Ny4BNTQ3LgE1NDcmNTQ2NyY1NDY3JjU0NjsBJjU0NjMyFz4BMzIXPgEzMhc+ATMyFhc+ATMyFhc2MzIWFzYzMhYVFAczMhYVFAceARUUBx4BFRQHFhUUBgcWFRQGBxYVFAYjIicRLgE1NDcuATUmJwYjIiYnBiMiJwYjIicGIyInDgEjIicGBxQGBx4BFRQGBxUGASAkJy4CNTMUHgEXFgQzMiQ2NTQmJy4BNREzERQWFx4BFRQGBAMiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGISImNTQ2MzIWFRQGAnM4TQkyQhYhKSksJh8XOSsFTjcFAU43EQ0HRzEsHgtELTUnEDokJDsQES8bLkQKICoyRwYNEjhMAQU4TAUsORgfJywpKiAWQjIJTDgSEjc0FiYhNRcSESI7ESIsOiglMC8mJjstIRI6Iw8UFTcgJggNMzgQApf+2/6tEQkLBFAECgoOAS79xwEgnBANDxdQFg4NEq3+veNUjjYzLnFGR3EtNDeO/qsmMzMmJjIyAd0mMzMmJjIx0001GhYGSjEtHRE+JjonJDwmPxEjKS5GChQSNU0ECzVNBC8+GCk3JxwnJxwRFjcpGD4vBE01CwRNNRIUCkYuKiIRPyY7JSk4Jj4RHysxSgYWGjVNCQD/B0sxMhoaPiUTMAUiHBktHh4tGRwiBS8UJT4aCikZMUsH/wn92bmdV6nDfYDFpFF2lkd5ShoxGh9HLAG8/kQrQh4aNB5lnVgCjkJCLDg0NDgsQkIBIzgoKDk5KCg4OCgoOTkoJzn//wGp/qwIfwbMEgYE/gAAAAgBpP6sCIQGzACHAJUAoQDAAN8A6wDzAQwAACUiJic+ATU0JicuATU0NjcmNTQ2NyY1NDcuATU0NjceATMyNjc+ATMyHgEXHgMVFAceARUUBgcOARUUFhcOASM1NDY3PgE1NCYnPgE1NC4BJy4CIyIGBw4BIyImJw4BFRQeARcHLgEnFw4BFRQeATMHIi4BJxcOARUUFhcOARUUFhceARUFIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBhMyJDY1NCYnLgE1ETQmIzQmIyIGBw4BBzcUGgEXFgQFICQnJgoBNT4BNz4BMzIeARceARURFBYXHgEVFAYEEyImNTQ2MzIWFRQGBSc+ATcXDgEDLgEjIgYHLgEjIgYHJz4BMzIWFzYzMhYXAqhGTgstISUpNy4WExgjKgu/BQUxLhZLMSREKDyjeHC6eQ1CdVozHBMVJjYjLCEtClBFOCYpJBYbFBFSilYDZqRkcIs4KFg2LVAaAgNJj2kIlbUZEkxTer5mJlWqfxckKx4PDxsUKysmNwJ0VYo3Li9wSUlxLy02i/6WJTExJSYwMO7NASObDA0UFmuFVE9nolB94W4aCBELDQEiAQP+4P6sDwwQCHfff1C/eD5jPQWAgBQSDg+x/rkbJTExJSYwMAFhIjoyAjIDOzwVYCwHHQw9nmE9chYqHYhKa6w3DhA8eBvuICgIJyIaSTVJdVAqSSowMS9PGycqqicPHhAqShk3MBwTHTc5ZEEFSXaRTUQ+KEorUXRJMEkfIicIKCCVMmQ1OWBGKUEzJD8fXZ9jAj5dNDEcFCIdGwcTDVB8UREyGI1sEwpIQUd0Qy0+Xy8cFTcjGCwaPUAjRl86NGQzLUFBKDozNDkoQUEBOTgmJzg4JyY4/G1DdUwTJRopUCwCK5WQSk1iPmFoCxfA/r7+9HB5jlC1m34BEQFP2wVjYz5wKEYtBLmr/cwqRyUcKxplmVYD4zgmJzg4JyY4ByY2UyoEM2YBxS9FBAd4bi4hHCw5c2sDVT0ABwHH/qwIYQbMACUASwBmAHAAfACXAKMAAAEuAQI1NBI2JDMyBBYSFRQCBgc+ATU0JicuAicGBAcOARUUHgEBICQnLgI1MxQeARcWBDMyJDY1NCYnLgE9ATMVFBYXHgEVFAYEAyIuAScRHgIzMj4CMzIeAjMyNjcRDgIDMjY3JwcnBx4BAyImNTQ2MzIWFRQGByImJx4BMzI+ATMyFjMyNjcOASMiLgEjIg4BJSImNTQ2MzIWFRQGA0Z0rV6D6gE0sbABMeaBYKx0Ki8CAjp9byaS/n/RDgwaKgHZ/tv+rxMLCwNQAwoMEAEs/b0BGJkQDQ8XUBcODRGq/sXefPHJQhMyPiMzYGqBVFSBaWA0MUocQcHpbl2dFmmnxU0SocImMjImJjMzUzpFBRMsGTaAhj5ex1UaKxMFRDsxdnYxMHd2AgQmMjImJjMzAR0KnAEEpLkBO+qDguv+xbmk/vycCmj+fhgxFh9vikVjghsyYTRXsZr9WLmeX7y9X16/vFl2lkd5ShoxGh9HLICAK0IeGjQeZZxZAVdRjlsBRSxJKyYzJiYzJlE+/r1Zh0sBTVdXMwcIKVxdAUk4KCg5OSgoOM5PNAgGGBcvBgg0TyYmJibOOCgoOTkoKDgAAAAGAZD+rAiYBswAIgBGAFQAYABsAJAAACUuAQI1NBI2JDMyBBYSFRAABzYSNTwBJy4BJw4CBwYVFBIBICQnLgEnFx4BFxYEMzIkNjU0JicuAT0BMxUUFhceARUUBgQDIiYnNx4BMzI2NxcOAQEiJjU0NjMyFhUUBiEiJjU0NjMyFhUUBgEuATU0Njc2JDceAhceARUUBgc+AjU0AiYkIyIEBgIVFBIDkKzkcIr2AUnAvgFG84j+9vY4MwFSpDdR2fmCDTkBrf7b/rAUCQoDUgIKCBABLP29ARiZEA0PF1AXDg0Rqv7F3lSONjMucUZHciw0N47+myYyMiYmMzMB4iYyMiYmMzP9CSUoDA71AYd8Im+EPwQCJiVqmFJ94P7UsLH+0ON/tLAIogEewcEBTfmMi/n+s8L+0P6xCYUBB5IPIA4yrF44YEYTS0iM/vX9f7meSpVJH0OCP3aWR3lKGjEaH0csCAgrQh4aNB5lnFkCeUFCLDg0NDgsQkEBQjgoKDk5KCg4OCgoOTkoKDj+mGrqcTNhOyOUaE2WdyAYNxp+6mcWlvCdswEx4n1+4v7Qs+3+1gD//wHH/qwIYQbMEgYCVwAAAAwBkP6sCJgGzAAiAEYAVgBkAHAAeACEAKgAsAC6AMoA1AAAJS4BAjU0EjYkMzIEFhIVEAAHNhI1PAEnLgEnDgIHBhUUEgEgJCcuAScXHgEXFgQzMiQ2NTQmJy4BPQEzFRQWFx4BFRQGBAEuATU0PgE3Fw4CFRQWFyUiJic3HgEzMjY3Fw4BASImNTQ2MzIWFRQGLwE2EjcXBgIBIiY1NDYzMhYVFAYBLgE1NDY3NiQ3HgIXHgEVFAYHPgI1NAImJCMiBAYCFRQSEzUyJDcXBgQvAT4CNxcOAgEnPgE1NAImJzceARIVFAITLgInNx4CFwOQrORwivYBScC+AUbziP729jgzAVKkN1HZ+YINOQGt/tv+sBQJCgNSAgoIEAEs/b0BGJkQDQ8XUBcODRGq/sX8sTEuOGlLJEZjNCstAkVUjjYzLnFGR3IsNDeO/psmMjImJjMz+jId3scYvdACwSYyMiYmMzP9CSUoDA71AYd8Im+EPwQCJiVqmFJ94P7UsLH+0ON/tMetAUOCIIj+qmEEaM2pMSY1tNoDNihNUFezjBySvFtUGVOTbx8sHWeHTbAIogEewcEBTfmMi/n+s8L+0P6xCYUBB5IPIA4yrF44YEYTS0iM/vX9f7meSpVJH0OCP3aWR3lKGjEaH0csCAgrQh4aNB5lnFkCW1vZcYD710skRczuemvNVQZBQiw4NDQ4LEJBAUI4KCg5OSgoOOkG+QFebSxn/rf+KTgoKDk5KCg4/phq6nEzYTsjlGhNlncgGDcafupnFpbwnbMBMeJ9fuL+0LPt/tYDPDJzbiZzepkyCkRmPCBAbkn72R5o9oKEAQTrWypg+f7qjYn++wJlHVx0PxY5alUaAAAEAQT+rAkkBswADwAfAC4APQAAASImNRE0NjMhMhYVERQGIyUhMjY1ETQmIyEiBhURFBYHASEyNjURAR4BFREUBiMBCwEnEyU3BQMzAyUXBRMBqkRiYkMG1kRhYUT5KwbVIzIyI/kqIjMzCQEMBPcpOQEMEAVBLf0En4u53P6wHgFiKc4qAWsa/qvf/qxhQwbXRGFhRPkqQ2JQMyIG1iMyMiP5KSIyGgENOioE9AEMFC4u+W4uQQJnATz+xV4BJRrCZgFn/plmxRf+2QACBW0BDwfIA9wABwAQAAAJATMBIychBxMzJy4BJw4BBwVtAQRUAQNcTv73TWrSSgQXBQcRBgEPAs39M93dAS3YDEwTHzsRAAADBaYBDwd9A9kADwAYACEAAAERMzIWFRQGBxUeARUUBiMnMzI2NTQmKwE1MzI2NTQmKwEFpsF+gkA+PlZ9bZSEV0VHW355VD9NU2wBDwLKT2I/UwwFC01TYWpMSjw4RUs7OjszAAAAAAEFdAEFB3AD4wAaAAABIiY1ND4BMzIWFwcuASMiBhUUFjMyNjcVDgEGqJqaSpBoM2AnIx9NLGp5cXEsTycmUAEFx6lspV0WFEwPGJqGhZsQDE4PDgAAAAACBYwBDwenA9kACAAQAAABETMyFhUUBiMnMyARNCYrAQWMz5i0uadiWQELgndrAQ8CyrKstbdNARyPhQABBc4BDwdGA9kACwAAAREhFSEVIRUhFSEVBc4BeP7hAQ7+8gEfAQ8Cyk/fTv9PAAABBcUBDwc9A9kACQAAAREhFSEVIRUhEQXFAXj+4QEN/vMBDwLKT/1P/tEAAAEFZQEFB5ID4wAeAAABIiY1ND4BMzIWFwcuASMiBhUUFjMyNjc1IzUzEQ4BBqacpVKcbjhlKyEjWS92hXOEKzwZkus2bwEFxqlwpFsWFE4RGJqGgKEKB9RQ/qITEgAAAAEFwQEPB8UD2QALAAABETMRIREzESMRIREFwVkBUllZ/q4BDwLK/tIBLv02AU3+swAAAAABBiUBDwccA9kACwAAATU3ESc1MxUHERcVBiVPT/dPTwEPNBMCOxQ0NBT9xRM0AAABBd0BBQbVA9kADwAAASImJzUeATMyNjURMxEUBgYkFyMNDyITIzhZYQEFBwZMBAYvRAIS/fVnYgAAAAABBZYBDgeEA9gADgAAAREzET4BPwEzCQEjAwcRBZZZGjgctmj++AERaOlEAQ4Cyv6gIkQi2P7J/m0BVUD+6wAAAQYDAQ8HgAPZAAUAAAERMxEhFQYDWQEkAQ8Cyv2GUAABBTQBDgfWA9gAFwAAAREzEzMTMxEjETQ+ATcjAyMDIx4CFREFNILLBM+CWAIEAQTcStgEAgMCAQ4Cyv23Akn9NgG3I0U9Ff2PAnIUPkkm/k8AAAABBY0BDgemA9gAEQAAAREzATMuATURMxEjASMeARURBY1oAWEEAQZTaf6eBAMFAQ4Cyv2xGHMxAZP9NgJRI2g3/nEAAAIFVgEEB8MD4wALABcAAAEiJjU0NjMyFhUUBicyNjU0JiMiBhUUFgaNnZqanpidnphxZ2dwcGppAQTLpqTKyKemyk6bh4eZmYeHmwACBbUBDgdlA9gACwAUAAABETMyFhUUDgErARkBMzI2NTQmKwEFtbSEeDJ0ZUxCXVxRVlQBDgLKbmQ7Z0D+6gFjQk9FRAAAAAACBUwAZAe5A+MAEQAdAAAlJwYiIyImNTQ2MzIWFRQGBxclMjY1NCYjIgYVFBYHG4IJCAWdmpqemJ1iX6H+6nFnZ3BwamlkoQHLpqTKyKeDuCOy7puHh5mZh4ebAAIFsgEPB5YD2QANABYAAAERMzIWFRQGBxMjAyMZATMyNjU0JisBBbK6fnhTM7poooFgUUpOUVwBDwLKZWZVVxP+wAEn/tkBc0VDRjsAAAAAAQXGAQUHbwPjACUAAAEiJic1HgEzMjY1NCYnLgE1NDYzMhYXBy4BIyIGFRQWFx4BFRQGBn84YSAjZTVJSkNZU1l4YDdcJxwkUSs9P0FQWF6CAQUSEFYQGj41NTsjIWBTVWEWEk0QFjkvNjogI1dUX2oAAAABBa8BDwemA9kABwAAAREjNSEVIxEGf9AB984BDwJ7T0/9hQABBZcBBAefA9gAEQAAASImNREzERQWMzI2NREzERQGBph+g1lWV1lQWYEBBJF3Acz+MVdgZ1EBzv4yb5cAAAAAAQVmAQ8HngPZAA4AAAEDMxMeAhc+AjcTMwMGVe9dlQoPDQQEDBEJlF7vAQ8Cyv42HTYxGBgyNh4ByP02AAAAAAEE3AEOCDMD2AAgAAABAzMTHgEXPgE3EzMTHgEXPgE3EzMDIwMuAicOAgcDBY2xXWcLEAQFEwx0XHkNEgUFEQtmXLJbfwgPCgEBCg0IfAEOAsr+TC5WJidcLAGv/k4uWyMlVy8Bs/02AdQdOi0JCS07H/4vAAAAAAEFdQEPB5sD2QALAAABEwMzGwEzAxMjCwEFdd/RY6OkXtDgZbCzAQ8BdAFW/ugBGP6s/ooBNv7KAAAAAAEFhgEPB54D2QAIAAABEQMzGwEzAxEGZuBhq6xg3wEPAREBuf6hAV/+S/7rAAAAAAEFwwEOB5cD2AAJAAABNQEhNSEVASEVBcMBX/6sAcD+oQFoAQ5EAjZQRP3KUAAAAAICNgHqBJEEtwAHABAAAAkBMwEjJyEHEzMnLgEnDgEHAjYBBFQBA1xO/vdNatJKBBcFBxEGAeoCzf0z3d0BLdgMTBMfOxEAAAMCkAHtBGcEtwAPABgAIQAAAREzMhYVFAYHFR4BFRQGIyczMjY1NCYrATUzMjY1NCYrAQKQwX6CQD4+Vn1tlIRXRUdbfnlUP01TbAHtAspPYj9TDAULTVNhakxKPDhFSzs6OzMAAAAAAQIvAeMEKwTBABoAAAEiJjU0PgEzMhYXBy4BIyIGFRQWMzI2NxUOAQNjmppKkGgzYCcjH00sanlxcSxPJyZQAePHqWylXRYUTA8YmoaFmxAMTg8OAAAAAAICbQHtBIgEtwAIABAAAAERMzIWFRQGIyczIBE0JisBAm3PmLS5p2JZAQuCd2sB7QLKsqy1t00BHI+FAAECrgHtBCYEtwALAAABESEVIRUhFSEVIRUCrgF4/uEBDv7yAR8B7QLKT99O/08AAAECrwHtBCcEtwAJAAABESEVIRUhFSERAq8BeP7hAQ3+8wHtAspP/U/+0QAAAQIZAeMERgTBAB4AAAEiJjU0PgEzMhYXBy4BIyIGFRQWMzI2NzUjNTMRDgEDWpylUpxuOGUrISNZL3aFc4QrPBmS6zZvAePGqXCkWxYUThEYmoaAoQoH1FD+ohMSAAAAAQKGAe0EigS3AAsAAAERMxEhETMRIxEhEQKGWQFSWVn+rgHtAsr+0gEu/TYBTf6zAAAAAAECvQHtA7QEtwALAAABNTcRJzUzFQcRFxUCvU9P909PAe00EwI7FDQ0FP3FEzQAAAECmAHjA5AEtwAPAAABIiYnNR4BMzI2NREzERQGAt8XIw0PIhMjOFlhAeMHBkwEBi9EAhL99WdiAAAAAAEClAHtBIIEtwAOAAABETMRPgE/ATMJASMDBxEClFkaOBy2aP74ARFo6UQB7QLK/qAiRCLY/sn+bQFVQP7rAAABAtEB7AROBLYABQAAAREzESEVAtFZASQB7ALK/YZQAAECOwHsBN0EtgAXAAABETMTMxMzESMRND4BNyMDIwMjHgIVEQI7gssEz4JYAgQBBNxK2AQCAwIB7ALK/bcCSf02AbcjRT0V/Y8CchQ+SSb+TwAAAAECigHsBKMEtgARAAABETMBMy4BNREzESMBIx4BFRECimgBYQQBBlNp/p4EAwUB7ALK/bEYczEBk/02AlEjaDf+cQAAAgJQAeIEvQTBAAsAFwAAASImNTQ2MzIWFRQGJzI2NTQmIyIGFRQWA4edmpqemJ2emHFnZ3BwamkB4sumpMrIp6bKTpuHh5mZh4ebAAICqwHsBFsEtgALABQAAAERMzIWFRQOASsBGQEzMjY1NCYrAQKrtIR4MnRlTEJdXFFWVAHsAspuZDtnQP7qAWNCT0VEAAAAAAICUAFCBL0EwQARAB0AAAEnBiIjIiY1NDYzMhYVFAYHFyUyNjU0JiMiBhUUFgQfggkIBZ2amp6YnWJfof7qcWdncHBqaQFCoQHLpqTKyKeDuCOy7puHh5mZh4ebAAAAAAICgQHsBGUEtgANABYAAAERMzIWFRQGBxMjAyMZATMyNjU0JisBAoG6fnhTM7poooFgUUpOUVwB7ALKZWZVVxP+wAEn/tkBc0VDRjsAAAAAAQKzAeMEXATBACUAAAEiJic1HgEzMjY1NCYnLgE1NDYzMhYXBy4BIyIGFRQWFx4BFRQGA2w4YSAjZTVJSkNZU1l4YDdcJxwkUSs9P0FQWF6CAeMSEFYQGj41NTsjIWBTVWEWEk0QFjkvNjogI1dUX2oAAAABAngB7QRvBLcABwAAAREjNSEVIxEDSNAB984B7QJ7T0/9hQABAoYB4gSOBLYAEQAAASImNREzERQWMzI2NREzERQGA4d+g1lWV1lQWYEB4pF3Acz+MVdgZ1EBzv4yb5cAAAAAAQJnAewEnwS2AA4AAAEDMxMeAhc+AjcTMwMDVu9dlQoPDQQEDBEJlF7vAewCyv42HTYxGBgyNh4ByP02AAAAAAEB5gHsBT0EtgAgAAABAzMTHgEXPgE3EzMTHgEXPgE3EzMDIwMuAicOAgcDApexXWcLEAQFEwx0XHkNEgUFEQtmXLJbfwgPCgEBCg0IfAHsAsr+TC5WJidcLAGv/k4uWyMlVy8Bs/02AdQdOi0JCS07H/4vAAAAAAECdgHsBJwEtgALAAABEwMzGwEzAxMjCwECdt/RY6OkXtDgZbCzAewBdAFW/ugBGP6s/ooBNv7KAAAAAAECaAHtBIAEtwAIAAABEQMzGwEzAxEDSOBhq6xg3wHtAREBuf6hAV/+S/7rAAAAAAECegHsBE4EtgAJAAABNQEhNSEVASEVAnoBX/6sAcD+oQFoAexEAjZQRP3KUAAA//8AfP9CCawGNhImB1EAABAmBj0AABAGBigAAP//AHz/QgmsBjYSJgdRAAAQJgY9AAAQBgYuAAD//wB8/0IJrAY2EiYHUQAAECYGQAAAEAYGPAAA//8AfP9CCawGNhImB1EAABAmBj0AABAGBjUAAP//AHz/QgmsBjYSJgdRAAAQJgY9AAAQBgYmAAD//wB8/0IJrAY2EiYHUQAAECYGPQAAEAYGMQAA//8AfP9CCawGNhImB1EAABAmBj0AABAGBisAAP//AHz/QgmsBjYSJgdRAAAQJgY9AAAQBgYzAAD//wB8/0IJrAY2EiYHUQAAECYGPQAAEAYGKQAA//8AfP9CCawGNhImB1EAABAmBj0AABAGBjQAAP//AHz/QgmsBjYSJgdRAAAQJgY9ugAQBgYvRgD//wB8/0IJrAY2EiYHUQAAECYGPboAEAYGOUYA//8AfP9CCawGNhImB1EAABAmBj0AABAGBiVGAP//AHz/QgmsBjYSJgdRAAAQJgY9AAAQBgY3AAD//wB8/0IJrAY2EiYHUQAAECYGPQAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBjpGABAGBj0AAP//AHz/QgmsBjYSJgdRAAAQJgY9AAAQBgY8AAD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGNQAA//8AfP9CCawGNhImB1EAABAmBj4AABAGBioAAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgYmAAD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGJAAA//8AfP9CCawGNhImB1EAABAmBj4AABAGBjsAAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGPAAA//8AfP9CCawGNhImB1EAABAmBj5GABAGBiwAAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgYuAAD//wB8/0IJrAY2EiYHUQAAECYGProAEAYGLzIA//8AfP9CCawGNhImB1EAABAmBj4AABAGBjbiAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgYxAAD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGI+IA//8AfP9CCawGNhImB1EAABAmBj6mABAGBjkyAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgY44gD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGNAAA//8AfP9CCawGNhImB1EAABAmBlIAABAGBikAAP//AHz/QgmsBjYSJgdRAAAQJgY+AAAQBgYwAAD//wB8/0IJrAY2EiYHUQAAECYGPgAAEAYGKQAA//8AfP9CCawGNhImB1EAABAmBj4AABAGBigAAP//AHz/QgmsBjYSJgdRAAAQJgY+HgAQBgYr4gD//wB8/0IJrAY2EiYHUQAAECYGRwAAEAYGKgAA//8AfP9CCawGNhImB1EAABAmBj8AABAGBi8AAP//AHz/QgmsBjYSJgdRAAAQJgY/MgAQBgYjAAD//wB8/0IJrAY2EiYHUQAAECYGP1AAEAYGKxQA//8AfP9CCawGNhImB1EAABAmBkUUABAGBiXsAP//AHz/QgmsBjYSJgdRAAAQJgY/RgAQBgY47AD//wB8/0IJrAY2EiYHUQAAECYGPwAAEAYGOQAA//8AfP9CCawGNhImB1EAABAmBj4AABAGBjMAAP//AHz/QgmsBjYSJgdRAAAQJgZHKAAQBgY7CgD//wB8/0IJrAY2EiYHUQAAECYGP1AAEAYGKAoA//8AfP9CCawGNhImB1EAABAmBkEKABAGBiPsAP//AHz/QgmsBjYSJgdRAAAQJgZQAAAQBgYmAAD//wB8/0IJrAY2EiYHUQAAECYGPzIAEAYGLuwA//8AfP9CCawGNhImB1EAABAmBj8oABAGBjriAP//AHz/QgmsBjYSJgdRAAAQJgY/UAAQBgYyCgD//wB8/0IJrAY2EiYHUQAAECYGPzIAEAYGJTIA//8AfP9CCawGNhImB1EAABAmBj8eABAGBjEeAP//AHz/QgmsBjYSJgdRAAAQJgZHzgAQBgYvFAD//wB8/0IJrAY2EiYHUQAAECYGPygAEAYGKSgA//8AfP9CCawGNhImB1EAABAmBj8yABAGBiYAAP//AHz/QgmsBjYSJgdRAAAQJgY/MgAQBgYtAAD//wB8/0IJrAY2EiYHUQAAECYGPzIAEAYGNOwA//8AfP9CCawGNhImB1EAABAmBkTiABAGBjQeAP//AHz/QgmsBjYSJgdRAAAQJgY/AAAQBgY3AAD//wB8/0IJrAY2EiYHUQAAECYGPzwAEAYGOx4A//8AfP9CCawGNhImB1EAABAmBj9GABAGBjziAP//AHz/QgmsBjYSJgdRAAAQJgZAFAAQBgYtFAD//wB8/0IJrAY2EiYHUQAAECYGQAAAEAYGKW4A//8AfP9CCawGNhImB1EAABAmBkBaABAGBiwyAP//AHz/QgmsBjYSJgdRAAAQJgZAsAAQBgYvPAD//wB8/0IJrAY2EiYHUQAAECYGQPYAEAYGMUYA//8AfP9CCawGNhImB1EAABAmBkHiABAGBiUyAP//AHz/QgmsBjYSJgdRAAAQJgZB4gAQBgYpRgD//wB8/0IJrAY2EiYHUQAAECYGT+IAEAYGOB4A//8AfP9CCawGNhImB1EAABAnBkH++QAAECcGMP4eAD0QBwYpANv/iP//AHz/QgmsBjYSJgdRAAAQJgZDAAAQBgYzAAD//wB8/0IJrAY2EiYHUQAAECYGQQAAEAYGNAAA//8AfP9CCawGNhImB1EAABAmBkEAABAGBicAAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgY8AAD//wB8/0IJrAY2EiYHUQAAECYGQQAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBkEAABAGBjcAAP//AHz/QgmsBjYSJgdRAAAQJgZCAAAQBgYtAAD//wB8/0IJrAY2EiYHUQAAECYGQgAAEAYGMQAA//8AfP9CCawGNhImB1EAABAnBkIAggAAEAYGLPYAAAD//wB8/0IJrAY2EiYHUQAAECYGQh4AEAYGKx4A//8AfP9CCawGNhImB1EAABAmBkMAABAGBihQAP//AHz/QgmsBjYSJgdRAAAQJgZMMgAQBgYoZAD//wB8/0IJrAY2EiYHUQAAECYGUAAAEAYGKEYA//8AfP9CCawGNhImB1EAABAmBkMAABAGBiMAAP//AHz/QgmsBjYSJgdRAAAQJgZD7AAQBgYvMgD//wB8/0IJrAY2EiYHUQAAECYGQwAAEAYGJwAA//8AfP9CCawGNhImB1EAABAmBkMAABAGBioAAP//AHz/QgmsBjYSJgdRAAAQJgZDAAAQBgYrAAD//wB8/0IJrAY2EiYHUQAAECYGQwAAEAYGNAAA//8AfP9CCawGNhImB1EAABAmBkMAABAGBi4AAP//AHz/QgmsBjYSJgdRAAAQJgZDAAAQBgYmAAD//wB8/0IJrAY2EiYHUQAAECYGQwAAEAYGMgAA//8AfP9CCawGNhImB1EAABAmBkMAABAGBjcAAP//AHz/QgmsBjYSJgdRAAAQJgZDAAAQBgY2AAD//wB8/0IJrAY2EiYHUQAAECYGQwAAEAYGKQAA//8AfP9CCawGNhImB1EAABAmBkMAABAGBjAAAP//AHz/QgmsBjYSJgdRAAAQJgZDxAAQBgY5PAD//wB8/0IJrAY2EiYHUQAAECYGQwAAEAYGOwAA//8AfP9CCawGNhImB1EAABAmBkQAABAGBjYAAP//AHz/QgmsBjYSJgdRAAAQJgZExAAQBgYwUAD//wB8/0IJrAY2EiYHUQAAECYGRLoAEAYGLUYA//8AfP9CCawGNhImB1EAABAmBkS6ABAGBjdGAP//AHz/QgmsBjYSJgdRAAAQJgZFAAAQBgY1AAD//wB8/0IJrAY2EiYHUQAAECYGRQAAEAYGMAAA//8AfP9CCawGNhImB1EAABAmBkUAABAGBiYAAP//AHz/QgmsBjYSJgdRAAAQJgZFAAAQBgY0AAD//wB8/0IJrAY2EiYHUQAAECYGRQAAEAYGMwAA//8AfP9CCawGNhImB1EAABAmBkUAABAGBicAAP//AHz/QgmsBjYSJgdRAAAQJgZFAAAQBgYvAAD//wB8/0IJrAY2EiYHUQAAECYGRQAAEAYGLgAA//8AfP9CCawGNhImB1EAABAmBkYAABAGBi8AAP//AHz/QgmsBjYSJgdRAAAQJgZGAAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGRgAAEAYGMQAA//8AfP9CCawGNhImB1EAABAmBkcAABAGBjwAAP//AHz/QgmsBjYSJgdRAAAQJgZHAAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGRwAAEAYGKwAA//8AfP9CCawGNhImB1EAABAmBlQAABAGBi0AAP//AHz/QgmsBjYSJgdRAAAQJgZHpgAQBgY5MgD//wB8/0IJrAY2EiYHUQAAECYGR7oAEAYGKUYA//8AfP9CCawGNhImB1EAABAmBkgAABAGBiMAAP//AHz/QgmsBjYSJgdRAAAQJgZIAAAQBgY4AAD//wB8/0IJrAY2EiYHUQAAECYGSAAAEAYGJAAA//8AfP9CCawGNhImB1EAABAmBkgAABAGBjUAAP//AHz/QgmsBjYSJgdRAAAQJgZIAAAQBgY0AAD//wB8/0IJrAY2EiYHUQAAECYGSAAAEAYGOwAA//8AfP9CCawGNhImB1EAABAmBkgAABAGBisAAP//AHz/QgmsBjYSJgdRAAAQJgZIAAAQBgY2AAD//wB8/0IJrAY2EiYHUQAAECYGSAAAEAYGNwAA//8AfP9CCawGNhImB1EAABAmBkm6ABAGBjFkAP//AHz/QgmsBjYSJgdRAAAQJgZJzgAQBwYpAKAAAAAA//8AfP9CCawGNhImB1EAABAnBkn/agAAEAcGOQCWAAD//wB8/0IJrAY2EiYHUQAAECYGSc4AEAcGOwCWAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZJzgAQBgY4bgD//wB8/0IJrAY2EiYHUQAAECYGSQAAEAYGLjIA//8AfP9CCawGNhImB1EAABAmBkkAABAGBjZaAP//AHz/QgmsBjYSJgdRAAAQJgZJ4gAQBgYqWgD//wB8/0IJrAY2EiYHUQAAECYGSboAEAYGM0YA//8AfP9CCawGNhImB1EAABAmBkm6ABAGBjRGAP//AHz/QgmsBjYSJgdRAAAQJgZJugAQBgY3RgD//wB8/0IJrAY2EiYHUQAAECYGVQAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBkm6ABAGBjpGAP//AHz/QgmsBjYSJgdRAAAQJgZC2AAQBgYvAAD//wB8/0IJrAY2EiYHUQAAECYGSewAEAYGJngA//8AfP9CCawGNhImB1EAABAmBknEABAHBiUAlgAAAAD//wB8/0IJrAY2EiYHUQAAECYGSaYAEAcGMACCAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZJ2AAQBwYnAKoAAAAA//8AfP9CCawGNhImB1EAABAmBkkAABAGBjVkAP//AHz/QgmsBjYSJgdRAAAQJgZJAAAQBgYjZAD//wB8/0IJrAY2EiYHUQAAECYGSQAAEAcGPACCAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZJugAQBwYvAIIAAAAA//8AfP9CCawGNhImB1EAABAmBkriABAGBiMeAP//AHz/QgmsBjYSJgdRAAAQJgZK2AAQBgY0RgD//wB8/0IJrAY2EiYHUQAAECYGSgAAEAYGMmQA//8AfP9CCawGNhImB1EAABAmBkoAABAGBi5kAP//AHz/QgmsBjYSJgdRAAAQJgZK4gAQBgYleAD//wB8/0IJrAY2EiYHUQAAECYGSgAAEAYGPEYA//8AfP9CCawGNhImB1EAABAmBkoeABAGBitkAP//AHz/QgmsBjYSJgdRAAAQJgZKAAAQBgYnZAD//wB8/0IJrAY2EiYHUQAAECYGSgAAEAcGKQCMAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZK4gAQBgY3ZAD//wB8/0IJrAY2EiYHUQAAECYGShQAEAcGKAC+AAAAAP//AHz/QgmsBjYSJgdRAAAQJgZHAAAQBgYyZAD//wB8/0IJrAY2EiYHUQAAECYGSdgAEAcGLQCqAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZJ2AAQBwYyAMgAAAAA//8AfP9CCawGNhImB1EAABAmBkucABAGBi9GAP//AHz/QgmsBjYSJgdRAAAQJgZMAAAQBgYtAAD//wB8/0IJrAY2EiYHUQAAECYGTMQAEAYGORQA//8AfP9CCawGNhImB1EAABAmBkwAABAGBjUAAP//AHz/QgmsBjYSJgdRAAAQJgZMAAAQBgYjAAD//wB8/0IJrAY2EiYHUQAAECYGTAAAEAYGKQAA//8AfP9CCawGNhImB1EAABAmBkwAABAGBjsAAP//AHz/QgmsBjYSJgdRAAAQJgZMAAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGTAAAEAYGKgAA//8AfP9CCawGNhImB1EAABAmBkwAABAGBjAAAP//AHz/QgmsBjYSJgdRAAAQJgZMAAAQBgYuAAD//wB8/0IJrAY2EiYHUQAAECYGTAAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBkwAABAGBjQAAP//AHz/QgmsBjYSJgdRAAAQJgZN4gAQBgYjUAD//wB8/0IJrAY2EiYHUQAAECYGTgAAEAYGJwAA//8AfP9CCawGNhImB1EAABAmBk4AABAGBjEoAP//AHz/QgmsBjYSJgdRAAAQJgZOugAQBgY5UAD//wB8/0IJrAY2EiYHUQAAECYGU+IAEAcGNQCCAAAAAP//AHz/QgmsBjYSJgdRAAAQJgZPsAAQBgYvMgD//wB8/0IJrAY2EiYHUQAAECYGTwAAEAYGIwAA//8AfP9CCawGNhImB1EAABAnBk//JAAKECcGJf7KADwQBwY2ASz/kv//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYwAAD//wB8/0IJrAY2EiYHUQAAECYGTgAAEAYGNQAA//8AfP9CCawGNhImB1EAABAmBk/sABAGBiVQAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYuAAD//wB8/0IJrAY2EiYHUQAAECYGT7oAEAYGKWQA//8AfP9CCawGNhImB1EAABAmBk8AABAGBjoAAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYtAAD//wB8/0IJrAY2EiYHUQAAECYGTwAAEAYGKwAA//8AfP9CCawGNhImB1EAABAmBk8AABAGBiQAAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYxAAD//wB8/0IJrAY2EiYHUQAAECYGVgAAEAYGIwAA//8AfP9CCawGNhImB1EAABAmBkNGABAGBjUUAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgY1AAD//wB8/0IJrAY2EiYHUQAAECYGTwAAEAYGNgAA//8AfP9CCawGNhImB1EAABAmBkgAABAGBi0AAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYqAAD//wB8/0IJrAY2EiYHUQAAECYGR+wAEAYGMEYA//8AfP9CCawGNhImB1EAABAmBkgoABAGBiUoAP//AHz/QgmsBjYSJgdRAAAQJgZJ7AAQBwYoAL4AAAAA//8AfP9CCawGNhImB1EAABAmBkzYABAGBi8oAP//AHz/QgmsBjYSJgdRAAAQJgZSAAAQBgYlWgD//wB8/0IJrAY2EiYHUQAAECYGTwAAEAYGJkYA//8AfP9CCawGNhImB1EAABAmBk8AABAGBjQAAP//AHz/QgmsBjYSJgdRAAAQJgZPAAAQBgYnAAD//wB8/0IJrAY2EiYHUQAAECYGPwAAEAYGKgAA//8AfP9CCawGNhImB1EAABAmBk8AABAGBjsAAP//AHz/QgmsBjYSJgdRAAAQJgZQugAQBgY5AAD//wB8/0IJrAY2EiYHUQAAECYGUCgAEAYGLCgA//8AfP9CCawGNhImB1EAABAmBlAAABAGBjwAAP//AHz/QgmsBjYSJgdRAAAQJgZQAAAQBgYqAAD//wB8/0IJrAY2EiYHUQAAECYGUAAAEAYGLgAA//8AfP9CCawGNhImB1EAABAmBlAAABAGBikeAP//AHz/QgmsBjYSJgdRAAAQJgZQAAAQBgYtAAD//wB8/0IJrAY2EiYHUQAAECYGUAAAEAYGMQAA//8AfP9CCawGNhImB1EAABAmBlAAABAGBjYAAP//AHz/QgmsBjYSJgdRAAAQJgZQAAAQBgYjAAD//wB8/0IJrAY2EiYHUQAAECYGUAAAEAYGMAAA//8AfP9CCawGNhImB1EAABAmBlAAABAGBjQAAP//AHz/QgmsBjYSJgdRAAAQJgZQAAAQBgYvAAD//wB8/0IJrAY2EiYHUQAAECYGUAAAEAYGJQAA//8AfP9CCawGNhImB1EAABAmBlAAABAGBjgAAP//AHz/QgmsBjYSJgdRAAAQJgZRugAQBgYvRgD//wB8/0IJrAY2EiYHUQAAECYGUgAAEAYGK1AA//8AfP9CCawGNhImB1EAABAmBlEAABAHBikAggAAAAD//wB8/0IJrAY2EiYHUQAAECYGUQAAEAYGIwAA//8AfP9CCawGNhImB1EAABAmBj0AABAGBic8AP//AHz/QgmsBjYSJgdRAAAQJgZR7AAQBgYwRgD//wB8/0IJrAY2EiYHUQAAECYGUQAAEAYGO2QA//8AfP9CCawGNhImB1EAABAmBlEAABAGBjwoAP//AHz/QgmsBjYSJgdRAAAQJgZSCgAQBgY3CgD//wB8/0IJrAY2EiYHUQAAECYGUgAAEAYGIwAA//8AfP9CCawGNhImB1EAABAmBlIAABAGBicAAP//AHz/QgmsBjYSJgdRAAAQJgZSAAAQBgYwAAD//wB8/0IJrAY2EiYHUQAAECcGU/9qAAAQJwYu/vcAJBAHBjUBFf+Y//8AfP9CCawGNhImB1EAABAmBlMAABAHBigAyAAAAAD//wB8/0IJrAY2EiYHUQAAECYGQQAAEAYGKgAA//8AfP9CCawGNhImB1EAABAmBlUAABAGBidGAP//AHz/QgmsBjYSJgdRAAAQJgZWzgAQBgYvRgD//wB8/0IJrAY2EiYHUQAAECYGVroAEAYGOVAAAAgAfP9CCawGNgAZADUAaACEAJYAogDcAOgAAAUiLgMjIgQHETYkMzIeAzMyJDcRBgQBPgE3LgInNjU0JiMiBhUUFwYVFBYzMjceAgMyNjU0Jz4BOwEyNjceATMyNjU0Jic2NTQmIyIGFRQXDgEPAQ4BBy4BIyIGFRQXBhUUFgUyNjU0JzY1NCYjIgcuAicOAQceAhcGFRQWASImIyIGIyI9ATQ2MzIWHQEUJyImNTQ2MzIWFRQGEzI9ATQzMhYzMjU0JzY1NC4CIyIGFRQXBhUUFjMyHQEUFjMyPQEXFRQWMzI9ARcVFDMyPQEXFRQWNyImNTQ2MzIWFRQGB3CC9O3t9oSA/uONnwEjeoL07e32hIABHY2f/t38TSQ4SWV4WjkDLx8ZIgosMR8nECtDSd0aIQN51GEiUdh2CCwYGCIZFAwyIBggA17CZB6R3V8IKhgZIywLMQPgGh8KLTIfKA4rQ0k1JUM9WnVjPgMx/l8IFxcDCQMJFAwUIIssSiUeLUglvhQRDjEcOAotToKhVGt8LQZKOhwVCxIdFQwRHR8SHRMoLkomHS1JJb5EZGVEQUQFcmVRRGRlREJD+o5kUgKlAwMDPkgzHQgNIDIjGhITCzAcMCYXJCn+7SIZCwoQEA8PGiEjGRQoCRMRHjIfGQsMCgwEAQYQDhogIxotGBMQHjH3IBkXEQouHzIlGCUrHgIDAjdHOiMJDR80AscWARkjDhEkFCQUiU4tICZNLSEm/tgRFSEbSyAhW1lLkndGdGVcbRkXPEwvFwoWExQJFQsVEhQJFSATFAkVDRPfTi4gJk8tHycAAAAJAHz/QgmsBjYAGQAyAE4AXgB2AIYAlgCvAMsAAAUiLgMjIgQHETYkMzIeAzMyJDcRBgQBIiY1NDY3PAE1NDYzMhYXMhYXHgEVFAYjJSEyNjU0JiM0JiMiBgcuASMiBhUUFhcOARUUFgU0LgEjIgYHJz4BMzIeARUBMjY3EQYjIi4DIyIGBxE2MzIeAwMuAiMiBgcnPgEzMh4BFzcuAiMiBgcnNiQzMgQWFwEiJjU0Njc+ATM+ATMyFhUcARUeARUUBiMlITI2NTQmJz4BNTQmIyIGBy4BIyIGFSIGFRQWB3CC9O3t9oSA/uONnwEjeoL07e32hIABHY2f/t36Xy5GKiBtTD1YGCZGDS01QTb+YAGgJiE5GjIlDA0LC00yNVQCAyUqIQQQU4tTUYcpKjCdXmGhYQEId/CF7uyI/vLs7Hp28YXu7Ij+8uztMxeAum52xT8pRtuCec2OGlQdp/COl/9RKVkBFKObAQe1Hv6mNkE1LQ1JJRhWPU1sICpFL/5gAaAjISkmAwJUNTFOCwoODCUyGjkhvkRkZURBRAVyZVFEZGVEQkP6jmRSAnQ2MSU0CwUHAk1tPC8wKQw8Ji4zMBwVHCgYPAECMjtNPQoYDwEmGhYhGVOHUEs+HUdXXp1h/cVETwTNXURlZERET/szXURkZUQCmWeiXWhYHGJ0ZrFxDoXSeYVxHXqRhueT/oUzLiY8DCkxLzttTQIHBQs0JTE2MCEWGiYBDxgKPU07MgIBPBgoHBUcAAAAAAQAfP9CCawGNgAZAEsAVwBvAAAFIi4DIyIEBxE2JDMyHgMzMiQ3EQYEATUjNTM1LgE1NDcnByc3JxUjNTMVIxc3FwcXPgEzMhc3IzUzFSM1BxYVFAYHFTMVIxUDMjY1NCYjIgYVFBYBMjY3EQYjIi4DIyIGBxE2MzIeAwdwgvTt7faEgP7jjZ8BI3qC9O3t9oSAAR2Nn/7d/Q1ZWUJZITBCL0FPSM1RT0AuPzEXNx42LKdRzUilJ1lCW1smL0JCLy5BQQKDd/CF7uyI/vLs7Hp28YXu7Ij+8uztvkRkZURBRAVyZVFEZGVEQkP6jmRSAb1QQl0MbEc3MTBBL0FPUsxITkAvQDEQExumSM1TpDJAR2wMXUJQATtELy5CQi4vRP1YRE8EzV1EZWRERE/7M11EZGVEAAAAAAIAfP9CCawGNgAZADEAAAUiLgMjIgQHETYkMzIeAzMyJDcRBgQnMjY3EQYjIi4DIyIGBxE2MzIeAwdwgvTt7faEgP7jjZ8BI3qC9O3t9oSAAR2Nn/7denfwhe7siP7y7Ox6dvGF7uyI/vLs7b5EZGVEQUQFcmVRRGRlREJD+o5kUlBETwTNXURlZERET/szXURkZUQAAAAABAB8/0IJrAY2ABkAMQBMAFgAAAUiLgMjIgQHETYkMzIeAzMyJDcRBgQnMjY3EQYjIi4DIyIGBxE2MzIeAwE+Ajc+ATU0JiMiBgcjNDYzMhYVFAYHDgEHAyImNTQ2MzIWFRQGB3CC9O3t9oSA/uONnwEjeoL07e32hIABHY2f/t16d/CF7uyI/vLs7Hp28YXu7Ij+8uzt/dECFjIrKS4/PTlHB4OVdHyHPk4rGgQ+KTw8KSk8PL5EZGVEQUQFcmVRRGRlREJD+o5kUlBETwTNXURlZERET/szXURkZUQCjjpJPicmOC4+RkA2Y4WCbz5iRCY2Of7OPCkpPDwpKTwAAAAAHgFuAAEAAAAAAAAANQBsAAEAAAAAAAEACgC4AAEAAAAAAAIABwDTAAEAAAAAAAMAHAEVAAEAAAAAAAQAEgFYAAEAAAAAAAUADQGHAAEAAAAAAAYAEQG5AAEAAAAAAAcAIgIRAAEAAAAAAAgADAJOAAEAAAAAAAkADAJ1AAEAAAAAAAsAHwLCAAEAAAAAAAwAHwMiAAEAAAAAAA0BSwXaAAEAAAAAAA4AGgdcAAEAAAAAABIACgeNAAMAAQQJAAAAagAAAAMAAQQJAAEAFACiAAMAAQQJAAIADgDDAAMAAQQJAAMAOADbAAMAAQQJAAQAJAEyAAMAAQQJAAUAGgFrAAMAAQQJAAYAIgGVAAMAAQQJAAcARAHLAAMAAQQJAAgAGAI0AAMAAQQJAAkAGAJbAAMAAQQJAAsAPgKCAAMAAQQJAAwAPgLiAAMAAQQJAA0ClgNCAAMAAQQJAA4ANAcmAAMAAQQJABIAFAd3AEMAbwBwAHkAcgBpAGcAaAB0ACAAMgAwADEAMwAsACAAMgAwADIAMgAgAEcAbwBvAGcAbABlACAASQBuAGMALgAgAEEAbABsACAAUgBpAGcAaAB0AHMAIABSAGUAcwBlAHIAdgBlAGQALgAAQ29weXJpZ2h0IDIwMTMsIDIwMjIgR29vZ2xlIEluYy4gQWxsIFJpZ2h0cyBSZXNlcnZlZC4AAE4AbwB0AG8AIABFAG0AbwBqAGkAAE5vdG8gRW1vamkAAFIAZQBnAHUAbABhAHIAAFJlZ3VsYXIAADIALgAwADAAMQA7AEcATwBPAEcAOwBOAG8AdABvAEUAbQBvAGoAaQAtAFIAZQBnAHUAbABhAHIAADIuMDAxO0dPT0c7Tm90b0Vtb2ppLVJlZ3VsYXIAAE4AbwB0AG8AIABFAG0AbwBqAGkAIABSAGUAZwB1AGwAYQByAABOb3RvIEVtb2ppIFJlZ3VsYXIAAFYAZQByAHMAaQBvAG4AIAAyAC4AMAAwADEAAFZlcnNpb24gMi4wMDEAAE4AbwB0AG8ARQBtAG8AagBpAC0AUgBlAGcAdQBsAGEAcgAATm90b0Vtb2ppLVJlZ3VsYXIAAE4AbwB0AG8AIABpAHMAIABhACAAdAByAGEAZABlAG0AYQByAGsAIABvAGYAIABHAG8AbwBnAGwAZQAgAEkAbgBjAC4AAE5vdG8gaXMgYSB0cmFkZW1hcmsgb2YgR29vZ2xlIEluYy4AAEcAbwBvAGcAbABlACwAIABJAG4AYwAuAABHb29nbGUsIEluYy4AAEcAbwBvAGcAbABlACwAIABJAG4AYwAuAABHb29nbGUsIEluYy4AAGgAdAB0AHAAOgAvAC8AdwB3AHcALgBnAG8AbwBnAGwAZQAuAGMAbwBtAC8AZwBlAHQALwBuAG8AdABvAC8AAGh0dHA6Ly93d3cuZ29vZ2xlLmNvbS9nZXQvbm90by8AAGgAdAB0AHAAOgAvAC8AdwB3AHcALgBnAG8AbwBnAGwAZQAuAGMAbwBtAC8AZwBlAHQALwBuAG8AdABvAC8AAGh0dHA6Ly93d3cuZ29vZ2xlLmNvbS9nZXQvbm90by8AAFQAaABpAHMAIABGAG8AbgB0ACAAUwBvAGYAdAB3AGEAcgBlACAAaQBzACAAbABpAGMAZQBuAHMAZQBkACAAdQBuAGQAZQByACAAdABoAGUAIABTAEkATAAgAE8AcABlAG4AIABGAG8AbgB0ACAATABpAGMAZQBuAHMAZQAsACAAVgBlAHIAcwBpAG8AbgAgADEALgAxAC4AIABUAGgAaQBzACAARgBvAG4AdAAgAFMAbwBmAHQAdwBhAHIAZQAgAGkAcwAgAGQAaQBzAHQAcgBpAGIAdQB0AGUAZAAgAG8AbgAgAGEAbgAgACIAQQBTACAASQBTACIAIABCAEEAUwBJAFMALAAgAFcASQBUAEgATwBVAFQAIABXAEEAUgBSAEEATgBUAEkARQBTACAATwBSACAAQwBPAE4ARABJAFQASQBPAE4AUwAgAE8ARgAgAEEATgBZACAASwBJAE4ARAAsACAAZQBpAHQAaABlAHIAIABlAHgAcAByAGUAcwBzACAAbwByACAAaQBtAHAAbABpAGUAZAAuACAAUwBlAGUAIAB0AGgAZQAgAFMASQBMACAATwBwAGUAbgAgAEYAbwBuAHQAIABMAGkAYwBlAG4AcwBlACAAZgBvAHIAIAB0AGgAZQAgAHMAcABlAGMAaQBmAGkAYwAgAGwAYQBuAGcAdQBhAGcAZQAsACAAcABlAHIAbQBpAHMAcwBpAG8AbgBzACAAYQBuAGQAIABsAGkAbQBpAHQAYQB0AGkAbwBuAHMAIABnAG8AdgBlAHIAbgBpAG4AZwAgAHkAbwB1AHIAIAB1AHMAZQAgAG8AZgAgAHQAaABpAHMAIABGAG8AbgB0ACAAUwBvAGYAdAB3AGEAcgBlAC4AAFRoaXMgRm9udCBTb2Z0d2FyZSBpcyBsaWNlbnNlZCB1bmRlciB0aGUgU0lMIE9wZW4gRm9udCBMaWNlbnNlLCBWZXJzaW9uIDEuMS4gVGhpcyBGb250IFNvZnR3YXJlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuICJBUyBJUyIgQkFTSVMsIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLiBTZWUgdGhlIFNJTCBPcGVuIEZvbnQgTGljZW5zZSBmb3IgdGhlIHNwZWNpZmljIGxhbmd1YWdlLCBwZXJtaXNzaW9ucyBhbmQgbGltaXRhdGlvbnMgZ292ZXJuaW5nIHlvdXIgdXNlIG9mIHRoaXMgRm9udCBTb2Z0d2FyZS4AAGgAdAB0AHAAOgAvAC8AcwBjAHIAaQBwAHQAcwAuAHMAaQBsAC4AbwByAGcALwBPAEYATAAAaHR0cDovL3NjcmlwdHMuc2lsLm9yZy9PRkwAAE4AbwB0AG8AIABFAG0AbwBqAGkAAE5vdG8gRW1vamkAAAAAAgAAAAAAAARZAIMAAAAAAAAAAAAAAAAAAAAAAAAAAAdTAAABAgEDAAMABgANABMAFAAVABYAFwAYABkAGgAbABwAiwCKAQQBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMBFAEVARYBFwEYARkBGgEbARwBHQEeAR8BIAEhASIBIwEkASUBJgEnASgBKQEqASsBLAEtAS4BLwEwATEBMgEzATQBNQE2ATcBOAE5AToBOwE8AT0BPgE/AUABQQFCAUMBRAFFAUYBRwFIAUkBSgFLAUwBTQFOAU8BUAFRAVIBUwFUAVUBVgFXAVgBWQFaAVsBXAFdAV4BXwFgAWEBYgFjAWQBZQFmAWcBaAFpAWoBawFsAW0BbgFvAXABcQFyAXMBdAF1AXYBdwF4AXkBegF7AXwBfQF+AX8BgAGBAYIBgwGEAYUBhgGHAYgBiQGKAYsBjAGNAY4BjwGQAZEBkgGTAZQBlQGWAZcBmAGZAZoBmwGcAZ0BngGfAaABoQGiAaMBpAGlAaYBpwGoAakBqgGrAawBrQGuAa8BsAGxAbIBswG0AbUBtgG3AbgBuQG6AbsBvAG9Ab4BvwHAAcEBwgHDAcQBxQHGAccByAHJAcoBywHMAc0BzgHPAdAB0QHSAdMB1AHVAdYB1wHYAdkB2gHbAdwB3QHeAd8B4AHhAeIB4wHkAeUB5gHnAegB6QHqAesB7AHtAe4B7wHwAfEB8gHzAfQB9QH2AfcB+AH5AfoB+wH8Af0B/gH/AgACAQICAgMCBAIFAgYCBwIIAgkCCgILAgwCDQIOAg8CEAIRAhICEwIUAhUCFgIXAhgCGQIaAhsCHAIdAh4CHwIgAiECIgIjAiQCJQImAicCKAIpAioCKwIsAi0CLgIvAjACMQIyAjMCNAI1AjYCNwI4AjkCOgI7AjwCPQI+Aj8CQAJBAkICQwJEAkUCRgJHAkgCSQJKAksCTAJNAk4CTwJQAlECUgJTAlQCVQJWAlcCWAJZAloCWwJcAl0CXgJfAmACYQJiAmMCZAJlAmYCZwJoAmkCagJrAmwCbQJuAm8CcAJxAnICcwJ0AnUCdgJ3AngCeQJ6AnsCfAJ9An4CfwKAAoECggKDAoQChQKGAocCiAKJAooCiwKMAo0CjgKPApACkQKSApMClAKVApYClwKYApkCmgKbApwCnQKeAp8CoAKhAqICowKkAqUCpgKnAqgCqQKqAqsCrAKtAq4CrwKwArECsgKzArQCtQK2ArcCuAK5AroCuwK8Ar0CvgK/AsACwQLCAsMCxALFAsYCxwLIAskCygLLAswCzQLOAs8C0ALRAtIC0wLUAtUC1gLXAtgC2QLaAtsC3ALdAt4C3wLgAuEC4gLjAuQC5QLmAucC6ALpAuoC6wLsAu0C7gLvAvAC8QLyAvMC9AL1AvYC9wL4AvkC+gL7AvwC/QL+Av8DAAMBAwIDAwMEAwUDBgMHAwgDCQMKAwsDDAMNAw4DDwMQAxEDEgMTAxQDFQMWAxcDGAMZAxoDGwMcAx0DHgMfAyADIQMiAyMDJAMlAyYDJwMoAykDKgMrAywDLQMuAy8DMAMxAzIDMwM0AzUDNgM3AzgDOQM6AzsDPAM9Az4DPwNAA0EDQgNDA0QDRQNGA0cDSANJA0oDSwNMA00DTgNPA1ADUQNSA1MDVANVA1YDVwNYA1kDWgNbA1wDXQNeA18DYANhA2IDYwNkA2UDZgNnA2gDaQNqA2sDbANtA24DbwNwA3EDcgNzA3QDdQN2A3cDeAN5A3oDewN8A30DfgN/A4ADgQOCA4MDhAOFA4YDhwOIA4kDigOLA4wDjQOOA48DkAORA5IDkwOUA5UDlgOXA5gDmQOaA5sDnAOdA54DnwOgA6EDogOjA6QDpQOmA6cDqAOpA6oDqwOsA60DrgOvA7ADsQOyA7MDtAO1A7YDtwO4A7kDugO7A7wDvQO+A78DwAPBA8IDwwPEA8UDxgPHA8gDyQPKA8sDzAPNA84DzwPQA9ED0gPTA9QD1QPWA9cD2APZA9oD2wPcA90D3gPfA+AD4QPiA+MD5APlA+YD5wPoA+kD6gPrA+wD7QPuA+8D8APxA/ID8wP0A/UD9gP3A/gD+QP6A/sD/AP9A/4D/wQABAEEAgQDBAQEBQQGBAcECAQJBAoECwQMBA0EDgQPBBAEEQQSBBMEFAQVBBYEFwQYBBkEGgQbBBwEHQQeBB8EIAQhBCIEIwQkBCUEJgQnBCgEKQQqBCsELAQtBC4ELwQwBDEEMgQzBDQENQQ2BDcEOAQ5BDoEOwQ8BD0EPgQ/BEAEQQRCBEMERARFBEYERwRIBEkESgRLBEwETQROBE8EUARRBFIEUwRUBFUEVgRXBFgEWQRaBFsAggRcBF0EXgRfBGAEYQRiBGMEZARlBGYEZwRoBGkEagRrBGwEbQRuBG8EcARxBHIEcwR0BHUEdgR3BHgEeQR6BHsEfAR9BH4EfwSABIEEggSDBIQEhQSGBIcEiASJBIoEiwSMBI0EjgSPBJAEkQSSBJMElASVBJYElwSYBJkEmgSbBJwEnQSeBJ8EoAShBKIEowSkBKUEpgSnBKgEqQSqBKsErAStBK4ErwSwBLEEsgSzBLQEtQS2BLcEuAS5BLoEuwS8BL0EvgS/BMAEwQTCBMMExATFBMYExwTIBMkEygTLBMwEzQTOBM8E0ATRBNIE0wTUBNUE1gTXBNgE2QTaBNsE3ATdBN4E3wTgBOEE4gTjBOQE5QTmBOcE6ATpBOoE6wTsBO0E7gTvBPAE8QTyBPME9AT1BPYE9wT4BPkE+gT7BPwE/QT+BP8FAAUBBQIFAwUEBQUFBgUHBQgFCQUKBQsFDAUNBQ4FDwUQBREFEgUTBRQFFQUWBRcFGAUZBRoFGwUcBR0FHgUfBSAFIQUiBSMFJAUlBSYFJwUoBSkFKgUrBSwFLQUuBS8FMAUxBTIFMwU0BTUFNgU3BTgFOQU6BTsFPAU9BT4FPwVABUEFQgVDBUQFRQVGBUcFSAVJBUoFSwVMBU0FTgVPBVAFUQVSBVMFVAVVBVYFVwVYBVkFWgVbBVwFXQVeBV8FYAVhBWIFYwVkBWUFZgVnBWgFaQVqBWsFbAVtBW4FbwVwBXEFcgVzBXQFdQV2BXcFeAV5BXoFewV8BX0FfgV/BYAFgQWCBYMFhAWFBYYFhwWIBYkFigWLBYwFjQWOBY8FkAWRBZIFkwWUBZUFlgWXBZgFmQWaBZsFnAWdBZ4FnwWgBaEFogWjBaQFpQWmBacFqAWpBaoFqwWsBa0FrgWvBbAFsQWyBbMFtAW1BbYFtwW4BbkFugW7BbwFvQW+Bb8FwAXBBcIFwwXEBcUFxgXHBcgFyQXKBcsFzAXNBc4FzwXQBdEF0gXTBdQF1QXWBdcF2AXZBdoF2wXcBd0F3gXfBeAF4QXiBeMF5AXlBeYF5wXoBekF6gXrBewF7QXuBe8F8AXxBfIF8wX0BfUF9gX3BfgF+QX6BfsF/AX9Bf4F/wYABgEGAgYDBgQGBQYGBgcGCAYJBgoGCwYMBg0GDgYPBhAGEQYSBhMGFAYVBhYGFwYYBhkGGgYbBhwGHQYeBh8GIAYhBiIGIwYkBiUGJgYnBigGKQYqBisGLAYtBi4GLwYwBjEGMgYzBjQGNQY2BjcGOAY5BjoGOwY8Bj0GPgY/BkAGQQZCBkMGRAZFBkYGRwZIBkkGSgZLBkwGTQZOBk8GUAZRBlIGUwZUBlUGVgZXBlgGWQZaBlsGXAZdBl4GXwZgBmEGYgZjBmQGZQZmBmcGaAZpBmoGawZsBm0GbgZvBnAGcQZyBnMGdAZ1BnYGdwZ4BnkGegZ7BnwGfQZ+Bn8GgAaBBoIGgwaEBoUGhgaHBogGiQaKBosGjAaNBo4GjwaQBpEGkgaTBpQGlQaWBpcGmAaZBpoGmwacBp0GngafBqAGoQaiBqMGpAalBqYGpwaoBqkGqgarBqwGrQauBq8GsAaxBrIGswa0BrUGtga3BrgGuQa6BrsGvAa9Br4GvwbABsEGwgbDBsQGxQbGBscGyAbJBsoGywbMBs0GzgbPBtAG0QbSBtMG1AbVBtYG1wbYBtkG2gbbBtwG3QbeBt8G4AbhBuIG4wbkBuUG5gbnBugG6QbqBusG7AbtBu4G7wbwBvEG8gbzBvQG9Qb2BvcG+Ab5BvoG+wb8Bv0G/gb/BwAHAQcCBwMHBAcFBwYHBwcIBwkHCgcLBwwHDQcOBw8HEAcRBxIHEwcUBxUHFgcXBxgHGQcaBxsHHAcdBx4HHwcgByEHIgcjByQHJQcmBycHKAcpByoHKwcsBy0HLgcvBzAHMQcyBzMHNAc1BzYHNwc4BzkHOgc7BzwHPQc+Bz8HQAdBB0IHQwdEB0UHRgdHB0gHSQdKB0sHTAdNB04HTwdQB1EHUgdTB1QHVQdWB1cHWAdZB1oHWwdcB10HXgdfB2AHYQdiB2MHZAdlB2YHZwdoB2kHagdrB2wHbQduB28HcAdxB3IHcwd0B3UHdgd3B3gHeQd6B3sHfAd9B34HfweAB4EHggeDB4QHhQeGB4cHiAeJB4oHiweMB40HjgePB5AHkQeSB5MHlAeVB5YHlweYB5kHmgebB5wHnQeeB58HoAehB6IHowekB6UHpgenB6gHqQeqB6sHrAetB64HrwewB7EHsgezB7QHtQe2B7cHuAe5B7oHuwe8B70Hvge/B8AHwQfCB8MHxAfFB8YHxwfIB8kHygfLB8wHzQfOB88H0AfRB9IH0wfUB9UH1gfXB9gH2QfaB9sH3AfdB94H3wfgB+EH4gfjB+QH5QfmB+cH6AfpB+oH6wfsB+0H7gfvB/AH8QfyB/MH9Af1B/YH9wf4B/kH+gf7B/wH/Qf+B/8IAAgBCAIIAwgECAUIBggHCAgICQgKCAsIDAgNCA4IDwgQCBEIEggTCBQIFQgWCBcIGAgZCBoIGwgcCB0IHggfCCAIIQgiCCMIJAglCCYIJwgoCCkIKggrCCwILQguCC8IMAgxCDIIMwg0CDUINgg3CDgIOQg6CDsIPAg9CD4IPwhACEEIQghDB3VuaTAwMDAHdW5pMDAwRAd1bmkyMDBEFWRvdWJsZUV4Y2xhbWF0aW9uTWFyaxdleGNsYW1hdGlvblF1ZXN0aW9uTWFyawd1bmkyMEUzCXRyYWRlTWFyawtpbmZvcm1hdGlvbglhcnJvd2JvdGgJYXJyb3d1cGRuC3VwTGVmdEFycm93DHVwUmlnaHRBcnJvdw5kb3duUmlnaHRBcnJvdw1kb3duTGVmdEFycm93FXJpZ2h0QXJyb3dDdXJ2aW5nTGVmdBVsZWZ0QXJyb3dDdXJ2aW5nUmlnaHQHdW5pMjMxQQ1ob3VyZ2xhc3NEb25lB3VuaTIzMjgLZWplY3RCdXR0b24RZmFzdEZvcndhcmRCdXR0b24RZmFzdFJldmVyc2VCdXR0b24MZmFzdFVwQnV0dG9uDmZhc3REb3duQnV0dG9uD25leHRUcmFja0J1dHRvbg9sYXN0VHJhY2tCdXR0b24RcGxheU9yUGF1c2VCdXR0b24HdW5pMjNGMAd1bmkyM0YxB3VuaTIzRjIQaG91cmdsYXNzTm90RG9uZQtwYXVzZUJ1dHRvbgpzdG9wQnV0dG9uDHJlY29yZEJ1dHRvbghjaXJjbGVkTQd1bmkyNUFBB3VuaTI1QUIKcGxheUJ1dHRvbg1yZXZlcnNlQnV0dG9uEXdoaXRlTWVkaXVtU3F1YXJlEWJsYWNrTWVkaXVtU3F1YXJlFndoaXRlTWVkaXVtU21hbGxTcXVhcmUWYmxhY2tNZWRpdW1TbWFsbFNxdWFyZQNzdW4HdW5pMjYwMQd1bmkyNjAyB3VuaTI2MDMHdW5pMjYwNAd1bmkyMTIxEWNoZWNrQm94V2l0aENoZWNrB3VuaTI2MTQHdW5pMjYxNQd1bmkyNjE4D2luZGV4UG9pbnRpbmdVcAd1bmkyNjIwB3VuaTI2MjIHdW5pMjYyMwd1bmkyNjI2B3VuaTI2MkELcGVhY2VTeW1ib2wHeWluWWFuZwd1bmkyNjM4B3VuaTI2MzkJc21pbGVmYWNlCmZlbWFsZVNpZ24IbWFsZVNpZ24HdW5pMjY0OAd1bmkyNjQ5B3VuaTI2NEEHdW5pMjY0Qgd1bmkyNjRDB3VuaTI2NEQHdW5pMjY0RQdzY29ycGlvB3VuaTI2NTAHdW5pMjY1MQd1bmkyNjUyB3VuaTI2NTMOYmxhY2tDaGVzc1Bhd24Jc3BhZGVTdWl0CGNsdWJTdWl0CWhlYXJ0U3VpdAtkaWFtb25kU3VpdApob3RTcHJpbmdzD3JlY3ljbGluZ1N5bWJvbAd1bmkyNjdFB3VuaTI2N0YHdW5pMjY5Mgd1bmkyNjkzB3VuaTI2OTQNbWVkaWNhbFN5bWJvbAxiYWxhbmNlU2NhbGUHdW5pMjY5Nwd1bmkyNjk5B3VuaTI2OUIHdW5pMjY5Qwd3YXJuaW5nC2hpZ2hWb2x0YWdlEXRyYW5zZ2VuZGVyU3ltYm9sBmNpcmNsZQd1bmkyNUNGB3VuaTI2QjAHdW5pMjZCMQd1bmkyNkJEB3VuaTI2QkUHdW5pMjZDNAd1bmkyNkM1B3VuaTI2QzgHdW5pMjZDRQd1bmkyNkNGE3Jlc2N1ZVdvcmtlclNIZWxtZXQHdW5pMjZEMwd1bmkyNkQ0B3VuaTI2RTkHdW5pMjZFQQd1bmkyNkYwB3VuaTI2RjEHdW5pMjZGMgd1bmkyNkYzB3VuaTI2RjQHdW5pMjZGNQd1bmkyNkY3B3VuaTI2RjgScGVyc29uQm91bmNpbmdCYWxsB3VuaTI2RkEHdW5pMjZGRAhzY2lzc29ycw9jaGVja01hcmtCdXR0b24HdW5pMjcwOAd1bmkyNzA5B3VuaTI3MEEHdW5pMjcwQgd1bmkyNzBDB3VuaTI3MEQHdW5pMjcwRgd1bmkyNzEyCWNoZWNrTWFyawd1bmkyNzE2CmxhdGluQ3Jvc3MHdW5pMjcyMQd1bmkyNzI4B3VuaTI3MzMQZWlnaHRQb2ludGVkU3Rhcgd1bmkyNzQ0B3VuaTI3NDcHdW5pMjc0Qw9jcm9zc01hcmtCdXR0b24PcmVkUXVlc3Rpb25NYXJrEXdoaXRlUXVlc3Rpb25NYXJrFHdoaXRlRXhjbGFtYXRpb25NYXJrEnJlZEV4Y2xhbWF0aW9uTWFyaxBoZWFydEV4Y2xhbWF0aW9uCHJlZEhlYXJ0B3VuaTI3OTUHdW5pMjc5Ngd1bmkyNzk3CmFycm93cmlnaHQHdW5pMjdCMAd1bmkyN0JGE3JpZ2h0QXJyb3dDdXJ2aW5nVXAVcmlnaHRBcnJvd0N1cnZpbmdEb3duCWFycm93bGVmdAdhcnJvd3VwCWFycm93ZG93bgd1bmkyQjFCB3VuaTJCMUMHdW5pMkI1MA9ob2xsb3dSZWRDaXJjbGUId2F2eURhc2gScGFydEFsdGVyYXRpb25NYXJrHWphcGFuZXNlQ29uZ3JhdHVsYXRpb25zQnV0dG9uFGphcGFuZXNlU2VjcmV0QnV0dG9uB3VuaUZFMEUHdW5pRkUwRg10aWxlUmVkRHJhZ29uBWpva2VyEGFCdXR0b25CbG9vZFR5cGUQYkJ1dHRvbkJsb29kVHlwZRBvQnV0dG9uQmxvb2RUeXBlB3BCdXR0b24RYWJCdXR0b25CbG9vZFR5cGUIY2xCdXR0b24KY29vbEJ1dHRvbgpmcmVlQnV0dG9uCGlkQnV0dG9uCW5ld0J1dHRvbghuZ0J1dHRvbghva0J1dHRvbglzb3NCdXR0b24IdXBCdXR0b24IdnNCdXR0b24HQVJlZ2lvbgdCUmVnaW9uB0NSZWdpb24HRFJlZ2lvbgdFUmVnaW9uB0ZSZWdpb24HR1JlZ2lvbgdIUmVnaW9uB0lSZWdpb24HSlJlZ2lvbgdLUmVnaW9uB0xSZWdpb24HTVJlZ2lvbgdOUmVnaW9uB09SZWdpb24HUFJlZ2lvbgdRUmVnaW9uB1JSZWdpb24HU1JlZ2lvbgdUUmVnaW9uB1VSZWdpb24HVlJlZ2lvbgdXUmVnaW9uB1hSZWdpb24HWVJlZ2lvbgdaUmVnaW9uEmphcGFuZXNlSGVyZUJ1dHRvbhtqYXBhbmVzZVNlcnZpY2VDaGFyZ2VCdXR0b24aamFwYW5lc2VGcmVlT2ZDaGFyZ2VCdXR0b24WamFwYW5lc2VSZXNlcnZlZEJ1dHRvbhhqYXBhbmVzZVByb2hpYml0ZWRCdXR0b24VamFwYW5lc2VWYWNhbmN5QnV0dG9uGmphcGFuZXNlUGFzc2luZ0dyYWRlQnV0dG9uF2phcGFuZXNlTm9WYWNhbmN5QnV0dG9uHWphcGFuZXNlTm90RnJlZU9mQ2hhcmdlQnV0dG9uG2phcGFuZXNlTW9udGhseUFtb3VudEJ1dHRvbhlqYXBhbmVzZUFwcGxpY2F0aW9uQnV0dG9uFmphcGFuZXNlRGlzY291bnRCdXR0b24damFwYW5lc2VPcGVuRm9yQnVzaW5lc3NCdXR0b24VamFwYW5lc2VCYXJnYWluQnV0dG9uGGphcGFuZXNlQWNjZXB0YWJsZUJ1dHRvbgZ1MUYzMDAGdTFGMzAxBnUxRjMwMg5uaWdodFdpdGhTdGFycwZ1MUYzMDQGdTFGMzA1BnUxRjMwNgZzdW5zZXQGdTFGMzA4BnUxRjMwOQZ1MUYzMEEGdTFGMzBCBnUxRjMwQxhnbG9iZVNob3dpbmdFdXJvcGVBZnJpY2ETZ2xvYmVTaG93aW5BbWVyaWNhcxlnbG9iZVNob3dpbmdBc2lhQXVzdHJhbGlhEmdsb2JlV2l0aE1lcmlkaWFucwZ1MUYzMTEGdTFGMzEyBnUxRjMxMwZ1MUYzMTQGdTFGMzE1BnUxRjMxNgZ1MUYzMTcGdTFGMzE4BnUxRjMxOQZ1MUYzMUEGdTFGMzFCBnUxRjMxQwZ1MUYzMUQGdTFGMzFFBnUxRjMxRgZ1MUYzMjAGdTFGMzIxBnUxRjMyNAZ1MUYzMjUGdTFGMzI2DWNsb3VkV2l0aFJhaW4NY2xvdWRXaXRoU25vdxJjbG91ZFdpdGhMaWdodG5pbmcHdG9ybmFkbwZ1MUYzMkIGdTFGMzJDBmhvdGRvZwR0YWNvB2J1cnJpdG8GdTFGMzMwBnUxRjMzMQZ1MUYzMzIGdTFGMzMzBnUxRjMzNAZ1MUYzMzUGdTFGMzM2BnUxRjMzNwZ1MUYzMzgGdTFGMzM5BnUxRjMzQQZ1MUYzM0IGdTFGMzNDBnUxRjMzRAZ1MUYzM0UGdTFGMzNGBnUxRjM0MAZ1MUYzNDEGdTFGMzQyBnUxRjM0MwZ1MUYzNDQGdTFGMzQ1BnUxRjM0NgZ1MUYzNDcGdTFGMzQ4BnUxRjM0OQZ1MUYzNEEGdTFGMzRCBnUxRjM0QwZ1MUYzNEQGdTFGMzRFBnUxRjM0RgZ1MUYzNTAGdTFGMzUxBnUxRjM1MgZ1MUYzNTMGdTFGMzU0BnUxRjM1NQZ1MUYzNTYGdTFGMzU3BnUxRjM1OAZ1MUYzNTkGdTFGMzVBBnUxRjM1QgZ1MUYzNUMGdTFGMzVEBnUxRjM1RQZ1MUYzNUYGdTFGMzYwBnUxRjM2MQZ1MUYzNjIGdTFGMzYzBnUxRjM2NAZ1MUYzNjUGdTFGMzY2BnUxRjM2NwZ1MUYzNjgGdTFGMzY5BnUxRjM2QQZ1MUYzNkIGdTFGMzZDBnUxRjM2RAZ1MUYzNkUGdTFGMzZGBnUxRjM3MAZ1MUYzNzEGdTFGMzcyBnUxRjM3MwZ1MUYzNzQGdTFGMzc1BnUxRjM3NgZ1MUYzNzcGdTFGMzc4BnUxRjM3OQZ1MUYzN0EGdTFGMzdCBnUxRjM3QwZ1MUYzN0QVYm90dGxlV2l0aFBvcHBpbmdDb3JrB3BvcGNvcm4GdTFGMzgwC3dyYXBwZWRHaWZ0BnUxRjM4MgZ1MUYzODMGdTFGMzg0CnNhbnRhQ2xhdXMGdTFGMzg2CHNwYXJrbGVyBnUxRjM4OAZ1MUYzODkGdTFGMzhBBnUxRjM4QgZ1MUYzOEMGdTFGMzhEBnUxRjM4RQZ1MUYzOEYGdTFGMzkwBnUxRjM5MQZ1MUYzOTIGdTFGMzkzBnUxRjM5NgZ1MUYzOTcGdTFGMzk5BnUxRjM5QQZ1MUYzOUIGdTFGMzlFBnUxRjM5RgZ1MUYzQTAGdTFGM0ExBnUxRjNBMgZ1MUYzQTMGdTFGM0E0BnUxRjNBNQZ1MUYzQTYGdTFGM0E3BnUxRjNBOAZ1MUYzQTkGdTFGM0FBBnUxRjNBQgZ1MUYzQUMGdTFGM0FEBnUxRjNBRQZ1MUYzQUYGdTFGM0IwBnUxRjNCMQZ1MUYzQjIGdTFGM0IzBnUxRjNCNAZ1MUYzQjUGdTFGM0I2BnUxRjNCNwZ1MUYzQjgGdTFGM0I5BnUxRjNCQQZ1MUYzQkIGdTFGM0JDBnUxRjNCRAZ1MUYzQkUGdTFGM0JGBnUxRjNDMAZ1MUYzQzEGdTFGM0MyDXBlcnNvblJ1bm5pbmcNcGVyc29uU3VyZmluZwZ1MUYzQzUGdTFGM0M2BnUxRjNDNwZ1MUYzQzgGdTFGM0M5DnBlcnNvblN3aW1taW5nFHBlcnNvbkxpZnRpbmdXZWlnaHRzDXBlcnNvbkdvbGZpbmcKbW90b3JjeWNsZQZ1MUYzQ0URY3JpY2tldEJhdEFuZEJhbGwKdm9sbGV5YmFsbBdmaWVsZEhvY2tleVN0aWNrQW5kQmFsbBJob2NrZXlTdGlja0FuZFB1Y2sYdGFibGVUZW5uaXNQYWRkbGVBbmRCYWxsBnUxRjNENAZ1MUYzRDURYmVhY2hXaXRoVW1icmVsbGEGdTFGM0Q3BmhvdXNlcwZ1MUYzRDkNZGVyZWxpY3RIb3VzZQZ1MUYzREIGdTFGM0RDBnUxRjNERAZ1MUYzREUGdTFGM0RGBWhvdXNlD2hvdXNlV2l0aEdhcmRlbgZ1MUYzRTIGdTFGM0UzCnBvc3RPZmZpY2UGdTFGM0U1BnUxRjNFNgdhdG1TaWduBnUxRjNFOAZ1MUYzRTkGdTFGM0VBBnUxRjNFQgZ1MUYzRUMGdTFGM0VED3JlZFBhcGVyTGFudGVybgZ1MUYzRUYHdW5pMjZFQgd1bmkyNjkwB3VuaTI2OTEGdTFGM0Y1BnUxRjNGNwZ1MUYzRjgGdTFGM0Y5BnUxRjNGQQlza2luVG9uZTEJc2tpblRvbmUyCXNraW5Ub25lMwlza2luVG9uZTQJc2tpblRvbmU1BnUxRjQwMAZ1MUY0MDEGdTFGNDAyBnUxRjQwMwZ1MUY0MDQGdTFGNDA1BnUxRjQwNgZ1MUY0MDcGdTFGNDA4BnUxRjQwOQZ1MUY0MEEGdTFGNDBCBnUxRjQwQwZ1MUY0MEQGdTFGNDBFBnUxRjQwRgZ1MUY0MTAGdTFGNDExBnUxRjQxMgZ1MUY0MTMGdTFGNDE0BnUxRjQxNQZ1MUY0MTYGdTFGNDE3BnUxRjQxOAZ1MUY0MTkGdTFGNDFBBnUxRjQxQgZ1MUY0MUMGdTFGNDFEBnUxRjQxRQZ1MUY0MUYGdTFGNDIwBnUxRjQyMQZ1MUY0MjIGdTFGNDIzBnUxRjQyNAZ1MUY0MjUGdTFGNDI2BnUxRjQyNwZ1MUY0MjgGdTFGNDI5BnUxRjQyQQZ1MUY0MkIGdTFGNDJDBnUxRjQyRAZ1MUY0MkUGdTFGNDJGBnUxRjQzMAZ1MUY0MzEGdTFGNDMyBnUxRjQzMwZ1MUY0MzQGdTFGNDM1BnUxRjQzNgZ1MUY0MzcGdTFGNDM4BnUxRjQzOQZ1MUY0M0EGdTFGNDNCBnUxRjQzQwZ1MUY0M0QGdTFGNDNFBnUxRjQzRgZ1MUY0NDAGdTFGNDQxBnUxRjQ0MgZ1MUY0NDMGdTFGNDQ0BnUxRjQ0NRdiYWNraGFuZEluZGV4UG9pbnRpbmdVcBliYWNraGFuZEluZGV4UG9pbnRpbmdEb3duGWJhY2toYW5kSW5kZXhQb2ludGluZ0xlZnQaYmFja2hhbmRJbmRleFBvaW50aW5nUmlnaHQMb25jb21pbmdGaXN0CndhdmluZ0hhbmQGb2tIYW5kCHRodW1ic1VwCnRodW1ic0Rvd24NY2xhcHBpbmdIYW5kcwlvcGVuSGFuZHMGdTFGNDUxBnUxRjQ1MgZ1MUY0NTMGdTFGNDU0BnUxRjQ1NQZ1MUY0NTYGdTFGNDU3BnUxRjQ1OAZ1MUY0NTkGdTFGNDVBBnUxRjQ1QgZ1MUY0NUMGdTFGNDVEBnUxRjQ1RQZ1MUY0NUYGdTFGNDYwBnUxRjQ2MQp3b21hbnNCb290BnUxRjQ2MwZ1MUY0NjQGdTFGNDY1BnUxRjQ2NgZ1MUY0NjcGdTFGNDY4BnUxRjQ2OQZ1MUY0NkEXd29tZW5BbmRNZW5Ib2xkaW5nSGFuZHMPbWVuSG9sZGluZ0hhbmRzEXdvbWVuSG9sZGluZ0hhbmRzBnUxRjQ2RRNwZW9wbGVXaXRoQnVubnlFYXJzDHBlcnNvbkluVmVpbBRwZXJzb25XaXRoQmxvbmRlSGFpchJwZXJzb25XaXRoU2t1bGxjYXATcGVyc29uV2VhcmluZ1R1cmJhbgZ1MUY0NzQGdTFGNDc1BnUxRjQ3NgZ1MUY0NzcGdTFGOTM0BnUxRjQ3OQZ1MUY0N0EGdTFGNDdCBnUxRjQ3QwZ1MUY0N0QGdTFGNDdFBnUxRjQ3RgZ1MUY0ODARcGVyc29uVGlwcGluZ0hhbmQFZ3VhcmQMd29tYW5EYW5jaW5nBnUxRjQ4NAZ1MUY0ODUUcGVyc29uR2V0dGluZ01hc3NhZ2UUcGVyc29uR2V0dGluZ0hhaXJjdXQGdTFGNDg4BnUxRjQ4OQZ1MUY0OEEGdTFGNDhCCmxvdmVMZXR0ZXIGdTFGNDhEBnUxRjQ4RQZ1MUY0OEYGdTFGNDkwD2NvdXBsZVdpdGhIZWFydAZ1MUY0OTIGdTFGNDkzBnUxRjQ5NAZ1MUY0OTUGdTFGNDk2BnUxRjQ5NwZ1MUY0OTgGdTFGNDk5BnUxRjQ5QQZ1MUY0OUIGdTFGNDlDBnUxRjQ5RAZ1MUY0OUUGdTFGNDlGDmRpYW1vbmRXaXRoRG90CWxpZ2h0QnVsYgp1MUY0QTIuYWx0BnUxRjRBMwN6enoJY29sbGlzaW9uDXN3ZWF0RHJvcGxldHMGdTFGNEE3C2Rhc2hpbmdBd2F5BnUxRjRBOQZ1MUY0QUEFZGl6enkGdTFGNEFDDXRob3VnaHRCdWJibGUGdTFGNEFFDWh1bmRyZWRQb2ludHMGdTFGNEIwBnUxRjRCMQZ1MUY0QjIGdTFGNEIzC3llbkJhbmtub3RlDmRvbGxhckJhbmtub3RlDGV1cm9CYW5rbm90ZQ1wb3VuZEJhbmtub3RlDm1vbmV5V2l0aFdpbmdzFmNoYXJ0SW5jcmVhc2luZ1dpdGhZZW4GdTFGNEJBBmxhcHRvcAZ1MUY0QkMMY29tcHV0ZXJEaXNrBnUxRjRCRQtvcHRpY2FsRGlzawZ1MUY0QzAGdTFGNEMxBnUxRjRDMgxwYWdlV2l0aEN1cmwGdTFGNEM0BnUxRjRDNQZ1MUY0QzYGdTFGNEM3D2NoYXJ0SW5jcmVhc2luZw9jaGFydERlY3JlYXNpbmcGdTFGNENBBnUxRjRDQgZ1MUY0Q0MGdTFGNENEBnUxRjRDRQZ1MUY0Q0YPdHJpYW5ndWxhclJ1bGFyBnUxRjREMQZ1MUY0RDIGdTFGNEQzG25vdGVib29rV2l0aERlY29yYXRpdmVDb3ZlcgZ1MUY0RDUGdTFGNEQ2BnUxRjRENwZ1MUY0RDgGdTFGNEQ5BnUxRjREQQZ1MUY0REIGdTFGNERDBnUxRjRERAZ1MUY0REUGdTFGNERGBnUxRjRFMAZ1MUY0RTEGdTFGNEUyBnUxRjRFMwZ1MUY0RTQGdTFGNEU1BnUxRjRFNgVlTWFpbAZ1MUY0RTgRZW52ZWxvcGVXaXRoQXJyb3ccY2xvc2VkTWFpbGJveFdpdGhMb3dlcmVkRmxhZxtjbG9zZWRNYWlsYm94V2l0aFJhaXNlZEZsYWcZb3Blbk1haWxib3hXaXRoUmFpc2VkRmxhZxpvcGVuTWFpbGJveFdpdGhMb3dlcmVkRmxhZwZ1MUY0RUUGdTFGNEVGBnUxRjRGMAZ1MUY0RjEUbW9iaWxlUGhvbmVXaXRoQXJyb3cGdTFGNEYzBnUxRjRGNAZ1MUY0RjUGdTFGNEY2BnUxRjRGNw9jYW1lcmFXaXRoRmxhc2gGdTFGNEY5BnUxRjRGQQZ1MUY0RkIGdTFGNEZDBnUxRjRGRAtwcmF5ZXJCZWFkcxNzaHVmZmxlVHJhY2tzQnV0dG9uDHJlcGVhdEJ1dHRvbhJyZXBlYXRTaW5nbGVCdXR0b24XY2xvY2t3aXNlVmVydGljYWxBcnJvd3McY291bnRlcmNsb2Nrd2lzZUFycm93c0J1dHRvbglkaW1CdXR0b24MYnJpZ2h0QnV0dG9uDG11dGVkU3BlYWtlchBzcGVha2VyTG93Vm9sdW1lE3NwZWFrZXJNZWRpdW1Wb2x1bWURc3BlYWtlckhpZ2hWb2x1bWUGdTFGNTBCBnUxRjUwQxltYWduaWZ5aW5nR2xhc3NUaXRsZWRMZWZ0Gm1hZ25pZnlpbmdHbGFzc1RpdGxlZFJpZ2h0DWxvY2tlZFdpdGhQZW4NbG9ja2VkV2l0aEtleQZ1MUY1MTEGbG9ja2VkCHVubG9ja2VkBnUxRjUxNA1iZWxsV2l0aFNsYXNoBnUxRjUxNgRsaW5rBnUxRjUxOAliYWNrQXJyb3cIZW5kQXJyb3cHb25BcnJvdwlzb29uQXJyb3cIdG9wQXJyb3cSbm9PbmVVbmRlckVpZ2h0ZWVuCGtleWNhcDEwE2lucHV0TGF0aW5VcHBlcmNhc2UTaW5wdXRMYXRpbkxvd2VyY2FzZQZ1MUY1MjIGdTFGNTIzBnUxRjUyNAZ1MUY1MjUKZmxhc2hsaWdodAZ1MUY1MjcGdTFGNTI4BnUxRjUyOQVrbmlmZQt3YXRlclBpc3RvbAZ1MUY1MkMGdTFGNTJEBnUxRjUyRRRkb3R0ZWRTaXhQb2ludGVkU3RhcgZ1MUY1MzAGdTFGNTMxBnUxRjUzMgZ1MUY1MzMJcmVkQ2lyY2xlCmJsdWVDaXJjbGUGdTFGNTM2BnUxRjUzNxJzbWFsbE9yYW5nZURpYW1vbmQQc21hbGxCbHVlRGlhbW9uZBRyZWRUcmlhbmdsZVBvaW50ZWRVcBZyZWRUcmlhbmdsZVBvaW50ZWREb3duDXVwd2FyZHNCdXR0b24PZG93bndhcmRzQnV0dG9uAm9tBGRvdmUFa2FhYmEGbW9zcXVlCXN5bmFnb2d1ZQdtZW5vcmFoCW9uZU9DbG9jawl0d29PQ2xvY2sLdGhyZWVPQ2xvY2sKZm91ck9DbG9jawpmaXZlT0Nsb2NrCXNpeE9DbG9jawtzZXZlbk9DbG9jawtlaWdodE9DbG9jawpuaW5lT0Nsb2NrCXRlbk9DbG9jawxlbGV2ZW5PQ2xvY2sMdHdlbHZlT0Nsb2NrCW9uZVRoaXJ0eQl0d29UaGlydHkLdGhyZWVUaGlydHkKZm91clRoaXJ0eQpmaXZlVGhpcnR5CXNpeFRoaXJ0eQtzZXZlblRoaXJ0eQtlaWdodFRoaXJ0eQpuaW5lVGhpcnR5CXRlblRoaXJ0eQxlbGV2ZW5UaGlydHkMdHdlbHZlVGhpcnR5BnUxRjU2RgZ1MUY1NzAKdTFGNTczLmFsdBZwZXJzb25JblN1aXRMZXZpdGF0aW5nCWRldGVjdGl2ZQZ1MUY1NzYGdTFGNTc3BnUxRjU3OAZ1MUY1NzkKbWFuRGFuY2luZwZ1MUY1ODcDcGVuC2ZvdW50YWluUGVuCnBhaW50YnJ1c2gGY3JheW9uFmhhbmRXaXRoRmluZ2Vyc1NwbGF5ZWQMbWlkZGxlRmluZ2VyDHZ1bGNhblNhbHV0ZQpibGFja0hlYXJ0BnUxRjVBNQZ1MUY1QTgNY29tcHV0ZXJNb3VzZQZ1MUY1QjINZnJhbWVkUGljdHVyZQZ1MUY1QzIGdTFGNUMzBnUxRjVDNAZ1MUY1RDEOc3BpcmFsTm90ZWJvb2sOc3BpcmFsQ2FsZW5kYXIFY2xhbXAGdTFGNUREBnUxRjVERQxzcGVha2luZ0hlYWQGdTFGNUU4BnUxRjVFRgZ1MUY1RjMGdTFGNUZBBnUxRjVGQgZ1MUY1RkMGdTFGNUZECm1hcE9mSmFwYW4EbW9haQZ1MUY2MDAGdTFGNjAxBnUxRjYwMhdncmlubmluZ0ZhY2VXaXRoQmlnRXllcwZ1MUY2MDQGdTFGNjA1BnUxRjYwNgZ1MUY2MDcGdTFGNjA4BnUxRjYwOQZ1MUY2MEEGdTFGNjBCBnUxRjYwQwZ1MUY2MEQGdTFGNjBFBnUxRjYwRgZ1MUY2MTAGdTFGNjExBnUxRjYxMgZ1MUY2MTMGdTFGNjE0BnUxRjYxNQZ1MUY2MTYGdTFGNjE3BnUxRjYxOAZ1MUY2MTkGdTFGNjFBBnUxRjYxQgZ1MUY2MUMGdTFGNjFEBnUxRjYxRQZ1MUY2MUYGdTFGNjIwBnUxRjYyMQZ1MUY2MjIGdTFGNjIzBnUxRjYyNAZ1MUY2MjUGdTFGNjI2BnUxRjYyNwZ1MUY2MjgGdTFGNjI5BnUxRjYyQQZ1MUY2MkIGdTFGNjJDBnUxRjYyRAZ1MUY2MkUGdTFGNjJGBnUxRjYzMAZ1MUY2MzEGdTFGNjMyBnUxRjYzMwZ1MUY2MzQGdTFGNjM1BnUxRjYzNgZ1MUY2MzcGdTFGNjM4BnUxRjYzOQZ1MUY2M0EGdTFGNjNCGnNtaWxpbmdDYXRGYWNlV2l0aFdyeVNtaWxlHHNtaWxpbmdDYXRGYWNlV2l0aENsb3NlZEV5ZXMGdTFGNjNFBnUxRjYzRgZ1MUY2NDAGdTFGNjQxBnUxRjY0Mg51cHNpZGVEb3duRmFjZRNmYWNlV2l0aFJvbGxpbmdFeWVzEXBlcnNvbkdlc3R1cmluZ05vEXBlcnNvbkdlc3R1cmluZ09rDHBlcnNvbkJvd2luZwZ1MUY2NDgGdTFGNjQ5BnUxRjY0QRFwZXJzb25SYWlzaW5nSGFuZAxyYWlzaW5nSGFuZHMGdTFGNjREDXBlcnNvblBvdXRpbmcLZm9sZGVkSGFuZHMGdTFGNjgwBnUxRjY4MQpsb2NvbW90aXZlBnUxRjY4MwZ1MUY2ODQLYnVsbGV0VHJhaW4GdTFGNjg2BnUxRjY4NwZ1MUY2ODgGdTFGNjg5BnUxRjY4QQZ1MUY2OEIGdTFGNjhDBnUxRjY4RAZ1MUY2OEUGdTFGNjhGBnUxRjY5MAZ1MUY2OTEGdTFGNjkyBnUxRjY5MwZ1MUY2OTQGdTFGNjk1BnUxRjY5NgZ1MUY2OTcGdTFGNjk4E3Nwb3J0VXRpbGl0eVZlaGljbGUGdTFGNjlBBnUxRjY5QgZ1MUY2OUMGdTFGNjlEBnUxRjY5RQZ1MUY2OUYGdTFGNkEwBnUxRjZBMQZ1MUY2QTIQcGVyc29uUm93aW5nQm9hdAZ1MUY2QTQGdTFGNkE1BnUxRjZBNgxjb25zdHJ1Y3Rpb24OcG9saWNlQ2FyTGlnaHQOdHJpYW5ndWxhckZsYWcGdTFGNkFBCnByb2hpYml0ZWQJY2lnYXJldHRlCW5vU21va2luZw9saXR0ZXJJbkJpblNpZ24Lbm9MaXR0ZXJpbmcMcG90YWJsZVdhdGVyD25vblBvdGFibGVXYXRlcgZ1MUY2QjIGdTFGNkIzDHBlcnNvbkJpa2luZxRwZXJzb25Nb3VudGFpbkJpa2luZw1wZXJzb25XYWxraW5nBnUxRjZCNwZ1MUY2QjgIbWVuU1Jvb20Kd29tZW5TUm9vbQZ1MUY2QkIGdTFGNkJDBnUxRjZCRAZ1MUY2QkUGdTFGNkJGEHBlcnNvblRha2luZ0JhdGgGdTFGNkMxBnUxRjZDMgZ1MUY2QzMGdTFGNkM0BnUxRjZDNQZ1MUY2Q0ILcGVyc29uSW5CZWQGdTFGNkNEBnUxRjZDRQZ1MUY2Q0YOcGxhY2VPZldvcnNoaXAIc3RvcFNpZ24Mc2hvcHBpbmdDYXJ0C2hpbmR1VGVtcGxlA2h1dAhlbGV2YXRvcgh3aXJlbGVzcw9wbGF5Z3JvdW5kU2xpZGUFd2hlZWwIcmluZ0J1b3kGdTFGNkUwBnUxRjZFMQZ1MUY2RTIGdTFGNkUzBnUxRjZFNAZ1MUY2RTUNc21hbGxBaXJwbGFuZQZ1MUY2RUIPYWlycGxhbmVBcnJpdmFsBnUxRjZGMAZ1MUY2RjMLa2lja1Njb290ZXIMbW90b3JTY29vdGVyBWNhbm9lBHNsZWQMZmx5aW5nU2F1Y2VyCnNrYXRlYm9hcmQMYXV0b1JpY2tzaGF3C3BpY2t1cFRydWNrC3JvbGxlclNrYXRlDG9yYW5nZUNpcmNsZQx5ZWxsb3dDaXJjbGULZ3JlZW5DaXJjbGUMcHVycGxlQ2lyY2xlC2Jyb3duQ2lyY2xlCXJlZFNxdWFyZQpibHVlU3F1YXJlDG9yYW5nZVNxdWFyZQx5ZWxsb3dTcXVhcmULZ3JlZW5TcXVhcmUMcHVycGxlU3F1YXJlC2Jyb3duU3F1YXJlD2hlYXZ5RXF1YWxzU2lnbg5waW5jaGVkRmluZ2Vycwp3aGl0ZUhlYXJ0CmJyb3duSGVhcnQMcGluY2hpbmdIYW5kBnUxRjkxMAZ1MUY5MTEGdTFGOTEyBnUxRjkxMwZ1MUY5MTQGdTFGOTE1BnUxRjkxNgZ1MUY5MTcGdTFGOTE4BnUxRjkxOQZ1MUY5MUEGdTFGOTFCBnUxRjkxQwZ1MUY5MUQOY3Jvc3NlZEZpbmdlcnMGdTFGOTFGBnUxRjkyMAZ1MUY5MjEGdTFGOTIyBnUxRjkyMwZ1MUY5MjQGdTFGOTI1EXBlcnNvbkZhY2VwYWxtaW5nBnUxRjkyNwZ1MUY5MjgGdTFGOTI5JmdyaW5uaW5nRmFjZVdpdGhPbmVMYXJnZUFuZE9uZVNtYWxsRXllBnUxRjkyQgZ1MUY5MkMGdTFGOTJEBnUxRjkyRQZ1MUY5MkYGdTFGOTMwBnUxRjkzMQZ1MUY5MzIGdTFGOTMzBnUxRjQ3OA5wZXJzb25JblR1eGVkbwhtcnNDbGF1cw9wZXJzb25TaHJ1Z2dpbmcScGVyc29uQ2FydHdoZWVsaW5nDnBlcnNvbkp1Z2dsaW5nBnUxRjkzQQ9wZW9wbGVXcmVzdGxpbmcWcGVyc29uUGxheWluZ1dhdGVyUG9sbxVwZXJzb25QbGF5aW5nSGFuZGJhbGwKZGl2aW5nTWFzawZ1MUY5NDAGdTFGOTQxBnUxRjk0MgZ1MUY5NDMGdTFGOTQ0BnUxRjk0NQZ1MUY5NDcGdTFGOTQ4BnUxRjk0OQZ1MUY5NEEGdTFGOTRCBnUxRjk0QxRsYWNyb3NzZVN0aWNrQW5kQmFsbAhzb2Z0YmFsbApmbHlpbmdEaXNrBnUxRjk1MAZ1MUY5NTEGdTFGOTUyBnUxRjk1MwZ1MUY5NTQGdTFGOTU1BnUxRjk1NgZ1MUY5NTcGdTFGOTU4BnUxRjk1OQZ1MUY5NUEGdTFGOTVCBnUxRjk1QwZ1MUY5NUQGdTFGOTVFBnUxRjk1RgZ1MUY5NjAGdTFGOTYxBnUxRjk2MgZ1MUY5NjMGdTFGOTY0BnUxRjk2NQZ1MUY5NjYGdTFGOTY3BnUxRjk2OAZ1MUY5NjkGdTFGOTZBBnUxRjk2QgpsZWFmeUdyZWVuBW1hbmdvCG1vb25DYWtlBWJhZ2VsKHNtaWxpbmdGYWNlV2l0aFNtaWxpbmdFeWVzQW5kVGhyZWVIZWFydHMLeWF3bmluZ0ZhY2UTc21pbGluZ0ZhY2VXaXRoVGVhchxmYWNlV2l0aFBhcnR5SG9ybkFuZFBhcnR5SGF0HmZhY2VXaXRoVW5ldmVuRXllc0FuZFdhdnlNb3V0aA5vdmVyaGVhdGVkRmFjZQxmcmVlemluZ0ZhY2UFbmluamENZGlzZ3Vpc2VkRmFjZRRmYWNlSG9sZGluZ0JhY2tUZWFycxRmYWNlV2l0aFBsZWFkaW5nRXllcwRzYXJpB2xhYkNvYXQHZ29nZ2xlcwpoaWtpbmdCb290CGZsYXRTaG9lBnUxRjk4MAZ1MUY5ODEGdTFGOTgyBnUxRjk4MwZ1MUY5ODQGdTFGOTg1BnUxRjk4NgZ1MUY5ODcGdTFGOTg4BnUxRjk4OQZ1MUY5OEEGdTFGOThCBnUxRjk4QwZ1MUY5OEQGdTFGOThFBnUxRjk4RgZ1MUY5OTAGdTFGOTkxBnUxRjk5MgZ1MUY5OTMGdTFGOTk0BnUxRjk5NQZ1MUY5OTYGdTFGOTk3CGthbmdhcm9vBWxsYW1hB3BlYWNvY2sMaGlwcG9wb3RhbXVzBnBhcnJvdAdyYWNjb29uB2xvYnN0ZXIIbW9zcXVpdG8HbWljcm9iZQZiYWRnZXIEc3dhbgdtYW1tb3RoBGRvZG8Fc2xvdGgFb3R0ZXIJb3Jhbmd1dGFuBXNrdW5rCGZsYW1pbmdvBm95c3RlcgZiZWF2ZXIFYmlzb24Ec2VhbAhndWlkZURvZwl3aGl0ZUNhbmUVZW1vamlDb21wb25lbnRSZWRIYWlyF2Vtb2ppQ29tcG9uZW50Q3VybHlIYWlyEmVtb2ppQ29tcG9uZW50QmFsZBdlbW9qaUNvbXBvbmVudFdoaXRlSGFpcgRib25lA2xlZwRmb290BXRvb3RoCXN1cGVyaGVybwxzdXBlcnZpbGxhaW4Kc2FmZXR5VmVzdBFlYXJXaXRoSGVhcmluZ0FpZBNtb3Rvcml6ZWRXaGVlbGNoYWlyEG1hbnVhbFdoZWVsY2hhaXINbWVjaGFuaWNhbEFybQ1tZWNoYW5pY2FsTGVnBnUxRjlDMAdjdXBjYWtlCnNhbHRTaGFrZXILYmV2ZXJhZ2VCb3gGZ2FybGljBW9uaW9uB2ZhbGFmZWwGd2FmZmxlBmJ1dHRlcgltYXRlRHJpbmsHaWNlQ3ViZQlidWJibGVUZWEFdHJvbGwOcGVyc29uU3RhbmRpbmcOcGVyc29uS25lZWxpbmcKZGVhZlBlcnNvbgZ1MUY5RDAGcGVyc29uBnUxRjlEMgZ1MUY5RDMGdTFGOUQ0EndvbWFuV2l0aEhlYWRzY2FyZgZ1MUY5RDYGdTFGOUQ3BnUxRjlEOAZ1MUY5RDkGdTFGOURBBnUxRjlEQgZ1MUY5REMGdTFGOUREBnUxRjlERQZ1MUY5REYGdTFGOUUwBnUxRjlFMQZ1MUY5RTIGdTFGOUUzBnUxRjlFNAZ1MUY5RTUGdTFGOUU2C3JlZEVudmVsb3BlC2ZpcmVjcmFja2VyC3B1enpsZVBpZWNlCHRlc3RUdWJlCXBldHJpRGlzaANkbmEFc3VuLjEGYWJhY3VzEGZpcmVFeHRpbmd1aXNoZXIHdG9vbGJveAVicmljawZtYWduZXQHbHVnZ2FnZQxsb3Rpb25Cb3R0bGUGdGhyZWFkBHlhcm4Jc2FmZXR5UGluCXRlZGR5QmVhcgVicm9vbQZiYXNrZXQLcm9sbE9mUGFwZXIEc29hcAZzcG9uZ2UHcmVjZWlwdAtuYXphckFtdWxldAtiYWxsZXRTaG9lcxBvbmVQaWVjZVN3aW1zdWl0BmJyaWVmcwZzaG9ydHMLdGhvbmdTYW5kYWwObGlnaHRCbHVlSGVhcnQJZ3JleUhlYXJ0CXBpbmtIZWFydAtkcm9wT2ZCbG9vZA9hZGhlc2l2ZUJhbmRhZ2ULc3RldGhvc2NvcGUEeFJheQZjcnV0Y2gEeW9ZbwRraXRlCXBhcmFjaHV0ZQlib29tZXJhbmcJbWFnaWNXYW5kBnBpbmF0YQxuZXN0aW5nRG9sbHMHbWFyYWNhcwVmbHV0ZQxyaW5nZWRQbGFuZXQFY2hhaXIFcmF6b3IDYXhlCGRpeWFMYW1wBWJhbmpvDm1pbGl0YXJ5SGVsbWV0CWFjY29yZGlhbghsb25nRHJ1bQRjb2luDGNhcnBlbnRyeVNhdwtzY3Jld2RyaXZlcgZsYWRkZXIEaG9vawZtaXJyb3IGd2luZG93B3BsdW5nZXIMc2V3aW5nTmVlZGxlBGtub3QGYnVja2V0CW1vdXNlVHJhcAp0b290aGJydXNoCWhlYWRzdG9uZQdwbGFjYXJkBHJvY2sKbWlycm9yQmFsbBJpZGVudGlmaWNhdGlvbkNhcmQKbG93QmF0dGVyeQVoYW1zYQ5mb2xkaW5nSGFuZEZhbghoYWlyUGljawZraGFuZGEDZmx5BHdvcm0GYmVldGxlCWNvY2tyb2FjaAtwb3R0ZWRQbGFudAR3b29kB2ZlYXRoZXIFbG90dXMFY29yYWwJZW1wdHlOZXN0DG5lc3RXaXRoRWdncwhoeWFjaW50aAlqZWxseUZpc2gEd2luZwVnb29zZQ9hbmF0b21pY2FsSGVhcnQFbHVuZ3MNcGVvcGxlSHVnZ2luZwtwcmVnbmFudE1hbg5wcmVnbmFudFBlcnNvbg9wZXJzb25XaXRoQ3Jvd24FbW9vc2UGZG9ua2V5C2JsdWViZXJyaWVzCmJlbGxQZXBwZXIFb2xpdmUJZmxhdEJyZWFkBnRhbWFsZQZmb25kdWUGdGVhcG90DXBvdXJpbmdMaXF1aWQFYmVhbnMDamFyCmdpbmdlclJvb3QGcGVhUG9kC21lbHRpbmdGYWNlDHNhbHV0aW5nRmFjZSBmYWNlV2l0aE9wZW5FeWVzQW5kSGFuZE92ZXJNb3V0aBJmYWNlV2l0aFBlZWtpbmdFeWUVZmFjZVdpdGhEaWFnb25hbE1vdXRoDmRvdHRlZExpbmVGYWNlCWJpdGluZ0xpcAdidWJibGVzC3NoYWtpbmdGYWNlImhhbmRXaXRoSW5kZXhGaW5nZXJBbmRUaHVtYkNyb3NzZWQOcmlnaHR3YXJkc0hhbmQNbGVmdHdhcmRzSGFuZAxwYWxtRG93bkhhbmQKcGFsbVVwSGFuZBhpbmRleFBvaW50aW5nQXRUaGVWaWV3ZXIKaGVhcnRIYW5kcxRsZWZ0d2FyZHNQdXNoaW5nSGFuZBVyaWdodHdhcmRzUHVzaGluZ0hhbmQIemVyby50YWcHb25lLnRhZwd0d28udGFnCXRocmVlLnRhZwhmb3VyLnRhZwhmaXZlLnRhZwdzaXgudGFnCXNldmVuLnRhZwllaWdodC50YWcIbmluZS50YWcFYS50YWcFYi50YWcFYy50YWcFZC50YWcFZS50YWcFZi50YWcFZy50YWcFaC50YWcFaS50YWcFai50YWcFay50YWcFbC50YWcFbS50YWcFbi50YWcFby50YWcFcC50YWcFcS50YWcFci50YWcFcy50YWcFdC50YWcFdS50YWcFdi50YWcFdy50YWcFeC50YWcFeS50YWcFei50YWcKY2FuY2VsLnRhZwlmbGFnSmFwYW4QZmxhZ1VuaXRlZFN0YXRlcwpmbGFnRnJhbmNlC2ZsYWdHZXJtYW55CWZsYWdJdGFseRBmbGFnR3JlYXRCcml0YWluCWZsYWdTcGFpbgpmbGFnUnVzc2lhCWZsYWdDaGluYQ5mbGFnU291dGhLb3JlYQtrZXljYXBfaGFzaAdrZXljYXAxB2tleWNhcDIHa2V5Y2FwMwdrZXljYXA0B2tleWNhcDUHa2V5Y2FwNgdrZXljYXA3B2tleWNhcDgHa2V5Y2FwOQdrZXljYXAwCWJsYWNrQmlyZBFleWVJblNwZWVjaEJ1YmJsZQtoZWFydE9uRmlyZQxtZW5kaW5nSGVhcnQGYXJ0aXN0CWFzdHJvbmF1dARjb29rDWZhY3RvcnlXb3JrZXIGZmFybWVyC2ZpcmVmaWdodGVyDGhlYWx0aFdvcmtlcgVqdWRnZQhtZWNoYW5pYxBtZW5XaXRoQnVubnlFYXJzDG9mZmljZVdvcmtlchFwZXJzb25GZWVkaW5nQmFieRhwZXJzb25Jbk1hbnVhbFdoZWVsY2hhaXIbcGVyc29uSW5Nb3Rvcml6ZWRXaGVlbGNoYWlyE3BlcnNvbldpdGhXaGl0ZUNhbmUFcGlsb3QJc2NpZW50aXN0BnNpbmdlcgdzdHVkZW50B3RlYWNoZXIMdGVjaG5vbG9naXN0EndvbWVuV2l0aEJ1bm55RWFycwhibGFja0NhdA1wb2xhckJlYXJGYWNlCnNlcnZpY2VEb2cMZmFjZUV4aGFsaW5nDGZhY2VJbkNsb3VkcxJmYWNlV2l0aFNwaXJhbEV5ZXMRZmFtaWx5X2JveV9jZW50ZXIPZmFtaWx5X2JveV9sZWZ0EGZhbWlseV9ib3lfcmlnaHQSZmFtaWx5X2dpcmxfY2VudGVyEGZhbWlseV9naXJsX2xlZnQRZmFtaWx5X2dpcmxfcmlnaHQNdTFGNDZBX3UxRjQ2OA9mYW1pbHlfbWFuX2xlZnQQZmFtaWx5X21hbl9yaWdodA11MUY0NkFfdTFGNDY5DGZhbWlseU1hbkJveQ9mYW1pbHlNYW5Cb3lCb3kNZmFtaWx5TWFuR2lybBBmYW1pbHlNYW5HaXJsQm95EWZhbWlseU1hbkdpcmxHaXJsD2ZhbWlseU1hbk1hbkJveRJmYW1pbHlNYW5NYW5Cb3lCb3kQZmFtaWx5TWFuTWFuR2lybBNmYW1pbHlNYW5NYW5HaXJsQm95FGZhbWlseU1hbk1hbkdpcmxHaXJsEWZhbWlseU1hbldvbWFuQm95FGZhbWlseU1hbldvbWFuQm95Qm95EmZhbWlseU1hbldvbWFuR2lybBVmYW1pbHlNYW5Xb21hbkdpcmxCb3kWZmFtaWx5TWFuV29tYW5HaXJsR2lybA5mYW1pbHlXb21hbkJveRFmYW1pbHlXb21hbkJveUJveQ9mYW1pbHlXb21hbkdpcmwSZmFtaWx5V29tYW5HaXJsQm95E2ZhbWlseVdvbWFuR2lybEdpcmwTZmFtaWx5V29tYW5Xb21hbkJveRZmYW1pbHlXb21hbldvbWFuQm95Qm95FGZhbWlseVdvbWFuV29tYW5HaXJsF2ZhbWlseVdvbWFuV29tYW5HaXJsQm95GGZhbWlseVdvbWFuV29tYW5HaXJsR2lybAxtYW5XaXRoQmVhcmQRbWFuV2l0aEJsb25kZUhhaXIObWFuV2l0aFJlZEhhaXIQbWFuV2l0aFdoaXRlSGFpchJwZW9wbGVIb2xkaW5nSGFuZHMKcGVyc29uQmFsZBNwZXJzb25XaXRoQ3VybHlIYWlyEXBlcnNvbldpdGhSZWRIYWlyE3BlcnNvbldpdGhXaGl0ZUhhaXIOd29tYW5XaXRoQmVhcmQTd29tYW5XaXRoQmxvbmRlSGFpchB3b21hbldpdGhSZWRIYWlyEndvbWFuV2l0aFdoaXRlSGFpcg9rZXljYXBfYXN0ZXJpc2sGQS5kb3duBkIuZG93bgZDLmRvd24GRC5kb3duBkUuZG93bgZGLmRvd24GRy5kb3duBkguZG93bgZJLmRvd24GSi5kb3duBksuZG93bgZMLmRvd24GTS5kb3duBk4uZG93bgZPLmRvd24GUC5kb3duBlEuZG93bgZSLmRvd24GUy5kb3duBlQuZG93bgZVLmRvd24GVi5kb3duBlcuZG93bgZYLmRvd24GWS5kb3duBlouZG93bgRBLnVwBEIudXAEQy51cARELnVwBEUudXAERi51cARHLnVwBEgudXAESS51cARKLnVwBEsudXAETC51cARNLnVwBE4udXAETy51cARQLnVwBFEudXAEUi51cARTLnVwBFQudXAEVS51cARWLnVwBFcudXAEWC51cARZLnVwBFoudXAPZmxhZ0FmZ2hhbmlzdGFuC2ZsYWdBbGJhbmlhC2ZsYWdBbGdlcmlhEWZsYWdBbWVyaWNhblNhbW9hC2ZsYWdBbmRvcnJhCmZsYWdBbmdvbGEMZmxhZ0FuZ3VpbGxhDmZsYWdBbnRhcmN0aWNhEmZsYWdBbnRpZ3VhQmFyYnVkYQ1mbGFnQXJnZW50aW5hC2ZsYWdBcm1lbmlhCWZsYWdBcnViYRNmbGFnQXNjZW5zaW9uSXNsYW5kDWZsYWdBdXN0cmFsaWELZmxhZ0F1c3RyaWEPZmxhZ2xhbmRJc2xhbmRzDmZsYWdBemVyYmFpamFuC2ZsYWdCYWhhbWFzC2ZsYWdCYWhyYWluDmZsYWdCYW5nbGFkZXNoDGZsYWdCYXJiYWRvcwtmbGFnQmVsYXJ1cwtmbGFnQmVsZ2l1bQpmbGFnQmVsaXplCWZsYWdCZW5pbg9mbGFnU3RCYXJ0aGxlbXkLZmxhZ0Jlcm11ZGEKZmxhZ0JodXRhbgtmbGFnQm9saXZpYRVmbGFnQm9zbmlhSGVyemVnb3ZpbmEMZmxhZ0JvdHN3YW5hEGZsYWdCb3V2ZXRJc2xhbmQKZmxhZ0JyYXppbBhmbGFnQnJpdGlzaFZpcmdpbklzbGFuZHMKZmxhZ0JydW5laQxmbGFnQnVsZ2FyaWEPZmxhZ0J1cmtpbmFGYXNvC2ZsYWdCdXJ1bmRpDGZsYWdDYW1ib2RpYQxmbGFnQ2FtZXJvb24KZmxhZ0NhbmFkYQ5mbGFnQ3RlREl2b2lyZRFmbGFnQ2FuYXJ5SXNsYW5kcw1mbGFnQ2FwZVZlcmRlCmZsYWdDdXJhYW8YZmxhZ0NhcmliYmVhbk5ldGhlcmxhbmRzEWZsYWdDYXltYW5Jc2xhbmRzGmZsYWdDZW50cmFsQWZyaWNhblJlcHVibGljEGZsYWdDZXV0YU1lbGlsbGEIZmxhZ0NoYWQJZmxhZ0NoaWxlE2ZsYWdDaHJpc3RtYXNJc2xhbmQUZmxhZ0NsaXBwZXJ0b25Jc2xhbmQXZmxhZ0NvY29zS2VlbGluZ0lzbGFuZHMMZmxhZ0NvbG9tYmlhC2ZsYWdDb21vcm9zFGZsYWdDb25nb0JyYXp6YXZpbGxlEWZsYWdDb25nb0tpbnNoYXNhD2ZsYWdDb29rSXNsYW5kcw1mbGFnQ29zdGFSaWNhC2ZsYWdDcm9hdGlhCGZsYWdDdWJhCmZsYWdDeXBydXMLZmxhZ0N6ZWNoaWELZmxhZ0Rlbm1hcmsPZmxhZ0RpZWdvR2FyY2lhDGZsYWdEamlib3V0aQxmbGFnRG9taW5pY2EVZmxhZ0RvbWluaWNhblJlcHVibGljC2ZsYWdFY3VhZG9yCWZsYWdFZ3lwdA5mbGFnRWxTYWx2YWRvcgtmbGFnRW5nbGFuZBRmbGFnRXF1YXRvcmlhbEd1aW5lYQtmbGFnRXJpdHJlYQtmbGFnRXN0b25pYQxmbGFnRXN3YXRpbmkMZmxhZ0V0aGlvcGlhEWZsYWdFdXJvcGVhblVuaW9uE2ZsYWdGYWxrbGFuZElzbGFuZHMQZmxhZ0Zhcm9lSXNsYW5kcwhmbGFnRmlqaQtmbGFnRmlubGFuZBBmbGFnRnJlbmNoR3VpYW5hE2ZsYWdGcmVuY2hQb2x5bmVzaWEdZmxhZ0ZyZW5jaFNvdXRoZXJuVGVycml0b3JpZXMJZmxhZ0dhYm9uCmZsYWdHYW1iaWELZmxhZ0dlb3JnaWEJZmxhZ0doYW5hDWZsYWdHaWJyYWx0YXIKZmxhZ0dyZWVjZQ1mbGFnR3JlZW5sYW5kC2ZsYWdHcmVuYWRhDmZsYWdHdWFkZWxvdXBlCGZsYWdHdWFtDWZsYWdHdWF0ZW1hbGEMZmxhZ0d1ZXJuc2V5CmZsYWdHdWluZWEQZmxhZ0d1aW5lYUJpc3NhdQpmbGFnR3V5YW5hCWZsYWdIYWl0aQxmbGFnSG9uZHVyYXMUZmxhZ0hvbmdLb25nU2FyQ2hpbmELZmxhZ0h1bmdhcnkLZmxhZ0ljZWxhbmQJZmxhZ0luZGlhDWZsYWdJbmRvbmVzaWEIZmxhZ0lyYW4IZmxhZ0lyYXELZmxhZ0lyZWxhbmQNZmxhZ0lzbGVPZk1hbgpmbGFnSXNyYWVsC2ZsYWdKYW1haWNhCmZsYWdKZXJzZXkKZmxhZ0pvcmRhbg5mbGFnS2F6YWtoc3RhbglmbGFnS2VueWEMZmxhZ0tpcmliYXRpCmZsYWdLb3Nvdm8KZmxhZ0t1d2FpdA5mbGFnS3lyZ3l6c3RhbghmbGFnTGFvcwpmbGFnTGF0dmlhC2ZsYWdMZWJhbm9uC2ZsYWdMZXNvdGhvC2ZsYWdMaWJlcmlhCWZsYWdMaWJ5YRFmbGFnTGllY2h0ZW5zdGVpbg1mbGFnTGl0aHVhbmlhDmZsYWdMdXhlbWJvdXJnEWZsYWdNYWNhb1NhckNoaW5hDmZsYWdNYWRhZ2FzY2FyCmZsYWdNYWxhd2kMZmxhZ01hbGF5c2lhDGZsYWdNYWxkaXZlcwhmbGFnTWFsaQlmbGFnTWFsdGETZmxhZ01hcnNoYWxsSXNsYW5kcw5mbGFnTWFydGluaXF1ZQ5mbGFnTWF1cml0YW5pYQ1mbGFnTWF1cml0aXVzC2ZsYWdNYXlvdHRlCmZsYWdNZXhpY28OZmxhZ01pY3JvbmVzaWELZmxhZ01vbGRvdmEKZmxhZ01vbmFjbwxmbGFnTW9uZ29saWEOZmxhZ01vbnRlbmVncm8OZmxhZ01vbnRzZXJyYXQLZmxhZ01vcm9jY28OZmxhZ01vemFtYmlxdWUQZmxhZ015YW5tYXJCdXJtYQtmbGFnTmFtaWJpYQlmbGFnTmF1cnUJZmxhZ05lcGFsD2ZsYWdOZXRoZXJsYW5kcxBmbGFnTmV3Q2FsZWRvbmlhDmZsYWdOZXdaZWFsYW5kDWZsYWdOaWNhcmFndWEJZmxhZ05pZ2VyC2ZsYWdOaWdlcmlhCGZsYWdOaXVlEWZsYWdOb3Jmb2xrSXNsYW5kDmZsYWdOb3J0aEtvcmVhEmZsYWdOb3J0aE1hY2Vkb25pYRpmbGFnTm9ydGhlcm5NYXJpYW5hSXNsYW5kcwhmbGFnT21hbgxmbGFnUGFraXN0YW4JZmxhZ1BhbGF1GmZsYWdQYWxlc3RpbmlhblRlcnJpdG9yaWVzCmZsYWdQYW5hbWESZmxhZ1BhcHVhTmV3R3VpbmVhDGZsYWdQYXJhZ3VheQhmbGFnUGVydQ9mbGFnUGhpbGlwcGluZXMTZmxhZ1BpdGNhaXJuSXNsYW5kcwpmbGFnUG9sYW5kDGZsYWdQb3J0dWdhbA5mbGFnUHVlcnRvUmljbwlmbGFnUWF0YXIKZmxhZ1J1bmlvbgtmbGFnUm9tYW5pYQpmbGFnUndhbmRhCWZsYWdTYW1vYQ1mbGFnU2FuTWFyaW5vD2ZsYWdTYXVkaUFyYWJpYQxmbGFnU2NvdGxhbmQLZmxhZ1NlbmVnYWwKZmxhZ1NlcmJpYQ5mbGFnU2V5Y2hlbGxlcw9mbGFnU2llcnJhTGVvbmUNZmxhZ1NpbmdhcG9yZQ9mbGFnU2ludE1hYXJ0ZW4MZmxhZ1Nsb3Zha2lhDGZsYWdTbG92ZW5pYRJmbGFnU29sb21vbklzbGFuZHMLZmxhZ1NvbWFsaWEPZmxhZ1NvdXRoQWZyaWNhJGZsYWdTb3V0aEdlb3JnaWFTb3V0aFNhbmR3aWNoSXNsYW5kcw5mbGFnU291dGhTdWRhbhBmbGFnU29Ub21Qcm5jaXBlDGZsYWdTcmlMYW5rYQxmbGFnU3RIZWxlbmEQZmxhZ1N0S2l0dHNOZXZpcwtmbGFnU3RMdWNpYQxmbGFnU3RNYXJ0aW4UZmxhZ1N0UGllcnJlTWlxdWVsb24XZmxhZ1N0VmluY2VudEdyZW5hZGluZXMJZmxhZ1N1ZGFuDGZsYWdTdXJpbmFtZQpmbGFnU3dlZGVuD2ZsYWdTd2l0emVybGFuZAlmbGFnU3lyaWEKZmxhZ1RhaXdhbg5mbGFnVGFqaWtpc3RhbgxmbGFnVGFuemFuaWEMZmxhZ1RoYWlsYW5kDmZsYWdUaW1vckxlc3RlCGZsYWdUb2dvC2ZsYWdUb2tlbGF1CWZsYWdUb25nYRJmbGFnVHJpbmlkYWRUb2JhZ28SZmxhZ1RyaXN0YW5EYUN1bmhhC2ZsYWdUdW5pc2lhCmZsYWdUdXJrZXkQZmxhZ1R1cmttZW5pc3RhbhZmbGFnVHVya3NDYWljb3NJc2xhbmRzCmZsYWdUdXZhbHUVZmxhZ1VTT3V0bHlpbmdJc2xhbmRzE2ZsYWdVU1ZpcmdpbklzbGFuZHMKZmxhZ1VnYW5kYQtmbGFnVWtyYWluZRZmbGFnVW5pdGVkQXJhYkVtaXJhdGVzEWZsYWdVbml0ZWROYXRpb25zC2ZsYWdVcnVndWF5DmZsYWdVemJla2lzdGFuC2ZsYWdWYW51YXR1D2ZsYWdWYXRpY2FuQ2l0eQ1mbGFnVmVuZXp1ZWxhC2ZsYWdWaWV0bmFtCWZsYWdXYWxlcxBmbGFnV2FsbGlzRnV0dW5hEWZsYWdXZXN0ZXJuU2FoYXJhCWZsYWdZZW1lbgpmbGFnWmFtYmlhDGZsYWdaaW1iYWJ3ZQpwaXJhdGVGbGFnC3JhaW5ib3dGbGFnD3RyYW5zZ2VuZGVyRmxhZwhCYXNlZmxhZwt1bmtub3duRmxhZwAAAQAB//8ACgABAAAADAAAAiAAAAACAFgAAQBEAAEARQBFAAIARgCKAAEAiwCLAAIAjACRAAEAkgCVAAIAlgF6AAEBewF7AAIBfAGyAAEBswG1AAIBtgG3AAEBuAG4AAIBuQG6AAEBuwG9AAIBvgIvAAECMAIxAAICMgIzAAECNAI+AAICPwJTAAECVAJXAAICWAJbAAECXAJmAAICZwJpAAECagJqAAICawJuAAECbwJxAAICcgJyAAECcwJ1AAICdgJ8AAECfQJ9AAICfgJ+AAECfwJ/AAICgAKXAAECmAKYAAICmQNLAAEDTANNAAIDTgNRAAEDUgNSAAIDUwNXAAEDWANaAAIDWwO5AAEDugO8AAIDvQO/AAEDwAPEAAIDxQPnAAED6APoAAID6QP4AAED+QP7AAID/AQEAAEEBQQFAAIEBgQLAAEEDAQMAAIEDQQ6AAEEOwQ7AAIEPAQ9AAEEPgQ+AAIEPwRGAAEERwROAAIETwRUAAEEVQRVAAIEVgReAAEEXwRoAAIEaQRpAAEEagRsAAIEbQSjAAEEpASkAAIEpQThAAEE4gTjAAIE5ATkAAEE5QTmAAIE5wTnAAEE6ATqAAIE6wT5AAEE+gT8AAIE/QT9AAEE/gUMAAIFDQV0AAEFdQV3AAIFeAWOAAEFjwWXAAIFmAW8AAEFvQXxAAIF8gX7AAEF/AYiAAIGIwZWAAEGVwdQAAIHUQdRAAEHUgdSAAIABAAAAAIAAAABAAAACgAeADIAAURGTFQACAAEAAAAAP//AAEAAAABY2NtcAAIAAAABAAAAAMABAAFAAYADgAWAB4AJgAuADYABAAAAAEAMAACAAAAAbACAAEAAAABsQ4ABgAAAAGxTgAEAAAAAbF2AAUAAAABsZQAAa4aAN8BxAHOAdgB4gHsAfYCAAIKAhQCHgIoAjICPAJmAnIPshzyHcYemh6mH1wgMCBaIIQgriDYIOQg+iEQIZoiRCLmIyAjaiOcJDYkaCTCJOQlPiWYJlImtCa+JzAnOidkKA4omCjSKQwpHikoKTopVClgKWwqQCsUK+gsMCxaLS4uAi7WLwAvtjBsMJYxTDICMrgzjDRgNHY0uDTENNA03DToNPQ1HjVINXI1nDXGNfA2GjZENm42mDbCNuw3FjgiONxQumhGaHBommjEaXppkGpGavxrJmvcbAZsMGxabRBtOm1kbhpu0G76byRv2nCQcLpw5HDwcRpxJnH6cs5y2nOudIJ0rHVidYx1tnXgdgp2FnYidi52Onbwd6Z4XHkSeTx58nqoetJ7pnx6fTB95n6cf1J/fH+mf9B/+oAkgE6AeICigMyA9oEggUqCAIIqglSCfoKogtKDiIOyhGiFHoXUhoqHQIf2iCCI9InIipyLcIxEjG6MmI1OjgSOEI46jw6P4pCYkU6SBKLWowCjKqPgpAqkwKV2piym4qeYqE6pBKm6qdCp5qnyqhyqRqpwqpqr3K0erUitcq2crcat8AABAAQFxwACABUAAQAEBiIAAgAVAAEABAXRAAIAFQABAAQFyAACABUAAQAEBckAAgAVAAEABAXKAAIAFQABAAQFywACABUAAQAEBcwAAgAVAAEABAXNAAIAFQABAAQFzgACABUAAQAEBc8AAgAVAAEABAXQAAIAFQAFAAwAEgAYAB4AJABFAAIB6QBFAAIB6gBFAAIB6wBFAAIB7ABFAAIB7QABAAQHTgADABIB4wEjAkgCUgJcAmYCcAJ6AoQCjgKYAqICrAK2AsACygLUAt4C6ALyAvwDBgMQAxoDJAMuAzgDQgNMA1YDYANqA3QDfgOIA5IDnAOmA7ADugPEA84D2APiA+wD9gQABAoEFAQeBCgEMgQ8BEYEUARaBGQEbgR4BIIEjASWBKAEqgS0BL4EyATSBNwE5gTwBPoFBAUOBRgFIgUsBTYFQAVKBVQFXgVoBXIFfAWGBZAFmgWkBa4FuAXCBcwF1gXgBeoF9AX+BggGEgYcBiYGMAY6BkQGTgZYBmIGbAZ2BoAGigaUBp4GqAayBrwGxgbQBtoG5AbuBvgHAgcMBxYHIAcqBzQHPgdIB1IHXAdmB3AHegeEB44HmAeiB6wHtgfAB8oH1AfeB+gH8gf8CAYIEAgaCCQILgg4CEIITAhWCGAIagh0CH4IiAiSCJwIpgiwCLoIxAjOCNgI4gjsCPYJAAkKCRQJHgkoCTIJPAlGCVAJWglkCW4JeAmCCYwJlgmgCaoJtAm+CcgJ0gncCeYJ8An6CgQKDgoYCiIKLAo2CkAKSgpUCl4KaApyCnwKhgqQCpoKpAquCrgKwgrMCtYK4ArqCvQK/gsICxILHAsmCzALOgtEC04LWAtiC2wLdguAC4oLlAueC6gLsAu4C8ALyAvQC9gL4AvoC/AL+AwADAgMEAwYDCAMKAwwDDgMQAxIDFAMWAxgDGgMcAx4DIAMiAyQDJgMoAyoDLAMuAzADMgM0AzYDOAM6AzwDPgNAA0IDRANGA0gDSgNMA04BQoABAASBQoB6QUKAAQAEgUKAeoFCgAEABIFCgHrBQoABAASBQoB7AUKAAQAEgUKAe0FCQAEABIFCQHpBQkABAASBQkB6gUJAAQAEgUJAesFCQAEABIFCQHsBQkABAASBQkB7QUIAAQAEgUIAekFCAAEABIFCAHqBQgABAASBQgB6wUIAAQAEgUIAewFCAAEABIFCAHtBQcABAASBQcB6QUHAAQAEgUHAeoFBwAEABIFBwHrBQcABAASBQcB7AUHAAQAEgUHAe0FBgAEABIFBgHpBQYABAASBQYB6gUGAAQAEgUGAesFBgAEABIFBgHsBQYABAASBQYB7QUFAAQAEgUFAekFBQAEABIFBQHqBQUABAASBQUB6wUFAAQAEgUFAewFBQAEABIFBQHtBQQABAASBQQB6QUEAAQAEgUEAeoFBAAEABIFBAHrBQQABAASBQQB7AUEAAQAEgUEAe0FAwAEABIFAwHpBQMABAASBQMB6gUDAAQAEgUDAesFAwAEABIFAwHsBQMABAASBQMB7QUBAAQAEgUBAekFAQAEABIFAQHqBQEABAASBQEB6wUBAAQAEgUBAewFAQAEABIFAQHtBPwABAASBPwB6QT8AAQAEgT8AeoE/AAEABIE/AHrBPwABAASBPwB7AT8AAQAEgT8Ae0E+wAEABIE+wHpBPsABAASBPsB6gT7AAQAEgT7AesE+wAEABIE+wHsBPsABAASBPsB7QT6AAQAEgT6AekE+gAEABIE+gHqBPoABAASBPoB6wT6AAQAEgT6AewE+gAEABIE+gHtBOYABAASBOYB6QTmAAQAEgTmAeoE5gAEABIE5gHrBOYABAASBOYB7ATmAAQAEgTmAe0E5QAEABIE5QHpBOUABAASBOUB6gTlAAQAEgTlAesE5QAEABIE5QHsBOUABAASBOUB7QRsAAQAEgRsAekEbAAEABIEbAHqBGwABAASBGwB6wRsAAQAEgRsAewEbAAEABIEbAHtBGsABAASBGsB6QRrAAQAEgRrAeoEawAEABIEawHrBGsABAASBGsB7ARrAAQAEgRrAe0EagAEABIEagHpBGoABAASBGoB6gRqAAQAEgRqAesEagAEABIEagHsBGoABAASBGoB7QRoAAQAEgRoAekEaAAEABIEaAHqBGgABAASBGgB6wRoAAQAEgRoAewEaAAEABIEaAHtBGcABAASBGcB6QRnAAQAEgRnAeoEZwAEABIEZwHrBGcABAASBGcB7ARnAAQAEgRnAe0EZgAEABIEZgHpBGYABAASBGYB6gRmAAQAEgRmAesEZgAEABIEZgHsBGYABAASBGYB7QRkAAQAEgRkAekEZAAEABIEZAHqBGQABAASBGQB6wRkAAQAEgRkAewEZAAEABIEZAHtBFUABAASBFUB6QRVAAQAEgRVAeoEVQAEABIEVQHrBFUABAASBFUB7ARVAAQAEgRVAe0D+wAEABID+wHpA/sABAASA/sB6gP7AAQAEgP7AesD+wAEABID+wHsA/sABAASA/sB7QP6AAQAEgP6AekD+gAEABID+gHqA/oABAASA/oB6wP6AAQAEgP6AewD+gAEABID+gHtA/kABAASA/kB6QP5AAQAEgP5AeoD+QAEABID+QHrA/kABAASA/kB7AP5AAQAEgP5Ae0D6AAEABID6AHpA+gABAASA+gB6gPoAAQAEgPoAesD6AAEABID6AHsA+gABAASA+gB7QPDAAQAEgPDAekDwwAEABIDwwHqA8MABAASA8MB6wPDAAQAEgPDAewDwwAEABIDwwHtA8IABAASA8IB6QPCAAQAEgPCAeoDwgAEABIDwgHrA8IABAASA8IB7APCAAQAEgPCAe0DwAAEABIDwAHpA8AABAASA8AB6gPAAAQAEgPAAesDwAAEABIDwAHsA8AABAASA8AB7QO8AAQAEgO8AekDvAAEABIDvAHqA7wABAASA7wB6wO8AAQAEgO8AewDvAAEABIDvAHtA7sABAASA7sB6QO7AAQAEgO7AeoDuwAEABIDuwHrA7sABAASA7sB7AO7AAQAEgO7Ae0DugAEABIDugHpA7oABAASA7oB6gO6AAQAEgO6AesDugAEABIDugHsA7oABAASA7oB7QNNAAQAEgNNAekDTQAEABIDTQHqA00ABAASA00B6wNNAAQAEgNNAewDTQAEABIDTQHtAnUABAASAnUB6QJ1AAQAEgJ1AeoCdQAEABICdQHrAnUABAASAnUB7AJ1AAQAEgJ1Ae0CdAAEABICdAHpAnQABAASAnQB6gJ0AAQAEgJ0AesCdAAEABICdAHsAnQABAASAnQB7QJwAAQAEgJwAekCcAAEABICcAHqAnAABAASAnAB6wJwAAQAEgJwAewCcAAEABICcAHtAm8ABAASAm8B6QJvAAQAEgJvAeoCbwAEABICbwHrAm8ABAASAm8B7AJvAAQAEgJvAe0CZQAEABICZQHpAmUABAASAmUB6gJlAAQAEgJlAesCZQAEABICZQHsAmUABAASAmUB7QJhAAQAEgJhAekCYQAEABICYQHqAmEABAASAmEB6wJhAAQAEgJhAewCYQAEABICYQHtAl8ABAASAl8B6QJfAAQAEgJfAeoCXwAEABICXwHrAl8ABAASAl8B7AJfAAQAEgJfAe0CXgAEABICXgHpAl4ABAASAl4B6gJeAAQAEgJeAesCXgAEABICXgHsAl4ABAASAl4B7QJcAAQAEgJcAekCXAAEABICXAHqAlwABAASAlwB6wJcAAQAEgJcAewCXAAEABICXAHtAb0ABAASAb0B6QG9AAQAEgG9AeoBvQAEABIBvQHrAb0ABAASAb0B7AG9AAQAEgG9Ae0BvAAEABIBvAHpAbwABAASAbwB6gG8AAQAEgG8AesBvAAEABIBvAHsAbwABAASAbwB7QG7AAQAEgG7AekBuwAEABIBuwHqAbsABAASAbsB6wG7AAQAEgG7AewBuwAEABIBuwHtAbUABAASAbUB6QG1AAQAEgG1AeoBtQAEABIBtQHrAbUABAASAbUB7AG1AAQAEgG1Ae0BtAAEABIBtAHpAbQABAASAbQB6gG0AAQAEgG0AesBtAAEABIBtAHsAbQABAASAbQB7QCLAAQAEgCLAekAiwAEABIAiwHqAIsABAASAIsB6wCLAAQAEgCLAewAiwAEABIAiwHtA00AAwASA00CXwADABICXwT8AAMAEgT8BQcAAwASBQcFCwADABIFCwP7AAMAEgP7A8IAAwASA8ICXgADABICXgJdAAMAEgJdAnUAAwASAnUEZwADABIEZwUMAAMAEgUMBOYAAwASBOYEawADABIEawJcAAMAEgJcBQQAAwASBQQCdAADABICdAPAAAMAEgPAA/oAAwASA/oFCQADABIFCQG9AAMAEgG9BGYAAwASBGYE+wADABIE+wJwAAMAEgJwBQEAAwASBQEDvAADABIDvAG8AAMAEgG8BQoAAwASBQoD+QADABID+QRqAAMAEgRqAm8AAwASAm8E5QADABIE5QG7AAMAEgG7BGQAAwASBGQDuwADABIDuwUFAAMAEgUFBQgAAwASBQgCZQADABICZQG1AAMAEgG1A+gAAwASA+gFBgADABIFBgT6AAMAEgT6A7oAAwASA7oEaAADABIEaAG0AAMAEgG0AmEAAwASAmEEVQADABIEVQUDAAMAEgUDA8MAAwASA8MEbAADABIEbACLAAMAEgCLASMCSAJSAlwCZgJwAnoChAKOApgCogKsArYCwALKAtQC3gLoAvIC/AMGAxADGgMkAy4DOANCA0wDVgNgA2oDdAN+A4gDkgOcA6YDsAO6A8QDzgPYA+ID7AP2BAAECgQUBB4EKAQyBDwERgRQBFoEZARuBHgEggSMBJYEoASqBLQEvgTIBNIE3ATmBPAE+gUEBQ4FGAUiBSwFNgVABUoFVAVeBWgFcgV8BYYFkAWaBaQFrgW4BcIFzAXWBeAF6gX0Bf4GCAYSBhwGJgYwBjoGRAZOBlgGYgZsBnYGgAaKBpQGngaoBrIGvAbGBtAG2gbkBu4G+AcCBwwHFgcgByoHNAc+B0gHUgdcB2YHcAd6B4QHjgeYB6IHrAe2B8AHygfUB94H6AfyB/wIBggQCBoIJAguCDgIQghMCFYIYAhqCHQIfgiICJIInAimCLAIugjECM4I2AjiCOwI9gkACQoJFAkeCSgJMgk8CUYJUAlaCWQJbgl4CYIJjAmWCaAJqgm0Cb4JyAnSCdwJ5gnwCfoKBAoOChgKIgosCjYKQApKClQKXgpoCnIKfAqGCpAKmgqkCq4KuArCCswK1grgCuoK9Ar+CwgLEgscCyYLMAs6C0QLTgtYC2ILbAt2C4ALiguUC54LqAuwC7gLwAvIC9AL2AvgC+gL8Av4DAAMCAwQDBgMIAwoDDAMOAxADEgMUAxYDGAMaAxwDHgMgAyIDJAMmAygDKgMsAy4DMAMyAzQDNgM4AzoDPAM+A0ADQgNEA0YDSANKA0wDTgFCgAEABIFCgHpBQoABAASBQoB6gUKAAQAEgUKAesFCgAEABIFCgHsBQoABAASBQoB7QUJAAQAEgUJAekFCQAEABIFCQHqBQkABAASBQkB6wUJAAQAEgUJAewFCQAEABIFCQHtBQgABAASBQgB6QUIAAQAEgUIAeoFCAAEABIFCAHrBQgABAASBQgB7AUIAAQAEgUIAe0FBwAEABIFBwHpBQcABAASBQcB6gUHAAQAEgUHAesFBwAEABIFBwHsBQcABAASBQcB7QUGAAQAEgUGAekFBgAEABIFBgHqBQYABAASBQYB6wUGAAQAEgUGAewFBgAEABIFBgHtBQUABAASBQUB6QUFAAQAEgUFAeoFBQAEABIFBQHrBQUABAASBQUB7AUFAAQAEgUFAe0FBAAEABIFBAHpBQQABAASBQQB6gUEAAQAEgUEAesFBAAEABIFBAHsBQQABAASBQQB7QUDAAQAEgUDAekFAwAEABIFAwHqBQMABAASBQMB6wUDAAQAEgUDAewFAwAEABIFAwHtBQEABAASBQEB6QUBAAQAEgUBAeoFAQAEABIFAQHrBQEABAASBQEB7AUBAAQAEgUBAe0E/AAEABIE/AHpBPwABAASBPwB6gT8AAQAEgT8AesE/AAEABIE/AHsBPwABAASBPwB7QT7AAQAEgT7AekE+wAEABIE+wHqBPsABAASBPsB6wT7AAQAEgT7AewE+wAEABIE+wHtBPoABAASBPoB6QT6AAQAEgT6AeoE+gAEABIE+gHrBPoABAASBPoB7AT6AAQAEgT6Ae0E5gAEABIE5gHpBOYABAASBOYB6gTmAAQAEgTmAesE5gAEABIE5gHsBOYABAASBOYB7QTlAAQAEgTlAekE5QAEABIE5QHqBOUABAASBOUB6wTlAAQAEgTlAewE5QAEABIE5QHtBGwABAASBGwB6QRsAAQAEgRsAeoEbAAEABIEbAHrBGwABAASBGwB7ARsAAQAEgRsAe0EawAEABIEawHpBGsABAASBGsB6gRrAAQAEgRrAesEawAEABIEawHsBGsABAASBGsB7QRqAAQAEgRqAekEagAEABIEagHqBGoABAASBGoB6wRqAAQAEgRqAewEagAEABIEagHtBGgABAASBGgB6QRoAAQAEgRoAeoEaAAEABIEaAHrBGgABAASBGgB7ARoAAQAEgRoAe0EZwAEABIEZwHpBGcABAASBGcB6gRnAAQAEgRnAesEZwAEABIEZwHsBGcABAASBGcB7QRmAAQAEgRmAekEZgAEABIEZgHqBGYABAASBGYB6wRmAAQAEgRmAewEZgAEABIEZgHtBGQABAASBGQB6QRkAAQAEgRkAeoEZAAEABIEZAHrBGQABAASBGQB7ARkAAQAEgRkAe0EVQAEABIEVQHpBFUABAASBFUB6gRVAAQAEgRVAesEVQAEABIEVQHsBFUABAASBFUB7QP7AAQAEgP7AekD+wAEABID+wHqA/sABAASA/sB6wP7AAQAEgP7AewD+wAEABID+wHtA/oABAASA/oB6QP6AAQAEgP6AeoD+gAEABID+gHrA/oABAASA/oB7AP6AAQAEgP6Ae0D+QAEABID+QHpA/kABAASA/kB6gP5AAQAEgP5AesD+QAEABID+QHsA/kABAASA/kB7QPoAAQAEgPoAekD6AAEABID6AHqA+gABAASA+gB6wPoAAQAEgPoAewD6AAEABID6AHtA8MABAASA8MB6QPDAAQAEgPDAeoDwwAEABIDwwHrA8MABAASA8MB7APDAAQAEgPDAe0DwgAEABIDwgHpA8IABAASA8IB6gPCAAQAEgPCAesDwgAEABIDwgHsA8IABAASA8IB7QPAAAQAEgPAAekDwAAEABIDwAHqA8AABAASA8AB6wPAAAQAEgPAAewDwAAEABIDwAHtA7wABAASA7wB6QO8AAQAEgO8AeoDvAAEABIDvAHrA7wABAASA7wB7AO8AAQAEgO8Ae0DuwAEABIDuwHpA7sABAASA7sB6gO7AAQAEgO7AesDuwAEABIDuwHsA7sABAASA7sB7QO6AAQAEgO6AekDugAEABIDugHqA7oABAASA7oB6wO6AAQAEgO6AewDugAEABIDugHtA00ABAASA00B6QNNAAQAEgNNAeoDTQAEABIDTQHrA00ABAASA00B7ANNAAQAEgNNAe0CdQAEABICdQHpAnUABAASAnUB6gJ1AAQAEgJ1AesCdQAEABICdQHsAnUABAASAnUB7QJ0AAQAEgJ0AekCdAAEABICdAHqAnQABAASAnQB6wJ0AAQAEgJ0AewCdAAEABICdAHtAnAABAASAnAB6QJwAAQAEgJwAeoCcAAEABICcAHrAnAABAASAnAB7AJwAAQAEgJwAe0CbwAEABICbwHpAm8ABAASAm8B6gJvAAQAEgJvAesCbwAEABICbwHsAm8ABAASAm8B7QJlAAQAEgJlAekCZQAEABICZQHqAmUABAASAmUB6wJlAAQAEgJlAewCZQAEABICZQHtAmEABAASAmEB6QJhAAQAEgJhAeoCYQAEABICYQHrAmEABAASAmEB7AJhAAQAEgJhAe0CXwAEABICXwHpAl8ABAASAl8B6gJfAAQAEgJfAesCXwAEABICXwHsAl8ABAASAl8B7QJeAAQAEgJeAekCXgAEABICXgHqAl4ABAASAl4B6wJeAAQAEgJeAewCXgAEABICXgHtAlwABAASAlwB6QJcAAQAEgJcAeoCXAAEABICXAHrAlwABAASAlwB7AJcAAQAEgJcAe0BvQAEABIBvQHpAb0ABAASAb0B6gG9AAQAEgG9AesBvQAEABIBvQHsAb0ABAASAb0B7QG8AAQAEgG8AekBvAAEABIBvAHqAbwABAASAbwB6wG8AAQAEgG8AewBvAAEABIBvAHtAbsABAASAbsB6QG7AAQAEgG7AeoBuwAEABIBuwHrAbsABAASAbsB7AG7AAQAEgG7Ae0BtQAEABIBtQHpAbUABAASAbUB6gG1AAQAEgG1AesBtQAEABIBtQHsAbUABAASAbUB7QG0AAQAEgG0AekBtAAEABIBtAHqAbQABAASAbQB6wG0AAQAEgG0AewBtAAEABIBtAHtAIsABAASAIsB6QCLAAQAEgCLAeoAiwAEABIAiwHrAIsABAASAIsB7ACLAAQAEgCLAe0DTQADABIDTQJfAAMAEgJfBPwAAwASBPwFBwADABIFBwULAAMAEgULA/sAAwASA/sDwgADABIDwgJeAAMAEgJeAl0AAwASAl0CdQADABICdQRnAAMAEgRnBQwAAwASBQwE5gADABIE5gRrAAMAEgRrAlwAAwASAlwFBAADABIFBAJ0AAMAEgJ0A8AAAwASA8AD+gADABID+gUJAAMAEgUJAb0AAwASAb0EZgADABIEZgT7AAMAEgT7AnAAAwASAnAFAQADABIFAQO8AAMAEgO8AbwAAwASAbwFCgADABIFCgP5AAMAEgP5BGoAAwASBGoCbwADABICbwTlAAMAEgTlAbsAAwASAbsEZAADABIEZAO7AAMAEgO7BQUAAwASBQUFCAADABIFCAJlAAMAEgJlAbUAAwASAbUD6AADABID6AUGAAMAEgUGBPoAAwASBPoDugADABIDugRoAAMAEgRoAbQAAwASAbQCYQADABICYQRVAAMAEgRVBQMAAwASBQMDwwADABIDwwRsAAMAEgRsAIsAAwASAIsAEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXcAAQAEgJWAekF3AAEABICVgHqBdwABAASAlYB6wXcAAQAEgJWAewF3AAEABICVgHtBdwABAASBP4B6QXcAAQAEgT+AeoF3AAEABIE/gHrBdwABAASBP4B7AXcAAQAEgT+Ae0F3AAEABICVwHpBdwABAASAlcB6gXcAAQAEgJXAesF3AAEABICVwHsBdwABAASAlcB7QXcAAMAEgJWBdwAAwASBP4F3AADABICVwASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBd0ABAASAlYB6QXdAAQAEgJWAeoF3QAEABICVgHrBd0ABAASAlYB7AXdAAQAEgJWAe0F3QAEABIE/gHpBd0ABAASBP4B6gXdAAQAEgT+AesF3QAEABIE/gHsBd0ABAASBP4B7QXdAAQAEgJXAekF3QAEABICVwHqBd0ABAASAlcB6wXdAAQAEgJXAewF3QAEABICVwHtBd0AAwASAlYF3QADABIE/gXdAAMAEgJXAAEABAdQAAMAEgHiABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwAIsABAHpABIAUACLAAQB6QASAFEAiwAEAeoAEgBQAIsABAHqABIAUQCLAAQB6wASAFAAiwAEAesAEgBRAIsABAHsABIAUACLAAQB7AASAFEAiwAEAe0AEgBQAIsABAHtABIAUQCLAAMAEgBQAIsAAwASAFEAiwACAekAiwACAeoAiwACAesAiwACAewAiwACAe0AEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXlAAQAEgJWAekF5QAEABICVgHqBeUABAASAlYB6wXlAAQAEgJWAewF5QAEABICVgHtBeUABAASBP4B6QXlAAQAEgT+AeoF5QAEABIE/gHrBeUABAASBP4B7AXlAAQAEgT+Ae0F5QAEABICVwHpBeUABAASAlcB6gXlAAQAEgJXAesF5QAEABICVwHsBeUABAASAlcB7QXlAAMAEgJWBeUAAwASBP4F5QADABICVwAFAAwAEgAYAB4AJACSAAIB6QCSAAIB6gCSAAIB6wCSAAIB7ACSAAIB7QAFAAwAEgAYAB4AJACTAAIB6QCTAAIB6gCTAAIB6wCTAAIB7ACTAAIB7QAFAAwAEgAYAB4AJACUAAIB6QCUAAIB6gCUAAIB6wCUAAIB7ACUAAIB7QAFAAwAEgAYAB4AJACVAAIB6QCVAAIB6gCVAAIB6wCVAAIB7ACVAAIB7QABAAQF7QADABICKQACAAYADgXVAAMAEgU2BdQAAwASAxIAAgAGAA4F7AADABIB9gXSAAMAEgIUABEAJAAqADAANgA8AEIASABOAFQAWgBgAGYAbAByAHgAfgCEB0AAAgDTBmcAAgDoBmYAAgDmBmUAAgDiBmQAAgDjBmMAAgDRBmIAAgDlBmEAAgDbBmAAAgDgBl8AAgDVBl4AAgDfBl0AAgDXBlwAAgDdBlsAAgDSBloAAgDhBlgAAgDaBlcAAgDUABUALAAyADgAPgBEAEoAUABWAFwAYgBoAG4AdAB6AIAAhgCMAJIAmACeAKQGhAACAN8GfAACANcGewACANQGegACANUGeQACANwGdwACAOAGdgACAOQGdQACAOUGdAACAM8GcwACAN0GcgACAOIGcQACANsGcAACANoGbwACANgGbgACAOgGbQACANMGbAACAOcGawACANAGagACANIGaQACANYGaAACAOEAFAAqADAANgA8AEIASABOAFQAWgBgAGYAbAByAHgAfgCEAIoAkACWAJwHKwACANYGlgACAOgGlQACAOcGlAACAOMGkgACAOAFxQACANwGkQACANkGkAACANIGjwACANUGjQACAN0GjAACANEGiwACAN4GigACAOYGiQACANoGhgACANQGgwACAOUGggACAOQGgAACANcGfwACAM8GfgACANsABwAQABYAHAAiACgALgA0BpsAAgDdBpoAAgDbBpkAAgDYBpgAAgDVBcAAAgDTBpcAAgDZBlkAAgDoAAkAFAAaACAAJgAsADIAOAA+AEQHSgACANYGpQACAOMGpAACAOIFwwACAOEGogACANMGoQACAOAGnQACANUGnAACANEGhwACAM8ABgAOABQAGgAgACYALAbnAAIA2wW/AAIA4AapAAIA1waoAAIA2AanAAIA3QamAAIA2QATACgALgA0ADoAQABGAEwAUgBYAF4AZABqAHAAdgB8AIIAiACOAJQFwgACANAHHgACAOEGuwACAOcGugACAOUGuQACANwGuAACANUGtwACAOIGtgACAOMGtQACAN4GtAACANIGswACANoGsgACAOAGsQACANcGsAACANYGrwACANMGrgACANsGrQACAM8GqgACANQGoAACAN8ABgAOABQAGgAgACYALAa/AAIA4wa+AAIA2Qa9AAIA3Aa8AAIA4gaTAAIA4AZkAAIA2wALABgAHgAkACoAMAA2ADwAQgBIAE4AVAXBAAIA4gbHAAIA2gbGAAIA2wbFAAIA0wbEAAIA3wbDAAIA4AbCAAIA0gbBAAIA3AbAAAIA4QaYAAIA3QaBAAIA0QAEAAoAEAAWABwFvQACAN4GygACAN0GyQACANMGyAACANsACwAYAB4AJAAqADAANgA8AEIASABOAFQHIwACANwG+wACAN4G0AACANUGzwACAOUFxgACAOAGzQACANcGzAACANMGywACAOgGjgACANsGhQACAOcGfQACANYACwAYAB4AJAAqADAANgA8AEIASABOAFQHJAACANEHIQACANkG2QACAOMG2AACAOIG1wACANcG1gACAOcG1QACAOAG1AACAOEG0wACANAG0gACAOQG0QACAM8AFwAwADYAPABCAEgATgBUAFoAYABmAGwAcgB4AH4AhACKAJAAlgCcAKIAqACuALQHJQACANQG/QACAN4G/AACANkG7wACANsG7gACAOgG7QACAM8G7AACAOEG6wACANMG6gACANwG6QACANEG6AACANIG5gACAOYG5AACAOMG4wACAOAG4gACAN8G4QACANYG4AACAOIG3wACANoG3gACAOQG3QACAOcG3AACAOUG2wACANUG2gACAN0ADAAaACAAJgAsADIAOAA+AEQASgBQAFYAXAb6AAIA1Ab5AAIA4wb4AAIA1Qb3AAIA0wb2AAIA1wb1AAIA6Ab0AAIA0QbzAAIA2gbyAAIA3gbxAAIA4AbwAAIAzwZ2AAIA3QABAAQG/gACANsADgAeACQAKgAwADYAPABCAEgATgBUAFoAYABmAGwHJgACANsHCgACAOAHCQACAOIHCAACANoHBwACANwHBgACANYHBQACANMHBAACAOcHAwACANUHAgACAM8HAQACAOEHAAACAOUG/wACANkGqwACANQAAQAEBwsAAgDPAAUADAASABgAHgAkBxQAAgDhBcQAAgDjBw4AAgDlBw0AAgDdBwwAAgDTABUALAAyADgAPgBEAEoAUABWAFwAYgBoAG4AdAB6AIAAhgCMAJIAmACeAKQHLAACAOcHKgACANMHKQACAOAHKAACANIHIgACANYHIAACAOIHHwACAOEHHAACAN0HGwACANAHGgACANcHGQACANkHGAACAOYHFwACANUHFgACANoHFQACANEHEwACANwHEQACAM8HEAACANsGowACAOgGngACAOQGdgACANgAEQAkACoAMAA2ADwAQgBIAE4AVABaAGAAZgBsAHIAeAB+AIQHOwACAOQHOgACANEHOQACANsHOAACAOAHNwACANwHNgACAM8HNQACAOIHNAACAN0HMwACANkHMgACANUHMQACANoHMAACANYHLwACAOgHLgACANgHLQACAOUGrAACANQGiAACANIABwAQABYAHAAiACgALgA0B0MAAgDoB0IAAgDnBb4AAgDhB0EAAgDcBz8AAgDPBz4AAgDVBzwAAgDbAAcAEAAWABwAIgAoAC4ANAdHAAIA3AdGAAIA0wdFAAIAzwdEAAIA4wc9AAIA1wcnAAIA0QZ4AAIA1QACAAYADAdJAAIA1AcPAAIA4QABAAQGzgACANkAAgAGAAwHSwACANMG5QACAOIAAwAIAA4AFAdNAAIA5QdMAAIA2wcdAAIAzwABAAQHTwADABIB4gABAAQF8AADABIDqwASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBdoABAASAlYB6QXaAAQAEgJWAeoF2gAEABICVgHrBdoABAASAlYB7AXaAAQAEgJWAe0F2gAEABIE/gHpBdoABAASBP4B6gXaAAQAEgT+AesF2gAEABIE/gHsBdoABAASBP4B7QXaAAQAEgJXAekF2gAEABICVwHqBdoABAASAlcB6wXaAAQAEgJXAewF2gAEABICVwHtBdoAAwASAlYF2gADABIE/gXaAAMAEgJXABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwF2AAEABICVgHpBdgABAASAlYB6gXYAAQAEgJWAesF2AAEABICVgHsBdgABAASAlYB7QXYAAQAEgT+AekF2AAEABIE/gHqBdgABAASBP4B6wXYAAQAEgT+AewF2AAEABIE/gHtBdgABAASAlcB6QXYAAQAEgJXAeoF2AAEABICVwHrBdgABAASAlcB7AXYAAQAEgJXAe0F2AADABICVgXYAAMAEgT+BdgAAwASAlcAEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXhAAQAEgJWAekF4QAEABICVgHqBeEABAASAlYB6wXhAAQAEgJWAewF4QAEABICVgHtBeEABAASBP4B6QXhAAQAEgT+AeoF4QAEABIE/gHrBeEABAASBP4B7AXhAAQAEgT+Ae0F4QAEABICVwHpBeEABAASAlcB6gXhAAQAEgJXAesF4QAEABICVwHsBeEABAASAlcB7QXhAAMAEgJWBeEAAwASBP4F4QADABICVwAGAA4AGAAiACwANgBAAXsABAASBP4B6QF7AAQAEgT+AeoBewAEABIE/gHrAXsABAASBP4B7AF7AAQAEgT+Ae0BewADABIE/gAFAAwAEgAYAB4AJAF7AAIB6QF7AAIB6gF7AAIB6wF7AAIB7AF7AAIB7QASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBegABAASAlYB6QXoAAQAEgJWAeoF6AAEABICVgHrBegABAASAlYB7AXoAAQAEgJWAe0F6AAEABIE/gHpBegABAASBP4B6gXoAAQAEgT+AesF6AAEABIE/gHsBegABAASBP4B7QXoAAQAEgJXAekF6AAEABICVwHqBegABAASAlcB6wXoAAQAEgJXAewF6AAEABICVwHtBegAAwASAlYF6AADABIE/gXoAAMAEgJXABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwF5wAEABICVgHpBecABAASAlYB6gXnAAQAEgJWAesF5wAEABICVgHsBecABAASAlYB7QXnAAQAEgT+AekF5wAEABIE/gHqBecABAASBP4B6wXnAAQAEgT+AewF5wAEABIE/gHtBecABAASAlcB6QXnAAQAEgJXAeoF5wAEABICVwHrBecABAASAlcB7AXnAAQAEgJXAe0F5wADABICVgXnAAMAEgT+BecAAwASAlcAEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXWAAQAEgJWAekF1gAEABICVgHqBdYABAASAlYB6wXWAAQAEgJWAewF1gAEABICVgHtBdYABAASBP4B6QXWAAQAEgT+AeoF1gAEABIE/gHrBdYABAASBP4B7AXWAAQAEgT+Ae0F1gAEABICVwHpBdYABAASAlcB6gXWAAQAEgJXAesF1gAEABICVwHsBdYABAASAlcB7QXWAAMAEgJWBdYAAwASBP4F1gADABICVwAFAAwAEgAYAB4AJAGzAAIB6QGzAAIB6gGzAAIB6wGzAAIB7AGzAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAG0AAQB6QASAFABtAAEAekAEgBRAbQABAHqABIAUAG0AAQB6gASAFEBtAAEAesAEgBQAbQABAHrABIAUQG0AAQB7AASAFABtAAEAewAEgBRAbQABAHtABIAUAG0AAQB7QASAFEBtAADABIAUAG0AAMAEgBRAbQAAgHpAbQAAgHqAbQAAgHrAbQAAgHsAbQAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwAbUABAHpABIAUAG1AAQB6QASAFEBtQAEAeoAEgBQAbUABAHqABIAUQG1AAQB6wASAFABtQAEAesAEgBRAbUABAHsABIAUAG1AAQB7AASAFEBtQAEAe0AEgBQAbUABAHtABIAUQG1AAMAEgBQAbUAAwASAFEBtQACAekBtQACAeoBtQACAesBtQACAewBtQACAe0ABQAMABIAGAAeACQBuAACAekBuAACAeoBuAACAesBuAACAewBuAACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALABuwAEAekAEgBQAbsABAHpABIAUQG7AAQB6gASAFABuwAEAeoAEgBRAbsABAHrABIAUAG7AAQB6wASAFEBuwAEAewAEgBQAbsABAHsABIAUQG7AAQB7QASAFABuwAEAe0AEgBRAbsAAwASAFABuwADABIAUQG7AAIB6QG7AAIB6gG7AAIB6wG7AAIB7AG7AAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAG8AAQB6QASAFABvAAEAekAEgBRAbwABAHqABIAUAG8AAQB6gASAFEBvAAEAesAEgBQAbwABAHrABIAUQG8AAQB7AASAFABvAAEAewAEgBRAbwABAHtABIAUAG8AAQB7QASAFEBvAADABIAUAG8AAMAEgBRAbwAAgHpAbwAAgHqAbwAAgHrAbwAAgHsAbwAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwAb0ABAHpABIAUAG9AAQB6QASAFEBvQAEAeoAEgBQAb0ABAHqABIAUQG9AAQB6wASAFABvQAEAesAEgBRAb0ABAHsABIAUAG9AAQB7AASAFEBvQAEAe0AEgBQAb0ABAHtABIAUQG9AAMAEgBQAb0AAwASAFEBvQACAekBvQACAeoBvQACAesBvQACAewBvQACAe0AEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXpAAQAEgJWAekF6QAEABICVgHqBekABAASAlYB6wXpAAQAEgJWAewF6QAEABICVgHtBekABAASBP4B6QXpAAQAEgT+AeoF6QAEABIE/gHrBekABAASBP4B7AXpAAQAEgT+Ae0F6QAEABICVwHpBekABAASAlcB6gXpAAQAEgJXAesF6QAEABICVwHsBekABAASAlcB7QXpAAMAEgJWBekAAwASBP4F6QADABICVwASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBdkABAASAlYB6QXZAAQAEgJWAeoF2QAEABICVgHrBdkABAASAlYB7AXZAAQAEgJWAe0F2QAEABIE/gHpBdkABAASBP4B6gXZAAQAEgT+AesF2QAEABIE/gHsBdkABAASBP4B7QXZAAQAEgJXAekF2QAEABICVwHqBdkABAASAlcB6wXZAAQAEgJXAewF2QAEABICVwHtBdkAAwASAlYF2QADABIE/gXZAAMAEgJXAAIABgAOB1AAAwASAHIHTwADABIBAAAEAAoAGgAqADoHSAAHBagFowW4Ba0FtAW8BxIABwWoBaMFtAWkBbUFvAafAAcFqAWjBaYFrwWoBbwHTgADABIARgABAAQF7AADABIAtAABAAQF7gADABIE5wABAAQF0gADABIAtAABAAQF7QADABIAnwABAAQF0wADABIDbAAFAAwAEgAYAB4AJAIwAAIB6QIwAAIB6gIwAAIB6wIwAAIB7AIwAAIB7QAFAAwAEgAYAB4AJAIxAAIB6QIxAAIB6gIxAAIB6wIxAAIB7AIxAAIB7QAFAAwAEgAYAB4AJAI0AAIB6QI0AAIB6gI0AAIB6wI0AAIB7AI0AAIB7QAFAAwAEgAYAB4AJAI1AAIB6QI1AAIB6gI1AAIB6wI1AAIB7AI1AAIB7QAFAAwAEgAYAB4AJAI2AAIB6QI2AAIB6gI2AAIB6wI2AAIB7AI2AAIB7QAFAAwAEgAYAB4AJAI3AAIB6QI3AAIB6gI3AAIB6wI3AAIB7AI3AAIB7QAFAAwAEgAYAB4AJAI4AAIB6QI4AAIB6gI4AAIB6wI4AAIB7AI4AAIB7QAFAAwAEgAYAB4AJAI5AAIB6QI5AAIB6gI5AAIB6wI5AAIB7AI5AAIB7QAFAAwAEgAYAB4AJAI6AAIB6QI6AAIB6gI6AAIB6wI6AAIB7AI6AAIB7QAFAAwAEgAYAB4AJAI7AAIB6QI7AAIB6gI7AAIB6wI7AAIB7AI7AAIB7QAFAAwAEgAYAB4AJAI8AAIB6QI8AAIB6gI8AAIB6wI8AAIB7AI8AAIB7QAFAAwAEgAYAB4AJAI9AAIB6QI9AAIB6gI9AAIB6wI9AAIB7AI9AAIB7QAFAAwAEgAYAB4AJAI+AAIB6QI+AAIB6gI+AAIB6wI+AAIB7AI+AAIB7QAUACoAOgBKAFoAagB6AIoAlgCiAK4AugDGANIA3gDmAO4A9AD6AQABBgYTAAcAEgJVABICVwASAlcGEQAHABICVAASAlcAEgJXBgkABwASAlUAEgJXABICVgYHAAcAEgJUABICVwASAlYGBAAHABICVQASAlYAEgJWBgIABwASAlQAEgJWABICVgYOAAUAEgJVABICVwYGAAUAEgJXABICVgYMAAUAEgJUABICVwYQAAUAEgJXABICVwYBAAUAEgJWABICVgX/AAUAEgJVABICVgX9AAUAEgJUABICVgYLAAMAEgJXBfwAAwASAlYCVAACAekCVAACAeoCVAACAesCVAACAewCVAACAe0ADwAgADAAQABQAFwAaAB0AIAAjACUAJwAogCoAK4AtAYUAAcAEgJVABICVwASAlcGCgAHABICVQASAlcAEgJWBgUABwASAlUAEgJWABICVgYSAAUAEgJXABICVwYIAAUAEgJXABICVgYPAAUAEgJVABICVwYDAAUAEgJWABICVgYAAAUAEgJVABICVgYNAAMAEgJXBf4AAwASAlYCVQACAekCVQACAeoCVQACAesCVQACAewCVQACAe0BewL4AwwDIAM0A0gDXANwA4QDmAOsA8AD1APoA/wEEAQkBDgETARgBHQEiAScBLAExATYBOwFAAUUBSgFPAVQBWQFeAWMBaAFtAXIBdwF8AYEBhgGLAZABlQGaAZ8BpAGpAa4BswG4Ab0BwgHHAcwB0QHWAdsB4AHlAeoB7wH0AfkB/gIDAggCDQISAhcCHAIhAiYCKwIwAjUCOQI9AkECRQJJAk0CUQJVAlkCXQJhAmUCaQJtAnECdQJ5An0CgQKFAokCjQKRApUCmQKdAqECpQKpAq0CsQK1ArkCvQLBAsUCyQLNAtEC1QLZAt0C4QLlAukC7QLxAvUC+QL9AwEDBQMJAw0DEQMVAxkDHQMhAyUDKQMtAzEDNQM5Az0DQQNFA0kDTQNRA1UDWQNdA2EDZQNpA20DcQN1A3kDfQOBA4UDiQONA5EDlQOZA50DoQOlA6kDrQOxA7UDuQO9A8EDxQPJA80D0QPVA9kD3QPhA+UD6QPtA/ED9QP5A/0EAQQFBAkEDQQRBBUEGQQdBCEEJQQpBC0EMQQ1BDkEPQRBBEUESQRNBFEEVQRZBF0EYQRlBGkEbQRxBHUEeAR7BH4EgQSEBIcEigSNBJAEkoSVBJeEmgSchJ8EoYSkBKaEqQSrhK4EsISzBLWEuAS6hL0Ev4TCBMSExwTJhMwEzoTRBNOE1gTYhNsE3YTgBOKE5QTnhOoE7ITvBPGE9AT2hPkE+4T+BQCFAwUFhQgFCoUNBQ+FEgUUhRcFGYUcBR6FIQUjhSYFKIUrBS2FMAUyhTUFN4U6BTyFPwVBhUQFRoVJBUuFTgVQhVMFVYVYBVqFXQVfhWIFZIVnBWmFbAVuhXEFc4V2BXiFewV9hYAFgoWFBYeFigWMhY8FkYWUBZaFmQWbhZ4FoIWjBaWFqAWqha0Fr4WyBbSFtwW5hbwFvgXABcIFxAXGBcgFygXMBc4F0AXSBdQF1gXYBdoF3AXeBeAF4gXkBeYF6AXqBewF7gXwBfGF8wX0hfYAn0ACQASAnkAEgCoABIB6QJWAekCfQAJABICeQASAKgAEgHpAlYB6gJ9AAkAEgJ5ABIAqAASAekCVgHrAn0ACQASAnkAEgCoABIB6QJWAewCfQAJABICeQASAKgAEgHpAlYB7QJ9AAkAEgJ5ABIAqAASAekCVwHpAn0ACQASAnkAEgCoABIB6QJXAeoCfQAJABICeQASAKgAEgHpAlcB6wJ9AAkAEgJ5ABIAqAASAekCVwHsAn0ACQASAnkAEgCoABIB6QJXAe0CfQAJABICeQASAKgAEgHqAlYB6QJ9AAkAEgJ5ABIAqAASAeoCVgHqAn0ACQASAnkAEgCoABIB6gJWAesCfQAJABICeQASAKgAEgHqAlYB7AJ9AAkAEgJ5ABIAqAASAeoCVgHtAn0ACQASAnkAEgCoABIB6gJXAekCfQAJABICeQASAKgAEgHqAlcB6gJ9AAkAEgJ5ABIAqAASAeoCVwHrAn0ACQASAnkAEgCoABIB6gJXAewCfQAJABICeQASAKgAEgHqAlcB7QJ9AAkAEgJ5ABIAqAASAesCVgHpAn0ACQASAnkAEgCoABIB6wJWAeoCfQAJABICeQASAKgAEgHrAlYB6wJ9AAkAEgJ5ABIAqAASAesCVgHsAn0ACQASAnkAEgCoABIB6wJWAe0CfQAJABICeQASAKgAEgHrAlcB6QJ9AAkAEgJ5ABIAqAASAesCVwHqAn0ACQASAnkAEgCoABIB6wJXAesCfQAJABICeQASAKgAEgHrAlcB7AJ9AAkAEgJ5ABIAqAASAesCVwHtAn0ACQASAnkAEgCoABIB7AJWAekCfQAJABICeQASAKgAEgHsAlYB6gJ9AAkAEgJ5ABIAqAASAewCVgHrAn0ACQASAnkAEgCoABIB7AJWAewCfQAJABICeQASAKgAEgHsAlYB7QJ9AAkAEgJ5ABIAqAASAewCVwHpAn0ACQASAnkAEgCoABIB7AJXAeoCfQAJABICeQASAKgAEgHsAlcB6wJ9AAkAEgJ5ABIAqAASAewCVwHsAn0ACQASAnkAEgCoABIB7AJXAe0CfQAJABICeQASAKgAEgHtAlYB6QJ9AAkAEgJ5ABIAqAASAe0CVgHqAn0ACQASAnkAEgCoABIB7QJWAesCfQAJABICeQASAKgAEgHtAlYB7AJ9AAkAEgJ5ABIAqAASAe0CVgHtAn0ACQASAnkAEgCoABIB7QJXAekCfQAJABICeQASAKgAEgHtAlcB6gJ9AAkAEgJ5ABIAqAASAe0CVwHrAn0ACQASAnkAEgCoABIB7QJXAewCfQAJABICeQASAKgAEgHtAlcB7QJ9AAkB6QASAKgAEgJ5ABICVgHpAn0ACQHpABIAqAASAnkAEgJWAeoCfQAJAekAEgCoABICeQASAlYB6wJ9AAkB6QASAKgAEgJ5ABICVgHsAn0ACQHpABIAqAASAnkAEgJWAe0CfQAJAeoAEgCoABICeQASAlYB6QJ9AAkB6gASAKgAEgJ5ABICVgHqAn0ACQHqABIAqAASAnkAEgJWAesCfQAJAeoAEgCoABICeQASAlYB7AJ9AAkB6gASAKgAEgJ5ABICVgHtAn0ACQHrABIAqAASAnkAEgJWAekCfQAJAesAEgCoABICeQASAlYB6gJ9AAkB6wASAKgAEgJ5ABICVgHrAn0ACQHrABIAqAASAnkAEgJWAewCfQAJAesAEgCoABICeQASAlYB7QJ9AAkB7AASAKgAEgJ5ABICVgHpAn0ACQHsABIAqAASAnkAEgJWAeoCfQAJAewAEgCoABICeQASAlYB6wJ9AAkB7AASAKgAEgJ5ABICVgHsAn0ACQHsABIAqAASAnkAEgJWAe0CfQAJAe0AEgCoABICeQASAlYB6QJ9AAkB7QASAKgAEgJ5ABICVgHqAn0ACQHtABIAqAASAnkAEgJWAesCfQAJAe0AEgCoABICeQASAlYB7AJ9AAkB7QASAKgAEgJ5ABICVgHtAn8ABwASAKgAEgHpAlcB7QJ/AAcAEgCoABIB6gJWAekCfwAHABIAqAASAeoCVgHqAn8ABwASAKgAEgHqAlYB6wJ/AAcAEgCoABIB6gJWAewCfwAHABIAqAASAeoCVgHtAn8ABwASAKgAEgHqAlcB6QJ/AAcAEgCoABIB6gJXAeoCfwAHABIAqAASAeoCVwHrAn8ABwASAKgAEgHqAlcB7AJ/AAcAEgCoABIB6gJXAe0CfwAHABIAqAASAesCVgHpAn8ABwASAKgAEgHrAlYB6gJ/AAcAEgCoABIB6wJWAesCfwAHABIAqAASAesCVgHsAn8ABwASAKgAEgHrAlYB7QJ/AAcAEgCoABIB6wJXAekCfwAHABIAqAASAesCVwHqAn8ABwASAKgAEgHrAlcB6wJ/AAcAEgCoABIB6wJXAewCfwAHABIAqAASAesCVwHtAn8ABwASAKgAEgHsAlYB6QJ/AAcAEgCoABIB7AJWAeoCfwAHABIAqAASAewCVgHrAn8ABwASAKgAEgHsAlYB7AJ/AAcAEgCoABIB7AJWAe0CfwAHABIAqAASAewCVwHpAn8ABwASAKgAEgHsAlcB6gJ/AAcAEgCoABIB7AJXAesCfwAHABIAqAASAewCVwHsAn8ABwASAKgAEgHsAlcB7QJ/AAcAEgCoABIB7QJWAekCfwAHABIAqAASAe0CVgHqAn8ABwASAKgAEgHtAlYB6wJ/AAcAEgCoABIB7QJWAewCfwAHABIAqAASAe0CVgHtAn8ABwASAKgAEgHtAlcB6QJ/AAcAEgCoABIB7QJXAeoCfwAHABIAqAASAe0CVwHrAn8ABwASAKgAEgHtAlcB7AJ/AAcAEgCoABIB7QJXAe0CfwAHAekAEgCoABICVgHpAn8ABwHpABIAqAASAlYB6gJ/AAcB6QASAKgAEgJWAesCfwAHAekAEgCoABICVgHsAn8ABwHpABIAqAASAlYB7QJ/AAcB6gASAKgAEgJWAekCfwAHAeoAEgCoABICVgHqAn8ABwHqABIAqAASAlYB6wJ/AAcB6gASAKgAEgJWAewCfwAHAeoAEgCoABICVgHtAn8ABwHrABIAqAASAlYB6QJ/AAcB6wASAKgAEgJWAeoCfwAHAesAEgCoABICVgHrAn8ABwHrABIAqAASAlYB7AJ/AAcB6wASAKgAEgJWAe0CfwAHAewAEgCoABICVgHpAn8ABwHsABIAqAASAlYB6gJ/AAcB7AASAKgAEgJWAesCfwAHAewAEgCoABICVgHsAn8ABwHsABIAqAASAlYB7QJ/AAcB7QASAKgAEgJWAekCfwAHAe0AEgCoABICVgHqAn8ABwHtABIAqAASAlYB6wJ/AAcB7QASAKgAEgJWAewCfwAHAe0AEgCoABICVgHtBhkABwASBEwAEgHpAlYB6gYZAAcAEgRMABIB6QJWAesGGQAHABIETAASAekCVgHsBhkABwASBEwAEgHpAlYB7QYZAAcAEgRMABIB6QJXAeoGGQAHABIETAASAekCVwHrBhkABwASBEwAEgHpAlcB7AYZAAcAEgRMABIB6QJXAe0GGQAHABIETAASAeoCVgHpBhkABwASBEwAEgHqAlYB6wYZAAcAEgRMABIB6gJWAewGGQAHABIETAASAeoCVgHtBhkABwASBEwAEgHqAlcB6QYZAAcAEgRMABIB6gJXAesGGQAHABIETAASAeoCVwHsBhkABwASBEwAEgHqAlcB7QYZAAcAEgRMABIB6wJWAekGGQAHABIETAASAesCVgHqBhkABwASBEwAEgHrAlYB7AYZAAcAEgRMABIB6wJWAe0GGQAHABIETAASAesCVwHpBhkABwASBEwAEgHrAlcB6gYZAAcAEgRMABIB6wJXAewGGQAHABIETAASAesCVwHtBhkABwASBEwAEgHsAlYB6QYZAAcAEgRMABIB7AJWAeoGGQAHABIETAASAewCVgHrBhkABwASBEwAEgHsAlYB7QYZAAcAEgRMABIB7AJXAekGGQAHABIETAASAewCVwHqBhkABwASBEwAEgHsAlcB6wYZAAcAEgRMABIB7AJXAe0GGQAHABIETAASAe0CVgHpBhkABwASBEwAEgHtAlYB6gYZAAcAEgRMABIB7QJWAesGGQAHABIETAASAe0CVgHsBhkABwASBEwAEgHtAlcB6QYZAAcAEgRMABIB7QJXAeoGGQAHABIETAASAe0CVwHrBhkABwASBEwAEgHtAlcB7AYZAAcB6QASBEwAEgJWAeoGGQAHAekAEgRMABICVgHrBhkABwHpABIETAASAlYB7AYZAAcB6QASBEwAEgJWAe0GGQAHAeoAEgRMABICVgHpBhkABwHqABIETAASAlYB6wYZAAcB6gASBEwAEgJWAewGGQAHAeoAEgRMABICVgHtBhkABwHrABIETAASAlYB6QYZAAcB6wASBEwAEgJWAeoGGQAHAesAEgRMABICVgHsBhkABwHrABIETAASAlYB7QYZAAcB7AASBEwAEgJWAekGGQAHAewAEgRMABICVgHqBhkABwHsABIETAASAlYB6wYZAAcB7AASBEwAEgJWAe0GGQAHAe0AEgRMABICVgHpBhkABwHtABIETAASAlYB6gYZAAcB7QASBEwAEgJWAesGGQAHAe0AEgRMABICVgHsBgoABwASAlcAEgJVABICVQYJAAcAEgJXABICVQASAlQGBwAHABICVwASAlQAEgJUBgUABwASAlYAEgJVABICVQYEAAcAEgJWABICVQASAlQGAgAHABICVgASAlQAEgJUAn8ABwASAKgAEgHpAlYB6QJ/AAcAEgCoABIB6QJWAeoCfwAHABIAqAASAekCVgHrAn8ABwASAKgAEgHpAlYB7AJ/AAcAEgCoABIB6QJWAe0CfwAHABIAqAASAekCVwHpAn8ABwASAKgAEgHpAlcB6gJ/AAcAEgCoABIB6QJXAesCfwAHABIAqAASAekCVwHsAn0ABwASAnkAEgCoABICVgJ9AAcAEgJ5ABIAqAASAlcCfQAHABIAqAASAnkAEgJWBgAABQASAlUAEgJVAn8ABQASAKgAEgJWAn8ABQASAKgAEgJXBf8ABQASAlUAEgJUBf0ABQASAlQAEgJUBgYABQASAlcAEgJUBgMABQASAlYAEgJVBggABQASAlcAEgJVBgEABQASAlYAEgJUBecABAHpABIBlQXnAAQB6gASAZUF5wAEAesAEgGVBecABAHsABIBlQXnAAQB7QASAZUF5gAEAekAEgMZBeYABAHqABIDGQXmAAQB6wASAxkF5gAEAewAEgMZBeYABAHtABIDGQXlAAQB6QASAJAF5QAEAeoAEgCQBeUABAHrABIAkAXlAAQB7AASAJAF5QAEAe0AEgCQBeQABAHpABIE3AXkAAQB6gASBNwF5AAEAesAEgTcBeQABAHsABIE3AXkAAQB7QASBNwF4wAEAekAEgTpBeMABAHqABIE6QXjAAQB6wASBOkF4wAEAewAEgTpBeMABAHtABIE6QXiAAQB6QASBOoF4gAEAeoAEgTqBeIABAHrABIE6gXiAAQB7AASBOoF4gAEAe0AEgTqBeEABAHpABIBcgXhAAQB6gASAXIF4QAEAesAEgFyBeEABAHsABIBcgXhAAQB7QASAXIF4AAEAekAEgKqBeAABAHqABICqgXgAAQB6wASAqoF4AAEAewAEgKqBeAABAHtABICqgXeAAQB6QASAxQF3gAEAeoAEgMUBd4ABAHrABIDFAXeAAQB7AASAxQF3gAEAe0AEgMUBd0ABAHpABIAawXdAAQB6gASAGsF3QAEAesAEgBrBd0ABAHsABIAawXdAAQB7QASAGsF3AAEAekAEgBqBdwABAHqABIAagXcAAQB6wASAGoF3AAEAewAEgBqBdwABAHtABIAagXbAAQB6QASA9cF2wAEAeoAEgPXBdsABAHrABID1wXbAAQB7AASA9cF2wAEAe0AEgPXBdoABAHpABIBNAXaAAQB6gASATQF2gAEAesAEgE0BdoABAHsABIBNAXaAAQB7QASATQF2QAEAekAEgHeBdkABAHqABIB3gXZAAQB6wASAd4F2QAEAewAEgHeBdkABAHtABIB3gXYAAQB6QASAWkF2AAEAeoAEgFpBdgABAHrABIBaQXYAAQB7AASAWkF2AAEAe0AEgFpBdcABAHpABIDxQXXAAQB6gASA8UF1wAEAesAEgPFBdcABAHsABIDxQXXAAQB7QASA8UF1gAEAekAEgGZBdYABAHqABIBmQXWAAQB6wASAZkF1gAEAewAEgGZBdYABAHtABIBmQYYAAQB7AASBOAGGAAEAe0AEgTgBhcABAHpABIE3QYXAAQB6gASBN0GFwAEAesAEgTdBhcABAHsABIE3QYXAAQB7QASBN0GGwAEAekAEgTeBhsABAHqABIE3gYbAAQB6wASBN4GGwAEAewAEgTeBhsABAHtABIE3gYaAAQB6QASBN8GGgAEAeoAEgTfBhoABAHrABIE3wYaAAQB7AASBN8GGgAEAe0AEgTfBhgABAHpABIE4AYYAAQB6gASBOAGGAAEAesAEgTgBeoABAHpABICqQXqAAQB6gASAqkF6gAEAesAEgKpBeoABAHsABICqQXqAAQB7QASAqkF6QAEAekAEgHcBekABAHqABIB3AXpAAQB6wASAdwF6QAEAewAEgHcBekABAHtABIB3AXoAAQB6QASAYkF6AAEAeoAEgGJBegABAHrABIBiQXoAAQB7AASAYkF6AAEAe0AEgGJBdYAAwASAZkGFwADABIE3QXaAAMAEgE0BeQAAwASBNwF5gADABIDGQX+AAMAEgJVBd0AAwASAGsF4QADABIBcgXZAAMAEgHeBekAAwASAdwGGAADABIE4AXqAAMAEgKpBeMAAwASBOkF3AADABIAagXYAAMAEgFpBecAAwASAZUF4AADABICqgXlAAMAEgCQBfwAAwASAlQGGgADABIE3wXXAAMAEgPFBdsAAwASA9cGGwADABIE3gXiAAMAEgTqBd4AAwASAxQF6AADABIBiQJWAAIB6QJWAAIB6gJWAAIB6wJWAAIB7AJWAAIB7QF2Au4DAgMWAyoDPgNSA2YDegOOA6IDtgPKA94D8gQGBBoELgRCBFYEagR+BJIEpgS6BM4E4gT2BQoFHgUyBUYFWgVuBYIFlgWqBb4F0gXmBfoGDgYiBjYGSgZeBnIGhgaaBq4GwgbWBuoG/gcSByYHOgdOB2IHdgeKB54HsgfGB9oH7ggCCBYIKgg+CFIIZgh6CI4Iogi2CMoI2gjqCPoJCgkaCSoJOglKCVoJagl6CYoJmgmqCboJygnaCeoJ+goKChoKKgo6CkoKWgpqCnoKigqaCqoKugrKCtoK6gr6CwoLGgsqCzoLSgtaC2oLeguKC5oLqgu6C8oL2gvqC/oMCgwaDCoMOgxKDFoMagx6DIoMmgyqDLoMygzaDOoM+g0KDRoNKg06DUoNWg1qDXoNig2aDaoNug3KDdoN6g36DgoOGg4qDjoOSg5aDmoOeg6KDpoOqg66DsoO2g7qDvoPCg8aDyoPOg9KD1oPag96D4oPmg+qD7oPyg/aD+oP+hAKEBoQKhA6EEoQWhBqEHoQihCaEKoQuhDKENoQ6hD6EQoRGhEqEToRShFaEWoRehGKEZoRphGyEb4RyhHWEeIR7hH4EgISDBIWEiASKhI0Ej4SSBJSElwSZhJwEnoShBKOEpgSohKsErYSwBLKEtQS3hLoEvIS/BMGExATGhMkEy4TOBNCE0wTVhNgE2oTdBN+E4gTkhOcE6YTsBO6E8QTzhPYE+IT7BP2FAAUChQUFB4UKBQyFDwURhRQFFoUZBRuFHgUghSMFJYUoBSqFLQUvhTIFNIU3BTmFPAU+hUEFQ4VGBUiFSwVNhVAFUoVVBVeFWgVchV8FYYVkBWaFaQVrhW4FcIVzBXWFeAV6hX0Ff4WCBYSFhwWJhYwFjoWRBZOFlgWYhZsFnYWgBaKFpQWnhamFq4Wtha+FsYWzhbWFt4W5hbuFvYW/hcGFw4XFhceFyYXLhc2Fz4XRhdOF1YXXhdmF24XdBd6F4AXhgJ9AAkAEgJ5ABIAqAASAekCVwHpAn0ACQASAnkAEgCoABIB6QJXAeoCfQAJABICeQASAKgAEgHpAlcB6wJ9AAkAEgJ5ABIAqAASAekCVwHsAn0ACQASAnkAEgCoABIB6QJXAe0CfQAJABICeQASAKgAEgHqAlcB6QJ9AAkAEgJ5ABIAqAASAeoCVwHqAn0ACQASAnkAEgCoABIB6gJXAesCfQAJABICeQASAKgAEgHqAlcB7AJ9AAkAEgJ5ABIAqAASAeoCVwHtAn0ACQASAnkAEgCoABIB6wJXAekCfQAJABICeQASAKgAEgHrAlcB6gJ9AAkAEgJ5ABIAqAASAesCVwHrAn0ACQASAnkAEgCoABIB6wJXAewCfQAJABICeQASAKgAEgHrAlcB7QJ9AAkAEgJ5ABIAqAASAewCVwHpAn0ACQASAnkAEgCoABIB7AJXAeoCfQAJABICeQASAKgAEgHsAlcB6wJ9AAkAEgJ5ABIAqAASAewCVwHsAn0ACQASAnkAEgCoABIB7AJXAe0CfQAJABICeQASAKgAEgHtAlcB6QJ9AAkAEgJ5ABIAqAASAe0CVwHqAn0ACQASAnkAEgCoABIB7QJXAesCfQAJABICeQASAKgAEgHtAlcB7AJ9AAkAEgJ5ABIAqAASAe0CVwHtAn0ACQHpABIAqAASAnkAEgJWAekCfQAJAekAEgCoABICeQASAlYB6gJ9AAkB6QASAKgAEgJ5ABICVgHrAn0ACQHpABIAqAASAnkAEgJWAewCfQAJAekAEgCoABICeQASAlYB7QJ9AAkB6QASAKgAEgJ5ABICVwHpAn0ACQHpABIAqAASAnkAEgJXAeoCfQAJAekAEgCoABICeQASAlcB6wJ9AAkB6QASAKgAEgJ5ABICVwHsAn0ACQHpABIAqAASAnkAEgJXAe0CfQAJAeoAEgCoABICeQASAlYB6QJ9AAkB6gASAKgAEgJ5ABICVgHqAn0ACQHqABIAqAASAnkAEgJWAesCfQAJAeoAEgCoABICeQASAlYB7AJ9AAkB6gASAKgAEgJ5ABICVgHtAn0ACQHqABIAqAASAnkAEgJXAekCfQAJAeoAEgCoABICeQASAlcB6gJ9AAkB6gASAKgAEgJ5ABICVwHrAn0ACQHqABIAqAASAnkAEgJXAewCfQAJAeoAEgCoABICeQASAlcB7QJ9AAkB6wASAKgAEgJ5ABICVgHpAn0ACQHrABIAqAASAnkAEgJWAeoCfQAJAesAEgCoABICeQASAlYB6wJ9AAkB6wASAKgAEgJ5ABICVgHsAn0ACQHrABIAqAASAnkAEgJWAe0CfQAJAesAEgCoABICeQASAlcB6QJ9AAkB6wASAKgAEgJ5ABICVwHqAn0ACQHrABIAqAASAnkAEgJXAesCfQAJAesAEgCoABICeQASAlcB7AJ9AAkB6wASAKgAEgJ5ABICVwHtAn0ACQHsABIAqAASAnkAEgJWAekCfQAJAewAEgCoABICeQASAlYB6gJ9AAkB7AASAKgAEgJ5ABICVgHrAn0ACQHsABIAqAASAnkAEgJWAewCfQAJAewAEgCoABICeQASAlYB7QJ9AAkB7AASAKgAEgJ5ABICVwHpAn0ACQHsABIAqAASAnkAEgJXAeoCfQAJAewAEgCoABICeQASAlcB6wJ9AAkB7AASAKgAEgJ5ABICVwHsAn0ACQHsABIAqAASAnkAEgJXAe0CfQAJAe0AEgCoABICeQASAlYB6QJ9AAkB7QASAKgAEgJ5ABICVgHqAn0ACQHtABIAqAASAnkAEgJWAesCfQAJAe0AEgCoABICeQASAlYB7AJ9AAkB7QASAKgAEgJ5ABICVgHtAn0ACQHtABIAqAASAnkAEgJXAekCfQAJAe0AEgCoABICeQASAlcB6gJ9AAkB7QASAKgAEgJ5ABICVwHrAn0ACQHtABIAqAASAnkAEgJXAewCfQAJAe0AEgCoABICeQASAlcB7QJ/AAcAEgCoABIB6wJXAesCfwAHABIAqAASAesCVwHsAn8ABwASAKgAEgHrAlcB7QJ/AAcAEgCoABIB7AJXAekCfwAHABIAqAASAewCVwHqAn8ABwASAKgAEgHsAlcB6wJ/AAcAEgCoABIB7AJXAewCfwAHABIAqAASAewCVwHtAn8ABwASAKgAEgHtAlcB6QJ/AAcAEgCoABIB7QJXAeoCfwAHABIAqAASAe0CVwHrAn8ABwASAKgAEgHtAlcB7AJ/AAcAEgCoABIB7QJXAe0CfwAHAekAEgCoABICVgHpAn8ABwHpABIAqAASAlYB6gJ/AAcB6QASAKgAEgJWAesCfwAHAekAEgCoABICVgHsAn8ABwHpABIAqAASAlYB7QJ/AAcB6QASAKgAEgJXAekCfwAHAekAEgCoABICVwHqAn8ABwHpABIAqAASAlcB6wJ/AAcB6QASAKgAEgJXAewCfwAHAekAEgCoABICVwHtAn8ABwHqABIAqAASAlYB6QJ/AAcB6gASAKgAEgJWAeoCfwAHAeoAEgCoABICVgHrAn8ABwHqABIAqAASAlYB7AJ/AAcB6gASAKgAEgJWAe0CfwAHAeoAEgCoABICVwHpAn8ABwHqABIAqAASAlcB6gJ/AAcB6gASAKgAEgJXAesCfwAHAeoAEgCoABICVwHsAn8ABwHqABIAqAASAlcB7QJ/AAcB6wASAKgAEgJWAekCfwAHAesAEgCoABICVgHqAn8ABwHrABIAqAASAlYB6wJ/AAcB6wASAKgAEgJWAewCfwAHAesAEgCoABICVgHtAn8ABwHrABIAqAASAlcB6QJ/AAcB6wASAKgAEgJXAeoCfwAHAesAEgCoABICVwHrAn8ABwHrABIAqAASAlcB7AJ/AAcB6wASAKgAEgJXAe0CfwAHAewAEgCoABICVgHpAn8ABwHsABIAqAASAlYB6gJ/AAcB7AASAKgAEgJWAesCfwAHAewAEgCoABICVgHsAn8ABwHsABIAqAASAlYB7QJ/AAcB7AASAKgAEgJXAekCfwAHAewAEgCoABICVwHqAn8ABwHsABIAqAASAlcB6wJ/AAcB7AASAKgAEgJXAewCfwAHAewAEgCoABICVwHtAn8ABwHtABIAqAASAlYB6QJ/AAcB7QASAKgAEgJWAeoCfwAHAe0AEgCoABICVgHrAn8ABwHtABIAqAASAlYB7AJ/AAcB7QASAKgAEgJWAe0CfwAHAe0AEgCoABICVwHpAn8ABwHtABIAqAASAlcB6gJ/AAcB7QASAKgAEgJXAesCfwAHAe0AEgCoABICVwHsAn8ABwHtABIAqAASAlcB7QYZAAcAEgRMABIB6QJXAeoGGQAHABIETAASAekCVwHrBhkABwASBEwAEgHpAlcB7AYZAAcAEgRMABIB6QJXAe0GGQAHABIETAASAeoCVwHpBhkABwASBEwAEgHqAlcB6wYZAAcAEgRMABIB6gJXAewGGQAHABIETAASAeoCVwHtBhkABwASBEwAEgHrAlcB6QYZAAcAEgRMABIB6wJXAeoGGQAHABIETAASAesCVwHsBhkABwASBEwAEgHrAlcB7QYZAAcAEgRMABIB7AJXAekGGQAHABIETAASAewCVwHqBhkABwASBEwAEgHsAlcB6wYZAAcAEgRMABIB7AJXAe0GGQAHABIETAASAe0CVwHpBhkABwASBEwAEgHtAlcB6gYZAAcAEgRMABIB7QJXAesGGQAHABIETAASAe0CVwHsBhkABwHpABIETAASAlYB6gYZAAcB6QASBEwAEgJWAesGGQAHAekAEgRMABICVgHsBhkABwHpABIETAASAlYB7QYZAAcB6QASBEwAEgJXAeoGGQAHAekAEgRMABICVwHrBhkABwHpABIETAASAlcB7AYZAAcB6QASBEwAEgJXAe0GGQAHAeoAEgRMABICVgHpBhkABwHqABIETAASAlYB6wYZAAcB6gASBEwAEgJWAewGGQAHAeoAEgRMABICVgHtBhkABwHqABIETAASAlcB6QYZAAcB6gASBEwAEgJXAesGGQAHAeoAEgRMABICVwHsBhkABwHqABIETAASAlcB7QYZAAcB6wASBEwAEgJWAekGGQAHAesAEgRMABICVgHqBhkABwHrABIETAASAlYB7AYZAAcB6wASBEwAEgJWAe0GGQAHAesAEgRMABICVwHpBhkABwHrABIETAASAlcB6gYZAAcB6wASBEwAEgJXAewGGQAHAesAEgRMABICVwHtBhkABwHsABIETAASAlYB6QYZAAcB7AASBEwAEgJWAeoGGQAHAewAEgRMABICVgHrBhkABwHsABIETAASAlYB7QYZAAcB7AASBEwAEgJXAekGGQAHAewAEgRMABICVwHqBhkABwHsABIETAASAlcB6wYZAAcB7AASBEwAEgJXAe0GGQAHAe0AEgRMABICVgHpBhkABwHtABIETAASAlYB6gYZAAcB7QASBEwAEgJWAesGGQAHAe0AEgRMABICVgHsBhkABwHtABIETAASAlcB6QYZAAcB7QASBEwAEgJXAeoGGQAHAe0AEgRMABICVwHrBhkABwHtABIETAASAlcB7AYUAAcAEgJXABICVQASAlUGEwAHABICVwASAlUAEgJUBhEABwASAlcAEgJUABICVAJ/AAcAEgCoABIB6QJXAekCfwAHABIAqAASAekCVwHqAn8ABwASAKgAEgHpAlcB6wJ/AAcAEgCoABIB6QJXAewCfwAHABIAqAASAekCVwHtAn8ABwASAKgAEgHqAlcB6QJ/AAcAEgCoABIB6gJXAeoCfwAHABIAqAASAeoCVwHrAn8ABwASAKgAEgHqAlcB7AJ/AAcAEgCoABIB6gJXAe0CfwAHABIAqAASAesCVwHpAn8ABwASAKgAEgHrAlcB6gJ9AAcAEgJ5ABIAqAASAlcCfQAHABIAqAASAnkAEgJWAn0ABwASAKgAEgJ5ABICVwYQAAUAEgJXABICVAYPAAUAEgJVABICVQYOAAUAEgJVABICVAYMAAUAEgJUABICVAJ/AAUAEgCoABICVgJ/AAUAEgCoABICVwYSAAUAEgJXABICVQXnAAQB6QASAZUF5wAEAeoAEgGVBecABAHrABIBlQXnAAQB7AASAZUF5wAEAe0AEgGVBeYABAHpABIDGQXmAAQB6gASAxkF5gAEAesAEgMZBeYABAHsABIDGQXmAAQB7QASAxkF5QAEAekAEgCQBeUABAHqABIAkAXlAAQB6wASAJAF5QAEAewAEgCQBeUABAHtABIAkAXkAAQB6QASBNwF5AAEAeoAEgTcBeQABAHrABIE3AXkAAQB7AASBNwF5AAEAe0AEgTcBeMABAHpABIE6QXjAAQB6gASBOkF4wAEAesAEgTpBeMABAHsABIE6QXjAAQB7QASBOkF4gAEAekAEgTqBeIABAHqABIE6gXiAAQB6wASBOoF4gAEAewAEgTqBeIABAHtABIE6gXhAAQB6QASAXIF4QAEAeoAEgFyBeEABAHrABIBcgXhAAQB7AASAXIF4QAEAe0AEgFyBeAABAHpABICqgXgAAQB6gASAqoF4AAEAesAEgKqBeAABAHsABICqgXgAAQB7QASAqoF3gAEAekAEgMUBd4ABAHqABIDFAXeAAQB6wASAxQF3gAEAewAEgMUBd4ABAHtABIDFAXdAAQB6QASAGsF3QAEAeoAEgBrBd0ABAHrABIAawXdAAQB7AASAGsF3QAEAe0AEgBrBdwABAHpABIAagXcAAQB6gASAGoF3AAEAesAEgBqBdwABAHsABIAagXcAAQB7QASAGoF2wAEAekAEgPXBdsABAHqABID1wXbAAQB6wASA9cF2wAEAewAEgPXBdsABAHtABID1wXaAAQB6QASATQF2gAEAeoAEgE0BdoABAHrABIBNAXaAAQB7AASATQF2gAEAe0AEgE0BdkABAHpABIB3gXZAAQB6gASAd4F2QAEAesAEgHeBdkABAHsABIB3gXZAAQB7QASAd4F2AAEAekAEgFpBdgABAHqABIBaQXYAAQB6wASAWkF2AAEAewAEgFpBdgABAHtABIBaQXXAAQB6QASA8UF1wAEAeoAEgPFBdcABAHrABIDxQXXAAQB7AASA8UF1wAEAe0AEgPFBdYABAHpABIBmQXWAAQB6gASAZkF1gAEAesAEgGZBdYABAHsABIBmQXWAAQB7QASAZkGIAAEAewAEgTdBiAABAHtABIE3QYbAAQB6QASBN4GGwAEAeoAEgTeBhsABAHrABIE3gYbAAQB7AASBN4GGwAEAe0AEgTeBhoABAHpABIE3wYaAAQB6gASBN8GGgAEAesAEgTfBhoABAHsABIE3wYaAAQB7QASBN8GIQAEAekAEgTgBiEABAHqABIE4AYhAAQB6wASBOAGIQAEAewAEgTgBiEABAHtABIE4AYgAAQB6QASBN0GIAAEAeoAEgTdBiAABAHrABIE3QXqAAQB6QASAqkF6gAEAeoAEgKpBeoABAHrABICqQXqAAQB7AASAqkF6gAEAe0AEgKpBekABAHpABIB3AXpAAQB6gASAdwF6QAEAesAEgHcBekABAHsABIB3AXpAAQB7QASAdwF6AAEAekAEgGJBegABAHqABIBiQXoAAQB6wASAYkF6AAEAewAEgGJBegABAHtABIBiQXWAAMAEgGZBiEAAwASBOAF2gADABIBNAXkAAMAEgTcBeYAAwASAxkGDQADABICVQXdAAMAEgBrBeEAAwASAXIF2QADABIB3gXpAAMAEgHcBhoAAwASBN8F6gADABICqQXjAAMAEgTpBdwAAwASAGoF2AADABIBaQXnAAMAEgGVBeAAAwASAqoF5QADABIAkAYLAAMAEgJUBhsAAwASBN4F1wADABIDxQXbAAMAEgPXBiAAAwASBN0F4gADABIE6gXeAAMAEgMUBegAAwASAYkCVwACAekCVwACAeoCVwACAesCVwACAewCVwACAe0ABQAMABIAGAAeACQGGQACAekGGQACAeoGGQACAesGGQACAewGGQACAe0ABQAMABIAGAAeACQGGQACAekGGQACAeoGGQACAesGGQACAewGGQACAe0ABQAMABIAGAAeACQGGQACAekGGQACAeoGGQACAesGGQACAewGGQACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALACXAAEAekAEgBQAlwABAHpABIAUQJcAAQB6gASAFACXAAEAeoAEgBRAlwABAHrABIAUAJcAAQB6wASAFECXAAEAewAEgBQAlwABAHsABIAUQJcAAQB7QASAFACXAAEAe0AEgBRAlwAAwASAFACXAADABIAUQJcAAIB6QJcAAIB6gJcAAIB6wJcAAIB7AJcAAIB7QACAAYADgXrAAMAEgBQBd8AAwASAFEAEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALACXgAEAekAEgBQAl4ABAHpABIAUQJeAAQB6gASAFACXgAEAeoAEgBRAl4ABAHrABIAUAJeAAQB6wASAFECXgAEAewAEgBQAl4ABAHsABIAUQJeAAQB7QASAFACXgAEAe0AEgBRAl4AAwASAFACXgADABIAUQJeAAIB6QJeAAIB6gJeAAIB6wJeAAIB7AJeAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAYfAAQB6QASAFAGHwAEAeoAEgBQBh8ABAHrABIAUAYfAAQB7AASAFAGHwAEAe0AEgBQBhYABAHpABIAUQYWAAQB6gASAFEGFgAEAesAEgBRBhYABAHsABIAUQYWAAQB7QASAFEGHwADABIAUAYWAAMAEgBRAl8AAgHpAl8AAgHqAl8AAgHrAl8AAgHsAl8AAgHtAAUADAASABgAHgAkAmAAAgHpAmAAAgHqAmAAAgHrAmAAAgHsAmAAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwAmEABAHpABIAUAJhAAQB6QASAFECYQAEAeoAEgBQAmEABAHqABIAUQJhAAQB6wASAFACYQAEAesAEgBRAmEABAHsABIAUAJhAAQB7AASAFECYQAEAe0AEgBQAmEABAHtABIAUQJhAAMAEgBQAmEAAwASAFECYQACAekCYQACAeoCYQACAesCYQACAewCYQACAe0ABQAMABIAGAAeACQCYgACAekCYgACAeoCYgACAesCYgACAewCYgACAe0ABQAMABIAGAAeACQCYwACAekCYwACAeoCYwACAesCYwACAewCYwACAe0ABQAMABIAGAAeACQCZAACAekCZAACAeoCZAACAesCZAACAewCZAACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALACZQAEAekAEgBQAmUABAHpABIAUQJlAAQB6gASAFACZQAEAeoAEgBRAmUABAHrABIAUAJlAAQB6wASAFECZQAEAewAEgBQAmUABAHsABIAUQJlAAQB7QASAFACZQAEAe0AEgBRAmUAAwASAFACZQADABIAUQJlAAIB6QJlAAIB6gJlAAIB6wJlAAIB7AJlAAIB7QAFAAwAEgAYAB4AJAJmAAIB6QJmAAIB6gJmAAIB6wJmAAIB7AJmAAIB7QAFAAwAEgAYAB4AJAJqAAIB6QJqAAIB6gJqAAIB6wJqAAIB7AJqAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAJvAAQB6QASAFACbwAEAekAEgBRAm8ABAHqABIAUAJvAAQB6gASAFECbwAEAesAEgBQAm8ABAHrABIAUQJvAAQB7AASAFACbwAEAewAEgBRAm8ABAHtABIAUAJvAAQB7QASAFECbwADABIAUAJvAAMAEgBRAm8AAgHpAm8AAgHqAm8AAgHrAm8AAgHsAm8AAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwAnAABAHpABIAUAJwAAQB6QASAFECcAAEAeoAEgBQAnAABAHqABIAUQJwAAQB6wASAFACcAAEAesAEgBRAnAABAHsABIAUAJwAAQB7AASAFECcAAEAe0AEgBQAnAABAHtABIAUQJwAAMAEgBQAnAAAwASAFECcAACAekCcAACAeoCcAACAesCcAACAewCcAACAe0ABQAMABIAGAAeACQCcQACAekCcQACAeoCcQACAesCcQACAewCcQACAe0ABQAMABIAGAAeACQCcwACAekCcwACAeoCcwACAesCcwACAewCcwACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALACdAAEAekAEgBQAnQABAHpABIAUQJ0AAQB6gASAFACdAAEAeoAEgBRAnQABAHrABIAUAJ0AAQB6wASAFECdAAEAewAEgBQAnQABAHsABIAUQJ0AAQB7QASAFACdAAEAe0AEgBRAnQAAwASAFACdAADABIAUQJ0AAIB6QJ0AAIB6gJ0AAIB6wJ0AAIB7AJ0AAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAJ1AAQB6QASAFACdQAEAekAEgBRAnUABAHqABIAUAJ1AAQB6gASAFECdQAEAesAEgBQAnUABAHrABIAUQJ1AAQB7AASAFACdQAEAewAEgBRAnUABAHtABIAUAJ1AAQB7QASAFECdQADABIAUAJ1AAMAEgBRAnUAAgHpAnUAAgHqAnUAAgHrAnUAAgHsAnUAAgHtAAUADAASABgAHgAkAn0AAgHpAn0AAgHqAn0AAgHrAn0AAgHsAn0AAgHtAAUADAASABgAHgAkAn8AAgHpAn8AAgHqAn8AAgHrAn8AAgHsAn8AAgHtAAEABAXvAAMAEgOjAAUADAASABgAHgAkApgAAgHpApgAAgHqApgAAgHrApgAAgHsApgAAgHtAAEABAXxAAMAEgOqABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwF6gAEABICVgHpBeoABAASAlYB6gXqAAQAEgJWAesF6gAEABICVgHsBeoABAASAlYB7QXqAAQAEgT+AekF6gAEABIE/gHqBeoABAASBP4B6wXqAAQAEgT+AewF6gAEABIE/gHtBeoABAASAlcB6QXqAAQAEgJXAeoF6gAEABICVwHrBeoABAASAlcB7AXqAAQAEgJXAe0F6gADABICVgXqAAMAEgT+BeoAAwASAlcAEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXgAAQAEgJWAekF4AAEABICVgHqBeAABAASAlYB6wXgAAQAEgJWAewF4AAEABICVgHtBeAABAASBP4B6QXgAAQAEgT+AeoF4AAEABIE/gHrBeAABAASBP4B7AXgAAQAEgT+Ae0F4AAEABICVwHpBeAABAASAlcB6gXgAAQAEgJXAesF4AAEABICVwHsBeAABAASAlcB7QXgAAMAEgJWBeAAAwASBP4F4AADABICVwABAAQF1AADABIAqAASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBd4ABAASAlYB6QXeAAQAEgJWAeoF3gAEABICVgHrBd4ABAASAlYB7AXeAAQAEgJWAe0F3gAEABIE/gHpBd4ABAASBP4B6gXeAAQAEgT+AesF3gAEABIE/gHsBd4ABAASBP4B7QXeAAQAEgJXAekF3gAEABICVwHqBd4ABAASAlcB6wXeAAQAEgJXAewF3gAEABICVwHtBd4AAwASAlYF3gADABIE/gXeAAMAEgJXABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwF5gAEABICVgHpBeYABAASAlYB6gXmAAQAEgJWAesF5gAEABICVgHsBeYABAASAlYB7QXmAAQAEgT+AekF5gAEABIE/gHqBeYABAASBP4B6wXmAAQAEgT+AewF5gAEABIE/gHtBeYABAASAlcB6QXmAAQAEgJXAeoF5gAEABICVwHrBeYABAASAlcB7AXmAAQAEgJXAe0F5gADABICVgXmAAMAEgT+BeYAAwASAlcABQAMABIAGAAeACQDTAACAekDTAACAeoDTAACAesDTAACAewDTAACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALADTQAEAekAEgBQA00ABAHpABIAUQNNAAQB6gASAFADTQAEAeoAEgBRA00ABAHrABIAUANNAAQB6wASAFEDTQAEAewAEgBQA00ABAHsABIAUQNNAAQB7QASAFADTQAEAe0AEgBRA00AAwASAFADTQADABIAUQNNAAIB6QNNAAIB6gNNAAIB6wNNAAIB7ANNAAIB7QAFAAwAEgAYAB4AJANSAAIB6QNSAAIB6gNSAAIB6wNSAAIB7ANSAAIB7QAFAAwAEgAYAB4AJANYAAIB6QNYAAIB6gNYAAIB6wNYAAIB7ANYAAIB7QAFAAwAEgAYAB4AJANZAAIB6QNZAAIB6gNZAAIB6wNZAAIB7ANZAAIB7QAFAAwAEgAYAB4AJANaAAIB6QNaAAIB6gNaAAIB6wNaAAIB7ANaAAIB7QABAAQF0wADABICLwABAAQF7wADABIClgABAAQF8QADABICmQABAAQF8AADABIBIQARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAO6AAQB6QASAFADugAEAekAEgBRA7oABAHqABIAUAO6AAQB6gASAFEDugAEAesAEgBQA7oABAHrABIAUQO6AAQB7AASAFADugAEAewAEgBRA7oABAHtABIAUAO6AAQB7QASAFEDugADABIAUAO6AAMAEgBRA7oAAgHpA7oAAgHqA7oAAgHrA7oAAgHsA7oAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwA7sABAHpABIAUAO7AAQB6QASAFEDuwAEAeoAEgBQA7sABAHqABIAUQO7AAQB6wASAFADuwAEAesAEgBRA7sABAHsABIAUAO7AAQB7AASAFEDuwAEAe0AEgBQA7sABAHtABIAUQO7AAMAEgBQA7sAAwASAFEDuwACAekDuwACAeoDuwACAesDuwACAewDuwACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALADvAAEAekAEgBQA7wABAHpABIAUQO8AAQB6gASAFADvAAEAeoAEgBRA7wABAHrABIAUAO8AAQB6wASAFEDvAAEAewAEgBQA7wABAHsABIAUQO8AAQB7QASAFADvAAEAe0AEgBRA7wAAwASAFADvAADABIAUQO8AAIB6QO8AAIB6gO8AAIB6wO8AAIB7AO8AAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAPAAAQB6QASAFADwAAEAekAEgBRA8AABAHqABIAUAPAAAQB6gASAFEDwAAEAesAEgBQA8AABAHrABIAUQPAAAQB7AASAFADwAAEAewAEgBRA8AABAHtABIAUAPAAAQB7QASAFEDwAADABIAUAPAAAMAEgBRA8AAAgHpA8AAAgHqA8AAAgHrA8AAAgHsA8AAAgHtAAUADAASABgAHgAkA8EAAgHpA8EAAgHqA8EAAgHrA8EAAgHsA8EAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwA8IABAHpABIAUAPCAAQB6QASAFEDwgAEAeoAEgBQA8IABAHqABIAUQPCAAQB6wASAFADwgAEAesAEgBRA8IABAHsABIAUAPCAAQB7AASAFEDwgAEAe0AEgBQA8IABAHtABIAUQPCAAMAEgBQA8IAAwASAFEDwgACAekDwgACAeoDwgACAesDwgACAewDwgACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALADwwAEAekAEgBQA8MABAHpABIAUQPDAAQB6gASAFADwwAEAeoAEgBRA8MABAHrABIAUAPDAAQB6wASAFEDwwAEAewAEgBQA8MABAHsABIAUQPDAAQB7QASAFADwwAEAe0AEgBRA8MAAwASAFADwwADABIAUQPDAAIB6QPDAAIB6gPDAAIB6wPDAAIB7APDAAIB7QAFAAwAEgAYAB4AJAPEAAIB6QPEAAIB6gPEAAIB6wPEAAIB7APEAAIB7QASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBdcABAASAlYB6QXXAAQAEgJWAeoF1wAEABICVgHrBdcABAASAlYB7AXXAAQAEgJWAe0F1wAEABIE/gHpBdcABAASBP4B6gXXAAQAEgT+AesF1wAEABIE/gHsBdcABAASBP4B7QXXAAQAEgJXAekF1wAEABICVwHqBdcABAASAlcB6wXXAAQAEgJXAewF1wAEABICVwHtBdcAAwASAlYF1wADABIE/gXXAAMAEgJXABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwF2wAEABICVgHpBdsABAASAlYB6gXbAAQAEgJWAesF2wAEABICVgHsBdsABAASAlYB7QXbAAQAEgT+AekF2wAEABIE/gHqBdsABAASBP4B6wXbAAQAEgT+AewF2wAEABIE/gHtBdsABAASAlcB6QXbAAQAEgJXAeoF2wAEABICVwHrBdsABAASAlcB7AXbAAQAEgJXAe0F2wADABICVgXbAAMAEgT+BdsAAwASAlcAEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAD6AAEAekAEgBQA+gABAHpABIAUQPoAAQB6gASAFAD6AAEAeoAEgBRA+gABAHrABIAUAPoAAQB6wASAFED6AAEAewAEgBQA+gABAHsABIAUQPoAAQB7QASAFAD6AAEAe0AEgBRA+gAAwASAFAD6AADABIAUQPoAAIB6QPoAAIB6gPoAAIB6wPoAAIB7APoAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAP5AAQB6QASAFAD+QAEAekAEgBRA/kABAHqABIAUAP5AAQB6gASAFED+QAEAesAEgBQA/kABAHrABIAUQP5AAQB7AASAFAD+QAEAewAEgBRA/kABAHtABIAUAP5AAQB7QASAFED+QADABIAUAP5AAMAEgBRA/kAAgHpA/kAAgHqA/kAAgHrA/kAAgHsA/kAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwA/oABAHpABIAUAP6AAQB6QASAFED+gAEAeoAEgBQA/oABAHqABIAUQP6AAQB6wASAFAD+gAEAesAEgBRA/oABAHsABIAUAP6AAQB7AASAFED+gAEAe0AEgBQA/oABAHtABIAUQP6AAMAEgBQA/oAAwASAFED+gACAekD+gACAeoD+gACAesD+gACAewD+gACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAD+wAEAekAEgBQA/sABAHpABIAUQP7AAQB6gASAFAD+wAEAeoAEgBRA/sABAHrABIAUAP7AAQB6wASAFED+wAEAewAEgBQA/sABAHsABIAUQP7AAQB7QASAFAD+wAEAe0AEgBRA/sAAwASAFAD+wADABIAUQP7AAIB6QP7AAIB6gP7AAIB6wP7AAIB7AP7AAIB7QAFAAwAEgAYAB4AJAQFAAIB6QQFAAIB6gQFAAIB6wQFAAIB7AQFAAIB7QAFAAwAEgAYAB4AJAQMAAIB6QQMAAIB6gQMAAIB6wQMAAIB7AQMAAIB7QAFAAwAEgAYAB4AJAQ7AAIB6QQ7AAIB6gQ7AAIB6wQ7AAIB7AQ7AAIB7QAFAAwAEgAYAB4AJAQ+AAIB6QQ+AAIB6gQ+AAIB6wQ+AAIB7AQ+AAIB7QAFAAwAEgAYAB4AJARHAAIB6QRHAAIB6gRHAAIB6wRHAAIB7ARHAAIB7QAFAAwAEgAYAB4AJARIAAIB6QRIAAIB6gRIAAIB6wRIAAIB7ARIAAIB7QAFAAwAEgAYAB4AJARJAAIB6QRJAAIB6gRJAAIB6wRJAAIB7ARJAAIB7QAFAAwAEgAYAB4AJARKAAIB6QRKAAIB6gRKAAIB6wRKAAIB7ARKAAIB7QAFAAwAEgAYAB4AJARLAAIB6QRLAAIB6gRLAAIB6wRLAAIB7ARLAAIB7QAFAAwAEgAYAB4AJARMAAIB6QRMAAIB6gRMAAIB6wRMAAIB7ARMAAIB7QAFAAwAEgAYAB4AJARNAAIB6QRNAAIB6gRNAAIB6wRNAAIB7ARNAAIB7QAFAAwAEgAYAB4AJAROAAIB6QROAAIB6gROAAIB6wROAAIB7AROAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsARVAAQB6QASAFAEVQAEAekAEgBRBFUABAHqABIAUARVAAQB6gASAFEEVQAEAesAEgBQBFUABAHrABIAUQRVAAQB7AASAFAEVQAEAewAEgBRBFUABAHtABIAUARVAAQB7QASAFEEVQADABIAUARVAAMAEgBRBFUAAgHpBFUAAgHqBFUAAgHrBFUAAgHsBFUAAgHtAAUADAASABgAHgAkBF8AAgHpBF8AAgHqBF8AAgHrBF8AAgHsBF8AAgHtAAUADAASABgAHgAkBGAAAgHpBGAAAgHqBGAAAgHrBGAAAgHsBGAAAgHtAAUADAASABgAHgAkBGEAAgHpBGEAAgHqBGEAAgHrBGEAAgHsBGEAAgHtAAUADAASABgAHgAkBGIAAgHpBGIAAgHqBGIAAgHrBGIAAgHsBGIAAgHtAAUADAASABgAHgAkBGMAAgHpBGMAAgHqBGMAAgHrBGMAAgHsBGMAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBGQABAHpABIAUARkAAQB6QASAFEEZAAEAeoAEgBQBGQABAHqABIAUQRkAAQB6wASAFAEZAAEAesAEgBRBGQABAHsABIAUARkAAQB7AASAFEEZAAEAe0AEgBQBGQABAHtABIAUQRkAAMAEgBQBGQAAwASAFEEZAACAekEZAACAeoEZAACAesEZAACAewEZAACAe0ABQAMABIAGAAeACQEZQACAekEZQACAeoEZQACAesEZQACAewEZQACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAEZgAEAekAEgBQBGYABAHpABIAUQRmAAQB6gASAFAEZgAEAeoAEgBRBGYABAHrABIAUARmAAQB6wASAFEEZgAEAewAEgBQBGYABAHsABIAUQRmAAQB7QASAFAEZgAEAe0AEgBRBGYAAwASAFAEZgADABIAUQRmAAIB6QRmAAIB6gRmAAIB6wRmAAIB7ARmAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsARnAAQB6QASAFAEZwAEAekAEgBRBGcABAHqABIAUARnAAQB6gASAFEEZwAEAesAEgBQBGcABAHrABIAUQRnAAQB7AASAFAEZwAEAewAEgBRBGcABAHtABIAUARnAAQB7QASAFEEZwADABIAUARnAAMAEgBRBGcAAgHpBGcAAgHqBGcAAgHrBGcAAgHsBGcAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBGgABAHpABIAUARoAAQB6QASAFEEaAAEAeoAEgBQBGgABAHqABIAUQRoAAQB6wASAFAEaAAEAesAEgBRBGgABAHsABIAUARoAAQB7AASAFEEaAAEAe0AEgBQBGgABAHtABIAUQRoAAMAEgBQBGgAAwASAFEEaAACAekEaAACAeoEaAACAesEaAACAewEaAACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAEagAEAekAEgBQBGoABAHpABIAUQRqAAQB6gASAFAEagAEAeoAEgBRBGoABAHrABIAUARqAAQB6wASAFEEagAEAewAEgBQBGoABAHsABIAUQRqAAQB7QASAFAEagAEAe0AEgBRBGoAAwASAFAEagADABIAUQRqAAIB6QRqAAIB6gRqAAIB6wRqAAIB7ARqAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsARrAAQB6QASAFAEawAEAekAEgBRBGsABAHqABIAUARrAAQB6gASAFEEawAEAesAEgBQBGsABAHrABIAUQRrAAQB7AASAFAEawAEAewAEgBRBGsABAHtABIAUARrAAQB7QASAFEEawADABIAUARrAAMAEgBRBGsAAgHpBGsAAgHqBGsAAgHrBGsAAgHsBGsAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBGwABAHpABIAUARsAAQB6QASAFEEbAAEAeoAEgBQBGwABAHqABIAUQRsAAQB6wASAFAEbAAEAesAEgBRBGwABAHsABIAUARsAAQB7AASAFEEbAAEAe0AEgBQBGwABAHtABIAUQRsAAMAEgBQBGwAAwASAFEEbAACAekEbAACAeoEbAACAesEbAACAewEbAACAe0ABQAMABIAGAAeACQEpAACAekEpAACAeoEpAACAesEpAACAewEpAACAe0AEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAXkAAQAEgJWAekF5AAEABICVgHqBeQABAASAlYB6wXkAAQAEgJWAewF5AAEABICVgHtBeQABAASBP4B6QXkAAQAEgT+AeoF5AAEABIE/gHrBeQABAASBP4B7AXkAAQAEgT+Ae0F5AAEABICVwHpBeQABAASAlcB6gXkAAQAEgJXAesF5AAEABICVwHsBeQABAASAlcB7QXkAAMAEgJWBeQAAwASBP4F5AADABICVwASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBiAABAASAlcB6QYgAAQAEgJXAeoGIAAEABICVwHrBiAABAASAlcB7AYgAAQAEgJXAe0GHAAEABIE/gHpBhwABAASBP4B6gYcAAQAEgT+AesGHAAEABIE/gHsBhwABAASBP4B7QYXAAQAEgJWAekGFwAEABICVgHqBhcABAASAlYB6wYXAAQAEgJWAewGFwAEABICVgHtBhwAAwASBP4GIAADABICVwYXAAMAEgJWABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwGGwAEABICVgHpBhsABAASAlYB6gYbAAQAEgJWAesGGwAEABICVgHsBhsABAASAlYB7QYbAAQAEgT+AekGGwAEABIE/gHqBhsABAASBP4B6wYbAAQAEgT+AewGGwAEABIE/gHtBhsABAASAlcB6QYbAAQAEgJXAeoGGwAEABICVwHrBhsABAASAlcB7AYbAAQAEgJXAe0GGwADABICVgYbAAMAEgT+BhsAAwASAlcAEgAmADAAOgBEAE4AWABiAGwAdgCAAIoAlACeAKgAsgC8AMQAzAYaAAQAEgJWAekGGgAEABICVgHqBhoABAASAlYB6wYaAAQAEgJWAewGGgAEABICVgHtBhoABAASBP4B6QYaAAQAEgT+AeoGGgAEABIE/gHrBhoABAASBP4B7AYaAAQAEgT+Ae0GGgAEABICVwHpBhoABAASAlcB6gYaAAQAEgJXAesGGgAEABICVwHsBhoABAASAlcB7QYaAAMAEgJWBhoAAwASBP4GGgADABICVwASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBiEABAASAlcB6QYhAAQAEgJXAeoGIQAEABICVwHrBiEABAASAlcB7AYhAAQAEgJXAe0GHQAEABIE/gHpBh0ABAASBP4B6gYdAAQAEgT+AesGHQAEABIE/gHsBh0ABAASBP4B7QYYAAQAEgJWAekGGAAEABICVgHqBhgABAASAlYB6wYYAAQAEgJWAewGGAAEABICVgHtBh0AAwASBP4GIQADABICVwYYAAMAEgJWAAUADAASABgAHgAkBOIAAgHpBOIAAgHqBOIAAgHrBOIAAgHsBOIAAgHtAAUADAASABgAHgAkBOMAAgHpBOMAAgHqBOMAAgHrBOMAAgHsBOMAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBOUABAHpABIAUATlAAQB6QASAFEE5QAEAeoAEgBQBOUABAHqABIAUQTlAAQB6wASAFAE5QAEAesAEgBRBOUABAHsABIAUATlAAQB7AASAFEE5QAEAe0AEgBQBOUABAHtABIAUQTlAAMAEgBQBOUAAwASAFEE5QACAekE5QACAeoE5QACAesE5QACAewE5QACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAE5gAEAekAEgBQBOYABAHpABIAUQTmAAQB6gASAFAE5gAEAeoAEgBRBOYABAHrABIAUATmAAQB6wASAFEE5gAEAewAEgBQBOYABAHsABIAUQTmAAQB7QASAFAE5gAEAe0AEgBRBOYAAwASAFAE5gADABIAUQTmAAIB6QTmAAIB6gTmAAIB6wTmAAIB7ATmAAIB7QABAAQF7gADABICAwAFAAwAEgAYAB4AJAToAAIB6QToAAIB6gToAAIB6wToAAIB7AToAAIB7QASACYAMAA6AEQATgBYAGIAbAB2AIAAigCUAJ4AqACyALwAxADMBOkABAASAlYB6QTpAAQAEgJWAeoE6QAEABICVgHrBOkABAASAlYB7ATpAAQAEgJWAe0E6QAEABIE/gHpBOkABAASBP4B6gTpAAQAEgT+AesE6QAEABIE/gHsBOkABAASBP4B7QTpAAQAEgJXAekE6QAEABICVwHqBOkABAASAlcB6wTpAAQAEgJXAewE6QAEABICVwHtBOkAAwASAlYE6QADABIE/gTpAAMAEgJXABIAJgAwADoARABOAFgAYgBsAHYAgACKAJQAngCoALIAvADEAMwE6gAEABICVgHpBOoABAASAlYB6gTqAAQAEgJWAesE6gAEABICVgHsBOoABAASAlYB7QTqAAQAEgT+AekE6gAEABIE/gHqBOoABAASBP4B6wTqAAQAEgT+AewE6gAEABIE/gHtBOoABAASAlcB6QTqAAQAEgJXAeoE6gAEABICVwHrBOoABAASAlcB7ATqAAQAEgJXAe0E6gADABICVgTqAAMAEgT+BOoAAwASAlcAEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAE+gAEAekAEgBQBPoABAHpABIAUQT6AAQB6gASAFAE+gAEAeoAEgBRBPoABAHrABIAUAT6AAQB6wASAFEE+gAEAewAEgBQBPoABAHsABIAUQT6AAQB7QASAFAE+gAEAe0AEgBRBPoAAwASAFAE+gADABIAUQT6AAIB6QT6AAIB6gT6AAIB6wT6AAIB7AT6AAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAT7AAQB6QASAFAE+wAEAekAEgBRBPsABAHqABIAUAT7AAQB6gASAFEE+wAEAesAEgBQBPsABAHrABIAUQT7AAQB7AASAFAE+wAEAewAEgBRBPsABAHtABIAUAT7AAQB7QASAFEE+wADABIAUAT7AAMAEgBRBPsAAgHpBPsAAgHqBPsAAgHrBPsAAgHsBPsAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBPwABAHpABIAUAT8AAQB6QASAFEE/AAEAeoAEgBQBPwABAHqABIAUQT8AAQB6wASAFAE/AAEAesAEgBRBPwABAHsABIAUAT8AAQB7AASAFEE/AAEAe0AEgBQBPwABAHtABIAUQT8AAMAEgBQBPwAAwASAFEE/AACAekE/AACAeoE/AACAesE/AACAewE/AACAe0BHgI+AlICZgJ6Ao4CogK2AsoC3gLyAwYDGgMuA0IDVgNqA34DkgOmA7oDzgPiA/YECgQeBDIERgRaBG4EggSWBKoEvgTSBOYE+gUOBSIFNgVKBV4FbgV+BY4FngWuBb4FzgXeBe4F/gYOBh4GLgY+Bk4GXgZuBn4GjgaeBq4GvgbOBt4G7gb+Bw4HHgcuBz4HTgdeB24HfgeOB54Hrge+B84H3gfuB/4IDggeCC4IPghOCF4Ibgh+CI4IngiuCL4IzgjeCO4I/gkOCR4JLgk+CU4JXgluCX4JjgmeCa4JvgnOCd4J7gn+Cg4KHgouCj4KTgpeCm4KfgqOCp4Krgq+Cs4K3gruCv4LCgsUCx4LKAsyCzwLRgtQC1oLZAtuC3gLgguMC5YLoAuqC7QLvgvIC9IL3AvmC/AL+gwEDA4MGAwiDCwMNgxADEoMVAxeDGgMcgx8DIYMkAyaDKQMrgy4DMIMzAzWDOAM6gz0DP4NCA0SDRwNJg0wDToNRA1ODVgNYg1sDXYNgA2KDZQNng2oDbINvA3GDdAN2g3kDe4N+A4CDgwOFg4gDioONA4+DkgOUg5cDmYOcA56DoQOjg6YDqIOrA62DsAOyg7UDt4O6A7yDvwPBg8QDxoPJA8uDzgPQg9MD1YPYA9qD3QPfg+ID5IPnA+mD7APug/ED84P2A/iD+wP9A/8EAQQDBAUEBwQJBAsEDQQPBBEEEwQVBBcEGQQbBB0EHwQhBCMEJQQnBCkEKwQtBC6EMAQxhDMAn0ACQASAnkAEgCoABIB6QT+AeoCfQAJABICeQASAKgAEgHpBP4B6wJ9AAkAEgJ5ABIAqAASAekE/gHsAn0ACQASAnkAEgCoABIB6QT+Ae0CfQAJABICeQASAKgAEgHqBP4B6QJ9AAkAEgJ5ABIAqAASAeoE/gHrAn0ACQASAnkAEgCoABIB6gT+AewCfQAJABICeQASAKgAEgHqBP4B7QJ9AAkAEgJ5ABIAqAASAesE/gHpAn0ACQASAnkAEgCoABIB6wT+AeoCfQAJABICeQASAKgAEgHrBP4B7AJ9AAkAEgJ5ABIAqAASAesE/gHtAn0ACQASAnkAEgCoABIB7AT+AekCfQAJABICeQASAKgAEgHsBP4B6gJ9AAkAEgJ5ABIAqAASAewE/gHrAn0ACQASAnkAEgCoABIB7AT+Ae0CfQAJABICeQASAKgAEgHtBP4B6QJ9AAkAEgJ5ABIAqAASAe0E/gHqAn0ACQASAnkAEgCoABIB7QT+AesCfQAJABICeQASAKgAEgHtBP4B7AJ9AAkB6QASAKgAEgJ5ABIE/gHqAn0ACQHpABIAqAASAnkAEgT+AesCfQAJAekAEgCoABICeQASBP4B7AJ9AAkB6QASAKgAEgJ5ABIE/gHtAn0ACQHqABIAqAASAnkAEgT+AekCfQAJAeoAEgCoABICeQASBP4B6wJ9AAkB6gASAKgAEgJ5ABIE/gHsAn0ACQHqABIAqAASAnkAEgT+Ae0CfQAJAesAEgCoABICeQASBP4B6QJ9AAkB6wASAKgAEgJ5ABIE/gHqAn0ACQHrABIAqAASAnkAEgT+AewCfQAJAesAEgCoABICeQASBP4B7QJ9AAkB7AASAKgAEgJ5ABIE/gHpAn0ACQHsABIAqAASAnkAEgT+AeoCfQAJAewAEgCoABICeQASBP4B6wJ9AAkB7AASAKgAEgJ5ABIE/gHtAn0ACQHtABIAqAASAnkAEgT+AekCfQAJAe0AEgCoABICeQASBP4B6gJ9AAkB7QASAKgAEgJ5ABIE/gHrAn0ACQHtABIAqAASAnkAEgT+AewGGQAHAewAEgRMABIE/gHpBhkABwHsABIETAASBP4B6gYZAAcB7AASBEwAEgT+AesGGQAHAewAEgRMABIE/gHsBhkABwHsABIETAASBP4B7QYZAAcB7QASBEwAEgT+AekGGQAHAe0AEgRMABIE/gHqBhkABwHtABIETAASBP4B6wYZAAcB7QASBEwAEgT+AewGGQAHAe0AEgRMABIE/gHtAn8ABwASAKgAEgHpBP4B6gJ/AAcAEgCoABIB6QT+AesCfwAHABIAqAASAekE/gHsAn8ABwASAKgAEgHpBP4B7QJ/AAcAEgCoABIB6gT+AekCfwAHABIAqAASAeoE/gHrAn8ABwASAKgAEgHqBP4B7AJ/AAcAEgCoABIB6gT+Ae0CfwAHABIAqAASAesE/gHpAn8ABwASAKgAEgHrBP4B6gJ/AAcAEgCoABIB6wT+AewCfwAHABIAqAASAesE/gHtAn8ABwASAKgAEgHsBP4B6QJ/AAcAEgCoABIB7AT+AeoCfwAHABIAqAASAewE/gHrAn8ABwASAKgAEgHsBP4B7QJ/AAcAEgCoABIB7QT+AekCfwAHABIAqAASAe0E/gHqAn8ABwASAKgAEgHtBP4B6wJ/AAcAEgCoABIB7QT+AewCfwAHAekAEgCoABIE/gHqAn8ABwHpABIAqAASBP4B6wJ/AAcB6QASAKgAEgT+AewCfwAHAekAEgCoABIE/gHtAn8ABwHqABIAqAASBP4B6QJ/AAcB6gASAKgAEgT+AesCfwAHAeoAEgCoABIE/gHsAn8ABwHqABIAqAASBP4B7QJ/AAcB6wASAKgAEgT+AekCfwAHAesAEgCoABIE/gHqAn8ABwHrABIAqAASBP4B7AJ/AAcB6wASAKgAEgT+Ae0CfwAHAewAEgCoABIE/gHpAn8ABwHsABIAqAASBP4B6gJ/AAcB7AASAKgAEgT+AesCfwAHAewAEgCoABIE/gHtAn8ABwHtABIAqAASBP4B6QJ/AAcB7QASAKgAEgT+AeoCfwAHAe0AEgCoABIE/gHrAn8ABwHtABIAqAASBP4B7AYZAAcAEgRMABIB6QT+AekGGQAHABIETAASAekE/gHqBhkABwASBEwAEgHpBP4B6wYZAAcAEgRMABIB6QT+AewGGQAHABIETAASAekE/gHtBhkABwASBEwAEgHqBP4B6QYZAAcAEgRMABIB6gT+AeoGGQAHABIETAASAeoE/gHrBhkABwASBEwAEgHqBP4B7AYZAAcAEgRMABIB6gT+Ae0GGQAHABIETAASAesE/gHpBhkABwASBEwAEgHrBP4B6gYZAAcAEgRMABIB6wT+AesGGQAHABIETAASAesE/gHsBhkABwASBEwAEgHrBP4B7QYZAAcAEgRMABIB7AT+AekGGQAHABIETAASAewE/gHqBhkABwASBEwAEgHsBP4B6wYZAAcAEgRMABIB7AT+AewGGQAHABIETAASAewE/gHtBhkABwASBEwAEgHtBP4B6QYZAAcAEgRMABIB7QT+AeoGGQAHABIETAASAe0E/gHrBhkABwASBEwAEgHtBP4B7AYZAAcAEgRMABIB7QT+Ae0GGQAHAekAEgRMABIE/gHpBhkABwHpABIETAASBP4B6gYZAAcB6QASBEwAEgT+AesGGQAHAekAEgRMABIE/gHsBhkABwHpABIETAASBP4B7QYZAAcB6gASBEwAEgT+AekGGQAHAeoAEgRMABIE/gHqBhkABwHqABIETAASBP4B6wYZAAcB6gASBEwAEgT+AewGGQAHAeoAEgRMABIE/gHtBhkABwHrABIETAASBP4B6QYZAAcB6wASBEwAEgT+AeoGGQAHAesAEgRMABIE/gHrBhkABwHrABIETAASBP4B7AYZAAcB6wASBEwAEgT+Ae0GGQAFABIETAASBP4F3QAEAekAEgBrBd0ABAHqABIAawXdAAQB6wASAGsF3QAEAewAEgBrBd0ABAHtABIAawXcAAQB6QASAGoF3AAEAeoAEgBqBdwABAHrABIAagXcAAQB7AASAGoF3AAEAe0AEgBqBdsABAHpABID1wXbAAQB6gASA9cF2wAEAesAEgPXBdsABAHsABID1wXbAAQB7QASA9cF2gAEAekAEgE0BdoABAHqABIBNAXaAAQB6wASATQF2gAEAewAEgE0BdoABAHtABIBNAXZAAQB6QASAd4F2QAEAeoAEgHeBdkABAHrABIB3gXZAAQB7AASAd4F2QAEAe0AEgHeBdgABAHpABIBaQXYAAQB6gASAWkF2AAEAesAEgFpBdgABAHsABIBaQXYAAQB7QASAWkF1wAEAekAEgPFBdcABAHqABIDxQXXAAQB6wASA8UF1wAEAewAEgPFBdcABAHtABIDxQXWAAQB6QASAZkF1gAEAeoAEgGZBdYABAHrABIBmQXWAAQB7AASAZkF1gAEAe0AEgGZBhsABAHqABIE3gYbAAQB6wASBN4GGwAEAewAEgTeBhsABAHtABIE3gYaAAQB6QASBN8GGgAEAeoAEgTfBhoABAHrABIE3wYaAAQB7AASBN8GGgAEAe0AEgTfBh0ABAHpABIE4AYdAAQB6gASBOAGHQAEAesAEgTgBh0ABAHsABIE4AYdAAQB7QASBOAGHAAEAekAEgTdBhwABAHqABIE3QYcAAQB6wASBN0GHAAEAewAEgTdBhwABAHtABIE3QYbAAQB6QASBN4F6gAEAekAEgKpBeoABAHqABICqQXqAAQB6wASAqkF6gAEAewAEgKpBeoABAHtABICqQXpAAQB6QASAdwF6QAEAeoAEgHcBekABAHrABIB3AXpAAQB7AASAdwF6QAEAe0AEgHcBegABAHpABIBiQXoAAQB6gASAYkF6AAEAesAEgGJBegABAHsABIBiQXoAAQB7QASAYkF5wAEAekAEgGVBecABAHqABIBlQXnAAQB6wASAZUF5wAEAewAEgGVBecABAHtABIBlQXmAAQB6QASAxkF5gAEAeoAEgMZBeYABAHrABIDGQXmAAQB7AASAxkF5gAEAe0AEgMZBeUABAHpABIAkAXlAAQB6gASAJAF5QAEAesAEgCQBeUABAHsABIAkAXlAAQB7QASAJAF5AAEAekAEgTcBeQABAHqABIE3AXkAAQB6wASBNwF5AAEAewAEgTcBeQABAHtABIE3AXjAAQB6QASBOkF4wAEAeoAEgTpBeMABAHrABIE6QXjAAQB7AASBOkF4wAEAe0AEgTpBeIABAHpABIE6gXiAAQB6gASBOoF4gAEAesAEgTqBeIABAHsABIE6gXiAAQB7QASBOoF4QAEAekAEgFyBeEABAHqABIBcgXhAAQB6wASAXIF4QAEAewAEgFyBeEABAHtABIBcgXgAAQB6QASAqoF4AAEAeoAEgKqBeAABAHrABICqgXgAAQB7AASAqoF4AAEAe0AEgKqBd4ABAHpABIDFAXeAAQB6gASAxQF3gAEAesAEgMUBd4ABAHsABIDFAXeAAQB7QASAxQBewAEAekAEgF6AXsABAHqABIBegF7AAQB6wASAXoBewAEAewAEgF6AXsABAHtABIBegXkAAMAEgTcBhoAAwASBN8F2wADABID1wXeAAMAEgMUBdcAAwASA8UF5wADABIBlQXqAAMAEgKpBegAAwASAYkF4QADABIBcgXaAAMAEgE0BdYAAwASAZkF5QADABIAkAXdAAMAEgBrBeMAAwASBOkF6QADABIB3AYbAAMAEgTeBdkAAwASAd4GHAADABIE3QXgAAMAEgKqBdwAAwASAGoF5gADABIDGQYdAAMAEgTgBdgAAwASAWkF4gADABIE6gF7AAMAEgF6BP4AAgHqBP4AAgHrBP4AAgHsBP4AAgHtBP4AAgHpAAUADAASABgAHgAkBP8AAgHpBP8AAgHqBP8AAgHrBP8AAgHsBP8AAgHtAAUADAASABgAHgAkBQAAAgHpBQAAAgHqBQAAAgHrBQAAAgHsBQAAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBh4ABAHpABIAUAYeAAQB6gASAFAGHgAEAesAEgBQBh4ABAHsABIAUAYeAAQB7QASAFAGFQAEAekAEgBRBhUABAHqABIAUQYVAAQB6wASAFEGFQAEAewAEgBRBhUABAHtABIAUQYeAAMAEgBQBhUAAwASAFEFAQACAekFAQACAeoFAQACAesFAQACAewFAQACAe0ABQAMABIAGAAeACQFAgACAekFAgACAeoFAgACAesFAgACAewFAgACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAFAwAEAekAEgBQBQMABAHpABIAUQUDAAQB6gASAFAFAwAEAeoAEgBRBQMABAHrABIAUAUDAAQB6wASAFEFAwAEAewAEgBQBQMABAHsABIAUQUDAAQB7QASAFAFAwAEAe0AEgBRBQMAAwASAFAFAwADABIAUQUDAAIB6QUDAAIB6gUDAAIB6wUDAAIB7AUDAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAUEAAQB6QASAFAFBAAEAekAEgBRBQQABAHqABIAUAUEAAQB6gASAFEFBAAEAesAEgBQBQQABAHrABIAUQUEAAQB7AASAFAFBAAEAewAEgBRBQQABAHtABIAUAUEAAQB7QASAFEFBAADABIAUAUEAAMAEgBRBQQAAgHpBQQAAgHqBQQAAgHrBQQAAgHsBQQAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBQUABAHpABIAUAUFAAQB6QASAFEFBQAEAeoAEgBQBQUABAHqABIAUQUFAAQB6wASAFAFBQAEAesAEgBRBQUABAHsABIAUAUFAAQB7AASAFEFBQAEAe0AEgBQBQUABAHtABIAUQUFAAMAEgBQBQUAAwASAFEFBQACAekFBQACAeoFBQACAesFBQACAewFBQACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAFBgAEAekAEgBQBQYABAHpABIAUQUGAAQB6gASAFAFBgAEAeoAEgBRBQYABAHrABIAUAUGAAQB6wASAFEFBgAEAewAEgBQBQYABAHsABIAUQUGAAQB7QASAFAFBgAEAe0AEgBRBQYAAwASAFAFBgADABIAUQUGAAIB6QUGAAIB6gUGAAIB6wUGAAIB7AUGAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAUHAAQB6QASAFAFBwAEAekAEgBRBQcABAHqABIAUAUHAAQB6gASAFEFBwAEAesAEgBQBQcABAHrABIAUQUHAAQB7AASAFAFBwAEAewAEgBRBQcABAHtABIAUAUHAAQB7QASAFEFBwADABIAUAUHAAMAEgBRBQcAAgHpBQcAAgHqBQcAAgHrBQcAAgHsBQcAAgHtABEAJAAuADgAQgBMAFYAYABqAHQAfgCIAJAAmACeAKQAqgCwBQgABAHpABIAUAUIAAQB6QASAFEFCAAEAeoAEgBQBQgABAHqABIAUQUIAAQB6wASAFAFCAAEAesAEgBRBQgABAHsABIAUAUIAAQB7AASAFEFCAAEAe0AEgBQBQgABAHtABIAUQUIAAMAEgBQBQgAAwASAFEFCAACAekFCAACAeoFCAACAesFCAACAewFCAACAe0AEQAkAC4AOABCAEwAVgBgAGoAdAB+AIgAkACYAJ4ApACqALAFCQAEAekAEgBQBQkABAHpABIAUQUJAAQB6gASAFAFCQAEAeoAEgBRBQkABAHrABIAUAUJAAQB6wASAFEFCQAEAewAEgBQBQkABAHsABIAUQUJAAQB7QASAFAFCQAEAe0AEgBRBQkAAwASAFAFCQADABIAUQUJAAIB6QUJAAIB6gUJAAIB6wUJAAIB7AUJAAIB7QARACQALgA4AEIATABWAGAAagB0AH4AiACQAJgAngCkAKoAsAUKAAQB6QASAFAFCgAEAekAEgBRBQoABAHqABIAUAUKAAQB6gASAFEFCgAEAesAEgBQBQoABAHrABIAUQUKAAQB7AASAFAFCgAEAewAEgBRBQoABAHtABIAUAUKAAQB7QASAFEFCgADABIAUAUKAAMAEgBRBQoAAgHpBQoAAgHqBQoAAgHrBQoAAgHsBQoAAgHtAAIABgAOBQsAAwASAFAFCwADABIAUQACAAYADgUMAAMAEgBQBQwAAwASAFEAAQAEBdUAAwASAKgABQAMABIAGAAeACQFdQACAekFdQACAeoFdQACAesFdQACAewFdQACAe0ABQAMABIAGAAeACQFdgACAekFdgACAeoFdgACAesFdgACAewFdgACAe0ABQAMABIAGAAeACQFdwACAekFdwACAeoFdwACAesFdwACAewFdwACAe0ABQAMABIAGAAeACQFjwACAekFjwACAeoFjwACAesFjwACAewFjwACAe0AGQA0AEAATABYAGQAcAB8AIgAlACgAKwAuADEANAA3ADoAPQBAAEMARgBJAEqATABNgE8BEwABQHpABIFkQHqBEwABQHpABIFkQHrBEwABQHpABIFkQHsBEwABQHpABIFkQHtBEwABQHqABIFkQHpBEwABQHqABIFkQHrBEwABQHqABIFkQHsBEwABQHqABIFkQHtBEwABQHrABIFkQHpBEwABQHrABIFkQHqBEwABQHrABIFkQHsBEwABQHrABIFkQHtBEwABQHsABIFkQHpBEwABQHsABIFkQHqBEwABQHsABIFkQHrBEwABQHsABIFkQHtBEwABQHtABIFkQHpBEwABQHtABIFkQHqBEwABQHtABIFkQHrBEwABQHtABIFkQHsBZAAAgHpBZAAAgHqBZAAAgHrBZAAAgHsBZAAAgHtABkANABAAEwAWABkAHAAfACIAJQAoACsALgAxADQANwA6AD0AQABDAEYASQBKgEwATYBPARMAAUAEgHpBZAB6gRMAAUAEgHpBZAB6wRMAAUAEgHpBZAB7ARMAAUAEgHpBZAB7QRMAAUAEgHqBZAB6QRMAAUAEgHqBZAB6wRMAAUAEgHqBZAB7ARMAAUAEgHqBZAB7QRMAAUAEgHrBZAB6QRMAAUAEgHrBZAB6gRMAAUAEgHrBZAB7ARMAAUAEgHrBZAB7QRMAAUAEgHsBZAB6QRMAAUAEgHsBZAB6gRMAAUAEgHsBZAB6wRMAAUAEgHsBZAB7QRMAAUAEgHtBZAB6QRMAAUAEgHtBZAB6gRMAAUAEgHtBZAB6wRMAAUAEgHtBZAB7AWRAAIB6QWRAAIB6gWRAAIB6wWRAAIB7AWRAAIB7QAFAAwAEgAYAB4AJAWSAAIB6QWSAAIB6gWSAAIB6wWSAAIB7AWSAAIB7QAFAAwAEgAYAB4AJAWTAAIB6QWTAAIB6gWTAAIB6wWTAAIB7AWTAAIB7QAFAAwAEgAYAB4AJAWUAAIB6QWUAAIB6gWUAAIB6wWUAAIB7AWUAAIB7QAFAAwAEgAYAB4AJAWVAAIB6QWVAAIB6gWVAAIB6wWVAAIB7AWVAAIB7QAFAAwAEgAYAB4AJAWWAAIB6QWWAAIB6gWWAAIB6wWWAAIB7AWWAAIB7QAFAAwAEgAYAB4AJAWXAAIB6QWXAAIB6gWXAAIB6wWXAAIB7AWXAAIB7QACAEoABAAPAAAARQBGAAwAUABRAA4AagBrABAAcgByABIAiwCLABMAkACQABQAkgCVABUAnwCfABkAqACoABoAtAC0ABsAzwDoABwBAAEAADYBIQEhADcBNAE0ADgBaQFpADkBcgFyADoBegF7ADsBiQGJAD0BlQGVAD4BmQGZAD8BswG1AEABuAG4AEMBuwG9AEQB3AHcAEcB3gHeAEgB4gHjAEkB9gH2AEsCAwIDAEwCFAIUAE0CKQIpAE4CLwIxAE8CNAI+AFICVAJXAF0CWQJmAGECagJqAG8CbwJxAHACcwJ1AHMCfQJ9AHYCfwJ/AHcClgKWAHgCmAKZAHkCqQKqAHsDEgMSAH0DFAMUAH4DGQMZAH8DTANNAIADUgNSAIIDWANaAIMDbANsAIYDowOjAIcDqgOrAIgDugO8AIoDwAPFAI0D1wPXAJMD6APoAJQD+QP7AJUEBQQFAJgEDAQMAJkEOwQ7AJoEPgQ+AJsERwROAJwEVQRVAKQEXwRoAKUEagRsAK8EpASkALIE3ATgALME4gTjALgE5QTqALoE+gT8AMAE/gUMAMMFNgU2ANIFdQV3ANMFjwWXANYAAQD+AD4AggCEAIYAiACKAIwAjgCQAJIAlACWAJgAmgCcAJ4AoACiAKQApgCoAKoArACuALAAsgC0ALYAuAC6ALwAvgDAAMIAxADGAMgAygDMAM4A0ADSANQA1gDYANoA3ADeAOAA4gDkAOYA6ADqAOwA7gDwAPIA9AD2APgA+gD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAMAzwDVAAAA1wDoAAcFmAW8ABkAAgA4ABkHUgdSB1IHUgdSB1IHUgdSB1IHUgdSB1IHUgdSB1IHUgdSB1IHUgdSB1IHUgdSB1IHUgACAAIAzwDVAAAA1wDoAAcAAwABACgAAQASAAAAAQAAAAEAAgADAM8A1QAAANcA6AAHBZgFvAAZAAEAAgW8B1IAAQAeAAIACgAUAAEABAdSAAIFvAABAAQHUgACAeMAAQACAeMFvAADAAIAAgASACIAAAACAAEAAQACAAIAzwDVAAAA1wDoAAcAAgACAM8A1QAAANcA6AAHAAAAAQAAAAoAHAAeAAFERkxUAAgABAAAAAD//wAAAAAAAAAAAAEAAAAA1aQnCAAAAADd1TVnAAAAAN9BNc8AARAABhn8AAAACij+YQMRBxcAAAABAAAAAAAAAAAAAAAAAAQKKADuCigGZgooBmYKKAZmAWkBvAEdAS0BHgEeAS4BLgEcAS4BHQEe/5r/mgZm/5r/mv+aAYT/mv+a/5r/mv+a/5r/mv+a/5r/mv+aAPj/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgKIAoj/mv+aAJQAlAGYAZj/mgBi/5r/mv/M/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r//v+a/5r/mv+a/5r/pP+a/5r/zP+a/5r/mv+a/5r/mv+a/5oAYv+a/5r/mv+aAJT/mv+a/5r/mv+a/5r/mv/b/5r/mv+a/5r/mv+a/5r/zP+a/5r/mv+a/5r/mv+a/8wCsP+a/5oAxgDG/5r/mv+a/5r/mv+a/5r/mv+aAoj/mv+a/5oGZgZm/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgCqALAAmwCwALAAsACbALAAsACwALAAsACwALAAmQCwAJkAsACbALAAsACwALAAsACwALD/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/wv+a/5r/mv+a/5r/mgAX/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv/+AGL/mv+a/5r/zP+a/5r/mv/M/+D/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a//7/mv/+/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/8z/zP+a/8z/mv+a/5r/mv+a/5r/mf+a/5r/mv+a/5r/mgAw/8z/mv+a/5r/zP+a/5r//v+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+Z/5r/mv+a/67/mv9o/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+W/5r/mv+a/5r/mv+a/5r/mgDGAPj/mv+a/5r/mv+a/5r/mv+a/5r/mv+aAPj/mv+aAJT/mv+a/5r/mv+a/5r/mv/+/5r/mv+a/5r/mv+a/5r/mgCU/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5oAYgFc/5r/mv+a/5r/mv/M/5r/mv+a/5r/lf+a/5r/mv+a/5r/mv+a/5r/mv/M//7/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/zP+a/5r/mv+a/8z/zP+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv/M/8z/mv+a/5r/mv+a/5r/mgBi//7/mv+4/5r/mv+a/5r/mv/M/5r/mv+a/5r/zP/M/8z/mv/M/8z/mv+a/8z/zP/M/8z/zP/M/8z/zP/MADD/mgAwAGL/mv+aAMb/mv+a/5r//v/+//7/mv+a/5r/mv+aAMb/mgAwAgb/mv+a/5r/mv+a/5r/mv+a/5oAxgFhAMb/mgHA/5r/mv+a//7/mv+f/5r/mgD4AY4BjgGO/5r/aP+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv9o/5r/mv+a/5r/mv+a/5r/aP+a//7/mv+aAJT/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+aAJT/mv+a/5r/mv+a/5r/mgBi/5r/mv+a/5r/mv+aAJQAMAAwADAAMP+a/5r/mgAw/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgAw/5r/mv+a/5r/mv+a/5r/mgDG/5r/mv+a/5r/mv+a/2gAlAEq/5oBKv+a/5oBKv+aAGIAMP+a/5r/mv+a/5r/mv/+/5r/mv+a/5oA+P+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv9o/5r/mv+a/5r/nv+a/5r/mv+a/5r/mv+O/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv/+/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+aAlYCVgGOAY7/mv+a/5r/mv/M/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgFc/5r/mgIG/5r/mv+a/5r/mv+a/5r/mf+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgBi/5r/mv/+AGL/mv/+/5r/mv+f/5r/mv+f/5r/mv+a/6T/aP+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/zP/M/8z/zP/M/8z/zP/+/8z/mv+a/5r/mgAw/5r/zP/M/8z/zP+a/5oAYgAw/5r/zP/+/5oAMP+a/5r/mv+a/5r/mv+a/5oAlP+a/5r/mv/+/5r/mv/+/2gAYv+aAMb/zACU/8wAMP/M/5r/mv+a/5j/mf+a//4BXAFc/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+aAJT/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/n//+/5r/mv+a/5r/mv+aAJT/mv/MAJT/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5oAxv+a/5r/mgDG/5r/mv+a//4AMADGAGL/mgBi/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5oBKv+a/5r/mv/M/5r/mv+a/5r/mv+a/5r/mv+a/2j/mgBiAGIAlP+a/5r/mv+a/5r/mv+a/5oAMP+a/5r/mv+a/5r/mv+a/5r/aP+a/5oAMP+a/5r/mv+aADD/mv+a/5oAYv+a/5r/mv+a/5r/mv+a/5oAYv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r//v/+/5r//v/M/8z/zP+a/5r/lv+a/5r/mgBi/5r/mv+a/8z/lP+a/5r/mv/M/5r/mv+a/5r/mv+a/8z/bf+a/5r/mv+a/5r/aP+a/5r/mv+a/5r/mgBi/5oBjv+a/5r/mv+a/2j/mv+aAJT/mv+a/8z/mv+a/5r/mv/M/5r/hv9o/5r/zP+a/5r/mv/+/5r/mv/+/5r/zP+a/8z/mgD4/5r/mv+a/5r/zP+a/5r/aP+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+Y/8z/mv+f//7/mv+a/5b/mv+a/8z/zABi/5r/mv+a/2j/mv+a/8z/mv+a/5r/mv+a/5r/mv+a/8z/mv/+/5r/mv+a/5r/mgAw/5oAYv+a/5r/mv+a/5r/mv+a/5oA+P+a/5r/mv+a/5r/mv/+/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+aASr/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5b/mv+a/5r/mgEq/5T/mv+a/5r/mv+aAC7/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5oAlP+a/5oAnv+a/5r/mgCU/5r/mv+Q/5r/mgAw/5oAgACA/5r/mv/g/5r/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/8z/zP+ZADD/mv+a/5r/mv+4/5r/mv+a/5r/mv+aAPj/mv9P/5oAYgBiAJQBKv+aAGL/mv+aBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYGZgZmBmYAMAAwADAAMAAwADAAMAAwADAAMP+a/5r/mv+a/5r/mv+a/5r/mv+a/5r/mgCU/5r/mv+a/2j/mv+a/5r/mv+a/5r/mv+a/5r/mv+a/5//mv+a/5r/mv+a/5r/mv+a/5r//v+a/5r/mv+aAogCiAKIAogCiAKIAPgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+AD4APgA+P+a/5r/mv+aAY7/mv+a/5r/mv+a/5r/mv+a/5oCigKNAoMCjQKNAo0CgwKNAo0CjQKOAo0CjgKOAoMCjgKDAo0CgwKNAo4CjQKOAo0CjQKOAa8BrwGlAa8BrwGvAaUBrwGvAa8BrwGwAbABsAGlAbABpQGwAaUBrwGwAbABsAGwAa8BsAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAA') format('truetype'); + + unicode-range: U+2139, U+2194, U+2195, U+2196, U+2197, U+2198, U+2199, U+21A9, U+21AA, U+231A, U+231B, U+23E9, U+23EA, U+23EB, U+23EC, U+23ED, U+23EE, U+23EF, U+23F0, U+23F1, U+23F2, U+23F3, U+23F8, U+23F9, U+23FA, U+2328, U+23CF, U+24C2, U+25AA, U+25AB, U+25B6, U+25C0, U+25FB, U+25FC, U+25FD, U+25FE, U+2600, U+2601, U+2602, U+2603, U+2604, U+260E, U+2611, U+2615, U+2618, U+2638, U+2668, U+267E, U+267F, U+269C, U+26A0, U+26A1, U+2614, U+261D, U+2620, U+2622, U+2623, U+2626, U+262A, U+262E, U+262F, U+2639, U+263A, U+2640, U+2642, U+2648, U+2649, U+264A, U+264B, U+264C, U+264D, U+264E, U+264F, U+2650, U+2651, U+2652, U+2653, U+26CE, U+265F, U+2660, U+2663, U+2665, U+2666, U+267B, U+2692, U+2693, U+2694, U+2695, U+2696, U+2697, U+2699, U+269B, U+26A7, U+26AA, U+26AB, U+26B0, U+26B1, U+26BD, U+26BE, U+26C4, U+26C5, U+26C8, U+26CF, U+26D1, U+26D3, U+26D4, U+26E9, U+26EA, U+26F0, U+26F1, U+26F2, U+26F3, U+26F4, U+26F5, U+26F7, U+26F8, U+26F9, U+26FA, U+26FD, U+2702, U+2705, U+2708, U+2709, U+270A, U+270B, U+270C, U+270D, U+270F, U+2712, U+2714, U+2716, U+274C, U+274E, U+2753, U+2754, U+2755, U+2757, U+27B0, U+27BF, U+271D, U+2721, U+2728, U+2733, U+2734, U+2744, U+2747, U+2763, U+2764, U+2795, U+2796, U+2797, U+27A1, U+2934, U+2935, U+2B05, U+2B06, U+2B07, U+2B1B, U+2B1C, U+2B50, U+2B55, U+3030, U+303D, U+3297, U+3299, U+1F004, U+1F0CF, U+1F170, U+1F171, U+1F17E, U+1F17F, U+1F18E, U+1F191, U+1F192, U+1F193, U+1F194, U+1F195, U+1F196, U+1F197, U+1F198, U+1F199, U+1F19A, U+1F201, U+1F202, U+1F21A, U+1F22F, U+1F232, U+1F233, U+1F234, U+1F235, U+1F236, U+1F237, U+1F238, U+1F239, U+1F23A, U+1F250, U+1F251, U+1F300, U+1F301, U+1F302, U+1F303, U+1F304, U+1F305, U+1F306, U+1F307, U+1F308, U+1F309, U+1F30A, U+1F30B, U+1F30C, U+1F30D, U+1F30E, U+1F30F, U+1F310, U+1F311, U+1F312, U+1F313, U+1F314, U+1F315, U+1F316, U+1F317, U+1F318, U+1F319, U+1F31A, U+1F31B, U+1F31C, U+1F31D, U+1F31E, U+1F31F, U+1F320, U+1F321, U+1F324, U+1F325, U+1F326, U+1F327, U+1F328, U+1F329, U+1F32A, U+1F32B, U+1F32C, U+1F32D, U+1F32E, U+1F32F, U+1F354, U+1F355, U+1F356, U+1F357, U+1F358, U+1F359, U+1F35A, U+1F35B, U+1F35C, U+1F35D, U+1F35E, U+1F35F, U+1F360, U+1F361, U+1F362, U+1F363, U+1F364, U+1F365, U+1F366, U+1F367, U+1F368, U+1F369, U+1F36A, U+1F36B, U+1F36C, U+1F36D, U+1F36E, U+1F36F, U+1F370, U+1F371, U+1F372, U+1F373, U+1F374, U+1F330, U+1F331, U+1F332, U+1F333, U+1F334, U+1F335, U+1F336, U+1F337, U+1F338, U+1F339, U+1F33A, U+1F33B, U+1F33C, U+1F33D, U+1F33E, U+1F33F, U+1F340, U+1F341, U+1F342, U+1F343, U+1F344, U+1F345, U+1F346, U+1F347, U+1F348, U+1F349, U+1F34A, U+1F34B, U+1F34C, U+1F34D, U+1F34E, U+1F34F, U+1F350, U+1F351, U+1F352, U+1F353, U+1F375, U+1F376, U+1F377, U+1F378, U+1F379, U+1F37A, U+1F37B, U+1F37C, U+1F37D, U+1F37E, U+1F37F, U+1F380, U+1F381, U+1F382, U+1F383, U+1F384, U+1F385, U+1F386, U+1F387, U+1F388, U+1F389, U+1F38A, U+1F38B, U+1F38C, U+1F38D, U+1F38E, U+1F38F, U+1F390, U+1F391, U+1F392, U+1F393, U+1F396, U+1F397, U+1F399, U+1F39A, U+1F39B, U+1F3B5, U+1F3B6, U+1F3B7, U+1F3B8, U+1F3B9, U+1F3BA, U+1F3BB, U+1F3BC, U+1F39E, U+1F39F, U+1F3A0, U+1F3A1, U+1F3A2, U+1F3A3, U+1F3A4, U+1F3A5, U+1F3A6, U+1F3A7, U+1F3A8, U+1F3A9, U+1F3AA, U+1F3AB, U+1F3AC, U+1F3AD, U+1F3AE, U+1F3AF, U+1F3B0, U+1F3B1, U+1F3B2, U+1F3B3, U+1F3B4, U+1F579, U+1F3BD, U+1F3BE, U+1F3BF, U+1F3C0, U+1F3C1, U+1F3C2, U+1F3C3, U+1F3C4, U+1F3C5, U+1F3C6, U+1F3C7, U+1F3C8, U+1F3C9, U+1F3CA, U+1F3CB, U+1F3CC, U+1F3CD, U+1F3CE, U+1F3CF, U+1F3D0, U+1F3D1, U+1F3D2, U+1F3D3, U+1F3F8, U+1F3F9, U+1F3D4, U+1F3D5, U+1F3D6, U+1F3D7, U+1F3D8, U+1F3D9, U+1F3DA, U+1F3DB, U+1F3DC, U+1F3DD, U+1F3DE, U+1F3DF, U+1F3E0, U+1F3E1, U+1F3E2, U+1F3E3, U+1F3E4, U+1F3E5, U+1F3E6, U+1F3E7, U+1F3E8, U+1F3E9, U+1F3EA, U+1F3EB, U+1F3EC, U+1F3ED, U+1F3EE, U+1F3EF, U+1F3F0, U+1F3F3, U+1F3F4, U+1F3F5, U+1F3F7, U+1F3FA, U+1F52F, U+1F530, U+1F531, U+1F56F, U+1F570, U+1F573, U+1F574, U+1F575, U+1F576, U+1F5DE, U+1F400, U+1F401, U+1F402, U+1F403, U+1F404, U+1F405, U+1F406, U+1F407, U+1F408, U+1F409, U+1F40A, U+1F40B, U+1F40C, U+1F40D, U+1F40E, U+1F40F, U+1F410, U+1F411, U+1F412, U+1F413, U+1F414, U+1F415, U+1F416, U+1F417, U+1F418, U+1F419, U+1F41A, U+1F41B, U+1F41C, U+1F41D, U+1F41E, U+1F41F, U+1F420, U+1F421, U+1F422, U+1F423, U+1F424, U+1F425, U+1F426, U+1F427, U+1F428, U+1F429, U+1F42A, U+1F42B, U+1F42C, U+1F43E, U+1F43F, U+1F577, U+1F578, U+1F42D, U+1F42E, U+1F42F, U+1F430, U+1F431, U+1F432, U+1F433, U+1F434, U+1F435, U+1F436, U+1F437, U+1F438, U+1F439, U+1F43A, U+1F43B, U+1F43C, U+1F43D, U+1F440, U+1F441, U+1F442, U+1F443, U+1F444, U+1F445, U+1F446, U+1F447, U+1F448, U+1F449, U+1F44A, U+1F44B, U+1F44C, U+1F44D, U+1F44E, U+1F44F, U+1F450, U+1F590, U+1F595, U+1F596, U+1F451, U+1F452, U+1F453, U+1F454, U+1F455, U+1F456, U+1F457, U+1F458, U+1F459, U+1F45A, U+1F45B, U+1F45C, U+1F45D, U+1F45E, U+1F45F, U+1F460, U+1F461, U+1F462, U+1F463, U+1F464, U+1F465, U+1F466, U+1F467, U+1F468, U+1F469, U+1F46A, U+1F46B, U+1F46C, U+1F46D, U+1F46E, U+1F46F, U+1F470, U+1F471, U+1F472, U+1F473, U+1F474, U+1F475, U+1F476, U+1F477, U+1F478, U+1F479, U+1F47A, U+1F47B, U+1F47C, U+1F47D, U+1F47E, U+1F47F, U+1F480, U+1F481, U+1F482, U+1F483, U+1F57A, U+1F484, U+1F485, U+1F486, U+1F487, U+1F488, U+1F489, U+1F48A, U+1F48B, U+1F48C, U+1F48D, U+1F48E, U+1F48F, U+1F490, U+1F491, U+1F492, U+1F493, U+1F494, U+1F495, U+1F496, U+1F497, U+1F498, U+1F499, U+1F49A, U+1F49B, U+1F49C, U+1F49D, U+1F49E, U+1F49F, U+1F5A4, U+1F4A0, U+1F4A1, U+1F4A2, U+1F4A3, U+1F4A4, U+1F4A5, U+1F4A6, U+1F4A7, U+1F4A8, U+1F4A9, U+1F4AA, U+1F4AB, U+1F4AC, U+1F4AD, U+1F4AE, U+1F4AF, U+1F4B0, U+1F4B1, U+1F4B2, U+1F4B3, U+1F4B4, U+1F4B5, U+1F4B6, U+1F4B7, U+1F4B8, U+1F4B9, U+1F4BA, U+1F4BB, U+1F4BC, U+1F4BD, U+1F4BE, U+1F4BF, U+1F4C0, U+1F4C1, U+1F4C2, U+1F4C3, U+1F4C4, U+1F4C5, U+1F4C6, U+1F4C7, U+1F4C8, U+1F4C9, U+1F4CA, U+1F4CB, U+1F4CC, U+1F4CD, U+1F4CE, U+1F4CF, U+1F4D0, U+1F4D1, U+1F4D2, U+1F4D3, U+1F4D4, U+1F4D5, U+1F4D6, U+1F4D7, U+1F4D8, U+1F4D9, U+1F4DA, U+1F4DB, U+1F4DC, U+1F5BC, U+1F4DD, U+1F4DE, U+1F4DF, U+1F4E0, U+1F4E1, U+1F4E2, U+1F4E3, U+1F4E4, U+1F4E5, U+1F4E6, U+1F4E7, U+1F4E8, U+1F4E9, U+1F4EA, U+1F4EB, U+1F4EC, U+1F4ED, U+1F4EE, U+1F4EF, U+1F4F0, U+1F4F1, U+1F4F2, U+1F4F3, U+1F4F4, U+1F4F5, U+1F4F6, U+1F587, U+1F58A, U+1F58B, U+1F58C, U+1F58D, U+1F4F7, U+1F4F8, U+1F4F9, U+1F4FA, U+1F4FB, U+1F4FC, U+1F4FD, U+1F4FF, U+1F549, U+1F54A, U+1F54B, U+1F54C, U+1F54D, U+1F54E, U+1F500, U+1F501, U+1F502, U+1F503, U+1F504, U+1F505, U+1F506, U+1F507, U+1F508, U+1F509, U+1F50A, U+1F50B, U+1F50C, U+1F50D, U+1F50E, U+1F50F, U+1F510, U+1F511, U+1F512, U+1F513, U+1F514, U+1F515, U+1F516, U+1F517, U+1F518, U+1F53A, U+1F53B, U+1F53C, U+1F53D, U+1F5C2, U+1F5C3, U+1F5C4, U+1F5D1, U+1F5D2, U+1F5D3, U+1F5DC, U+1F5DD, U+1F519, U+1F51A, U+1F51B, U+1F51C, U+1F51D, U+1F51E, U+1F51F, U+1F520, U+1F521, U+1F522, U+1F523, U+1F524, U+1F525, U+1F526, U+1F527, U+1F528, U+1F529, U+1F52A, U+1F52B, U+1F52C, U+1F52D, U+1F52E, U+1F532, U+1F533, U+1F534, U+1F535, U+1F536, U+1F537, U+1F538, U+1F539, U+1F550, U+1F551, U+1F552, U+1F553, U+1F554, U+1F555, U+1F556, U+1F557, U+1F558, U+1F559, U+1F55A, U+1F55B, U+1F55C, U+1F55D, U+1F55E, U+1F55F, U+1F560, U+1F561, U+1F562, U+1F563, U+1F564, U+1F565, U+1F566, U+1F567, U+1F5A5, U+1F5A8, U+1F5B1, U+1F5B2, U+1F5E1, U+1F5E3, U+1F5E8, U+1F5EF, U+1F5F3, U+1F5FA, U+1F5FB, U+1F5FC, U+1F5FD, U+1F5FE, U+1F5FF, U+1F600, U+1F601, U+1F602, U+1F603, U+1F604, U+1F605, U+1F606, U+1F607, U+1F608, U+1F609, U+1F60A, U+1F60B, U+1F60C, U+1F60D, U+1F60E, U+1F60F, U+1F610, U+1F611, U+1F612, U+1F613, U+1F614, U+1F615, U+1F616, U+1F617, U+1F618, U+1F619, U+1F61A, U+1F61B, U+1F61C, U+1F61D, U+1F61E, U+1F61F, U+1F620, U+1F621, U+1F622, U+1F623, U+1F624, U+1F625, U+1F626, U+1F627, U+1F628, U+1F629, U+1F62A, U+1F62B, U+1F62C, U+1F62D, U+1F62E, U+1F62F, U+1F630, U+1F631, U+1F632, U+1F633, U+1F634, U+1F635, U+1F636, U+1F637, U+1F641, U+1F642, U+1F643, U+1F644, U+1F638, U+1F639, U+1F63A, U+1F63B, U+1F63C, U+1F63D, U+1F63E, U+1F63F, U+1F640, U+1F645, U+1F646, U+1F647, U+1F648, U+1F649, U+1F64A, U+1F64B, U+1F64C, U+1F64D, U+1F64E, U+1F64F, U+1F680, U+1F681, U+1F682, U+1F683, U+1F684, U+1F685, U+1F686, U+1F687, U+1F688, U+1F689, U+1F68A, U+1F68B, U+1F68C, U+1F68D, U+1F68E, U+1F68F, U+1F690, U+1F691, U+1F692, U+1F693, U+1F694, U+1F695, U+1F696, U+1F697, U+1F698, U+1F699, U+1F69A, U+1F69B, U+1F69C, U+1F69D, U+1F69E, U+1F69F, U+1F6A0, U+1F6A1, U+1F6A2, U+1F6A3, U+1F6A4, U+1F6E5, U+1F6E9, U+1F6EB, U+1F6EC, U+1F6F0, U+1F6F3, U+1F6F4, U+1F6F5, U+1F6F6, U+1F6F7, U+1F6F8, U+1F6F9, U+1F6FA, U+1F6FB, U+1F6FC, U+1F6A5, U+1F6A6, U+1F6A7, U+1F6A8, U+1F6A9, U+1F6AA, U+1F6AB, U+1F6AC, U+1F6AD, U+1F6AE, U+1F6AF, U+1F6B0, U+1F6B1, U+1F6B2, U+1F6B3, U+1F6B4, U+1F6B5, U+1F6B6, U+1F6B7, U+1F6B8, U+1F6B9, U+1F6BA, U+1F6BB, U+1F6BC, U+1F6BD, U+1F6BE, U+1F6BF, U+1F6C0, U+1F6C1, U+1F6C2, U+1F6C3, U+1F6C4, U+1F6C5, U+1F6D0, U+1F6D1, U+1F6D2, U+1F6CB, U+1F6CC, U+1F6CD, U+1F6CE, U+1F6CF, U+1F6D5, U+1F6D6, U+1F6D7, U+1F6DC, U+1F6DD, U+1F6DE, U+1F6DF, U+1F6E0, U+1F6E1, U+1F6E2, U+1F6E3, U+1F6E4, U+1F7E0, U+1F7E1, U+1F7E2, U+1F7E3, U+1F7E4, U+1F7E5, U+1F7E6, U+1F7E7, U+1F7E8, U+1F7E9, U+1F7EA, U+1F7EB, U+1F7F0, U+1F90C, U+1F90F, U+1F918, U+1F919, U+1F91A, U+1F91B, U+1F91C, U+1F91D, U+1F91E, U+1F91F, U+1F90D, U+1F90E, U+1F910, U+1F911, U+1F912, U+1F913, U+1F914, U+1F915, U+1F916, U+1F917, U+1F920, U+1F921, U+1F922, U+1F923, U+1F924, U+1F925, U+1F926, U+1F927, U+1F928, U+1F929, U+1F92A, U+1F92B, U+1F92C, U+1F92D, U+1F92E, U+1F92F, U+1F930, U+1F931, U+1F932, U+1F933, U+1F934, U+1F935, U+1F936, U+1F937, U+1F9D0, U+1F9D1, U+1F9D2, U+1F9D3, U+1F9D4, U+1F9D5, U+1F9D6, U+1F9D7, U+1F9D8, U+1F938, U+1F939, U+1F93A, U+1F93C, U+1F93D, U+1F93E, U+1F93F, U+1F940, U+1F941, U+1F942, U+1F943, U+1F944, U+1F945, U+1F947, U+1F948, U+1F949, U+1F94A, U+1F94B, U+1F94C, U+1F94D, U+1F94E, U+1F94F, U+1F9E0, U+1F9E1, U+1F9E2, U+1F9E3, U+1F9E4, U+1F9E5, U+1F9E6, U+1F950, U+1F951, U+1F952, U+1F953, U+1F954, U+1F955, U+1F956, U+1F957, U+1F958, U+1F959, U+1F95A, U+1F95B, U+1F95C, U+1F95D, U+1F95E, U+1F95F, U+1F960, U+1F961, U+1F962, U+1F963, U+1F964, U+1F965, U+1F966, U+1F967, U+1F968, U+1F969, U+1F96A, U+1F96B, U+1F96C, U+1F96D, U+1F96E, U+1F96F, U+1F9C0, U+1F9C1, U+1F9C2, U+1F9C3, U+1F9C4, U+1F9C5, U+1F9C6, U+1F9C7, U+1F9C8, U+1F9C9, U+1F9CA, U+1F9CB, U+1F970, U+1F971, U+1F972, U+1F973, U+1F974, U+1F975, U+1F976, U+1F977, U+1F978, U+1F979, U+1F97A, U+1F97B, U+1F97C, U+1F97D, U+1F97E, U+1F97F, U+1F980, U+1F981, U+1F982, U+1F983, U+1F984, U+1F985, U+1F986, U+1F987, U+1F988, U+1F989, U+1F98A, U+1F98B, U+1F98C, U+1F98D, U+1F98E, U+1F98F, U+1F990, U+1F991, U+1F992, U+1F993, U+1F994, U+1F995, U+1F996, U+1F997, U+1F998, U+1F999, U+1F99A, U+1F99B, U+1F99C, U+1F99D, U+1F99E, U+1F99F, U+1F9A0, U+1F9A1, U+1F9A2, U+1F9A3, U+1F9A4, U+1F9A5, U+1F9A6, U+1F9A7, U+1F9A8, U+1F9A9, U+1F9AA, U+1F9AB, U+1F9AC, U+1F9AD, U+1F9AE, U+1F9AF, U+1F9BA, U+1F9BB, U+1F9BC, U+1F9BD, U+1F9BE, U+1F9BF, U+1F9B0, U+1F9B1, U+1F9B2, U+1F9B3, U+1F9B4, U+1F9B5, U+1F9B6, U+1F9B7, U+1F9B8, U+1F9B9, U+1F9CC, U+1F9D9, U+1F9DA, U+1F9DB, U+1F9DC, U+1F9DD, U+1F9DE, U+1F9DF, U+1F9CD, U+1F9CE, U+1F9CF, U+1F9E7, U+1F9E8, U+1F9E9, U+1F9EA, U+1F9EB, U+1F9EC, U+1F9ED, U+1F9EE, U+1F9EF, U+1F9F0, U+1F9F1, U+1F9F2, U+1F9F3, U+1F9F4, U+1F9F5, U+1F9F6, U+1F9F7, U+1F9F8, U+1F9F9, U+1F9FA, U+1F9FB, U+1F9FC, U+1F9FD, U+1F9FE, U+1F9FF, U+1FA70, U+1FA71, U+1FA72, U+1FA73, U+1FA74, U+1FA75, U+1FA76, U+1FA77, U+1FA78, U+1FA79, U+1FA7A, U+1FA7B, U+1FA7C, U+1FA80, U+1FA81, U+1FA82, U+1FA83, U+1FA84, U+1FA85, U+1FA86, U+1FA87, U+1FA88, U+1FA90, U+1FA91, U+1FA92, U+1FA93, U+1FA94, U+1FA95, U+1FA96, U+1FA97, U+1FA98, U+1FA99, U+1FA9A, U+1FA9B, U+1FA9C, U+1FA9D, U+1FA9E, U+1FA9F, U+1FAA0, U+1FAA1, U+1FAA2, U+1FAA3, U+1FAA4, U+1FAA5, U+1FAA6, U+1FAA7, U+1FAA8, U+1FAA9, U+1FAAA, U+1FAAB, U+1FAAC, U+1FAAD, U+1FAAE, U+1FAAF, U+1FAB0, U+1FAB1, U+1FAB2, U+1FAB3, U+1FAB4, U+1FAB5, U+1FAB6, U+1FAB7, U+1FAB8, U+1FAB9, U+1FABA, U+1FABB, U+1FABC, U+1FABD, U+1FABF, U+1FACE, U+1FACF, U+1FAC0, U+1FAC1, U+1FAC2, U+1FAC3, U+1FAC4, U+1FAC5, U+1FAD0, U+1FAD1, U+1FAD2, U+1FAD3, U+1FAD4, U+1FAD5, U+1FAD6, U+1FAD7, U+1FAD8, U+1FAD9, U+1FADA, U+1FADB, U+1FAE0, U+1FAE1, U+1FAE2, U+1FAE3, U+1FAE4, U+1FAE5, U+1FAE6, U+1FAE7, U+1FAE8, U+1FAF0, U+1FAF1, U+1FAF2, U+1FAF3, U+1FAF4, U+1FAF5, U+1FAF6, U+1FAF7, U+1FAF8; +} + +/* Unicode emojis (unknown version), taken from https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AEmoji%3DYes%3A%5D&g=&i= + + ℹ U+2139 INFORMATION SOURCE + ↔️ U+2194 LEFT RIGHT ARROW + ↕️ U+2195 UP DOWN ARROW + ↖️ U+2196 NORTH WEST ARROW + ↗️ U+2197 NORTH EAST ARROW + ↘️ U+2198 SOUTH EAST ARROW + ↙️ U+2199 SOUTH WEST ARROW + ↩️ U+21A9 LEFTWARDS ARROW WITH HOOK + ↪️ U+21AA RIGHTWARDS ARROW WITH HOOK + ⌚️ U+231A WATCH + ⌛️ U+231B HOURGLASS + ⏩ U+23E9 BLACK RIGHT-POINTING DOUBLE TRIANGLE + ⏪ U+23EA BLACK LEFT-POINTING DOUBLE TRIANGLE + ⏫ U+23EB BLACK UP-POINTING DOUBLE TRIANGLE + ⏬ U+23EC BLACK DOWN-POINTING DOUBLE TRIANGLE + ⏭ U+23ED BLACK RIGHT-POINTING DOUBLE TRIANGLE WITH VERTICAL BAR + ⏮ U+23EE BLACK LEFT-POINTING DOUBLE TRIANGLE WITH VERTICAL BAR + ⏯ U+23EF BLACK RIGHT-POINTING TRIANGLE WITH DOUBLE VERTICAL BAR + ⏰ U+23F0 ALARM CLOCK + ⏱ U+23F1 STOPWATCH + ⏲ U+23F2 TIMER CLOCK + ⏳ U+23F3 HOURGLASS WITH FLOWING SAND + ⏸ U+23F8 DOUBLE VERTICAL BAR + ⏹ U+23F9 BLACK SQUARE FOR STOP + ⏺ U+23FA BLACK CIRCLE FOR RECORD + ⌨ U+2328 KEYBOARD + ⏏ U+23CF EJECT SYMBOL + Ⓜ️ U+24C2 CIRCLED LATIN CAPITAL LETTER M + ▪️ U+25AA BLACK SMALL SQUARE + ▫️ U+25AB WHITE SMALL SQUARE + ▶️ U+25B6 BLACK RIGHT-POINTING TRIANGLE + ◀️ U+25C0 BLACK LEFT-POINTING TRIANGLE + ◻️ U+25FB WHITE MEDIUM SQUARE + ◼️ U+25FC BLACK MEDIUM SQUARE + ◽️ U+25FD WHITE MEDIUM SMALL SQUARE + ◾️ U+25FE BLACK MEDIUM SMALL SQUARE + ☀️ U+2600 BLACK SUN WITH RAYS + ☁️ U+2601 CLOUD + ☂ U+2602 UMBRELLA + ☃ U+2603 SNOWMAN + ☄ U+2604 COMET + ☎️ U+260E BLACK TELEPHONE + ☑️ U+2611 BALLOT BOX WITH CHECK + ☕️ U+2615 HOT BEVERAGE + ☘ U+2618 SHAMROCK + ☸ U+2638 WHEEL OF DHARMA + ♨️ U+2668 HOT SPRINGS + ♾ U+267E PERMANENT PAPER SIGN + ♿️ U+267F WHEELCHAIR SYMBOL + ⚜ U+269C FLEUR-DE-LIS + ⚠️ U+26A0 WARNING SIGN + ⚡️ U+26A1 HIGH VOLTAGE SIGN + ☔️ U+2614 UMBRELLA WITH RAIN DROPS + ☝️ U+261D WHITE UP POINTING INDEX + ☠ U+2620 SKULL AND CROSSBONES + ☢ U+2622 RADIOACTIVE SIGN + ☣ U+2623 BIOHAZARD SIGN + ☦ U+2626 ORTHODOX CROSS + ☪ U+262A STAR AND CRESCENT + ☮ U+262E PEACE SYMBOL + ☯ U+262F YIN YANG + ☹ U+2639 WHITE FROWNING FACE + ☺️ U+263A WHITE SMILING FACE + ♀ U+2640 FEMALE SIGN + ♂ U+2642 MALE SIGN + ♈️ U+2648 ARIES + ♉️ U+2649 TAURUS + ♊️ U+264A GEMINI + ♋️ U+264B CANCER + ♌️ U+264C LEO + ♍️ U+264D VIRGO + ♎️ U+264E LIBRA + ♏️ U+264F SCORPIUS + ♐️ U+2650 SAGITTARIUS + ♑️ U+2651 CAPRICORN + ♒️ U+2652 AQUARIUS + ♓️ U+2653 PISCES + ⛎ U+26CE OPHIUCHUS + ♟ U+265F BLACK CHESS PAWN + ♠️ U+2660 BLACK SPADE SUIT + ♣️ U+2663 BLACK CLUB SUIT + ♥️ U+2665 BLACK HEART SUIT + ♦️ U+2666 BLACK DIAMOND SUIT + ♻️ U+267B BLACK UNIVERSAL RECYCLING SYMBOL + ⚒ U+2692 HAMMER AND PICK + ⚓️ U+2693 ANCHOR + ⚔ U+2694 CROSSED SWORDS + ⚕ U+2695 STAFF OF AESCULAPIUS + ⚖ U+2696 SCALES + ⚗ U+2697 ALEMBIC + ⚙ U+2699 GEAR + ⚛ U+269B ATOM SYMBOL + ⚧ U+26A7 MALE WITH STROKE AND MALE AND FEMALE SIGN + ⚪️ U+26AA MEDIUM WHITE CIRCLE + ⚫️ U+26AB MEDIUM BLACK CIRCLE + ⚰ U+26B0 COFFIN + ⚱ U+26B1 FUNERAL URN + ⚽️ U+26BD SOCCER BALL + ⚾️ U+26BE BASEBALL + ⛄️ U+26C4 SNOWMAN WITHOUT SNOW + ⛅️ U+26C5 SUN BEHIND CLOUD + ⛈ U+26C8 THUNDER CLOUD AND RAIN + ⛏ U+26CF PICK + ⛑ U+26D1 HELMET WITH WHITE CROSS + ⛓ U+26D3 CHAINS + ⛔️ U+26D4 NO ENTRY + ⛩ U+26E9 SHINTO SHRINE + ⛪️ U+26EA CHURCH + ⛰ U+26F0 MOUNTAIN + ⛱ U+26F1 UMBRELLA ON GROUND + ⛲️ U+26F2 FOUNTAIN + ⛳️ U+26F3 FLAG IN HOLE + ⛴ U+26F4 FERRY + ⛵️ U+26F5 SAILBOAT + ⛷ U+26F7 SKIER + ⛸ U+26F8 ICE SKATE + ⛹ U+26F9 PERSON WITH BALL + ⛺️ U+26FA TENT + ⛽️ U+26FD FUEL PUMP + ✂️ U+2702 BLACK SCISSORS + ✅ U+2705 WHITE HEAVY CHECK MARK + ✈️ U+2708 AIRPLANE + ✉️ U+2709 ENVELOPE + ✊ U+270A RAISED FIST + ✋ U+270B RAISED HAND + ✌️ U+270C VICTORY HAND + ✍ U+270D WRITING HAND + ✏️ U+270F PENCIL + ✒️ U+2712 BLACK NIB + ✔️ U+2714 HEAVY CHECK MARK + ✖️ U+2716 HEAVY MULTIPLICATION X + ❌ U+274C CROSS MARK + ❎ U+274E NEGATIVE SQUARED CROSS MARK + ❓ U+2753 BLACK QUESTION MARK ORNAMENT + ❔ U+2754 WHITE QUESTION MARK ORNAMENT + ❕ U+2755 WHITE EXCLAMATION MARK ORNAMENT + ❗️ U+2757 HEAVY EXCLAMATION MARK SYMBOL + ➰ U+27B0 CURLY LOOP + ➿ U+27BF DOUBLE CURLY LOOP + ✝ U+271D LATIN CROSS + ✡ U+2721 STAR OF DAVID + ✨ U+2728 SPARKLES + ✳️ U+2733 EIGHT SPOKED ASTERISK + ✴️ U+2734 EIGHT POINTED BLACK STAR + ❄️ U+2744 SNOWFLAKE + ❇️ U+2747 SPARKLE + ❣ U+2763 HEAVY HEART EXCLAMATION MARK ORNAMENT + ❤️ U+2764 HEAVY BLACK HEART + ➕ U+2795 HEAVY PLUS SIGN + ➖ U+2796 HEAVY MINUS SIGN + ➗ U+2797 HEAVY DIVISION SIGN + ➡️ U+27A1 BLACK RIGHTWARDS ARROW + ⤴️ U+2934 ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS + ⤵️ U+2935 ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS + ⬅️ U+2B05 LEFTWARDS BLACK ARROW + ⬆️ U+2B06 UPWARDS BLACK ARROW + ⬇️ U+2B07 DOWNWARDS BLACK ARROW + ⬛️ U+2B1B BLACK LARGE SQUARE + ⬜️ U+2B1C WHITE LARGE SQUARE + ⭐️ U+2B50 WHITE MEDIUM STAR + ⭕️ U+2B55 HEAVY LARGE CIRCLE + 〰️ U+3030 WAVY DASH + 〽️ U+303D PART ALTERNATION MARK + ㊗️ U+3297 CIRCLED IDEOGRAPH CONGRATULATION + ㊙️ U+3299 CIRCLED IDEOGRAPH SECRET + 🀄️ U+1F004 MAHJONG TILE RED DRAGON + 🃏 U+1F0CF PLAYING CARD BLACK JOKER + 🅰️ U+1F170 NEGATIVE SQUARED LATIN CAPITAL LETTER A + 🅱️ U+1F171 NEGATIVE SQUARED LATIN CAPITAL LETTER B + 🅾️ U+1F17E NEGATIVE SQUARED LATIN CAPITAL LETTER O + 🅿️ U+1F17F NEGATIVE SQUARED LATIN CAPITAL LETTER P + 🆎 U+1F18E NEGATIVE SQUARED AB + 🆑 U+1F191 SQUARED CL + 🆒 U+1F192 SQUARED COOL + 🆓 U+1F193 SQUARED FREE + 🆔 U+1F194 SQUARED ID + 🆕 U+1F195 SQUARED NEW + 🆖 U+1F196 SQUARED NG + 🆗 U+1F197 SQUARED OK + 🆘 U+1F198 SQUARED SOS + 🆙 U+1F199 SQUARED UP WITH EXCLAMATION MARK + 🆚 U+1F19A SQUARED VS + 🈁 U+1F201 SQUARED KATAKANA KOKO + 🈂️ U+1F202 SQUARED KATAKANA SA + 🈚️ U+1F21A SQUARED CJK UNIFIED IDEOGRAPH-7121 + 🈯️ U+1F22F SQUARED CJK UNIFIED IDEOGRAPH-6307 + 🈲 U+1F232 SQUARED CJK UNIFIED IDEOGRAPH-7981 + 🈳 U+1F233 SQUARED CJK UNIFIED IDEOGRAPH-7A7A + 🈴 U+1F234 SQUARED CJK UNIFIED IDEOGRAPH-5408 + 🈵 U+1F235 SQUARED CJK UNIFIED IDEOGRAPH-6E80 + 🈶 U+1F236 SQUARED CJK UNIFIED IDEOGRAPH-6709 + 🈷️ U+1F237 SQUARED CJK UNIFIED IDEOGRAPH-6708 + 🈸 U+1F238 SQUARED CJK UNIFIED IDEOGRAPH-7533 + 🈹 U+1F239 SQUARED CJK UNIFIED IDEOGRAPH-5272 + 🈺 U+1F23A SQUARED CJK UNIFIED IDEOGRAPH-55B6 + 🉐 U+1F250 CIRCLED IDEOGRAPH ADVANTAGE + 🉑 U+1F251 CIRCLED IDEOGRAPH ACCEPT + 🌀 U+1F300 CYCLONE + 🌁 U+1F301 FOGGY + 🌂 U+1F302 CLOSED UMBRELLA + 🌃 U+1F303 NIGHT WITH STARS + 🌄 U+1F304 SUNRISE OVER MOUNTAINS + 🌅 U+1F305 SUNRISE + 🌆 U+1F306 CITYSCAPE AT DUSK + 🌇 U+1F307 SUNSET OVER BUILDINGS + 🌈 U+1F308 RAINBOW + 🌉 U+1F309 BRIDGE AT NIGHT + 🌊 U+1F30A WATER WAVE + 🌋 U+1F30B VOLCANO + 🌌 U+1F30C MILKY WAY + 🌍 U+1F30D EARTH GLOBE EUROPE-AFRICA + 🌎 U+1F30E EARTH GLOBE AMERICAS + 🌏 U+1F30F EARTH GLOBE ASIA-AUSTRALIA + 🌐 U+1F310 GLOBE WITH MERIDIANS + 🌑 U+1F311 NEW MOON SYMBOL + 🌒 U+1F312 WAXING CRESCENT MOON SYMBOL + 🌓 U+1F313 FIRST QUARTER MOON SYMBOL + 🌔 U+1F314 WAXING GIBBOUS MOON SYMBOL + 🌕 U+1F315 FULL MOON SYMBOL + 🌖 U+1F316 WANING GIBBOUS MOON SYMBOL + 🌗 U+1F317 LAST QUARTER MOON SYMBOL + 🌘 U+1F318 WANING CRESCENT MOON SYMBOL + 🌙 U+1F319 CRESCENT MOON + 🌚 U+1F31A NEW MOON WITH FACE + 🌛 U+1F31B FIRST QUARTER MOON WITH FACE + 🌜 U+1F31C LAST QUARTER MOON WITH FACE + 🌝 U+1F31D FULL MOON WITH FACE + 🌞 U+1F31E SUN WITH FACE + 🌟 U+1F31F GLOWING STAR + 🌠 U+1F320 SHOOTING STAR + 🌡 U+1F321 THERMOMETER + 🌤 U+1F324 WHITE SUN WITH SMALL CLOUD + 🌥 U+1F325 WHITE SUN BEHIND CLOUD + 🌦 U+1F326 WHITE SUN BEHIND CLOUD WITH RAIN + 🌧 U+1F327 CLOUD WITH RAIN + 🌨 U+1F328 CLOUD WITH SNOW + 🌩 U+1F329 CLOUD WITH LIGHTNING + 🌪 U+1F32A CLOUD WITH TORNADO + 🌫 U+1F32B FOG + 🌬 U+1F32C WIND BLOWING FACE + 🌭 U+1F32D HOT DOG + 🌮 U+1F32E TACO + 🌯 U+1F32F BURRITO + 🍔 U+1F354 HAMBURGER + 🍕 U+1F355 SLICE OF PIZZA + 🍖 U+1F356 MEAT ON BONE + 🍗 U+1F357 POULTRY LEG + 🍘 U+1F358 RICE CRACKER + 🍙 U+1F359 RICE BALL + 🍚 U+1F35A COOKED RICE + 🍛 U+1F35B CURRY AND RICE + 🍜 U+1F35C STEAMING BOWL + 🍝 U+1F35D SPAGHETTI + 🍞 U+1F35E BREAD + 🍟 U+1F35F FRENCH FRIES + 🍠 U+1F360 ROASTED SWEET POTATO + 🍡 U+1F361 DANGO + 🍢 U+1F362 ODEN + 🍣 U+1F363 SUSHI + 🍤 U+1F364 FRIED SHRIMP + 🍥 U+1F365 FISH CAKE WITH SWIRL DESIGN + 🍦 U+1F366 SOFT ICE CREAM + 🍧 U+1F367 SHAVED ICE + 🍨 U+1F368 ICE CREAM + 🍩 U+1F369 DOUGHNUT + 🍪 U+1F36A COOKIE + 🍫 U+1F36B CHOCOLATE BAR + 🍬 U+1F36C CANDY + 🍭 U+1F36D LOLLIPOP + 🍮 U+1F36E CUSTARD + 🍯 U+1F36F HONEY POT + 🍰 U+1F370 SHORTCAKE + 🍱 U+1F371 BENTO BOX + 🍲 U+1F372 POT OF FOOD + 🍳 U+1F373 COOKING + 🍴 U+1F374 FORK AND KNIFE + 🌰 U+1F330 CHESTNUT + 🌱 U+1F331 SEEDLING + 🌲 U+1F332 EVERGREEN TREE + 🌳 U+1F333 DECIDUOUS TREE + 🌴 U+1F334 PALM TREE + 🌵 U+1F335 CACTUS + 🌶 U+1F336 HOT PEPPER + 🌷 U+1F337 TULIP + 🌸 U+1F338 CHERRY BLOSSOM + 🌹 U+1F339 ROSE + 🌺 U+1F33A HIBISCUS + 🌻 U+1F33B SUNFLOWER + 🌼 U+1F33C BLOSSOM + 🌽 U+1F33D EAR OF MAIZE + 🌾 U+1F33E EAR OF RICE + 🌿 U+1F33F HERB + 🍀 U+1F340 FOUR LEAF CLOVER + 🍁 U+1F341 MAPLE LEAF + 🍂 U+1F342 FALLEN LEAF + 🍃 U+1F343 LEAF FLUTTERING IN WIND + 🍄 U+1F344 MUSHROOM + 🍅 U+1F345 TOMATO + 🍆 U+1F346 AUBERGINE + 🍇 U+1F347 GRAPES + 🍈 U+1F348 MELON + 🍉 U+1F349 WATERMELON + 🍊 U+1F34A TANGERINE + 🍋 U+1F34B LEMON + 🍌 U+1F34C BANANA + 🍍 U+1F34D PINEAPPLE + 🍎 U+1F34E RED APPLE + 🍏 U+1F34F GREEN APPLE + 🍐 U+1F350 PEAR + 🍑 U+1F351 PEACH + 🍒 U+1F352 CHERRIES + 🍓 U+1F353 STRAWBERRY + 🍵 U+1F375 TEACUP WITHOUT HANDLE + 🍶 U+1F376 SAKE BOTTLE AND CUP + 🍷 U+1F377 WINE GLASS + 🍸 U+1F378 COCKTAIL GLASS + 🍹 U+1F379 TROPICAL DRINK + 🍺 U+1F37A BEER MUG + 🍻 U+1F37B CLINKING BEER MUGS + 🍼 U+1F37C BABY BOTTLE + 🍽 U+1F37D FORK AND KNIFE WITH PLATE + 🍾 U+1F37E BOTTLE WITH POPPING CORK + 🍿 U+1F37F POPCORN + 🎀 U+1F380 RIBBON + 🎁 U+1F381 WRAPPED PRESENT + 🎂 U+1F382 BIRTHDAY CAKE + 🎃 U+1F383 JACK-O-LANTERN + 🎄 U+1F384 CHRISTMAS TREE + 🎅 U+1F385 FATHER CHRISTMAS + 🎆 U+1F386 FIREWORKS + 🎇 U+1F387 FIREWORK SPARKLER + 🎈 U+1F388 BALLOON + 🎉 U+1F389 PARTY POPPER + 🎊 U+1F38A CONFETTI BALL + 🎋 U+1F38B TANABATA TREE + 🎌 U+1F38C CROSSED FLAGS + 🎍 U+1F38D PINE DECORATION + 🎎 U+1F38E JAPANESE DOLLS + 🎏 U+1F38F CARP STREAMER + 🎐 U+1F390 WIND CHIME + 🎑 U+1F391 MOON VIEWING CEREMONY + 🎒 U+1F392 SCHOOL SATCHEL + 🎓 U+1F393 GRADUATION CAP + 🎖 U+1F396 MILITARY MEDAL + 🎗 U+1F397 REMINDER RIBBON + 🎙 U+1F399 STUDIO MICROPHONE + 🎚 U+1F39A LEVEL SLIDER + 🎛 U+1F39B CONTROL KNOBS + 🎵 U+1F3B5 MUSICAL NOTE + 🎶 U+1F3B6 MULTIPLE MUSICAL NOTES + 🎷 U+1F3B7 SAXOPHONE + 🎸 U+1F3B8 GUITAR + 🎹 U+1F3B9 MUSICAL KEYBOARD + 🎺 U+1F3BA TRUMPET + 🎻 U+1F3BB VIOLIN + 🎼 U+1F3BC MUSICAL SCORE + 🎞 U+1F39E FILM FRAMES + 🎟 U+1F39F ADMISSION TICKETS + 🎠 U+1F3A0 CAROUSEL HORSE + 🎡 U+1F3A1 FERRIS WHEEL + 🎢 U+1F3A2 ROLLER COASTER + 🎣 U+1F3A3 FISHING POLE AND FISH + 🎤 U+1F3A4 MICROPHONE + 🎥 U+1F3A5 MOVIE CAMERA + 🎦 U+1F3A6 CINEMA + 🎧 U+1F3A7 HEADPHONE + 🎨 U+1F3A8 ARTIST PALETTE + 🎩 U+1F3A9 TOP HAT + 🎪 U+1F3AA CIRCUS TENT + 🎫 U+1F3AB TICKET + 🎬 U+1F3AC CLAPPER BOARD + 🎭 U+1F3AD PERFORMING ARTS + 🎮 U+1F3AE VIDEO GAME + 🎯 U+1F3AF DIRECT HIT + 🎰 U+1F3B0 SLOT MACHINE + 🎱 U+1F3B1 BILLIARDS + 🎲 U+1F3B2 GAME DIE + 🎳 U+1F3B3 BOWLING + 🎴 U+1F3B4 FLOWER PLAYING CARDS + 🕹 U+1F579 JOYSTICK + 🎽 U+1F3BD RUNNING SHIRT WITH SASH + 🎾 U+1F3BE TENNIS RACQUET AND BALL + 🎿 U+1F3BF SKI AND SKI BOOT + 🏀 U+1F3C0 BASKETBALL AND HOOP + 🏁 U+1F3C1 CHEQUERED FLAG + 🏂 U+1F3C2 SNOWBOARDER + 🏃 U+1F3C3 RUNNER + 🏄 U+1F3C4 SURFER + 🏅 U+1F3C5 SPORTS MEDAL + 🏆 U+1F3C6 TROPHY + 🏇 U+1F3C7 HORSE RACING + 🏈 U+1F3C8 AMERICAN FOOTBALL + 🏉 U+1F3C9 RUGBY FOOTBALL + 🏊 U+1F3CA SWIMMER + 🏋 U+1F3CB WEIGHT LIFTER + 🏌 U+1F3CC GOLFER + 🏍 U+1F3CD RACING MOTORCYCLE + 🏎 U+1F3CE RACING CAR + 🏏 U+1F3CF CRICKET BAT AND BALL + 🏐 U+1F3D0 VOLLEYBALL + 🏑 U+1F3D1 FIELD HOCKEY STICK AND BALL + 🏒 U+1F3D2 ICE HOCKEY STICK AND PUCK + 🏓 U+1F3D3 TABLE TENNIS PADDLE AND BALL + 🏸 U+1F3F8 BADMINTON RACQUET AND SHUTTLECOCK + 🏹 U+1F3F9 BOW AND ARROW + 🏔 U+1F3D4 SNOW CAPPED MOUNTAIN + 🏕 U+1F3D5 CAMPING + 🏖 U+1F3D6 BEACH WITH UMBRELLA + 🏗 U+1F3D7 BUILDING CONSTRUCTION + 🏘 U+1F3D8 HOUSE BUILDINGS + 🏙 U+1F3D9 CITYSCAPE + 🏚 U+1F3DA DERELICT HOUSE BUILDING + 🏛 U+1F3DB CLASSICAL BUILDING + 🏜 U+1F3DC DESERT + 🏝 U+1F3DD DESERT ISLAND + 🏞 U+1F3DE NATIONAL PARK + 🏟 U+1F3DF STADIUM + 🏠 U+1F3E0 HOUSE BUILDING + 🏡 U+1F3E1 HOUSE WITH GARDEN + 🏢 U+1F3E2 OFFICE BUILDING + 🏣 U+1F3E3 JAPANESE POST OFFICE + 🏤 U+1F3E4 EUROPEAN POST OFFICE + 🏥 U+1F3E5 HOSPITAL + 🏦 U+1F3E6 BANK + 🏧 U+1F3E7 AUTOMATED TELLER MACHINE + 🏨 U+1F3E8 HOTEL + 🏩 U+1F3E9 LOVE HOTEL + 🏪 U+1F3EA CONVENIENCE STORE + 🏫 U+1F3EB SCHOOL + 🏬 U+1F3EC DEPARTMENT STORE + 🏭 U+1F3ED FACTORY + 🏮 U+1F3EE IZAKAYA LANTERN + 🏯 U+1F3EF JAPANESE CASTLE + 🏰 U+1F3F0 EUROPEAN CASTLE + 🏳 U+1F3F3 WAVING WHITE FLAG + 🏴 U+1F3F4 WAVING BLACK FLAG + 🏵 U+1F3F5 ROSETTE + 🏷 U+1F3F7 LABEL + 🏺 U+1F3FA AMPHORA + 🔯 U+1F52F SIX POINTED STAR WITH MIDDLE DOT + 🔰 U+1F530 JAPANESE SYMBOL FOR BEGINNER + 🔱 U+1F531 TRIDENT EMBLEM + 🕯 U+1F56F CANDLE + 🕰 U+1F570 MANTELPIECE CLOCK + 🕳 U+1F573 HOLE + 🕴 U+1F574 MAN IN BUSINESS SUIT LEVITATING + 🕵 U+1F575 SLEUTH OR SPY + 🕶 U+1F576 DARK SUNGLASSES + 🗞 U+1F5DE ROLLED-UP NEWSPAPER + 🐀 U+1F400 RAT + 🐁 U+1F401 MOUSE + 🐂 U+1F402 OX + 🐃 U+1F403 WATER BUFFALO + 🐄 U+1F404 COW + 🐅 U+1F405 TIGER + 🐆 U+1F406 LEOPARD + 🐇 U+1F407 RABBIT + 🐈 U+1F408 CAT + 🐉 U+1F409 DRAGON + 🐊 U+1F40A CROCODILE + 🐋 U+1F40B WHALE + 🐌 U+1F40C SNAIL + 🐍 U+1F40D SNAKE + 🐎 U+1F40E HORSE + 🐏 U+1F40F RAM + 🐐 U+1F410 GOAT + 🐑 U+1F411 SHEEP + 🐒 U+1F412 MONKEY + 🐓 U+1F413 ROOSTER + 🐔 U+1F414 CHICKEN + 🐕 U+1F415 DOG + 🐖 U+1F416 PIG + 🐗 U+1F417 BOAR + 🐘 U+1F418 ELEPHANT + 🐙 U+1F419 OCTOPUS + 🐚 U+1F41A SPIRAL SHELL + 🐛 U+1F41B BUG + 🐜 U+1F41C ANT + 🐝 U+1F41D HONEYBEE + 🐞 U+1F41E LADY BEETLE + 🐟 U+1F41F FISH + 🐠 U+1F420 TROPICAL FISH + 🐡 U+1F421 BLOWFISH + 🐢 U+1F422 TURTLE + 🐣 U+1F423 HATCHING CHICK + 🐤 U+1F424 BABY CHICK + 🐥 U+1F425 FRONT-FACING BABY CHICK + 🐦 U+1F426 BIRD + 🐧 U+1F427 PENGUIN + 🐨 U+1F428 KOALA + 🐩 U+1F429 POODLE + 🐪 U+1F42A DROMEDARY CAMEL + 🐫 U+1F42B BACTRIAN CAMEL + 🐬 U+1F42C DOLPHIN + 🐾 U+1F43E PAW PRINTS + 🐿 U+1F43F CHIPMUNK + 🕷 U+1F577 SPIDER + 🕸 U+1F578 SPIDER WEB + 🐭 U+1F42D MOUSE FACE + 🐮 U+1F42E COW FACE + 🐯 U+1F42F TIGER FACE + 🐰 U+1F430 RABBIT FACE + 🐱 U+1F431 CAT FACE + 🐲 U+1F432 DRAGON FACE + 🐳 U+1F433 SPOUTING WHALE + 🐴 U+1F434 HORSE FACE + 🐵 U+1F435 MONKEY FACE + 🐶 U+1F436 DOG FACE + 🐷 U+1F437 PIG FACE + 🐸 U+1F438 FROG FACE + 🐹 U+1F439 HAMSTER FACE + 🐺 U+1F43A WOLF FACE + 🐻 U+1F43B BEAR FACE + 🐼 U+1F43C PANDA FACE + 🐽 U+1F43D PIG NOSE + 👀 U+1F440 EYES + 👁 U+1F441 EYE + 👂 U+1F442 EAR + 👃 U+1F443 NOSE + 👄 U+1F444 MOUTH + 👅 U+1F445 TONGUE + 👆 U+1F446 WHITE UP POINTING BACKHAND INDEX + 👇 U+1F447 WHITE DOWN POINTING BACKHAND INDEX + 👈 U+1F448 WHITE LEFT POINTING BACKHAND INDEX + 👉 U+1F449 WHITE RIGHT POINTING BACKHAND INDEX + 👊 U+1F44A FISTED HAND SIGN + 👋 U+1F44B WAVING HAND SIGN + 👌 U+1F44C OK HAND SIGN + 👍 U+1F44D THUMBS UP SIGN + 👎 U+1F44E THUMBS DOWN SIGN + 👏 U+1F44F CLAPPING HANDS SIGN + 👐 U+1F450 OPEN HANDS SIGN + 🖐 U+1F590 RAISED HAND WITH FINGERS SPLAYED + 🖕 U+1F595 REVERSED HAND WITH MIDDLE FINGER EXTENDED + 🖖 U+1F596 RAISED HAND WITH PART BETWEEN MIDDLE AND RING FINGERS + 👑 U+1F451 CROWN + 👒 U+1F452 WOMANS HAT + 👓 U+1F453 EYEGLASSES + 👔 U+1F454 NECKTIE + 👕 U+1F455 T-SHIRT + 👖 U+1F456 JEANS + 👗 U+1F457 DRESS + 👘 U+1F458 KIMONO + 👙 U+1F459 BIKINI + 👚 U+1F45A WOMANS CLOTHES + 👛 U+1F45B PURSE + 👜 U+1F45C HANDBAG + 👝 U+1F45D POUCH + 👞 U+1F45E MANS SHOE + 👟 U+1F45F ATHLETIC SHOE + 👠 U+1F460 HIGH-HEELED SHOE + 👡 U+1F461 WOMANS SANDAL + 👢 U+1F462 WOMANS BOOTS + 👣 U+1F463 FOOTPRINTS + 👤 U+1F464 BUST IN SILHOUETTE + 👥 U+1F465 BUSTS IN SILHOUETTE + 👦 U+1F466 BOY + 👧 U+1F467 GIRL + 👨 U+1F468 MAN + 👩 U+1F469 WOMAN + 👪 U+1F46A FAMILY + 👫 U+1F46B MAN AND WOMAN HOLDING HANDS + 👬 U+1F46C TWO MEN HOLDING HANDS + 👭 U+1F46D TWO WOMEN HOLDING HANDS + 👮 U+1F46E POLICE OFFICER + 👯 U+1F46F WOMAN WITH BUNNY EARS + 👰 U+1F470 BRIDE WITH VEIL + 👱 U+1F471 PERSON WITH BLOND HAIR + 👲 U+1F472 MAN WITH GUA PI MAO + 👳 U+1F473 MAN WITH TURBAN + 👴 U+1F474 OLDER MAN + 👵 U+1F475 OLDER WOMAN + 👶 U+1F476 BABY + 👷 U+1F477 CONSTRUCTION WORKER + 👸 U+1F478 PRINCESS + 👹 U+1F479 JAPANESE OGRE + 👺 U+1F47A JAPANESE GOBLIN + 👻 U+1F47B GHOST + 👼 U+1F47C BABY ANGEL + 👽 U+1F47D EXTRATERRESTRIAL ALIEN + 👾 U+1F47E ALIEN MONSTER + 👿 U+1F47F IMP + 💀 U+1F480 SKULL + 💁 U+1F481 INFORMATION DESK PERSON + 💂 U+1F482 GUARDSMAN + 💃 U+1F483 DANCER + 🕺 U+1F57A MAN DANCING + 💄 U+1F484 LIPSTICK + 💅 U+1F485 NAIL POLISH + 💆 U+1F486 FACE MASSAGE + 💇 U+1F487 HAIRCUT + 💈 U+1F488 BARBER POLE + 💉 U+1F489 SYRINGE + 💊 U+1F48A PILL + 💋 U+1F48B KISS MARK + 💌 U+1F48C LOVE LETTER + 💍 U+1F48D RING + 💎 U+1F48E GEM STONE + 💏 U+1F48F KISS + 💐 U+1F490 BOUQUET + 💑 U+1F491 COUPLE WITH HEART + 💒 U+1F492 WEDDING + 💓 U+1F493 BEATING HEART + 💔 U+1F494 BROKEN HEART + 💕 U+1F495 TWO HEARTS + 💖 U+1F496 SPARKLING HEART + 💗 U+1F497 GROWING HEART + 💘 U+1F498 HEART WITH ARROW + 💙 U+1F499 BLUE HEART + 💚 U+1F49A GREEN HEART + 💛 U+1F49B YELLOW HEART + 💜 U+1F49C PURPLE HEART + 💝 U+1F49D HEART WITH RIBBON + 💞 U+1F49E REVOLVING HEARTS + 💟 U+1F49F HEART DECORATION + 🖤 U+1F5A4 BLACK HEART + 💠 U+1F4A0 DIAMOND SHAPE WITH A DOT INSIDE + 💡 U+1F4A1 ELECTRIC LIGHT BULB + 💢 U+1F4A2 ANGER SYMBOL + 💣 U+1F4A3 BOMB + 💤 U+1F4A4 SLEEPING SYMBOL + 💥 U+1F4A5 COLLISION SYMBOL + 💦 U+1F4A6 SPLASHING SWEAT SYMBOL + 💧 U+1F4A7 DROPLET + 💨 U+1F4A8 DASH SYMBOL + 💩 U+1F4A9 PILE OF POO + 💪 U+1F4AA FLEXED BICEPS + 💫 U+1F4AB DIZZY SYMBOL + 💬 U+1F4AC SPEECH BALLOON + 💭 U+1F4AD THOUGHT BALLOON + 💮 U+1F4AE WHITE FLOWER + 💯 U+1F4AF HUNDRED POINTS SYMBOL + 💰 U+1F4B0 MONEY BAG + 💱 U+1F4B1 CURRENCY EXCHANGE + 💲 U+1F4B2 HEAVY DOLLAR SIGN + 💳 U+1F4B3 CREDIT CARD + 💴 U+1F4B4 BANKNOTE WITH YEN SIGN + 💵 U+1F4B5 BANKNOTE WITH DOLLAR SIGN + 💶 U+1F4B6 BANKNOTE WITH EURO SIGN + 💷 U+1F4B7 BANKNOTE WITH POUND SIGN + 💸 U+1F4B8 MONEY WITH WINGS + 💹 U+1F4B9 CHART WITH UPWARDS TREND AND YEN SIGN + 💺 U+1F4BA SEAT + 💻 U+1F4BB PERSONAL COMPUTER + 💼 U+1F4BC BRIEFCASE + 💽 U+1F4BD MINIDISC + 💾 U+1F4BE FLOPPY DISK + 💿 U+1F4BF OPTICAL DISC + 📀 U+1F4C0 DVD + 📁 U+1F4C1 FILE FOLDER + 📂 U+1F4C2 OPEN FILE FOLDER + 📃 U+1F4C3 PAGE WITH CURL + 📄 U+1F4C4 PAGE FACING UP + 📅 U+1F4C5 CALENDAR + 📆 U+1F4C6 TEAR-OFF CALENDAR + 📇 U+1F4C7 CARD INDEX + 📈 U+1F4C8 CHART WITH UPWARDS TREND + 📉 U+1F4C9 CHART WITH DOWNWARDS TREND + 📊 U+1F4CA BAR CHART + 📋 U+1F4CB CLIPBOARD + 📌 U+1F4CC PUSHPIN + 📍 U+1F4CD ROUND PUSHPIN + 📎 U+1F4CE PAPERCLIP + 📏 U+1F4CF STRAIGHT RULER + 📐 U+1F4D0 TRIANGULAR RULER + 📑 U+1F4D1 BOOKMARK TABS + 📒 U+1F4D2 LEDGER + 📓 U+1F4D3 NOTEBOOK + 📔 U+1F4D4 NOTEBOOK WITH DECORATIVE COVER + 📕 U+1F4D5 CLOSED BOOK + 📖 U+1F4D6 OPEN BOOK + 📗 U+1F4D7 GREEN BOOK + 📘 U+1F4D8 BLUE BOOK + 📙 U+1F4D9 ORANGE BOOK + 📚 U+1F4DA BOOKS + 📛 U+1F4DB NAME BADGE + 📜 U+1F4DC SCROLL + 🖼 U+1F5BC FRAME WITH PICTURE + 📝 U+1F4DD MEMO + 📞 U+1F4DE TELEPHONE RECEIVER + 📟 U+1F4DF PAGER + 📠 U+1F4E0 FAX MACHINE + 📡 U+1F4E1 SATELLITE ANTENNA + 📢 U+1F4E2 PUBLIC ADDRESS LOUDSPEAKER + 📣 U+1F4E3 CHEERING MEGAPHONE + 📤 U+1F4E4 OUTBOX TRAY + 📥 U+1F4E5 INBOX TRAY + 📦 U+1F4E6 PACKAGE + 📧 U+1F4E7 E-MAIL SYMBOL + 📨 U+1F4E8 INCOMING ENVELOPE + 📩 U+1F4E9 ENVELOPE WITH DOWNWARDS ARROW ABOVE + 📪 U+1F4EA CLOSED MAILBOX WITH LOWERED FLAG + 📫 U+1F4EB CLOSED MAILBOX WITH RAISED FLAG + 📬 U+1F4EC OPEN MAILBOX WITH RAISED FLAG + 📭 U+1F4ED OPEN MAILBOX WITH LOWERED FLAG + 📮 U+1F4EE POSTBOX + 📯 U+1F4EF POSTAL HORN + 📰 U+1F4F0 NEWSPAPER + 📱 U+1F4F1 MOBILE PHONE + 📲 U+1F4F2 MOBILE PHONE WITH RIGHTWARDS ARROW AT LEFT + 📳 U+1F4F3 VIBRATION MODE + 📴 U+1F4F4 MOBILE PHONE OFF + 📵 U+1F4F5 NO MOBILE PHONES + 📶 U+1F4F6 ANTENNA WITH BARS + 🖇 U+1F587 LINKED PAPERCLIPS + 🖊 U+1F58A LOWER LEFT BALLPOINT PEN + 🖋 U+1F58B LOWER LEFT FOUNTAIN PEN + 🖌 U+1F58C LOWER LEFT PAINTBRUSH + 🖍 U+1F58D LOWER LEFT CRAYON + 📷 U+1F4F7 CAMERA + 📸 U+1F4F8 CAMERA WITH FLASH + 📹 U+1F4F9 VIDEO CAMERA + 📺 U+1F4FA TELEVISION + 📻 U+1F4FB RADIO + 📼 U+1F4FC VIDEOCASSETTE + 📽 U+1F4FD FILM PROJECTOR + 📿 U+1F4FF PRAYER BEADS + 🕉 U+1F549 OM SYMBOL + 🕊 U+1F54A DOVE OF PEACE + 🕋 U+1F54B KAABA + 🕌 U+1F54C MOSQUE + 🕍 U+1F54D SYNAGOGUE + 🕎 U+1F54E MENORAH WITH NINE BRANCHES + 🔀 U+1F500 TWISTED RIGHTWARDS ARROWS + 🔁 U+1F501 CLOCKWISE RIGHTWARDS AND LEFTWARDS OPEN CIRCLE ARROWS + 🔂 U+1F502 CLOCKWISE RIGHTWARDS AND LEFTWARDS OPEN CIRCLE ARROWS WITH CIRCLED ONE OVERLAY + 🔃 U+1F503 CLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS + 🔄 U+1F504 ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS + 🔅 U+1F505 LOW BRIGHTNESS SYMBOL + 🔆 U+1F506 HIGH BRIGHTNESS SYMBOL + 🔇 U+1F507 SPEAKER WITH CANCELLATION STROKE + 🔈 U+1F508 SPEAKER + 🔉 U+1F509 SPEAKER WITH ONE SOUND WAVE + 🔊 U+1F50A SPEAKER WITH THREE SOUND WAVES + 🔋 U+1F50B BATTERY + 🔌 U+1F50C ELECTRIC PLUG + 🔍 U+1F50D LEFT-POINTING MAGNIFYING GLASS + 🔎 U+1F50E RIGHT-POINTING MAGNIFYING GLASS + 🔏 U+1F50F LOCK WITH INK PEN + 🔐 U+1F510 CLOSED LOCK WITH KEY + 🔑 U+1F511 KEY + 🔒 U+1F512 LOCK + 🔓 U+1F513 OPEN LOCK + 🔔 U+1F514 BELL + 🔕 U+1F515 BELL WITH CANCELLATION STROKE + 🔖 U+1F516 BOOKMARK + 🔗 U+1F517 LINK SYMBOL + 🔘 U+1F518 RADIO BUTTON + 🔺 U+1F53A UP-POINTING RED TRIANGLE + 🔻 U+1F53B DOWN-POINTING RED TRIANGLE + 🔼 U+1F53C UP-POINTING SMALL RED TRIANGLE + 🔽 U+1F53D DOWN-POINTING SMALL RED TRIANGLE + 🗂 U+1F5C2 CARD INDEX DIVIDERS + 🗃 U+1F5C3 CARD FILE BOX + 🗄 U+1F5C4 FILE CABINET + 🗑 U+1F5D1 WASTEBASKET + 🗒 U+1F5D2 SPIRAL NOTE PAD + 🗓 U+1F5D3 SPIRAL CALENDAR PAD + 🗜 U+1F5DC COMPRESSION + 🗝 U+1F5DD OLD KEY + 🔙 U+1F519 BACK WITH LEFTWARDS ARROW ABOVE + 🔚 U+1F51A END WITH LEFTWARDS ARROW ABOVE + 🔛 U+1F51B ON WITH EXCLAMATION MARK WITH LEFT RIGHT ARROW ABOVE + 🔜 U+1F51C SOON WITH RIGHTWARDS ARROW ABOVE + 🔝 U+1F51D TOP WITH UPWARDS ARROW ABOVE + 🔞 U+1F51E NO ONE UNDER EIGHTEEN SYMBOL + 🔟 U+1F51F KEYCAP TEN + 🔠 U+1F520 INPUT SYMBOL FOR LATIN CAPITAL LETTERS + 🔡 U+1F521 INPUT SYMBOL FOR LATIN SMALL LETTERS + 🔢 U+1F522 INPUT SYMBOL FOR NUMBERS + 🔣 U+1F523 INPUT SYMBOL FOR SYMBOLS + 🔤 U+1F524 INPUT SYMBOL FOR LATIN LETTERS + 🔥 U+1F525 FIRE + 🔦 U+1F526 ELECTRIC TORCH + 🔧 U+1F527 WRENCH + 🔨 U+1F528 HAMMER + 🔩 U+1F529 NUT AND BOLT + 🔪 U+1F52A HOCHO + 🔫 U+1F52B PISTOL + 🔬 U+1F52C MICROSCOPE + 🔭 U+1F52D TELESCOPE + 🔮 U+1F52E CRYSTAL BALL + 🔲 U+1F532 BLACK SQUARE BUTTON + 🔳 U+1F533 WHITE SQUARE BUTTON + 🔴 U+1F534 LARGE RED CIRCLE + 🔵 U+1F535 LARGE BLUE CIRCLE + 🔶 U+1F536 LARGE ORANGE DIAMOND + 🔷 U+1F537 LARGE BLUE DIAMOND + 🔸 U+1F538 SMALL ORANGE DIAMOND + 🔹 U+1F539 SMALL BLUE DIAMOND + 🕐 U+1F550 CLOCK FACE ONE OCLOCK + 🕑 U+1F551 CLOCK FACE TWO OCLOCK + 🕒 U+1F552 CLOCK FACE THREE OCLOCK + 🕓 U+1F553 CLOCK FACE FOUR OCLOCK + 🕔 U+1F554 CLOCK FACE FIVE OCLOCK + 🕕 U+1F555 CLOCK FACE SIX OCLOCK + 🕖 U+1F556 CLOCK FACE SEVEN OCLOCK + 🕗 U+1F557 CLOCK FACE EIGHT OCLOCK + 🕘 U+1F558 CLOCK FACE NINE OCLOCK + 🕙 U+1F559 CLOCK FACE TEN OCLOCK + 🕚 U+1F55A CLOCK FACE ELEVEN OCLOCK + 🕛 U+1F55B CLOCK FACE TWELVE OCLOCK + 🕜 U+1F55C CLOCK FACE ONE-THIRTY + 🕝 U+1F55D CLOCK FACE TWO-THIRTY + 🕞 U+1F55E CLOCK FACE THREE-THIRTY + 🕟 U+1F55F CLOCK FACE FOUR-THIRTY + 🕠 U+1F560 CLOCK FACE FIVE-THIRTY + 🕡 U+1F561 CLOCK FACE SIX-THIRTY + 🕢 U+1F562 CLOCK FACE SEVEN-THIRTY + 🕣 U+1F563 CLOCK FACE EIGHT-THIRTY + 🕤 U+1F564 CLOCK FACE NINE-THIRTY + 🕥 U+1F565 CLOCK FACE TEN-THIRTY + 🕦 U+1F566 CLOCK FACE ELEVEN-THIRTY + 🕧 U+1F567 CLOCK FACE TWELVE-THIRTY + 🖥 U+1F5A5 DESKTOP COMPUTER + 🖨 U+1F5A8 PRINTER + 🖱 U+1F5B1 THREE BUTTON MOUSE + 🖲 U+1F5B2 TRACKBALL + 🗡 U+1F5E1 DAGGER KNIFE + 🗣 U+1F5E3 SPEAKING HEAD IN SILHOUETTE + 🗨 U+1F5E8 LEFT SPEECH BUBBLE + 🗯 U+1F5EF RIGHT ANGER BUBBLE + 🗳 U+1F5F3 BALLOT BOX WITH BALLOT + 🗺 U+1F5FA WORLD MAP + 🗻 U+1F5FB MOUNT FUJI + 🗼 U+1F5FC TOKYO TOWER + 🗽 U+1F5FD STATUE OF LIBERTY + 🗾 U+1F5FE SILHOUETTE OF JAPAN + 🗿 U+1F5FF MOYAI + 😀 U+1F600 GRINNING FACE + 😁 U+1F601 GRINNING FACE WITH SMILING EYES + 😂 U+1F602 FACE WITH TEARS OF JOY + 😃 U+1F603 SMILING FACE WITH OPEN MOUTH + 😄 U+1F604 SMILING FACE WITH OPEN MOUTH AND SMILING EYES + 😅 U+1F605 SMILING FACE WITH OPEN MOUTH AND COLD SWEAT + 😆 U+1F606 SMILING FACE WITH OPEN MOUTH AND TIGHTLY-CLOSED EYES + 😇 U+1F607 SMILING FACE WITH HALO + 😈 U+1F608 SMILING FACE WITH HORNS + 😉 U+1F609 WINKING FACE + 😊 U+1F60A SMILING FACE WITH SMILING EYES + 😋 U+1F60B FACE SAVOURING DELICIOUS FOOD + 😌 U+1F60C RELIEVED FACE + 😍 U+1F60D SMILING FACE WITH HEART-SHAPED EYES + 😎 U+1F60E SMILING FACE WITH SUNGLASSES + 😏 U+1F60F SMIRKING FACE + 😐 U+1F610 NEUTRAL FACE + 😑 U+1F611 EXPRESSIONLESS FACE + 😒 U+1F612 UNAMUSED FACE + 😓 U+1F613 FACE WITH COLD SWEAT + 😔 U+1F614 PENSIVE FACE + 😕 U+1F615 CONFUSED FACE + 😖 U+1F616 CONFOUNDED FACE + 😗 U+1F617 KISSING FACE + 😘 U+1F618 FACE THROWING A KISS + 😙 U+1F619 KISSING FACE WITH SMILING EYES + 😚 U+1F61A KISSING FACE WITH CLOSED EYES + 😛 U+1F61B FACE WITH STUCK-OUT TONGUE + 😜 U+1F61C FACE WITH STUCK-OUT TONGUE AND WINKING EYE + 😝 U+1F61D FACE WITH STUCK-OUT TONGUE AND TIGHTLY-CLOSED EYES + 😞 U+1F61E DISAPPOINTED FACE + 😟 U+1F61F WORRIED FACE + 😠 U+1F620 ANGRY FACE + 😡 U+1F621 POUTING FACE + 😢 U+1F622 CRYING FACE + 😣 U+1F623 PERSEVERING FACE + 😤 U+1F624 FACE WITH LOOK OF TRIUMPH + 😥 U+1F625 DISAPPOINTED BUT RELIEVED FACE + 😦 U+1F626 FROWNING FACE WITH OPEN MOUTH + 😧 U+1F627 ANGUISHED FACE + 😨 U+1F628 FEARFUL FACE + 😩 U+1F629 WEARY FACE + 😪 U+1F62A SLEEPY FACE + 😫 U+1F62B TIRED FACE + 😬 U+1F62C GRIMACING FACE + 😭 U+1F62D LOUDLY CRYING FACE + 😮 U+1F62E FACE WITH OPEN MOUTH + 😯 U+1F62F HUSHED FACE + 😰 U+1F630 FACE WITH OPEN MOUTH AND COLD SWEAT + 😱 U+1F631 FACE SCREAMING IN FEAR + 😲 U+1F632 ASTONISHED FACE + 😳 U+1F633 FLUSHED FACE + 😴 U+1F634 SLEEPING FACE + 😵 U+1F635 DIZZY FACE + 😶 U+1F636 FACE WITHOUT MOUTH + 😷 U+1F637 FACE WITH MEDICAL MASK + 🙁 U+1F641 SLIGHTLY FROWNING FACE + 🙂 U+1F642 SLIGHTLY SMILING FACE + 🙃 U+1F643 UPSIDE-DOWN FACE + 🙄 U+1F644 FACE WITH ROLLING EYES + 😸 U+1F638 GRINNING CAT FACE WITH SMILING EYES + 😹 U+1F639 CAT FACE WITH TEARS OF JOY + 😺 U+1F63A SMILING CAT FACE WITH OPEN MOUTH + 😻 U+1F63B SMILING CAT FACE WITH HEART-SHAPED EYES + 😼 U+1F63C CAT FACE WITH WRY SMILE + 😽 U+1F63D KISSING CAT FACE WITH CLOSED EYES + 😾 U+1F63E POUTING CAT FACE + 😿 U+1F63F CRYING CAT FACE + 🙀 U+1F640 WEARY CAT FACE + 🙅 U+1F645 FACE WITH NO GOOD GESTURE + 🙆 U+1F646 FACE WITH OK GESTURE + 🙇 U+1F647 PERSON BOWING DEEPLY + 🙈 U+1F648 SEE-NO-EVIL MONKEY + 🙉 U+1F649 HEAR-NO-EVIL MONKEY + 🙊 U+1F64A SPEAK-NO-EVIL MONKEY + 🙋 U+1F64B HAPPY PERSON RAISING ONE HAND + 🙌 U+1F64C PERSON RAISING BOTH HANDS IN CELEBRATION + 🙍 U+1F64D PERSON FROWNING + 🙎 U+1F64E PERSON WITH POUTING FACE + 🙏 U+1F64F PERSON WITH FOLDED HANDS + 🚀 U+1F680 ROCKET + 🚁 U+1F681 HELICOPTER + 🚂 U+1F682 STEAM LOCOMOTIVE + 🚃 U+1F683 RAILWAY CAR + 🚄 U+1F684 HIGH-SPEED TRAIN + 🚅 U+1F685 HIGH-SPEED TRAIN WITH BULLET NOSE + 🚆 U+1F686 TRAIN + 🚇 U+1F687 METRO + 🚈 U+1F688 LIGHT RAIL + 🚉 U+1F689 STATION + 🚊 U+1F68A TRAM + 🚋 U+1F68B TRAM CAR + 🚌 U+1F68C BUS + 🚍 U+1F68D ONCOMING BUS + 🚎 U+1F68E TROLLEYBUS + 🚏 U+1F68F BUS STOP + 🚐 U+1F690 MINIBUS + 🚑 U+1F691 AMBULANCE + 🚒 U+1F692 FIRE ENGINE + 🚓 U+1F693 POLICE CAR + 🚔 U+1F694 ONCOMING POLICE CAR + 🚕 U+1F695 TAXI + 🚖 U+1F696 ONCOMING TAXI + 🚗 U+1F697 AUTOMOBILE + 🚘 U+1F698 ONCOMING AUTOMOBILE + 🚙 U+1F699 RECREATIONAL VEHICLE + 🚚 U+1F69A DELIVERY TRUCK + 🚛 U+1F69B ARTICULATED LORRY + 🚜 U+1F69C TRACTOR + 🚝 U+1F69D MONORAIL + 🚞 U+1F69E MOUNTAIN RAILWAY + 🚟 U+1F69F SUSPENSION RAILWAY + 🚠 U+1F6A0 MOUNTAIN CABLEWAY + 🚡 U+1F6A1 AERIAL TRAMWAY + 🚢 U+1F6A2 SHIP + 🚣 U+1F6A3 ROWBOAT + 🚤 U+1F6A4 SPEEDBOAT + 🛥 U+1F6E5 MOTOR BOAT + 🛩 U+1F6E9 SMALL AIRPLANE + 🛫 U+1F6EB AIRPLANE DEPARTURE + 🛬 U+1F6EC AIRPLANE ARRIVING + 🛰 U+1F6F0 SATELLITE + 🛳 U+1F6F3 PASSENGER SHIP + 🛴 U+1F6F4 SCOOTER + 🛵 U+1F6F5 MOTOR SCOOTER + 🛶 U+1F6F6 CANOE + 🛷 U+1F6F7 SLED + 🛸 U+1F6F8 FLYING SAUCER + 🛹 U+1F6F9 SKATEBOARD + 🛺 U+1F6FA AUTO RICKSHAW + 🛻 U+1F6FB PICKUP TRUCK + 🛼 U+1F6FC ROLLER SKATE + 🚥 U+1F6A5 HORIZONTAL TRAFFIC LIGHT + 🚦 U+1F6A6 VERTICAL TRAFFIC LIGHT + 🚧 U+1F6A7 CONSTRUCTION SIGN + 🚨 U+1F6A8 POLICE CARS REVOLVING LIGHT + 🚩 U+1F6A9 TRIANGULAR FLAG ON POST + 🚪 U+1F6AA DOOR + 🚫 U+1F6AB NO ENTRY SIGN + 🚬 U+1F6AC SMOKING SYMBOL + 🚭 U+1F6AD NO SMOKING SYMBOL + 🚮 U+1F6AE PUT LITTER IN ITS PLACE SYMBOL + 🚯 U+1F6AF DO NOT LITTER SYMBOL + 🚰 U+1F6B0 POTABLE WATER SYMBOL + 🚱 U+1F6B1 NON-POTABLE WATER SYMBOL + 🚲 U+1F6B2 BICYCLE + 🚳 U+1F6B3 NO BICYCLES + 🚴 U+1F6B4 BICYCLIST + 🚵 U+1F6B5 MOUNTAIN BICYCLIST + 🚶 U+1F6B6 PEDESTRIAN + 🚷 U+1F6B7 NO PEDESTRIANS + 🚸 U+1F6B8 CHILDREN CROSSING + 🚹 U+1F6B9 MENS SYMBOL + 🚺 U+1F6BA WOMENS SYMBOL + 🚻 U+1F6BB RESTROOM + 🚼 U+1F6BC BABY SYMBOL + 🚽 U+1F6BD TOILET + 🚾 U+1F6BE WATER CLOSET + 🚿 U+1F6BF SHOWER + 🛀 U+1F6C0 BATH + 🛁 U+1F6C1 BATHTUB + 🛂 U+1F6C2 PASSPORT CONTROL + 🛃 U+1F6C3 CUSTOMS + 🛄 U+1F6C4 BAGGAGE CLAIM + 🛅 U+1F6C5 LEFT LUGGAGE + 🛐 U+1F6D0 PLACE OF WORSHIP + 🛑 U+1F6D1 OCTAGONAL SIGN + 🛒 U+1F6D2 SHOPPING TROLLEY + 🛋 U+1F6CB COUCH AND LAMP + 🛌 U+1F6CC SLEEPING ACCOMMODATION + 🛍 U+1F6CD SHOPPING BAGS + 🛎 U+1F6CE BELLHOP BELL + 🛏 U+1F6CF BED + 🛕 U+1F6D5 HINDU TEMPLE + 🛖 U+1F6D6 HUT + 🛗 U+1F6D7 ELEVATOR + 🛜 U+1F6DC WIRELESS + 🛝 U+1F6DD PLAYGROUND SLIDE + 🛞 U+1F6DE WHEEL + 🛟 U+1F6DF RING BUOY + 🛠 U+1F6E0 HAMMER AND WRENCH + 🛡 U+1F6E1 SHIELD + 🛢 U+1F6E2 OIL DRUM + 🛣 U+1F6E3 MOTORWAY + 🛤 U+1F6E4 RAILWAY TRACK + 🟠 U+1F7E0 LARGE ORANGE CIRCLE + 🟡 U+1F7E1 LARGE YELLOW CIRCLE + 🟢 U+1F7E2 LARGE GREEN CIRCLE + 🟣 U+1F7E3 LARGE PURPLE CIRCLE + 🟤 U+1F7E4 LARGE BROWN CIRCLE + 🟥 U+1F7E5 LARGE RED SQUARE + 🟦 U+1F7E6 LARGE BLUE SQUARE + 🟧 U+1F7E7 LARGE ORANGE SQUARE + 🟨 U+1F7E8 LARGE YELLOW SQUARE + 🟩 U+1F7E9 LARGE GREEN SQUARE + 🟪 U+1F7EA LARGE PURPLE SQUARE + 🟫 U+1F7EB LARGE BROWN SQUARE + 🟰 U+1F7F0 HEAVY EQUALS SIGN + 🤌 U+1F90C PINCHED FINGERS + 🤏 U+1F90F PINCHING HAND + 🤘 U+1F918 SIGN OF THE HORNS + 🤙 U+1F919 CALL ME HAND + 🤚 U+1F91A RAISED BACK OF HAND + 🤛 U+1F91B LEFT-FACING FIST + 🤜 U+1F91C RIGHT-FACING FIST + 🤝 U+1F91D HANDSHAKE + 🤞 U+1F91E HAND WITH INDEX AND MIDDLE FINGERS CROSSED + 🤟 U+1F91F I LOVE YOU HAND SIGN + 🤍 U+1F90D WHITE HEART + 🤎 U+1F90E BROWN HEART + 🤐 U+1F910 ZIPPER-MOUTH FACE + 🤑 U+1F911 MONEY-MOUTH FACE + 🤒 U+1F912 FACE WITH THERMOMETER + 🤓 U+1F913 NERD FACE + 🤔 U+1F914 THINKING FACE + 🤕 U+1F915 FACE WITH HEAD-BANDAGE + 🤖 U+1F916 ROBOT FACE + 🤗 U+1F917 HUGGING FACE + 🤠 U+1F920 FACE WITH COWBOY HAT + 🤡 U+1F921 CLOWN FACE + 🤢 U+1F922 NAUSEATED FACE + 🤣 U+1F923 ROLLING ON THE FLOOR LAUGHING + 🤤 U+1F924 DROOLING FACE + 🤥 U+1F925 LYING FACE + 🤦 U+1F926 FACE PALM + 🤧 U+1F927 SNEEZING FACE + 🤨 U+1F928 FACE WITH ONE EYEBROW RAISED + 🤩 U+1F929 GRINNING FACE WITH STAR EYES + 🤪 U+1F92A GRINNING FACE WITH ONE LARGE AND ONE SMALL EYE + 🤫 U+1F92B FACE WITH FINGER COVERING CLOSED LIPS + 🤬 U+1F92C SERIOUS FACE WITH SYMBOLS COVERING MOUTH + 🤭 U+1F92D SMILING FACE WITH SMILING EYES AND HAND COVERING MOUTH + 🤮 U+1F92E FACE WITH OPEN MOUTH VOMITING + 🤯 U+1F92F SHOCKED FACE WITH EXPLODING HEAD + 🤰 U+1F930 PREGNANT WOMAN + 🤱 U+1F931 BREAST-FEEDING + 🤲 U+1F932 PALMS UP TOGETHER + 🤳 U+1F933 SELFIE + 🤴 U+1F934 PRINCE + 🤵 U+1F935 MAN IN TUXEDO + 🤶 U+1F936 MOTHER CHRISTMAS + 🤷 U+1F937 SHRUG + 🧐 U+1F9D0 FACE WITH MONOCLE + 🧑 U+1F9D1 ADULT + 🧒 U+1F9D2 CHILD + 🧓 U+1F9D3 OLDER ADULT + 🧔 U+1F9D4 BEARDED PERSON + 🧕 U+1F9D5 PERSON WITH HEADSCARF + 🧖 U+1F9D6 PERSON IN STEAMY ROOM + 🧗 U+1F9D7 PERSON CLIMBING + 🧘 U+1F9D8 PERSON IN LOTUS POSITION + 🤸 U+1F938 PERSON DOING CARTWHEEL + 🤹 U+1F939 JUGGLING + 🤺 U+1F93A FENCER + 🤼 U+1F93C WRESTLERS + 🤽 U+1F93D WATER POLO + 🤾 U+1F93E HANDBALL + 🤿 U+1F93F DIVING MASK + 🥀 U+1F940 WILTED FLOWER + 🥁 U+1F941 DRUM WITH DRUMSTICKS + 🥂 U+1F942 CLINKING GLASSES + 🥃 U+1F943 TUMBLER GLASS + 🥄 U+1F944 SPOON + 🥅 U+1F945 GOAL NET + 🥇 U+1F947 FIRST PLACE MEDAL + 🥈 U+1F948 SECOND PLACE MEDAL + 🥉 U+1F949 THIRD PLACE MEDAL + 🥊 U+1F94A BOXING GLOVE + 🥋 U+1F94B MARTIAL ARTS UNIFORM + 🥌 U+1F94C CURLING STONE + 🥍 U+1F94D LACROSSE STICK AND BALL + 🥎 U+1F94E SOFTBALL + 🥏 U+1F94F FLYING DISC + 🧠 U+1F9E0 BRAIN + 🧡 U+1F9E1 ORANGE HEART + 🧢 U+1F9E2 BILLED CAP + 🧣 U+1F9E3 SCARF + 🧤 U+1F9E4 GLOVES + 🧥 U+1F9E5 COAT + 🧦 U+1F9E6 SOCKS + 🥐 U+1F950 CROISSANT + 🥑 U+1F951 AVOCADO + 🥒 U+1F952 CUCUMBER + 🥓 U+1F953 BACON + 🥔 U+1F954 POTATO + 🥕 U+1F955 CARROT + 🥖 U+1F956 BAGUETTE BREAD + 🥗 U+1F957 GREEN SALAD + 🥘 U+1F958 SHALLOW PAN OF FOOD + 🥙 U+1F959 STUFFED FLATBREAD + 🥚 U+1F95A EGG + 🥛 U+1F95B GLASS OF MILK + 🥜 U+1F95C PEANUTS + 🥝 U+1F95D KIWIFRUIT + 🥞 U+1F95E PANCAKES + 🥟 U+1F95F DUMPLING + 🥠 U+1F960 FORTUNE COOKIE + 🥡 U+1F961 TAKEOUT BOX + 🥢 U+1F962 CHOPSTICKS + 🥣 U+1F963 BOWL WITH SPOON + 🥤 U+1F964 CUP WITH STRAW + 🥥 U+1F965 COCONUT + 🥦 U+1F966 BROCCOLI + 🥧 U+1F967 PIE + 🥨 U+1F968 PRETZEL + 🥩 U+1F969 CUT OF MEAT + 🥪 U+1F96A SANDWICH + 🥫 U+1F96B CANNED FOOD + 🥬 U+1F96C LEAFY GREEN + 🥭 U+1F96D MANGO + 🥮 U+1F96E MOON CAKE + 🥯 U+1F96F BAGEL + 🧀 U+1F9C0 CHEESE WEDGE + 🧁 U+1F9C1 CUPCAKE + 🧂 U+1F9C2 SALT SHAKER + 🧃 U+1F9C3 BEVERAGE BOX + 🧄 U+1F9C4 GARLIC + 🧅 U+1F9C5 ONION + 🧆 U+1F9C6 FALAFEL + 🧇 U+1F9C7 WAFFLE + 🧈 U+1F9C8 BUTTER + 🧉 U+1F9C9 MATE DRINK + 🧊 U+1F9CA ICE CUBE + 🧋 U+1F9CB BUBBLE TEA + 🥰 U+1F970 SMILING FACE WITH SMILING EYES AND THREE HEARTS + 🥱 U+1F971 YAWNING FACE + 🥲 U+1F972 SMILING FACE WITH TEAR + 🥳 U+1F973 FACE WITH PARTY HORN AND PARTY HAT + 🥴 U+1F974 FACE WITH UNEVEN EYES AND WAVY MOUTH + 🥵 U+1F975 OVERHEATED FACE + 🥶 U+1F976 FREEZING FACE + 🥷 U+1F977 NINJA + 🥸 U+1F978 DISGUISED FACE + 🥹 U+1F979 FACE HOLDING BACK TEARS + 🥺 U+1F97A FACE WITH PLEADING EYES + 🥻 U+1F97B SARI + 🥼 U+1F97C LAB COAT + 🥽 U+1F97D GOGGLES + 🥾 U+1F97E HIKING BOOT + 🥿 U+1F97F FLAT SHOE + 🦀 U+1F980 CRAB + 🦁 U+1F981 LION FACE + 🦂 U+1F982 SCORPION + 🦃 U+1F983 TURKEY + 🦄 U+1F984 UNICORN FACE + 🦅 U+1F985 EAGLE + 🦆 U+1F986 DUCK + 🦇 U+1F987 BAT + 🦈 U+1F988 SHARK + 🦉 U+1F989 OWL + 🦊 U+1F98A FOX FACE + 🦋 U+1F98B BUTTERFLY + 🦌 U+1F98C DEER + 🦍 U+1F98D GORILLA + 🦎 U+1F98E LIZARD + 🦏 U+1F98F RHINOCEROS + 🦐 U+1F990 SHRIMP + 🦑 U+1F991 SQUID + 🦒 U+1F992 GIRAFFE FACE + 🦓 U+1F993 ZEBRA FACE + 🦔 U+1F994 HEDGEHOG + 🦕 U+1F995 SAUROPOD + 🦖 U+1F996 T-REX + 🦗 U+1F997 CRICKET + 🦘 U+1F998 KANGAROO + 🦙 U+1F999 LLAMA + 🦚 U+1F99A PEACOCK + 🦛 U+1F99B HIPPOPOTAMUS + 🦜 U+1F99C PARROT + 🦝 U+1F99D RACCOON + 🦞 U+1F99E LOBSTER + 🦟 U+1F99F MOSQUITO + 🦠 U+1F9A0 MICROBE + 🦡 U+1F9A1 BADGER + 🦢 U+1F9A2 SWAN + 🦣 U+1F9A3 MAMMOTH + 🦤 U+1F9A4 DODO + 🦥 U+1F9A5 SLOTH + 🦦 U+1F9A6 OTTER + 🦧 U+1F9A7 ORANGUTAN + 🦨 U+1F9A8 SKUNK + 🦩 U+1F9A9 FLAMINGO + 🦪 U+1F9AA OYSTER + 🦫 U+1F9AB BEAVER + 🦬 U+1F9AC BISON + 🦭 U+1F9AD SEAL + 🦮 U+1F9AE GUIDE DOG + 🦯 U+1F9AF PROBING CANE + 🦺 U+1F9BA SAFETY VEST + 🦻 U+1F9BB EAR WITH HEARING AID + 🦼 U+1F9BC MOTORIZED WHEELCHAIR + 🦽 U+1F9BD MANUAL WHEELCHAIR + 🦾 U+1F9BE MECHANICAL ARM + 🦿 U+1F9BF MECHANICAL LEG + 🦰 U+1F9B0 EMOJI COMPONENT RED HAIR + 🦱 U+1F9B1 EMOJI COMPONENT CURLY HAIR + 🦲 U+1F9B2 EMOJI COMPONENT BALD + 🦳 U+1F9B3 EMOJI COMPONENT WHITE HAIR + 🦴 U+1F9B4 BONE + 🦵 U+1F9B5 LEG + 🦶 U+1F9B6 FOOT + 🦷 U+1F9B7 TOOTH + 🦸 U+1F9B8 SUPERHERO + 🦹 U+1F9B9 SUPERVILLAIN + 🧌 U+1F9CC TROLL + 🧙 U+1F9D9 MAGE + 🧚 U+1F9DA FAIRY + 🧛 U+1F9DB VAMPIRE + 🧜 U+1F9DC MERPERSON + 🧝 U+1F9DD ELF + 🧞 U+1F9DE GENIE + 🧟 U+1F9DF ZOMBIE + 🧍 U+1F9CD STANDING PERSON + 🧎 U+1F9CE KNEELING PERSON + 🧏 U+1F9CF DEAF PERSON + 🧧 U+1F9E7 RED GIFT ENVELOPE + 🧨 U+1F9E8 FIRECRACKER + 🧩 U+1F9E9 JIGSAW PUZZLE PIECE + 🧪 U+1F9EA TEST TUBE + 🧫 U+1F9EB PETRI DISH + 🧬 U+1F9EC DNA DOUBLE HELIX + 🧭 U+1F9ED COMPASS + 🧮 U+1F9EE ABACUS + 🧯 U+1F9EF FIRE EXTINGUISHER + 🧰 U+1F9F0 TOOLBOX + 🧱 U+1F9F1 BRICK + 🧲 U+1F9F2 MAGNET + 🧳 U+1F9F3 LUGGAGE + 🧴 U+1F9F4 LOTION BOTTLE + 🧵 U+1F9F5 SPOOL OF THREAD + 🧶 U+1F9F6 BALL OF YARN + 🧷 U+1F9F7 SAFETY PIN + 🧸 U+1F9F8 TEDDY BEAR + 🧹 U+1F9F9 BROOM + 🧺 U+1F9FA BASKET + 🧻 U+1F9FB ROLL OF PAPER + 🧼 U+1F9FC BAR OF SOAP + 🧽 U+1F9FD SPONGE + 🧾 U+1F9FE RECEIPT + 🧿 U+1F9FF NAZAR AMULET + 🩰 U+1FA70 BALLET SHOES + 🩱 U+1FA71 ONE-PIECE SWIMSUIT + 🩲 U+1FA72 BRIEFS + 🩳 U+1FA73 SHORTS + 🩴 U+1FA74 THONG SANDAL + 🩵 U+1FA75 LIGHT BLUE HEART + 🩶 U+1FA76 GREY HEART + 🩷 U+1FA77 PINK HEART + 🩸 U+1FA78 DROP OF BLOOD + 🩹 U+1FA79 ADHESIVE BANDAGE + 🩺 U+1FA7A STETHOSCOPE + 🩻 U+1FA7B X-RAY + 🩼 U+1FA7C CRUTCH + 🪀 U+1FA80 YO-YO + 🪁 U+1FA81 KITE + 🪂 U+1FA82 PARACHUTE + 🪃 U+1FA83 BOOMERANG + 🪄 U+1FA84 MAGIC WAND + 🪅 U+1FA85 PINATA + 🪆 U+1FA86 NESTING DOLLS + 🪇 U+1FA87 MARACAS + 🪈 U+1FA88 FLUTE + 🪐 U+1FA90 RINGED PLANET + 🪑 U+1FA91 CHAIR + 🪒 U+1FA92 RAZOR + 🪓 U+1FA93 AXE + 🪔 U+1FA94 DIYA LAMP + 🪕 U+1FA95 BANJO + 🪖 U+1FA96 MILITARY HELMET + 🪗 U+1FA97 ACCORDION + 🪘 U+1FA98 LONG DRUM + 🪙 U+1FA99 COIN + 🪚 U+1FA9A CARPENTRY SAW + 🪛 U+1FA9B SCREWDRIVER + 🪜 U+1FA9C LADDER + 🪝 U+1FA9D HOOK + 🪞 U+1FA9E MIRROR + 🪟 U+1FA9F WINDOW + 🪠 U+1FAA0 PLUNGER + 🪡 U+1FAA1 SEWING NEEDLE + 🪢 U+1FAA2 KNOT + 🪣 U+1FAA3 BUCKET + 🪤 U+1FAA4 MOUSE TRAP + 🪥 U+1FAA5 TOOTHBRUSH + 🪦 U+1FAA6 HEADSTONE + 🪧 U+1FAA7 PLACARD + 🪨 U+1FAA8 ROCK + 🪩 U+1FAA9 MIRROR BALL + 🪪 U+1FAAA IDENTIFICATION CARD + 🪫 U+1FAAB LOW BATTERY + 🪬 U+1FAAC HAMSA + 🪭 U+1FAAD FOLDING HAND FAN + 🪮 U+1FAAE HAIR PICK + 🪯 U+1FAAF KHANDA + 🪰 U+1FAB0 FLY + 🪱 U+1FAB1 WORM + 🪲 U+1FAB2 BEETLE + 🪳 U+1FAB3 COCKROACH + 🪴 U+1FAB4 POTTED PLANT + 🪵 U+1FAB5 WOOD + 🪶 U+1FAB6 FEATHER + 🪷 U+1FAB7 LOTUS + 🪸 U+1FAB8 CORAL + 🪹 U+1FAB9 EMPTY NEST + 🪺 U+1FABA NEST WITH EGGS + 🪻 U+1FABB HYACINTH + 🪼 U+1FABC JELLYFISH + 🪽 U+1FABD WING + 🪿 U+1FABF GOOSE + 🫎 U+1FACE MOOSE + 🫏 U+1FACF DONKEY + 🫀 U+1FAC0 ANATOMICAL HEART + 🫁 U+1FAC1 LUNGS + 🫂 U+1FAC2 PEOPLE HUGGING + 🫃 U+1FAC3 PREGNANT MAN + 🫄 U+1FAC4 PREGNANT PERSON + 🫅 U+1FAC5 PERSON WITH CROWN + 🫐 U+1FAD0 BLUEBERRIES + 🫑 U+1FAD1 BELL PEPPER + 🫒 U+1FAD2 OLIVE + 🫓 U+1FAD3 FLATBREAD + 🫔 U+1FAD4 TAMALE + 🫕 U+1FAD5 FONDUE + 🫖 U+1FAD6 TEAPOT + 🫗 U+1FAD7 POURING LIQUID + 🫘 U+1FAD8 BEANS + 🫙 U+1FAD9 JAR + 🫚 U+1FADA GINGER ROOT + 🫛 U+1FADB PEA POD + 🫠 U+1FAE0 MELTING FACE + 🫡 U+1FAE1 SALUTING FACE + 🫢 U+1FAE2 FACE WITH OPEN EYES AND HAND OVER MOUTH + 🫣 U+1FAE3 FACE WITH PEEKING EYE + 🫤 U+1FAE4 FACE WITH DIAGONAL MOUTH + 🫥 U+1FAE5 DOTTED LINE FACE + 🫦 U+1FAE6 BITING LIP + 🫧 U+1FAE7 BUBBLES + 🫨 U+1FAE8 SHAKING FACE + 🫰 U+1FAF0 HAND WITH INDEX FINGER AND THUMB CROSSED + 🫱 U+1FAF1 RIGHTWARDS HAND + 🫲 U+1FAF2 LEFTWARDS HAND + 🫳 U+1FAF3 PALM DOWN HAND + 🫴 U+1FAF4 PALM UP HAND + 🫵 U+1FAF5 INDEX POINTING AT THE VIEWER + 🫶 U+1FAF6 HEART HANDS + 🫷 U+1FAF7 LEFTWARDS PUSHING HAND + 🫸 U+1FAF8 RIGHTWARDS PUSHING HAND + + */ \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Collapsible Right Headers.css b/.obsidian/snippets/[ui] Collapsible Right Headers.css new file mode 100644 index 00000000..7783b8f8 --- /dev/null +++ b/.obsidian/snippets/[ui] Collapsible Right Headers.css @@ -0,0 +1,40 @@ +/* + Collapsible Right Headers + Save some space in the right headers + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* header container on right */ +.mod-right-split .workspace-tabs + .workspace-tabs .workspace-tab-header-container { + background: + repeating-linear-gradient( + 135deg, + var(--background-modifier-border) 0px, + transparent 1px, + transparent 10px, + var(--background-modifier-border) 11px, + transparent 11px + ) !important; + height:8px; + transition:.2s all ease-in; + border-bottom-color:transparent; +} +.mod-right-split .workspace-tabs + .workspace-tabs .workspace-tab-header-container::before { + content:''; + background:linear-gradient(to top, var(--background-primary), transparent); + display:block; + position:absolute; + left:0; + width:100%; + height:100%; + top: 0; +} + + +.mod-right-split .workspace-tabs + .workspace-tabs .workspace-tab-header-container:hover, +.mod-right-split .workspace-tabs + .workspace-tabs .workspace-tab-header-container:focus-within, +body.is-grabbing .mod-right-split .workspace-tabs + .workspace-tabs .workspace-tab-header-container { + /* is-grabbing visibility is to make dragging panels around usable */ + height:var(--header-height); + background:var(--background-primary) !important; +} diff --git a/.obsidian/snippets/[ui] Compact File Explorer.css b/.obsidian/snippets/[ui] Compact File Explorer.css new file mode 100644 index 00000000..d4fb671e --- /dev/null +++ b/.obsidian/snippets/[ui] Compact File Explorer.css @@ -0,0 +1,220 @@ +/* + Compact File Explorer + I prefer a condensed view with the chevron on the right. + + NOTE: Fix padding bug on startup + -------------------------------- + + Obsidian calculates paddings via JS and there is a bug sometimes + with the wrong indents appearing on startup. + + The fix for this is to turn dummy.css snippet on and off. + + To automate this fix (KLUDGE incoming): + - Install 'Snippet Commands' by death_au from Community Plugins + - Install 'Templater' plugin + - Create a new startup script in your vault containing this code: + <%* app.commands.executeCommandById('snippet-commands-obsidian:snippet-command-dummy'); %> + + Now, the padding will be reset on startup. Even with this fix, sometimes + large folders have incorrect padding offsets further down. + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Workspace: Sidebar navigation */ +[data-type=file-explorer] { + .nav-header { + padding-left:14px; + padding-bottom:3px; + padding-top: 6px; + + .nav-buttons-container { + opacity:0.7; + transition: .2s opacity ease-in; + + &:hover { + opacity:1; + } + } + + .clickable-icon { + padding-left:4px; + } + } + + .nav-files-container { + padding-left: 9px; + padding-right: 9px; + } + + .collapse-icon { + position:relative !important; + margin-left:0 !important; + order:4; + padding-left:3px; + + svg { + stroke:var(--text-faint); + margin-top:1px; + } + } + + /* Fix Folder Note Count display */ + .nav-folder-title-content { + flex-grow:0 !important; + } + + /* Fix flashing color */ + .is-flashing { + background-color: var(--tx3) + } + + /* We're fighting obsidians JS on calculated paddings here, fix left margin */ + .tree-item-self[style] { + padding-left:8px !important; + } + + /* Disable sliding animation */ + * { + transition: none !important; + } + + /* tree trunk */ + .tree-item-children { + border-inline-start:none; + position:relative; + + &::before { + content:''; + position:absolute; + top:0; + left:-1px; + bottom:12px; + width:1px; + background:var(--nav-indentation-guide-color); + } + } + + /* tree branches */ + .nav-file, + .nav-folder { + position:relative; + z-index:1; + } + .nav-folder-children .nav-file-title::before, + .nav-folder-children .nav-folder-title::before { + content:''; + display:block; + width:8px; + height:1px; + background-color: var(--nav-indentation-guide-color); + position:absolute; + margin-left:-13px; + z-index:-1; + } + .nav-folder.mod-root .nav-folder > .nav-folder-children { + margin-left:8px; + position:relative; + padding-left:7px; + } + .nav-folder.mod-root .nav-file:hover .nav-file-title::before, + .nav-folder.mod-root .nav-file-title.is-active::before { + width:8px; + } + + /* overflowing title alignment fix */ + .nav-file-title, + .nav-folder-title { + padding-right:4px; + z-index:2; + } + + /* .nav-folder.mod-root .nav-folder > .nav-folder-children { + margin-left:13px !important; + outline:1px solid red; + } */ + + /* .nav-folder.mod-root .nav-folder > .nav-folder-children:has([class*=nav-])::after { + background-color:var(--bg2, var(--background-primary)); + } */ + + /* Fix Folder Note Count display */ + .nav-folder-title-content { + flex-grow:0 !important; + } + + /* Folder Count plugin alignment */ + .nav-folder-title[data-count]::after { + color: var(--tx3, var(--text-faint)); + position:absolute; + right:0; + transform: translate(0, 1px); + opacity:0; + transition: .2s opacity ease-in; + padding-right:3px; + } + + .nav-files-container:hover .nav-folder-title[data-count]::after { + opacity:1; + } + + /* Make attachment folders less visible */ + .nav-files-container [data-path*=attachments], + .nav-files-container [data-path*=Assets] { + opacity:0.6; + } + + /* style file tag */ + .nav-file-tag { + /* Here be dragons! */ + margin-left:0; + margin-right:3px; + text-shadow: 0.5px 0 0 black; + text-indent:-5px; + overflow:visible; + font-weight:bold; + line-height:10px; + width:13px; + height:13px; + font-size: 11px; + letter-spacing:-0.5px; + vertical-align:middle; + text-rendering: geometricPrecision; + /* font-family: "JetBrains Mono", monospace; */ + font-family: "Lucida Console", "Lucida Sans Typewriter", "DejaVu Sans Mono", "Bitstream Vera Sans Mono", "Liberation Mono", "Nimbus Mono L", Monaco, "Courier New", Courier, monospace; + border-radius:0; + + /* suffix file tag styling */ + .nav-file-title-content + & { + margin-left: .5rem; + letter-spacing: 0; + } + } + + /* Hide file tag when an icon is set */ + .nav-file:has(.nav-file-tag):has(.iconize-icon) { + .nav-file-tag {display:none} + } + + /* Fix weird indent on root vault files */ + .nav-files-container .nav-folder.mod-root > .nav-folder-children > .tree-item.nav-file { + + .nav-file-title.is-active::before { + /* fix indent on active file in root */ + display:none; + } + + &:hover .nav-file-title::before { + /* fix indent on hovered file in root */ + display:none !important; + } + } + +} + +/* Align vault title */ +body:not(.is-mobile) .nav-folder.mod-root>.nav-folder-title .nav-folder-title-content { + margin-left:-3px; +} + diff --git a/.obsidian/snippets/[ui] Compact Properties.css b/.obsidian/snippets/[ui] Compact Properties.css new file mode 100644 index 00000000..b1e409c2 --- /dev/null +++ b/.obsidian/snippets/[ui] Compact Properties.css @@ -0,0 +1,95 @@ + +/* + Compact Properties + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Compact style */ +.cm-editor .metadata-container { + padding-top:0; + padding-bottom:6px; +} + +.cm-editor .metadata-properties-heading { + display:none; +} + +/* Autohide on hover for desktop */ +body:not(.is-mobile) { + .cm-editor .metadata-container { + height:.5em; + margin-bottom:0; + + .metadata-content { + display:none; + } + + &::before { + content:'⋯'; + display:block; + position:absolute; + height:100%; + width:100%; + line-height:1em; + text-indent:3px; + top:-4px; + pointer-events:none; + } + + &:is(:hover,:focus-within) { + height:auto; + background: inherit; + + &::before { + display:none; + } + + .metadata-content { + display:inherit; + } + } + + } +} + +/* Hide properties on mobile */ +body:is(.is-mobile) { + --metadata-display-editing: none; +} + +/* Properties panel fixes */ +.workspace-leaf-content[data-type=all-properties] { + + .nav-header { + padding-top:6px; + padding-bottom:0; + + .nav-buttons-container { + margin-right:0 !important; + padding-left:2px + } + + /* correct icon alignment */ + .clickable-icon svg { + transform: translate(-2px,0); + } + + .search-input-container { + outline:2px solid red; + + } + } + + .tree-item { + /* fix properties panel item alignment */ + padding-left: 15px; + /* more compact */ + margin-top:-5px; + } +} + +/* Hide banner in hover popover */ +.hover-popover .metadata-container { + display:none !important; + outline: 2px solid red; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Compact Sidebar.css b/.obsidian/snippets/[ui] Compact Sidebar.css new file mode 100644 index 00000000..834259df --- /dev/null +++ b/.obsidian/snippets/[ui] Compact Sidebar.css @@ -0,0 +1,64 @@ +/* + Compact Sidebar + Make icons in sidebar tab headers more compact, for smaller screens + Make Vault selector sidebar footer more compact + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace-tab-header-inner{ + padding-left:3px; + padding-right:3px; +} + +.nav-buttons-container { + justify-content:start !important; + margin-left:-4px +} + +.nav-buttons-container .clickable-icon { + padding-left:8px; + padding-right:3px; +} + +.nav-buttons-container .clickable-icon{ + color:var(--tx2, var(--text-normal)) !important; + transition: .2s color ease-in; +} + +.nav-buttons-container .view-actions:hover .clickable-icon { + color: var(--tx1, var(--text-faint)) !important; +} + +/* Compact Vault selector sidebar footer */ +body:not(.is-mobile) .workspace-split.mod-left-split .workspace-sidedock-vault-profile { + padding: 0; + gap:0; + + .workspace-drawer-vault-switcher { + border-top-right-radius: 0; + border-bottom-right-radius: 0; + padding-left: 12px; + margin-top:-1px; + } + + .clickable-icon { + border-radius:0; + + &:last-of-type { + padding-right:12px + } + } + + svg { + width:16px !important; + height:16px !important; + + } + + svg { + } + + .workspace-drawer-vault-name { + margin-left:-5px; + } +} diff --git a/.obsidian/snippets/[ui] Compact Tab Header.css b/.obsidian/snippets/[ui] Compact Tab Header.css new file mode 100644 index 00000000..0c6487f6 --- /dev/null +++ b/.obsidian/snippets/[ui] Compact Tab Header.css @@ -0,0 +1,29 @@ +/* + Compact Tab Header + Make main tab header items more compact + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Make header title left justified */ +.view-header-title-container { + justify-content:start; +} +.view-header-title-container .view-header-title { + color:var(--tx2) !important; +} +.view-header-title-container .view-header-title:hover, +.view-header-title-container .view-header-title:focus { + color:var(--tx1) !important +} + +/* Condensed Icon spacing */ +.view-header .view-actions .clickable-icon{ + color:var(--tx2) !important; + transition: .2s color ease-in; + padding-left:2px; + padding-right:2px; +} + +.view-header .view-actions:hover .clickable-icon { + color: var(--tx1) !important; +} diff --git a/.obsidian/snippets/[ui] Compact Tabs (classic).css b/.obsidian/snippets/[ui] Compact Tabs (classic).css new file mode 100644 index 00000000..00c1e2f8 --- /dev/null +++ b/.obsidian/snippets/[ui] Compact Tabs (classic).css @@ -0,0 +1,90 @@ +/* + Commpact Tabs + Cleaner, smaller tabs with hidden buttons + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header { + padding-left:3px; + padding-right:3px; +} +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header .workspace-tab-header-inner { + gap:0 !important; +} + +/* Hide tab separator bar */ +.workspace .mod-root .workspace-tab-header-inner::after { + display:none; +} + +/* Hover tab styles */ +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner { + background: var(--bg2); +} + +/* Hide buttons until hover */ +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active) .workspace-tab-header-inner-close-button, +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active) .workspace-tab-header-status-icon { + opacity:0; +} +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button, +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active):hover .workspace-tab-header-status-icon { + opacity:1; +} + +/* Less prominent pinned icon */ +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header.is-active .workspace-tab-header-status-icon { + opacity:0.6 !important; +} + +/* Variable width tabs WIP */ +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header-inner { + /* width:auto; */ +} +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header { + /* width:auto; + flex: none; + flex-shrink: 1; + max-width:25% */ +} + +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header-inner { +} + +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active) .workspace-tab-header-inner-close-button { + position:absolute; + right:6px; + margin-top:0px; +} + +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button { + background:var(--bg2); +} + +/* Fade graphic to make hover close button look less harsh */ +.workspace-tabs:not([class*=-right], [class*=-left]) .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button::before { + content:''; + display:block; + position:absolute; + background:linear-gradient(to right, transparent, var(--bg2)) !important; + right:100%; + height:1em; + width: 1em; + pointer-events:none; +} + + +/* Smaller buttons */ +.workspace .mod-root .workspace-tab-header-inner-close-button, +.workspace .mod-root .workspace-tab-header-status-icon { + transform:scale(0.9) translate(2px,1px); + transform-origin:center; +} + +/* Smaller new tab button */ +.workspace .mod-root .workspace-tab-header-new-tab { + margin-left:4px; +} +.workspace .mod-root .workspace-tab-header-new-tab .clickable-icon { + transform:scale(0.8) translate(0,1px); +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Compact Tabs.css b/.obsidian/snippets/[ui] Compact Tabs.css new file mode 100644 index 00000000..c6eb0e13 --- /dev/null +++ b/.obsidian/snippets/[ui] Compact Tabs.css @@ -0,0 +1,117 @@ +/* + Commpact Tabs + Cleaner, smaller tabs with hidden buttons + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace .mod-root .workspace-tab-header-container { + /* border-bottom:0 */ +} + +.workspace .mod-root .workspace-tab-header-container-inner { + padding: 0; + margin: 5px 0 2px -2px; +} +.workspace .mod-root .workspace-tab-header.is-active { + background: none; + box-shadow: none; +} +.workspace .mod-root .workspace-tab-header.is-active::before, +.workspace .mod-root .workspace-tab-header.is-active::after { + display:none; +} + +.workspace .mod-root .workspace-tab-header.is-active .workspace-tab-header-inner { + background: var(--background-modifier-hover); +} + /* Theme-specific colour tweaks */ + /* .theme-light.minimal-atom-light .workspace .mod-root .is-active .workspace-tab-header-inner, + .theme-light.minimal-catppuccin-light .workspace .mod-root .is-active .workspace-tab-header-inner { + background: hsl(var(--base-h), var(--base-s), calc(var(--base-l) - 6%)) + } */ + +.workspace .mod-root .workspace-tab-header { + padding-left:2px; + padding-right:2px; + + &:first-of-type { + padding-left:0; + } +} +.workspace .mod-root .workspace-tab-header .workspace-tab-header-inner { + gap:0 !important; +} + +/* Hide tab separator bar */ +.workspace .mod-root .workspace-tab-header-inner::after { + display:none; +} + +/* Hover tab styles */ +.workspace .mod-root .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner { + background: var(--bg2); +} + +/* Hide buttons until hover */ +.workspace .mod-root .workspace-tab-header:not(.is-active) .workspace-tab-header-inner-close-button, +.workspace .mod-root .workspace-tab-header:not(.is-active) .workspace-tab-header-status-icon { + opacity:0; +} +.workspace .mod-root .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button, +.workspace .mod-root .workspace-tab-header:not(.is-active):hover .workspace-tab-header-status-icon { + opacity:1; +} + +/* Less prominent pinned icon */ +.workspace .mod-root .workspace-tab-header.is-active .workspace-tab-header-status-icon { + opacity:0.6 !important; +} + +.workspace .mod-root .workspace-tab-header:not(.is-active) .workspace-tab-header-inner-close-button { + position:absolute; + right:6px; + margin-top:0px; +} + +.workspace .mod-root .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button { + background:var(--bg2); +} + +/* Fade graphic to make hover close button look less harsh */ +.workspace .mod-root .workspace-tab-header:not(.is-active):hover .workspace-tab-header-inner-close-button::before { + content:''; + display:block; + position:absolute; + background:linear-gradient(to right, transparent, var(--bg2)) !important; + right:100%; + height:1em; + width: 1em; + pointer-events:none; +} + +/* Smaller buttons */ +.workspace .mod-root .workspace-tab-header-inner-close-button, +.workspace .mod-root .workspace-tab-header-status-icon { + transform:scale(0.9) translate(2px,1px); + transform-origin:center; +} + +/* Smaller new tab button */ +.workspace .mod-root .workspace-tab-header-new-tab { + margin-left:4px; +} +.workspace .mod-root .workspace-tab-header-new-tab .clickable-icon { + transform:scale(0.8) translate(0,1px); +} + + +/* Variable width tabs WIP */ +.workspace .mod-root .workspace-tab-header-inner { + /* width:auto; */ +} +.workspace .mod-root .workspace-tab-header { + /* width:auto; + flex: none; + flex-shrink: 1; + max-width:25% */ +} diff --git a/.obsidian/snippets/[ui] Custom Separators (gradient).css b/.obsidian/snippets/[ui] Custom Separators (gradient).css new file mode 100644 index 00000000..e3aafb45 --- /dev/null +++ b/.obsidian/snippets/[ui] Custom Separators (gradient).css @@ -0,0 +1,28 @@ +/* + File Explorer Separators + So this is super handy, I found a way to add visual separators below and above navigation items in the file explorer. + This works nicely along side the 'Custom File Explorer Sorting' plugin, and there's a thread on their github about my solution. + You need to customize the rule below in accordance with your file structure. + These styles go with + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --replete-custom-separators-vertical-padding: 4px; + --replete-custom-separators-left-margin: -12px; +} + +/* Separator below */ +.nav-files-container [class*=nav-]:has(:is( + [data-path="Areas.md"], + [data-path="Meetings"], + [data-path="Sundown"], + [data-path="Thoughts"], + [data-path="Meditations"] +))::after { + content:''; + display:block; + height:1px; + width:calc(100% + 32px); + background:linear-gradient(to right, var(--tab-outline-color), transparent); + margin:var(--replete-custom-separators-vertical-padding) 0 var(--replete-custom-separators-vertical-padding) var(--replete-custom-separators-left-margin); +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Custom Separators.css b/.obsidian/snippets/[ui] Custom Separators.css new file mode 100644 index 00000000..d52f6c8e --- /dev/null +++ b/.obsidian/snippets/[ui] Custom Separators.css @@ -0,0 +1,40 @@ +/* + File Explorer Separators + So this is super handy, I found a way to add visual separators below and above navigation items in the file explorer. + This works nicely along side the 'Custom File Explorer Sorting' plugin, and there's a thread on their github about my solution. + You need to customize the rule below in accordance with your file structure. + These styles go with + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --replete-custom-separators-vertical-padding: 6px; + --replete-custom-separators-left-margin: -12px; +} + +/* Separator below */ +.nav-files-container [class*=nav-]:has(:is( + [data-path="Thoughts"], + [data-path="Reports"], + [data-path="Sundown"], + [data-path="Meditations"], + [data-path="Areas.md"] +))::after { + content:''; + display:block; + height:1px; + width:calc(100% + 32px); + background:var(--tab-outline-color); + margin:var(--replete-custom-separators-vertical-padding) 0 var(--replete-custom-separators-vertical-padding) var(--replete-custom-separators-left-margin); +} + +/* Separator above */ +/* .nav-files-container [class*=nav-]:has(:is( + [data-path="Notes"] +))::before { + content:''; + display:block; + height:1px; + width:calc(100% + 32px); + background:var(--tab-outline-color); + margin:var(--replete-custom-separators-vertical-padding) 0 var(--replete-custom-separators-vertical-padding) var(--replete-custom-separators-left-margin); +} */ diff --git a/.obsidian/snippets/[ui] Floating Tab Header mini.css b/.obsidian/snippets/[ui] Floating Tab Header mini.css new file mode 100644 index 00000000..bde0007d --- /dev/null +++ b/.obsidian/snippets/[ui] Floating Tab Header mini.css @@ -0,0 +1,64 @@ +/* + Floating Tab Header Mini + With inline title enabled, it seems a waste to take up vertical space of the 'view header' + especially if you don't use the back/forward buttons or the breadcrumb, so this minifies + that interface into a float right toolbar. + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +/* Floating tab header styles */ +.view-header { + background:transparent !important; + border:none; + position:fixed; + top:8px; + right:10px; + right: calc(var(--scrollbar-size) + 8px); + padding: 5px 5px; + justify-content:end; + border-radius: 8px; + /* border:1px solid hsla(var(--base-h), var(--base-s), var(--base-l), 1); */ + border:1px solid transparent; + height:auto; + z-index:500; /* Fixes in excalidraw */ +} + +.view-header:hover, +.view-header:focus-within { + border:1px solid var(--divider-color); + box-shadow: -2px 2px 6px -2px var(--divider-color); + background-color: var(--background-primary) !important; +} + +/* Show/hide nav + breadcrumb interaction */ +.view-header-nav-buttons, +.view-header-title-container, +.view-header .cmdr-adder, +.view-header .clickable-icon:not(:last-child) { + opacity:0; + display:none; +} +.view-header:hover :is(.view-header-nav-buttons, .view-header-title-container), +.view-header:focus-within :is(.view-header-nav-buttons, .view-header-title-container), +.view-header:is(:hover) .clickable-icon:not(.view-header-icon){ + opacity:1; + display:flex +} + +/* Tweak commander '+' icon */ +.view-header:hover .cmdr-adder, +.view-header:focus-within .cmdr-adder { + opacity:0.4; + display:flex; +} + +/* Excalidraw fix */ +[data-type="excalidraw"] .view-header .clickable-icon:not(:last-of-type){ + display:none; + opacity:0; +} +[data-type="excalidraw"] .view-header:hover .clickable-icon:not(.view-header-icon) { + display:flex; + opacity:1; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Floating Tab Header.css b/.obsidian/snippets/[ui] Floating Tab Header.css new file mode 100644 index 00000000..23106ac6 --- /dev/null +++ b/.obsidian/snippets/[ui] Floating Tab Header.css @@ -0,0 +1,62 @@ +/* + Floating Tab Header + With inline title enabled, it seems a waste to take up vertical space of the 'view header' + especially if you don't use the back/forward buttons or the breadcrumb, so this minifies + that interface into a float right toolbar. + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +/* Floating tab header styles */ +.view-header { + background:transparent !important; + border:none; + position:fixed; + top:8px; + right:10px; + right: calc(var(--scrollbar-size) + 8px); + padding: 5px 5px; + justify-content:end; + border-radius: 8px; + /* border:1px solid hsla(var(--base-h), var(--base-s), var(--base-l), 1); */ + border:1px solid transparent; + height:auto; + z-index:500; /* Fixes in excalidraw */ +} + +.view-header:hover, +.view-header:focus-within { + border:1px solid var(--divider-color); + box-shadow: -2px 2px 6px -2px var(--divider-color); + background-color: var(--background-primary) !important; +} + +/* Show/hide nav + breadcrumb interaction */ +.view-header-nav-buttons, +.view-header-title-container, +.view-header .cmdr-adder { + opacity:0; + display:none; +} +.view-header:hover :is(.view-header-nav-buttons, .view-header-title-container), +.view-header:focus-within :is(.view-header-nav-buttons, .view-header-title-container){ + opacity:1; + display:flex +} + +/* Tweak commander '+' icon */ +.view-header:hover .cmdr-adder, +.view-header:focus-within .cmdr-adder { + opacity:0.4; + display:flex; +} + +/* Excalidraw fix */ +[data-type="excalidraw"] .view-header .clickable-icon:not(:last-of-type){ + display:none; + opacity:0; +} +[data-type="excalidraw"] .view-header:hover .clickable-icon:not(.view-header-icon) { + display:flex; + opacity:1; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Hide Ribbon.css b/.obsidian/snippets/[ui] Hide Ribbon.css new file mode 100644 index 00000000..6ee40468 --- /dev/null +++ b/.obsidian/snippets/[ui] Hide Ribbon.css @@ -0,0 +1,10 @@ +/* + Hide Ribbon + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.workspace-ribbon.mod-left {display:none;} + +.workspace-tabs.mod-top.mod-top-left-space .workspace-tab-header-container { + padding-left: calc( var(--frame-left-space) + var(--ribbon-width)) !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Native Scrollbar styles.css b/.obsidian/snippets/[ui] Native Scrollbar styles.css new file mode 100644 index 00000000..bb9d8801 --- /dev/null +++ b/.obsidian/snippets/[ui] Native Scrollbar styles.css @@ -0,0 +1,35 @@ +/* + Native scrollbars + I styled the native scrollbars before I reaized there was an option to render them in Obsidian... + Only tested on MacOS + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +:root { + --scrollbar-size: 6px; +} +::-webkit-scrollbar { + width: var(--scrollbar-size); /* for vertical scrollbars */ + height: var(--scrollbar-size); /* for horizontal scrollbars */ +} +::-webkit-scrollbar-track, +::-webkit-scrollbar-corner { + background:transparent; +} +::-webkit-scrollbar-track:vertical { + background:linear-gradient(to right, transparent 50%, hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 10%), 0.2)); +} +::-webkit-scrollbar-track:horizontal { + background:linear-gradient(to bottom, transparent 50%, hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 10%), 0.2)); + } +::-webkit-scrollbar-thumb { + background: var(--nav-indentation-guide-color); +} +/* ::-webkit-scrollbar-thumb:vertical { + border-radius: var(--scrollbar-size) 0 0 var(--scrollbar-size); +} +::-webkit-scrollbar-thumb:horizontal { + border-radius: var(--scrollbar-size) var(--scrollbar-size) 0 0; +} */ +::-webkit-scrollbar-thumb:hover { + background: var(--text-muted); +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Resize Handles tweaks.css b/.obsidian/snippets/[ui] Resize Handles tweaks.css new file mode 100644 index 00000000..be171697 --- /dev/null +++ b/.obsidian/snippets/[ui] Resize Handles tweaks.css @@ -0,0 +1,12 @@ +/* + Resize handles tweaks + The resize handles when you resize sidebars use the accent colour which makes no sense to me + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ +.workspace-leaf-resize-handle { + transition: all .2s ease-in; +} +.workspace-leaf-resize-handle:hover { + border-color:var(--text-muted); + background-color:var(--text-muted); +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Restrict last right sidebar panel.css b/.obsidian/snippets/[ui] Restrict last right sidebar panel.css new file mode 100644 index 00000000..ddc6db23 --- /dev/null +++ b/.obsidian/snippets/[ui] Restrict last right sidebar panel.css @@ -0,0 +1,16 @@ +/* + Restrict last right sidebar panel + Limit the height of the last right sidebar item (.e.g the calendar) to save constant resizing on window resize + https://github.com/replete/obsidian-minimal-theme-css-snippets + + How to use: + - activate snippet + - resize Obsidian window to smallest vertical size that you will use + - resize panel by dragging divider to make calendar visible (setting flex-grow values) + - calendar should now always be visible on resize +*/ + +/* Assumes calendar plugin is the last panel in the right sidebar */ +.mod-right-split .workspace-tabs:last-of-type { + max-height:300px; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Statusbar tweaks.css b/.obsidian/snippets/[ui] Statusbar tweaks.css new file mode 100644 index 00000000..e4d059f2 --- /dev/null +++ b/.obsidian/snippets/[ui] Statusbar tweaks.css @@ -0,0 +1,32 @@ +/* + Status bar + Improves visual prominence of status bar, I don't want to hover in order to see what's on the status bar + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.status-bar { + + /* More visibility on dark theme */ + .theme-dark & { + color:var(--nav-item-color) !important; + } + + /* Compact icons */ + .clickable-icon { + padding-left:3px; + padding-right:3px; + } +} + +@container style(--status-bar-position: fixed) { + /* transparent minimal status bar */ + /* .status-bar{ + background:transparent !important; + transition: .2s all ease-in; + + &:hover { + background: var(--background-primary) !important; + box-shadow: 0 0 3px 3px rgba(0,0,0,.1); + } + } */ +} diff --git a/.obsidian/snippets/[ui] Tab Header on bottom.css b/.obsidian/snippets/[ui] Tab Header on bottom.css new file mode 100644 index 00000000..963c77e0 --- /dev/null +++ b/.obsidian/snippets/[ui] Tab Header on bottom.css @@ -0,0 +1,33 @@ +/* + Tab Headder on bottom + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.view-header { + position: fixed; + bottom:0; + width: 100%; + background:var(--background-primary) !important; + border-top: 1px solid var(--divider-color) !important; +} + +/* vertical status bar when right sidedock is closed */ +:has(.mod-right-split.is-sidedock-collapsed) .status-bar { + transform: translate(3px, calc(var(--header-height) * -1)); + width: var(--header-height); + flex-direction: column !important; + background-color: transparent; +} + +:has(.mod-right-split.is-sidedock-collapsed) .status-bar-item { + margin-right: 10px !important +} + +:has(.mod-right-split.is-sidedock-collapsed) .status-bar .day-planner-progress-bar { + display:none !important +} + +:has(.mod-right-split.is-sidedock-collapsed) .status-bar .day-planner-status-bar-text { + margin-right:20px !important; + display: none; +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Tab Header show path and title.css b/.obsidian/snippets/[ui] Tab Header show path and title.css new file mode 100644 index 00000000..21f482d3 --- /dev/null +++ b/.obsidian/snippets/[ui] Tab Header show path and title.css @@ -0,0 +1,11 @@ +/* + Tab Headder show path and title + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.view-header { + + .view-header-title-container { + opacity:1; + } +} diff --git a/.obsidian/snippets/[ui] Top fade.css b/.obsidian/snippets/[ui] Top fade.css new file mode 100644 index 00000000..57475446 --- /dev/null +++ b/.obsidian/snippets/[ui] Top fade.css @@ -0,0 +1,28 @@ +/* + Editor top fade + This is a visual tweak for use with Floating Tab Header or Tab Header on bottom snippets + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.cm-content::before { + content:''; + height:18px; + background:linear-gradient(to bottom, var(--background-primary), transparent); + left:0; + position:fixed; + top:0px; + width:calc(100% - var(--scrollbar-size)); /* depends on var from Native Custom Scrollbars */ + pointer-events:none; + z-index:100; + border-top:1px solid var(--background-primary); +} + + .theme-dark .cm-content::before { + opacity:0.5; + height:10px; + } + +/* Hide if there's a banner */ +.cm-content:has(.mk-header img)::after { + display:none +} \ No newline at end of file diff --git a/.obsidian/snippets/[ui] Translucent Tab Header.css b/.obsidian/snippets/[ui] Translucent Tab Header.css new file mode 100644 index 00000000..a0acc729 --- /dev/null +++ b/.obsidian/snippets/[ui] Translucent Tab Header.css @@ -0,0 +1,28 @@ +/* + Translucent Tab Header tweaks + Make view header translucent, showing document underneath + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Only set floating translucent view-header for leafs with editors */ +.workspace-leaf-content:has(.cm-contentContainer) .view-header { + background:hsla(var(--base-h),var(--base-s),var(--base-l),.7) !important; + backdrop-filter:blur(5px); + position:fixed; + width:calc(100% - 16px); /* default scrollbar width*/ + width:calc(100% - var(--scrollbar-size)); + top:0; + height:calc(var(--header-height) - 2px); +} + +/* Offset editor content */ +.cm-editor > .cm-scroller > .cm-sizer::before { + content:''; + display:block; + height:var(--header-height); +} + +/* Don't offset for notes showing a Make.MD Contexts banner image */ +.cm-editor > .cm-scroller > .cm-sizer:has(.mk-note-header img)::before { + display:none; +} diff --git a/.obsidian/snippets/[ui] Ultra Compact Sidebar.css b/.obsidian/snippets/[ui] Ultra Compact Sidebar.css new file mode 100644 index 00000000..9ced7c0c --- /dev/null +++ b/.obsidian/snippets/[ui] Ultra Compact Sidebar.css @@ -0,0 +1,9 @@ +/* + Ultra Compact Sidebar (non-resiable) + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.mod-sidedock.mod-left-split { + width:135px !important; +} diff --git a/.obsidian/snippets/[ui] Ultra Compact Tab Header.css b/.obsidian/snippets/[ui] Ultra Compact Tab Header.css new file mode 100644 index 00000000..ef74c2df --- /dev/null +++ b/.obsidian/snippets/[ui] Ultra Compact Tab Header.css @@ -0,0 +1,43 @@ +/* + Compact Tab Header + Make main tab header items more compact + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.view-header { + --header-height: 26px !important; + padding-left:0; + gap:0px; + + .view-header-title-container { + justify-content:start; + + .view-header-title { + color:var(--tx2) !important; + + &:hover, + &:focus { + color:var(--tx1) !important + } + } + } + + .view-actions { + + &:hover { + .clickable-icon { + color: var(--tx1) !important; + } + } + + /* Condensed Icon spacing */ + .clickable-icon{ + border-radius:0; + color:var(--tx2) !important; + transition: .2s color ease-in; + padding-left:2px; + padding-right:2px; + } + } + +} diff --git a/.obsidian/snippets/[ui] Ultra Compact.css b/.obsidian/snippets/[ui] Ultra Compact.css new file mode 100644 index 00000000..34829f9b --- /dev/null +++ b/.obsidian/snippets/[ui] Ultra Compact.css @@ -0,0 +1,185 @@ +/* + Ultra Compact + + More compact navigation tabs, toolbars, smaller icons. + Requires Compact Tabs snippet. + + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +:root { + --replete-ultra-compact-header-height: 29px; + --replete-custom-separators-vertical-padding: 3px; +} + +/* Left sidebar header +*/ +.mod-top-left-space { + + .workspace-tab-header-container-inner { + padding-bottom:2px; + } + + /* Hide border underneath sidebar top buttons */ + .workspace-tab-header-container { + border-bottom:0 !important; + + &::after { + content:''; + position:absolute; + display:block; + bottom:0; + width:100%; + height:1px; + background:linear-gradient(to right, transparent, var(--tab-outline-color) 20%); + } + + /* &::after { + content:''; + position:absolute; + display:block; + top:0; + width:100%; + height:calc(100% - 1px); + border-bottom-left-radius: 8px; + border-left: 1px solid var(--tab-outline-color); + border-bottom: 1px solid var(--tab-outline-color); + } */ + + /* .workspace-tab-header-container-inner { + padding-left:5px; + } */ + + .sidebar-toggle-button { + margin-top: -6px; + margin-right:-3px; + + .clickable-icon { + border-radius:0 !important; + } + } + } + + .workspace-tab-header { + &.is-active { + background:none; + } + + .workspace-tab-header-inner { + padding-left:1px !important; + padding-right:1px !important; + } + } + + /* File Explorer */ + [data-type=file-explorer] { + /* header */ + .nav-buttons-container { + justify-content: flex-end !important; + margin-top:-3px; + margin-right:-2px; + margin-bottom:-5px; + + .nav-action-button { + padding:2px; + + svg { + width:15px; + height:15px; + } + } + } + /* explorer */ + .nav-files-container { + margin-top:6px; + .tree-item[class*=nav-] .tree-item-self { + padding-top:2px; + padding-bottom:2px; + border-radius: 3px; + } + } + } +} +body:has(.mod-left-split.is-sidedock-collapsed) .mod-top-left-space .sidebar-toggle-button { + margin-right:4px !important; +} + +/* Navigation header */ +.workspace-tab-header-container { + padding-left:0; + max-height: var(--replete-ultra-compact-header-height) !important; +} +.workspace-tab-header { + padding-bottom:0 !important; + padding-right:0 !important; + padding-left:0 !important; + + &.is-active { + /* background:transparent !important; */ + border-radius:0; + } +} +.workspace-tab-header-inner { + border-radius:0; +} +.workspace-tab-header-inner-icon { + padding-left:2px; +} +div.workspace-tab-header-container-inner.workspace-tab-header-container-inner { /* specificity hack */ + margin-top:0 !important; + margin-bottom:0 !important; +} +.workspace-tab-header-tab-list { + /* Navigation tabs chevron menu */ + margin-right:0; +} + +/* Right sidebar header +*/ +.mod-top-right-space { + + /* Panel icons */ + .workspace-tab-header-container-inner { + padding-top:0; + padding-bottom:0; + gap:0; + } + + /* Right sidebar toggle button */ + .sidebar-toggle-button.mod-right { + padding-top: 0 !important; + padding-right:2px !important; + margin-top:-2px !important; + background:transparent !important; + } +} + +/* View header +*/ +.view-header { + box-shadow: 0 0px 4px 2px var(--bg2); + + > [class^=view-] { + transform:translateY(1px); + } + + .view-header-nav-buttons { + padding-left:2px; + + .clickable-icon { + padding-left:3px; + padding-right:3px; + } + } + .view-action { + margin-right:2px; + } +} + +/* Minimal Statusbar +*/ +@container style(--status-bar-position: fixed) { + .status-bar { + padding:0; + } +} diff --git a/.obsidian/snippets/[user] Daily Note - Sticky Headings.css b/.obsidian/snippets/[user] Daily Note - Sticky Headings.css new file mode 100644 index 00000000..27ef07d9 --- /dev/null +++ b/.obsidian/snippets/[user] Daily Note - Sticky Headings.css @@ -0,0 +1,73 @@ +/* + Daily note styles for Sticky Headings plugin. Disables plugin on non-daily note pages. + Enable 'PrevToH1' option in plugin settings + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.obsidian-sticky-heading { + + display:none; /* Enable only for some templates */ + .dailynote & { + display:flex; + } + + background:linear-gradient(0deg, transparent, var(--bg2) 20%); + + &:has(.obsidian-sticky-heading_inner:not(:empty)) { + padding:8px 0 16px 0; + } + + .obsidian-sticky-heading_inner { + background:transparent; + + .HyperMD-header { + margin-top:0 !important; + margin-bottom:0 !important; + + /* second item */ + + .HyperMD-header { + padding:0 !important; + + h1, h2, h3, h4, h5, h6 { + font-size:14px; + } + } + + /* Hide 3rd onwards items */ + + .HyperMD-header ~ .HyperMD-header { + display:none; + } + + .cm-header[class*=cm-header-] { + margin-top:0 !important; + margin-bottom:0 !important; + } + } + } + + .obsidian-sticky-heading_text { + margin-top:0; + + h1, h2, h3, h4, h5, h6 { + font-size:18px; + } + } + + + /* Hide the H* level text */ + .obsidian-sticky-heading_level { + /* color: transparent; */ + display:none; + + /* &::before { + content:'›'; + color: var(--tx2); + display:block; + position:absolute; + right:0; + top:50%; + transform: translateY(-50%); + font-size:1rem + } */ + } +} \ No newline at end of file diff --git a/.obsidian/snippets/[user] Daily Note styles.css b/.obsidian/snippets/[user] Daily Note styles.css new file mode 100644 index 00000000..b79f695e --- /dev/null +++ b/.obsidian/snippets/[user] Daily Note styles.css @@ -0,0 +1,356 @@ +/* + Note styles: Daily Note template-specific styles + Requires `cssclass dailynote` in note YAML frontmatter + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +.dailynote { + + &.cm-content.is-live-preview > div:nth-of-type(4) { + margin-bottom:15px !important; + } + + &.is-live-preview { + + /* Blockquote styles (I only use blockquotes in my daily note for actual quotes) */ + .HyperMD-quote { + font-family: Book Antiqua,Palatino,Palatino Linotype,Palatino LT STD,Georgia,serif; + letter-spacing:0.01em; + + .cm-quote.cm-hmd-internal-link { + color:var(--tx2); + font-style:italic; + opacity:0.7; + + > * { + color:var(--tx2); + text-decoration: none !important + } + + &::before { + content:'—' + } + } + } + + /* h2 styles */ + .cm-header-2 { + font-size:20px !important; + letter-spacing: 0.05em; + color:var(--tx2) !important; + text-transform:uppercase; + } + + /* h3 styles */ + .cm-header-3 { + font-size:18px !important; + letter-spacing: 0.05em; + color:var(--tx2) !important; + text-transform:uppercase; + } + + /* h4 styles */ + .cm-header-4 { + font-size:16px !important; + color:var(--tx3) !important; + text-transform:uppercase; + letter-spacing:0.1em; + font-weight:600; + } + &:not(.is-live-preview) .cm-header-4, + .cm-focused .cm-active .cm-header-4 { + text-transform:none !important + } + .HyperMD-header-4 { + padding-top:0 !important; + padding:.4em 0 !important; + + .cm-task-progress-bar:has(.progress-bar-inline-4)::after { + color:var(--tx3) + } + } + + /* h5 styles */ + .cm-header-5 { + font-size:13px !important; + color:var(--tx3) !important; + text-transform:uppercase; + /* font-weight:400; */ + /* letter-spacing:0.1em; */ + } + &:not(.is-live-preview) .cm-header-5, + .cm-focused .cm-active .cm-header-5 { + text-transform:none !important; + letter-spacing:0; + } + .HyperMD-header-5 { + padding-top:0 !important; + + .cm-task-progress-bar { + transform:scale(0.7); + transform-origin:0; + + &:has(.progress-bar-inline-4)::after { + color:var(--tx3) + } + } + } + + /* h6 styles */ + .cm-header-6 { + font-size:16px !important; + font-family: Book Antiqua,Palatino,Palatino Linotype,Palatino LT STD,Georgia,serif; + font-weight: 300; + font-style:italic; + color:var(--tx2) !important; + } + .HyperMD-header-6 { + /* font-variant:normal; + font-weight:bold; */ + .cm-task-progress-bar { + display:none; /* hide on h6 */ + transform:scale(0.7); + transform-origin:0; + + &:has(.progress-bar-inline-4)::after { + color:var(--tx3) + } + } + } + + /* fold placeholder */ + .HyperMD-header .cm-foldPlaceholder { + display:none; + } + + /* Callouts */ + .callout { + padding:.5em .75em; + + .callout-content { + ul { + padding-left:0; + } + + /* Callouts task list fix */ + li[data-task] { + padding-inline-start:var(--list-indent); + + .task-list-item-checkbox { + margin-left: -22px; + transform: translate(-4px, 0) + } + } + } + } + + /* Task progressbar style */ + .cm-task-progress-bar { + box-shadow:inset 1.5px 2px 3px -2px rgba(0,0,0,.5), + 1px 1px 2px -2px rgba(255,255,255,.5); + border-radius:10px; + } + + /* Fix task progressbar for elements */ + .HyperMD-header-1 .cm-task-progress-bar { + transform:translate(0, -3px) !important + } + .HyperMD-header-2 .cm-task-progress-bar { + transform:translate(0, -2px) !important + } + .HyperMD-header-4 .cm-task-progress-bar { + transform: translate(0, -2px) scale(0.8); + transform-origin: 0 + } + + .HyperMD-list-line .cm-task-progress-bar { + transform: translate(0, -7px) scale(0.8); + transform-origin: 0 + } + + /* Callout */ + + .cm-callout { + + .callout-content { + font-family: Book Antiqua,Palatino,Palatino Linotype,Palatino LT STD,Georgia,serif !important; + } + } + + + /* Embedded markdown files - containers */ + .inline-embed { + border:none; + background: hsla(var(--base-h), var(--base-s), calc(var(--base-l) - 10%), 0.5); + padding-top: var(--size-4-6); + padding-bottom: var(--size-4-6); + padding-right: calc(var(--size-4-6) * 1.5); + --font-text: Book Antiqua,Palatino,Palatino Linotype,Palatino LT STD,Georgia,serif; + --line-height: 1.6; + letter-spacing:0.01em; + + .embed-title { + display:none; + } + .markdown-embed-link { + width:1.5rem; + height:1.5rem; + position:absolute; + right:5px; + top:5px; + } + + /* Specific sections: */ + &:has(:is( + [data-heading=Errors], + [data-heading=Reflect]) + ) { + .mod-header + [data-heading] {display:none} + .has-list-bullet {margin-top:5px} + .el-ul:has(.contains-task-list) {display:none} + } + + :is(h1) { + text-align: center; + } + + &[src*='The Daily Laws'] { + :is(h2) { + text-align: center; + font-family:var(--font-default); + text-transform:uppercase; + letter-spacing: 0.05rem; + font-size: 16px; + opacity:0.7; + } + :is(h3) { + margin:2rem 0 1rem; + } + } + + } + .file-embed.mod-empty, + .file-embed.mod-empty-attachment { + border-radius:0; + background:transparent; + text-align:left; + font-style: italic; + color: var(--tx3); + padding-left:0; + + &:hover { + color:var(--link-color); + } + } + + /* Embedded markdown files - content */ + .markdown-embed-content { + + .markdown-preview-sizer[style] { + + /* fix min-height being too large, to fit content better */ + min-height:auto !important; + } + + /* p */ + :is(p) { + /* margin-bottom:0; */ + margin-block-end: 1rem; + } + + [data-heading] { + margin-top:0; + + &:is(h6) { + margin-bottom: 0; + color:var(--tx2) !important; + font-style:italic; + font-weight:400; + font-size:15px; + } + } + } + + /* Hide code blocks until hover */ + .cm-preview-code-block .edit-block-button { + display:none !important; + } + .cm-preview-code-block:hover .edit-block-button { + display:block !important; + } + + /* Style first footnote after page heading */ + .HyperMD-header-1 + .HyperMD-footnote { + text-indent:-7px; + opacity:0.7; + + .cm-underline { + color:var(--tx2); + text-decoration: none; + } + } + + /* Table borders */ + .table-wrapper { + > table thead tr th { + border:0; + font-weight:normal; /* remove header styling */ + } + > table td { + border-left:0 !important; + border-right:0 !important; + } + > table tbody tr:last-child { + border-bottom: 1px solid var(--table-border-color); + } + } + + /* Dataview styles */ + .dataview { + &.list-view-ul { + margin-top:0; + /* margin-bottom:0; */ + } + } + } +} + +/* Daily Note Outline tweaks */ +/* Container */ +.workspace-leaf-content[data-type="daily-note-outline"] .view-content { + + /* Disable inline preview */ + .nav-file-title-preview { + display:none; + } + + /* h4 heading */ + .tree-item-self[aria-label*='####'] { + font-size:12px !important; + color:var(--tx3) !important; + text-transform:uppercase; + letter-spacing:0.1em; + font-weight:600; + } + + /* h5 heading */ + .tree-item-self[aria-label*='#####'] { + font-size:12px !important; + color:var(--tx3) !important; + text-transform:uppercase; + letter-spacing:0.1em; + font-weight:600; + } + + /* h4 heading */ + .tree-item-self[aria-label*='######'] { + font-size:13px !important; + font-family: Book Antiqua,Palatino,Palatino Linotype,Palatino LT STD,Georgia,serif; + font-weight: 400; + font-style:italic; + color:var(--tx3) !important; + letter-spacing:0; + text-transform:none; + } +} \ No newline at end of file diff --git a/.obsidian/snippets/[user] Lighter Banner images.css b/.obsidian/snippets/[user] Lighter Banner images.css new file mode 100644 index 00000000..6676b282 --- /dev/null +++ b/.obsidian/snippets/[user] Lighter Banner images.css @@ -0,0 +1,9 @@ +/* + user: Banner colour tweaks + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +/* Improve visibility on light themes */ +.theme-light .mk-note-header img { + opacity:0.5 !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/[user] Scratchpad styles.css b/.obsidian/snippets/[user] Scratchpad styles.css new file mode 100644 index 00000000..d8a9930d --- /dev/null +++ b/.obsidian/snippets/[user] Scratchpad styles.css @@ -0,0 +1,15 @@ +/* + Note styles: Scratchpad + Requires `cssclass scratchpad` in note YAML frontmatter + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + + +/* h2 styles */ +.scratchpad .cm-header-1 { + font-size:13px !important; + letter-spacing: 0.05em; + color:var(--tx2) !important; + text-transform:uppercase; + line-height:1em !important; +} diff --git a/.obsidian/snippets/[user] Themed colours.css b/.obsidian/snippets/[user] Themed colours.css new file mode 100644 index 00000000..252b6720 --- /dev/null +++ b/.obsidian/snippets/[user] Themed colours.css @@ -0,0 +1,132 @@ +/* + Theme colours + https://github.com/replete/obsidian-minimal-theme-css-snippets +*/ + +.theme-dark.minimal-default-dark { + /* --accent-h:181 !important; */ + /* --accent-s:37% !important; */ + /* --accent-l:71% !important; */ +} + +.theme-dark.minimal-atom-dark { + --accent-h:193 !important; + /* --accent-s:46 !important; */ + /* --accent-l:50 !important; */ +} + +.theme-dark.minimal-ayu-dark { + --accent-h:203 !important; + --accent-s:49% !important; + --accent-l:70% !important; +} + +.theme-dark.minimal-catppuccin-dark { + --accent-h:207 !important; + --accent-s:65% !important; + --accent-l:70% !important; +} + +.theme-dark.minimal-dracula-dark { + --accent-h:215 !important; + --accent-s:60% !important; + -accent-l:71% !important; +} + +.theme-dark.minimal-everforest-dark { + --accent-h:145 !important; + --accent-s:27% !important; + --accent-l:61% !important; + + --text-selection:hsla(var(--accent-h),var(--accent-s),calc(var(--accent-l) - 5%),0.2); +} + +.theme-dark.minimal-gruvbox-dark { + --accent-h:121 !important; + --accent-s:37% !important; + --accent-l:71% !important; +} + +.theme-dark.minimal-nord-dark { + --accent-h:205 !important; + --accent-s:77% !important; + --accent-l:76% !important; +} + +.theme-dark.minimal-rose-pine-dark { + --accent-h:2400 !important; + --accent-s:37% !important; + --accent-l:65% !important; +} + +.theme-dark.minimal-solarized-dark { + --accent-h:185 !important; + --accent-s:37% !important; + --accent-l:51% !important; +} + +.theme-light.minimal-atom-light { + --accent-h:195 !important; + --accent-s:47% !important; + --accent-l:65% !important; +} + +.theme-light.minimal-ayu-light { + /* --accent-h:210 !important; + --accent-s:47% !important; + --accent-l:75% !important; */ +} + +.theme-light.minimal-catppuccin-light { + --accent-h:225 !important; + --accent-s:47% !important; + --accent-l:70% !important; +} + +.theme-light.minimal-everforest-light { + --accent-h:175 !important; + --accent-s:27% !important; + --accent-l:54% !important; +} + +.theme-light.minimal-gruvbox-light { + --accent-h:165 !important; + --accent-s:20% !important; + --accent-l:54% !important; +} + +.theme-light.minimal-macos-light { + --accent-h:205 !important; + --accent-s:40% !important; + --accent-l:64% !important; +} + +.theme-light.minimal-nord-light { + --accent-h:225 !important; + --accent-s:37% !important; + --accent-l:66% !important; +} + +.theme-light.minimal-notion-light { + --accent-h:190 !important; + --accent-s:37% !important; + --accent-l:64% !important; +} + +.theme-light.minimal-rose-pine-light { + --accent-h:20 !important; + --accent-s:30% !important; + --accent-l:70% !important; +} + +.theme-light.minimal-solarized-light { + --accent-h:20 !important; + --accent-s:35% !important; + --accent-l:68% !important; +} + +.theme-light.minimal-things-light { + --accent-h:225 !important; + --accent-s:40% !important; + --accent-l:70% !important; +} \ No newline at end of file diff --git a/.obsidian/snippets/breadcrumbs.css b/.obsidian/snippets/breadcrumbs.css index 88a95819..c841b5a1 100644 --- a/.obsidian/snippets/breadcrumbs.css +++ b/.obsidian/snippets/breadcrumbs.css @@ -2,11 +2,20 @@ /*⣏⡱ ⣎⣱ ⡎⠑ ⣏⡉ ⡇⢸ ⡇ ⣏⡉ ⡇⢸ ⢎⡑*/ /*⠇ ⠇⠸ ⠣⠝ ⠧⠤ ⠸⠃ ⠇ ⠧⠤ ⠟⠻ ⠢⠜*/ -/*TRAIL*/ +/*TRAIL view*/ .BC-trail-view-item > .internal-link { /* smaller font size */ - font-size: var(--font-ui-small); + font-size: var(--font-ui-medium); padding: 0px 0px 0px 0px; } + + +/*NEXT / PREV view*/ +.BC-next-prev-item { + /* smaller font size */ + font-size: var(--font-ui-medium); + padding-top: 0px; + padding-bottom: 0px; +} diff --git a/.obsidian/snippets/dummy.css b/.obsidian/snippets/dummy.css new file mode 100644 index 00000000..f1dd6b5c --- /dev/null +++ b/.obsidian/snippets/dummy.css @@ -0,0 +1 @@ +/* This is a dummy CSS file used to defeat some weird obsidian layout bug I am getting */ \ No newline at end of file diff --git a/.obsidian/snippets/general_interface.css b/.obsidian/snippets/general_interface.css index bb08bc85..73562755 100644 --- a/.obsidian/snippets/general_interface.css +++ b/.obsidian/snippets/general_interface.css @@ -48,7 +48,14 @@ a.tag { } +/* ⣏⡱ ⣏⡱ ⡎⢱ ⣏⡱ ⣏⡉ ⣏⡱ ⢹⠁ ⡇ ⣏⡉ ⢎⡑ */ +/* ⠇ ⠇⠱ ⠣⠜ ⠇ ⠧⠤ ⠇⠱ ⠸ ⠇ ⠧⠤ ⠢⠜ */ +.markdown-source-view .metadata-container { + margin: 0; + padding: 0; + font-size: var(--font-adaptative-normal); +} /*┏━┓╻ ╻ ╻┏━╸╻┏┓╻┏━┓*/ /*┣━┛┃ ┃ ┃┃╺┓┃┃┗┫┗━┓*/ diff --git a/.obsidian/snippets/obsidian-minimal-theme-css-snippets b/.obsidian/snippets/obsidian-minimal-theme-css-snippets new file mode 160000 index 00000000..17d57ab9 --- /dev/null +++ b/.obsidian/snippets/obsidian-minimal-theme-css-snippets @@ -0,0 +1 @@ +Subproject commit 17d57ab9f0a5389714ca8b177436a7b69ea44fdf diff --git a/.trash/Untitled 17.md b/.trash/Untitled 17.md new file mode 100644 index 00000000..332ba79e --- /dev/null +++ b/.trash/Untitled 17.md @@ -0,0 +1,5 @@ +--- +aliases: +up: +tags: +--- diff --git a/.trash/distance entre des parties d'un espace métrique.md b/.trash/distance entre des parties d'un espace métrique.md new file mode 100644 index 00000000..16a996c0 --- /dev/null +++ b/.trash/distance entre des parties d'un espace métrique.md @@ -0,0 +1,4 @@ +up:: [[espace métrique]] +#s/maths/algèbre + + diff --git a/.trash/topologie.md b/.trash/topologie.md new file mode 100644 index 00000000..1e263747 --- /dev/null +++ b/.trash/topologie.md @@ -0,0 +1,17 @@ +--- +aliases: +up: + - "[[mathématiques]]" +tags: + - maths/topologie +--- + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` + diff --git a/1 2 4 8 ... et après ?.md b/1 2 4 8 ... et après ?.md index 2d83dda6..92b885dd 100644 --- a/1 2 4 8 ... et après ?.md +++ b/1 2 4 8 ... et après ?.md @@ -7,7 +7,7 @@ header-includes: | \usepackage{amsmath, amssymb, amsfonts, mathrsfs} --- -#maths +#s/maths --- # 1 2 4 8 ... et après ? diff --git a/3 passoires de socrate.md b/3 passoires de socrate.md index 435a063d..72488a8e 100644 --- a/3 passoires de socrate.md +++ b/3 passoires de socrate.md @@ -1,7 +1,7 @@ up:: [[zetetique]], [[techniques de pkm]] author:: [[Socrate]] title:: "vérité", "bonté", "utilité" -#science #science/zetetique +#s/science #s/science/zetetique --- diff --git a/3 types de notes.md b/3 types de notes.md index 9a45fe05..166623bc 100644 --- a/3 types de notes.md +++ b/3 types de notes.md @@ -1,6 +1,6 @@ up::[[prise de notes]] title:: "idées : idées à noter, projets", "apprentissage : notions intéressantes, prise de notes, choses à aprendre", "todo : choses à faire" -#PKM +#s/PKM --- diff --git a/AG FEUTRE 2025-01-??.md b/AG FEUTRE 2025-01-??.md index 54c8cd13..8456d44b 100644 --- a/AG FEUTRE 2025-01-??.md +++ b/AG FEUTRE 2025-01-??.md @@ -3,7 +3,7 @@ aliases: up: - "[[FEUTRE.assemblées générales]]" tags: - - fac/associations + - s/fac/associations --- diff --git a/AG feutre 2024-10-11.md b/AG feutre 2024-10-11.md index e75cb59a..6db6173b 100644 --- a/AG feutre 2024-10-11.md +++ b/AG feutre 2024-10-11.md @@ -3,7 +3,7 @@ share_link: https://share.note.sx/u66cjrr0#2mq+rT9jtlWmVtbhNpVjd83qNggCxm8BBLXOX share_updated: 2024-10-12T02:37:56+02:00 --- up:: [[FEUTRE.assemblées générales]] -#fac/associations +#s/fac/associations étaient présent·e·s : - Andreas diff --git a/API.md b/API.md index fdc64785..4d70dcba 100644 --- a/API.md +++ b/API.md @@ -2,7 +2,7 @@ alias: [ "" ] --- up:: [[programming patterns]] -#informatique +#s/informatique > [!definition] API > Application Programming Interface diff --git a/APL combinateurs.md b/APL combinateurs.md index 3872a419..a3c19295 100644 --- a/APL combinateurs.md +++ b/APL combinateurs.md @@ -2,7 +2,7 @@ aliases: [] --- up::[[APL]], [[combinateur]] -#informatique +#s/informatique # Beside ∘ **Beside**, **Compose**, **After** diff --git a/APL to maths.md b/APL to maths.md index 97ea823a..76984576 100644 --- a/APL to maths.md +++ b/APL to maths.md @@ -1,5 +1,5 @@ up::[[APL]], [[Notation mathématique traditionnelle|TMN]] -#informatique +#s/informatique --- diff --git a/APL.md b/APL.md index 411bc489..2bc95690 100644 --- a/APL.md +++ b/APL.md @@ -1,6 +1,12 @@ -up::[[langage de programmation]] -title::"`'a progminlue'[1 2 3 4 5 6 4 1 7 7 8 9 6 2 10 1 9 6 11 1 6 12]`" -#informatique +--- +up: + - "[[langage de programmation]]" +tags: + - "#s/informatique" +title: "`'a progminlue'[1 2 3 4 5 6 4 1 7 7 8 9 6 2 10 1 9 6 11 1 6 12]`" +--- + + > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/ASCII.md b/ASCII.md index c369edf5..b32380e3 100644 --- a/ASCII.md +++ b/ASCII.md @@ -1,7 +1,7 @@ up::[[représentations en binaire]] up::[[codage de caractères]] title::"[[codage de caractères|encodage]] 8bits, voir `man ASCII`" -#informatique +#s/informatique --- American Standard Code for Information Interchange diff --git a/Alexandre Chanson.md b/Alexandre Chanson.md index ca657655..ccaf9da6 100644 --- a/Alexandre Chanson.md +++ b/Alexandre Chanson.md @@ -1,4 +1,4 @@ -#personne #fac +#t/personne #s/fac --- mail::alexandre.chanson@etu.univ-tours.fr diff --git a/Algèbre relationnelle division relationnelle.md b/Algèbre relationnelle division relationnelle.md index e45a762e..da6e1ac0 100644 --- a/Algèbre relationnelle division relationnelle.md +++ b/Algèbre relationnelle division relationnelle.md @@ -1,5 +1,5 @@ up:: [[algèbre relationelle]] title:: "$A \% B$ : " -#informatique +#s/informatique --- \ No newline at end of file diff --git a/André Comte-Sponville.md b/André Comte-Sponville.md index 2d8deded..a3b96e8e 100644 --- a/André Comte-Sponville.md +++ b/André Comte-Sponville.md @@ -1,5 +1,5 @@ link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Arthur Cayley.md b/Arthur Cayley.md index 4c4ecca7..a9a6f94e 100644 --- a/Arthur Cayley.md +++ b/Arthur Cayley.md @@ -1,5 +1,5 @@ link:: -#personne +#t/personne ```breadcrumbs title: "Sous-notes" diff --git a/BDD 1NF.md b/BDD 1NF.md index 5c756a7b..3f3e0dd3 100644 --- a/BDD 1NF.md +++ b/BDD 1NF.md @@ -3,7 +3,7 @@ alias: [ "1NF", "forme normale 1" ] --- up:: [[BDD normalisation]] title:: "ne pas mélanger les types de données", "ne pas avoir plusieurs informations par attribut (atributs atomiques)", "toujours avoir une clef primaire (pour chaque table)" -#informatique +#s/informatique --- diff --git a/BDD 2NF.md b/BDD 2NF.md index 50553a91..7578fa5f 100644 --- a/BDD 2NF.md +++ b/BDD 2NF.md @@ -1,6 +1,6 @@ up:: [[BDD normalisation]] title:: "tous les attributs en [[dépendance fonctionnelle|DF]] avec **toute la clef primaire**" -#informatique +#s/informatique --- - est en [[1NF]] diff --git a/BDD 3NF.md b/BDD 3NF.md index bbfaff04..3b60cf4f 100644 --- a/BDD 3NF.md +++ b/BDD 3NF.md @@ -3,7 +3,7 @@ alias: [ "3NF" ] --- up:: [[BDD normalisation]] title:: "tous les attributs dépendent de la clef **entière** et de rien d'autre" -#informatique +#s/informatique --- diff --git a/BDD 4NF.md b/BDD 4NF.md index 21618f34..7ec4bf1f 100644 --- a/BDD 4NF.md +++ b/BDD 4NF.md @@ -1,6 +1,6 @@ up:: [[BDD normalisation|normalisation]] title:: -#informatique +#s/informatique --- diff --git a/BDD BCNF.md b/BDD BCNF.md index 8554969f..46d073a6 100644 --- a/BDD BCNF.md +++ b/BDD BCNF.md @@ -1,6 +1,6 @@ up:: [[BDD normalisation]], [[BDD 3NF|3NF]] title:: "tous les attributs doivent dépendre d'une clef primaire **entière** et **seulement** d'une clef primaire" -#informatique +#s/informatique --- diff --git a/BDD attributs multivalués.md b/BDD attributs multivalués.md index 8cad0bb6..dd1e896b 100644 --- a/BDD attributs multivalués.md +++ b/BDD attributs multivalués.md @@ -1,5 +1,5 @@ up:: [[BDD normalisation]] title:: -#informatique #not-done +#s/informatique #not-done --- \ No newline at end of file diff --git a/BDD attributs.md b/BDD attributs.md index dd56036a..dcbd3b29 100644 --- a/BDD attributs.md +++ b/BDD attributs.md @@ -1,6 +1,6 @@ up:: [[concepts des bases de données]] title:: "" -#informatique +#s/informatique --- diff --git a/BDD conserver la sémantique des attributs.md b/BDD conserver la sémantique des attributs.md index 679fb55d..2d2c65f3 100644 --- a/BDD conserver la sémantique des attributs.md +++ b/BDD conserver la sémantique des attributs.md @@ -1,6 +1,6 @@ up:: [[conception des bases de données]] title:: "shéma facile à expliquer", "ne pas mélanger plusieurs objets dans une même relation", "ne pas combiner plusieurs valeurs dans un seul attribut" -#informatique +#s/informatique --- diff --git a/BDD dépendance multivaliée triviale.md b/BDD dépendance multivaliée triviale.md index b1b681f6..ab538a86 100644 --- a/BDD dépendance multivaliée triviale.md +++ b/BDD dépendance multivaliée triviale.md @@ -3,7 +3,7 @@ alias: [ "dépendance multivaluée triviale", "triviale" ] --- up:: [[BDD dépendance multivaluée|dépendance multivaluée]] title:: "" -#informatique +#s/informatique --- diff --git a/BDD dépendance multivaluée.md b/BDD dépendance multivaluée.md index 7eecf30a..cc7d306e 100644 --- a/BDD dépendance multivaluée.md +++ b/BDD dépendance multivaluée.md @@ -3,7 +3,7 @@ alias: [ "dépendance multivaluée", "dépendances multivaluées" ] --- up:: [[dépendance fonctionnelle]] title:: -#informatique +#s/informatique --- diff --git a/BDD films.md b/BDD films.md index c59f8370..dc504e30 100644 --- a/BDD films.md +++ b/BDD films.md @@ -1,5 +1,5 @@ up::[[base de données]] -#informatique +#s/informatique --- diff --git a/BDD language de requête.md b/BDD language de requête.md index 95a640b8..31c6b6b0 100644 --- a/BDD language de requête.md +++ b/BDD language de requête.md @@ -1,5 +1,5 @@ up:: [[requête]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/BDD niveaux d'abstraction.md b/BDD niveaux d'abstraction.md index 8a79aa64..cd10e5c6 100644 --- a/BDD niveaux d'abstraction.md +++ b/BDD niveaux d'abstraction.md @@ -1,5 +1,5 @@ up::[[concepts des bases de données]] -#informatique +#s/informatique ---- # Niveau d'abstraction diff --git a/BDD normalisation.md b/BDD normalisation.md index bec1fa72..cba62601 100644 --- a/BDD normalisation.md +++ b/BDD normalisation.md @@ -3,7 +3,7 @@ alias: [ "normalisation" ] --- up:: [[conception des bases de données]] title:: -#informatique +#s/informatique --- diff --git a/BDD oracle privilège.md b/BDD oracle privilège.md index 51c3e62b..76e71250 100644 --- a/BDD oracle privilège.md +++ b/BDD oracle privilège.md @@ -5,7 +5,7 @@ aliases: - privilèges --- up:: [[administration des bases de données]] -#informatique +#s/informatique > [!definition] Privilège > Un privilège est le droit : diff --git a/BDD oracle rôles.md b/BDD oracle rôles.md index 154810e6..a4c81f2a 100644 --- a/BDD oracle rôles.md +++ b/BDD oracle rôles.md @@ -4,7 +4,7 @@ aliases: - rôles --- up::[[administration des bases de données]] -#informatique +#s/informatique > [!definition] Rôle > Un rôle est un regroupement nommé de [[BDD oracle privilège|privilèges]] (à la fois systèmes et objets) qui peut être attribué à un utilisateur. diff --git a/BDD redondance.md b/BDD redondance.md index 1dcc478d..1735ea88 100644 --- a/BDD redondance.md +++ b/BDD redondance.md @@ -3,7 +3,7 @@ alias: [ "redondance" ] --- up:: [[conception des bases de données]] title:: "éviter la répétition de certaines informations" -#informatique +#s/informatique --- diff --git a/BDD restrictions possibles.md b/BDD restrictions possibles.md index 5c7f04e1..dac55faf 100644 --- a/BDD restrictions possibles.md +++ b/BDD restrictions possibles.md @@ -3,7 +3,7 @@ aliases: - restrictions possibles --- up:: [[administration des bases de données]] -#informatique +#s/informatique - définir les utilisateurs qui peuvent ou non se connecter à la base de données - identification par le système d'exploitation ou par la base de données diff --git a/BPDU.md b/BPDU.md index f2caeec0..f7a4d77b 100644 --- a/BPDU.md +++ b/BPDU.md @@ -1,6 +1,6 @@ up:: [[Spanning Tree Protocol|STP]] title:: "Type de messages entre les [[switch réseau|switchs]] dans le protocole [[Spanning Tree Protocol|STP]]", "BPDU = Bridge Protocol Data Unit" -#informatique +#s/informatique --- diff --git a/Baruch de Spinoza.md b/Baruch de Spinoza.md index fdb150b9..37587bf2 100644 --- a/Baruch de Spinoza.md +++ b/Baruch de Spinoza.md @@ -3,7 +3,7 @@ aliases: - Spinoza --- link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Bernard Friot.md b/Bernard Friot.md index 383ebe11..e31f6db8 100644 --- a/Bernard Friot.md +++ b/Bernard Friot.md @@ -1,4 +1,4 @@ -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/C modifier une variable d'environnement.md b/C modifier une variable d'environnement.md index e98174db..ad1a0174 100644 --- a/C modifier une variable d'environnement.md +++ b/C modifier une variable d'environnement.md @@ -3,7 +3,7 @@ alias: [ "C primitive putenv", "putenv" ] --- up:: [[C primitives système]], [[C variable d'environnement]] title:: "`putenv` pour modifier la valeur d'une [[variables d'environnement|variable d'environnement]]" -#informatique/unix +#s/informatique/unix --- diff --git a/C obtenir une variable d'environnement.md b/C obtenir une variable d'environnement.md index a2a70ab7..e78062b3 100644 --- a/C obtenir une variable d'environnement.md +++ b/C obtenir une variable d'environnement.md @@ -3,7 +3,7 @@ alias: [ "C primitive getenv", "getenv" ] --- up::[[C primitives système]], [[C variable d'environnement]] title:: "`getenv` pour obtenir la valeur d'une [[variables d'environnement|variable d'environnement]]" -#informatique/unix +#s/informatique/unix --- diff --git a/C primitive dup.md b/C primitive dup.md index 4e0c9372..07fbe31b 100644 --- a/C primitive dup.md +++ b/C primitive dup.md @@ -1,6 +1,6 @@ up:: [[C primitives système]] title:: "dupliquer un [[file descriptor]]" -#informatique +#s/informatique --- diff --git a/C primitive open.md b/C primitive open.md index cd0b8c8a..9bd94f65 100644 --- a/C primitive open.md +++ b/C primitive open.md @@ -3,7 +3,7 @@ alias: [ "open()", "open" ] --- up:: [[C primitives système]] title:: "ouvrir (éventuellement créer) un fichier" -#informatique +#s/informatique --- diff --git a/C primitives système.md b/C primitives système.md index a8e6413b..4654cc9c 100644 --- a/C primitives système.md +++ b/C primitives système.md @@ -1,6 +1,6 @@ up:: [[C]] title:: "primitives système en langage C" -#informatique +#s/informatique --- diff --git a/C tube ordinaire.md b/C tube ordinaire.md index c8fa0775..cc94ab30 100644 --- a/C tube ordinaire.md +++ b/C tube ordinaire.md @@ -1,6 +1,6 @@ up:: [[unix tubes ordinaires]], [[C tubes]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/C variable d'environnement.md b/C variable d'environnement.md index d133af0a..8ad77804 100644 --- a/C variable d'environnement.md +++ b/C variable d'environnement.md @@ -3,7 +3,7 @@ alias: [ "C variables d'environnement" ] --- up:: [[C]], [[variables d'environnement]] title:: "comment accéder aux variables d'environnement" -#informatique/unix +#s/informatique/unix --- diff --git a/C.md b/C.md index b680bf47..e776f737 100644 --- a/C.md +++ b/C.md @@ -1,6 +1,6 @@ up:: [[langage de programmation]] title:: -#informatique +#s/informatique --- diff --git a/CFVU 2024-12-12.md b/CFVU 2024-12-12.md index 92e84c57..3e6fa61d 100644 --- a/CFVU 2024-12-12.md +++ b/CFVU 2024-12-12.md @@ -3,7 +3,7 @@ number headings: first-level 1, max 3, 1.1 - share_link: https://share.note.sx/w54kmh4i#KRPeriSVSpuFOSQwfpI6volNHo7ExFMM7gtxxcxdIu0 share_updated: 2024-12-20T23:12:48+01:00 up: "[[CFVU Sciences et techniques]]" -tags: "#fac" +tags: "#s/fac" --- # 1 - informations générales diff --git a/CFVU Sciences et techniques.md b/CFVU Sciences et techniques.md index 8df07e2b..cb5c8fa7 100644 --- a/CFVU Sciences et techniques.md +++ b/CFVU Sciences et techniques.md @@ -1,5 +1,5 @@ up:: [[UT Conseil Académique|CAC]], [[UT UFR Sciences et Techniques]], [[Conseils de l'université de Tours]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/CNRS.md b/CNRS.md index d2e94ca7..6c8d67a0 100644 --- a/CNRS.md +++ b/CNRS.md @@ -1,2 +1,2 @@ up:: [[recherche scientifique]] -#science \ No newline at end of file +#s/science \ No newline at end of file diff --git a/CP création du seb.md b/CP création du seb.md index 183cd0ce..da0177bd 100644 --- a/CP création du seb.md +++ b/CP création du seb.md @@ -1,5 +1,5 @@ up:: [[syndicat étudiant de blois]] -#fac #politique +#s/fac #s/politique La création du Syndicat étudiant blaisois constitue une étape importante dans le paysage étudiant blaisois. Constitué d'étudiants du Loir-et-Cher, ce syndicat s'engage à représenter leurs intérêts, défendre leurs droits et améliorer leur bien-être durant les études. diff --git a/CR du conseil DI 2023-12-07.md b/CR du conseil DI 2023-12-07.md index f9eb2d49..ad4eb84a 100644 --- a/CR du conseil DI 2023-12-07.md +++ b/CR du conseil DI 2023-12-07.md @@ -2,11 +2,11 @@ date: - 2023-12-07 tags: - - fac + - s/fac --- up:: [[travail de délégué]] -#informatique +#s/informatique # présents - délégués étudiants diff --git a/CV.md b/CV.md index c546949a..95d9cc46 100644 --- a/CV.md +++ b/CV.md @@ -1,5 +1,5 @@ up:: [[gestion]] -#CV #PKM +#CV #s/PKM > [!info]- signification des compétences > 🤝 : travail en groupe diff --git a/Carl Friedrich Gauss.md b/Carl Friedrich Gauss.md index 5dcafc9f..c57ff376 100644 --- a/Carl Friedrich Gauss.md +++ b/Carl Friedrich Gauss.md @@ -1,4 +1,4 @@ -#personne +#t/personne --- diff --git a/Centre Evariste Gallois (stagiaire).md b/Centre Evariste Gallois (stagiaire).md index cdde9af3..397145b8 100644 --- a/Centre Evariste Gallois (stagiaire).md +++ b/Centre Evariste Gallois (stagiaire).md @@ -3,7 +3,7 @@ date::2018-06-17 date-end::2018-06-23 description::"stage de mathématiques" compétences:: 🔍 🧮 -#CV #maths +#CV #s/maths --- Stage de mathématiques, avec diverses conférences et activités. diff --git a/Commutation de Processus.md b/Commutation de Processus.md index da0bda96..f39c4cde 100644 --- a/Commutation de Processus.md +++ b/Commutation de Processus.md @@ -1,6 +1,6 @@ down:: [[interruption horloge]] up::[[Sous-système de gestion de processus]] -#informatique +#s/informatique --- diff --git a/Conseil UFR 2023-05-25.md b/Conseil UFR 2023-05-25.md index 92f7cb88..80ac08a3 100644 --- a/Conseil UFR 2023-05-25.md +++ b/Conseil UFR 2023-05-25.md @@ -5,7 +5,7 @@ quickshare-url: "https://noteshare.space/note/cli4p5x7v3203901pjhqu17ua5#t2Fbq2h up:: [[UT UFR ST conseil|Conseil de l'UFR Sciences et Techniques]] next:: [[Conseil UFR 2023-08-31]] date:: 2023-05-25 -#fac +#s/fac - [[UT UFR ST Conseil 25-05-2005 budget|budget]] diff --git a/Conseil UFR 2023-08-31.md b/Conseil UFR 2023-08-31.md index 3be6e6fd..f03af667 100644 --- a/Conseil UFR 2023-08-31.md +++ b/Conseil UFR 2023-08-31.md @@ -1,7 +1,7 @@ up:: [[UT UFR ST conseil|Conseil de l'UFR Sciences et Techniques]] prev:: [[Conseil UFR 2023-05-25]] date:: 2023-08-31 -#fac +#s/fac - adoption du compte rendu (unanimité) diff --git a/Conseil étudiant 2023-06-21.md b/Conseil étudiant 2023-06-21.md index 0fbaeed9..b915eaff 100644 --- a/Conseil étudiant 2023-06-21.md +++ b/Conseil étudiant 2023-06-21.md @@ -5,7 +5,7 @@ quickshare-url: "https://noteshare.space/note/clj5uoku2239101pjpot2g8oz#R9ZJarkJ up:: [[Conseil étudiant]] title:: date:: 2023-06-21 -#fac +#s/fac --- # Statuts diff --git a/Conseil étudiant.md b/Conseil étudiant.md index 0b994260..0c7a30e4 100644 --- a/Conseil étudiant.md +++ b/Conseil étudiant.md @@ -1,6 +1,6 @@ up:: [[UT UFR ST conseil|Conseil de l'UFR Sciences et Techniques]] title:: -#fac +#s/fac --- diff --git a/Conseils de l'université de Tours.md b/Conseils de l'université de Tours.md index 78fb002b..3a88b4d6 100644 --- a/Conseils de l'université de Tours.md +++ b/Conseils de l'université de Tours.md @@ -3,7 +3,7 @@ aliases: - UT Conseils --- up:: [[université de Tours]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/Construction d'une BD.md b/Construction d'une BD.md index 601b3d23..0964c777 100644 --- a/Construction d'une BD.md +++ b/Construction d'une BD.md @@ -1,5 +1,5 @@ up::[[base de données]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Cours soutient fac.md b/Cours soutient fac.md index 1478e250..49965009 100644 --- a/Cours soutient fac.md +++ b/Cours soutient fac.md @@ -1,4 +1,4 @@ -#fac +#s/fac > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Cycle en spirale.md b/Cycle en spirale.md index 5460b5e4..10d1b19a 100644 --- a/Cycle en spirale.md +++ b/Cycle en spirale.md @@ -1,5 +1,5 @@ up::[[cycle de vie nominal d'un logiciel]] -#PM +#s/PM --- diff --git a/Cyclic Redundancy Code.md b/Cyclic Redundancy Code.md index c76ac90b..b3f63292 100644 --- a/Cyclic Redundancy Code.md +++ b/Cyclic Redundancy Code.md @@ -1,4 +1,4 @@ up::[[modèle OSI]] -#informatique#not-done +#s/informatique#not-done --- diff --git a/D latch.md b/D latch.md index ae66fab0..095e421f 100644 --- a/D latch.md +++ b/D latch.md @@ -1,6 +1,6 @@ up:: [[Logique séquentielle]] title:: "D: state to write", "EN: write satte to memory" -#science +#s/science --- diff --git a/DNS.md b/DNS.md index f38e32a1..3998d1be 100644 --- a/DNS.md +++ b/DNS.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique # Exemples de noms de domaines diff --git a/DTD.md b/DTD.md index bd22a9fc..77e3923f 100644 --- a/DTD.md +++ b/DTD.md @@ -1,5 +1,5 @@ up:: [[langage de description de schéma XML]] -#informatique +#s/informatique # Lier une DTD à un document xml diff --git a/Depth-first search.md b/Depth-first search.md index 18f295c1..b78fc6b5 100644 --- a/Depth-first search.md +++ b/Depth-first search.md @@ -2,6 +2,6 @@ alias: "DFS" --- up::[[informatique.algorithmes]] -#informatique/algorithmie +#s/informatique/algorithmie --- diff --git a/Diplôme Inter Universitaire.md b/Diplôme Inter Universitaire.md index 2442a953..6106a3a8 100644 --- a/Diplôme Inter Universitaire.md +++ b/Diplôme Inter Universitaire.md @@ -2,6 +2,6 @@ aliases: - DIU --- -#fac +#s/fac Diplômes reconnus par les universités \ No newline at end of file diff --git a/Do.md b/Do.md index 5fe4551d..1377d5a8 100644 --- a/Do.md +++ b/Do.md @@ -3,7 +3,7 @@ alias: "Si #" --- up::[[Si]] down::[[Re b]] -#art/musique +#s/art/musique ---- diff --git a/Démonstration arctan(sqrt(3)) et arctan(1sqrt(3)).md b/Démonstration arctan(sqrt(3)) et arctan(1sqrt(3)).md index 9b0b0bdd..84da6cbf 100644 --- a/Démonstration arctan(sqrt(3)) et arctan(1sqrt(3)).md +++ b/Démonstration arctan(sqrt(3)) et arctan(1sqrt(3)).md @@ -1,6 +1,6 @@ up::[[fonction arctangente|arctan]] title::"$\arctan(\sqrt{ 3 }) = \dfrac{\pi}{3}$", "$\arctan\left( \dfrac{1}{\sqrt{ 3 }} \right) = \dfrac{\pi}{6}$" -#maths/trigonométrie #démonstration +#s/maths/trigonométrie #t/démonstration --- diff --git a/Démonstration solution unique d'un système linéaire à deux variables.md b/Démonstration solution unique d'un système linéaire à deux variables.md index 59f75cfd..1135e08a 100644 --- a/Démonstration solution unique d'un système linéaire à deux variables.md +++ b/Démonstration solution unique d'un système linéaire à deux variables.md @@ -1,4 +1,4 @@ -#maths/algèbre +#s/maths/algèbre --- diff --git a/Département informatique (Blois).md b/Département informatique (Blois).md index 104edd4f..805c16f7 100644 --- a/Département informatique (Blois).md +++ b/Département informatique (Blois).md @@ -1,4 +1,4 @@ -#fac +#s/fac --- diff --git a/EJB entity bean.md b/EJB entity bean.md index 8398db04..4997ece1 100644 --- a/EJB entity bean.md +++ b/EJB entity bean.md @@ -3,7 +3,7 @@ aliases: - entity beans --- up:: [[Enterprise Java Beans]] -#informatique/langage/java +#s/informatique/langage/java > [!definition] Définition > Un entity bean est un [[Enterprise Java Beans|EJB]] qui matérialise des données pour qu'elles soient manipulables par des [[EJB session beans|session beans]]. diff --git a/EJB entity manager.md b/EJB entity manager.md index 7f9e84bc..00e35d1d 100644 --- a/EJB entity manager.md +++ b/EJB entity manager.md @@ -1,5 +1,5 @@ up:: [[EJB entity bean]] -#informatique/langage/java +#s/informatique/langage/java L'entity manager gère les [[EJB entity bean|entity beans]]. L'entity manager est aussi responsable de la traduction des requêtes JPQL diff --git a/EJB session beans.md b/EJB session beans.md index 0c456e6e..29821b80 100644 --- a/EJB session beans.md +++ b/EJB session beans.md @@ -8,7 +8,7 @@ aliases: - session bean --- up:: [[Enterprise Java Beans]] -#informatique/langage/java +#s/informatique/langage/java `$= "![[" + dv.current().file.name + ".svg|700]]" ` diff --git a/ENCODE framework.md b/ENCODE framework.md index a3da88bb..4515b170 100644 --- a/ENCODE framework.md +++ b/ENCODE framework.md @@ -2,7 +2,7 @@ alias: [ "ENCODE", "framework ENCOE" ] --- up::[[prise de notes]] -#PKM #review +#s/PKM Input diff --git a/ENIAC.md b/ENIAC.md index 650256fd..12792b8f 100644 --- a/ENIAC.md +++ b/ENIAC.md @@ -3,6 +3,6 @@ alias: "ENIAC" --- author::"Eckert", "Mauchly" title::"Electronical Numerical Integrator And Calculator" -#informatique +#s/informatique ---- diff --git a/Echelonner une famille de vecteurs.md b/Echelonner une famille de vecteurs.md index f2315bb6..6a9d129d 100644 --- a/Echelonner une famille de vecteurs.md +++ b/Echelonner une famille de vecteurs.md @@ -1,6 +1,6 @@ up:: [[famille de vecteurs échelonnée]] title:: "similaire à la [[méthode du pivot de gauss]] pour les systèmes", "permet de trouver si une famille est libre" -#maths/algèbre +#s/maths/algèbre --- diff --git a/Electronique.md b/Electronique.md index cb8bd5cb..956b3dfd 100644 --- a/Electronique.md +++ b/Electronique.md @@ -1,6 +1,6 @@ up:: title:: -#science +#s/science --- diff --git a/Emile-Auguste Chartier.md b/Emile-Auguste Chartier.md index 6586e160..8784dbb3 100644 --- a/Emile-Auguste Chartier.md +++ b/Emile-Auguste Chartier.md @@ -1,4 +1,4 @@ --- alias: [ "Alain" ] --- -#philosphie #personne +#s/philosphie #t/personne diff --git a/Emmanuel Kant.md b/Emmanuel Kant.md index bbd85db4..a67f9d37 100644 --- a/Emmanuel Kant.md +++ b/Emmanuel Kant.md @@ -3,7 +3,7 @@ aliases: - Kant --- link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Enterprise Java Beans.md b/Enterprise Java Beans.md index fd6dd982..3fc5ef71 100644 --- a/Enterprise Java Beans.md +++ b/Enterprise Java Beans.md @@ -7,7 +7,7 @@ aliases: - EJB --- up:: [[java enterprise edition]] -#informatique/langage/java +#s/informatique/langage/java ```breadcrumbs title: "Sous-notes" diff --git a/Ergonomie des IHM Facteurs Humains.md b/Ergonomie des IHM Facteurs Humains.md index ef074454..a64a0429 100644 --- a/Ergonomie des IHM Facteurs Humains.md +++ b/Ergonomie des IHM Facteurs Humains.md @@ -4,7 +4,7 @@ aliases: --- up::[[utilisabilité d'une interface|utilisabilité]] sibling::[[Ergonomie des IHM Principes ergonomiques]] -#informatique +#s/informatique > [!definition] Facteurs humain > Ce que perçoit un utilisateur de la qualité d'une interface. diff --git a/Ergonomie des IHM Principes ergonomiques.md b/Ergonomie des IHM Principes ergonomiques.md index dea7c08e..3ceedc02 100644 --- a/Ergonomie des IHM Principes ergonomiques.md +++ b/Ergonomie des IHM Principes ergonomiques.md @@ -4,7 +4,7 @@ aliases: --- up::[[Ergonomie des Interfaces Hommes Machines|Ergonomie des IHM]] sibling:: [[Ergonomie des IHM Facteurs Humains]] -#informatique +#s/informatique > [!definition] Ergonomie des IHM Principes ergonomiques > Règles de conception ergonomiques. diff --git a/Erlang.md b/Erlang.md index 7476f695..dfd8ce4a 100644 --- a/Erlang.md +++ b/Erlang.md @@ -1,5 +1,5 @@ up:: [[langage de programmation]] -#informatique +#s/informatique > [!definition] Erlang > Langage pour les systèmes embarqués de télécommuniquations. diff --git a/Ernest Lavisse.md b/Ernest Lavisse.md index 50017897..954dbda2 100644 --- a/Ernest Lavisse.md +++ b/Ernest Lavisse.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne Né le 17 décembre 1842, mort le 18 août 1922. - défenseur du [[roman national]] diff --git a/Exemples de boules.md b/Exemples de boules.md index ec594c27..bb7a777d 100644 --- a/Exemples de boules.md +++ b/Exemples de boules.md @@ -1,5 +1,5 @@ up:: [[boule ouverte]], [[boule fermée]] -#maths/algèbre +#s/maths/algèbre # Boule sur $(\mathbb{R}^{2}, \|\cdot\|_{\infty})$ diff --git a/Exemples pour la récursion.md b/Exemples pour la récursion.md index b66cda01..38cedb4c 100644 --- a/Exemples pour la récursion.md +++ b/Exemples pour la récursion.md @@ -1,7 +1,8 @@ -up:: [[programmation]] -title:: "Exemples d'exercices pour travailler la récursion" -#informatique - +--- +up: + - "[[enseigner la programmation]]" +tags: + - "#s/informatique" --- - jeu du plus ou du moins \ No newline at end of file diff --git a/Exercices Lena 2022-09-23.md b/Exercices Lena 2022-09-23.md index ef82ce80..16aadd6c 100644 --- a/Exercices Lena 2022-09-23.md +++ b/Exercices Lena 2022-09-23.md @@ -1,4 +1,4 @@ -#exercice +#t/exercice ---- diff --git a/Exercices maths perso 2022-10-08.md b/Exercices maths perso 2022-10-08.md index 0dfca0af..a46b9303 100644 --- a/Exercices maths perso 2022-10-08.md +++ b/Exercices maths perso 2022-10-08.md @@ -1,4 +1,4 @@ -#exercice #maths +#t/exercice #s/maths ---- ![800](app://local/Users/oscarplaisant/devoirs/cours/attachments/markmind/1664963348304.png?1664963348339) diff --git a/Exercices maths perso 2022-10-26.md b/Exercices maths perso 2022-10-26.md index bd56f4df..1b036311 100644 --- a/Exercices maths perso 2022-10-26.md +++ b/Exercices maths perso 2022-10-26.md @@ -1,4 +1,4 @@ -#maths +#s/maths # L2 maths algebre linéaire TD2 ## Exercice 6 diff --git a/Exercism - Exercices Clojure.md b/Exercism - Exercices Clojure.md index e3d945a3..a70f8f4a 100644 --- a/Exercism - Exercices Clojure.md +++ b/Exercism - Exercices Clojure.md @@ -1,6 +1,6 @@ up::[[clojure]] link::https://exercism.org/tracks/clojure/concepts/basics -#informatique +#s/informatique ---- Pour apprendre / pratiquer clojure diff --git a/Exécution d'un code machine.md b/Exécution d'un code machine.md index 630d0c32..c37ed67c 100644 --- a/Exécution d'un code machine.md +++ b/Exécution d'un code machine.md @@ -1,5 +1,5 @@ up:: [[architecture des ordinateurs]] -#informatique +#s/informatique --- diff --git a/FEUTRE.assemblées générales.md b/FEUTRE.assemblées générales.md index 9d66ca69..48bde106 100644 --- a/FEUTRE.assemblées générales.md +++ b/FEUTRE.assemblées générales.md @@ -1,5 +1,5 @@ up:: [[FEUTRE|FEUTRE]] -#fac/associations +#s/fac/associations > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/FEUTRE.md b/FEUTRE.md index 81dba497..7490a1b1 100644 --- a/FEUTRE.md +++ b/FEUTRE.md @@ -4,7 +4,7 @@ aliases: - fédération des étudiants de l'université de tours pour la représentation et l'égalité --- up:: [[CV]] -#CV #fac +#CV #s/fac > [!tldr] Résumé diff --git a/Fa.md b/Fa.md index 591c4c40..3877d195 100644 --- a/Fa.md +++ b/Fa.md @@ -3,7 +3,7 @@ alias: "Mi #" --- up::[[Mi]] down::[[Sol b]] -#art/musique +#s/art/musique ---- diff --git a/Famille de vecteur normale.md b/Famille de vecteur normale.md index 55f7d5be..f681f2ce 100644 --- a/Famille de vecteur normale.md +++ b/Famille de vecteur normale.md @@ -1,6 +1,6 @@ up::[[famille de vecteurs]] title::"vecteurs tous de [[norme]] 1" -#maths/algèbre +#s/maths/algèbre --- diff --git a/Famille de vecteurs Orthogonale.md b/Famille de vecteurs Orthogonale.md index e82e4a75..611fbd15 100644 --- a/Famille de vecteurs Orthogonale.md +++ b/Famille de vecteurs Orthogonale.md @@ -1,6 +1,6 @@ up::[[famille de vecteurs]] title::"vecteurs 2-à-2 [[vecteurs orthogonaux]]" -#maths/algèbre +#s/maths/algèbre --- > [!definition] Famille de vecteurs orthogonale diff --git a/Famille de vecteurs orthonormale.md b/Famille de vecteurs orthonormale.md index 4c1b6514..34353c38 100644 --- a/Famille de vecteurs orthonormale.md +++ b/Famille de vecteurs orthonormale.md @@ -1,7 +1,7 @@ up::[[famille de vecteurs]] sibling:: [[Famille de vecteur normale]], [[Famille de vecteurs Orthogonale]] title::"vecteurs tous unitaires et deux à deux [[vecteurs orthogonaux|orthogonaux]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/Fiche de révision - systèmes d'exploitation.md b/Fiche de révision - systèmes d'exploitation.md index db028830..6d4f2533 100644 --- a/Fiche de révision - systèmes d'exploitation.md +++ b/Fiche de révision - systèmes d'exploitation.md @@ -1,6 +1,6 @@ up:: [[système d'exploitation]] title:: "Fiche de révision (ch 1, 2, 3)" -#informatique +#s/informatique --- diff --git a/Firefox css.md b/Firefox css.md index 0a8e8391..8522ed43 100644 --- a/Firefox css.md +++ b/Firefox css.md @@ -1,6 +1,6 @@ up:: [[firefox]] title:: "custom themes for firefox itself (the ui, not the contents)" -#informatique +#s/informatique --- diff --git a/Fonds de solidarité et de développement aux initiatives étudiantes.md b/Fonds de solidarité et de développement aux initiatives étudiantes.md index 7aa1d141..7a4019bd 100644 --- a/Fonds de solidarité et de développement aux initiatives étudiantes.md +++ b/Fonds de solidarité et de développement aux initiatives étudiantes.md @@ -3,5 +3,5 @@ aliases: - FSDIE --- up:: [[Conseils de l'université de Tours]] -#fac +#s/fac diff --git a/Frédéric Lordon.md b/Frédéric Lordon.md index 452d713a..3a8ba794 100644 --- a/Frédéric Lordon.md +++ b/Frédéric Lordon.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/GEPALM.md b/GEPALM.md index 0f38ac49..d9aff0a4 100644 --- a/GEPALM.md +++ b/GEPALM.md @@ -1,5 +1,5 @@ link::https://www.gepalm.org/ -#maths +#s/maths ---- Organisme de formation GEPALM bilan rééducation logico-math cognition mathématique dyscalculie diff --git a/Gestion université de Tours.md b/Gestion université de Tours.md index 514bb0c6..19a74155 100644 --- a/Gestion université de Tours.md +++ b/Gestion université de Tours.md @@ -1,5 +1,5 @@ up:: [[université de Tours]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/Git Branches.md b/Git Branches.md index b3980f2c..cffa563f 100644 --- a/Git Branches.md +++ b/Git Branches.md @@ -1,6 +1,6 @@ down:: [[git create branch]] up:: [[git]] -#informatique +#s/informatique ---- diff --git a/Groupe des bijections.md b/Groupe des bijections.md index 2066a065..4910d571 100644 --- a/Groupe des bijections.md +++ b/Groupe des bijections.md @@ -1,5 +1,5 @@ up:: [[bijection]], [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Soient $E$ et $F$ deux ensembles. diff --git a/Guillaume Apollinaire.md b/Guillaume Apollinaire.md index 694ec78b..907ccc22 100644 --- a/Guillaume Apollinaire.md +++ b/Guillaume Apollinaire.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/IA et humanités numériques.md b/IA et humanités numériques.md index 12473795..2c78e9fc 100644 --- a/IA et humanités numériques.md +++ b/IA et humanités numériques.md @@ -1,5 +1,5 @@ up:: [[intelligence artificielle|IA]], [[sciences humaines et sociales]] -#informatique #science +#s/informatique #s/science > [!question] Questions morale / éthiques diff --git a/IHF Windown Icon Menu Pointer.md b/IHF Windown Icon Menu Pointer.md index 5b59f740..3b3a0727 100644 --- a/IHF Windown Icon Menu Pointer.md +++ b/IHF Windown Icon Menu Pointer.md @@ -1,4 +1,4 @@ up:: [[interfaces graphiques]] -#informatique +#s/informatique Type d'interface \ No newline at end of file diff --git a/IHM principes ergonomiques Observabilité.md b/IHM principes ergonomiques Observabilité.md index f2643b5c..e9d13b7a 100644 --- a/IHM principes ergonomiques Observabilité.md +++ b/IHM principes ergonomiques Observabilité.md @@ -1,3 +1,3 @@ up::[[Ergonomie des IHM Principes ergonomiques|principes ergonomiques]] -#informatique +#s/informatique diff --git a/IHM projet 2.md b/IHM projet 2.md index e5f094e3..26d83158 100644 --- a/IHM projet 2.md +++ b/IHM projet 2.md @@ -1,4 +1,4 @@ -#informatique/ihm +#s/informatique/ihm ![[IHM projet 2 - personna.excalidraw]] diff --git a/IPv6 adresse de groupe.md b/IPv6 adresse de groupe.md index 07023f57..7d7572b9 100644 --- a/IPv6 adresse de groupe.md +++ b/IPv6 adresse de groupe.md @@ -3,7 +3,7 @@ alias: [ "IPv6 multicast" ] --- up:: [[réseau adresses IPv6|IPv6]] title:: "première communication avec un groupe : multicast" -#informatique +#s/informatique --- diff --git a/IPv6 adresses locales.md b/IPv6 adresses locales.md index 6938f1df..192474b7 100644 --- a/IPv6 adresses locales.md +++ b/IPv6 adresses locales.md @@ -1,6 +1,6 @@ up:: [[réseau adresses IPv6|IPv6]] title:: "commencent par `fc00`" -#informatique +#s/informatique --- diff --git a/IPv6 adresses publiques.md b/IPv6 adresses publiques.md index eeb49b22..65ad0ff6 100644 --- a/IPv6 adresses publiques.md +++ b/IPv6 adresses publiques.md @@ -1,5 +1,5 @@ up:: [[réseau adresses IPv6|IPv6]] title:: "commencent par `200`" -#informatique +#s/informatique --- \ No newline at end of file diff --git a/Idées pour la refonte de la maquette enseignement.md b/Idées pour la refonte de la maquette enseignement.md index 8793eadb..3a841ee1 100644 --- a/Idées pour la refonte de la maquette enseignement.md +++ b/Idées pour la refonte de la maquette enseignement.md @@ -1,5 +1,5 @@ up::[[fac L2 délégué]] -#fac +#s/fac ```argdown [Maquette enseignement]: diff --git a/Il n'y a pas de force intrinsèque des idées vraies.md b/Il n'y a pas de force intrinsèque des idées vraies.md index 78345b48..b3bf0e50 100644 --- a/Il n'y a pas de force intrinsèque des idées vraies.md +++ b/Il n'y a pas de force intrinsèque des idées vraies.md @@ -2,7 +2,7 @@ author:: [[Baruch de Spinoza]] source:: link:: date-seen::2024-05-15 -#citation #philosphie +#t/citation #s/philosphie > [!cite] Titre > Il n'y a pas de force intrinsèque des idées vraies. diff --git a/Jean le Rond d'Alembert.md b/Jean le Rond d'Alembert.md index 7d784f03..01640b61 100644 --- a/Jean le Rond d'Alembert.md +++ b/Jean le Rond d'Alembert.md @@ -1,4 +1,4 @@ -#personne +#t/personne ---- diff --git a/John Horton Conway.md b/John Horton Conway.md index 748950e4..9bad5b1a 100644 --- a/John Horton Conway.md +++ b/John Horton Conway.md @@ -4,7 +4,7 @@ aliases: --- title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/John Von Neumann.md b/John Von Neumann.md index dbd62ffc..91b437a5 100644 --- a/John Von Neumann.md +++ b/John Von Neumann.md @@ -1,4 +1,4 @@ -#personne +#t/personne ---- diff --git a/Julius Dickmann.md b/Julius Dickmann.md index 3f7250bb..7f17d661 100644 --- a/Julius Dickmann.md +++ b/Julius Dickmann.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Karl Marx.md b/Karl Marx.md index da3a92b1..dce19550 100644 --- a/Karl Marx.md +++ b/Karl Marx.md @@ -1,7 +1,7 @@ title:: link:: anniv:: -#personne +#t/personne diff --git a/L2 S4 maths analyse TD2 ex3.md b/L2 S4 maths analyse TD2 ex3.md index d2c7723b..6242528d 100644 --- a/L2 S4 maths analyse TD2 ex3.md +++ b/L2 S4 maths analyse TD2 ex3.md @@ -1,4 +1,4 @@ -#maths/analyse +#s/maths/analyse # Exercice 3 On considère la suite de fonctions $(P_{n})_{n\in \mathbb{N}}$ définie sur $[0, 1]$ par : $$\begin{cases} diff --git a/L2 maths analyse ch1.md b/L2 maths analyse ch1.md index dd0980a5..6abaecde 100644 --- a/L2 maths analyse ch1.md +++ b/L2 maths analyse ch1.md @@ -2,7 +2,7 @@ title: Chapitre I subtitle: Suites de fonctions --- -#maths/analyse +#s/maths/analyse # 1.0 Cadre étudié diff --git a/L2 projet pédagogique.md b/L2 projet pédagogique.md index 309d09b4..6cb1f6ec 100644 --- a/L2 projet pédagogique.md +++ b/L2 projet pédagogique.md @@ -4,7 +4,7 @@ quickshare-url: "https://noteshare.space/note/clikrgumk1059201pjrxzbakn2#ZyKx159 --- up:: title:: -#fac +#s/fac --- diff --git a/LISP.md b/LISP.md index 0bf4d53f..b7f2b8f8 100644 --- a/LISP.md +++ b/LISP.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"LISt Processing, premier langage fonctionnel" -#informatique +#s/informatique ---- diff --git a/La b.md b/La b.md index e6749dd4..3100b3c8 100644 --- a/La b.md +++ b/La b.md @@ -3,7 +3,7 @@ alias: "Sol #" --- up::[[Sol]] down::[[La]] -#art/musique +#s/art/musique ---- diff --git a/La.md b/La.md index 017394fd..d9cc64a3 100644 --- a/La.md +++ b/La.md @@ -1,6 +1,6 @@ up::[[La b]] down::[[Si b]] -#art/musique +#s/art/musique ---- diff --git a/LaTeX aligner des équations.md b/LaTeX aligner des équations.md index 7d868dc3..806c5d09 100644 --- a/LaTeX aligner des équations.md +++ b/LaTeX aligner des équations.md @@ -1,6 +1,6 @@ up::[[LaTeX]] title::"comment aligner correctement une suite d'équations" -#informatique +#s/informatique ---- diff --git a/LaTeX changer le titre du sommaire.md b/LaTeX changer le titre du sommaire.md index fd8adddd..cafcfa2f 100644 --- a/LaTeX changer le titre du sommaire.md +++ b/LaTeX changer le titre du sommaire.md @@ -1,7 +1,7 @@ up:: [[LaTeX]] title:: "`\renewcommand{\contentsname}{New toc title}` (dans le front)" link:: https://tex.stackexchange.com/questions/28516/how-to-change-the-title-of-toc -#informatique/langage/latex +#s/informatique/langage/latex # préciser pour différent langages diff --git a/LaTeX cheat sheet.md b/LaTeX cheat sheet.md index e92a2a5a..3913b0b2 100644 --- a/LaTeX cheat sheet.md +++ b/LaTeX cheat sheet.md @@ -1,5 +1,5 @@ up:: [[LaTeX]], [[cheat sheet]] -#informatique/langage/latex +#s/informatique/langage/latex ```dataview diff --git a/LaTeX division de polynômes.md b/LaTeX division de polynômes.md index 827e38ab..70edbce8 100644 --- a/LaTeX division de polynômes.md +++ b/LaTeX division de polynômes.md @@ -1,5 +1,5 @@ up:: [[LaTeX package polynom]] title:: "[[LaTeX package polynom|package polynom]], `\polylongdiv{X^3 - 2X^2 + 1}{X-1}`" -#informatique/langage/latex +#s/informatique/langage/latex Pour afficher une division de polynômes diff --git a/LaTeX justifier du texte.md b/LaTeX justifier du texte.md index c23959c9..e06a53b7 100644 --- a/LaTeX justifier du texte.md +++ b/LaTeX justifier du texte.md @@ -1,5 +1,5 @@ up:: [[latex]] -#informatique +#s/informatique ```latex \documentclass{article} diff --git a/LaTeX package polynom polyfactorize.md b/LaTeX package polynom polyfactorize.md index 1948eb86..de0d28d8 100644 --- a/LaTeX package polynom polyfactorize.md +++ b/LaTeX package polynom polyfactorize.md @@ -1,6 +1,6 @@ up:: [[LaTeX package polynom]] title::"afficher la factorisation d'un polynôme (`\polyfactorize{}`)" -#informatique +#s/informatique --- diff --git a/LaTeX package polynom.md b/LaTeX package polynom.md index 5d995c5a..e6a52db6 100644 --- a/LaTeX package polynom.md +++ b/LaTeX package polynom.md @@ -1,6 +1,6 @@ up:: [[LaTeX]] title:: "calculs automatisés sur les polynômes" -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/LaTeX.md b/LaTeX.md index 2850c9c6..c9ddd40b 100644 --- a/LaTeX.md +++ b/LaTeX.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"langage pour créer des documents (articles, livres...)" -#informatique/langage/latex +#s/informatique/langage/latex Notes de ce vault à propos de $\LaTeX$ : diff --git a/Latex style des sections.md b/Latex style des sections.md index 42efc1a5..57ed828a 100644 --- a/Latex style des sections.md +++ b/Latex style des sections.md @@ -1,6 +1,6 @@ up::[[LaTeX]] title::"comment changer le style des sections en latex" -#informatique +#s/informatique diff --git a/Linux Standard Base.md b/Linux Standard Base.md index fec72064..41b552bd 100644 --- a/Linux Standard Base.md +++ b/Linux Standard Base.md @@ -3,7 +3,7 @@ aliases: - LSB --- up:: [[linux]] -#informatique/unix +#s/informatique/unix Projet commun à plusieurs distributions [[linux]]. Il définit des standards pour l'inter-opérabilité entre distributions linux : diff --git a/Local Area Network.md b/Local Area Network.md index dd4b133e..649733cf 100644 --- a/Local Area Network.md +++ b/Local Area Network.md @@ -3,7 +3,7 @@ alias: "LAN" --- up::[[classes de réseau]] title::"réseau privé" -#informatique +#s/informatique ---- diff --git a/Logique séquentielle.md b/Logique séquentielle.md index 51eedc79..4ed2b26a 100644 --- a/Logique séquentielle.md +++ b/Logique séquentielle.md @@ -4,7 +4,7 @@ cssClass: --- up:: [[électronique]] sibling:: [[logique combinatoire]] -#science #maths/logique +#s/science #s/maths/logique > [!query] Sous-notes de `=this.file.link` diff --git a/Lycée en nouvelle zélande.md b/Lycée en nouvelle zélande.md index 0271160c..516e6640 100644 --- a/Lycée en nouvelle zélande.md +++ b/Lycée en nouvelle zélande.md @@ -1,5 +1,5 @@ up:: [[différences entre la nouvelle zélande et la France]], [[éducation]] -#apprendre #autres +#s/apprendre #autres - le lycée est beaucoup moins sérieux - les élèves sont plus distraits en cours diff --git a/Lycée.md b/Lycée.md index e42fb6db..1be21004 100644 --- a/Lycée.md +++ b/Lycée.md @@ -8,11 +8,11 @@ compétences:: 🇬🇧 🧮 💻 ---- # Spécialités - - Mathématiques #maths - - Informatique (NSI) #informatique + - Mathématiques #s/maths + - Informatique (NSI) #s/informatique - Physique (en première) # Options - - Classe Européenne Mathématiques Anglais #anglais + - Classe Européenne Mathématiques Anglais #s/anglais - Grec Ancien - Mathématiques expertes diff --git a/MADICS 2024.md b/MADICS 2024.md index 5f1718bf..5ab2cbe0 100644 --- a/MADICS 2024.md +++ b/MADICS 2024.md @@ -1,2 +1,13 @@ -up:: [[MADICS]] -#informatique +--- +up: "[[MADICS]]" +tags: "#s/informatique" +--- + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/MADICS.md b/MADICS.md index c27e0389..86d321fe 100644 --- a/MADICS.md +++ b/MADICS.md @@ -1,11 +1,16 @@ -up:: [[informatique]], [[sciences humaines et sociales|SHS]] -#informatique - -> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> title: false -> type: tree -> dir: down -> ``` +--- +up: + - "[[informatique]]" + - "[[sciences humaines et sociales|SHS]]" +tags: "#s/informatique" +--- +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/MOC MOCs.md b/MOC MOCs.md index 4c7c1afe..db8ceb48 100644 --- a/MOC MOCs.md +++ b/MOC MOCs.md @@ -1,4 +1,4 @@ -#MOC +#t/MOC ---- diff --git a/MOC polynômes.md b/MOC polynômes.md index 5dbe0c4c..3b18bb2c 100644 --- a/MOC polynômes.md +++ b/MOC polynômes.md @@ -1,5 +1,5 @@ up::[[fonctions particulières]] -#maths/analyse +#s/maths/analyse ---- MOC sur les [[polynôme|polynômes]] diff --git a/Maison de l'Orientation et de l'Insertion Profressionnelle.md b/Maison de l'Orientation et de l'Insertion Profressionnelle.md index 350ae149..4a90f2c6 100644 --- a/Maison de l'Orientation et de l'Insertion Profressionnelle.md +++ b/Maison de l'Orientation et de l'Insertion Profressionnelle.md @@ -1,5 +1,5 @@ up:: [[université de Tours]] -#fac +#s/fac - ? indépendante de l'université ? diff --git a/Map of content.md b/Map of content.md index 5e21d0bd..3dfe49e2 100644 --- a/Map of content.md +++ b/Map of content.md @@ -5,7 +5,7 @@ aliases: --- up:: [[prise de notes]] title:: "List of concepts about a subject" -#PKM #not-done +#s/PKM #not-done ---- diff --git a/Metropolitan Area Network.md b/Metropolitan Area Network.md index d4433bd2..6234618c 100644 --- a/Metropolitan Area Network.md +++ b/Metropolitan Area Network.md @@ -2,7 +2,7 @@ alias: "MAN" --- up::[[classes de réseau]] -#informatique +#s/informatique ---- diff --git a/Mi b.md b/Mi b.md index 245914fa..041a55ee 100644 --- a/Mi b.md +++ b/Mi b.md @@ -3,7 +3,7 @@ alias: "Re #" --- up::[[Re]] down::[[Mi]] -#art/musique +#s/art/musique ---- diff --git a/Mi.md b/Mi.md index ea7f6004..00368016 100644 --- a/Mi.md +++ b/Mi.md @@ -1,6 +1,6 @@ up::[[Mi b]] down::[[Fa]] -#art/musique +#s/art/musique ---- diff --git a/Modélisation conceptuelle des BD.md b/Modélisation conceptuelle des BD.md index a857c4dd..29a723a9 100644 --- a/Modélisation conceptuelle des BD.md +++ b/Modélisation conceptuelle des BD.md @@ -1,5 +1,5 @@ up:: [[BDD niveaux d'abstraction]] -#informatique +#s/informatique ---- diff --git a/Mémoire Partitionnement dynamique.md b/Mémoire Partitionnement dynamique.md index d9d910a1..4b736954 100644 --- a/Mémoire Partitionnement dynamique.md +++ b/Mémoire Partitionnement dynamique.md @@ -1,6 +1,6 @@ up:: [[Partitionnement de la mémoire]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/Mémoire partitionnement fixe.md b/Mémoire partitionnement fixe.md index ba11cdbc..44ed914b 100644 --- a/Mémoire partitionnement fixe.md +++ b/Mémoire partitionnement fixe.md @@ -4,7 +4,7 @@ alias: [ "Partitionnement fixe de la mémoire" ] up:: [[Partitionnement de la mémoire]] name:: "Partitionnement fixe de la mémoire" title:: "Mémoire partitionnée en parties de taille fixe" -#informatique/unix +#s/informatique/unix --- diff --git a/Méthodes d'accès aux fichiers.md b/Méthodes d'accès aux fichiers.md index 920102db..ae9f3180 100644 --- a/Méthodes d'accès aux fichiers.md +++ b/Méthodes d'accès aux fichiers.md @@ -1,6 +1,6 @@ up::[[sous-système de gestion des fichiers]] title::"méthode pour accéder aux fichiers" -#informatique +#s/informatique --- diff --git a/Node JS.md b/Node JS.md index a1dfde59..41aec553 100644 --- a/Node JS.md +++ b/Node JS.md @@ -1,5 +1,5 @@ up:: [[javascript]] -#informatique/langage/javascript +#s/informatique/langage/javascript > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/Norme.md b/Norme.md index 2d9c74ea..04017b53 100644 --- a/Norme.md +++ b/Norme.md @@ -1,5 +1,5 @@ up::[[espace vectoriel]] -#maths/algèbre +#s/maths/algèbre > [!definition] norme > Soit $\mathbf{K}$ un [[corps commutatif]] muni d'une [[valeur absolue]] @@ -34,3 +34,11 @@ up::[[espace vectoriel]] > +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/Notation mathématique traditionnelle.md b/Notation mathématique traditionnelle.md index 0eb7d911..179f7d8a 100644 --- a/Notation mathématique traditionnelle.md +++ b/Notation mathématique traditionnelle.md @@ -2,7 +2,7 @@ alias: [ "Traditionnal fmathematical Notation", "Notation Mathématique Traditionnelle", "Trad MN", "TMN" ] --- up:: [[langage de programmation]] -#maths +#s/maths La notation mathématique habituelle : nombres et vecteurs, opérateurs $\sum\limits$ et $\Pi$... diff --git a/Noyau d'une application linéaire.md b/Noyau d'une application linéaire.md index 581d8727..e903c35d 100644 --- a/Noyau d'une application linéaire.md +++ b/Noyau d'une application linéaire.md @@ -1,6 +1,6 @@ up::[[application linéaire]] title::"$f: E \to F$", "$\ker f = \big\{ u \in E \mid f(u)=0_{F} \big\}$" -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] réels et $f$ une [[application linéaire]] de $E \to F$, diff --git a/Obsidian.md b/Obsidian.md index cc91d9eb..ed86f661 100644 --- a/Obsidian.md +++ b/Obsidian.md @@ -1,5 +1,5 @@ up::[[Obsidian]] -#obsidian #PKM +#s/obsidian #s/PKM Application de prise de notes liés ([[notes reliées]]) diff --git a/Opérations de base sur un fichier.md b/Opérations de base sur un fichier.md index ad5934b0..7ae801cc 100644 --- a/Opérations de base sur un fichier.md +++ b/Opérations de base sur un fichier.md @@ -1,6 +1,6 @@ up::[[sous-système de gestion des fichiers]] title::"opérations fondamentales" -#informatique +#s/informatique --- diff --git a/Ordonnancement FCFS.md b/Ordonnancement FCFS.md index eea0a25d..88d7b7c5 100644 --- a/Ordonnancement FCFS.md +++ b/Ordonnancement FCFS.md @@ -3,7 +3,7 @@ alias: [ "FCFS" ] --- up:: [[Ordonnancement d'exécution des processus]] title::"First Come First Serve" -#informatique +#s/informatique ---- diff --git a/Ordonnancement SJF.md b/Ordonnancement SJF.md index 4ef4df6f..e0fca423 100644 --- a/Ordonnancement SJF.md +++ b/Ordonnancement SJF.md @@ -3,7 +3,7 @@ alias: [ "SJF", "Shortest Job First" ] --- up:: [[Ordonnancement d'exécution des processus]] title::"Shortest Job First" -#informatique +#s/informatique ---- diff --git a/Ordonnancement avec priorités dynamiques.md b/Ordonnancement avec priorités dynamiques.md index 933e5e73..bb6b3886 100644 --- a/Ordonnancement avec priorités dynamiques.md +++ b/Ordonnancement avec priorités dynamiques.md @@ -1,7 +1,7 @@ up::[[Ordonnancement d'exécution des processus|ordonnancement]] title::"" sibling::[[Ordonnancement avec priorités statiques]] -#informatique +#s/informatique ---- Permet de résoudre le problème de _famine_ que pose l'[[Ordonnancement avec priorités statiques]] : on peut éviter que certaines tâches n'accèdent jamais au processeur. diff --git a/Ordonnancement avec priorités statiques.md b/Ordonnancement avec priorités statiques.md index 8be6c78b..3c3300ff 100644 --- a/Ordonnancement avec priorités statiques.md +++ b/Ordonnancement avec priorités statiques.md @@ -1,6 +1,6 @@ up::[[Ordonnancement d'exécution des processus|ordonnancement]] title::"tâches divisées en files par priorité", "la tâche exécutée est celle de la file non vide la plus prioritaire" -#informatique +#s/informatique ---- diff --git a/Ordonnancement d'exécution des processus.md b/Ordonnancement d'exécution des processus.md index fa427dcc..a9b78787 100644 --- a/Ordonnancement d'exécution des processus.md +++ b/Ordonnancement d'exécution des processus.md @@ -2,7 +2,7 @@ alias: [ "ordonnancement" ] --- up::[[système d'exploitation]] -#informatique +#s/informatique ---- diff --git a/Ordonnancement par Tourniquet.md b/Ordonnancement par Tourniquet.md index bdbfbdec..2f40bd78 100644 --- a/Ordonnancement par Tourniquet.md +++ b/Ordonnancement par Tourniquet.md @@ -3,7 +3,7 @@ alias: [ "RR", "Round Robin" ] --- up::[[Ordonnancement d'exécution des processus|ordonnancement]] title:: "[[Ordonnancement FCFS|FCFS]] avec préemption" -#informatique +#s/informatique ---- diff --git a/Organizational Breakdown Srtucture.md b/Organizational Breakdown Srtucture.md index 3ddebe6b..e0664ec8 100644 --- a/Organizational Breakdown Srtucture.md +++ b/Organizational Breakdown Srtucture.md @@ -2,7 +2,7 @@ alias: "OBS" --- up::[[outils de gestion de projet]] -#PM +#s/PM ---- diff --git a/Orthonormaliser une famille de vecteurs.md b/Orthonormaliser une famille de vecteurs.md index a90acd4f..d5d837c5 100644 --- a/Orthonormaliser une famille de vecteurs.md +++ b/Orthonormaliser une famille de vecteurs.md @@ -3,7 +3,7 @@ alias: [ "orthonormaliser" ] --- up::[[Famille de vecteurs orthonormale]] title::"comment rendre [[Famille de vecteurs orthonormale|orthonormale]] une famille de vecteurs" -#maths/algèbre +#s/maths/algèbre --- diff --git a/OsKaR31415.md b/OsKaR31415.md index 97424cd3..f9b50e0d 100644 --- a/OsKaR31415.md +++ b/OsKaR31415.md @@ -1,4 +1,4 @@ -#personne +#t/personne ---- diff --git a/PKM méthode inbox ressources permanent.md b/PKM méthode inbox ressources permanent.md index 7b70c951..9891cf21 100644 --- a/PKM méthode inbox ressources permanent.md +++ b/PKM méthode inbox ressources permanent.md @@ -1,6 +1,6 @@ up:: [[techniques de pkm]] title:: "inbox: brouillons", "ressources: extraits, citations, notes sur un livre... avec métadonnées", "permanent: concepts [[notes atomiques|notes atomiques]] et [[notes reliées|notes reliées]]" -#PKM +#s/PKM ---- Façon d'implémenter le framework [[ENCODE framework|ENCODE]] diff --git a/PKM.md b/PKM.md index b92dd52a..36022d7e 100644 --- a/PKM.md +++ b/PKM.md @@ -1,6 +1,6 @@ --- up: "[[index]]" -tags: "#PKM" +tags: "#s/PKM" --- ```breadcrumbs diff --git a/PM Gestion des risques.md b/PM Gestion des risques.md index 4a6ccd38..74186f83 100644 --- a/PM Gestion des risques.md +++ b/PM Gestion des risques.md @@ -1,5 +1,5 @@ up:: [[génie logiciel et gestion de projet|PM]] -#PM +#s/PM ---- diff --git a/Pages unix.md b/Pages unix.md index bbb0a5f1..7cdaed03 100644 --- a/Pages unix.md +++ b/Pages unix.md @@ -1,6 +1,6 @@ up::[[SE - page|page]] title::"la gestion de pages (mémoire) unix" -#informatique +#s/informatique --- diff --git a/Partitionnement de la mémoire.md b/Partitionnement de la mémoire.md index b1d4ecf2..462b583a 100644 --- a/Partitionnement de la mémoire.md +++ b/Partitionnement de la mémoire.md @@ -2,7 +2,7 @@ down:: [[Système "Buddy"]] down:: [[Mémoire Partitionnement dynamique]] up::[[sous-système de gestion de mémoire]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/Partitionnement fixe (tailles différentes) de la mémoire.md b/Partitionnement fixe (tailles différentes) de la mémoire.md index c9b3f4ca..54aefca3 100644 --- a/Partitionnement fixe (tailles différentes) de la mémoire.md +++ b/Partitionnement fixe (tailles différentes) de la mémoire.md @@ -1,7 +1,7 @@ up:: [[Partitionnement de la mémoire]] sibling::[[Mémoire partitionnement fixe|Partitionnement fixe de la mémoire]] title::"" -#informatique/unix +#s/informatique/unix --- diff --git a/Passport JS unique token authentification.md b/Passport JS unique token authentification.md index a6fc2aa5..9940c41d 100644 --- a/Passport JS unique token authentification.md +++ b/Passport JS unique token authentification.md @@ -1,5 +1,5 @@ up:: [[Node JS]] -#informatique/langage/javascript +#s/informatique/langage/javascript # Installation diff --git a/Point stationnaire d'une courbe paramétrique.md b/Point stationnaire d'une courbe paramétrique.md index bcb1aed1..15e0f921 100644 --- a/Point stationnaire d'une courbe paramétrique.md +++ b/Point stationnaire d'une courbe paramétrique.md @@ -4,7 +4,7 @@ aliases: --- up::[[courbe paramétrée]] sibling:: [[point régulier d'une courbe paramétrique]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $\begin{align}f : & D\subset \mathbb{R} \rightarrow \mathbb{R}^{2}\\& t \mapsto (x(t); y(t)) \end{align}$ une [[courbe paramétrée]] [[dérivée d'une courbe paramétrée|dérivable]] sur $D$ diff --git a/Portes logiques.md b/Portes logiques.md index 9c71282e..3085853a 100644 --- a/Portes logiques.md +++ b/Portes logiques.md @@ -1,3 +1,3 @@ -#informatique#not-done +#s/informatique#not-done ---- diff --git a/Program Evaluation Review Technique.md b/Program Evaluation Review Technique.md index 32b3ee87..d25736dc 100644 --- a/Program Evaluation Review Technique.md +++ b/Program Evaluation Review Technique.md @@ -2,7 +2,7 @@ alias: "PERT" --- up::[[outils de gestion de projet]] -#PM +#s/PM ---- diff --git a/Projet programmation web serveur.md b/Projet programmation web serveur.md index c1e3e6ef..e450fd89 100644 --- a/Projet programmation web serveur.md +++ b/Projet programmation web serveur.md @@ -6,7 +6,7 @@ aliases: - programmation web serveur projet --- up:: [[cours programmation web serveur]] -#fac +#s/fac > [!info] Sujet > Application de chat en ligne (type Discord) diff --git a/Présentation jeu de la vie discord.md b/Présentation jeu de la vie discord.md index 1da107f8..133ca894 100644 --- a/Présentation jeu de la vie discord.md +++ b/Présentation jeu de la vie discord.md @@ -2,7 +2,7 @@ up::[[conférences en ligne de mathématiques et d'informatique]] date::2022-03-04 description::"conférence sur le jeu de la vie" compétences:: 🧑‍🏫 🗣️ 🧮 💻 -#CV #maths #informatique +#CV #s/maths #s/informatique ---- diff --git a/Puissances non entières.md b/Puissances non entières.md index 9f8ebf22..fa875c59 100644 --- a/Puissances non entières.md +++ b/Puissances non entières.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- diff --git a/Radio 100% lycéens.md b/Radio 100% lycéens.md index 719f20b1..126f1a9f 100644 --- a/Radio 100% lycéens.md +++ b/Radio 100% lycéens.md @@ -2,7 +2,7 @@ up::[[CV]] date::2019-01-01 description::"émissions sur la radio du lycée" compétences:: 🗣️ 🧮 -#CV #maths +#CV #s/maths - [ ] #todo: check date ---- diff --git a/Raisonnement analyse-synthèse.md b/Raisonnement analyse-synthèse.md index b2962d97..f423e45d 100644 --- a/Raisonnement analyse-synthèse.md +++ b/Raisonnement analyse-synthèse.md @@ -1,6 +1,6 @@ up:: title:: -#maths #maths/logique +#s/maths #s/maths/logique --- Méthode pour résoudre certains problèmes. diff --git a/Re b.md b/Re b.md index e469b9d6..2281b190 100644 --- a/Re b.md +++ b/Re b.md @@ -3,7 +3,7 @@ alias: "Do #" --- up::[[Do]] down::[[Re]] -#art/musique +#s/art/musique ---- diff --git a/Re.md b/Re.md index bab33cc5..bb401f83 100644 --- a/Re.md +++ b/Re.md @@ -1,6 +1,6 @@ up::[[Re b]] down::[[Mi b]] -#art/musique +#s/art/musique ---- diff --git a/ReStructuredText.md b/ReStructuredText.md index b8e5d429..ece45bfb 100644 --- a/ReStructuredText.md +++ b/ReStructuredText.md @@ -3,7 +3,7 @@ alias: "rst" --- up::[[langage de programmation]] title::"langage de markup" -#informatique +#s/informatique ---- - utilisé pour la documentation de python diff --git a/Retours des élèves.md b/Retours des élèves.md index 5e5037b2..af5eb374 100644 --- a/Retours des élèves.md +++ b/Retours des élèves.md @@ -1,7 +1,7 @@ up:: [[fac L2 délégué]] title:: "retour des élèves" link:: [document partagé (framapad)](https://mensuel.framapad.org/p/retour-des-eleves-9x9a?lang=fr) -#fac +#s/fac ## Synthèse des remarques de la classe diff --git a/SE - défaut de page.md b/SE - défaut de page.md index 6b8289f7..a2f3065b 100644 --- a/SE - défaut de page.md +++ b/SE - défaut de page.md @@ -3,7 +3,7 @@ alias: [ "défaut de page" ] --- up::[[SE - page]] title:: "une page non chargée est demandée" -#informatique +#s/informatique --- diff --git a/SE - organisation des données.md b/SE - organisation des données.md index 7200a1ab..63251d87 100644 --- a/SE - organisation des données.md +++ b/SE - organisation des données.md @@ -1,6 +1,6 @@ up::[[sous-système de gestion des fichiers]] title::"disques > partitions > répertoires/fichiers" -#informatique/unix +#s/informatique/unix --- diff --git a/SE - page.md b/SE - page.md index 6a6d192b..3f946bfc 100644 --- a/SE - page.md +++ b/SE - page.md @@ -3,7 +3,7 @@ alias: [ "page" ] --- up::[[sous-système de gestion de mémoire]] title::"Cadre dans lequel on met des données / programmes" -#informatique +#s/informatique --- diff --git a/SGBD.md b/SGBD.md index 548713cc..04fa5fd8 100644 --- a/SGBD.md +++ b/SGBD.md @@ -1,5 +1,5 @@ up::[[base de données]], [[serveur www]] -#informatique +#s/informatique ---- diff --git a/SPC Produit Cartésien.md b/SPC Produit Cartésien.md index 7f5253f9..d910cf8d 100644 --- a/SPC Produit Cartésien.md +++ b/SPC Produit Cartésien.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique ---- diff --git a/SPC equi-jointure.md b/SPC equi-jointure.md index fa191a42..d359dc9a 100644 --- a/SPC equi-jointure.md +++ b/SPC equi-jointure.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique ---- diff --git a/SPC intersection.md b/SPC intersection.md index b9fa762f..527ea326 100644 --- a/SPC intersection.md +++ b/SPC intersection.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique ---- diff --git a/SPC règles de réécriture.md b/SPC règles de réécriture.md index 82b850c2..c7b9b84d 100644 --- a/SPC règles de réécriture.md +++ b/SPC règles de réécriture.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique ---- Transformations qui préserve l'équivalence des requêtes diff --git a/SPC sélection.md b/SPC sélection.md index a0474c24..8105d397 100644 --- a/SPC sélection.md +++ b/SPC sélection.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique ---- > [!definition] Sélection ([[algèbre SPC]]) diff --git a/SPJR jointure naturelle.md b/SPJR jointure naturelle.md index f1535491..22f2aed9 100644 --- a/SPJR jointure naturelle.md +++ b/SPJR jointure naturelle.md @@ -1,5 +1,5 @@ up::[[algèbre SPJR]] -#informatique +#s/informatique ---- diff --git a/SQL.md b/SQL.md index 100f60cf..2b835464 100644 --- a/SQL.md +++ b/SQL.md @@ -1,6 +1,6 @@ up::[[langage de programmation]], [[BDD language de requête]] title::"langage de requête (et création) de [[base de données]]" -#informatique +#s/informatique ---- diff --git a/SR latch.md b/SR latch.md index c9405e83..ff8314ff 100644 --- a/SR latch.md +++ b/SR latch.md @@ -1,6 +1,6 @@ up:: [[Logique séquentielle]] title:: "Set-Reset memory" -#science #maths/logique +#s/science #s/maths/logique S and R should really be swapped in the name, since R comes first in the schematics. It should be named the R-S latch. diff --git a/SR-Enable latch.md b/SR-Enable latch.md index e6206afc..930736db 100644 --- a/SR-Enable latch.md +++ b/SR-Enable latch.md @@ -1,6 +1,6 @@ up:: [[Logique séquentielle]] title:: "SR only when enabled" -#science +#s/science --- diff --git a/Si b.md b/Si b.md index a7ad0c39..22a02f81 100644 --- a/Si b.md +++ b/Si b.md @@ -3,7 +3,7 @@ alias: "La #" --- up::[[La]] down::[[Si]] -#art/musique +#s/art/musique ---- diff --git a/Si.md b/Si.md index 3d76bba1..a977c037 100644 --- a/Si.md +++ b/Si.md @@ -1,6 +1,6 @@ up::[[Si b]] down::[[Do]] -#art/musique +#s/art/musique quinte::[[Sol b]] diff --git a/Sissi.md b/Sissi.md index 2af8233b..07bb451b 100644 --- a/Sissi.md +++ b/Sissi.md @@ -1,6 +1,6 @@ anniv::08-15 title::"@Sissi sur discord" -#personne +#t/personne ---- diff --git a/Socrate.md b/Socrate.md index d093a1f5..519057de 100644 --- a/Socrate.md +++ b/Socrate.md @@ -1,5 +1,5 @@ title::"philosophe" -#personne +#t/personne --- diff --git a/Sol b.md b/Sol b.md index 0f5bb63d..2dd4f468 100644 --- a/Sol b.md +++ b/Sol b.md @@ -3,7 +3,7 @@ alias: "Fa #" --- up::[[Fa]] down::[[Sol]] -#art/musique +#s/art/musique ---- diff --git a/Sol.md b/Sol.md index 62ab13ee..b4dde774 100644 --- a/Sol.md +++ b/Sol.md @@ -1,6 +1,6 @@ up::[[Sol b]] down::[[La b]] -#art/musique +#s/art/musique ---- diff --git a/Sous-système de gestion de processus.md b/Sous-système de gestion de processus.md index c3daea5c..c195a79c 100644 --- a/Sous-système de gestion de processus.md +++ b/Sous-système de gestion de processus.md @@ -1,5 +1,5 @@ up::[[système d'exploitation]] -#informatique +#s/informatique ---- Corrdonne tous les besoins nécessaires à la gestion des processus diff --git a/Spanning Tree Protocol.md b/Spanning Tree Protocol.md index 7df7c14f..0034f424 100644 --- a/Spanning Tree Protocol.md +++ b/Spanning Tree Protocol.md @@ -3,7 +3,7 @@ alias: "STP" --- up::[[routage]] title::"élire un meilleur chemin quand le réseau possède des cycles", "protocole de couche 2" -#informatique +#s/informatique ---- diff --git a/Subdivision d'un intervalle.md b/Subdivision d'un intervalle.md index fc9ecdac..1cb2ca14 100644 --- a/Subdivision d'un intervalle.md +++ b/Subdivision d'un intervalle.md @@ -2,7 +2,7 @@ alias: [ "subdivision" ] --- up::[[analyse]] -#maths/analyse +#s/maths/analyse ---- On appelle _subdivision de l'intervalle $[a; b]$_ toute famille finie $s = (x_i)_{0\leq i\leq n}$ telle que $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b, n\in \mathbb{N}^*$ diff --git a/Support d'une courbe paramétrée.md b/Support d'une courbe paramétrée.md index edfb9d1f..5a1b5f51 100644 --- a/Support d'une courbe paramétrée.md +++ b/Support d'une courbe paramétrée.md @@ -4,7 +4,7 @@ sr-interval: 116 sr-ease: 282 --- up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse ---- diff --git "a/Système \"Buddy\".md" "b/Système \"Buddy\".md" index f86734e3..ff8deaff 100644 --- "a/Système \"Buddy\".md" +++ "b/Système \"Buddy\".md" @@ -1,6 +1,6 @@ up:: [[Partitionnement de la mémoire]] title:: -#informatique/unix +#s/informatique/unix --- - toute la mémoire est considérée comme une seule partition de taille $2^{U}$ diff --git a/TCP handshake.md b/TCP handshake.md index 47206987..c3d4f6ac 100644 --- a/TCP handshake.md +++ b/TCP handshake.md @@ -1,6 +1,6 @@ up:: [[protocole TCP IP]] title:: -#informatique +#s/informatique --- diff --git a/TD Réseau routage IP 2022-09-27.md b/TD Réseau routage IP 2022-09-27.md index 89047bd1..02092402 100644 --- a/TD Réseau routage IP 2022-09-27.md +++ b/TD Réseau routage IP 2022-09-27.md @@ -1,4 +1,4 @@ -#exercice #informatique +#t/exercice #s/informatique ---- diff --git a/TD génie logiciel 2022-09-23.md b/TD génie logiciel 2022-09-23.md index a984d800..5932521c 100644 --- a/TD génie logiciel 2022-09-23.md +++ b/TD génie logiciel 2022-09-23.md @@ -1,4 +1,4 @@ -#fac/TD +#t/exercice/TD ---- diff --git a/TD4 génie logiciel 2022-10-14.md b/TD4 génie logiciel 2022-10-14.md index 51c4ea38..6ea16a11 100644 --- a/TD4 génie logiciel 2022-10-14.md +++ b/TD4 génie logiciel 2022-10-14.md @@ -1,4 +1,4 @@ -#fac/TD +#t/exercice/TD ---- diff --git a/TDA.bougeotte.md b/TDA.bougeotte.md index 841da300..e9d554d2 100644 --- a/TDA.bougeotte.md +++ b/TDA.bougeotte.md @@ -2,7 +2,7 @@ alias: ["TDA.bougeotte", "ADHD.fidgetting", "ADHD.fidgetting and restlessness", "bougeotte et agitation"] --- up::[[TDA]] -#science/psychologie +#s/science/psychologie - TOCs, agitation - peut être lié : diff --git a/TDA.couper la parole.md b/TDA.couper la parole.md index 248aac81..c47ff124 100644 --- a/TDA.couper la parole.md +++ b/TDA.couper la parole.md @@ -2,7 +2,7 @@ alias: [ "TDA.couper la parole", "ADHD.interrupting people" ] --- up::[[TDA]] -#science/psychologie +#s/science/psychologie Causes possibles : - Il est difficile d'attendre pour dire ce qu'on a à dire diff --git a/TDA.md b/TDA.md index d1597741..96405de4 100644 --- a/TDA.md +++ b/TDA.md @@ -1,4 +1,4 @@ -#science/psychologie +#s/science/psychologie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/TFJM (participant).md b/TFJM (participant).md index 506b123d..5b2b7e46 100644 --- a/TFJM (participant).md +++ b/TFJM (participant).md @@ -3,7 +3,7 @@ date::2019-05-11, 2019-05-30 date-end::2019-05-12, 2019-06-02 description::"deuxièmes régionaux, participation en finale nationale" compétences:: 🔍 🗣️ 🤝 🧮 -#CV #maths +#CV #s/maths ---- Le $\mathbb{TFJM}^2$ (Tournoi Francais des Jeunes Mathématiciennes et Mathématiciens) diff --git a/Théorème de Bolzano-Weierstrass.md b/Théorème de Bolzano-Weierstrass.md index f2525e46..8d6ef067 100644 --- a/Théorème de Bolzano-Weierstrass.md +++ b/Théorème de Bolzano-Weierstrass.md @@ -1,5 +1,5 @@ up:: [[suite convergente]] -#maths/analyse +#s/maths/analyse > [!definition] Théorème de Bolzano-Weierstrass > Soit $(u_{n})_{n}$ une suite à valeurs dans $\mathbb{R}$ (ou dans $\mathbb{C}$) diff --git a/UML cardinalités.md b/UML cardinalités.md index a4dc3c56..23fea661 100644 --- a/UML cardinalités.md +++ b/UML cardinalités.md @@ -2,7 +2,7 @@ alias: "cardinalités d'UML" --- up::[[diagramme UML]] -#informatique +#s/informatique ---- diff --git a/UML diagramme d'activités.md b/UML diagramme d'activités.md index 4d563f90..135de2fb 100644 --- a/UML diagramme d'activités.md +++ b/UML diagramme d'activités.md @@ -1,5 +1,5 @@ up::[[diagramme UML]] -#informatique +#s/informatique ---- - [?] Pourquoi ? diff --git a/UML diagramme de cas d'utilisation.md b/UML diagramme de cas d'utilisation.md index a0cca9cb..3a0a362b 100644 --- a/UML diagramme de cas d'utilisation.md +++ b/UML diagramme de cas d'utilisation.md @@ -1,5 +1,5 @@ up::[[diagramme UML]] -#informatique +#s/informatique title::![[diagramme de cas d'utilisation 2022-10-04 08.32.29.excalidraw|700]] diff --git a/UML diagramme de classes.md b/UML diagramme de classes.md index bb2802df..9727b1a8 100644 --- a/UML diagramme de classes.md +++ b/UML diagramme de classes.md @@ -1,5 +1,5 @@ up:: [[diagramme UML]] -#informatique +#s/informatique ---- diff --git a/UML diagramme de séquence.md b/UML diagramme de séquence.md index 39ea5006..675c308f 100644 --- a/UML diagramme de séquence.md +++ b/UML diagramme de séquence.md @@ -1,5 +1,5 @@ up:: [[diagramme UML]] -#informatique +#s/informatique ---- diff --git a/URI actions.md b/URI actions.md index 53780110..7c637d21 100644 --- a/URI actions.md +++ b/URI actions.md @@ -1,4 +1,4 @@ -#obsidian #PKM +#s/obsidian #s/PKM up::[[obsidian workflow]], [[obsidian plugin advanced URI]] title::"[[obsidian plugin advanced URI|URIs]] for interesting actions" diff --git a/URL.md b/URL.md index 92c6194b..1fe42f93 100644 --- a/URL.md +++ b/URL.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique ---- --- diff --git a/UT CAC 2024-11-12.md b/UT CAC 2024-11-12.md index 1c9fd3d9..82a64dbb 100644 --- a/UT CAC 2024-11-12.md +++ b/UT CAC 2024-11-12.md @@ -1,5 +1,5 @@ up:: [[UT Conseil Académique|CAC]] -#fac +#s/fac # Informations générales diff --git a/UT Conseil Académique.md b/UT Conseil Académique.md index 9575a390..72f40037 100644 --- a/UT Conseil Académique.md +++ b/UT Conseil Académique.md @@ -4,7 +4,7 @@ aliases: --- up:: [[Conseils de l'université de Tours]] down:: [[CFVU Sciences et techniques]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/UT Direction des affaires juridiques.md b/UT Direction des affaires juridiques.md index 51f7f4ff..a2447d2c 100644 --- a/UT Direction des affaires juridiques.md +++ b/UT Direction des affaires juridiques.md @@ -3,7 +3,7 @@ aliases: - DAJ --- up:: [[université de Tours]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/UT UFR ST Conseil 25-05-2005 budget.md b/UT UFR ST Conseil 25-05-2005 budget.md index 89e9edfe..3321e73b 100644 --- a/UT UFR ST Conseil 25-05-2005 budget.md +++ b/UT UFR ST Conseil 25-05-2005 budget.md @@ -1,7 +1,7 @@ up:: [[Conseil UFR 2023-05-25]] title:: "" date:: 2023-05-25 -#fac +#s/fac --- diff --git a/UT UFR ST Master.md b/UT UFR ST Master.md index ea5817c0..2b5b5491 100644 --- a/UT UFR ST Master.md +++ b/UT UFR ST Master.md @@ -3,7 +3,7 @@ alias: [ "Master Science et Techniques université de Tours" ] --- up:: [[UT UFR Sciences et Techniques|Université de Tours UFR de Sciences et Techniques]] title:: "" -#fac +#s/fac --- diff --git a/UT UFR ST co-diplomation faculté de Marrakech.md b/UT UFR ST co-diplomation faculté de Marrakech.md index 389beefa..298a68bf 100644 --- a/UT UFR ST co-diplomation faculté de Marrakech.md +++ b/UT UFR ST co-diplomation faculté de Marrakech.md @@ -1,6 +1,6 @@ up:: [[UT UFR Sciences et Techniques|Université de Tours UFR de Sciences et Techniques]] title:: "Convention de co-diplomation avec la Faculté de Marrakech" -#fac +#s/fac --- diff --git a/UT UFR ST conseil.md b/UT UFR ST conseil.md index fdc7551d..dfd07e88 100644 --- a/UT UFR ST conseil.md +++ b/UT UFR ST conseil.md @@ -3,7 +3,7 @@ alias: [ "Conseil de l'UFR Sciences et Techniques" ] --- up:: [[UT UFR Sciences et Techniques]] title:: "Conseil de l'UFR" -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/UT UFR ST plaidoyer contre la pédagogie par compétences.md b/UT UFR ST plaidoyer contre la pédagogie par compétences.md index f0d7b4c6..9ccd87f6 100644 --- a/UT UFR ST plaidoyer contre la pédagogie par compétences.md +++ b/UT UFR ST plaidoyer contre la pédagogie par compétences.md @@ -1,5 +1,5 @@ up:: [[UT UFR ST pédagogie par compétences]] -#fac #apprendre +#s/fac #s/apprendre Nous avons appris durant la dernière réunion du conseil que l'université souhaitait mettre en place un système de pédagogie par compétences. Je voudrais vous présenter mes réflexions, avec beaucoup d'humilité, puisque je n'ai aucune qualification justifiant l'importance des mes opinions sur le sujet. diff --git a/UT UFR ST plateforme trouver mon master.md b/UT UFR ST plateforme trouver mon master.md index 1582bd0f..c5497574 100644 --- a/UT UFR ST plateforme trouver mon master.md +++ b/UT UFR ST plateforme trouver mon master.md @@ -1,6 +1,6 @@ up:: [[UT UFR ST Master|Master Science et Techniques université de Tours]] title:: "" -#fac +#s/fac --- diff --git a/UT UFR ST pédagogie par compétences.md b/UT UFR ST pédagogie par compétences.md index 8ddefa24..6d5f38be 100644 --- a/UT UFR ST pédagogie par compétences.md +++ b/UT UFR ST pédagogie par compétences.md @@ -1,6 +1,6 @@ up:: [[UT UFR ST conseil|Conseil de l'UFR Sciences et Techniques]] title:: "" -#fac #apprendre +#s/fac #s/apprendre --- diff --git a/UT UFR Sciences et Techniques.md b/UT UFR Sciences et Techniques.md index 9ab429ca..f697cb26 100644 --- a/UT UFR Sciences et Techniques.md +++ b/UT UFR Sciences et Techniques.md @@ -3,7 +3,7 @@ alias: [ "Université de Tours UFR de Sciences et Techniques" ] --- up:: [[université de Tours]] title:: "UFR de Sciences et Techniques de l'université de Tours" -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/Valentin Mottet.md b/Valentin Mottet.md index 5fc398e4..2fb57639 100644 --- a/Valentin Mottet.md +++ b/Valentin Mottet.md @@ -1,7 +1,7 @@ title:: "camarade de classe licence d'info" link:: anniv:: 03-27 -#personne +#t/personne --- diff --git a/Wide Area Network.md b/Wide Area Network.md index 4d2d50d8..2881ef69 100644 --- a/Wide Area Network.md +++ b/Wide Area Network.md @@ -2,6 +2,6 @@ alias: "WAN" --- up::[[classes de réseau]] -#informatique +#s/informatique ---- diff --git a/Work Breakdown Structure.md b/Work Breakdown Structure.md index bde0e4ba..c1b15f13 100644 --- a/Work Breakdown Structure.md +++ b/Work Breakdown Structure.md @@ -3,7 +3,7 @@ alias: "WBS" --- up::[[outils de gestion de projet]] title::"décomposer le travail en sous-taches faciles (mais pas trop simples)" -#PM +#s/PM ---- diff --git a/ZF démonstration du principe de récurrence.md b/ZF démonstration du principe de récurrence.md index 59427c21..33f64b36 100644 --- a/ZF démonstration du principe de récurrence.md +++ b/ZF démonstration du principe de récurrence.md @@ -1,6 +1,6 @@ up::[[axiomes Zemerlo Frankel]] title::"preuve que $P(0) \wedge \forall n, P(n) \implies P(n+1)$" -#maths #maths/logique #démonstration +#s/maths #s/maths/logique #t/démonstration ---- On cherche à montrer le [[principe de récurrence]] : diff --git a/ZF successeur.md b/ZF successeur.md index d02d1841..f934fd40 100644 --- a/ZF successeur.md +++ b/ZF successeur.md @@ -3,7 +3,7 @@ alias: "successeur" --- up::[[axiomes Zemerlo Frankel]] title::"$s(x) = x \cup \{ x \}$" -#maths +#s/maths ---- Le *successeur* est la fonction $s$ définie comme : diff --git a/a lire.md b/a lire.md index 6d488e34..fb70416c 100644 --- a/a lire.md +++ b/a lire.md @@ -2,7 +2,7 @@ alias: [ "livres à lire", "livres à lire" ] --- up:: [[gestion]] -#PKM +#s/PKM - _La Route de la servitude_, Friedrich Hayeck [wikipedia](https://fr.wikipedia.org/wiki/La_Route_de_la_servitude) (économie) - l'élégance du hérrisson diff --git a/aamath.md b/aamath.md index 49445921..9e415113 100644 --- a/aamath.md +++ b/aamath.md @@ -1,5 +1,5 @@ up::[[terminal commandes]] -#informatique +#s/informatique --- outil en [[ligne de commande]]. diff --git a/accessibilité dans la vie étudiante.md b/accessibilité dans la vie étudiante.md index 7372ee67..0d01530b 100644 --- a/accessibilité dans la vie étudiante.md +++ b/accessibilité dans la vie étudiante.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[accessibilité universelle]], [[vie étudiante]] -#fac +#s/fac diff --git a/accès aux données.md b/accès aux données.md index 7377b8bb..72edea4b 100644 --- a/accès aux données.md +++ b/accès aux données.md @@ -1,5 +1,5 @@ up::[[base de données]] -#informatique +#s/informatique --- # Accès aux données diff --git a/action de groupe fidèle.md b/action de groupe fidèle.md index ed53bdce..7da8823a 100644 --- a/action de groupe fidèle.md +++ b/action de groupe fidèle.md @@ -5,7 +5,7 @@ aliases: up: - "[[action de groupe]]" tags: - - maths/algèbre + - s/maths/algèbre --- > [!definition] Définition > Soit $G$ un groupe et $X$ un ensemble diff --git a/action de groupe.md b/action de groupe.md index 1f843cc9..ab57c2a1 100644 --- a/action de groupe.md +++ b/action de groupe.md @@ -3,7 +3,7 @@ aliases: - action --- up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un groupe et $X$ un ensemble tels que $G \subset X$ diff --git a/action par conjugaison.md b/action par conjugaison.md index 5d957dfb..477cef07 100644 --- a/action par conjugaison.md +++ b/action par conjugaison.md @@ -1,5 +1,5 @@ up:: [[automophisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un [[groupe]] diff --git a/addition de matrices.md b/addition de matrices.md index 6a83af6b..56fa22f7 100644 --- a/addition de matrices.md +++ b/addition de matrices.md @@ -1,6 +1,6 @@ next:: [[next of addition de matrices]] up::[[matrice]] -#maths/algèbre +#s/maths/algèbre --- diff --git a/addition sur N.md b/addition sur N.md index 8779b260..ce1a1ae7 100644 --- a/addition sur N.md +++ b/addition sur N.md @@ -1,5 +1,5 @@ up::[[définition axiomatique de N]] -#maths #maths/logique +#s/maths #s/maths/logique --- diff --git a/adhérence d'un espace métrique.md b/adhérence d'un espace métrique.md index 685c073c..98e88724 100644 --- a/adhérence d'un espace métrique.md +++ b/adhérence d'un espace métrique.md @@ -5,7 +5,7 @@ aliases: --- up:: [[espace métrique]] sibling:: [[intérieur d'un espace métrique|intérieur]] -#maths/topologie +#s/maths/topologie > [!definition] [[adhérence d'un espace métrique]] > Soit $(X, d)$ un [[espace métrique]] et $A \subset X$ une partie quelconque de $X$ diff --git a/administration des bases de données.md b/administration des bases de données.md index aae1ce56..e796a127 100644 --- a/administration des bases de données.md +++ b/administration des bases de données.md @@ -1,5 +1,5 @@ up:: [[base de données|BDD]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/adresse mac.md b/adresse mac.md index 133a477b..0bdbdffe 100644 --- a/adresse mac.md +++ b/adresse mac.md @@ -1,4 +1,4 @@ up::[[réseau adresses|types d'adresses réseaux]] title::"adresse unique pour chaque carte réseau" -#informatique +#s/informatique diff --git a/adresses IP.md b/adresses IP.md index 63041034..88d8bac5 100644 --- a/adresses IP.md +++ b/adresses IP.md @@ -3,7 +3,7 @@ alias: "adresse IP" --- up:: [[réseau adresses]] title::"" -#informatique +#s/informatique --- diff --git a/adresses.md b/adresses.md index 43f5f7eb..7ea789c3 100644 --- a/adresses.md +++ b/adresses.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique --- diff --git a/agnosticisme.md b/agnosticisme.md index a11c4d33..612d6dfc 100644 --- a/agnosticisme.md +++ b/agnosticisme.md @@ -1,5 +1,5 @@ up:: [[philosophie]] -#philosphie +#s/philosphie > [!definition] agnosticisme > L'agnosticisme est une position qui consiste à ne pas accepter les [[énoncé irréfutable|énoncés irréfuables]]. diff --git a/algorithme d'Euclide inverse.md b/algorithme d'Euclide inverse.md index 10a81856..36a41ee5 100644 --- a/algorithme d'Euclide inverse.md +++ b/algorithme d'Euclide inverse.md @@ -1,7 +1,7 @@ up::[[pgcd]] sibling:: [[algorithme d'euclide]] title:: "pour trouver des [[coefficients de Bézout]]" -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/algorithme d'euclide.md b/algorithme d'euclide.md index 990be94a..6a37291f 100644 --- a/algorithme d'euclide.md +++ b/algorithme d'euclide.md @@ -1,7 +1,7 @@ up:: [[pgcd]] sibling:: [[algorithme d'Euclide inverse]] title:: "$\mathrm{pgcd}(a; b) = \mathrm{pgcd}(b; a \text{ mod } b)$" -#maths/arithmétique#not-done +#s/maths/arithmétique#not-done --- diff --git a/algorithme de décision réception d'un paquet.md b/algorithme de décision réception d'un paquet.md index c6c7475f..ba491b8b 100644 --- a/algorithme de décision réception d'un paquet.md +++ b/algorithme de décision réception d'un paquet.md @@ -1,5 +1,5 @@ up::[[routeur réseau]] -#informatique +#s/informatique --- diff --git a/algorithme de gram schmidt.md b/algorithme de gram schmidt.md index eef1d986..b90019dd 100644 --- a/algorithme de gram schmidt.md +++ b/algorithme de gram schmidt.md @@ -1,6 +1,6 @@ up::[[Orthonormaliser une famille de vecteurs](Orthonormaliser-une-famille-de-vecteurs.md)] title:: "projeter chaque vecteur sur les vecteurs orthogonaux précédents" -#maths/algèbre +#s/maths/algèbre --- diff --git a/algorithme de lecture dans un tube.md b/algorithme de lecture dans un tube.md index 8eabcf58..fc34d4fe 100644 --- a/algorithme de lecture dans un tube.md +++ b/algorithme de lecture dans un tube.md @@ -1,6 +1,6 @@ up:: [[unix tubes]], [[C tubes]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/algorithme de remplacement de page.md b/algorithme de remplacement de page.md index bd2cf379..9adcdf47 100644 --- a/algorithme de remplacement de page.md +++ b/algorithme de remplacement de page.md @@ -1,6 +1,6 @@ up::[[SE - page]] title:: "défaut de page ==> on choisit :", " - si on prends un nouveau cadre", " - sinon quelle cadre écraser" -#informatique +#s/informatique --- diff --git a/algèbre SPC forme normale.md b/algèbre SPC forme normale.md index 3ed88755..fd069bde 100644 --- a/algèbre SPC forme normale.md +++ b/algèbre SPC forme normale.md @@ -1,5 +1,5 @@ up::[[algèbre SPC]] -#informatique +#s/informatique --- diff --git a/algèbre SPC.md b/algèbre SPC.md index 036079e0..10295553 100644 --- a/algèbre SPC.md +++ b/algèbre SPC.md @@ -1,5 +1,5 @@ up::[[algèbre relationelle]] -#informatique +#s/informatique --- c'est une [[approche non nomée]] : les attributs sont différenciés par leur position (index) et pas par leur nom. diff --git a/algèbre SPJR.md b/algèbre SPJR.md index bc9e2bbd..6478d30a 100644 --- a/algèbre SPJR.md +++ b/algèbre SPJR.md @@ -1,5 +1,5 @@ up::[[algèbre relationelle]] -#informatique +#s/informatique --- diff --git a/algèbre linéaire 2022-09-05T08h15.md b/algèbre linéaire 2022-09-05T08h15.md index 6e66a9be..d726bb17 100644 --- a/algèbre linéaire 2022-09-05T08h15.md +++ b/algèbre linéaire 2022-09-05T08h15.md @@ -1,4 +1,4 @@ -#cours +#t/cours --- Cours : [[livre algèbre exo7 - annotate]] diff --git a/algèbre relationelle.md b/algèbre relationelle.md index 522ad230..6b0ec4b1 100644 --- a/algèbre relationelle.md +++ b/algèbre relationelle.md @@ -1,6 +1,6 @@ up::[[BDD language de requête]] down:: [[algèbre SPC]], [[algèbre SPJR]] -#informatique#not-done +#s/informatique#not-done > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/algèbre.md b/algèbre.md index 6f2a6922..7029cf46 100644 --- a/algèbre.md +++ b/algèbre.md @@ -1,8 +1,11 @@ --- -alias: "algèbre" +aliases: + - algèbre +up: + - "[[mathématiques]]" +tags: + - "#s/maths/algèbre" --- -up:: [[mathématiques]] -#maths/algèbre > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/aliénation sociale.md b/aliénation sociale.md index 21b6d3b4..fccda8e0 100644 --- a/aliénation sociale.md +++ b/aliénation sociale.md @@ -4,7 +4,7 @@ aliases: --- up:: [[sociologie]], [[politique]] author:: [[Karl Marx]] -#philosphie +#s/philosphie > [!definition] Aliénation sociale > En [[philosophie]] diff --git a/allocation de fichiers.md b/allocation de fichiers.md index b121a9ae..dc9741f7 100644 --- a/allocation de fichiers.md +++ b/allocation de fichiers.md @@ -1,6 +1,6 @@ up:: [[sous-système de gestion des fichiers]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/allocation des portions de fichiers.md b/allocation des portions de fichiers.md index 3d2e74fb..892adf2d 100644 --- a/allocation des portions de fichiers.md +++ b/allocation des portions de fichiers.md @@ -1,6 +1,6 @@ up:: [[allocation de fichiers]] title:: "comment un fichier est réparti en [[portion d'un disque|portions]]" -#informatique/unix +#s/informatique/unix --- diff --git a/allocation dynamique de fichiers.md b/allocation dynamique de fichiers.md index dd34a8b4..60b1ff2d 100644 --- a/allocation dynamique de fichiers.md +++ b/allocation dynamique de fichiers.md @@ -1,7 +1,7 @@ up:: [[allocation de fichiers]] sibling:: [[pré-allocation de fichiers]] title:: "on alloue de l'espace en suivant les modifications" -#informatique/unix +#s/informatique/unix --- diff --git a/analyse 2022-09-05.md b/analyse 2022-09-05.md index 052561c0..5f7e94b1 100644 --- a/analyse 2022-09-05.md +++ b/analyse 2022-09-05.md @@ -1,4 +1,4 @@ -#cours #maths/analyse +#t/cours #s/maths/analyse --- diff --git a/analyse fonctionnelle d'un système.md b/analyse fonctionnelle d'un système.md index 13ed1cc9..41e83616 100644 --- a/analyse fonctionnelle d'un système.md +++ b/analyse fonctionnelle d'un système.md @@ -2,7 +2,7 @@ alias: "analyse fonctionnelle" --- up::[[outils de gestion de projet]] -#informatique +#s/informatique --- diff --git a/analyse.md b/analyse.md index 658d82e7..89586b79 100644 --- a/analyse.md +++ b/analyse.md @@ -2,7 +2,7 @@ alias: "analyse" --- up:: [[mathématiques]] -#maths/analyse +#s/maths/analyse > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/anarchie.md b/anarchie.md index f5a24bb6..77ce7acd 100644 --- a/anarchie.md +++ b/anarchie.md @@ -1,5 +1,5 @@ up::[[théorie politique]] -#politique +#s/politique > [!definition] Anarchie > Théorie politique qui cherche à créer l'anarchie, "l'abscence de maître, de souverain". diff --git a/anglais starlink video 2022-09-22.md b/anglais starlink video 2022-09-22.md index 580f2819..dc770450 100644 --- a/anglais starlink video 2022-09-22.md +++ b/anglais starlink video 2022-09-22.md @@ -1,4 +1,4 @@ -#exercice #anglais +#t/exercice #s/anglais --- diff --git a/anglais starlink video comprehension.md b/anglais starlink video comprehension.md index 6609bba1..cab92ac1 100644 --- a/anglais starlink video comprehension.md +++ b/anglais starlink video comprehension.md @@ -3,7 +3,7 @@ mindmap-plugin: rich --- -#anglais +#s/anglais # anglais starlink video comprehension ``` json diff --git a/anglais.md b/anglais.md index ae85c8bd..478158f7 100644 --- a/anglais.md +++ b/anglais.md @@ -1,5 +1,5 @@ up:: [[index]] -#anglais +#s/anglais > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/angle entre deux vecteurs.md b/angle entre deux vecteurs.md index 07f7a28f..5677c121 100644 --- a/angle entre deux vecteurs.md +++ b/angle entre deux vecteurs.md @@ -1,6 +1,6 @@ up:: [[vecteur]] title:: "$\widehat{\big( \vec{A}, \vec{B} \big)}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/anneau Z.md b/anneau Z.md index 424e8b99..ee4ae4e8 100644 --- a/anneau Z.md +++ b/anneau Z.md @@ -3,7 +3,7 @@ alias: [ "anneau ℤ" ] --- up::[[arithmétique]], [[anneau]] title:: "$(\mathbb{Z}, +, \cdot, \leq)$ est un anneau [[relation d'ordre totale|totalement ordonné]]" -#maths/arithmétique #maths/algèbre +#s/maths/arithmétique #s/maths/algèbre --- diff --git a/anneau commutatif.md b/anneau commutatif.md index e9ca0161..5753718c 100644 --- a/anneau commutatif.md +++ b/anneau commutatif.md @@ -1,6 +1,6 @@ up::[[anneau]] title::"$(A, +, \times)$ où", " - $(A, +)$ est un [[groupe abélien]]", " - $(A, \times)$ est un [[monoïde]] [[commutativité|commutatif]]", " - $\times$ est [[distributivité|distributive]] sur $+$" -#maths/algèbre +#s/maths/algèbre --- Un _anneau commutatif_ est un [[anneau]] pour lequel la loi $\times$ est [[commutativité|commutative]] diff --git a/anneau.md b/anneau.md index cd1eae45..4d1284c9 100644 --- a/anneau.md +++ b/anneau.md @@ -1,5 +1,5 @@ up::[[structure algébrique]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Un ensemble $A$ muni de deux lois $+$ et $\times$ est un _anneau_ ssi : diff --git a/anniversaire.md b/anniversaire.md index 038d4621..8505a8bd 100644 --- a/anniversaire.md +++ b/anniversaire.md @@ -2,7 +2,7 @@ quickshare-date: 2023-05-14 21:11:00 quickshare-url: "https://noteshare.space/note/clhnsknqn187601pjeevxbd0g#XOGQO335u7+EL79r0/9wwvvht5wUjQ5rO/Sy0Ywwp3I" --- -#PKM +#s/PKM # Personnes à inviter diff --git a/années 68.md b/années 68.md index e23267d7..5cd17d4d 100644 --- a/années 68.md +++ b/années 68.md @@ -1,5 +1,5 @@ up:: [[mai 68]] -#politique +#s/politique Années, à la suite (ou en coïncidence) de [[mai 68]], durant lesquels le [[rapport de force]] à été en faveur du progressisme. Quelques avancées permises à cette époque : diff --git a/antonomase.md b/antonomase.md index 5a043863..6d0e8869 100644 --- a/antonomase.md +++ b/antonomase.md @@ -1,3 +1,3 @@ up:: [[métonymie]] -#art +#s/art diff --git a/application additive.md b/application additive.md index 4c6cfbad..addcfd73 100644 --- a/application additive.md +++ b/application additive.md @@ -4,7 +4,7 @@ alias: [ "additive", "additivité" ] up:: [[application]] title:: $f(x+y) = f(x) + f(y)$ sibling:: [[application sous-additive]] -#maths/analyse #maths/algèbre +#s/maths/analyse #s/maths/algèbre --- diff --git a/application affine.md b/application affine.md index b98d8a17..25c512d6 100644 --- a/application affine.md +++ b/application affine.md @@ -1,5 +1,5 @@ up::[[application]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition (analyse) diff --git a/application bilinéaire.md b/application bilinéaire.md index 2e7fa172..53dde868 100644 --- a/application bilinéaire.md +++ b/application bilinéaire.md @@ -1,7 +1,7 @@ up:: [[application linéaire]] down:: [[forme bilinéaire]] title:: "$f: E^{2} \to F$ linéaire par rapport à ses deux paramètres" -#maths/algèbre +#s/maths/algèbre --- diff --git a/application des définitions alternatives de la compacité.md b/application des définitions alternatives de la compacité.md index 14675bbe..a7ac9472 100644 --- a/application des définitions alternatives de la compacité.md +++ b/application des définitions alternatives de la compacité.md @@ -1,5 +1,5 @@ up:: [[espace métrique compact|compact]] -#maths/topologie +#s/maths/topologie Application des [[espace métrique compact#^definitions-alternatives|définitions alternatives de la compacité]] diff --git a/application homogène.md b/application homogène.md index 6c5a8288..08a01b53 100644 --- a/application homogène.md +++ b/application homogène.md @@ -3,7 +3,7 @@ alias: [ "homogène", "homogénéité" ] --- up:: [[application]] title:: "$f(\lambda x) = \lambda f(x)$" -#maths/analyse #maths/algèbre +#s/maths/analyse #s/maths/algèbre --- diff --git a/application linéaire continue.md b/application linéaire continue.md index 6ba3d376..0a06d9ef 100644 --- a/application linéaire continue.md +++ b/application linéaire continue.md @@ -1,5 +1,5 @@ up:: [[fonction continue]], [[application linéaire]] -#maths/algèbre #maths/topologie +#s/maths/algèbre #s/maths/topologie > [!definition] [[application linéaire continue]] > Une [[application linéaire]] qui est aussi [[fonction continue|continue]]. diff --git a/application linéaire.md b/application linéaire.md index 507414b2..5349c578 100644 --- a/application linéaire.md +++ b/application linéaire.md @@ -6,7 +6,7 @@ aliases: --- up::[[application]] sibling::[[combinaison linéaire]] -#maths/algèbre +#s/maths/algèbre > [!definition] Application linéaire > Soient $E$ et $F$ deux $\mathbf{K}$-[[espace vectoriel|espaces vectoriels]] diff --git a/application réciproque.md b/application réciproque.md index 5f978561..f7f9d03e 100644 --- a/application réciproque.md +++ b/application réciproque.md @@ -2,7 +2,7 @@ alias: [ "réciproque" ] --- up::[[application]] -#maths/analyse +#s/maths/analyse > [!definition] Définition > Soit $f : E \to F$ une [[bijection]] diff --git a/application sous-additive.md b/application sous-additive.md index 0b9af464..c10b9f33 100644 --- a/application sous-additive.md +++ b/application sous-additive.md @@ -4,7 +4,7 @@ alias: [ "sous-additive" ] up:: [[application]] title:: "$f(x+y) \leq f(x)+f(y)$" slibling:: [[application additive]] -#maths/analyse +#s/maths/analyse --- diff --git a/application symétrique.md b/application symétrique.md index 1becf0a4..207ac576 100644 --- a/application symétrique.md +++ b/application symétrique.md @@ -1,6 +1,6 @@ up::[[application]] title::"$f: E^{2} \to \mathbf{K}$ telle que $\forall (u, v)\in E^{2}, \quad f((u,v)) = f((v, u))$" -#maths +#s/maths --- diff --git a/application.md b/application.md index e1d0f195..e6c93085 100644 --- a/application.md +++ b/application.md @@ -4,7 +4,7 @@ alias: [ "applications" ] up::[[fonction]] title::"$\forall x \in \mathscr{D}_f, \exists y \in f(\mathscr{D}_f), y=f(x)$" description::"au moins une image" -#maths/analyse +#s/maths/analyse --- Une application est une [[fonction]] telle que **tous les éléments de l'ensemble de définition ont une image**. diff --git a/apprentissage par les pairs.md b/apprentissage par les pairs.md index facd4dcb..c18ac7dc 100644 --- a/apprentissage par les pairs.md +++ b/apprentissage par les pairs.md @@ -1,9 +1,9 @@ --- aliases: - peer learning +up: "[[apprentissage]]" +tags: "#s/apprendre" --- -up:: [[apprentissage]] -#apprendre Apprendre de nos pairs, c'est-à-dire de personnes qui sont novice également (même si relativement plus expertes dans le sujet). diff --git a/apprentissage.md b/apprentissage.md index a98dacd4..30283c55 100644 --- a/apprentissage.md +++ b/apprentissage.md @@ -1,4 +1,6 @@ -#apprendre +--- +tags: "#s/apprendre" +--- > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/approche syntaxique.md b/approche syntaxique.md index 4e5c9eab..b6a78bd4 100644 --- a/approche syntaxique.md +++ b/approche syntaxique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/arbre binaire de recherche.md b/arbre binaire de recherche.md index bdab4758..59536c29 100644 --- a/arbre binaire de recherche.md +++ b/arbre binaire de recherche.md @@ -1,5 +1,5 @@ up::[[structure de données]] -#informatique/algorithmie +#s/informatique/algorithmie --- Un _arbre binaire de recherche_ est un [[arbre binaire]] particulier. diff --git a/arbre binaire inverse.md b/arbre binaire inverse.md index c5a6113f..dc154db1 100644 --- a/arbre binaire inverse.md +++ b/arbre binaire inverse.md @@ -1,5 +1,5 @@ up::[[arbre binaire]] -#informatique/algorithmie +#s/informatique/algorithmie --- Opération d'inversion d'un [[arbre binaire]]. diff --git a/arbre binaire.md b/arbre binaire.md index 50024160..275ae8ed 100644 --- a/arbre binaire.md +++ b/arbre binaire.md @@ -1,5 +1,5 @@ up::[[structure de données]] -#informatique/algorithmie +#s/informatique/algorithmie --- Un _arbre binaire_ est un [[structure de données.arbre]] dont le **degré** de tous les noeuds est inférieur ou égal à 2. diff --git a/architecture CISC.md b/architecture CISC.md index 4355085f..b3374ec8 100644 --- a/architecture CISC.md +++ b/architecture CISC.md @@ -1,6 +1,6 @@ up::[[architecture des ordinateurs]] sibling::[[architecture RISC]] -#informatique#not-done +#s/informatique#not-done --- diff --git a/architecture RISC.md b/architecture RISC.md index c9fedc1f..a3ec06a6 100644 --- a/architecture RISC.md +++ b/architecture RISC.md @@ -1,5 +1,5 @@ up::[[architecture des ordinateurs]] sibling::[[architecture CISC]] -#informatique#not-done +#s/informatique#not-done --- diff --git a/architecture de Von Neumann.md b/architecture de Von Neumann.md index 984a0fba..639ae7e3 100644 --- a/architecture de Von Neumann.md +++ b/architecture de Von Neumann.md @@ -1,6 +1,6 @@ up::[[architecture des ordinateurs]] author::[[John Von Neumann]] -#informatique +#s/informatique --- diff --git a/architecture des ordinateurs TD1 2022-09-23.md b/architecture des ordinateurs TD1 2022-09-23.md index bd9aa612..839fcbb1 100644 --- a/architecture des ordinateurs TD1 2022-09-23.md +++ b/architecture des ordinateurs TD1 2022-09-23.md @@ -1,4 +1,4 @@ -#fac/TD +#t/exercice/TD next::[[architecture des ordinateurs TD2 2022-09-30]] --- diff --git a/architecture des ordinateurs TD2 2022-09-30.md b/architecture des ordinateurs TD2 2022-09-30.md index b8a00461..bd3e7f27 100644 --- a/architecture des ordinateurs TD2 2022-09-30.md +++ b/architecture des ordinateurs TD2 2022-09-30.md @@ -1,4 +1,4 @@ -#fac/TD +#t/exercice/TD --- diff --git a/architecture des ordinateurs.md b/architecture des ordinateurs.md index 7b9cc706..08f4ce14 100644 --- a/architecture des ordinateurs.md +++ b/architecture des ordinateurs.md @@ -1,7 +1,7 @@ down:: [[Exécution d'un code machine]] up::[[informatique]] title:: -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/argument d'une fonction.md b/argument d'une fonction.md index 41f7a7a8..ea801b39 100644 --- a/argument d'une fonction.md +++ b/argument d'une fonction.md @@ -4,7 +4,7 @@ aliases: --- up:: [[programmation.procédure]] sibling:: [[paramètre d'une fonction]] -#informatique +#s/informatique > [!definition] argument d'une fonction > Un argument d'une fonction ou d'une procédure est la **valeur** qui est effectivement passée en [[paramètre d'une fonction|paramètre]]. diff --git a/argument de la chambre chinoise.md b/argument de la chambre chinoise.md index 056cfb07..2f0af136 100644 --- a/argument de la chambre chinoise.md +++ b/argument de la chambre chinoise.md @@ -1,7 +1,7 @@ up:: title:: author:: [[John Searle]] -#philosphie #informatique +#s/philosphie #s/informatique --- diff --git a/argument.md b/argument.md index a57e9912..d3bb6a4c 100644 --- a/argument.md +++ b/argument.md @@ -4,7 +4,7 @@ sr-interval: 205 sr-ease: 315 --- up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes --- Soit $z\in\mathbb C$ un [[nombre complexe]]. diff --git a/arithmétique.md b/arithmétique.md index fef41088..57d2a6d5 100644 --- a/arithmétique.md +++ b/arithmétique.md @@ -5,7 +5,7 @@ up: - "[[mathématiques]]" --- canvas::[[Arithmétique.canvas]] -#maths/arithmétique +#s/maths/arithmétique ```breadcrumbs title: "Sous-notes" diff --git a/arpanet.md b/arpanet.md index 6da9a351..97e26c5c 100644 --- a/arpanet.md +++ b/arpanet.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique --- Advanced Research Projects Agency NETwork. diff --git a/art contemporain et politique.md b/art contemporain et politique.md index cae8f347..36bcb1a0 100644 --- a/art contemporain et politique.md +++ b/art contemporain et politique.md @@ -1,6 +1,6 @@ up:: [[politique]], [[art contemporain]] title:: "" -#politique #art +#s/politique #s/art --- diff --git a/art contemporain.md b/art contemporain.md index 8094262b..0fa60d16 100644 --- a/art contemporain.md +++ b/art contemporain.md @@ -1,6 +1,6 @@ up:: [[art]] title:: -#art #not-done +#s/art #not-done --- diff --git a/arts-serviles.md b/arts-serviles.md index 06c9e94e..d72b77a6 100644 --- a/arts-serviles.md +++ b/arts-serviles.md @@ -1,4 +1,4 @@ -#science +#s/science --- Au [[Moyen Âge]], on classe dans les arts _serviles_ tous les arts qui ont en commun la **transformation de matière** ou l'assemblage de matériaux. diff --git a/assembleur adressage.md b/assembleur adressage.md index bc292b0b..7688ba23 100644 --- a/assembleur adressage.md +++ b/assembleur adressage.md @@ -1,6 +1,6 @@ up:: [[assembleur]] title:: "direct (absolu) : constante (valeur de l'adresse)", "indirect : valeur dans la mémoire à cette adresse (référence)" -#informatique +#s/informatique --- diff --git a/assembleur.md b/assembleur.md index 231aa765..e4f8c8ad 100644 --- a/assembleur.md +++ b/assembleur.md @@ -1,5 +1,5 @@ up::[[langage de programmation]] -#informatique#not-done +#s/informatique#not-done --- diff --git a/association blésoise des étudiants en informatique.md b/association blésoise des étudiants en informatique.md index 593be95d..b8ba83a0 100644 --- a/association blésoise des étudiants en informatique.md +++ b/association blésoise des étudiants en informatique.md @@ -3,7 +3,7 @@ aliases: - ABEI --- up:: [[associations étudiantes]], [[CV]] -#fac #informatique +#s/fac #s/informatique > [!tldr] Résumé diff --git a/associations étudiantes.md b/associations étudiantes.md index 99f0dd67..f5584513 100644 --- a/associations étudiantes.md +++ b/associations étudiantes.md @@ -1,5 +1,5 @@ up:: [[associations]] -#fac +#s/fac > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/associativité.md b/associativité.md index cde8a727..ac6eefd9 100644 --- a/associativité.md +++ b/associativité.md @@ -5,7 +5,7 @@ sr-interval: 235 sr-ease: 328 --- up::[[loi de composition interne]] -#maths/algèbre +#s/maths/algèbre > [!definition] associativité > Une [[loi de composition interne]] $*$ sur un ensemble $E$ est associative ssi : $\forall(a,b,c)\in E^3, a*(b*c) = (a*b)*c$ diff --git a/asymptote.md b/asymptote.md index a4bff22d..8a461177 100644 --- a/asymptote.md +++ b/asymptote.md @@ -5,7 +5,7 @@ sr-interval: 79 sr-ease: 277 --- up::[[analyse]] -#maths/analyse +#s/maths/analyse --- Soit $f: x \mapsto f(x)$ une [[fonction]] diff --git a/atome.md b/atome.md index a5be602f..437955e9 100644 --- a/atome.md +++ b/atome.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/attirer l'attention en magie.md b/attirer l'attention en magie.md index 72e78896..f875b695 100644 --- a/attirer l'attention en magie.md +++ b/attirer l'attention en magie.md @@ -1,5 +1,5 @@ up:: [[comment approcher les groupes en magie]] -#art/magie +#s/art/magie # approcher en étant confiant diff --git a/attributs multivalués.md b/attributs multivalués.md index e0d4cd78..133c2732 100644 --- a/attributs multivalués.md +++ b/attributs multivalués.md @@ -1,6 +1,6 @@ up:: [[BDD attributs]] title:: "" -#informatique +#s/informatique --- diff --git a/atypie friendly.md b/atypie friendly.md index 6183c81f..80ac496b 100644 --- a/atypie friendly.md +++ b/atypie friendly.md @@ -1,6 +1,6 @@ up:: [[handicap]] link:: https://atypie-friendly.fr/ -#fac +#s/fac - programme inter-universitaire (porté par l'université de Toulouse) ^472002 - financé par le gvmt diff --git a/authentification par token.md b/authentification par token.md index 55637cce..1b099dce 100644 --- a/authentification par token.md +++ b/authentification par token.md @@ -1,5 +1,5 @@ up:: [[cours programmation web serveur]] -#informatique +#s/informatique - le token - la preuve que l'utilisateur à le droit de se connecter diff --git a/automate déterministe fonction étendue de transition.md b/automate déterministe fonction étendue de transition.md index 8b3d6cc9..64a7952c 100644 --- a/automate déterministe fonction étendue de transition.md +++ b/automate déterministe fonction étendue de transition.md @@ -3,6 +3,6 @@ aliases: - fonction étendue de transition --- up:: [[automate déterministe]] -#informatique +#s/informatique diff --git a/automate déterministe.md b/automate déterministe.md index 3f21650f..cd4905d0 100644 --- a/automate déterministe.md +++ b/automate déterministe.md @@ -1,5 +1,5 @@ up:: [[automate]] -#informatique +#s/informatique > [!definition] automate déterministe > Automate pour lequel il n'existe pas plusieurs transisions depuis un même état qui demandent le même symbole. diff --git a/automate fini déterministe.md b/automate fini déterministe.md index 940ee65a..9cbd4bb0 100644 --- a/automate fini déterministe.md +++ b/automate fini déterministe.md @@ -1,5 +1,5 @@ up:: [[automate fini]], [[automate déterministe]] -#informatique +#s/informatique > [!definition] automate fini déterministe > Un **automate fini déterministe** (AFD) est un quintuplet : diff --git a/automate-pile.md b/automate-pile.md index 5d5d694d..f8917c66 100644 --- a/automate-pile.md +++ b/automate-pile.md @@ -3,7 +3,7 @@ alias: ["automate à pile", "pushdown automata"] --- up::[[automate]] link:: [wikipedia](https://fr.wikipedia.org/wiki/Automate_%C3%A0_pile) -#informatique +#s/informatique --- diff --git a/automate.md b/automate.md index f781f6c7..f9968358 100644 --- a/automate.md +++ b/automate.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/automophisme.md b/automophisme.md index faf4c5c1..9f050d3d 100644 --- a/automophisme.md +++ b/automophisme.md @@ -1,5 +1,5 @@ up:: [[isomorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Un automorphisme est un [[isomorphisme de groupes]] d'un objet dans lui-même diff --git a/automorphisme de groupes.md b/automorphisme de groupes.md index 8f246ec2..0e0212a0 100644 --- a/automorphisme de groupes.md +++ b/automorphisme de groupes.md @@ -1,5 +1,5 @@ up:: [[automophisme]], [[endomorphisme de groupe]], [[isomorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Soit $(G, *)$ un groupe diff --git a/automorphisme linéaire.md b/automorphisme linéaire.md index 06b8d696..9b72402c 100644 --- a/automorphisme linéaire.md +++ b/automorphisme linéaire.md @@ -1,6 +1,6 @@ up:: [[automorphisme]] title:: "[[isomorphisme de groupes]] [[application linéaire|linéaire]] d'un ensemble dans lui-même" -#maths/algèbre +#s/maths/algèbre --- Un _automorphisme linéaire_ est un [[automorphisme]] qui est aussi une [[application linéaire]]. diff --git a/automorphisme.md b/automorphisme.md index 196c53ac..61c5cd64 100644 --- a/automorphisme.md +++ b/automorphisme.md @@ -2,7 +2,7 @@ alias: "automorphismes" --- up::[[isomorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Un automorphisme est un [[isomorphisme]] d'un objet dans lui-même diff --git a/aversion à la trahison.md b/aversion à la trahison.md index 9dad4b45..21eca232 100644 --- a/aversion à la trahison.md +++ b/aversion à la trahison.md @@ -3,7 +3,7 @@ aliases: up: - "[[biais cognitifs]]" tags: - - science/psychologie + - s/science/psychologie --- > [!definition] [[aversion à la trahison]] > Aversion disproportionnée aux dispositifs qui sont censés nous aider mais qui finissent par nous trahir (nous faire du mal / désservir) diff --git a/axiomatique.md b/axiomatique.md index 0cdd43b6..f4ed9950 100644 --- a/axiomatique.md +++ b/axiomatique.md @@ -1,4 +1,4 @@ -#maths #maths/logique +#s/maths #s/maths/logique --- diff --git a/axiome de l'infini.md b/axiome de l'infini.md index e58ee101..ac09d792 100644 --- a/axiome de l'infini.md +++ b/axiome de l'infini.md @@ -1,5 +1,5 @@ up::[[axiomes Zemerlo Frankel]] -#maths +#s/maths --- Il existe un [[classe héréditaire|ensemble héréditaire]] le plus petit (à l'intersection de tous les ensembles héréditaires). diff --git a/axiome.md b/axiome.md index 96f383b8..b935f3a8 100644 --- a/axiome.md +++ b/axiome.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- [[proposition|Proposition]] primitive considérée comme non démontrable et admise a priori. diff --git a/axiomes Zemerlo Frankel.md b/axiomes Zemerlo Frankel.md index 7b0f3f36..511b0d96 100644 --- a/axiomes Zemerlo Frankel.md +++ b/axiomes Zemerlo Frankel.md @@ -2,7 +2,7 @@ alias: ["axiomes ZF", "ZF"] --- up::[[axiomatique]] -#maths +#s/maths --- diff --git a/backtracking.md b/backtracking.md index 5746be60..7fa366ea 100644 --- a/backtracking.md +++ b/backtracking.md @@ -1,5 +1,5 @@ up:: [[Exemples pour la récursion]], [[structure de données.arbre|arbre]] -#maths #informatique +#s/maths #s/informatique # Exemples diff --git a/barycentre d'un système de points pondérés.md b/barycentre d'un système de points pondérés.md index b27da15b..7bd223fb 100644 --- a/barycentre d'un système de points pondérés.md +++ b/barycentre d'un système de points pondérés.md @@ -3,7 +3,7 @@ alias: [ "barycentre" ] --- up:: [[fonction de Leibniz]] title:: "$G$ tel que $\sum\limits_{i} \Big( \lambda _{i} \overrightarrow{A_{i}G} \Big) = \vec{0}$", "$G = Bar((A_1, \lambda_1), (A_2, \lambda_2), \dots, (A_{k}, \lambda _{k}))$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/base antéduale d'une famille de formes linéaires.md b/base antéduale d'une famille de formes linéaires.md index baeae5c9..c6525a24 100644 --- a/base antéduale d'une famille de formes linéaires.md +++ b/base antéduale d'une famille de formes linéaires.md @@ -4,7 +4,7 @@ alias: [ "base antéduale", "base préduale" ] up:: [[espace dual d'un espace vectoriel|espace dual]] sibling:: [[base duale d'une famille de formes linéaires|base duale]] title:: "" -#maths/algèbre +#s/maths/algèbre --- diff --git a/base canonique d'un espace vectoriel.md b/base canonique d'un espace vectoriel.md index e8b7b6d5..2f4a1bb5 100644 --- a/base canonique d'un espace vectoriel.md +++ b/base canonique d'un espace vectoriel.md @@ -2,7 +2,7 @@ alias: "base canonique" --- up::[[base d'un espace vectoriel]] -#maths/algèbre +#s/maths/algèbre --- diff --git a/base d'un espace vectoriel.md b/base d'un espace vectoriel.md index e36239a1..a441af40 100644 --- a/base d'un espace vectoriel.md +++ b/base d'un espace vectoriel.md @@ -3,7 +3,7 @@ alias: [ "base" ] --- up::[[espace vectoriel]] title::"[[famille de vecteurs]] [[famille de vecteurs libre|libre]] et [[famille de vecteurs génératrice|génératrice]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/base de données information.md b/base de données information.md index e58bfa0a..23f1a885 100644 --- a/base de données information.md +++ b/base de données information.md @@ -3,7 +3,7 @@ aliases: - information (base de données) --- up::[[concepts des bases de données]], [[information]] -#informatique +#s/informatique source:: ![[information#^definition-informatique]] diff --git a/base de données.md b/base de données.md index 30c96b4e..48d0a9d7 100644 --- a/base de données.md +++ b/base de données.md @@ -1,7 +1,7 @@ --- alias: "BDD" --- -#informatique +#s/informatique --- diff --git a/base duale d'une famille de formes linéaires.md b/base duale d'une famille de formes linéaires.md index 28c3685e..b3a1b6e7 100644 --- a/base duale d'une famille de formes linéaires.md +++ b/base duale d'une famille de formes linéaires.md @@ -4,7 +4,7 @@ alias: [ "base duale" ] up:: [[espace dual d'un espace vectoriel]] sibling:: [[base antéduale d'une famille de formes linéaires|base antéduale]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/bases du javascript.md b/bases du javascript.md index c0ab1571..503f5307 100644 --- a/bases du javascript.md +++ b/bases du javascript.md @@ -1,5 +1,5 @@ up:: [[cours programmation web serveur]] -#fac #informatique/langage/javascript +#s/fac #s/informatique/langage/javascript # gestion des erreurs diff --git a/bases numériques.md b/bases numériques.md index 6f9db088..308087f3 100644 --- a/bases numériques.md +++ b/bases numériques.md @@ -2,6 +2,6 @@ alias: "base" --- up::[[informatique]] -#informatique +#s/informatique --- diff --git a/bclm.md b/bclm.md index cd3c1665..654a4189 100644 --- a/bclm.md +++ b/bclm.md @@ -5,7 +5,7 @@ aliases: up:: [[limiter la charge de la batterie]] link:: https://github.com/zackelia/bclm date-seen:: 2024-06-27 -#informatique +#s/informatique BCLM = Battery Charge Level Max diff --git a/beating the average.md b/beating the average.md index eb9f088f..43bf7f6e 100644 --- a/beating the average.md +++ b/beating the average.md @@ -5,7 +5,7 @@ up::[[LISP]] author::[[paul graham]] url::http://www.paulgraham.com/avg.html title::"comment [[LISP]] à avantagé un projet" -#informatique +#s/informatique --- diff --git a/biais cognitifs.md b/biais cognitifs.md index ecaf4275..90a96042 100644 --- a/biais cognitifs.md +++ b/biais cognitifs.md @@ -1,4 +1,4 @@ -#science/psychologie +#s/science/psychologie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/biais d'attribution hostile.md b/biais d'attribution hostile.md index 5a56f8a1..3a9cc00c 100644 --- a/biais d'attribution hostile.md +++ b/biais d'attribution hostile.md @@ -4,7 +4,7 @@ aliases: - biais attributionel d'hostilité --- up:: [[erreur d'attribution|biais d'attribution]] -#science/psychologie +#s/science/psychologie > [!definition] [[biais d'attribution hostile]] > Tendance à attribuer à autrui des intentions hostiles, même si les intentions réelles sont ambigües ou bégnines. diff --git a/bijection.md b/bijection.md index 0ff4f662..21c742d7 100644 --- a/bijection.md +++ b/bijection.md @@ -13,7 +13,7 @@ aliases: up::[[application]] description::"$\forall x \in \mathscr{D}_{f}, \exists! y \in f(\mathscr{D}_{f}), y = f(x)$", "$\forall y \in f(\mathscr{D}_{f}), \exists! x \in \mathsf{D}_{f}, y = f(x)$" title::"[[application]] [[injection|injective]] et [[surjection|surjective]]" -#maths/analyse +#s/maths/analyse --- diff --git a/binaire.md b/binaire.md index 110b20a8..11b22321 100644 --- a/binaire.md +++ b/binaire.md @@ -4,6 +4,6 @@ name: "binaire" --- up::[[bases numériques|base]] title::"base 2 (chiffres : $0$ et $1$)" -#informatique +#s/informatique --- diff --git a/biodiversité.md b/biodiversité.md index 894eb07e..b19a4a88 100644 --- a/biodiversité.md +++ b/biodiversité.md @@ -1,7 +1,7 @@ up:: [[écologie]] sibling:: [[climat]] title:: -#science/écologie/biodiversité +#s/science/écologie/biodiversité - sujet aussi important que le climat, mais encore moins abordé dans les médias - plus complexe à quantifier que le changement climatique diff --git a/bissectrice.md b/bissectrice.md index d741bf39..e3e0dc5f 100644 --- a/bissectrice.md +++ b/bissectrice.md @@ -1,6 +1,6 @@ up::[[géométrie]] title:: "divise un angle en deux" -#maths/géométrie #not-done +#s/maths/géométrie #not-done --- diff --git a/bissectrices d'un triangle.md b/bissectrices d'un triangle.md index 23b64c7d..6a6b16bd 100644 --- a/bissectrices d'un triangle.md +++ b/bissectrices d'un triangle.md @@ -3,7 +3,7 @@ alias: [ "bissectrices" ] --- up:: [[bissectrice]] title:: "sécantes en le centre du [[cercle inscrit à un triangle]]" -#maths/géométrie +#s/maths/géométrie --- diff --git a/bonnes pratiques javascript.md b/bonnes pratiques javascript.md index e9331673..16ed315f 100644 --- a/bonnes pratiques javascript.md +++ b/bonnes pratiques javascript.md @@ -1,5 +1,5 @@ up:: [[javascript]] -#informatique +#s/informatique - opérateur ternaire sur une seule ligne diff --git a/boule fermée.md b/boule fermée.md index 4f7526d4..ebac81bb 100644 --- a/boule fermée.md +++ b/boule fermée.md @@ -1,8 +1,10 @@ -up:: [[boule]] -sibling:: [[boule ouverte]] -#maths/algèbre +--- +up: "[[boule]]" +sibling: "[[boule ouverte]]" +tags: "#s/maths/algèbre" +--- -> [!definition] boule fermée +> [!definition] [[boule fermée]] > Soit $(X, d)$ un [[espace métrique]] > On appelle **boule ouverte** de centre $x_0 \in X$ et de rayon $r \geq 0$ la partie $\overline{B}(x_0, r)$ de $X$ définie par : > $\overline{B}(x_0, r) = \{ x \in X \mid d(x_0, x) \leq r \}$ @@ -25,6 +27,7 @@ sibling:: [[boule ouverte]] > > $\begin{cases} d(x_0, l) \leq r\\ l \in X \end{cases}$ > > Donc, $l \in \overline{B}(x_0, r)$ + # Exemples - = Voir [[Exemples de boules]] diff --git a/boule ouverte.md b/boule ouverte.md index 370a169c..83bb9e3c 100644 --- a/boule ouverte.md +++ b/boule ouverte.md @@ -1,8 +1,10 @@ -up:: [[boule]] -sibling:: [[boule fermée]] -#maths/algèbre +--- +up: "[[boule]]" +sibling: "[[boule fermée]]" +tags: "#s/maths/algèbre" +--- -> [!definition] boule ouverte +> [!definition] [[boule ouverte]] > Soit $(X, d)$ un [[espace métrique]], on appelle **boule ouverte** de centre $x_0 \in X$ et de rayon $r \geq 0$ la partie $B(x_0, r)$ de $X$ définie par : > $B(x_0, r) = \{ x \in X \mid d(x_0, x) < r \}$ ^definition @@ -32,7 +34,12 @@ sibling:: [[boule fermée]] > > On a bien montré $B(x, r_{x}) \subset B(x_0, r)$ > -> [!proposition]+ Proposition +> [!proposition]+ Diamètre +> Soit $(X, d)$ un [[espace métrique]] +> Le [[diamètre]] d'une boule ouverte respecte : +> $\mathop{Diam}(B(p, r)) \leq 2r$ + +> [!proposition]+ conditions pour l'inclusion > Soit $(X, d)$ un [[espace métrique]] > Soient $x_0, y_0 \in X$ et $r, r' \in \mathbb{R}^{+*}$ > On a : diff --git a/boule.md b/boule.md index 1425b90b..86c42faa 100644 --- a/boule.md +++ b/boule.md @@ -1,6 +1,12 @@ -up:: [[espace métrique]], [[distance]] -down:: [[boule fermée]], [[boule ouverte]] -#maths/algèbre +--- +up: + - "[[partie d'un espace métrique]]" +down: + - "[[boule fermée]]" + - "[[boule ouverte]]" +tags: + - "#s/maths/algèbre" +--- ![[boule fermée#^definition]] ![[boule ouverte#^definition]] diff --git a/bourgeoisie.md b/bourgeoisie.md index 96b56f3d..6be24a64 100644 --- a/bourgeoisie.md +++ b/bourgeoisie.md @@ -3,7 +3,7 @@ alias: [ "bourgeois" ] --- up:: [[classes sociales]] title:: "ceux qui ne vendent pas leur force de travail, mais qui manipulent directement des flux financiers" -#politique +#s/politique - la [[classes sociales|classe sociale]] dominante actuellement - c'est à eux que profite le [[capitalisme|système capitaliste]] diff --git a/boxed.md b/boxed.md index 3974f463..1d3abfbb 100644 --- a/boxed.md +++ b/boxed.md @@ -1,6 +1,6 @@ up::[[unix redirection de flux]] title::"entourer du texte avec différents types de boîtes ([[unix redirection de flux]])" -#informatique +#s/informatique --- Utilitaire [[ligne de commande]] diff --git a/brachistochrone.md b/brachistochrone.md index 35062b69..26a393a5 100644 --- a/brachistochrone.md +++ b/brachistochrone.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse --- Une courbe _brachistochrone_ est une courbe qui permet à une bille d'arriver le plus vite possible d'un point $A$ à un point $B$ sur cette courbe (en roulant sur cette même courbe) diff --git a/branche parabolique.md b/branche parabolique.md index 1f02039c..78b3d416 100644 --- a/branche parabolique.md +++ b/branche parabolique.md @@ -1,4 +1,4 @@ up::[[asymptote]] -#maths/analyse #not-done +#s/maths/analyse #not-done --- diff --git a/bus de données.md b/bus de données.md index b8587f5c..973e9587 100644 --- a/bus de données.md +++ b/bus de données.md @@ -3,7 +3,7 @@ alias: "bus" --- up::[[architecture des ordinateurs]] title::"tous les composants échangent des données via des bus" -#informatique +#s/informatique --- diff --git a/caffeinate.md b/caffeinate.md index f7e9cc37..5922294a 100644 --- a/caffeinate.md +++ b/caffeinate.md @@ -3,7 +3,7 @@ alias: [ "commande pour empêcher le système de se mettre en veille", "prevent --- up::[[terminal commandes]] title:: "empêcher le système de se mettre en veille (Macos)" -#informatique +#s/informatique --- diff --git a/calcul booléen.md b/calcul booléen.md index 26747dc0..c1dc72da 100644 --- a/calcul booléen.md +++ b/calcul booléen.md @@ -2,7 +2,7 @@ alias: "algèbre de Boole" --- author::[[George Boole]] -#maths/logique +#s/maths/logique --- diff --git a/calcul conjonctif variable libre.md b/calcul conjonctif variable libre.md index 2142b924..ab3ba35b 100644 --- a/calcul conjonctif variable libre.md +++ b/calcul conjonctif variable libre.md @@ -1,5 +1,5 @@ up::[[calcul conjonctif]] -#informatique +#s/informatique --- diff --git a/calcul conjonctif.md b/calcul conjonctif.md index 338a62d6..1386683e 100644 --- a/calcul conjonctif.md +++ b/calcul conjonctif.md @@ -1,5 +1,5 @@ up::[[requête]] -#informatique +#s/informatique --- diff --git a/calculer les vecteurs propres d'une application.md b/calculer les vecteurs propres d'une application.md index 10f73047..f7962f8e 100644 --- a/calculer les vecteurs propres d'une application.md +++ b/calculer les vecteurs propres d'une application.md @@ -1,5 +1,5 @@ up::[[vecteur propre|vecteur propre]], [[valeur propre d'une application linéaire|valeur propre]] -#maths/algèbre +#s/maths/algèbre --- Soit $E$ un $\mathbf{K}$-[[espace vectoriel]] diff --git a/calculer une asymptote.md b/calculer une asymptote.md index ecec9968..c810850e 100644 --- a/calculer une asymptote.md +++ b/calculer une asymptote.md @@ -1,6 +1,6 @@ --- up: [[asymptote]] -tags: [maths/analyse] +tags: [s/maths/analyse] mindmap-plugin: basic sr-due: 2022-10-10 sr-interval: 3 diff --git a/calcurse - calendrier en ligne de commande.md b/calcurse - calendrier en ligne de commande.md index affc0f85..ccece62e 100644 --- a/calcurse - calendrier en ligne de commande.md +++ b/calcurse - calendrier en ligne de commande.md @@ -1,6 +1,6 @@ up:: [[terminal commandes]] title:: "calendrier en ligne de commande" -#informatique +#s/informatique --- diff --git a/canevas de cohérence pédagogique.md b/canevas de cohérence pédagogique.md index dbf43f7f..3140f44d 100644 --- a/canevas de cohérence pédagogique.md +++ b/canevas de cohérence pédagogique.md @@ -6,7 +6,7 @@ excalidraw-open-md: true --- up:: [[pédagogie]] link:: https://designpedagogique.info/wp-content/uploads/2023/03/Design_pedagogique_canevas.pdf -#fac +#s/fac diff --git a/capital (bien).md b/capital (bien).md index ed4eeb71..9c898bac 100644 --- a/capital (bien).md +++ b/capital (bien).md @@ -4,7 +4,7 @@ aliases: --- up:: [[capitalisme]], [[bien]] sibling:: [[capital]] -#politique #science/sociologie +#s/politique #s/science/sociologie > [!definition] capital > Le capital est un bien plongé dans les rappports sociaux du capitalisme. diff --git a/capital culturel.md b/capital culturel.md index dff12183..0ad27cc3 100644 --- a/capital culturel.md +++ b/capital culturel.md @@ -1,5 +1,5 @@ up:: [[capital]], [[sociologie]] -#science/sociologie +#s/science/sociologie - biens culturels - diplômes (sanctionnent d'un niveau culturel) diff --git a/capital.md b/capital.md index 7abb6a4e..9249012d 100644 --- a/capital.md +++ b/capital.md @@ -1,8 +1,8 @@ up:: [[capitalisme]] sibling:: [[capital (bien)]] -#politique +#s/politique up:: [[capitalisme]], [[bien]] -#politique #science/sociologie +#s/politique #s/science/sociologie source:: [[définition du capital par frédéric lordon]] diff --git a/capitalisme.md b/capitalisme.md index 492541b7..42306a18 100644 --- a/capitalisme.md +++ b/capitalisme.md @@ -5,7 +5,7 @@ aliases: --- up:: [[système politique]] opposes:: [[socialisme]] -#politique +#s/politique > [!définition] > - Droit d'accumulation illimitée ([[Frank Lepage]]) diff --git a/cardinal d'un ensemble.md b/cardinal d'un ensemble.md index 41f13958..647dc334 100644 --- a/cardinal d'un ensemble.md +++ b/cardinal d'un ensemble.md @@ -1,7 +1,7 @@ --- alias: [ "cardinal" ] --- -#maths/ensembles +#s/maths/ensembles --- diff --git a/carré d'une somme.md b/carré d'une somme.md index 4becdc2c..77b7f7ed 100644 --- a/carré d'une somme.md +++ b/carré d'une somme.md @@ -1,6 +1,6 @@ up::[[arithmétique]] title::"$\left( \sum\limits_{k=0}^{n}a_{k} \right)^{2} = \sum\limits_{i=1}^{n}\left( \sum\limits_{j=1}^{n} a_{i}\times a_{j} \right)$" -#maths/arithmétique +#s/maths/arithmétique --- $\left( \sum\limits_{k=0}^{n}a_{k} \right)^{2} = \sum\limits_{i=1}^{n}\left( \sum\limits_{j=1}^{n} a_{i}\times a_{j} \right)$ diff --git a/carte mère.md b/carte mère.md index 3523abcf..24bc8f57 100644 --- a/carte mère.md +++ b/carte mère.md @@ -1,6 +1,6 @@ up::[[architecture des ordinateurs]] title::"relie les composants entre eux et avec l'extérieur" -#informatique +#s/informatique --- diff --git a/castero.md b/castero.md index 3f3b5470..19b69ec9 100644 --- a/castero.md +++ b/castero.md @@ -3,7 +3,7 @@ alias: [ "client terminal pour les podcasts" ] --- up::[[terminal commandes]] title:: "lire des podcast depuis des feed RSS" -#informatique +#s/informatique > [!info] Installation diff --git a/cathédrale de chartres.md b/cathédrale de chartres.md index ba6da8a2..34876e73 100644 --- a/cathédrale de chartres.md +++ b/cathédrale de chartres.md @@ -1,4 +1,4 @@ -#science/histoire #art +#s/science/histoire #s/art > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/centralisateur d'une partie d'un groupe.md b/centralisateur d'une partie d'un groupe.md index 6a7ec1f0..db6ad5b3 100644 --- a/centralisateur d'une partie d'un groupe.md +++ b/centralisateur d'une partie d'un groupe.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[centralisateur d'une partie d'un groupe]] > Soit $G$ un groupe, et soit $A \subseteq G$ diff --git a/centre d'un groupe.md b/centre d'un groupe.md index 92c6e615..1fde0386 100644 --- a/centre d'un groupe.md +++ b/centre d'un groupe.md @@ -2,7 +2,7 @@ alias: "centre" --- up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[centre d'un groupe]] > Soit $G$ un groupe diff --git a/cercip astep.md b/cercip astep.md index 9f070c20..63e61673 100644 --- a/cercip astep.md +++ b/cercip astep.md @@ -3,7 +3,7 @@ date:: date-end:: description::"présentation de l'informatique à des élèves d'école primaire" compétences:: 🤝 🧑‍🏫 🗣️ 💻 -#CV #fac +#CV #s/fac --- diff --git a/cercle circonscrit à un triangle.md b/cercle circonscrit à un triangle.md index c447fee2..ac89967a 100644 --- a/cercle circonscrit à un triangle.md +++ b/cercle circonscrit à un triangle.md @@ -4,6 +4,6 @@ alias: [ "cercle circonscrit" ] up:: [[cercle]], [[triangle]] sibling:: [[cercle inscrit à un triangle]] title:: "cercle passant par tous les sommets", "centre = intersection des [[médiatrices d'un triangle|médiatrices]]" -#maths/géométrie #not-done +#s/maths/géométrie #not-done --- \ No newline at end of file diff --git a/cercle inscrit à un triangle.md b/cercle inscrit à un triangle.md index bd1c8a98..35b170eb 100644 --- a/cercle inscrit à un triangle.md +++ b/cercle inscrit à un triangle.md @@ -1,6 +1,6 @@ up:: [[cercle]], [[triangle]], [[bissectrices d'un triangle]] sibling:: [[cercle circonscrit à un triangle]] title:: "cercle tangent à tous les côtés", "centre = intersection des [[bissectrices d'un triangle|bissectrices]]" -#maths/géométrie #not-done +#s/maths/géométrie #not-done --- \ No newline at end of file diff --git a/cercle.md b/cercle.md index 1d0698fa..28d34463 100644 --- a/cercle.md +++ b/cercle.md @@ -1,5 +1,5 @@ up:: [[géométrie]] -#maths/géométrie +#s/maths/géométrie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/changement de base d'une forme bilinéaire.md b/changement de base d'une forme bilinéaire.md index df9ee4be..c58e2b94 100644 --- a/changement de base d'une forme bilinéaire.md +++ b/changement de base d'une forme bilinéaire.md @@ -1,6 +1,6 @@ up:: [[forme bilinéaire]] title:: "$b$ une [[forme bilinéaire]] de [[matrice d'une forme bilinéaire|matrice]] $[b]_{\mathcal{O}}$ dans la base $\mathcal{O}$", "$[b]_{\mathcal{P}} = \,^T[\mathcal{P}]_{\mathcal{O}}^{-1} \times [b]_{\mathcal{O}} \times [\mathcal{P}]_{\mathcal{O}}^{-1}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/changement de base.md b/changement de base.md index 32f4ccc1..4110a94a 100644 --- a/changement de base.md +++ b/changement de base.md @@ -1,5 +1,5 @@ up:: [[base d'un espace vectoriel]] -#maths/algèbre +#s/maths/algèbre --- diff --git a/chanson le codeur (parodie du chanteur).md b/chanson le codeur (parodie du chanteur).md index 8b8f1d56..09e0275c 100644 --- a/chanson le codeur (parodie du chanteur).md +++ b/chanson le codeur (parodie du chanteur).md @@ -1,6 +1,6 @@ up:: [[chansons]] title:: "parodie de la chanson _le chanteur_ de Ballavoine" -#art/musique +#s/art/musique --- diff --git a/chanson quand on a plus rien a perdre.md b/chanson quand on a plus rien a perdre.md index 991e987c..623679c2 100644 --- a/chanson quand on a plus rien a perdre.md +++ b/chanson quand on a plus rien a perdre.md @@ -1,7 +1,7 @@ author:: [[michel berger]], [[daniel balavoine]] link:: https://www.youtube.com/watch?v=cGfsPsPpEZk date-seen:: 2023-01-20 -#art/musique +#s/art/musique --- diff --git a/chanson tous les cris les S.O.S.md b/chanson tous les cris les S.O.S.md index f07830e3..bbbb1116 100644 --- a/chanson tous les cris les S.O.S.md +++ b/chanson tous les cris les S.O.S.md @@ -1,7 +1,7 @@ up:: [[chansons]] author:: [[daniel balavoine]] title:: "Tous les cris les S.O.S" -#art/musique +#s/art/musique --- diff --git a/chansons.md b/chansons.md index 43c2c7b1..f932251f 100644 --- a/chansons.md +++ b/chansons.md @@ -1,6 +1,6 @@ up::[[morceau de musique]] title:: -#art/musique +#s/art/musique --- diff --git a/cheat sheet fonctions de plusieurs variables.md b/cheat sheet fonctions de plusieurs variables.md index f37467b9..3de53946 100644 --- a/cheat sheet fonctions de plusieurs variables.md +++ b/cheat sheet fonctions de plusieurs variables.md @@ -1,5 +1,5 @@ up:: [[cheat sheet]] -#maths +#s/maths ![[gradient d'une fonction#^definition|gradient]] diff --git a/cheat sheet génie log.md b/cheat sheet génie log.md index 3100afc5..fed189aa 100644 --- a/cheat sheet génie log.md +++ b/cheat sheet génie log.md @@ -1,5 +1,5 @@ up:: [[cheat sheet]] -#PM +#s/PM # chapitre 6 diff --git a/cheat sheet.md b/cheat sheet.md index 965cc264..44ebc853 100644 --- a/cheat sheet.md +++ b/cheat sheet.md @@ -1,4 +1,4 @@ -#MOC +#t/MOC > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/cheatsheet topologie.md b/cheatsheet topologie.md new file mode 100644 index 00000000..86cd04ff --- /dev/null +++ b/cheatsheet topologie.md @@ -0,0 +1,22 @@ +--- +aliases: +up: + - "[[cheat sheet]]" +tags: + - s/maths/topologie +--- +Soit $(X, d)$ un [[espace métrique]] +- [[partie ouverte d'un espace métrique|ouverts]] + - def $O \subset X$ est ouvert ssi $\forall x \in O,\quad \exists r>0,\quad B(x, r) \subset O$ + - I tout point possède un voisinage dans O (voisinage = boule ouverte) + - $\emptyset$ et $X$ sont des ouverts + - Une réunion d'ouverts de $X$ est un ouvert de $X$ + - Une intersection **finie** d'ouverts de $X$ est un ouvert de $X$ +- [[partie fermée d'un espace métrique|fermés]] + - def $F \subset X$ est fermé ssi $\forall (x_{n}) \in X^{\mathbb{N}},\quad \lim\limits_{ n \to \infty }x_{n} = \ell \in \mathbb{R} \implies$ + - $\emptyset$ et $X$ sont des fermés + - Une intersection de fermés de $X$ est un fermé de $X$ + - Une réunions **finie** de fermés de $X$ est un fermé de $X$ + - def [[adhérence d'un espace métrique|adhérence]] : +Soit $A \subset X$ +- $A \text{ ouvert } \iff X \setminus A \text{ fermé}$ diff --git a/chiffrage par masque jetable.md b/chiffrage par masque jetable.md index f407dab9..ecba3bd6 100644 --- a/chiffrage par masque jetable.md +++ b/chiffrage par masque jetable.md @@ -1,6 +1,6 @@ up:: [[cryptographie]] title:: -#informatique +#s/informatique --- diff --git a/chimie.md b/chimie.md index 1a78f6c0..148d441b 100644 --- a/chimie.md +++ b/chimie.md @@ -1,5 +1,5 @@ up:: [[science]] -#science +#s/science > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/chipset.md b/chipset.md index ddc8f9b9..fac0f32c 100644 --- a/chipset.md +++ b/chipset.md @@ -1,5 +1,5 @@ up::[[carte mère]] -#informatique +#s/informatique --- diff --git a/citations.md b/citations.md index f90ccd3f..50511f31 100644 --- a/citations.md +++ b/citations.md @@ -6,7 +6,7 @@ title:: "Liste de toutes les citations" > [!smallquery]+ Citations par auteur > ```dataview > LIST rows.file.link -> FROM #citation AND -"templates" +> FROM #t/citation AND -"templates" > FLATTEN author > GROUP BY author+" " > SORT author @@ -15,7 +15,7 @@ title:: "Liste de toutes les citations" > [!query]- Nombre de citations par auteur > ```dataview > LIST WITHOUT ID length(rows) + " citations de " + key -> FROM #citation AND -"templates" +> FROM #t/citation AND -"templates" > GROUP BY author > SORT length(rows) DESC > ``` @@ -23,7 +23,7 @@ title:: "Liste de toutes les citations" > [!query]- Nombre de citations par source > ```dataview > LIST WITHOUT ID length(rows) + " citations de \"" + key + "\"" -> FROM #citation AND -"templates" +> FROM #t/citation AND -"templates" > GROUP BY source > SORT length(rows) DESC > ``` diff --git a/citoyen de première classe.md b/citoyen de première classe.md index c6949f15..2f7a8cfd 100644 --- a/citoyen de première classe.md +++ b/citoyen de première classe.md @@ -5,7 +5,7 @@ aliases: - valeur de première classe --- up:: [[programmation]] -#informatique +#s/informatique > [!definition] objet de première classe > Un citoyen (ou entité, ou objet, ou valeur) de première classe est une entité qui peut être utilisée *sans restrictions*, c'est-à-dire qu'elle peut être traîtée comme les autres objets ou valeurs du langage. diff --git a/clamav.md b/clamav.md index b315a8da..6a1312cd 100644 --- a/clamav.md +++ b/clamav.md @@ -1,5 +1,5 @@ up::[[unix redirection de flux]] -#informatique/unix +#s/informatique/unix --- utilitaire [[unix redirection de flux]] diff --git a/classe d'une fonction.md b/classe d'une fonction.md index 9365d28f..407284a2 100644 --- a/classe d'une fonction.md +++ b/classe d'une fonction.md @@ -2,7 +2,7 @@ alias: "classe" --- up::[[dérivées successives]] -#maths/analyse +#s/maths/analyse --- voir [[dérivées successives]]. diff --git a/classe d'équivalence.md b/classe d'équivalence.md index 6e83ceb8..b80d3c81 100644 --- a/classe d'équivalence.md +++ b/classe d'équivalence.md @@ -1,5 +1,5 @@ up::[[relation d'équivalence]] -#maths/algèbre +#s/maths/algèbre --- Soit un ensemble $E$ et une [[relation d'équivalence]] $\mathscr R$ diff --git a/classe héréditaire.md b/classe héréditaire.md index bb671f01..f1e0f8e7 100644 --- a/classe héréditaire.md +++ b/classe héréditaire.md @@ -2,7 +2,7 @@ alias: ["ensemble héréditaire", "héréditaire"] --- up::[[axiomes Zemerlo Frankel]] -#maths +#s/maths --- Un classe (un ensemble) est _héréditaire_ si elle comprend $\emptyset$ et le [[ZF successeur|successeur]] de chacun de ses éléments. diff --git a/classe moyenne.md b/classe moyenne.md index b537d2da..7d2568e9 100644 --- a/classe moyenne.md +++ b/classe moyenne.md @@ -1,6 +1,6 @@ up:: [[classes sociales]] title:: "" -#politique #science/sociologie +#s/politique #s/science/sociologie --- diff --git a/classes de conjuguaison du groupe symétrique.md b/classes de conjuguaison du groupe symétrique.md index 24922b18..42c33950 100644 --- a/classes de conjuguaison du groupe symétrique.md +++ b/classes de conjuguaison du groupe symétrique.md @@ -1,5 +1,5 @@ up:: [[action par conjugaison]], [[groupe symétrique]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Les classes de conjuguaison du groupe symétrique sont les classes : diff --git a/classes de réseau.md b/classes de réseau.md index dc7554aa..5f865fb0 100644 --- a/classes de réseau.md +++ b/classes de réseau.md @@ -1,6 +1,6 @@ up::[[réseau informatique]] title::"différents types de réseau" -#informatique +#s/informatique --- diff --git a/classes sociales.héritiers.md b/classes sociales.héritiers.md index 497d9a54..e69ece15 100644 --- a/classes sociales.héritiers.md +++ b/classes sociales.héritiers.md @@ -3,7 +3,7 @@ alias: [ "héritiers", "bourgeois héritiers", "grands héritiers" ] --- up:: [[classes sociales]], [[économie.héritage]] -#politique #science/économie +#s/politique #s/science/économie > [!definition] héritiers > _bourgeois héritiers_, *grands héritiers* ou *héritiers*. diff --git a/classes sociales.md b/classes sociales.md index 3a2d6c65..91c38d0d 100644 --- a/classes sociales.md +++ b/classes sociales.md @@ -5,7 +5,7 @@ aliases: --- up:: [[politique]] title:: -#politique +#s/politique --- diff --git a/classifier et diviser les personnes.md b/classifier et diviser les personnes.md index d79b5b78..c12b492a 100644 --- a/classifier et diviser les personnes.md +++ b/classifier et diviser les personnes.md @@ -2,7 +2,7 @@ alias: [ "classifier les personnes" ] --- up:: [[étapes d'un génocide]] -#science/histoire #philosphie #science/zetetique +#s/science/histoire #s/philosphie #s/science/zetetique Classifier les gens, par *race*, par croyances, physique... diff --git a/climat.md b/climat.md index bf31092b..d2899a5e 100644 --- a/climat.md +++ b/climat.md @@ -1,7 +1,7 @@ up:: [[écologie]] sibling:: [[biodiversité]] title:: "écologie et changement climatique" -#science/écologie/climat +#s/science/écologie/climat --- diff --git a/clojure.md b/clojure.md index 428af556..aa86e3b6 100644 --- a/clojure.md +++ b/clojure.md @@ -1,5 +1,5 @@ up:: [[langage de programmation]] title:: "dialecte de [[LISP]]" -#informatique +#s/informatique --- diff --git a/club informatique (coding gouters).md b/club informatique (coding gouters).md index db22f947..78d7775c 100644 --- a/club informatique (coding gouters).md +++ b/club informatique (coding gouters).md @@ -3,7 +3,7 @@ date::2017-01-14 date-end::2019-06-22 description::"club d'informatique au FabLab de Blois" compétences:: 💻 -#CV #informatique +#CV #s/informatique --- Club d'informatique organisé par l'association "Loir-et-cher Tech", dans le [[FabLab]] de Blois. diff --git a/clôture par composition des requêtes.md b/clôture par composition des requêtes.md index be95bbb3..2d2e3325 100644 --- a/clôture par composition des requêtes.md +++ b/clôture par composition des requêtes.md @@ -4,7 +4,7 @@ alias: "compositionalité des requêtes" up::[[propriétés des requêtes conjonctives]] title::"toute instance est close par l'application de requêtes" description::"le résultat d'une requête est une nouvelle BDD sur laquelle on peut aussi faire des requêtes" -#informatique +#s/informatique --- diff --git a/cnil google analytics.md b/cnil google analytics.md index 1ba392de..0e422f02 100644 --- a/cnil google analytics.md +++ b/cnil google analytics.md @@ -1,4 +1,4 @@ -#conférence #informatique +#t/conférence #s/informatique --- - Présenté par Frank Bataille diff --git a/coconut application partielle de fonction.md b/coconut application partielle de fonction.md index e2fc63e1..a58f52b5 100644 --- a/coconut application partielle de fonction.md +++ b/coconut application partielle de fonction.md @@ -3,7 +3,7 @@ aliases: - coconut application partielle --- up:: [[coconut composer des fonctions]] -#informatique +#s/informatique Le `$` permet de faire une application partielle de fonction. diff --git a/coconut chaîner des fonctions.md b/coconut chaîner des fonctions.md index ff6aa322..e2b7f296 100644 --- a/coconut chaîner des fonctions.md +++ b/coconut chaîner des fonctions.md @@ -1,5 +1,5 @@ up:: [[coconut composer des fonctions]] -#informatique +#s/informatique Calcul de $\pi$ avec $\sum\limits_{k=1}^{n} \left(\frac{1}{k^{2}}\right) = \dfrac{\pi^{2}}{6}$, soit $\pi = \sqrt{ 6\times\sum\limits_{k=1}^{n} \left(\frac{1}{k^{2}}\right)}$ diff --git a/coconut composer des fonctions.md b/coconut composer des fonctions.md index e4eeb8ea..51bc6b22 100644 --- a/coconut composer des fonctions.md +++ b/coconut composer des fonctions.md @@ -1,5 +1,5 @@ up:: [[coconut-lang]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/coconut composition de fonction.md b/coconut composition de fonction.md index b842b014..02fa4acf 100644 --- a/coconut composition de fonction.md +++ b/coconut composition de fonction.md @@ -5,7 +5,7 @@ aliases: - coconut .. --- up:: [[coconut composer des fonctions]] -#informatique +#s/informatique la fonction `square_plus_1` correspond à `x -> 1 + x**2` diff --git a/coconut fonctions lambda.md b/coconut fonctions lambda.md index 264bb106..ca935e1a 100644 --- a/coconut fonctions lambda.md +++ b/coconut fonctions lambda.md @@ -1,5 +1,5 @@ up:: [[coconut-lang]] -#informatique +#s/informatique La syntaxe des fonctions lambda est améliorée ```python diff --git a/coconut gestion des itérables.md b/coconut gestion des itérables.md index 8659c699..6fe6e9cd 100644 --- a/coconut gestion des itérables.md +++ b/coconut gestion des itérables.md @@ -1,5 +1,5 @@ up:: [[coconut-lang]] -#informatique +#s/informatique On peut utiliser l'opérateur `::` (cons) pour chaîner des itérables diff --git a/coconut-lang.md b/coconut-lang.md index 9961a980..17326178 100644 --- a/coconut-lang.md +++ b/coconut-lang.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"surcouche de python plus fonctionnelle. Pratique pour tester des choses rapidement." -#informatique +#s/informatique --- Langage de programmation : surcouche de python plus fonctionnelle diff --git a/codage NRZ.md b/codage NRZ.md index 9d00e0e7..3c8da5a1 100644 --- a/codage NRZ.md +++ b/codage NRZ.md @@ -1,5 +1,5 @@ up::[[couche physique]] -#informatique +#s/informatique --- diff --git a/codage binaire des nombres réels en virgule fixe.md b/codage binaire des nombres réels en virgule fixe.md index 81b2c3d1..f5074aeb 100644 --- a/codage binaire des nombres réels en virgule fixe.md +++ b/codage binaire des nombres réels en virgule fixe.md @@ -1,6 +1,6 @@ up::[[représentation des nombres en binaire]] title::"partie entière et partie décimale" -#informatique +#s/informatique --- diff --git a/codage binaire des nombres réels en virgule flottante.md b/codage binaire des nombres réels en virgule flottante.md index 4c25c7ad..97b8d6f3 100644 --- a/codage binaire des nombres réels en virgule flottante.md +++ b/codage binaire des nombres réels en virgule flottante.md @@ -1,6 +1,6 @@ up:: [[représentation des nombres en binaire]] title::"IEEE 754 - $(-1)^{\text{signe}} + \text{mantisse}\times 2^{\text{exposant}}$" -#informatique +#s/informatique --- diff --git a/codage de caractères.md b/codage de caractères.md index 43a53bbe..1adfcea3 100644 --- a/codage de caractères.md +++ b/codage de caractères.md @@ -1,4 +1,4 @@ up::[[encodage]] -#informatique#not-done +#s/informatique#not-done --- diff --git a/code morse.md b/code morse.md index 15a3eac7..b7360ae0 100644 --- a/code morse.md +++ b/code morse.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique --- Le _code Morse international_, l'_alphabet Morse international_ : diff --git a/coefficient directeur.md b/coefficient directeur.md index 17a27fac..97627382 100644 --- a/coefficient directeur.md +++ b/coefficient directeur.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse --- Soit $f$ une [[application affine]] (dont la courbe représentative $\mathscr C_f$ est une droite non verticale). diff --git a/coefficients de Bézout.md b/coefficients de Bézout.md index 65aba94a..ce3af643 100644 --- a/coefficients de Bézout.md +++ b/coefficients de Bézout.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/coefficients de fourier.md b/coefficients de fourier.md index 7e49c885..155e5d43 100644 --- a/coefficients de fourier.md +++ b/coefficients de fourier.md @@ -1,6 +1,6 @@ up:: [[série de Fourier]] title:: "Suites $(a_{n})$ et $(b_{n})$", "dans $\sum\limits_{n} a_{n}\cos(nx) + b_{n}\sin(nx)$" -#maths/analyse +#s/maths/analyse --- diff --git a/comatrice.md b/comatrice.md index 52360a23..07fd282c 100644 --- a/comatrice.md +++ b/comatrice.md @@ -1,5 +1,5 @@ up::[[matrice]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[comatrice]] > Soit $A$ une matrice de taille $n$ diff --git a/combinaison linéaire de deux séries convergentes.md b/combinaison linéaire de deux séries convergentes.md index d159ba0d..9f42645f 100644 --- a/combinaison linéaire de deux séries convergentes.md +++ b/combinaison linéaire de deux séries convergentes.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "Si $\sum\limits u_{n}$ et $\sum\limits v_{n}$ convergent", "alors $\sum\limits (\lambda u_{n} + v_{n})$ converge" -#maths/analyse +#s/maths/analyse --- diff --git a/combinaison linéaire.md b/combinaison linéaire.md index 88ca23ef..be12126f 100644 --- a/combinaison linéaire.md +++ b/combinaison linéaire.md @@ -2,7 +2,7 @@ alias: "combinaisons linéaires" --- sibling:: [[application linéaire]] -#maths/algèbre +#s/maths/algèbre --- Une _combinaison linéaire_ est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en sommant le tout. diff --git a/combinaisons avec répétitions.md b/combinaisons avec répétitions.md index 9170f47f..a5cb6c65 100644 --- a/combinaisons avec répétitions.md +++ b/combinaisons avec répétitions.md @@ -1,5 +1,5 @@ up::[[dénombrement]] -#maths/dénombrement +#s/maths/dénombrement --- le nombre de façons de prendre (avec répétitions possibles) $p$ éléments dans un ensemble de $n$ éléments se note : diff --git a/combinateur.md b/combinateur.md index 21ec7a08..dfdd45b6 100644 --- a/combinateur.md +++ b/combinateur.md @@ -1,5 +1,5 @@ up:: [[programmation]] -#informatique #maths/algèbre +#s/informatique #s/maths/algèbre > [!definition] combinateur > diff --git a/command line postgresql.md b/command line postgresql.md index 2bfe7b55..7ca9de7b 100644 --- a/command line postgresql.md +++ b/command line postgresql.md @@ -1,7 +1,7 @@ up:: [[terminal commandes]] title:: "comment lancer postgresql" usage:: "`psql postgresql`" -#informatique +#s/informatique --- diff --git a/comment approcher les groupes en magie.md b/comment approcher les groupes en magie.md index 321c9bdf..603aaa98 100644 --- a/comment approcher les groupes en magie.md +++ b/comment approcher les groupes en magie.md @@ -1,5 +1,5 @@ up:: [[magie]] -#art/magie +#s/art/magie diff --git a/comment progresser en L2 (boris).md b/comment progresser en L2 (boris).md index 2a4f5cf7..e0f21f36 100644 --- a/comment progresser en L2 (boris).md +++ b/comment progresser en L2 (boris).md @@ -1,5 +1,5 @@ up::[[notes 2022-09-01]], [[apprentissage]] -#fac #PKM +#s/fac #PKM --- diff --git a/commission de vie étudiante et de campus.md b/commission de vie étudiante et de campus.md index 341123b2..9c6b5e70 100644 --- a/commission de vie étudiante et de campus.md +++ b/commission de vie étudiante et de campus.md @@ -3,4 +3,4 @@ aliases: - CVEC --- up:: [[Conseils de l'université de Tours]] -#fac +#s/fac diff --git a/communication entre les EJB.md b/communication entre les EJB.md index 97a88b31..435ac111 100644 --- a/communication entre les EJB.md +++ b/communication entre les EJB.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[Enterprise Java Beans|EJB]] -#informatique/langage/java +#s/informatique/langage/java `$= "![[" + dv.current().file.name + ".svg|900]]" ` diff --git a/communisme.md b/communisme.md index f354ea55..9c696f30 100644 --- a/communisme.md +++ b/communisme.md @@ -3,7 +3,7 @@ aliases: - communiste --- up:: [[système politique]] -#politique +#s/politique > [!definition] communisme > - société sans [[politique.état|état]] et sans [[classes sociales|classes]] diff --git a/commutateur d'un groupe.md b/commutateur d'un groupe.md index e79742b5..53d07aeb 100644 --- a/commutateur d'un groupe.md +++ b/commutateur d'un groupe.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[commutateur d'un groupe]] > Soit $G$ un [[groupe]] et soient $g, h \in G$ diff --git a/commutativité.md b/commutativité.md index 8bdea14f..cb7dc529 100644 --- a/commutativité.md +++ b/commutativité.md @@ -6,7 +6,7 @@ alias: ["commutative", "commutatif"] --- up::[[structure algébrique]] title::"$\forall (a, b) \in \mathbf{E}^{2},\quad a*b = b*a$" -#maths/algèbre +#s/maths/algèbre --- Soit $*$ une [[loi de composition interne]] sur $E$. diff --git a/comparaisons entre intégrales.md b/comparaisons entre intégrales.md index 6182047e..5cdf4793 100644 --- a/comparaisons entre intégrales.md +++ b/comparaisons entre intégrales.md @@ -1,5 +1,5 @@ up:: [[intégrale de lebesgue]] -#maths/intégration +#s/maths/intégration > [!proposition]+ positivité > Sur l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/complémentaire d'un ensemble.md b/complémentaire d'un ensemble.md index 698e1ce8..911a680c 100644 --- a/complémentaire d'un ensemble.md +++ b/complémentaire d'un ensemble.md @@ -3,7 +3,7 @@ aliases: - complémentaire --- up::[[ensemble]] -#maths/ensembles +#s/maths/ensembles --- Soit $E$ et $\Omega$ deux ensembles tels que $E\subset\Omega$, on note $\complement_\Omega^E$ le _complémentaire de $E$ dans $\Omega$_ l'ensemble des éléments contenus dans $\Omega$ mais pas dans $E$. diff --git a/complétude syntaxique.md b/complétude syntaxique.md index bb177678..d8af2791 100644 --- a/complétude syntaxique.md +++ b/complétude syntaxique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- Ou _complétude forte_. diff --git a/complétude sémantique.md b/complétude sémantique.md index c199d08b..d55b7257 100644 --- a/complétude sémantique.md +++ b/complétude sémantique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- Ou _complétude faible_ diff --git a/composition de fonctions.md b/composition de fonctions.md index 077a92b6..d2c65669 100644 --- a/composition de fonctions.md +++ b/composition de fonctions.md @@ -2,7 +2,7 @@ alias: [ "composée", "composition" ] --- up::[[fonction]] -#maths/analyse +#s/maths/analyse --- diff --git a/composition de permutations.md b/composition de permutations.md index 7b0cf286..ba37310b 100644 --- a/composition de permutations.md +++ b/composition de permutations.md @@ -2,7 +2,7 @@ alias: "composition" --- up::[[permutation]] -#maths/algèbre +#s/maths/algèbre --- Soient $\sigma$ et $\sigma'$ deux [[permutation|permutations]]. diff --git a/composée d'une forme bilinéaire avec une application linéaire.md b/composée d'une forme bilinéaire avec une application linéaire.md index 2ac8dd44..8b49511d 100644 --- a/composée d'une forme bilinéaire avec une application linéaire.md +++ b/composée d'une forme bilinéaire avec une application linéaire.md @@ -1,6 +1,6 @@ up:: [[forme bilinéaire]] title:: "$b(u, Av) = b(\,^T\!Au, v)$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/compétence vs qualification.md b/compétence vs qualification.md index 1f95561b..0f1058d2 100644 --- a/compétence vs qualification.md +++ b/compétence vs qualification.md @@ -4,7 +4,7 @@ aliases: --- up:: [[compétence]], [[qualification]] source:: [[conférence gesticulée.Inculture 1]] -#apprendre #politique +#s/apprendre #s/politique > La qualification permet de définir un poste de travail en termes de missions, tandis que la compétence permet de définir la capacité d'un salarié à s'adapter à une situation professionnelle. [Maxicours](https://www.maxicours.com/se/cours/les-conditions-de-travail-les-qualifications-et-les-competences/#:~:text=La%20qualification%20permet%20de%20d%C3%A9finir,adapter%20%C3%A0%20une%20situation%20professionnelle) diff --git a/compétence.md b/compétence.md index ef98d029..553f9493 100644 --- a/compétence.md +++ b/compétence.md @@ -1,6 +1,6 @@ up:: [[travail]] sibling:: [[qualification]] -#science/sociologie +#s/science/sociologie > [!definition] Compétence > Capacité à s'adapter dans une situation (professionnelle) (dans une hiérarchie), **savoir-être**, adaptabilité. diff --git a/conception des bases de données.md b/conception des bases de données.md index 179cc9d5..d7cbdb1e 100644 --- a/conception des bases de données.md +++ b/conception des bases de données.md @@ -1,6 +1,6 @@ up:: [[Construction d'une BD]] title:: "comment concevoir une BDD efficace" -#informatique +#s/informatique --- diff --git a/concepts des bases de données.md b/concepts des bases de données.md index 21ae4186..55ec4d4c 100644 --- a/concepts des bases de données.md +++ b/concepts des bases de données.md @@ -1,5 +1,5 @@ up:: [[base de données]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/concours prologin.md b/concours prologin.md index ef3e21ff..94106649 100644 --- a/concours prologin.md +++ b/concours prologin.md @@ -2,7 +2,7 @@ up::[[CV]] date::2020-02-09 description::"jusqu'au 2ème tour régional, à Angers" compétences:: 💻 -#CV #informatique +#CV #s/informatique --- Premier tour en ligne, qualifié pour le deuxième tours à Angers. diff --git a/concurrence vs parallélisme.md b/concurrence vs parallélisme.md index e07784c7..9d7aebc2 100644 --- a/concurrence vs parallélisme.md +++ b/concurrence vs parallélisme.md @@ -1,5 +1,5 @@ up:: [[paradigme programmation concurrente]], [[parallélisme]] -#informatique +#s/informatique La concurrence et le parallélisme sont indépendants - Le parallélisme à attrait au hardware : parallélisme = exécution simultanée diff --git a/conf introduction à obsidian.md b/conf introduction à obsidian.md index 330560df..103cfe6d 100644 --- a/conf introduction à obsidian.md +++ b/conf introduction à obsidian.md @@ -1,4 +1,4 @@ -#obsidian #conférence +#s/obsidian #t/conférence --- diff --git a/conférence gesticulée.md b/conférence gesticulée.md index cb8dad41..0ea25cdd 100644 --- a/conférence gesticulée.md +++ b/conférence gesticulée.md @@ -1,6 +1,6 @@ up:: [[éducation populaire]], [[culture]] author:: [[Frank Lepage]] -#politique #apprendre +#s/politique #s/apprendre --- diff --git a/conférence jeu de la vie nuit des maths.md b/conférence jeu de la vie nuit des maths.md index 862b3fc1..9c5c4883 100644 --- a/conférence jeu de la vie nuit des maths.md +++ b/conférence jeu de la vie nuit des maths.md @@ -3,7 +3,7 @@ date::2020-07-03 link::[nuit des maths](http://www.nuitdesmaths.org/editions-precedentes/edition-2020/les-vies-de-conway) description::"conférence sur le _jeu de la vie_, à la Nuit des Maths" compétences:: 🧑‍🏫 🗣️ 🧮 💻 -#CV #maths #informatique +#CV #s/maths #s/informatique --- Conférence sur le [[jeu de la vie]] de [[John Horton Conway|John Conway]], aux côtés de [[Michel Criton]], et [[Bertrand Hauchecorne]], pour la _Nuit des Maths_. diff --git a/conférence jeu de la vie rencontres audacieuses.md b/conférence jeu de la vie rencontres audacieuses.md index 06c385d2..23a38651 100644 --- a/conférence jeu de la vie rencontres audacieuses.md +++ b/conférence jeu de la vie rencontres audacieuses.md @@ -2,7 +2,7 @@ up::[[CV]] date::2022-04-05, 2022-04-06 compétences:: 🧑‍🏫 🗣️ 💻 🧮 description::"Deux conférences, à Tours et à Blois (univ. de Tours)" -#CV #maths #informatique +#CV #s/maths #s/informatique --- Conférences sur le [[jeu de la vie]] dans le cadre des "rencontres audacieuses", à l'université de Tours : diff --git a/conférences en ligne de mathématiques et d'informatique.md b/conférences en ligne de mathématiques et d'informatique.md index ee6765c7..de4ffaea 100644 --- a/conférences en ligne de mathématiques et d'informatique.md +++ b/conférences en ligne de mathématiques et d'informatique.md @@ -1,6 +1,6 @@ up::[[CV]] compétences:: 🧑‍🏫 🗣️ 🧮 💻 -#CV #maths #informatique +#CV #s/maths #s/informatique --- diff --git a/congruence.md b/congruence.md index 4aac9d96..47620867 100644 --- a/congruence.md +++ b/congruence.md @@ -1,6 +1,6 @@ up::[[arithmétique]] title:: $a \equiv b [n] \iff n \mid a-b$ -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/conjugués dans un groupe.md b/conjugués dans un groupe.md index 1881648a..001c6ec1 100644 --- a/conjugués dans un groupe.md +++ b/conjugués dans un groupe.md @@ -1,6 +1,6 @@ --- up: "[[action par conjugaison]]" -tags: "#maths/algèbre" +tags: "#s/maths/algèbre" --- > [!definition] Autre définition diff --git a/conjugé complexe.md b/conjugé complexe.md index 738f66ab..599a77ec 100644 --- a/conjugé complexe.md +++ b/conjugé complexe.md @@ -1,5 +1,5 @@ up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes --- Soit $z = a+ib$ un [[nombre complexe]]. diff --git a/connaissance (informatique).md b/connaissance (informatique).md index eba19759..b76eb1e5 100644 --- a/connaissance (informatique).md +++ b/connaissance (informatique).md @@ -1,5 +1,5 @@ up:: [[connaissance]] -#informatique +#s/informatique > [!definition] définition en informatique > Information, avec une valeur de vérité, plus généralement une loi qui est considérée comme vraie. diff --git a/connaissance.md b/connaissance.md index 27fcbbbe..7b150ff4 100644 --- a/connaissance.md +++ b/connaissance.md @@ -4,7 +4,7 @@ aliases: --- up:: [[théorie de la connaissance]] sibling:: [[savoir]] -#philosphie +#s/philosphie > [!definition] connaissance > La connaissance est l'intérprétation personnelle et assimilée d'un savoir. diff --git a/connexité (théorie des graphes).md b/connexité (théorie des graphes).md index 523c1d80..a2552121 100644 --- a/connexité (théorie des graphes).md +++ b/connexité (théorie des graphes).md @@ -1,5 +1,5 @@ up::[[graphe]] -#maths/graphes +#s/maths/graphes --- Un [[graphe|graphe non orienté]] est dit _connexe_ si il est d'un seul tenant. diff --git a/conseil de département 5ème semestre.md b/conseil de département 5ème semestre.md index a3fcf7d3..ab8b30d2 100644 --- a/conseil de département 5ème semestre.md +++ b/conseil de département 5ème semestre.md @@ -1,5 +1,5 @@ up:: [[travail de délégué]] -#fac +#s/fac # Remarques de la classe diff --git a/consistance syntaxique.md b/consistance syntaxique.md index 8a6ee879..a9921ec6 100644 --- a/consistance syntaxique.md +++ b/consistance syntaxique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/consistance sémantique.md b/consistance sémantique.md index 571eafb3..4441bfe9 100644 --- a/consistance sémantique.md +++ b/consistance sémantique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/constante d'Euler-Mascheroni.md b/constante d'Euler-Mascheroni.md index 4ba42be6..ac75bbf8 100644 --- a/constante d'Euler-Mascheroni.md +++ b/constante d'Euler-Mascheroni.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse --- Notée $\gamma$ diff --git a/constante maccabre.md b/constante maccabre.md index 3c9a637e..2674da1d 100644 --- a/constante maccabre.md +++ b/constante maccabre.md @@ -1,6 +1,6 @@ up:: [[éducation.notes]] title:: -#apprendre #science/sociologie +#s/apprendre #s/science/sociologie La proportion de mauvaises notes est similaire quel que soient : - le sujet diff --git a/construction d'un planning.md b/construction d'un planning.md index c4bdcfca..8bc21b39 100644 --- a/construction d'un planning.md +++ b/construction d'un planning.md @@ -1,6 +1,6 @@ up::[[outils de gestion de projet]] title::"comment construire un planning efficacement" -#PM +#s/PM --- diff --git a/construction de C.md b/construction de C.md index 3f5121ac..bcace5ad 100644 --- a/construction de C.md +++ b/construction de C.md @@ -1,5 +1,5 @@ up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes --- On utilise des [[matrice]] pour définir les nombres complexes. diff --git a/conséquence sémantique.md b/conséquence sémantique.md index 2d646867..9bd7ad10 100644 --- a/conséquence sémantique.md +++ b/conséquence sémantique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/conséquence.md b/conséquence.md index 47f47e21..33b156fd 100644 --- a/conséquence.md +++ b/conséquence.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- diff --git a/continuité d'une courbe paramétrée.md b/continuité d'une courbe paramétrée.md index 44c3ef6a..5f3e5fd0 100644 --- a/continuité d'une courbe paramétrée.md +++ b/continuité d'une courbe paramétrée.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse --- Soit $f: t\mapsto M(t)=(x(t),y(t))$ avec $t\in D\subset \mathbb{R}$, une [[courbe paramétrée]] diff --git a/continuité d'une limite de fonctions.md b/continuité d'une limite de fonctions.md index 11ae858e..996f4a03 100644 --- a/continuité d'une limite de fonctions.md +++ b/continuité d'une limite de fonctions.md @@ -1,6 +1,6 @@ up:: [[suite de fonctions convergence uniforme|convergence uniforme]], [[suite de fonctions]] title:: "Si $f_{n}$ CVU vers $f$, et est constituée de fonctions continue, alors $f$ est continue" -#maths/analyse +#s/maths/analyse --- diff --git a/contradiction.md b/contradiction.md index 921c2ba9..75038a78 100644 --- a/contradiction.md +++ b/contradiction.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- Une contradiction est une [[proposition]] qui n'admet **aucun [[modèle]]**. diff --git a/contraintes d'intégrité.md b/contraintes d'intégrité.md index e2d66519..0edbba01 100644 --- a/contraintes d'intégrité.md +++ b/contraintes d'intégrité.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique --- On peut poser des contraintes sur des valeurs. Par exemple, l'âge d'une personne ne peut pas être négatif diff --git a/contraposée.md b/contraposée.md index ba7db57a..669df02e 100644 --- a/contraposée.md +++ b/contraposée.md @@ -1,5 +1,5 @@ title:: "la contraposée de $P \implies Q$ est $(\text{non }Q) \implies (\text{non } P)$" -#maths/logique +#s/maths/logique --- diff --git a/convergence d'intégrales de fonctions comparées.md b/convergence d'intégrales de fonctions comparées.md index 91628d02..e8fca6ce 100644 --- a/convergence d'intégrales de fonctions comparées.md +++ b/convergence d'intégrales de fonctions comparées.md @@ -1,6 +1,6 @@ up:: [[intégration généralisée|intégrale impropre]] title:: "$m(x) \leq f(x) \leq M(x) \implies \int_{0}^{+\infty} m(x) \, dx \leq \int_{0}^{+\infty} f(x) \, dx \leq \int_{0}^{+\infty} M(x) \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence d'une série d'une suite dominée.md b/convergence d'une série d'une suite dominée.md index c3d34513..5c8d78da 100644 --- a/convergence d'une série d'une suite dominée.md +++ b/convergence d'une série d'une suite dominée.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "si $a_{n} = O(b_{n})$, alors :", " - $\sum\limits b_{n}$ CV. $\implies$ $\sum\limits a_{n}$ CV.", " - $\sum\limits a_{n}$ DV. $\implies$ $\sum\limits b_{n}$ DV." -#maths/analyse +#s/maths/analyse --- diff --git a/convergence d'une série d'une suite négligeable.md b/convergence d'une série d'une suite négligeable.md index 0846b5c2..8d5f4ae5 100644 --- a/convergence d'une série d'une suite négligeable.md +++ b/convergence d'une série d'une suite négligeable.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "Si $a_{n} = o(b_{n})$, alors :", " - si $\sum\limits b_{n}$ CV, on compare les [[reste d'ordre n d'une suite|restes]]", " - - $\sum\limits_{k=n}^{+\infty}a_{k}= o\left( \sum\limits_{k=n}^{+\infty} b_{n} \right)$", " - si $\sum\limits b_{n}$ DV, on compare les [[somme partielle d'une suite|sommes partielles]]", " - - $A_{k} = o\left( B_{k} \right)$ ($A$ et $B$ les [[somme partielle d'une suite|sommes partielles]] de $a$ et $b$)" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence d'une série numérique.md b/convergence d'une série numérique.md index 358d8d11..aaa26879 100644 --- a/convergence d'une série numérique.md +++ b/convergence d'une série numérique.md @@ -3,7 +3,7 @@ alias: [ "convergence", "converge", "convergent" ] --- up:: [[série numérique]] title:: "convergence de $\displaystyle\lim\limits_{ n \to +\infty } \sum\limits_{k=0}^{n} u_{k}$" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence d'une série trigonométrique.md b/convergence d'une série trigonométrique.md index 5ec4c72a..9fb4e541 100644 --- a/convergence d'une série trigonométrique.md +++ b/convergence d'une série trigonométrique.md @@ -1,6 +1,6 @@ up:: [[série trigonométrique]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/convergence de l'intégrale d'une combinaison linéaire.md b/convergence de l'intégrale d'une combinaison linéaire.md index a29474a3..1373bb21 100644 --- a/convergence de l'intégrale d'une combinaison linéaire.md +++ b/convergence de l'intégrale d'une combinaison linéaire.md @@ -1,6 +1,6 @@ up:: [[intégration généralisée]] title:: "$\int_{a}^{+\infty} f(x) \, dx \text{ CV.} \quad \wedge \quad \int_{a}^{+\infty} g(x) \, dx \text{ CV.} \implies \int_{a}^{+\infty} \lambda f(x)+g(x) \, dx \text{ CV.}$", "et $\displaystyle \lambda\int_{a}^{+\infty} f(x) \, dx + \int_{a}^{+\infty} g(x) \, dx = \int_{a}^{+\infty} \lambda f(x)+g(x) \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence de l'intégrale d'une fonction dominée.md b/convergence de l'intégrale d'une fonction dominée.md index b40f0c7e..e71669e2 100644 --- a/convergence de l'intégrale d'une fonction dominée.md +++ b/convergence de l'intégrale d'une fonction dominée.md @@ -1,6 +1,6 @@ up:: [[intégration généralisée]], [[fonction dominée en un point|domination]] title:: "$f = O_{+\infty}(g) \implies \int_{a}^{+\infty} f(x) \, dx \text{ et } \int_{a}^{+\infty} g(x) \, dx \text{ ont la même convergence}$" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence de séries positives comparées.md b/convergence de séries positives comparées.md index b0fb33fd..b3d1052e 100644 --- a/convergence de séries positives comparées.md +++ b/convergence de séries positives comparées.md @@ -1,7 +1,7 @@ up:: [[convergence d'une série numérique]] sibling:: [[convergence d'intégrales de fonctions comparées]] title:: "si $0 \leq a_{n} \leq b_{n}$, alors :", " - $\sum\limits b_{n}$ CV. $\implies$ $\sum\limits a_{n}$ CV.", " - $\sum\limits a_{n}$ DV. $\implies$ $\sum\limits b_{n}$ DV." -#maths/analyse +#s/maths/analyse --- diff --git a/convergence uniforme d'une fonction bornée sur n.md b/convergence uniforme d'une fonction bornée sur n.md index 94bc88a6..975dc227 100644 --- a/convergence uniforme d'une fonction bornée sur n.md +++ b/convergence uniforme d'une fonction bornée sur n.md @@ -1,6 +1,6 @@ up:: [[suite de fonctions convergence uniforme]] title:: "si $b$ est une [[fonction bornée]], alors $f_{n}(x) = \frac{b(x)}{n}$ CV uniformément" -#maths/analyse +#s/maths/analyse --- diff --git a/convergence uniforme d'une suite de fonctions par la différence avec la limite.md b/convergence uniforme d'une suite de fonctions par la différence avec la limite.md index 00862761..e1c105ca 100644 --- a/convergence uniforme d'une suite de fonctions par la différence avec la limite.md +++ b/convergence uniforme d'une suite de fonctions par la différence avec la limite.md @@ -1,6 +1,6 @@ up::[[suite de fonctions convergence uniforme]] title:: "$(f_{n})$ [[suite de fonctions convergence uniforme|CV uniformément]] vers $f$ ssi $\lim\limits_{ n \to +\infty } \left( \sup\limits_{x \in I} |f_{n}(x) - f(x)| \right) = 0$" -#maths/analyse +#s/maths/analyse --- diff --git a/convergences de séries par croissances comparées.md b/convergences de séries par croissances comparées.md index 0ee13ec6..58742ff1 100644 --- a/convergences de séries par croissances comparées.md +++ b/convergences de séries par croissances comparées.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "$\sum\limits P(n)\ln(n)$ DV", "$\sum\limits P(n)e^{ -kn }$ CV" -#maths/analyse +#s/maths/analyse --- Soit $P$ un [[polynôme]] de $\mathbb{R}[X]$ diff --git a/conversion analogique numérique.md b/conversion analogique numérique.md index 7e889780..48761e95 100644 --- a/conversion analogique numérique.md +++ b/conversion analogique numérique.md @@ -1,5 +1,5 @@ up::[[encodage]], [[architecture des ordinateurs]] -#informatique +#s/informatique --- diff --git a/conversion modèle ER, modèle logique.md b/conversion modèle ER, modèle logique.md index ff613fdd..b7042172 100644 --- a/conversion modèle ER, modèle logique.md +++ b/conversion modèle ER, modèle logique.md @@ -1,5 +1,5 @@ up::[[modèle logique]], [[modèle entité association]] -#informatique +#s/informatique --- Méthode de conversion du [[modèle entité association]] vers le [[modèle logique]]. diff --git a/convertir un pdf en png.md b/convertir un pdf en png.md index 853060e4..4ee9cef9 100644 --- a/convertir un pdf en png.md +++ b/convertir un pdf en png.md @@ -1,5 +1,5 @@ up:: [[terminal commandes|utilitaires ligne de commande]] -#informatique +#s/informatique # Avec `pdftoppm` diff --git a/corps commutatif.md b/corps commutatif.md index 99ceab52..833ffbe2 100644 --- a/corps commutatif.md +++ b/corps commutatif.md @@ -1,6 +1,6 @@ up::[[corps]] title:: "$(K, +, \times)$ où :", "$(K, +)$ est un [[groupe abélien]] d'élément neutre $0$", "$(K^{*}, \times)$ est un [[groupe abélien]]" -#maths/algèbre +#s/maths/algèbre Un *corps commutatif* est un [[corps]] pour lequel la loi $\times$ est aussi [[commutativité|commutative]]. diff --git a/corps.md b/corps.md index 2567a560..a20ac16d 100644 --- a/corps.md +++ b/corps.md @@ -1,5 +1,5 @@ up::[[structure algébrique]], [[anneau]] -#maths/algèbre +#s/maths/algèbre > [!definition] Corps > Un ensemble $K$ muni de deux lois $+$ et $\times$ est un _corps_ ssi : diff --git a/cosinus d'une somme.md b/cosinus d'une somme.md index 7193da6f..74f15026 100644 --- a/cosinus d'une somme.md +++ b/cosinus d'une somme.md @@ -5,7 +5,7 @@ up::[[formules de trigonométrie]] sibling::[[sinus d'une somme]] type::"formule de somme" title::"$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$" -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/cosinus du double.md b/cosinus du double.md index 9ed0ad85..248b3752 100644 --- a/cosinus du double.md +++ b/cosinus du double.md @@ -5,7 +5,7 @@ up::[[formules de trigonométrie]] sibling::[[sinus du double]] type::"formule de duplication" title::$\cos(2x) = \cos^{2}(x) - \sin^{2}(x)$ -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/cosinus en fonction de tangente x sur deux.md b/cosinus en fonction de tangente x sur deux.md index f8032299..c1ea2127 100644 --- a/cosinus en fonction de tangente x sur deux.md +++ b/cosinus en fonction de tangente x sur deux.md @@ -5,7 +5,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus en fonction de tangente x sur deux|cosinus en fonction de tan(x/2)]] type::$t = \tan(\frac{x}{2})$ title::$\cos(x) = \dfrac{1-t^{2}}{1+t^{2}}$ -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/cosinus hyperbolique d'une somme.md b/cosinus hyperbolique d'une somme.md index 471defdf..4d368116 100644 --- a/cosinus hyperbolique d'une somme.md +++ b/cosinus hyperbolique d'une somme.md @@ -5,6 +5,6 @@ up::[[formules de trigonométrie]] sibling::[[sinus hyperbolique d'une somme]] type::"formule de somme", "hyperbolique" title::$\mathrm{ch}(a+b) = \mathrm{ch}(a)\mathrm{ch}(b) + \mathrm{sh}(a)\mathrm{sh}(b)$ -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/cosinus hyperbolique du double.md b/cosinus hyperbolique du double.md index 926cf1fc..85412d17 100644 --- a/cosinus hyperbolique du double.md +++ b/cosinus hyperbolique du double.md @@ -2,7 +2,7 @@ up::[[formules de trigonométrie]] sibling::[[sinus hyperbolique du double]] type::"formule de duplication", "hyperbolique" title::$\mathrm{ch}(2x) = \mathrm{ch}^{2}(x)+\mathrm{sh}^{2}(x)$ -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/cosinus pi sur 2 moins x.md b/cosinus pi sur 2 moins x.md index 9cf6fa05..42ac50a8 100644 --- a/cosinus pi sur 2 moins x.md +++ b/cosinus pi sur 2 moins x.md @@ -4,7 +4,7 @@ alias: ["cos((pi/2)-x)", "cosinus de (pi/2)-x"] up::[[formules de trigonométrie]] sibling::[[sinus de pi sur 2 moins x]], [[tangente de pi sur 2 moins x]] title::$\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/couche liaison.md b/couche liaison.md index 4d2dce59..2607f951 100644 --- a/couche liaison.md +++ b/couche liaison.md @@ -1,5 +1,5 @@ up::[[modèle OSI]] -#informatique +#s/informatique --- diff --git a/couche physique.md b/couche physique.md index b6f9bd1e..8fe31aba 100644 --- a/couche physique.md +++ b/couche physique.md @@ -1,5 +1,5 @@ up::[[modèle OSI]] -#informatique +#s/informatique --- diff --git a/couche réseau.md b/couche réseau.md index 2f395116..f12959b0 100644 --- a/couche réseau.md +++ b/couche réseau.md @@ -1,5 +1,5 @@ up::[[modèle OSI]] -#informatique +#s/informatique --- diff --git a/courbe paramétrée simple.md b/courbe paramétrée simple.md index 6ac77f92..eb57f306 100644 --- a/courbe paramétrée simple.md +++ b/courbe paramétrée simple.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse --- Une _courbe paramétrée simple_ est une [[courbe paramétrée]] dont tout les points sont [[multiplicité d'un point d'une courbe paramétrée#point simple|simples]], c'est-à-dire qu'ils ont tous une diff --git a/courbe paramétrée.md b/courbe paramétrée.md index b09fa938..07ce415c 100644 --- a/courbe paramétrée.md +++ b/courbe paramétrée.md @@ -5,7 +5,7 @@ sr-ease: 305 --- up::[[analyse]] -#maths/analyse +#s/maths/analyse --- diff --git a/cours L3.algèbre.md b/cours L3.algèbre.md index bc77a205..4de896d9 100644 --- a/cours L3.algèbre.md +++ b/cours L3.algèbre.md @@ -3,7 +3,7 @@ BC-list-note-field: down number headings: first-level 1, max 3, 1.1 - --- up:: [[cours L3]] -#maths/algèbre +#s/maths/algèbre ```breadcrumbs type: tree diff --git a/cours L3.algèbre.notions fondamentales sur les groupes.exemples de structures communes.md b/cours L3.algèbre.notions fondamentales sur les groupes.exemples de structures communes.md index e10b1df3..cb5d126b 100644 --- a/cours L3.algèbre.notions fondamentales sur les groupes.exemples de structures communes.md +++ b/cours L3.algèbre.notions fondamentales sur les groupes.exemples de structures communes.md @@ -2,7 +2,7 @@ aliases: - Exemples de structures communes --- -#maths/algèbre +#s/maths/algèbre # Exemples de structures communes > [!example]- $\mathbb{N}$ [[nombres entiers naturels]] diff --git a/cours L3.anglais.md b/cours L3.anglais.md index a63dd6d9..1723068c 100644 --- a/cours L3.anglais.md +++ b/cours L3.anglais.md @@ -1,3 +1,3 @@ up:: [[cours L3]] -#anglais +#s/anglais diff --git a/cours L3.topologie.md b/cours L3.cours topologie.md similarity index 98% rename from cours L3.topologie.md rename to cours L3.cours topologie.md index 2490268b..6068c3b7 100644 --- a/cours L3.topologie.md +++ b/cours L3.cours topologie.md @@ -1,7 +1,7 @@ --- BC-list-note-field: down up: "[[cours L3]]" -tags: "#maths/topologie" +tags: "#s/maths/topologie" --- > [!idea] But du cours diff --git a/cours L3.intégration.md b/cours L3.intégration.md index 27ed2851..354d4875 100644 --- a/cours L3.intégration.md +++ b/cours L3.intégration.md @@ -1,7 +1,7 @@ --- BC-list-note-field: down up: "[[cours L3]]" -tags: "#maths/analyse" +tags: "#s/maths/analyse" --- # 1 - [[cours L3.intégration|tribus]] diff --git a/cours L3.md b/cours L3.md index c366932e..25d4ccb2 100644 --- a/cours L3.md +++ b/cours L3.md @@ -1,6 +1,6 @@ --- up: "[[cours fac]]" -tags: "#maths" +tags: "#s/maths" --- ```breadcrumbs diff --git a/cours analyse L2.md b/cours analyse L2.md index 311b6b3c..7e447f24 100644 --- a/cours analyse L2.md +++ b/cours analyse L2.md @@ -1,5 +1,5 @@ up::[[cours analyse]] -#maths #cours +#s/maths #t/cours --- # Fonction négligeable en un point diff --git a/cours architecture des ordinateurs.md b/cours architecture des ordinateurs.md index 29df82ad..1783f1eb 100644 --- a/cours architecture des ordinateurs.md +++ b/cours architecture des ordinateurs.md @@ -1,5 +1,5 @@ up::[[architecture des ordinateurs]] -#cours +#t/cours --- diff --git a/cours d'informatique.md b/cours d'informatique.md index 04e60057..367e24de 100644 --- a/cours d'informatique.md +++ b/cours d'informatique.md @@ -1,7 +1,7 @@ up::[[CV]] description::"cours donnés, niveau collège/lycée/prépa" compétences:: 🧑‍🏫 💻 -#CV #informatique +#CV #s/informatique --- Cours d'informatique dispensés à des élèves de collège, lycée et CPGE. diff --git a/cours de maths Basile.md b/cours de maths Basile.md index 2d3e5163..418061f1 100644 --- a/cours de maths Basile.md +++ b/cours de maths Basile.md @@ -3,7 +3,7 @@ date: - 2022-10-20 --- up::[[cours]] -#apprendre +#s/apprendre # Python diff --git a/cours de mathématiques.md b/cours de mathématiques.md index ef23e151..9981e596 100644 --- a/cours de mathématiques.md +++ b/cours de mathématiques.md @@ -1,7 +1,7 @@ up::[[CV]] description::"cours donnés, niveau collège/lycée" compétences:: 🧑‍🏫 🧮 -#CV #maths +#CV #s/maths --- Cours de mathématiques dispensés au niveau collège et lycée diff --git a/cours fac.md b/cours fac.md index f1c4215f..ec1d5983 100644 --- a/cours fac.md +++ b/cours fac.md @@ -1,4 +1,4 @@ -#cours +#t/cours > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/cours particuliers d'anglais.md b/cours particuliers d'anglais.md index f725eb03..f293d74e 100644 --- a/cours particuliers d'anglais.md +++ b/cours particuliers d'anglais.md @@ -2,7 +2,7 @@ up::[[CV]] date::2019-04-04 date-end::2019-07-11 compétences:: 🇬🇧 🗣️ -#CV #anglais +#CV #s/anglais --- Cours d'anglais pris avec un professeur particulier \ No newline at end of file diff --git a/cours particuliers de mathématiques.md b/cours particuliers de mathématiques.md index 569f6321..937c5092 100644 --- a/cours particuliers de mathématiques.md +++ b/cours particuliers de mathématiques.md @@ -3,7 +3,7 @@ date::2018-07-04 date-end::today description::"cours de maths avec une professeure d'université" compétences:: 🧮 -#CV #maths +#CV #s/maths --- Cours particuliers de mathématiques, avec une professeure d'université, pour apprendre de nouvelles notions et prendre de l'avance sur le programme. diff --git a/cours programmation web serveur.md b/cours programmation web serveur.md index 9004c995..b71c17d3 100644 --- a/cours programmation web serveur.md +++ b/cours programmation web serveur.md @@ -1,5 +1,5 @@ up:: [[cours fac]] -#fac #cours +#s/fac #t/cours > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/covariance.md b/covariance.md index 7fa61e6b..efe5515f 100644 --- a/covariance.md +++ b/covariance.md @@ -1,5 +1,5 @@ up:: [[statistiques indices de dispersion]] -#maths/statistiques +#s/maths/statistiques > [!définition] diff --git a/coût d'un·e étudiant·e à l'université de Tours.md b/coût d'un·e étudiant·e à l'université de Tours.md index 25a482fb..9b154fd0 100644 --- a/coût d'un·e étudiant·e à l'université de Tours.md +++ b/coût d'un·e étudiant·e à l'université de Tours.md @@ -1,10 +1,22 @@ up:: [[Gestion université de Tours]] -#fac +#s/fac +| | Etudiants | | Coût complet
formation
par étudiant | | H/E | | +| ------------------------------------ | --------- | ------ | ----------------------------------------- | ------ | ---- | ---- | +| | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | +| DUT | 1936 | 1721 | 10 404 | 11 602 | 31.8 | 31.8 | +| LICENCE | 13 541 | 13 587 | 3 408 | 3 483 | 9.4 | 9.1 | +| LICENCE PRO | 640 | 644 | 7434 | 8287 | 22.4 | 22.5 | +| MASTER | 4 693 | 4 708 | 5 153 | 5 598 | 13.1 | 13.2 | +| DIP. INGENIEUR | 970 | 964 | 8 508 | 9 285 | 22.8 | 24.3 | +| DOCTORAT | 676 | 672 | 5 425 | 6 293 | | | +| PASS | 975 | 824 | 2 468 | 2 922 | 1.1 | 1.1 | +| SANTE | 2 044 | 2 122 | 3 935 | 2 977 | 3.3 | 3.3 | +| AUTRES FORMATIONS | 232 | 164 | 2 562 | 1 900 | 9.3 | 7.7 | +| DU/DIU | 756 | 832 | 3 283 | 4 164 | 11.4 | 10.0 | +| AUTRES FORMATIONS
NON ACCREDITEES | 423 | 1 160 | 3 319 | 3 489 | 10.4 | 9.6 | +| HORS FORMATION | | | | | 1.4 | 9.6 | +| TOTAL | 26 886 | 27 398 | 4 541 | 4 698 | 12.9 | 12.8 | -| | Etudiants | | Coût complet
formation
par étudiant | | | | -| --- | --------- | ---- | ----------------------------------------- | ---- | ---- | ---- | -| | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | -| | | | | | | | ![[77CBD4DA-3077-4951-9724-006B009BD4E0_1_105_c.jpeg|600]] \ No newline at end of file diff --git a/crise.md b/crise.md index 2adb4ef3..f943bdd2 100644 --- a/crise.md +++ b/crise.md @@ -1,6 +1,6 @@ up:: title:: "moment charnière, de décision" -#philosphie #science/économie +#s/philosphie #s/science/économie --- diff --git a/critère de cauchy pour la convergence d'une série.md b/critère de cauchy pour la convergence d'une série.md index 12bc1d41..1147adc7 100644 --- a/critère de cauchy pour la convergence d'une série.md +++ b/critère de cauchy pour la convergence d'une série.md @@ -3,7 +3,7 @@ alias: [ "critère de cauchy" ] --- up:: [[convergence d'une série numérique]] title:: "$\sum\limits u_{n}$ ssi sa [[somme partielle d'une suite|somme partielle]] $S_{n}$ est une [[suite de Cauchy]]" -#maths/analyse +#s/maths/analyse --- diff --git a/crochet d'Iverson.md b/crochet d'Iverson.md index b343eb82..552c4a9d 100644 --- a/crochet d'Iverson.md +++ b/crochet d'Iverson.md @@ -1,4 +1,4 @@ -#maths +#s/maths --- Notation qui renvoie $1$ si une condition est vérifiée, et $0$ sinon. diff --git a/croissances comparées usuelles.md b/croissances comparées usuelles.md index d7caf0dc..07d0e9fe 100644 --- a/croissances comparées usuelles.md +++ b/croissances comparées usuelles.md @@ -1,5 +1,5 @@ up::[[croissances comparées]] -#maths/analyse +#s/maths/analyse --- [[croissances comparées]] diff --git a/cryptologie.md b/cryptologie.md index 95c48cb2..a46999a2 100644 --- a/cryptologie.md +++ b/cryptologie.md @@ -1,5 +1,5 @@ up:: [[information]] -#informatique +#s/informatique - [[cryptographie]] - cryptanalyse diff --git a/cube.md b/cube.md index 834a085a..6a5ebb83 100644 --- a/cube.md +++ b/cube.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre --- symbole de shläfli : $\{4, 3\}$ diff --git a/cuisine.md b/cuisine.md index 0216bbdd..103fea31 100644 --- a/cuisine.md +++ b/cuisine.md @@ -1,14 +1,17 @@ -up:: [[gestion]] -#cuisine #PKM - +--- +up: + - "[[howto]]" +tags: + - "#howto/cuisine" + - "#PKM" --- -> [!query] Sous-notes de `=this.file.link` -> ```dataview -> TABLE title, up as "Up", up.up as "2-Up", up.up.up as "3-Up", up.up.up.up as "4-Up" -> FROM "/" -> WHERE contains(file.tags, "cuisine") OR econtains(list(up, up.up, up.up.up, up.up.up.up), this.file.link) -> WHERE file.link != this.file.link -> SORT up.up.up.up, up.up.up, up.up, up -> ``` +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/culture comme rapport social.md b/culture comme rapport social.md index 786fb810..48fbee81 100644 --- a/culture comme rapport social.md +++ b/culture comme rapport social.md @@ -1,6 +1,6 @@ up:: [[culture]] title:: -#politique +#s/politique --- diff --git a/culture institutionnelle.md b/culture institutionnelle.md index 40c174c6..692ac2a1 100644 --- a/culture institutionnelle.md +++ b/culture institutionnelle.md @@ -1,6 +1,6 @@ up:: [[culture]] sibling:: [[culture légitime et illégitime]] -#politique +#s/politique La culture telle que déterminée par l'institution (donc l'élite). diff --git a/culture légitime et illégitime.md b/culture légitime et illégitime.md index 4aae80b1..c0462fcf 100644 --- a/culture légitime et illégitime.md +++ b/culture légitime et illégitime.md @@ -2,7 +2,7 @@ alias: [ "culture légitime vs illégitime", "culture légitime", "culture illégitime" ] --- up:: [[culture]] -#politique #apprendre +#s/politique #s/apprendre - opposition entre le peuple et l'élite - culture **illégitime** contre culture **légitime** diff --git a/culture.md b/culture.md index 6adf4e6a..99d9fdc5 100644 --- a/culture.md +++ b/culture.md @@ -1,7 +1,7 @@ down:: [[réduction des inégalités culturelles]] up:: [[politique]] title:: "réduite à l'art professionnel au siècle dernier" -#politique +#s/politique --- diff --git a/cycle de vie d'un entity bean.md b/cycle de vie d'un entity bean.md index 6dab7829..206aa982 100644 --- a/cycle de vie d'un entity bean.md +++ b/cycle de vie d'un entity bean.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[EJB entity bean]] -#informatique/langage/java +#s/informatique/langage/java L'[[EJB entity manager|entity manager]] gère le cycle de vie des [[EJB entity bean|entity beans]] diff --git a/cycle de vie nominal d'un logiciel.md b/cycle de vie nominal d'un logiciel.md index a3e6af9a..ff64efba 100644 --- a/cycle de vie nominal d'un logiciel.md +++ b/cycle de vie nominal d'un logiciel.md @@ -1,5 +1,5 @@ up::[[génie logiciel et gestion de projet]] -#informatique +#s/informatique --- diff --git a/cycle en V.md b/cycle en V.md index 802b155a..b4d0c275 100644 --- a/cycle en V.md +++ b/cycle en V.md @@ -1,5 +1,5 @@ up::[[cycle de vie nominal d'un logiciel]] -#informatique +#s/informatique --- diff --git a/cycloïde.md b/cycloïde.md index 7265bd8d..24c7fd2d 100644 --- a/cycloïde.md +++ b/cycloïde.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse --- La _cycloide_ est la courbe que parvourt un point choisi d'une roue lorsque celle-ci avance. diff --git a/daily/2024-09-24.md b/daily/2024-09-24.md index 2c2be555..2486164a 100644 --- a/daily/2024-09-24.md +++ b/daily/2024-09-24.md @@ -1,5 +1,5 @@ # Todo -- [x] #task #obsidian améliorer breadcrumbs trail : texte plus petit ✅ 2024-10-01 +- [x] #task #s/obsidian améliorer breadcrumbs trail : texte plus petit ✅ 2024-10-01 diff --git a/daily/2024-12-13.md b/daily/2024-12-13.md index ff9f9618..850d19ff 100644 --- a/daily/2024-12-13.md +++ b/daily/2024-12-13.md @@ -7,7 +7,7 @@ - soirée branchée **moderne** - startup devenue un gros groupe - moyenne d'âge 28/30 ans - - [ ] #task #art/magie: tourner une vidéo + - [ ] #task #s/art/magie: tourner une vidéo # I did diff --git a/daily/2024-12-25.md b/daily/2024-12-25.md new file mode 100644 index 00000000..797ba126 --- /dev/null +++ b/daily/2024-12-25.md @@ -0,0 +1,15 @@ +# Todo + +# I did +> [!smallquery]- Modified files +> ```dataview +> LIST file.mtime +> where file.mtime > date(this.file.name) and file.mtime < (date(this.file.name) + dur(1 day)) sort file.mtime asc +> ``` +```tasks +done 2024-12-25 +short mode +``` + +# I am gratefull to + diff --git a/danger des catégories.md b/danger des catégories.md index 49e588b5..ffe9958e 100644 --- a/danger des catégories.md +++ b/danger des catégories.md @@ -1,4 +1,4 @@ -#philosphie +#s/philosphie ex: amitié, patrie... diff --git a/dataview MOC query.md b/dataview MOC query.md index 54d03f2e..8de80d9e 100644 --- a/dataview MOC query.md +++ b/dataview MOC query.md @@ -1,6 +1,6 @@ up::[[obsidian workflow MOCs]], [[obsidian plugin dataview]] title::"[[Depth-first search|DFS]] in the reciprocal of `up::` property" -#obsidian #PKM +#s/obsidian #PKM --- diff --git a/dataview direct subnotes query.md b/dataview direct subnotes query.md index e2b127b6..00076a5a 100644 --- a/dataview direct subnotes query.md +++ b/dataview direct subnotes query.md @@ -1,6 +1,6 @@ up::[[obsidian workflow MOCs]], [[obsidian plugin dataview]] title:: "list of direct child of the current note", "kind of a breadcrumbs matrix" -#obsidian #PKM +#s/obsidian #PKM --- diff --git a/dataview tasks completed in current file.md b/dataview tasks completed in current file.md index b978ce7b..dbf9f72e 100644 --- a/dataview tasks completed in current file.md +++ b/dataview tasks completed in current file.md @@ -1,6 +1,6 @@ up::[[obsidian plugin dataview]] title::"cound tasks completed in a file" -#obsidian +#s/obsidian --- diff --git a/dataview test 1.md b/dataview test 1.md index 0709bb37..140af4b9 100644 --- a/dataview test 1.md +++ b/dataview test 1.md @@ -1,7 +1,7 @@ up::[[obsidian plugin dataview]] -#dataview-test #obsidian +#dataview-test #s/obsidian --- test de [[obsidian plugin dataview|dataview]] diff --git a/debian paquet bind.md b/debian paquet bind.md index 9ff9c07c..eed643f8 100644 --- a/debian paquet bind.md +++ b/debian paquet bind.md @@ -3,7 +3,7 @@ alias: [ "paquet bind" ] --- up:: [[terminal commandes]] title:: -#informatique +#s/informatique --- diff --git a/degré d'un polynôme.md b/degré d'un polynôme.md index 2b3c78dd..02ea0247 100644 --- a/degré d'un polynôme.md +++ b/degré d'un polynôme.md @@ -2,7 +2,27 @@ alias: [ "degré" ] --- up::[[polynôme]] -title::"puissance la plus haute pour laquelle le coefficient est non nul" -#maths/analyse +#s/maths/analyse + +> [!definition] Définition +> Puissance la plus haute pour laquelle le coefficient est non nul +^definition + +# Propriétés + +> [!proposition]+ degré en fonction des valeurs +> Soit $P \in \mathbb{R}[X]$, on a : +> $\mathop{deg}(P) = \lim\limits_{ x \to \infty } \dfrac{\ln|P(x)|}{\ln x}$ +> > [!idea] Généralisation à des fonctions non polynômiales +> > Cette formule permet de généraliser aux fonctions en dehors de $\mathbb{R}[X]$. On a alors : +> > - $\deg\left( x \mapsto \frac{1}{x} \right) = -1$ +> > - $\deg(\sqrt{ \cdot }) = \frac{1}{2}$ +> > - $\deg(\ln) = 0$ +> > - $\deg(\exp) = +\infty$ + +> [!proposition]+ Degré en fonction des valeurs +> Soit $P \in \mathbb{R}[X]$, on a : +> $\deg(P) = \lim\limits_{ x \to \infty } \dfrac{xP'(x)}{P(x)}$ +> - dem cela vient du [[théorème de l'hôpital]] +> ---- diff --git a/degré d'un sommet d'un graphe.md b/degré d'un sommet d'un graphe.md index f5490caa..49df97ec 100644 --- a/degré d'un sommet d'un graphe.md +++ b/degré d'un sommet d'un graphe.md @@ -1,5 +1,5 @@ up::[[graphe]] -#maths/graphes +#s/maths/graphes --- Soit $G$ un [[graphe]] diff --git a/densité linéaire moyenne de probabilités.md b/densité linéaire moyenne de probabilités.md index 98ecd3b5..71a962ce 100644 --- a/densité linéaire moyenne de probabilités.md +++ b/densité linéaire moyenne de probabilités.md @@ -3,7 +3,7 @@ alias: [ "probabilités densité linéaire moyenne" ] --- up:: [[variable aléatoire continue]] title:: "$\displaystyle \Delta(a, b) = \frac{F(b) - F(a)}{b - a}$" -#maths/probabilités +#s/maths/probabilités --- diff --git a/design pattern abstract factory.md b/design pattern abstract factory.md index 527cbda5..0c06c8c4 100644 --- a/design pattern abstract factory.md +++ b/design pattern abstract factory.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[design patterns]] -#informatique +#s/informatique diff --git a/design pattern factory.md b/design pattern factory.md index 7fe0e9be..7c92534b 100644 --- a/design pattern factory.md +++ b/design pattern factory.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[design patterns]] -#informatique +#s/informatique diff --git a/design pattern singleton.md b/design pattern singleton.md index 6e13d935..52b4bdd6 100644 --- a/design pattern singleton.md +++ b/design pattern singleton.md @@ -1,3 +1,3 @@ up:: [[design patterns]] -#informatique +#s/informatique diff --git a/design patterns.md b/design patterns.md index 3b4f47e9..15d694cf 100644 --- a/design patterns.md +++ b/design patterns.md @@ -1,5 +1,5 @@ up:: [[paradigme programmation orientée objet|programmation orientée objet]] -#informatique +#s/informatique ```breadcrumbs title: "Sous-notes" diff --git a/devoir gestion de projet.md b/devoir gestion de projet.md index cd336a6a..7521e527 100644 --- a/devoir gestion de projet.md +++ b/devoir gestion de projet.md @@ -1,7 +1,7 @@ due::2022-09-20 title::"créer un [[Work Breakdown Structure|WBS]]" difficulty::3 -#devoir-fait #PM +#devoir-fait #s/PM --- diff --git a/devoirs à faire.md b/devoirs à faire.md index 2d97a37a..bc11c3e8 100644 --- a/devoirs à faire.md +++ b/devoirs à faire.md @@ -2,7 +2,7 @@ > [!smallquery] Liste des devoirs > ```dataview > TABLE due, "" as "difficulty", title as "description" -> FROM #devoir AND -"templates" +> FROM #t/devoir AND -"templates" > SORT due, importance > ``` diff --git a/devoirs.md b/devoirs.md index a2869792..81026bef 100644 --- a/devoirs.md +++ b/devoirs.md @@ -1,20 +1,18 @@ -#PKM - +--- +tags: "#PKM" --- > [!todo] Liste des devoirs > ```dataview > TABLE due, "" as "difficulty", title as "description" -> FROM #devoir AND -"templates" +> FROM #t/devoir AND -"templates" > SORT due, importance > ``` - - > [!done]- Devoirs faits > ```dataview > TABLE due, "" as "difficulty", title as "description" -> FROM #devoir-fait +> FROM #t/devoir-fait > SORT due, description > ``` diff --git a/diagonaliser une matrice.md b/diagonaliser une matrice.md index fef9b310..7d95ccf8 100644 --- a/diagonaliser une matrice.md +++ b/diagonaliser une matrice.md @@ -1,6 +1,6 @@ up:: [[matrice diagonale]] title:: "méthode pour diagonaliser" -#maths/algèbre +#s/maths/algèbre --- Diagonaliser permet de transformer une application linéaire en une composée $P D P ^{-1}$ diff --git a/diagramme UML.md b/diagramme UML.md index 8c6212ff..17d0779f 100644 --- a/diagramme UML.md +++ b/diagramme UML.md @@ -1,7 +1,7 @@ down:: [[UML diagramme de séquence]] down:: [[UML diagramme de classes]] up::[[outils de gestion de projet]] -#informatique +#s/informatique ---- diff --git a/diamètre.md b/diamètre.md index f93dc83b..ec361a07 100644 --- a/diamètre.md +++ b/diamètre.md @@ -1,5 +1,5 @@ up:: [[distance]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Soit $(X, d)$ un [[espace métrique]] diff --git a/dictature de la commodité.md b/dictature de la commodité.md index 5eafde5b..b2aecb5e 100644 --- a/dictature de la commodité.md +++ b/dictature de la commodité.md @@ -1,5 +1,5 @@ up:: [[technologie]] -#science #philosphie +#s/science #s/philosphie > [!definition] > [[aliénation sociale|aliénation]] à la facilité que procure la [[technologie]]. diff --git a/difféomorphisme.md b/difféomorphisme.md index ed91319c..cc4f1032 100644 --- a/difféomorphisme.md +++ b/difféomorphisme.md @@ -1,5 +1,5 @@ up:: [[bijection]], [[matrice jacobienne]], [[déterminant jacobien]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soient $\Delta \subset \mathbb{R}^{d}$ et $D \subset \mathbb{R}^{d}$ deux ouverts diff --git a/différence entre convaincre et persuader.md b/différence entre convaincre et persuader.md index 32fe0b50..e346f783 100644 --- a/différence entre convaincre et persuader.md +++ b/différence entre convaincre et persuader.md @@ -1,6 +1,6 @@ up:: title:: -#science/zetetique +#s/science/zetetique --- diff --git a/différence entre erreur et faute.md b/différence entre erreur et faute.md index d7419af1..694da3b7 100644 --- a/différence entre erreur et faute.md +++ b/différence entre erreur et faute.md @@ -1,5 +1,5 @@ up:: [[pédagogie]] -#apprendre +#s/apprendre > [!definition] Différence sémantique > La faute est la [[morale|moralisation]] de l'erreur. Une faute est **moralement répressible**, elle est **interdite** diff --git a/différence entre gauche et droite.md b/différence entre gauche et droite.md index 082d2d10..42390847 100644 --- a/différence entre gauche et droite.md +++ b/différence entre gauche et droite.md @@ -1,5 +1,5 @@ up:: [[politique.gauche|gauche]], [[politique.droite|droite]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/digital logic sim computer.md b/digital logic sim computer.md index 5584caa1..b3c0b67f 100644 --- a/digital logic sim computer.md +++ b/digital logic sim computer.md @@ -1,5 +1,5 @@ up:: [[Logique séquentielle]] -#informatique #maths/logique +#s/informatique #s/maths/logique diff --git a/dimension d'un espace affine.md b/dimension d'un espace affine.md index 16bbad14..42ffed9c 100644 --- a/dimension d'un espace affine.md +++ b/dimension d'un espace affine.md @@ -3,7 +3,7 @@ alias: [ "dimension" ] --- up:: [[espace affine]] title:: "dimension de sa [[direction d'un espace affine|direction]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/dimension d'un espace vectoriel.md b/dimension d'un espace vectoriel.md index 631acc1f..24b9fe90 100644 --- a/dimension d'un espace vectoriel.md +++ b/dimension d'un espace vectoriel.md @@ -6,7 +6,7 @@ sr-ease: 278 --- up::[[espace vectoriel]] title::"[[cardinal d'un ensemble]] des [[base d'un espace vectoriel|bases]] de d'un [[espace vectoriel|ev]]" -#maths/algèbre +#s/maths/algèbre ---- Soit $E$ un [[espace vectoriel]]. diff --git a/direction d'un espace affine.md b/direction d'un espace affine.md index df5f60b5..da80c580 100644 --- a/direction d'un espace affine.md +++ b/direction d'un espace affine.md @@ -3,7 +3,7 @@ alias: [ "direction" ] --- up:: [[espace affine]] title:: "[[espace vectoriel]] associé" -#maths/algèbre +#s/maths/algèbre --- diff --git a/discours manif immigration.md b/discours manif immigration.md index 2f63085a..428475de 100644 --- a/discours manif immigration.md +++ b/discours manif immigration.md @@ -1,5 +1,5 @@ up:: [[discours]] -#politique +#s/politique Nous sommes tous là car nous pensons que cette loi est xénophobe, excluante. Nous sommes tous d'accord pour dire qu'elle est à la fois contre les valeurs de l'humanisme, contre les valeurs de la république, et contre le principe de solidarité le plus essentiel. diff --git a/discriminant.md b/discriminant.md index fb8c1ed9..2296d7b3 100644 --- a/discriminant.md +++ b/discriminant.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/analyse +#s/maths/analyse ---- diff --git a/discriminations dans l'enseignement.md b/discriminations dans l'enseignement.md index d015457a..ef9c91be 100644 --- a/discriminations dans l'enseignement.md +++ b/discriminations dans l'enseignement.md @@ -1,6 +1,6 @@ up:: title:: -#apprendre +#s/apprendre --- diff --git a/distance cordale.md b/distance cordale.md index 168cbef9..e987b5a9 100644 --- a/distance cordale.md +++ b/distance cordale.md @@ -1,10 +1,10 @@ up:: [[distances particulières]] -#maths/algèbre +#s/maths/algèbre ![[distance cordale 2024-09-09 10.55.20.excalidraw]] -> [!idea] Distance induite de la distance cordale +> [!idea] [[distance induite]] de la distance cordale > Soit $(\mathbb{R}^{2}, d)$ l'espace métrique muni de la [[distance cordale]] > Soit $A = S(0, 1) = \{ x \in \mathbb{R}^{2}\mid \|x\| = 1 \}$ le cercle de rayon 1 et de centre $0_{\mathbb{R}^{2}}$ > Regardons $B_{A}(x_0, r) = B_{\mathbb{R}^{2}}(x_0, r) \cap A$ diff --git a/distance entre des parties d'un espace métrique.md b/distance entre des parties d'un espace métrique.md deleted file mode 100644 index ff19a7ad..00000000 --- a/distance entre des parties d'un espace métrique.md +++ /dev/null @@ -1,13 +0,0 @@ -up:: [[espace métrique]] -#maths/algèbre - -> [!definition] distance entre des parties d'un espace métrique -> Soit $(X, d)$ un [[espace métrique]] -> Soient $A, B$ deux parties de $X$ -> On appelle distance entre $A$ et $B$ : -> $d(A, B) = \inf \{ d(x, y) \mid x \in A \wedge y \in B\}$ -^definition - -> [!idea] intuition -> Cette distance représente normalement la plus courte distance entre $A$ et $B$ - diff --git a/distance entre deux droites dans l'espace.md b/distance entre deux droites dans l'espace.md index 5774cf6e..505d8efc 100644 --- a/distance entre deux droites dans l'espace.md +++ b/distance entre deux droites dans l'espace.md @@ -1,6 +1,6 @@ up:: [[espace cartésien]] title:: "$d, d'$ dirigées par $v, v'$", "$A \in d$ et $B \in d'$", "$\left| \overrightarrow{AB} \cdot \left( \frac{1}{\|\vec{v} \wedge \vec{v}'\|} \vec{v}\wedge\vec{v}' \right) \right|$" -#maths/géométrie +#s/maths/géométrie --- diff --git a/distance entre deux parties d'un espace métrique.md b/distance entre deux parties d'un espace métrique.md new file mode 100644 index 00000000..bab79059 --- /dev/null +++ b/distance entre deux parties d'un espace métrique.md @@ -0,0 +1,73 @@ +--- +aliases: + - distance entre deux parties +up: + - "[[distance]]" + - "[[partie d'un espace métrique]]" +tags: + - s/maths/topologie + - excalidraw +excalidraw-plugin: parsed +excalidraw-open-md: true +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Soient $A, B \subset X$ deux parties de $X$ +> On appelle distance entre $A$ et $B$ : +> $d(A, B) := \inf\limits \{ d(a, b) \mid a \in A \wedge b \in B \}$ +^definition + +> [!idea] intuition +> Cette distance représente normalement la plus courte distance entre $A$ et $B$ + +`$= "![[" + dv.current().file.name + ".svg|800]]" ` + +# Propriétés + +> [!proposition]+ distance entre des parties non disjointes +> Si $A \cap B \neq \emptyset$, alors $d(A, B) = 0$ +> > [!démonstration]- Démonstration +> > Il suffit de prendre $x \in A \cap B$ et d'écrire : +> > $d(A, B) \leq d(x, x) = 0$ +> > D'où suit, par positivité des distances + +# Exemples + + +%% +# Excalidraw Data +## Text Elements +A ^rBDgNyV5 + +## Drawing +```compressed-json +N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQA2bQAOGjoghH0EDihmbgBtcDBQMBKIEm4IbB4AMQBhfABHI2wGoQB2NmwAWQAWAAU22oA5AGV8VJLIWEQKog4kflLMbmce + +AFYARm0egGYetaSk+J4NtbakjbbFyBgVtcS2ngAGHfiAThfzniS3+OuICgkdTcDY9JLaV5tDZJNprf6SBCEZTSEGbCFJJ5JNZvHaw/7WZTBbhPf7MKCkNgAawQtTY+DYpAqAGJ4m0ehtiG8JqVNLhsJTlBShBxiLT6YyJOTrMw4LhAtluZAAGaEfD4EawIkSQQeRUQMkU6kAdSBkm4fEKAnJVIQGpgWvQOvK/yFyPmzFyaA2/zYsuwaluXqeJMtE + +EFwjgAEliJ7UHkALr/JXkTLR7gcIRq/6EEVYCq4Hp6oUi92x4qTaDwcS8S0AX1JCAQxBB7w28QxOKS/0YLHYXDQPDaIYrPdYnCGnDE5rWPQ+bR2w9KhGYABF0lAm9wlQQwv9NMIRQBRYKZbKxhP/IRwYi4DfNr3zzZrZ5gvYWitzSnpzP4f70/mbmg274LuoZwGwOY5PklpgAUkwlIukxPDBiYwXB8FbL8Tw4niMFgM4aw7NoGwbDs3wbOsKHXLB + +eFtG02xtPE9zrNR+FJD02hvG8JwwmsVFoXhoLgpC0K4fB+HPpxbZPKcxx8fBqHwehkyglspw9Dwvy8ax7LaMGGxvIRFHyZMimTMpJRJHEjxYrJLF4fEiQ7IcrKiSZJRmSUFlgKy2hshiPTtmJGFEVZFyUQp1HeRpflvIc5H2eJg4JG8jxMXJ/FKYJTycbsOzYricJ4Sc2hrPc8Q9E8GWRQJ4mIQhKGWp5ED4KEUC0vo+hqHefQQQqaAZlmoZknKU + +AAEI5o4HDKN+Q0VlkxATSKOYzQNP6klEpBQAAgqQFIUAiuD3qgg2/qGC27fth3HadhT1oU5aQOUEgAPIcAAivQTxDGNK4wBQ721CMtRGvQMBCGwM56tM1YtTmCyhssaA7ERz7Yk8gVPM+8Q7NC/yBqgzighx3GnJpVk4+8fyhoCxDAg+9FvHlBXBZACJIiiXoYnpPzsYV+LTQ6iH6ta1JigyzJVOsazYHqvL8uGwqinSEuSuQHAynKWRQHqKpqna + +Dr6nSzrDaLCAmnTZoDhthq2pqsNOs2LrCG64Sxt6oa+nyAYgsG/yK1GMb5M1ya4KmN3raGk15hIuBrEWB7EKW3CPVMVbmnWDaAag5xlVx3HUyOTBjv2qBnDs3bF32E4cFOXrQjwuIURp2aruu2fAaBFb7krx4ZNr57NVeN53iCj5k1jQVdqGn6zWdH6dNSx2dwg/zgZB561fB9VgMhNVZeJqxvMRWOBdptEpWlzHuWAnk0YfyXHAuZ+syUaw5c8u + +MRaZUV4c47wQkIk+OSrFubYkuFpWEmVzLZW0OsAyRlEoYU0sRS4bloFeTwkkIibQ3gbBktfVipFEg4wSjfO+3l8E5UOEcKE59xIXDgTwHg6Vv4eV/gwrY9wej7C/kVcSzlcqgiqmw2+HCMIYzgdiRihC/5EXWOcYyGD74SPBAcOKuxX74VeH5TGOFyHiMmLOTicUMZBX4fBZwuxthnBeEo/eMDxLQgSJVEBci1GKNERQ4q4JsK2L4axImiQDgswM + +VvFSx8djcTOOFCxkxnD0U+Pg/RyjvI7z3qZJqf42odS6jIJsvVIJzw2qNJaU1VonUjvNEUZSVrFNNqNS6bADohAjnNUoF09rNOunPO6ixHplGOhATQQgGhGgAFrKA2AAVVqO9AAmrgQgAAJJU1RlmSEpPgHY0N04SDmAjCsSNCb5WSM5HiPAwTYVOHEiABN/70RONhJmn9FHOX+LTemqBjgQleFxTYqUma2XhIiZEOsBx+T2HgwyMJZzfHbO+UoB + +IhY2xtOLCU6AmQ8CVG8BAPC5Z8gFMWZW4oKhSg1rKeUOskyqnVPbCojs9QGhtBbL5iKrS2wNg7Y2TtQyukkMnL0Po/Q+yDMLAO0ZB5JhTAgNMa12lPVzMciAuB4gJyVoK1AqdKwzAHJnYajZjrvDot8TsldeycG4PEYWo5q6TmrA3XY7x9jC2XGuYIo8gI7lXqGHuR4TwD2Dpea8t5s6XHyhPeIJEnjsrhhwL88r56lH/EvLc3q159SgmgCyaTWI + +ZPYeEko/84go3eIZAyuCwSbFYtZKFCDYXcSOFZRqP8Z45IMHknqmb6kVhGltWp00e0dJqZNOpiaSlbSaS0o6Q7ICdKuq03pJR7olAGc9dApBfrKCGDAAAavHf4MMyVYGpYjFYZM9J7CxExC4cU4r43PacYijxNEsJnFxMEHzTQgiIiRfOmw0H0NKOzMF04BaEmrMLZlYsVYYogFinFeLCx7kJYrEU6KyXq01lS3WtKuUMp5Uys2rKra8FRdSfD2p + +CPOz8AKt2IJhXe1gL7cVQpA5StDKHcOs6yhKvzG0dVJZ6PjoNWG3BTMcaBXNSXK10m7W12rI8Oirwo3TwrG69uy902+sTn3U8Wa4xDxDZ61A4anzPCYoZHof4cwJsqQqlqi8O7aYrBuTA4L0DbSLJQAAKieioXmkycCgCMQgRhqzPCC9kaoYdVQEw9q5k920iDKFLi1BASpT1Fy2uYAgyWkRpagL6PUehshLPmKQOV9mk2QAZEiHMBA/PuYC3qXA + +QgisACVwhherOSIQPqPzw2WaCzmpmpF3XAIpFVcA4AalDSnQo0AESZAqDeUgX5FgMEIAgCgY1UPEowxIJkSoTune5JUEQVLIwbn0BqW2h3MXYtxfizb2BLva2uxkPbCsDuwcw9KSl2tztvb2h9m71Q8P0qo7qV773sifdu8R791tFsg6uzdu7NpKOOmo6juHUAEcdZdnRj0DG8eg/hzdl6IrmNithxTgn4Pgsxa6vgeL9P0cZGqMF0L4XzSLguwz + +hHTWdopbS8ETLwP8cI7m5Orp062lJsF5z/Qh4RRTp6bHeXUuhc3anT5vZG7E7neYNgCkaoAAa3BKrWUYo+CmON2KbdN+b/A8zzTnFKm8wicKolXEW0YNgBgFsjgIP1jOy6Odg4yETjVwmjdK3O4KEgvOIsC+T8QDUCA4DcAsWGUgJAuhsGIAgNXuBNDBC0yBAbkAM8PYGWNOkQzSDKF5AAChOFcXglxqDd67zlNYABKPUXXlCZjlBUFv7fG4kl4A + +uXvM/e8D+H308nVLMfUmp1APssZTqba4wgLruYC+DrQAMrI5fK/cD6zXyA2AiA57QDf/4HAw69dIP1n07WDnX4/wgVfpQdgAAVggNgDkCMK/nAEXiXmXhXs5tXptnyNvowD5kHuMGfqGEetqOkGAX2CVkIGSAYAbrqtVn+E5lXl3Mmm1NtLgSgWgUumALWOACuhAHrOECnEwbWEAA=== +``` +%% \ No newline at end of file diff --git a/distance entre une droite et un point.md b/distance entre une droite et un point.md index b1e7bdf6..d572dda3 100644 --- a/distance entre une droite et un point.md +++ b/distance entre une droite et un point.md @@ -1,6 +1,6 @@ up::[[géométrie]] title:: "$\displaystyle\frac{|ax_{A}+by_{A}+c|}{\sqrt{ a^{2}+b^{2} }}$" -#maths/géométrie +#s/maths/géométrie --- diff --git a/distance euclidienne.md b/distance euclidienne.md index c00336cc..85aba13d 100644 --- a/distance euclidienne.md +++ b/distance euclidienne.md @@ -1,5 +1,5 @@ up:: [[distances particulières]] -#maths/algèbre +#s/maths/algèbre > [!definition] distance euclidienne > diff --git a/distance induite.md b/distance induite.md index c89dda3a..096ecdd9 100644 --- a/distance induite.md +++ b/distance induite.md @@ -1,5 +1,8 @@ -up:: [[distance]] -#maths/algèbre +--- +up: "[[distance]]" +sibling: "[[norme induite]]" +tags: "#s/maths/algèbre" +--- > [!definition] distance induite > Soit $(X, d)$ un [[espace métrique]] diff --git a/distance p-adique.md b/distance p-adique.md index b76c3fee..b52aadb7 100644 --- a/distance p-adique.md +++ b/distance p-adique.md @@ -1,5 +1,5 @@ up:: [[distance]] -#maths/algèbre +#s/maths/algèbre > [!definition] valuation $p$-adique > On définit la valuation $p$-adique d'un entier $n \in \mathbb{Z}$ comme étant le nombre maximal de fois que $n$ est divisible par $p$. diff --git a/distance.md b/distance.md index 238a00d9..4228a369 100644 --- a/distance.md +++ b/distance.md @@ -1,6 +1,6 @@ up:: [[norme]] title:: "$d(x, y) = \|y - x\|$" -#maths/algèbre +#s/maths/algèbre > [!definition] Distance > Soit $X$ un ensemble @@ -19,6 +19,15 @@ title:: "$d(x, y) = \|y - x\|$" > $\boxed{d(x, y) = \|y - x\|}$ ^definition-depuis-une-norme +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` + # Propriétés > [!info] Equivalence entre distance et norme diff --git a/distances particulières.md b/distances particulières.md index b5ee743d..bc824d0e 100644 --- a/distances particulières.md +++ b/distances particulières.md @@ -1,5 +1,5 @@ up:: [[distance]] -#maths/algèbre +#s/maths/algèbre Distances intéressantes diff --git a/distances équivalentes.md b/distances équivalentes.md new file mode 100644 index 00000000..6e2119c3 --- /dev/null +++ b/distances équivalentes.md @@ -0,0 +1,32 @@ +--- +aliases: +up: + - "[[distance]]" +sibling: + - "[[normes équivalentes]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Soient $(X, d_1)$ et $(X, d_2)$ deux [[espace métrique|espaces métriques]] +> Les [[distance|distances]] $d_1$ et $d_2$ sont dites **équivalentes** si : +> $\exists a, b >0,\quad \forall x, y \in X,\quad a\cdot d_1(x, y) \leq d_2(x, y) \leq b\cdot d_1(x, y)$ +^definition + +# Propriétés + +> [!proposition]+ équivalence des limites +> Soient $(X, d_1)$ et $(X, d_2)$ deux [[espace métrique|espaces métriques]] tels que $d_1$ et $d_2$ soient équivalentes +> $\lim\limits_{ n \to \infty }x_{n} = \ell \text{ dans } (X, d_1) \iff \lim\limits_{ n \to \infty }x_{n} = \ell \text{ dans } (X, d_2)$ +> > [!démonstration]- Démonstration +> > Comme $d_1$ et $d_2$ sont équivalentes, on sait qu'il existe $A, B>0$ tels que pour tout $x, y \in X$ on aie $A d_1(x, y) \leq d_2(x, y) \leq B d_1(x, y)$ +> > Ainsi, si $\lim\limits_{ n \to \infty }x_{n} = \ell$ dans $(X, d_1)$, alors on a $0 \leq d_2(x_{n}, \ell) \leq B d_1(x_{n}, \ell)$. +> > Or le terme de droite tend vers 0, donc, par encadrement, on a $\lim\limits_{ n \to \infty } d_2(x_{n}, \ell) = 0$ et donc $\lim\limits_{ n \to \infty } x_{n} = \ell$ +> > +> > Comme la relation d'équivalence des distances est [[relation symétrique|symétrique]], on sait qu'il suffit d'inverser le rôle de $d_1$ et $d_2$ dans la démonstration précédente pour obtenir l'implication inverse. +> > +> > De là on sait que $\lim\limits_{ n \to \infty }x_{n} =\ell \text{ dans } (X, d_1) \iff \lim\limits_{ n \to \infty } x_{n} = \ell \text{ dans } (X, d_2)$ + +# Exemples + diff --git a/distributivité.md b/distributivité.md index 0039b7fd..119c05c7 100644 --- a/distributivité.md +++ b/distributivité.md @@ -3,7 +3,7 @@ alias: "distributive" --- up::[[structure algébrique]] title::"$*$ _distributive sur_ $\bot$ ssi :", " - $a*(b \bot c) = (a*b)\bot (a*c)$ (distributivité à droite)", " - $(b \bot c)*a = (b*a) \bot (c*a)$ (distributivité à gauche)" -#maths/algèbre +#s/maths/algèbre ---- Soit $E$ un ensemble muni de deux [[loi de composition interne]] : $*$ et $\bot$ : diff --git a/divergence grossière d'une série.md b/divergence grossière d'une série.md index d4d7880e..2b4b284f 100644 --- a/divergence grossière d'une série.md +++ b/divergence grossière d'une série.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "si $\lim\limits_{ n \to +\infty } u_{n} \neq 0$, alors $\sum\limits u_{n}$ DV" -#maths/analyse +#s/maths/analyse --- diff --git a/diversifier les médias d'apprentissage.md b/diversifier les médias d'apprentissage.md index ce10711b..7940bc24 100644 --- a/diversifier les médias d'apprentissage.md +++ b/diversifier les médias d'apprentissage.md @@ -2,7 +2,7 @@ alias: [ "il faut diversifier les médias d'apprentissage" ] --- up::[[apprentissage]] -#apprendre +#s/apprendre > [!idea] Diversifier les médias diff --git a/diversifier les points de vue pour apprendre.md b/diversifier les points de vue pour apprendre.md index ed7e9c9c..7ec1cb55 100644 --- a/diversifier les points de vue pour apprendre.md +++ b/diversifier les points de vue pour apprendre.md @@ -3,7 +3,7 @@ alias: [ "il faut diversifier les points de vue pour apprendre" ] --- up:: [[apprentissage]] title:: "différents points de vue permettent une meilleure compréhension globale" -#apprendre +#s/apprendre > [!idea] diversifier les points de vue diff --git a/divisibilité.md b/divisibilité.md index 626f2d18..c28b60da 100644 --- a/divisibilité.md +++ b/divisibilité.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- Soient $(a,b)\in\mathbb{Z}^2$, on dit que **$b$ divise $a$** et on note $\boxed{b\mid a}$ s'il existe $q\in\mathbb{Z}$ tel que $b = aq$ diff --git a/division euclidienne.md b/division euclidienne.md index ab7fb2d0..7ce53536 100644 --- a/division euclidienne.md +++ b/division euclidienne.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- diff --git a/docstring challenge du 2023-08-13.md b/docstring challenge du 2023-08-13.md index 6c8c4450..a6adc036 100644 --- a/docstring challenge du 2023-08-13.md +++ b/docstring challenge du 2023-08-13.md @@ -4,7 +4,7 @@ alias: "compter les voyelles dans une chaîne de caractères" up:: [[discord docstring challenge de la semaine]] sibling:: [[docstring challenges - 13 août 2023.qmd]] date:: 2023-08-13 -#informatique/langage/python +#s/informatique/langage/python # Overview diff --git a/documents.md b/documents.md new file mode 100644 index 00000000..bdf70c04 --- /dev/null +++ b/documents.md @@ -0,0 +1,14 @@ +--- +aliases: +up: +tags: +--- + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/dodécaèdre.md b/dodécaèdre.md index cedf75b9..07d4e230 100644 --- a/dodécaèdre.md +++ b/dodécaèdre.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre ---- symbole de shläfli : $\{5, 3\}$ diff --git a/donnée.md b/donnée.md index 0ac162c6..f519db71 100644 --- a/donnée.md +++ b/donnée.md @@ -1,5 +1,5 @@ up::[[concepts des bases de données]] -#informatique +#s/informatique Description élémentaire d'une réalité diff --git a/dragscroll.md b/dragscroll.md index 59cdd979..00a0ad27 100644 --- a/dragscroll.md +++ b/dragscroll.md @@ -3,8 +3,10 @@ aliases: - drag scroll on macos - défilement avec la souris sur macos - défilement avec une trackball +tags: + - "#howto" + - "#s/informatique" --- -#howto - gh emeryolcu/drag-scroll - link:: https://github.com/emreyolcu/drag-scroll/ diff --git a/droite affine.md b/droite affine.md index 1225139c..37de8121 100644 --- a/droite affine.md +++ b/droite affine.md @@ -1,7 +1,7 @@ up:: [[espace affine]] sibling:: [[droite vectorielle]] title:: "[[espace affine]] de [[dimension d'un espace affine|dimension]] 1" -#maths/algèbre +#s/maths/algèbre --- diff --git a/droite vectorielle.md b/droite vectorielle.md index 365d3726..8a16b92c 100644 --- a/droite vectorielle.md +++ b/droite vectorielle.md @@ -4,7 +4,7 @@ alias: "droites vectorielles" up::[[espace vectoriel]] sibling::[[plan vectoriel]] title::"[[espace vectoriel]] de [[dimension d'un espace vectoriel|dimension]] 1" -#maths/algèbre +#s/maths/algèbre ---- Une _droite vectorielle_ est un [[espace vectoriel]] de [[dimension d'un espace vectoriel|dimension]] 1 diff --git a/du contrat social. chapitre VII, du souverain.md b/du contrat social. chapitre VII, du souverain.md index 519f409c..abd8d7a8 100644 --- a/du contrat social. chapitre VII, du souverain.md +++ b/du contrat social. chapitre VII, du souverain.md @@ -7,7 +7,7 @@ author:: [[jacques rousseau]] source:: [[du contrat social]] link:: date-seen::2024-06-18 -#citation +#t/citation > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/du droit du plus fort.md b/du droit du plus fort.md index 94e9a919..62eb951b 100644 --- a/du droit du plus fort.md +++ b/du droit du plus fort.md @@ -6,7 +6,7 @@ author:: [[jacques rousseau]] source:: [[du contrat social]] chapitre:: 3, du droit du plus fort date-seen::2024-06-14 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Le plus fort n'est jamais assez fort pour être toujours le maître, s'il ne transforme pas sa force en droit, et son obéissance en devoir. diff --git a/duti.md b/duti.md index e0b627b9..00d7c08f 100644 --- a/duti.md +++ b/duti.md @@ -1,7 +1,7 @@ up:: [[terminal commandes]] title:: Changer les applications par défaut pour ouvrir certains types de fichiers link:: https://github.com/moretension/duti -#informatique +#s/informatique Pour changer les applications par défaut pour ouvrir certains types de fichier. diff --git a/décentralisation.md b/décentralisation.md index d3064fb6..9123858e 100644 --- a/décentralisation.md +++ b/décentralisation.md @@ -1,5 +1,5 @@ up:: [[politique.territoires]] -#politique +#s/politique > [!definition] décentralisation ^definition diff --git a/décomposition en produit de cycles disjoints.md b/décomposition en produit de cycles disjoints.md index 92870726..2130905c 100644 --- a/décomposition en produit de cycles disjoints.md +++ b/décomposition en produit de cycles disjoints.md @@ -1,5 +1,5 @@ up::[[k-cycle|cycle]], [[composition de permutations]] -#maths/algèbre +#s/maths/algèbre > [!proposition]+ [[décomposition en produit de cycles disjoints]] > Toute permutation $\sigma \in \mathfrak{S}_{n}$ se décompose de façon **unique** (à l'ordre près) en un produit de [[k-cycle|cycles]] à [[support d'une permutation|supports]] deux-à-deux **disjoints** diff --git a/décomposition en produit de transpositions.md b/décomposition en produit de transpositions.md index f59bd66f..a3f55f9c 100644 --- a/décomposition en produit de transpositions.md +++ b/décomposition en produit de transpositions.md @@ -1,5 +1,5 @@ up::[[transposition]] -#maths/algèbre +#s/maths/algèbre --- Soit $\sigma$ une [[permutation]] diff --git a/décomposition en somme d'une matrice symétrique et d'une antisymétrique.md b/décomposition en somme d'une matrice symétrique et d'une antisymétrique.md index dbace7cd..10e61e5e 100644 --- a/décomposition en somme d'une matrice symétrique et d'une antisymétrique.md +++ b/décomposition en somme d'une matrice symétrique et d'une antisymétrique.md @@ -3,7 +3,7 @@ alias: [ "décomposition en matrice symétrique et antisymétrique" ] --- up:: [[matrice]] title:: "toute matrice carrée se décompose en $S+A$, avec $\,^TS=S$ et $\,^TA=-A$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/défavorisé plutôt que opprimé.md b/défavorisé plutôt que opprimé.md index 27eb5aed..86c7f62f 100644 --- a/défavorisé plutôt que opprimé.md +++ b/défavorisé plutôt que opprimé.md @@ -1,5 +1,5 @@ up:: [[inversion des mots processus et des mots états]] -#politique #rhétorique +#s/politique #s/rhétorique > [!definition] défavorisé plutôt que opprimé > Le changement de l'utilisation du mot "opprimés" vers l'utilisation du mot "défavorisés" est politiquement important : diff --git a/définir la fonction signe sans conditions.md b/définir la fonction signe sans conditions.md index 116ff19e..dfc79e23 100644 --- a/définir la fonction signe sans conditions.md +++ b/définir la fonction signe sans conditions.md @@ -2,7 +2,7 @@ alias: [ "fonction signe sans conditions", "définitions sans condtions de la fonction signe" ] --- up:: [[fonction signe]], [[Notation mathématique traditionnelle]] -#maths +#s/maths --- diff --git a/définition axiomatique de N.md b/définition axiomatique de N.md index 2705fad5..5f03bff5 100644 --- a/définition axiomatique de N.md +++ b/définition axiomatique de N.md @@ -1,5 +1,5 @@ up::[[axiomatique]] -#maths +#s/maths --- diff --git a/définition axiomatique de Z.md b/définition axiomatique de Z.md index d20c3865..c4186f75 100644 --- a/définition axiomatique de Z.md +++ b/définition axiomatique de Z.md @@ -1,6 +1,6 @@ up::[[axiomatique]] title::"" -#maths #maths/logique +#s/maths #s/maths/logique --- diff --git a/définition de l'intelligence pour une IA.md b/définition de l'intelligence pour une IA.md index c82044ca..7957ede8 100644 --- a/définition de l'intelligence pour une IA.md +++ b/définition de l'intelligence pour une IA.md @@ -4,7 +4,7 @@ aliases: - définition de l'intelligence d'une IA --- up:: [[intelligence artificielle]] -#informatique +#s/informatique Pour définir une [[intelligence artificielle]], il faut pouvoir définir ce qu'est l'[[intelligence]]. diff --git a/démocratisation de l'éducation.md b/démocratisation de l'éducation.md index 731e608c..7b03b91b 100644 --- a/démocratisation de l'éducation.md +++ b/démocratisation de l'éducation.md @@ -1,5 +1,5 @@ up:: [[éducation]] sibling:: [[réduction des inégalités culturelles|démocratisation de la culture]] -#politique #apprendre +#s/politique #s/apprendre diff --git a/démonstration convergence sur a;+oo d'une intégrale absolument convergene.md b/démonstration convergence sur a;+oo d'une intégrale absolument convergene.md index c0a921c7..f84ed642 100644 --- a/démonstration convergence sur a;+oo d'une intégrale absolument convergene.md +++ b/démonstration convergence sur a;+oo d'une intégrale absolument convergene.md @@ -3,7 +3,7 @@ alias: [ "convergence sur [a;+∞[ d'une intégrale absolument convergente" ] --- up:: [[intégrale absolument convergente]] title:: "démonstration que $\displaystyle \int_{a}^{+\infty} |f(x)| \, dx \text{ CV.} \implies \int_{a}^{+\infty} f(x) \, dx \text{ CV.}$" -#maths/analyse +#s/maths/analyse --- diff --git a/démonstration correspondance équivalence et domination.md b/démonstration correspondance équivalence et domination.md index 4a895b90..84055c92 100644 --- a/démonstration correspondance équivalence et domination.md +++ b/démonstration correspondance équivalence et domination.md @@ -1,5 +1,5 @@ up::[[fonctions équivalentes|équivalence]], [[fonction dominée en un point|domination]] -#maths/analyse #démonstration +#s/maths/analyse #t/démonstration --- diff --git a/démonstration croissance comparée ln x et x.md b/démonstration croissance comparée ln x et x.md index 9a54d649..a743d9bb 100644 --- a/démonstration croissance comparée ln x et x.md +++ b/démonstration croissance comparée ln x et x.md @@ -1,5 +1,5 @@ up::[[croissances comparées usuelles]] -#maths +#s/maths --- diff --git a/démonstration d'une autre définition du groupe des classes modulo n premières avec n.md b/démonstration d'une autre définition du groupe des classes modulo n premières avec n.md index dd17ad92..eb2227c9 100644 --- a/démonstration d'une autre définition du groupe des classes modulo n premières avec n.md +++ b/démonstration d'une autre définition du groupe des classes modulo n premières avec n.md @@ -1,5 +1,5 @@ up:: [[groupe des classes modulo n premières avec n]] -#maths/algèbre +#s/maths/algèbre On veut montrer que $(\mathbb{Z} / n\mathbb{Z})^{\times} = \{ \overline{k} \in \mathbb{Z} /n\mathbb{Z} \mid \exists u \in \mathbb{Z} /n\mathbb{Z}, \quad \overline{k} u = \overline{1} \}$ diff --git a/démonstration de l'expression de l'arg sinus hyperbolique.md b/démonstration de l'expression de l'arg sinus hyperbolique.md index 1aa9d768..15fc58c7 100644 --- a/démonstration de l'expression de l'arg sinus hyperbolique.md +++ b/démonstration de l'expression de l'arg sinus hyperbolique.md @@ -1,7 +1,7 @@ up::[[fonction sinus hyperbolique|sh]] sibling::[[démonstration expression de l'arg cosinus hyperbolique]] description::"" -#maths/trigonométrie #démonstration +#s/maths/trigonométrie #t/démonstration $$\begin{align*} diff --git a/démonstration de l'unicité de la mesure produit.md b/démonstration de l'unicité de la mesure produit.md index f7f0fef8..1c50197f 100644 --- a/démonstration de l'unicité de la mesure produit.md +++ b/démonstration de l'unicité de la mesure produit.md @@ -1,5 +1,5 @@ up:: [[mesure produit]] -#démonstration #maths/intégration +#t/démonstration #s/maths/intégration > [!lemme] > Soient $(E, \mathcal{A}, \mu)$ et $(F, \mathcal{B}, \nu)$ deux [[espace mesuré|espaces mesurés]] que l'on suppose [[mesure sigma finie|σ-finis]] diff --git a/démonstration de l'équivalence de la norme 1 et de la norme infini sur Rn.md b/démonstration de l'équivalence de la norme 1 et de la norme infini sur Rn.md index e62240ce..91e18ff8 100644 --- a/démonstration de l'équivalence de la norme 1 et de la norme infini sur Rn.md +++ b/démonstration de l'équivalence de la norme 1 et de la norme infini sur Rn.md @@ -1,5 +1,5 @@ up:: [[normes équivalentes]], [[norme p]] -#maths/algèbre +#s/maths/algèbre Soit $x \in \mathbb{R}^{n}$ quelconque diff --git a/démonstration de la non équivalence de la norme 1 et de la norme infini sur l'espace des fonctions continues sur un segment.md b/démonstration de la non équivalence de la norme 1 et de la norme infini sur l'espace des fonctions continues sur un segment.md index b5e24117..7185789a 100644 --- a/démonstration de la non équivalence de la norme 1 et de la norme infini sur l'espace des fonctions continues sur un segment.md +++ b/démonstration de la non équivalence de la norme 1 et de la norme infini sur l'espace des fonctions continues sur un segment.md @@ -1,5 +1,5 @@ up:: [[normes équivalentes]], [[norme p]] -#maths/algèbre +#s/maths/algèbre On veut démontrer que $\|\cdot \|_{1}$ et $\|\cdot \|_{\infty}$ ne sont pas équivalente sur $\mathcal{C}([0; 1], \mathbb{R})$ Comme $\displaystyle \forall t \in [0; 1], \quad |f(t)| \leq \sup_{s \in [0; 1]}(f(s)) = \|f\|_{\infty}$ diff --git a/démonstration des définitions alternatives de la compacité.md b/démonstration des définitions alternatives de la compacité.md index d6b47e32..99bfae6c 100644 --- a/démonstration des définitions alternatives de la compacité.md +++ b/démonstration des définitions alternatives de la compacité.md @@ -1,5 +1,5 @@ up:: [[espace métrique compact|compact]] -#maths/topologie +#s/maths/topologie On veut démontrer que : > Soit $(X, d)$ un [[espace métrique]] diff --git a/démonstration distance entre deux droites de l'espace.md b/démonstration distance entre deux droites de l'espace.md index 22f4977f..52fa7352 100644 --- a/démonstration distance entre deux droites de l'espace.md +++ b/démonstration distance entre deux droites de l'espace.md @@ -1,6 +1,6 @@ up:: distance [[distance entre deux droites dans l'espace]] title:: -#maths/géométrie +#s/maths/géométrie --- diff --git a/démonstration du théorème de convergence dominée.md b/démonstration du théorème de convergence dominée.md index 10650de8..f8bd025e 100644 --- a/démonstration du théorème de convergence dominée.md +++ b/démonstration du théorème de convergence dominée.md @@ -1,5 +1,5 @@ up:: [[théorème de convergence dominée]] -#maths/intégration +#s/maths/intégration On veut démontrer : ![[théorème de convergence dominée#^theoreme]] diff --git a/démonstration expression de l'arg cosinus hyperbolique.md b/démonstration expression de l'arg cosinus hyperbolique.md index 5d2cb4d5..1de910a6 100644 --- a/démonstration expression de l'arg cosinus hyperbolique.md +++ b/démonstration expression de l'arg cosinus hyperbolique.md @@ -1,7 +1,7 @@ up::[[fonction cosinus hyperbolique|ch]] sibling::[[démonstration de l'expression de l'arg sinus hyperbolique]] description::"démonstration de $\arg \mathrm{ch}(x)=\ln\left(x + \sqrt{x^{2}-1}\right)$" -#maths/trigonométrie #démonstration +#s/maths/trigonométrie #t/démonstration $$\begin{align*} diff --git a/démonstration forme des sous groupes de Z.md b/démonstration forme des sous groupes de Z.md index 2e3fbb63..877f36e9 100644 --- a/démonstration forme des sous groupes de Z.md +++ b/démonstration forme des sous groupes de Z.md @@ -1,6 +1,6 @@ up:: sous [[sous-groupes de Z muni de +]] title:: "les sous groupes de $\mathbb{Z}$ sont les $m\mathbb{Z}$ où $m$ est le plus petit strictement positif du groupe" -#maths/algèbre +#s/maths/algèbre --- diff --git a/démonstration formule négligeabilité avec epsilon.md b/démonstration formule négligeabilité avec epsilon.md index 992dae31..db39d444 100644 --- a/démonstration formule négligeabilité avec epsilon.md +++ b/démonstration formule négligeabilité avec epsilon.md @@ -1,5 +1,5 @@ up::[[fonction négligeable devant une autre]] -#maths/analyse #démonstration +#s/maths/analyse #t/démonstration --- Démonstration de $f = o_{+\infty}(g) \iff \forall \varepsilon > 0, \forall b \in \, \forall x \in X, x \geq b \implies |f(x)| \leq \varepsilon|g(x)|$ diff --git a/démonstration intersection de deux droites vectorielles.md b/démonstration intersection de deux droites vectorielles.md index 6de9b2ed..6c54f767 100644 --- a/démonstration intersection de deux droites vectorielles.md +++ b/démonstration intersection de deux droites vectorielles.md @@ -1,7 +1,7 @@ up::[[droite vectorielle]] title::"$D_{1} = D_{1}$ ou $D_{1} \cap D_{2} = \{ 0_{E} \}$" outdescription::"deux droites vectorielles sont confondues ou ont pour intersection $0_{E}$" -#démonstration #maths/algèbre +#t/démonstration #s/maths/algèbre --- diff --git a/démonstration l'ensemble des matrices modulaires est un groupe fini avec la multiplication de matrices.md b/démonstration l'ensemble des matrices modulaires est un groupe fini avec la multiplication de matrices.md index 537663fc..c11ed71f 100644 --- a/démonstration l'ensemble des matrices modulaires est un groupe fini avec la multiplication de matrices.md +++ b/démonstration l'ensemble des matrices modulaires est un groupe fini avec la multiplication de matrices.md @@ -1,5 +1,5 @@ up:: [[groupe linéaire des matrices modulaires]] -#maths/algèbre +#s/maths/algèbre Soit $p$ un [[nombre premier]] Soit $(GL_{n}(p), \times)$ l'ensemble des matrices modulaires de taille $n$ sur $\mathbb{Z} / p\mathbb{Z}$ muni de la [[multiplication de matrices]] diff --git a/démonstration l'image réciproque d'une tribu est une tribu.md b/démonstration l'image réciproque d'une tribu est une tribu.md index fc738400..1a2115b3 100644 --- a/démonstration l'image réciproque d'une tribu est une tribu.md +++ b/démonstration l'image réciproque d'une tribu est une tribu.md @@ -1,5 +1,5 @@ up:: [[tribu image réciproque]] -#maths/algèbre +#s/maths/algèbre Soit $f: E \to F$ Soit $\mathcal{B}$ une [[tribu]] sur $F$ $f^{-1}(\mathcal{B}) = \{ f^{-1}(B) \mid B \in \mathcal{B} \}$ diff --git a/démonstration l'intersection de tribus sur E est une tribu sur E.md b/démonstration l'intersection de tribus sur E est une tribu sur E.md index 8432587a..6ed42560 100644 --- a/démonstration l'intersection de tribus sur E est une tribu sur E.md +++ b/démonstration l'intersection de tribus sur E est une tribu sur E.md @@ -1,5 +1,5 @@ up:: [[tribu]] -#maths/algèbre +#s/maths/algèbre > [!definition] Proposition > L'intersection de [[tribu|tribus]] sur $E$ est une [[tribu]] sur $E$ diff --git a/démonstration l'inverse d'un élément d'un groupe est unique.md b/démonstration l'inverse d'un élément d'un groupe est unique.md index 37759b44..f9707107 100644 --- a/démonstration l'inverse d'un élément d'un groupe est unique.md +++ b/démonstration l'inverse d'un élément d'un groupe est unique.md @@ -3,7 +3,7 @@ aliases: - démonstration de l'unicité de l'inverse d'un élément d'un groupe --- up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre Soit $(G, *)$ un [[groupe]] Soit $g \in G$ diff --git a/démonstration la tribu borélienne est engendrée par l'ensemble des demi droites.md b/démonstration la tribu borélienne est engendrée par l'ensemble des demi droites.md index 5b823074..b6f3dff8 100644 --- a/démonstration la tribu borélienne est engendrée par l'ensemble des demi droites.md +++ b/démonstration la tribu borélienne est engendrée par l'ensemble des demi droites.md @@ -1,5 +1,5 @@ up:: [[tribu borélienne]] -#maths/algèbre +#s/maths/algèbre Quels que soient $a, b \in \mathbb{R}$ (avec $a < b$), on peut exprimer $[a; b[$ simplement à partir d'intervalles de la forme $]- \infty; x[$, et des intersections et des unions : $[a; b[\; = \left( ]-\infty; a[^{C} \right) \;\cap\; ]-\infty; b[$ diff --git a/démonstration la tribu borélienne est engendrée par l'ensemble des ouverts bornés à extrémités rationnelles.md b/démonstration la tribu borélienne est engendrée par l'ensemble des ouverts bornés à extrémités rationnelles.md index 3731e6c3..889da70d 100644 --- a/démonstration la tribu borélienne est engendrée par l'ensemble des ouverts bornés à extrémités rationnelles.md +++ b/démonstration la tribu borélienne est engendrée par l'ensemble des ouverts bornés à extrémités rationnelles.md @@ -1,5 +1,5 @@ up:: [[tribu borélienne]] -#maths/algèbre +#s/maths/algèbre Soit $\mathcal{O}$ l'ensemble des [[partie ouverte d'un espace métrique|ouverts]] de $\mathbb{R}$ Soit $\mathcal{O}_{2}$ l'ensemble des [[partie ouverte d'un espace métrique|ouverts]] bornés à extrémités rationnelles. diff --git a/démonstration le produit de groupes reste un groupe.md b/démonstration le produit de groupes reste un groupe.md index dbcf4d41..9e364146 100644 --- a/démonstration le produit de groupes reste un groupe.md +++ b/démonstration le produit de groupes reste un groupe.md @@ -1,5 +1,5 @@ up:: [[produit direct de groupes]] -#maths/algèbre +#s/maths/algèbre Soient $(G, *_{G})$ et $(H, *_{H})$ deux groupes. On veut montrer que le produit $(G \times H, *)$ est bien un groupe pour la loi $*$ définie comme $(g, h)*(g', h') = (g*_{G}g', h*_{H}h')$ diff --git a/démonstration le produit direct de groupes conserve la commutativité.md b/démonstration le produit direct de groupes conserve la commutativité.md index e88578e7..dffcde9b 100644 --- a/démonstration le produit direct de groupes conserve la commutativité.md +++ b/démonstration le produit direct de groupes conserve la commutativité.md @@ -1,5 +1,5 @@ up:: [[produit direct de groupes abéliens]] -#maths/algèbre +#s/maths/algèbre $$ \begin{align} diff --git a/démonstration limite (1+1÷n)*n.md b/démonstration limite (1+1÷n)*n.md index c92f5ffd..ccf692a5 100644 --- a/démonstration limite (1+1÷n)*n.md +++ b/démonstration limite (1+1÷n)*n.md @@ -3,7 +3,7 @@ alias: [ "démonstration lim (1 + 1/n)ⁿ = e" ] --- up:: [[fonction exponentielle]] title:: "$\displaystyle \lim\limits_{ n \to +\infty } \left( 1 + \frac{1}{n} \right)^{n} = e$" -#maths/analyse +#s/maths/analyse --- diff --git a/démonstration par réccurence somme des carrés.md b/démonstration par réccurence somme des carrés.md index 90e19aa8..4f86764d 100644 --- a/démonstration par réccurence somme des carrés.md +++ b/démonstration par réccurence somme des carrés.md @@ -1,6 +1,6 @@ up::[[somme des carrés]] title::"démonstration de $\sum\limits_{k=1}^{n}k^{2} = \frac{n(n+1)(2n+1)}{6}$" -#maths #démonstration +#s/maths #t/démonstration --- diff --git a/démonstration positivité de toute norme.md b/démonstration positivité de toute norme.md index 11d08053..b7a80a89 100644 --- a/démonstration positivité de toute norme.md +++ b/démonstration positivité de toute norme.md @@ -1,5 +1,5 @@ up:: [[norme]] -#maths/algèbre +#s/maths/algèbre Soit $x \in E$ $0_{E} = x + (-1)x$ diff --git a/démonstration qu'une norme peut former une distance.md b/démonstration qu'une norme peut former une distance.md index 5a382072..1ee8b9d0 100644 --- a/démonstration qu'une norme peut former une distance.md +++ b/démonstration qu'une norme peut former une distance.md @@ -1,5 +1,5 @@ up:: [[distance]], [[norme]] -#maths/algèbre +#s/maths/algèbre Soit $E$ un [[espace vectoriel]] Soit $\|\cdot\|$ une [[norme]] sur $E$ diff --git a/démonstration que la norme de manhattan est bien une norme.md b/démonstration que la norme de manhattan est bien une norme.md index 96fe5b62..ba78eb70 100644 --- a/démonstration que la norme de manhattan est bien une norme.md +++ b/démonstration que la norme de manhattan est bien une norme.md @@ -1,5 +1,5 @@ up:: [[norme de manhattan]] -#maths/algèbre +#s/maths/algèbre On cherche à montrer que la [[norme de manhattan]] $\|x\|_{1} = \sum\limits_{i=1}^{n} (|x_{i}|)$ est bien une norme diff --git a/démonstration règle d'Abel.md b/démonstration règle d'Abel.md index 1d4b0465..101b5287 100644 --- a/démonstration règle d'Abel.md +++ b/démonstration règle d'Abel.md @@ -1,6 +1,6 @@ up:: [[règle d'Abel pour les intégrales]] title:: -#maths/analyse #démonstration +#s/maths/analyse #t/démonstration ![[règle d'Abel pour les intégrales#^definition]] diff --git a/démonstration simplification de la congruence.md b/démonstration simplification de la congruence.md index 3235466d..6c153f2a 100644 --- a/démonstration simplification de la congruence.md +++ b/démonstration simplification de la congruence.md @@ -1,6 +1,6 @@ up:: [[congruence]] title:: "démonstrations sur les simplifications possibles avec la congruence" -#démonstration +#t/démonstration --- diff --git a/démonstration sinus hyperbolique d'une somme.md b/démonstration sinus hyperbolique d'une somme.md index 6f34f6bf..b3dcd076 100644 --- a/démonstration sinus hyperbolique d'une somme.md +++ b/démonstration sinus hyperbolique d'une somme.md @@ -3,7 +3,7 @@ alias: "démonstration sh(a+b)" --- up::[[fonction sinus hyperbolique|sh]] description::"démonstration de $\mathrm{sh}(a+b)=\mathrm{sh}(a)\mathrm{ch}(b)+\mathrm{sh}(b)\mathrm{ch}(a)$" -#maths/trigonométrie #démonstration +#s/maths/trigonométrie #t/démonstration # démonstration sinus hyperbolique d'une somme $\mathrm{sh}(a)+\mathrm{ch}(a) = \dfrac{e^{a}-e^{-a}}{2}+\dfrac{e^{a}+e^{-a}}{2} = \dfrac{2e^{a}}{2} = e^a$ diff --git a/démonstration somme des carrés.md b/démonstration somme des carrés.md index c1cbe09d..bc7b168a 100644 --- a/démonstration somme des carrés.md +++ b/démonstration somme des carrés.md @@ -1,6 +1,6 @@ up::[[somme des carrés]] title::"démonstration de $\sum\limits_{k=1}^{n}k^{2} = \frac{n(n+1)(2n+1)}{6}$" -#maths #démonstration +#s/maths #t/démonstration --- On utilise la formule du [[binôme de Newton]] pour chacun des cubes : diff --git a/démonstration un groupe possède un unique élément neutre.md b/démonstration un groupe possède un unique élément neutre.md index f4f4232c..d0762cbd 100644 --- a/démonstration un groupe possède un unique élément neutre.md +++ b/démonstration un groupe possède un unique élément neutre.md @@ -3,7 +3,7 @@ aliases: - démonstration de l'unicité de l'élément neutre d'un groupe --- up:: [[élément neutre]] -#maths/algèbre +#s/maths/algèbre On veut montrer l'unicité de l'élément neutre d'un groupe. diff --git a/démonstration.md b/démonstration.md index b30aac4d..3114bdae 100644 --- a/démonstration.md +++ b/démonstration.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique --- Une _démonstration formelle_ est l'application successive de plusieurs [[règle d'inférence|règles d'inférence]] à partir d'un ensemble [[axiome|d'axiomes]] ou de [[théorème|théorèmes]] déjà démontrés. diff --git a/dénombrement.md b/dénombrement.md index 2b037a2b..68594687 100644 --- a/dénombrement.md +++ b/dénombrement.md @@ -1,5 +1,5 @@ title:: -#maths +#s/maths ```breadcrumbs title: "Sous-notes" diff --git a/dérivabilité d'une limite de fonctions.md b/dérivabilité d'une limite de fonctions.md index 5c6bf9cb..5bc5ccf9 100644 --- a/dérivabilité d'une limite de fonctions.md +++ b/dérivabilité d'une limite de fonctions.md @@ -1,7 +1,7 @@ up:: [[suite de fonctions convergence uniforme|convergence uniforme]], [[suite de fonctions convergente|convergence simple]], [[suite de fonctions]] sibling:: [[dérivabilité d'une série de fonctions]] title:: "$f = \lim\limits_{ n \to \infty }f_{n}$ est dérivable si $f_{n}'$ [[suite de fonctions convergence uniforme|converge uniformément]]" -#maths/analyse +#s/maths/analyse --- diff --git a/dérivabilité d'une série de fonctions.md b/dérivabilité d'une série de fonctions.md index 8f1b61bf..f41cf37c 100644 --- a/dérivabilité d'une série de fonctions.md +++ b/dérivabilité d'une série de fonctions.md @@ -1,7 +1,7 @@ up:: [[série de fonctions]] sibling:: [[dérivabilité d'une limite de fonctions]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/dérivation.md b/dérivation.md index 5acd6a84..3bd8db04 100644 --- a/dérivation.md +++ b/dérivation.md @@ -2,7 +2,7 @@ alias: "dérivée" --- up::[[analyse]] -#maths/analyse +#s/maths/analyse La dérivée d'une fonction $f$ est la fonction $f'$ telle que : diff --git a/dérivée d'une courbe paramétrée.md b/dérivée d'une courbe paramétrée.md index 86c199f8..9562b7ba 100644 --- a/dérivée d'une courbe paramétrée.md +++ b/dérivée d'une courbe paramétrée.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse --- diff --git a/dérivée d'une série entière.md b/dérivée d'une série entière.md index 8df84f78..cd7aba9e 100644 --- a/dérivée d'une série entière.md +++ b/dérivée d'une série entière.md @@ -1,6 +1,6 @@ up:: [[série entière]], [[dérivation|dérivée]] title:: "$\left( x \mapsto \sum\limits_{n\geq 0} a_{n}x^{n} \right)' = \left( x \mapsto \sum\limits_{n \geq 1} na_{n}x^{n-1} \right)$" -#maths/analyse +#s/maths/analyse --- diff --git a/dérivées successives.md b/dérivées successives.md index a22c991b..fa4581d3 100644 --- a/dérivées successives.md +++ b/dérivées successives.md @@ -2,57 +2,56 @@ sr-due: 2023-06-15 sr-interval: 239 sr-ease: 312 ---- -up::[[dérivation]] -#maths/analyse - +up: "[[dérivation]]" +tags: "#s/maths/analyse" --- -On utilise la notation pour les [[dérivation|dérivées]] : - - $f^{(0)}=f$ - - $f^{(n)} = (f^{(n-1)})'$ cette dérivée existe +> [!definition] Notation +> - $f^{(0)}=f$ +> - $f^{(n)} = (f^{(n-1)})'$ si cette dérivée existe # Propriétés - - Si $f^{(n)}$ existe, alors toutes les dérivées d'ordre inférieur existent - - $\left(f^{(p)}\right)^{(q)} = f^{(p+q)}$ + - prop Si $f^{(n)}$ existe, alors toutes les dérivées d'ordre inférieur existent + - prop $\left(f^{(p)}\right)^{(q)} = f^{(p+q)}$ -## Ordre -Dans $f^{(n)}$, on appelle **ordre** de dérivation la valeur de $n$ +> [!proposition]+ Ordre +> Dans $f^{(n)}$, on appelle **ordre** de dérivation la valeur de $n$ +> +> - = $f^{(5)}$ est une dérivée d'**ordre 5** -Exemple : -$f^{(5)}$ est une dérivée d'**ordre 5** +> [!proposition]+ Linéarité des dérivées successives +> Soient $f, g \in \mathcal{D}^{n}$ des fonctions $n$ fois dérivables +> Soit $k \in \mathbb{R}$ quelconque +> On a $(k\cdot f +g) \in \mathcal{D}^{n}$ et l'égalité suivante : +> $\boxed{(x\cdot f+g)^{(n)} = k\cdot f^{(n)} + g^{(n)}}$ +> Par ailleurs, si $g$ ne s'annule pas, on a : +> $\frac{f}{g} \in \mathcal{D}^{n}$ -## Théorème -Si $f$ et $g$ sont $n$ fois dérivables avec $n\in\mathbb N^*$ - - $(f+g)$ est $n$ fois dérivable - - $(f+g)^{(n)} = f^{(n)}+g^{(n)}$ - - $\forall k\in\mathbb R, k\times f\text{ est dérivable}$ - - $\forall k\in\mathbb R, (k\times f)^{(n)} = k\times f^{(n)}$ - - Si $g$ ne s'annule pas, $\frac{f}{g}$ est $n$ fois dérivable - - -## Formule de Leibniz -$\displaystyle(f\times g)^{(n)} = \sum_{k=0}^n \left( \binom{n}{k}f^{(k)}\times g^{(n-k)} \right)$ +> [!proposition]+ Formule de Leibniz +> +> $\displaystyle(f\times g)^{(n)} = \sum_{k=0}^n \left( \binom{n}{k}f^{(k)}\times g^{(n-k)} \right)$ +> +> > [!example]- Exemple +> > $h(x) = x^2 \times e^{3x}, \mathscr D_f = \mathbb R$ +> > On pose $f(x) = x^2$ et $g(x) = e^{3x}$ +> > - $f^{(0)}=x^2$ +> > - $f^{(1)}=2x$ +> > - $f^{(2)} = 2$ +> > - $f^{(n)}(x) = 0$ pour $n\geq 3$ +> > et +> > - $g^{(0)} = e^{3x}$ +> > - $g^{(1)}=3e^{3x}$ +> > - $g^{(2)}=9e^{3x}$ +> > - $\vdots$ +> > - $g^{(n)}=3^n \cdot e^{3x}$ +> > +> > Donc: +> > $$\begin{align} +> > h^{(4)}(x) &= \sum_{k=0}^4 \left( \binom4k \cdot f^{(k)}(x) \cdot g^{(4-k)}(x) \right)\\[2ex] +> > &= x^2 \cdot 81e^{3x} + 4 \cdot 2x \cdot 27e^{3x} + 6 \cdot 2 \cdot 9e^{3x} + 0\\[1ex] +> > &= 27e^{3x}\left( 3x^2 + 8x + 4 \right) +> > \end{align}$$ -### Exemple : $h(x) = x^2 \times e^{3x}, \mathscr D_f = \mathbb R$ -On pose $f(x) = x^2$ et $g(x) = e^{3x}$ -- $f^{(0)}=x^2$ -- $f^{(1)}=2x$ -- $f^{(2)} = 2$ -- $\vdots$ -- $f^{(n)}(x) = 0$ pour $n\geq 3$ -- $g^{(0)} = e^{3x}$ -- $g^{(1)}=3e^{3x}$ -- $g^{(2)}=9e^{3x}$ -- $\vdots$ -- $g^{(n)}=3^n \cdot e^{3x}$ - -Donc: -$$\begin{align} -h^{(4)}(x) &= \sum_{k=0}^4 \left( \binom4k \cdot f^{(k)}(x) \cdot g^{(4-k)}(x) \right)\\[2ex] -&= x^2 \cdot 81e^{3x} + 4 \cdot 2x \cdot 27e^{3x} + 6 \cdot 2 \cdot 9e^{3x} + 0\\[1ex] -&= 27e^{3x}\left( 3x^2 + 8x + 4 \right) -\end{align}$$ diff --git a/déterminant d'une matrice.md b/déterminant d'une matrice.md index 7ddb9f7e..0699c2c1 100644 --- a/déterminant d'une matrice.md +++ b/déterminant d'une matrice.md @@ -6,7 +6,7 @@ alias: [ "déterminant" ] --- up::[[matrice]] -#maths/algèbre +#s/maths/algèbre --- Soit $A$ une [[matrice]]. diff --git a/déterminant hessien.md b/déterminant hessien.md index ef45d9a6..69fe2c3b 100644 --- a/déterminant hessien.md +++ b/déterminant hessien.md @@ -1,5 +1,5 @@ up:: [[matrice hessienne]], [[déterminant d'une matrice|déterminant]], [[fonction de plusieurs variables]] -#maths/analyse +#s/maths/analyse > [!definition] déterminant hessien > Le déterminant de la [[matrice hessienne]] d'une [[fonction de plusieurs variables]] $f$, noté $| H(f) |$. diff --git a/déterminant jacobien.md b/déterminant jacobien.md index 1f2d3463..d3186bd1 100644 --- a/déterminant jacobien.md +++ b/déterminant jacobien.md @@ -3,7 +3,7 @@ aliases: - jacobien --- up:: [[matrice jacobienne]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soient $\Delta \subset \mathbb{R}^{d}$ et $D \subset \mathbb{R}^{d}$ deux ouverts diff --git a/déterminant sur les matrices modulaires.md b/déterminant sur les matrices modulaires.md index ddc1586c..e5fb19d5 100644 --- a/déterminant sur les matrices modulaires.md +++ b/déterminant sur les matrices modulaires.md @@ -1,5 +1,5 @@ up:: [[matrices modulaires]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[déterminant sur les matrices modulaires]] > Soit $M = (\overline{a}_{ij}) \in \mathcal{M}_{n}(\overline{m})$ une [[matrices modulaires|matrice modulaire]] diff --git a/déterminisme social.md b/déterminisme social.md new file mode 100644 index 00000000..402ce2c5 --- /dev/null +++ b/déterminisme social.md @@ -0,0 +1,15 @@ +--- +aliases: +up: + - "[[sociologie]]" +tags: +--- + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 1] +``` diff --git a/développement limité.md b/développement limité.md index d2d6b857..ed88e3e7 100644 --- a/développement limité.md +++ b/développement limité.md @@ -1,5 +1,5 @@ u\p::[[analyse]] -#maths/analyse +#s/maths/analyse --- diff --git a/développements limités usuels.md b/développements limités usuels.md index 25109dfe..383fc155 100644 --- a/développements limités usuels.md +++ b/développements limités usuels.md @@ -1,5 +1,5 @@ up::[[développement limité]] -#maths/analyse +#s/maths/analyse --- Ici, on pose $\displaystyle\forall i\in\mathbb N, \lim_{x\rightarrow0}\varepsilon_i(x) = 0$ diff --git a/elm.md b/elm.md index 179d0b04..5171c7d9 100644 --- a/elm.md +++ b/elm.md @@ -1,5 +1,5 @@ up:: [[langage de programmation]] title:: "langage fonctionnel" -#informatique +#s/informatique --- \ No newline at end of file diff --git a/encodage.md b/encodage.md index 7cd44d73..fbb61228 100644 --- a/encodage.md +++ b/encodage.md @@ -1,5 +1,5 @@ up::[[informatique|informatique]] -#informatique +#s/informatique ---- diff --git a/endomorphisme adjoint.md b/endomorphisme adjoint.md index 8bdf3a5f..4d72b1e3 100644 --- a/endomorphisme adjoint.md +++ b/endomorphisme adjoint.md @@ -1,7 +1,7 @@ up:: [[endomorphisme linéaire]] sibling:: [[matrice adjointe]] title:: "$f^{*}$ tel que $\langle f^{*}(u), v \rangle = \langle u, f(v) \rangle$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/endomorphisme d'espaces vectoriels.md b/endomorphisme d'espaces vectoriels.md index 20d02be9..00f58cff 100644 --- a/endomorphisme d'espaces vectoriels.md +++ b/endomorphisme d'espaces vectoriels.md @@ -1,7 +1,7 @@ up:: [[automorphisme]] down::[[endomorphisme linéaire]] title:: "[[automorphisme]] d'[[espace vectoriel]]" -#maths/algèbre +#s/maths/algèbre > [!definition] [[endomorphisme d'espaces vectoriels]] > Un endomorphisme d'espace vectoriel [[morphisme de groupes]] d'un [[espace vectoriel]] dans lui-même. diff --git a/endomorphisme de groupe.md b/endomorphisme de groupe.md index 46090ae1..bd6dbe8d 100644 --- a/endomorphisme de groupe.md +++ b/endomorphisme de groupe.md @@ -1,5 +1,5 @@ up:: [[morphisme de groupes]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Un **endomorphisme de groupe** est un [[morphisme de groupes]] d'un groupe dans lui-même. diff --git a/endomorphisme linéaire.md b/endomorphisme linéaire.md index 97913e46..6a23ccbc 100644 --- a/endomorphisme linéaire.md +++ b/endomorphisme linéaire.md @@ -1,5 +1,5 @@ up::[[endomorphisme d'espaces vectoriels]], [[application linéaire]] -#maths/algèbre +#s/maths/algèbre ---- Un _endomorphisme linéaire_ est une [[application linéaire]] d'un [[espace vectoriel]] dans lui même. diff --git a/endomorphisme normal.md b/endomorphisme normal.md index 7044a575..2827db03 100644 --- a/endomorphisme normal.md +++ b/endomorphisme normal.md @@ -3,7 +3,7 @@ alias: [ "normal" ] --- up:: [[endomorphisme d'espaces vectoriels]] title:: "$f \circ f^{*} = f^{*} \circ f$ (commute avec son [[endomorphisme adjoint|adjoint]])" -#maths/algèbre +#s/maths/algèbre --- diff --git a/endomorphisme symétrique.md b/endomorphisme symétrique.md index 01532e18..200151fd 100644 --- a/endomorphisme symétrique.md +++ b/endomorphisme symétrique.md @@ -3,7 +3,7 @@ alias: [ "endomorphisme autoadjoint" ] --- up:: [[endomorphisme d'espaces vectoriels]] title:: "$\langle \varphi(u), v \rangle = \langle u, \varphi(v) \rangle$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/english grammar.md b/english grammar.md index 15306799..6c246d08 100644 --- a/english grammar.md +++ b/english grammar.md @@ -1,6 +1,6 @@ up::[[anglais|english]] title::"" -#anglais +#s/anglais ---- diff --git a/enseigner implique de construire des modèles.md b/enseigner implique de construire des modèles.md index a25c6a4b..bd2c5b0a 100644 --- a/enseigner implique de construire des modèles.md +++ b/enseigner implique de construire des modèles.md @@ -1,5 +1,5 @@ up:: [[enseigner la programmation]] -#informatique #apprendre +#s/informatique #s/apprendre Les modèles se retrouvent partout dans l'enseignement. diff --git a/enseigner la programmation.md b/enseigner la programmation.md index 83aaffc7..75e24e28 100644 --- a/enseigner la programmation.md +++ b/enseigner la programmation.md @@ -1,9 +1,15 @@ -up:: [[programmation]], [[apprentissage]] -#informatique +--- +up: + - "[[programmation]]" + - "[[apprentissage]]" +tags: "#s/informatique" +--- -> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> title: false -> type: tree -> dir: down -> ``` \ No newline at end of file +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/ensemble compact.md b/ensemble compact.md index a816aa28..f137afc4 100644 --- a/ensemble compact.md +++ b/ensemble compact.md @@ -1,6 +1,6 @@ up:: [[partie fermée d'un espace métrique|fermé]] title:: -#maths/topologie #not-done +#s/maths/topologie #not-done > [!definition] sur $\mathbb{R}$ > Une partie de $\mathbb{R}$ est **compacte** ssi elle est [[partie fermée d'un espace métrique|fermée]] et [[partie bornée|bornée]] diff --git a/ensemble de définition.md b/ensemble de définition.md index 10d1bb54..2e371b8b 100644 --- a/ensemble de définition.md +++ b/ensemble de définition.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse ---- Soit $f$ une fonction. L'ensemble de définition $\mathscr D_f$ de $f$ est l'ensemble des valeurs $x$ telles que $f(x)$ existe. diff --git a/ensemble dense.md b/ensemble dense.md deleted file mode 100644 index f0228b6f..00000000 --- a/ensemble dense.md +++ /dev/null @@ -1,13 +0,0 @@ -up:: [[boule]] -#maths/topologie - -> [!definition] [[ensemble dense]] -> Un ensemble $H$ est dense dans $E$ si : -> $\boxed{\forall x \in E,\quad \forall r>0,\quad B_{E}(x, r) \cap H \neq \emptyset}$ -> - I Aucun élément de $E$ n'a de voisinage qui ne touche pas $H$ -^definition - -# Propriétés - -# Exemples - diff --git a/ensemble des applications linéaires continues.md b/ensemble des applications linéaires continues.md index 9d6cc908..de307822 100644 --- a/ensemble des applications linéaires continues.md +++ b/ensemble des applications linéaires continues.md @@ -3,7 +3,7 @@ share_link: https://share.note.sx/926ro3wq#Yl1AC7BmeFHD0mq/IO8lGXRI5seOqmV73KBGJ share_updated: 2024-10-04T11:36:40+02:00 --- up:: [[ensemble des applications linéaires]], [[application linéaire continue]] -#maths/algèbre #maths/topologie +#s/maths/algèbre #s/maths/topologie > [!definition] [[ensemble des applications linéaires continues]] > Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] diff --git a/ensemble des applications linéaires.md b/ensemble des applications linéaires.md index 3be3165d..5f648a61 100644 --- a/ensemble des applications linéaires.md +++ b/ensemble des applications linéaires.md @@ -3,7 +3,7 @@ up:: [[espace vectoriel]], [[application linéaire]] down:: [[ensemble des endomorphismes linéaires]] title::$\mathcal{L}(E, F) = \text{ensemble des applications linéaires de } E \to F$ description::$\mathcal{L} = \{ f \in F^{E} \mid \forall (u, v)\in E, \forall \lambda \in \mathbf{K}, \}$ -#maths/algèbre +#s/maths/algèbre > [!definition] > Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] diff --git a/ensemble des booléens.md b/ensemble des booléens.md index 04abf577..0cd0b818 100644 --- a/ensemble des booléens.md +++ b/ensemble des booléens.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- L'ensemble des boooléens est l'ensemble qui contient _Vrai_ et _Faux_, parfois noté $\mathbb B$. diff --git a/ensemble des endomorphismes linéaires.md b/ensemble des endomorphismes linéaires.md index 2fdd96ca..f9d8caf1 100644 --- a/ensemble des endomorphismes linéaires.md +++ b/ensemble des endomorphismes linéaires.md @@ -3,7 +3,7 @@ alias: [ "𝓛", "𝓛(E)", "espace vectoriel des endomorphismes linéaires" ] --- up:: [[ensemble des applications linéaires]] title:: "$\mathcal{L}(E)$ l'ensemble des [[application linéaire|applications linéaires]] de $E \to E$", "$\mathcal{L}(E) = \{ f \in E^{E} \mid \forall (x, y) \in E^{2}, \forall \lambda \in \mathbf{K}, \quad f(\lambda x+y) = \lambda f(x)+f(y) \}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/ensemble des fonctions continues par morceaux.md b/ensemble des fonctions continues par morceaux.md index 735c7df0..4767c231 100644 --- a/ensemble des fonctions continues par morceaux.md +++ b/ensemble des fonctions continues par morceaux.md @@ -1,6 +1,6 @@ up::[[fonction continue par morceaux]] title::"" -#maths/analyse +#s/maths/analyse > [!definition] Ensemble des fonctions continues par morceaux > - On note $\mathcal{CM}(E)$ l'ensemble des fonctions continues par morceaux sur $E$ diff --git a/ensemble des fonctions continues.md b/ensemble des fonctions continues.md index 994c22a6..cf70aabe 100644 --- a/ensemble des fonctions continues.md +++ b/ensemble des fonctions continues.md @@ -1,7 +1,7 @@ up::[[fonction continue]] title::"$\mathcal{C}(E; F)$ l'ensemble des $f: E \to F$ [[fonction continue|continues]]" sibling::[[ensemble des fonctions continues par morceaux]] -#maths/analyse +#s/maths/analyse > [!definition] Ensemble des fonctions continues > Soient $E$ et $F$ des intervalles de $\mathbb{R}$ diff --git a/ensemble des fonctions dérivables.md b/ensemble des fonctions dérivables.md new file mode 100644 index 00000000..55a4b0a7 --- /dev/null +++ b/ensemble des fonctions dérivables.md @@ -0,0 +1,17 @@ +--- +aliases: +up: + - "[[fonction dérivable|dérivable]]" +tags: + - "#s/maths/analyse" +--- + +> [!definition] Définition +> On note $\mathcal{D}^{1}(E, F)$ l'ensemble des fonctions [[fonction dérivable|dérivables]] de $E \to F$. +> On note $\mathcal{D}^{k}(E, F)$ l'ensemble des fonctions $k$ fois dérivables +^definition + +# Propriétés + +# Exemples + diff --git a/ensemble des fonctions intégrables.md b/ensemble des fonctions intégrables.md index 8e18adfb..5848f678 100644 --- a/ensemble des fonctions intégrables.md +++ b/ensemble des fonctions intégrables.md @@ -1,5 +1,5 @@ up:: [[fonction intégrable]] -#maths/intégration +#s/maths/intégration > [!definition] [[ensemble des fonctions intégrables]] > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/ensemble des matrices.md b/ensemble des matrices.md index 8af26e00..b5aa80bc 100644 --- a/ensemble des matrices.md +++ b/ensemble des matrices.md @@ -1,6 +1,6 @@ up::[[matrice]] title::"$\mathcal{M}_{n,k}(E)$ les matrices de taille $n\times k$ à valeurs dans $E$" -#maths/algèbre +#s/maths/algèbre ---- On note $\mathcal{M}_{n,k}(E)$ l'ensemble des [[matrice|matrices]] à $n$ lignes et $k$ colonnes et à valeurs dans $E$. diff --git a/ensemble des morphismes de groupes.md b/ensemble des morphismes de groupes.md index 1d70f201..0004bd1c 100644 --- a/ensemble des morphismes de groupes.md +++ b/ensemble des morphismes de groupes.md @@ -1,5 +1,5 @@ up:: [[morphisme de groupes]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[ensemble des morphismes de groupes]] > Soient $G$ et $G'$ des [[groupe|groupes]] diff --git a/ensemble des parties d'un ensemble.md b/ensemble des parties d'un ensemble.md index 9da18f7b..24d1804e 100644 --- a/ensemble des parties d'un ensemble.md +++ b/ensemble des parties d'un ensemble.md @@ -1,5 +1,5 @@ up::[[MOC ensembles]] -#maths/ensembles +#s/maths/ensembles > [!definition] Ensemble des parties d'un ensemble > Soit $E$ un ensemble diff --git a/ensemble des parties à n éléments d'un ensemble.md b/ensemble des parties à n éléments d'un ensemble.md index b92b19da..0124454a 100644 --- a/ensemble des parties à n éléments d'un ensemble.md +++ b/ensemble des parties à n éléments d'un ensemble.md @@ -1,5 +1,5 @@ up:: [[ensemble des parties d'un ensemble]] -#maths/ensembles +#s/maths/ensembles > [!definition] Définition > Soit $E$ un ensemble diff --git a/ensemble des polynômes de degré inférieur ou égal à n.md b/ensemble des polynômes de degré inférieur ou égal à n.md index 3712da2b..caeac7ad 100644 --- a/ensemble des polynômes de degré inférieur ou égal à n.md +++ b/ensemble des polynômes de degré inférieur ou égal à n.md @@ -1,5 +1,5 @@ up::[[ensemble des polynômes]] -#maths/algèbre #maths/analyse +#s/maths/algèbre #s/maths/analyse ---- Soit $K$ un [[corps]] diff --git a/ensemble des polynômes.md b/ensemble des polynômes.md index fd74beb4..3c053cdb 100644 --- a/ensemble des polynômes.md +++ b/ensemble des polynômes.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/algèbre #maths/analyse +#s/maths/algèbre #s/maths/analyse ---- Soit $\mathbf{K}$ un [[corps]] diff --git a/ensemble des réels complété.md b/ensemble des réels complété.md index 4097cdd6..6c710106 100644 --- a/ensemble des réels complété.md +++ b/ensemble des réels complété.md @@ -2,7 +2,7 @@ alias: ["ℝ̄", "R barre"] --- title::"$\overline{\mathbb{R}}=\mathbb{R}\cup \left\{ +\infty;-\infty \right\}$" -#maths +#s/maths ---- L'ensemble des réels complété est l'ensemble contenant les [[ensemble des réels|réels]] ainsi que $+\infty$ et $-\infty$. diff --git a/ensemble des réels.md b/ensemble des réels.md index 4322d207..fb63dec7 100644 --- a/ensemble des réels.md +++ b/ensemble des réels.md @@ -4,6 +4,6 @@ aliases: --- up::[[ensembles de nombres]] title::"$\mathbb{R}$" -#maths #not-done +#s/maths #not-done ---- diff --git a/ensemble des solutions d'une équation différentielle.md b/ensemble des solutions d'une équation différentielle.md index cb9e60cd..dd7dd378 100644 --- a/ensemble des solutions d'une équation différentielle.md +++ b/ensemble des solutions d'une équation différentielle.md @@ -1,5 +1,5 @@ up::[[équation différentielle]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/ensemble infini dénombrable.md b/ensemble infini dénombrable.md index bf18b5c9..16b4e9e3 100644 --- a/ensemble infini dénombrable.md +++ b/ensemble infini dénombrable.md @@ -2,7 +2,7 @@ alias: [ "dénombrable" ] --- up::[[ensemble]] -#maths/ensembles +#s/maths/ensembles > [!definition] ensemble infini dénombrable > Un ensemble $E$ est dit _dénombrable_ quand il existe une [[bijection]] entre l'ensemble $\mathbb N$ et $E$ (on dit qu'il est [[ensemble équipotent|équipotent]] à $\mathbb N$). diff --git a/ensemble mesurable.md b/ensemble mesurable.md index f28103d5..2a55e049 100644 --- a/ensemble mesurable.md +++ b/ensemble mesurable.md @@ -1,5 +1,5 @@ up:: [[fonction mesurable]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $(E, \mathcal{A})$ un [[espace mesurable]] diff --git a/ensemble négligeable.md b/ensemble négligeable.md index 7c200eee..e5cc5f8e 100644 --- a/ensemble négligeable.md +++ b/ensemble négligeable.md @@ -4,7 +4,7 @@ aliases: - négligeable --- up:: [[mesure positive d'une application|mesure]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/ensemble quotient.md b/ensemble quotient.md index 4eda4080..4fb7ae1d 100644 --- a/ensemble quotient.md +++ b/ensemble quotient.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un groupe diff --git a/ensemble stable par une loi.md b/ensemble stable par une loi.md index d318d0ee..24bdaa27 100644 --- a/ensemble stable par une loi.md +++ b/ensemble stable par une loi.md @@ -1,5 +1,5 @@ up:: [[loi de composition interne]] -#maths/algèbre +#s/maths/algèbre > [!definition] Ensemble stable par une loi > Une partie $A \subseteq E$ est dite **stable** par $*$ si $\forall a, b \in A, \quad a*b \in A$ diff --git a/ensemble subpotent.md b/ensemble subpotent.md index f4a0dc85..ee22cf40 100644 --- a/ensemble subpotent.md +++ b/ensemble subpotent.md @@ -1,5 +1,5 @@ up::[[ensemble]] -#maths/ensembles +#s/maths/ensembles ---- La _subpotence_ est une relation sur deux ensembles, satisfaite lorsqu'il existe une [[injection]] entre les deux ensembles. diff --git a/ensemble équipotent.md b/ensemble équipotent.md index 891a043d..29cfc740 100644 --- a/ensemble équipotent.md +++ b/ensemble équipotent.md @@ -1,5 +1,5 @@ up::[[ensemble]] -#maths/ensembles +#s/maths/ensembles ---- L'_équipotence_ est une relations entre ensembles. diff --git a/ensemble.md b/ensemble.md index c89a9ea1..2a8f208c 100644 --- a/ensemble.md +++ b/ensemble.md @@ -2,7 +2,7 @@ up: - "[[algèbre]]" tags: - - maths/algèbre + - s/maths/algèbre aliases: - ensembles --- diff --git a/ensembles de nombres.md b/ensembles de nombres.md index 37613113..174cd8f8 100644 --- a/ensembles de nombres.md +++ b/ensembles de nombres.md @@ -1,5 +1,5 @@ up::[[algèbre|algèbre]] -#maths +#s/maths ---- diff --git a/entier binaire complément à 2.md b/entier binaire complément à 2.md index e899f159..8246a10a 100644 --- a/entier binaire complément à 2.md +++ b/entier binaire complément à 2.md @@ -1,6 +1,6 @@ up::[[représentation des nombres en binaire]] title::"opposé = " -#informatique +#s/informatique ---- diff --git a/entier binaire signé.md b/entier binaire signé.md index 48f68c9a..c931a225 100644 --- a/entier binaire signé.md +++ b/entier binaire signé.md @@ -1,6 +1,6 @@ up::[[représentation des nombres en binaire]] title::"le MSD désigne le signe, le reste est un entier [[binaire]] classique" -#informatique +#s/informatique ---- diff --git a/entiers de gauss.md b/entiers de gauss.md index 617d046e..168cba72 100644 --- a/entiers de gauss.md +++ b/entiers de gauss.md @@ -1,7 +1,7 @@ up::[[algèbre|algèbre]] author::[[Carl Friedrich Gauss]] title::"$\mathbb{Z}[i] = \{ m+in \mid (m, n) \in \mathbb{Z}^{2} \} \subset \mathbb{C}$" -#maths +#s/maths ---- diff --git a/entiers quadratiques.md b/entiers quadratiques.md index afc73ea5..1329ca4a 100644 --- a/entiers quadratiques.md +++ b/entiers quadratiques.md @@ -1,6 +1,6 @@ up::[[entiers relatifs]] title::"$\mathbb{Z}[\sqrt{ d }] = \{ m+\sqrt{ d }n\mid (m, n)\in \mathbb{Z}^{2} \}$ où $d$ n'est pas un carré" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/entr - exécuter une commande lorsqu'un fichier change.md b/entr - exécuter une commande lorsqu'un fichier change.md index 244a2a52..ea1b3f44 100644 --- a/entr - exécuter une commande lorsqu'un fichier change.md +++ b/entr - exécuter une commande lorsqu'un fichier change.md @@ -3,7 +3,7 @@ aliases: - entr link: http://eradman.com/entrproject/ tags: - - informatique + - s/informatique --- up:: [[terminal commandes|utilitaires ligne de commande]] diff --git a/envoi de messages entre objets.md b/envoi de messages entre objets.md index f4d7c6dc..cbafb858 100644 --- a/envoi de messages entre objets.md +++ b/envoi de messages entre objets.md @@ -3,7 +3,7 @@ aliases: - message --- up:: [[paradigme programmation orientée objet]] -#informatique +#s/informatique > [!definition] envoi de message > L'envoi de message (*message passing*) est le fait pour un objet d'envoyer un signal à un autre objet. diff --git a/equisatisfaisables.md b/equisatisfaisables.md index 930b2cd3..66c64c74 100644 --- a/equisatisfaisables.md +++ b/equisatisfaisables.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Deux formules sont dites _equisatisfaisables_ ssi : diff --git a/equivalence.md b/equivalence.md index d9f046e7..68b41d7b 100644 --- a/equivalence.md +++ b/equivalence.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique Soient $A$ et $B$ deux [[proposition|propositions logiques]] $A$ et $B$ sont _équivalentes_ ssi **elles ont le même sens pour toute [[interprétation]]** diff --git a/ergonomie IHM projet 1 - promenade cognitive - sans images.md b/ergonomie IHM projet 1 - promenade cognitive - sans images.md index 96b278a5..2fad296f 100644 --- a/ergonomie IHM projet 1 - promenade cognitive - sans images.md +++ b/ergonomie IHM projet 1 - promenade cognitive - sans images.md @@ -1,4 +1,4 @@ -#informatique/ihm +#s/informatique/ihm sibling:: [[ergonomie IHM projet 1 - promenade cognitive]] # Ergonomie des interfaces interactives diff --git a/ergonomie IHM projet 1 - promenade cognitive.md b/ergonomie IHM projet 1 - promenade cognitive.md index 4fd54227..3065af59 100644 --- a/ergonomie IHM projet 1 - promenade cognitive.md +++ b/ergonomie IHM projet 1 - promenade cognitive.md @@ -3,7 +3,7 @@ quickshare-date: 2023-10-17 17:37:04 quickshare-url: https://noteshare.space/note/clnuhmete4538001mw4g0q1je7#xUIF20W+bFGWmAT9BvqmVDbOipZk13jO4dqRk/esY+s number headings: auto, first-level 2, max 6, 1.1 --- -#informatique/ihm +#s/informatique/ihm sibling:: [[ergonomie IHM projet 1 - promenade cognitive - sans images]] # Ergonomie des interfaces interactives diff --git a/ergonomie des IHM Adaptativité.md b/ergonomie des IHM Adaptativité.md index 1296cdf1..27e1adc6 100644 --- a/ergonomie des IHM Adaptativité.md +++ b/ergonomie des IHM Adaptativité.md @@ -3,7 +3,7 @@ aliases: - adaptativité --- up:: [[Ergonomie des IHM Principes ergonomiques]] -#informatique/ihm +#s/informatique/ihm > [!definition] Adaptativité > Le fait de s'**adapter** à l'utilisateur, quand l'application réagit aux actions de l'utilisateur pour faciliter l'utilisation. diff --git a/erreur d'attribution.md b/erreur d'attribution.md index e17cf663..6a7014c6 100644 --- a/erreur d'attribution.md +++ b/erreur d'attribution.md @@ -3,7 +3,7 @@ aliases: - biais d'attribution --- up:: [[biais cognitifs]] -#science/psychologie +#s/science/psychologie > [!definition] [[erreur d'attribution]] > Erreur commise lorsqu'une personne tente de trouver des raisons pour son propre comportement ou pour celui des autres. diff --git a/erreur fondamentale d'attribution.md b/erreur fondamentale d'attribution.md index 73f33542..725b55ba 100644 --- a/erreur fondamentale d'attribution.md +++ b/erreur fondamentale d'attribution.md @@ -1,6 +1,6 @@ up:: [[erreur d'attribution]] sibling:: [[erreur ultime d'attribution]] -#science/psychologie +#s/science/psychologie > [!definition] [[erreur fondamentale d'attribution]] > Tendance à accorder trop ou pas assez d'importance aux facteurs internes d'un agent (caractère, émotions, connaissances, opinions...) ou bien aux facteurs externes (situation, faits...) : diff --git a/erreur ultime d'attribution.md b/erreur ultime d'attribution.md index ce57bfdc..35ec49fb 100644 --- a/erreur ultime d'attribution.md +++ b/erreur ultime d'attribution.md @@ -1,5 +1,5 @@ up:: [[erreur d'attribution]] -#science/psychologie +#s/science/psychologie > [!definition] [[erreur ultime d'attribution]] > Tendance à toujours favoriser son propre groupe ([[endogroupe]]) epar rapport à d'autres groupes ([[exogroupes]]) lors de l'attribution. diff --git a/espace affine R carré.md b/espace affine R carré.md index 4c348e43..4af04432 100644 --- a/espace affine R carré.md +++ b/espace affine R carré.md @@ -4,7 +4,7 @@ alias: ["l'espace affine R²", "espace affine R²", "espace affine ℝ²", "R²" up:: [[espace affine]] sibling:: [[espace vectoriel R carré]] title:: "espace de [[direction d'un espace affine|direction]] $\mathbb{R}^{2}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/espace affine engendré par une famille de points.md b/espace affine engendré par une famille de points.md index 7e5a932b..5dce0096 100644 --- a/espace affine engendré par une famille de points.md +++ b/espace affine engendré par une famille de points.md @@ -5,7 +5,7 @@ up:: [[espace affine]] sibling:: [[espace vectoriel engendré par une famille de vecteurs|espace vectoriel engendré]] title:: "$Aff(\{ A_0, A_1, \dots,A_{k} \})$" description:: "plus petit espace affine contenant tous ces points" -#maths/algèbre +#s/maths/algèbre --- L'[[espace affine]] engendré par une famille de points est le plus petit [[espace affine]] qui contienne tous ces points. diff --git a/espace affine.md b/espace affine.md index 19730553..3faa1156 100644 --- a/espace affine.md +++ b/espace affine.md @@ -1,6 +1,6 @@ up:: [[espace]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/espace dual d'un espace vectoriel.md b/espace dual d'un espace vectoriel.md index 84e81914..d1cac801 100644 --- a/espace dual d'un espace vectoriel.md +++ b/espace dual d'un espace vectoriel.md @@ -3,7 +3,7 @@ alias: [ "ensemble des formes linéaire", "espace dual", "espace vectoriel dual" --- up:: [[espace vectoriel]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/espace euclidien.md b/espace euclidien.md index 087fcb81..795afa27 100644 --- a/espace euclidien.md +++ b/espace euclidien.md @@ -1,6 +1,6 @@ up::[[espace préhilbertien réel]] title::"[[espace]] de [[dimension d'un espace vectoriel|dimension]] finie muni d'un [[produit scalaire]] et d'une [[norme]]" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/espace mesurable.md b/espace mesurable.md index 3229e998..6d402fbf 100644 --- a/espace mesurable.md +++ b/espace mesurable.md @@ -3,7 +3,7 @@ aliases: - espaces mesurables --- up:: [[espace]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[espace mesurable]] > Un espace mesurable est un couple $(E, \mathcal{A})$, où $E$ est un espace, et $\mathcal{A}$ une [[tribu]] sur $E$. diff --git a/espace mesuré.md b/espace mesuré.md index f293d2d8..4ef086a2 100644 --- a/espace mesuré.md +++ b/espace mesuré.md @@ -1,5 +1,5 @@ up:: [[espace mesurable]] -#maths/intégration +#s/maths/intégration > [!definition] [[espace mesuré]] > Un espace mesuré est un triplet $(E, \mathcal{A}, \mu)$ où $E$ est un espace, $\mathcal{A}$ une [[tribu]] sur $E$, et $\mu$ une [[mesure positive d'une application|mesure]] sur l'[[espace mesurable]] $(E, \mathcal{A})$. diff --git a/espace métrique compact.md b/espace métrique compact.md index fab31561..f3d869c0 100644 --- a/espace métrique compact.md +++ b/espace métrique compact.md @@ -3,7 +3,7 @@ aliases: - compact --- up:: [[espace métrique]] -#maths/topologie +#s/maths/topologie > [!definition] [[espace métrique compact]] > Un [[espace métrique]] $(X, d)$ est **compact** si toute suite $(x_{n})_{n \in \mathbb{N}}$ d'éléments de $X$ admet une [[suite extraite]] qui converge dans $X$. @@ -83,7 +83,7 @@ up:: [[espace métrique]] > 2. Pour n'importe quel $(U_{i})_{i \in I}$ [[recouvrement par des ouverts]] de $X$, il existe un [[recouvrement extrait|sous-recouvrement]] $(U_{j})_{j \in J}$ avec $J$ fini > 3. Pour toute famille $(F_{i})_{i \in I}$ de [[partie fermée d'un espace métrique|fermés]] de $(X, d)$, si $\displaystyle\forall J \subset I \text{ finie},\quad \bigcap _{j \in J} F_{j} \neq \emptyset$ alors $\displaystyle\bigcap _{i \in I} F_{i} \neq \emptyset$ > -> - ? **Intérêt** : on a des définitions de la compacité qui n'utilisent pas la convergence des suites (bien pour les [[topologie|espaces topologiques]] généraux) +> - ? **Intérêt** : on a des définitions de la compacité qui n'utilisent pas la convergence des suites (bien pour les [[structure de topologie|espaces topologiques]] généraux) > - dem [[démonstration des définitions alternatives de la compacité|démonstration]] ^definitions-alternatives diff --git a/espace métrique connexe.md b/espace métrique connexe.md index 7fabd03a..3ef76824 100644 --- a/espace métrique connexe.md +++ b/espace métrique connexe.md @@ -1,5 +1,5 @@ up:: [[espace métrique]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[espace métrique connexe]] > Soit $(X, d)$ un [[espace métrique]]. diff --git a/espace métrique.md b/espace métrique.md index 6e514a32..66ebd947 100644 --- a/espace métrique.md +++ b/espace métrique.md @@ -1,5 +1,11 @@ -up:: [[espace]], [[distance]] -#maths/topologie +--- +aliases: + - espaces métriques +up: + - "[[espace]]" + - "[[distance]]" +tags: "#s/maths/topologie" +--- > [!definition] espace métrique > Soit $X$ un ensemble et $d$ une [[distance]] sur $X$. diff --git a/espace probabilisé.md b/espace probabilisé.md index e7b334d4..c9e7676c 100644 --- a/espace probabilisé.md +++ b/espace probabilisé.md @@ -1,6 +1,6 @@ up:: [[probabilités|probabilités]] title:: "$(\Omega, \mathscr{P}(\Omega), P)$" -#maths/probabilités +#s/maths/probabilités --- diff --git a/espace préhilbertien réel.md b/espace préhilbertien réel.md index 7e3c07da..0cd7359d 100644 --- a/espace préhilbertien réel.md +++ b/espace préhilbertien réel.md @@ -1,6 +1,6 @@ up:: [[espace préhilbertien]] title:: "$(E, \varphi)$", "$E$ un [[espace vectoriel]]", "$\varphi$ une [[forme bilinéaire]] [[forme bilinéaire symétrique|symétrique]], [[forme bilinéaire définie|définie]], [[forme bilinéaire positive|positive]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/espace préhilbertien.md b/espace préhilbertien.md index 8edb6922..ee0fbc42 100644 --- a/espace préhilbertien.md +++ b/espace préhilbertien.md @@ -1,6 +1,6 @@ up:: [[espace vectoriel]] title:: -#maths/algèbre #not-done +#s/maths/algèbre #not-done --- diff --git a/espace séparé.md b/espace séparé.md index d15587e3..e95482c0 100644 --- a/espace séparé.md +++ b/espace séparé.md @@ -3,6 +3,6 @@ alias: [ "séparation", "espace de Hausdorff" ] --- up::[[espace]] title::"deux points distincts admettent toujours des voisinages disjoints" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/espace vectoriel R carré.md b/espace vectoriel R carré.md index 6b1d76fa..0a070dfc 100644 --- a/espace vectoriel R carré.md +++ b/espace vectoriel R carré.md @@ -4,7 +4,7 @@ alias: ["l'espace vectoriel R²", "espace vectoriel R²", "espace vectoriel ℝ up::[[espace vectoriel]] sibling:: [[espace affine R carré]] title::"$(\mathbb{R}^{2}, +, \cdot)$" -#maths/algèbre +#s/maths/algèbre ---- $\mathbb{R}^{2}$ forme un [[espace vectoriel]] avec $+$ et $\cdot$ diff --git a/espace vectoriel de dimension finie.md b/espace vectoriel de dimension finie.md index 37018f9c..aa87fc54 100644 --- a/espace vectoriel de dimension finie.md +++ b/espace vectoriel de dimension finie.md @@ -3,7 +3,7 @@ aliases: - dimension finie --- up:: [[espace vectoriel]], [[dimension d'un espace vectoriel|dimension]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[espace vectoriel de dimension finie]] > diff --git a/espace vectoriel engendré par une famille de vecteurs.md b/espace vectoriel engendré par une famille de vecteurs.md index 9b8d0ff2..1816cfa7 100644 --- a/espace vectoriel engendré par une famille de vecteurs.md +++ b/espace vectoriel engendré par une famille de vecteurs.md @@ -4,7 +4,7 @@ alias: ["engendré", "espace vectoriel engendré"] up::[[espace vectoriel]] title::"$\mathrm{Vect}(F)$" description::"ensemble des [[combinaison linéaire|combinaisons linéaires]] possibles des vecteurs de $F$" -#maths/algèbre +#s/maths/algèbre ---- Soit $(E, +, \cdot)$ un $\mathbb R$ [[espace vectoriel]], et $u_1, u_2, \ldots, u_k$ une famille finie de [[vecteur|vecteurs]] de $E$. diff --git a/espace vectoriel normé.md b/espace vectoriel normé.md index e5957a94..6290f654 100644 --- a/espace vectoriel normé.md +++ b/espace vectoriel normé.md @@ -1,5 +1,9 @@ +--- +aliases: + - espaces vectoriels normés +--- up:: [[espace vectoriel]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[espace vectoriel normé]] > Soit $(E, +, \cdot)$ un [[espace vectoriel]] diff --git a/espace vectoriel nul.md b/espace vectoriel nul.md index f101a301..769614b4 100644 --- a/espace vectoriel nul.md +++ b/espace vectoriel nul.md @@ -1,5 +1,5 @@ up::[[espace vectoriel]] -#maths/algèbre +#s/maths/algèbre ---- L'_espace vectoriel nul_ est l'[[espace vectoriel]] contenant uniquement le [[vecteur nul]], c'est-à-dire $\left( \left\{ \overrightarrow{0} \right\}, +, \cdot \right)$ diff --git a/espace vectoriel orthonormé.md b/espace vectoriel orthonormé.md index 91b556a7..384f769c 100644 --- a/espace vectoriel orthonormé.md +++ b/espace vectoriel orthonormé.md @@ -1,2 +1,2 @@ up:: [[espace vectoriel normé]] -#maths/algèbre \ No newline at end of file +#s/maths/algèbre \ No newline at end of file diff --git a/espace vectoriel réel.md b/espace vectoriel réel.md index c609b9fb..7bb7ed4f 100644 --- a/espace vectoriel réel.md +++ b/espace vectoriel réel.md @@ -1,5 +1,5 @@ up::[[espace vectoriel]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[espace vectoriel réel]] > On appelle _espace vectoriel réel_ un [[espace vectoriel]] **[[espace vectoriel#Espace vectoriel sur un corps|sur]]** $\mathbb{R}$, c'est-à-dire $(\mathbb{R}^{n}, +, \cdot)$ diff --git a/espace vectoriel.md b/espace vectoriel.md index e16869de..6520d9b2 100644 --- a/espace vectoriel.md +++ b/espace vectoriel.md @@ -3,7 +3,7 @@ alias: "ev" --- up::[[espace]] title::"$(E, +, \cdot)$ tel que", " - $(E, +)$ est un [[groupe abélien]]", " - $\cdot$ est [[distributivité|distributive]] sur $+$" -#maths/algèbre +#s/maths/algèbre > [!definition] Espace vectoriel > Un _espace vectoriel_ est un ensemble $E$ muni de deux opérations : diff --git a/espace.md b/espace.md index d3ebedeb..2ebc4bcf 100644 --- a/espace.md +++ b/espace.md @@ -1,4 +1,4 @@ up::[[structure algébrique]] title:: -#maths/algèbre #not-done +#s/maths/algèbre #not-done diff --git a/espérance mathématique.md b/espérance mathématique.md index c86bd2a8..f5cd81ec 100644 --- a/espérance mathématique.md +++ b/espérance mathématique.md @@ -1,6 +1,6 @@ up:: [[indices d'une variable aléatoire]] title:: "discret : $E(X) = \sum\limits_{i}(x_{i}\cdot p_{i})$", "continu : $E(X) = \int x f(x) \, dx$, où $f(x)$ est la [[fonction de densité de probabilités]]" -#maths/probabilités +#s/maths/probabilités --- diff --git a/exemples d'hystérésis.md b/exemples d'hystérésis.md index 49079e8c..0659eddc 100644 --- a/exemples d'hystérésis.md +++ b/exemples d'hystérésis.md @@ -1,5 +1,5 @@ up:: [[hystérésis]] -#physique +#s/physique - [[hystérésis élastique]] - [[hystérésis magnétique]] diff --git a/exercice anglais 2022-09-15.md b/exercice anglais 2022-09-15.md index c2a29a91..57eae317 100644 --- a/exercice anglais 2022-09-15.md +++ b/exercice anglais 2022-09-15.md @@ -1,4 +1,4 @@ -#exercice #anglais +#t/exercice #s/anglais ---- diff --git a/exercices analyse 2022-09-06.md b/exercices analyse 2022-09-06.md index 4e5d2f3d..b083f187 100644 --- a/exercices analyse 2022-09-06.md +++ b/exercices analyse 2022-09-06.md @@ -1,4 +1,4 @@ -#exercice +#t/exercice title::"TD1 d'analyse" ---- diff --git a/exercices espaces vectoriels 2022-08-22.md b/exercices espaces vectoriels 2022-08-22.md index 879ff8e1..70df1d17 100644 --- a/exercices espaces vectoriels 2022-08-22.md +++ b/exercices espaces vectoriels 2022-08-22.md @@ -1,5 +1,5 @@ date::2022-08-22 -#exercice #maths/algèbre +#t/exercice #s/maths/algèbre diff --git a/exercices espaces vectoriels 2022-08-24.md b/exercices espaces vectoriels 2022-08-24.md index ef74a688..713b9e74 100644 --- a/exercices espaces vectoriels 2022-08-24.md +++ b/exercices espaces vectoriels 2022-08-24.md @@ -1,5 +1,5 @@ date::2022-08-24 -#exercice #maths/algèbre +#t/exercice #s/maths/algèbre ---- diff --git a/exercices géometrie 2022-09-19.md b/exercices géometrie 2022-09-19.md index 57a68a9d..c4e5ba61 100644 --- a/exercices géometrie 2022-09-19.md +++ b/exercices géometrie 2022-09-19.md @@ -1,4 +1,4 @@ -#exercice +#t/exercice up::[[L2_maths_geometrie_TD1 - fait.pdf]] ---- diff --git a/existence.md b/existence.md index 3683f18b..c8b7927a 100644 --- a/existence.md +++ b/existence.md @@ -3,7 +3,7 @@ aliases: - exister --- up:: [[philosophie]] -#philosphie +#s/philosphie > [!definition] existence > Langage courant : fait d'être, d'avoir une réalité diff --git a/expert blind spot problem.md b/expert blind spot problem.md index 555295a7..7f86e688 100644 --- a/expert blind spot problem.md +++ b/expert blind spot problem.md @@ -1,4 +1,9 @@ -up:: [[apprentissage]] +--- +up: + - "[[apprentissage]]" +tags: + - s/apprendre +--- Fait que les experts ne réussisent pas à voir ce qui pose problème au novices. diff --git a/exponentiation ensembliste.md b/exponentiation ensembliste.md index f09748c8..7265426c 100644 --- a/exponentiation ensembliste.md +++ b/exponentiation ensembliste.md @@ -1,6 +1,6 @@ up:: [[MOC ensembles]] title:: "$E^{F} = \prod\limits_{e \in E} F$ ([[produit cartésien]])" -#maths/ensembles +#s/maths/ensembles --- diff --git a/exponentiation rapide.md b/exponentiation rapide.md index c4c325c6..48d8d244 100644 --- a/exponentiation rapide.md +++ b/exponentiation rapide.md @@ -1,6 +1,6 @@ up::[[informatique.algorithmes]] title:: -#informatique/algorithmie #maths/arithmétique +#s/informatique/algorithmie #s/maths/arithmétique --- diff --git a/expositions.md b/expositions.md index 87ef7c29..641ce133 100644 --- a/expositions.md +++ b/expositions.md @@ -1,2 +1,2 @@ up:: [[art]] -#art \ No newline at end of file +#s/art \ No newline at end of file diff --git a/express JS hello world.md b/express JS hello world.md index 429c6c1a..3e6d6904 100644 --- a/express JS hello world.md +++ b/express JS hello world.md @@ -1,5 +1,5 @@ up::[[express JS]] -#informatique/langage/javascript +#s/informatique/langage/javascript ```js // server-express.js diff --git a/express JS routage.md b/express JS routage.md index 129a4464..fbe54d19 100644 --- a/express JS routage.md +++ b/express JS routage.md @@ -1,5 +1,5 @@ up::[[express JS]] -#informatique/langage/javascript +#s/informatique/langage/javascript ```js app.get('/about', function (req, res) { diff --git a/express JS.md b/express JS.md index b344bc62..4ae7df11 100644 --- a/express JS.md +++ b/express JS.md @@ -1,5 +1,5 @@ up:: [[Node JS]] -#informatique/langage/javascript +#s/informatique/langage/javascript > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/expression régulière.md b/expression régulière.md index ff6dd203..59ee8705 100644 --- a/expression régulière.md +++ b/expression régulière.md @@ -1,11 +1,12 @@ --- -alias: "regex" +aliases: + - regex +up: + - "[[langage de programmation]]" + - "[[édition de texte]]" +tags: + - "#s/informatique" --- -up:: [[langage de programmation]] , [[édition de texte]] -title::"langage pour décrire des ensembles des chaînes de caractères" -#informatique - ----- > [!query] Types de regex > ```dataview diff --git a/expressivité pratique.md b/expressivité pratique.md index 44d9ad47..2164e0e1 100644 --- a/expressivité pratique.md +++ b/expressivité pratique.md @@ -4,7 +4,7 @@ aliases: --- up:: [[puissance d'expression|pouvoir d'expression]] sibling:: [[expressivité théorique]] -#informatique +#s/informatique > [!definition] expressivité pratique > Capacité d'un [[langage de programmation]] d'exprimer des concepts. diff --git a/expressivité théorique.md b/expressivité théorique.md index d4fb9a78..c4c67a2b 100644 --- a/expressivité théorique.md +++ b/expressivité théorique.md @@ -1,6 +1,6 @@ up:: [[puissance d'expression|pouvoir d'expression]] sibling:: [[expressivité pratique]] -#informatique +#s/informatique > [!definition] expressivité théorique > l'expressivité théorique (ou pouvoir d'expression théorique) est la capacité d'un [[langage de programmation]] à exprimer des idées, indépendemment de la façilité d'exprimer ces idées. diff --git a/extermination de masse.md b/extermination de masse.md index 270ab985..df5fb936 100644 --- a/extermination de masse.md +++ b/extermination de masse.md @@ -1,7 +1,7 @@ up:: [[étapes d'un génocide]] prev:: [[déshumanisation]] next:: [[déni du génocide]] -#philosphie #science/histoire #science/zetetique +#s/philosphie #s/science/histoire #s/science/zetetique - nécessite de [[déshumanisation|déshumaniser]] le groupe de personnes - [?] organisation diff --git a/extraction des ressources fossiles.md b/extraction des ressources fossiles.md index 6ca83805..8430ea69 100644 --- a/extraction des ressources fossiles.md +++ b/extraction des ressources fossiles.md @@ -3,7 +3,7 @@ alias: [ "extraction ressources fossiles" ] --- up:: [[ressources fossiles]] title:: "problèmes de pollution locale" -#science/écologie +#s/science/écologie --- diff --git a/fac L2 délégué.md b/fac L2 délégué.md index a89cfc0d..c7e2db8b 100644 --- a/fac L2 délégué.md +++ b/fac L2 délégué.md @@ -2,7 +2,7 @@ down:: [[Retours des élèves]] down:: [[Idées pour la refonte de la maquette enseignement]] up:: title::"notes en tant que délégué" -#fac +#s/fac --- diff --git a/fac.cours anglais.md b/fac.cours anglais.md index 55b3115f..2ee12a43 100644 --- a/fac.cours anglais.md +++ b/fac.cours anglais.md @@ -1,5 +1,5 @@ up:: [[fac]], [[anglais]] -#fac #anglais +#s/fac #s/anglais > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/factorisation de x puissance n moins 1.md b/factorisation de x puissance n moins 1.md index 4c4a9188..9f44b96d 100644 --- a/factorisation de x puissance n moins 1.md +++ b/factorisation de x puissance n moins 1.md @@ -4,7 +4,7 @@ alias: [ "xⁿ - 1", "factorisation de xⁿ - 1" ] up:: [[analyse|analyse]] sibling:: [[factorisation de x puissance n moins a puissance n]] title:: "$x^{n} - 1 = (x - 1) \times \sum\limits_{k=0}^{n-1}x^{k}$" -#maths/analyse +#s/maths/analyse --- diff --git a/factorisation de x puissance n moins a puissance n.md b/factorisation de x puissance n moins a puissance n.md index 9fde7215..66bfb7b7 100644 --- a/factorisation de x puissance n moins a puissance n.md +++ b/factorisation de x puissance n moins a puissance n.md @@ -3,7 +3,7 @@ alias: [ "xⁿ - aⁿ", "factorisation de xⁿ - aⁿ" ] --- up::[[analyse]] title:: $x^{n} - a^{n} = (x-a) \times \sum\limits_{k=0}^{n-1} x^{k}a^{n-k}$ -#maths/analyse +#s/maths/analyse --- diff --git a/faire des fonctions unitaire.md b/faire des fonctions unitaire.md index dece1291..a1e7ae7d 100644 --- a/faire des fonctions unitaire.md +++ b/faire des fonctions unitaire.md @@ -1,5 +1,5 @@ up:: [[conception des bases de données]] title:: -#informatique +#s/informatique --- \ No newline at end of file diff --git a/famille de vecteurs génératrice.md b/famille de vecteurs génératrice.md index 8cae6e6d..0b39e373 100644 --- a/famille de vecteurs génératrice.md +++ b/famille de vecteurs génératrice.md @@ -4,7 +4,7 @@ alias: "génératrice" up::[[famille de vecteurs]] title::"$\mathrm{Vect}(F) = E$" description::"elle engendre tout l'espace vectoriel" -#maths/algèbre +#s/maths/algèbre ---- Soit $(E, +, \cdot)$ un [[espace vectoriel]] réel, et $\{u_1,\ldots,u_k\}$ une [[famille de vecteurs]] de $E$ diff --git a/famille de vecteurs libre.md b/famille de vecteurs libre.md index ea26aad9..23ae1fed 100644 --- a/famille de vecteurs libre.md +++ b/famille de vecteurs libre.md @@ -3,7 +3,7 @@ alias: [ "libre", "famille libre" ] --- up::[[famille de vecteurs]] description::"la seule [[combinaison linéaire]] des [[vecteur|vecteurs]] qui s'annulle est celle où tous les coefficients sont nuls" -#maths/algèbre +#s/maths/algèbre ---- Soit $(E, +, \cdot)$ un [[espace vectoriel]] réel, et $\{u_1,\ldots,u_k\}$ une [[famille de vecteurs]] de $E$ diff --git a/famille de vecteurs liée.md b/famille de vecteurs liée.md index 0938958c..8fd7a2ba 100644 --- a/famille de vecteurs liée.md +++ b/famille de vecteurs liée.md @@ -4,7 +4,7 @@ alias: "liée" up::[[famille de vecteurs]] title::"[[famille de vecteurs]] non [[famille de vecteurs libre|libre]]" description::"$\exists \lambda_{1},\dots,\lambda _{k} \neq (0,\dots,0), \quad \lambda_{1}u_{1}+\cdots+\lambda _{k}u_{k} = 0$" -#maths/algèbre +#s/maths/algèbre ---- Soit $(E, +, \cdot)$ un [[espace vectoriel]] réel, et $\{u_1,\ldots,u_k\}$ une [[famille de vecteurs]] de $E$ diff --git a/famille de vecteurs échelonnée.md b/famille de vecteurs échelonnée.md index 71ca35c8..21f66c9d 100644 --- a/famille de vecteurs échelonnée.md +++ b/famille de vecteurs échelonnée.md @@ -3,7 +3,7 @@ alias: [ "échelonnée" ] --- up::[[famille de vecteurs]] title:: "famille qui forme une matrice triangulaire", "[[famille de vecteurs échelonnée|échelonnée]] $\implies$[[famille de vecteurs libre|libre]]" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/famille de vecteurs.md b/famille de vecteurs.md index 213d8583..b3503d28 100644 --- a/famille de vecteurs.md +++ b/famille de vecteurs.md @@ -1,5 +1,5 @@ up::[[espace vectoriel]] -#maths/algèbre +#s/maths/algèbre ---- Une [[famille]] de [[vecteur|vecteurs]] diff --git a/famille.md b/famille.md index 196f97f2..59b4b230 100644 --- a/famille.md +++ b/famille.md @@ -1,5 +1,5 @@ up::[[algèbre]] -#maths/algèbre +#s/maths/algèbre Généralisation de la notion de [[suite]] sur n'importe quel ensemble fini ou [[ensemble infini dénombrable|infini dénombrable]]. diff --git a/fausse dichotomie.md b/fausse dichotomie.md index 56c4b2ac..707420cd 100644 --- a/fausse dichotomie.md +++ b/fausse dichotomie.md @@ -2,7 +2,7 @@ alias: [ "faux dilemme", "exclusion du tiers", "énumération incomplète" ] --- up:: [[sophisme]] -#science/zetetique +#s/science/zetetique > [!definition] Fausse dichotomie > [[sophisme|Sophisme]] qui consiste à présenter deux solutions à un problème comme si elles étaient les deux **seules possibles**, alors qu'en réalité, il en existe **d'autres**. diff --git a/fermeture.md b/fermeture.md index 955f6cd8..b724f3a0 100644 --- a/fermeture.md +++ b/fermeture.md @@ -1,5 +1,5 @@ up:: [[programmation.fonction|fonction]] -#informatique +#s/informatique > [!definition] fermeture > En programmation, la fermeture, ou clôture (de l'anglais *closure*) est une fonction accompagnée de son environnement lexical (les variables en dehors de son environnement local qu'elle a pourtant capturé). diff --git a/fichier etc-host.conf.md b/fichier etc-host.conf.md index abdc8080..76041e0d 100644 --- a/fichier etc-host.conf.md +++ b/fichier etc-host.conf.md @@ -1,6 +1,6 @@ up:: [[unix]], [[windows]], [[réseau informatique]] title:: -#informatique +#s/informatique Le fichier `host.conf` rappelle que pour une résolution de nom [[DNS]], la requête va d'abord s'adresser au fichier interne du système, puis après solliciter des serveurs [[DNS]] diff --git a/fichier etc-hosts.md b/fichier etc-hosts.md index c7f960aa..74942bec 100644 --- a/fichier etc-hosts.md +++ b/fichier etc-hosts.md @@ -3,7 +3,7 @@ alias: [ "fichier /etc/hosts" ] --- up:: [[unix]], [[windows]], [[réseau informatique]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/fichier etc-resolv.conf.md b/fichier etc-resolv.conf.md index 51cfd666..34ceb0bb 100644 --- a/fichier etc-resolv.conf.md +++ b/fichier etc-resolv.conf.md @@ -3,7 +3,7 @@ alias: [ "fichier etc/resolv.conf" ] --- up:: [[unix]], [[windows]], [[réseau informatique]] title:: -#informatique +#s/informatique --- diff --git a/firefox extensions.md b/firefox extensions.md index b31a0d1a..03e8e4c6 100644 --- a/firefox extensions.md +++ b/firefox extensions.md @@ -1,5 +1,5 @@ up:: [[firefox]] -#informatique +#s/informatique > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/firefox tree style tabs.md b/firefox tree style tabs.md index 9f438fac..3c67d6c7 100644 --- a/firefox tree style tabs.md +++ b/firefox tree style tabs.md @@ -1,5 +1,5 @@ up:: [[firefox extensions]] -#informatique +#s/informatique # Code pour le style : diff --git a/flashcards algèbre.md b/flashcards algèbre.md index 964fc1f6..2d8b70f1 100644 --- a/flashcards algèbre.md +++ b/flashcards algèbre.md @@ -1,4 +1,4 @@ -#maths/algèbre #flashcards/maths/algèbre +#s/maths/algèbre #flashcards/maths/algèbre # Structures diff --git a/flashcards analyse.md b/flashcards analyse.md index 14ad67ca..6b10f0bb 100644 --- a/flashcards analyse.md +++ b/flashcards analyse.md @@ -1,4 +1,4 @@ -#flashcards/maths/analyse #maths/analyse +#flashcards/maths/analyse #s/maths/analyse # Suites diff --git a/flashcards dérivation.md b/flashcards dérivation.md index 2343626e..e3216674 100644 --- a/flashcards dérivation.md +++ b/flashcards dérivation.md @@ -1,4 +1,4 @@ -#flashcards/maths/analyse/dérivation #maths +#flashcards/maths/analyse/dérivation #s/maths # Dérivation diff --git a/flashcards développements limités.md b/flashcards développements limités.md index a743b50c..41c41caf 100644 --- a/flashcards développements limités.md +++ b/flashcards développements limités.md @@ -1,5 +1,5 @@ -#flashcards/maths/analyse #flashcards/maths/calculus #maths/analyse +#flashcards/maths/analyse #flashcards/maths/calculus #s/maths/analyse Formule de _Taylor-Young_ pour les **développements limités** ? diff --git a/flashcards politique et sociologie.md b/flashcards politique et sociologie.md index fb334b69..23a09ebd 100644 --- a/flashcards politique et sociologie.md +++ b/flashcards politique et sociologie.md @@ -1,4 +1,4 @@ -#flashcards #politique #science/sociologie +#flashcards #s/politique #s/science/sociologie --- diff --git a/flashcards trigonométrie.md b/flashcards trigonométrie.md index b7e53c69..f67c8a3d 100644 --- a/flashcards trigonométrie.md +++ b/flashcards trigonométrie.md @@ -1,4 +1,4 @@ -#maths/trigonométrie #flashcards/maths/calculus +#s/maths/trigonométrie #flashcards/maths/calculus Ensemble d'arrivée de l'[[fonction arctangente|arctangente]] :: $\left[ - \frac{\pi}{2}; \frac{\pi}{2} \right]$ diff --git a/fonction arccosinus.md b/fonction arccosinus.md index 3e64cb6d..b38d31d6 100644 --- a/fonction arccosinus.md +++ b/fonction arccosinus.md @@ -8,7 +8,7 @@ description::"$[-1;1] \to \left[ - \frac{\pi}{2}; \frac{\pi}{2} \right]$", "$x \ derivative::"$- \dfrac{1}{\sqrt{1-x^{2}}}$" primitive::"$x \arccos (x) - \sqrt{ 1 - x^{2} } + \text{cste.}$" title::$\arccos$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- diff --git a/fonction arcsinus.md b/fonction arcsinus.md index 10d1fa35..89290c68 100644 --- a/fonction arcsinus.md +++ b/fonction arcsinus.md @@ -5,7 +5,7 @@ up::[[fonction sinus]] sibling:: [[fonction arccosinus]] title:: $\arcsin$ derivative:: $\frac{1}{\sqrt{ 1 - x^{2} }}$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- La fonction arcsin est la [[application réciproque]] de la fonction [[fonction sinus]]. diff --git a/fonction arctangente.md b/fonction arctangente.md index 0c183342..c2eca53a 100644 --- a/fonction arctangente.md +++ b/fonction arctangente.md @@ -5,7 +5,7 @@ up::[[fonction tangente]] description::"$\mathbb{R} \to \left[ - \frac{\pi}{2}; \frac{\pi}{2} \right]$", "$x \mapsto \arctan(x)$" derivative::"$\dfrac{1}{x^{2} + 1}$" integral::"$\displaystyle x \arctan(x) - \frac{1}{2} \ln \left( 1+x^{2} \right)$" -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- diff --git a/fonction arg cosinus hyperbolique.md b/fonction arg cosinus hyperbolique.md index 281fd388..cd061be1 100644 --- a/fonction arg cosinus hyperbolique.md +++ b/fonction arg cosinus hyperbolique.md @@ -7,7 +7,7 @@ derivative::$-\dfrac{1}{\sqrt{ x^{2} + 1 }} = \dfrac{1}{\sqrt{x^{2}-1}}$ description::"$[1;+\infty[ \to \mathbb{R}^{+}$", "$x \mapsto \ln \left( x+\sqrt{x^{2}-1} \right)$" primitive::"" title::$\arg \mathrm{ch}$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- [[application réciproque]] du [[fonction cosinus hyperbolique|cosinus hyperbolique]] diff --git a/fonction arg sinus hyperbolique.md b/fonction arg sinus hyperbolique.md index 820c3fb3..2fcceeed 100644 --- a/fonction arg sinus hyperbolique.md +++ b/fonction arg sinus hyperbolique.md @@ -8,7 +8,7 @@ derivative::$\dfrac{1}{\sqrt{1+x^{2}}}$ primitive::"" description::"$\mathbb{R} \to \mathbb{R}$", "$x \mapsto \ln\left(x+ \sqrt{1+x^{2}}\right)$" title::$\arg \mathrm{sh}$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- [[application réciproque]] du [[fonction sinus hyperbolique|sinus hyperbolique]] diff --git a/fonction arg tangente hyperbolique.md b/fonction arg tangente hyperbolique.md index db3df4d8..a092e9b0 100644 --- a/fonction arg tangente hyperbolique.md +++ b/fonction arg tangente hyperbolique.md @@ -2,7 +2,7 @@ alias: ["argth", "arg tangente hyperbolique"] --- up::[[fonction tangente hyperbolique]] -#maths/trigonométrie +#s/maths/trigonométrie ---- La [[application réciproque]] de la [[fonction tangente hyperbolique]] diff --git a/fonction arithmétique.md b/fonction arithmétique.md index 9b39b0ac..e8a7fdd0 100644 --- a/fonction arithmétique.md +++ b/fonction arithmétique.md @@ -1,6 +1,6 @@ up::[[arithmétique]] title:: "fonction $\sigma$ telle que :", "$\text{pgcd}(m, n) = 1 \implies \sigma(mn) = \sigma(m)\sigma(n)$" -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/fonction bornée.md b/fonction bornée.md index dcfa0a6b..b206ee60 100644 --- a/fonction bornée.md +++ b/fonction bornée.md @@ -2,7 +2,7 @@ alias: "bornée" --- up::[[fonction]] -#maths/analyse +#s/maths/analyse > [!definition] [[fonction bornée]] > Soit $(X, d)$ un [[espace métrique]] diff --git a/fonction caractéristique d'une mesure.md b/fonction caractéristique d'une mesure.md index 94aec739..855319c6 100644 --- a/fonction caractéristique d'une mesure.md +++ b/fonction caractéristique d'une mesure.md @@ -1,5 +1,5 @@ up:: [[mesure de probabilité]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $\mu$ une [[mesure de probabilité]] sur $\mathbb{R}$ diff --git a/fonction continue par morceaux.md b/fonction continue par morceaux.md index 45107922..bbf9da3d 100644 --- a/fonction continue par morceaux.md +++ b/fonction continue par morceaux.md @@ -4,7 +4,7 @@ alias: [ "continue par morceaux" ] up::[[fonction]] sibling::[[fonction continue]] title:: -#maths/analyse +#s/maths/analyse > [!definition] fonction continue par morceaux > Soit $f$ une fonction sur $I$ diff --git a/fonction continue.md b/fonction continue.md index 5457e464..da54e403 100644 --- a/fonction continue.md +++ b/fonction continue.md @@ -6,7 +6,7 @@ aliases: - continue --- up::[[fonction]] -#maths/analyse +#s/maths/analyse > [!definition] [[fonction continue]] > Soient $(X, d_{x})$ et $(Y, d_{y})$ deux [[espace métrique|espaces métriques]] diff --git a/fonction contractante.md b/fonction contractante.md index 0cff2cfc..b88e4960 100644 --- a/fonction contractante.md +++ b/fonction contractante.md @@ -1,4 +1,4 @@ up::[[fonction lipschitzienne]] -#maths/analyse#not-done +#s/maths/analyse#not-done ---- diff --git a/fonction convergente.md b/fonction convergente.md index 3ae10456..d9d01b24 100644 --- a/fonction convergente.md +++ b/fonction convergente.md @@ -3,7 +3,7 @@ alias: ["converge", "convergente"] --- up::[[fonction]] sibling:: [[suite divergente]] -#maths/analyse +#s/maths/analyse ---- diff --git a/fonction cosinus hyperbolique.md b/fonction cosinus hyperbolique.md index 940fbffa..ba3557bf 100644 --- a/fonction cosinus hyperbolique.md +++ b/fonction cosinus hyperbolique.md @@ -11,7 +11,7 @@ primitive:: properties::[[fonction paire|paire]] description::"$\mathbb{R} \to [1; +\infty[$", "$\dfrac{e^{x}+e^{-x}}{2}$" title::$\mathrm{ch}$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- Notée $\cosh$ ou $\text{ch}$. diff --git a/fonction cosinus.md b/fonction cosinus.md index e0e96e74..01b36a40 100644 --- a/fonction cosinus.md +++ b/fonction cosinus.md @@ -8,7 +8,7 @@ primitive::[[fonction sinus|sin]] properties::[[fonction paire|paire]] description::"$\mathbb{R} \to [-1;1]$", "$\dfrac{e^{ix}+e^{-ix}}{2}$" title::$\cos$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- diff --git a/fonction croissante.md b/fonction croissante.md index d40d6519..aa033fe1 100644 --- a/fonction croissante.md +++ b/fonction croissante.md @@ -1,6 +1,6 @@ up::[[fonction]] title::"$x \geq x' \implies f(x) \geq f(x')$" -#maths/analyse +#s/maths/analyse ---- Soit $f$ une fonction définie sur un intervalle $I$. diff --git a/fonction d'ordre supérieur.md b/fonction d'ordre supérieur.md index bfded3bf..b016f296 100644 --- a/fonction d'ordre supérieur.md +++ b/fonction d'ordre supérieur.md @@ -3,7 +3,7 @@ aliases: [] --- up:: [[programmation.fonction|fonction]] sibling:: [[fonction de premier ordre]] -#informatique +#s/informatique > [!definition] fonction d'ordre supérieur > Une [[programmation.fonction|fonction]] qui possède au moins une des propriétés suivantes : diff --git a/fonction de Heaviside.md b/fonction de Heaviside.md index cf89cb3a..27d06323 100644 --- a/fonction de Heaviside.md +++ b/fonction de Heaviside.md @@ -1,5 +1,5 @@ up::[[fonctions particulières]] -#maths/analyse +#s/maths/analyse ---- La fonction de _Heaviside_ Est la [[fonction indicatrice]] de $\mathbb{R}^+$ dans $\mathbb{R}$. diff --git a/fonction de Leibniz.md b/fonction de Leibniz.md index 14f68ce2..5b64703f 100644 --- a/fonction de Leibniz.md +++ b/fonction de Leibniz.md @@ -2,7 +2,7 @@ up:: sibling:: [[combinaison linéaire]] author:: [[Leibniz]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/fonction de densité de probabilités.md b/fonction de densité de probabilités.md index 5144339d..663e53a9 100644 --- a/fonction de densité de probabilités.md +++ b/fonction de densité de probabilités.md @@ -1,6 +1,6 @@ up:: [[variable aléatoire continue]] title:: "[[dérivation|dérivée]] de la [[probabilités variable aléatoire fonction de répartition|fonction de répartition]]" -#maths/probabilités +#s/maths/probabilités --- diff --git a/fonction de plusieurs variables.md b/fonction de plusieurs variables.md index bf0659e3..b95ca2a0 100644 --- a/fonction de plusieurs variables.md +++ b/fonction de plusieurs variables.md @@ -1,5 +1,5 @@ up:: [[fonction]] -#maths/analyse +#s/maths/analyse > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/fonction de premier ordre.md b/fonction de premier ordre.md index d442080a..765e4114 100644 --- a/fonction de premier ordre.md +++ b/fonction de premier ordre.md @@ -1,6 +1,6 @@ up:: [[programmation.fonction|fonction]] sibling:: [[fonction d'ordre supérieur]] -#informatique +#s/informatique > [!definition] fonction de premier ordre > Une fonction de premier ordre est diff --git a/fonction de première classe.md b/fonction de première classe.md index c699f1d4..d4e8b63f 100644 --- a/fonction de première classe.md +++ b/fonction de première classe.md @@ -1,5 +1,5 @@ up:: [[citoyen de première classe]] -#informatique +#s/informatique > [!definition] fonction de première classe > Une fonction de première classe est une [[programmation.fonction|fonction]] qui est traîtée comme un [[citoyen de première classe]]. diff --git a/fonction de probabilités.md b/fonction de probabilités.md index ece2377d..9230c1b6 100644 --- a/fonction de probabilités.md +++ b/fonction de probabilités.md @@ -3,7 +3,7 @@ alias: [ "probabilité" ] --- up:: [[espace probabilisé]] title:: "$P: \mathscr{P}(\Omega) \to [0, 1]$", "$\displaystyle P(A) = \frac{\text{card}(A)}{\text{card}(\Omega )}$" -#maths/probabilités +#s/maths/probabilités --- diff --git a/fonction de répartition d'une mesure de probabilités.md b/fonction de répartition d'une mesure de probabilités.md index 63e09b4d..8fb5ec6c 100644 --- a/fonction de répartition d'une mesure de probabilités.md +++ b/fonction de répartition d'une mesure de probabilités.md @@ -1,5 +1,5 @@ up:: [[mesure de probabilité]] -#maths/intégration #maths/probabilités +#s/maths/intégration #s/maths/probabilités > [!definition] Définition > Soit $\mu$ une [[mesure de probabilité]] sur $\mathbb{R}$ diff --git a/fonction dominée en un point.md b/fonction dominée en un point.md index 00a98a86..6d081ed1 100644 --- a/fonction dominée en un point.md +++ b/fonction dominée en un point.md @@ -4,7 +4,7 @@ alias: [ "domination", "dominée" ] up::[[fonction]] sibling::[[fonction négligeable devant une autre]], [[fonctions équivalentes|équivalence]] title::"$f = \mathcal{O}_{x_{0}}(g) \iff \dfrac{f}{g} \text{ est bornée au voisinage de } x_{0}$" -#maths/analyse +#s/maths/analyse ---- > [!definition] fonction dominée diff --git a/fonction du sac à dos.md b/fonction du sac à dos.md index 82176ff2..6daee215 100644 --- a/fonction du sac à dos.md +++ b/fonction du sac à dos.md @@ -1,6 +1,6 @@ up:: [[fonction à sens unique]] title:: "Soient $B \subset A \subset \mathbb{N}$", "$(A, B) \mapsto \sum\limits B$" -#informatique +#s/informatique --- diff --git a/fonction décroissante.md b/fonction décroissante.md index df84f1c0..1054c046 100644 --- a/fonction décroissante.md +++ b/fonction décroissante.md @@ -1,6 +1,6 @@ up::[[fonction]] title::"$x \geq x' \implies f(x) \leq f(x')$" -#maths/analyse +#s/maths/analyse ---- diff --git a/fonction dérivable par morceaux.md b/fonction dérivable par morceaux.md index eef441b8..53d18181 100644 --- a/fonction dérivable par morceaux.md +++ b/fonction dérivable par morceaux.md @@ -1,7 +1,7 @@ up:: [[classe d'une fonction]] sibling:: [[fonction continue par morceaux]] title:: "de classe $C^{1}$ sur des intervalles dont l'union est $\mathbb{R}$" -#maths/analyse +#s/maths/analyse --- diff --git a/fonction dérivable.md b/fonction dérivable.md index 928b8628..a279a992 100644 --- a/fonction dérivable.md +++ b/fonction dérivable.md @@ -1,9 +1,20 @@ --- alias: "dérivable" +up: + - "[[fonction]]" + - "[[dérivation]]" +tags: "#s/maths/analyse" --- -up::[[fonction]], [[dérivation]] -title::"fonction dont la [[dérivation|dérivée]] existe" -#maths/analyse -Une fonction est dérivable sur un intervalle si et seulement si sa [[dérivation|dérivée]] existe sur cet intervalle. +> [!definition] Définition +> Soit $f: E \to F$ une application +> Soit $A \subset E$ +> $f$ est dérivable sur $A$ si et seulement si : +> $\forall a \in A,\quad \lim\limits_{ h \to 0 } \dfrac{f(a+h)-f(a)}{h} \in \mathbb{R}$ +> Autrement dit, si la [[dérivation|dérivée]] de $f$ est définie partout sur $A$. +^definition +- i On note $\mathcal{D}^{1}(E, F)$ l'[[ensemble des fonctions dérivables]] + +> [!idea] intuition +> $f$ dérivable sur $A$ $\iff$ sa [[dérivation|dérivée]] existe sur cet ensemble diff --git a/fonction escalier.md b/fonction escalier.md index 21c7d2ab..62e85573 100644 --- a/fonction escalier.md +++ b/fonction escalier.md @@ -1,5 +1,5 @@ up::[[fonction]] -#maths/analyse +#s/maths/analyse ---- Une fonction $f:[a, b]\rightarrow\mathbb{R}$ est dite _en escalier_ s'il existe une [[Subdivision d'un intervalle|subdivision]] $s\in \cal S([a, b])$ telle que $f$ soit **constante** sur chacun des intervalles **ouverts** de $s$. diff --git a/fonction exponentielle.md b/fonction exponentielle.md index 0ee60274..63252856 100644 --- a/fonction exponentielle.md +++ b/fonction exponentielle.md @@ -1,6 +1,6 @@ up:: [[analyse|analyse]] title:: "$e^{x}$ ou $\exp(x)$" -#maths/analyse #not-done +#s/maths/analyse #not-done ```functionplot --- diff --git a/fonction impaire.md b/fonction impaire.md index 4beb7124..1ac52b9b 100644 --- a/fonction impaire.md +++ b/fonction impaire.md @@ -5,7 +5,7 @@ up::[[fonction]] sibling::[[fonction paire]] title::"$f(x) = -f(-x)$" description::"$\forall x \in \mathscr{D}_{f}, f(x) = -f(-x)$" -#maths/analyse +#s/maths/analyse ---- Une fonction $f$ est impaire si et seulement si : diff --git a/fonction indicatrice.md b/fonction indicatrice.md index 1d996585..205d95c1 100644 --- a/fonction indicatrice.md +++ b/fonction indicatrice.md @@ -1,5 +1,5 @@ up::[[analyse]], [[fonction]] -#maths/analyse +#s/maths/analyse ---- La fonction _indicatrice_ (ou caractéristique) est une [[fonction]] définie sur un ensemble $E$ qui explicite l'appartenance ou non à un sous ensemble $F$ de $E$ de tout élément de $E$. diff --git a/fonction intégrable.md b/fonction intégrable.md index c659dd95..69f8fc38 100644 --- a/fonction intégrable.md +++ b/fonction intégrable.md @@ -3,7 +3,7 @@ aliases: - intégrable --- up:: [[intégrale de lebesgue]] -#maths/intégration +#s/maths/intégration > [!definition] [[fonction intégrable]] > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/fonction lipschitzienne.md b/fonction lipschitzienne.md index 6d9ec223..7cc26990 100644 --- a/fonction lipschitzienne.md +++ b/fonction lipschitzienne.md @@ -1,6 +1,6 @@ up::[[fonction]] title::"$\big|f(x)-f(y)\big| \leq k|x-y|$" -#maths/analyse +#s/maths/analyse > [!definition] [[fonction lipschitzienne]] > Sur un [[espace métrique]] $(X, d)$ diff --git a/fonction logarithme discret.md b/fonction logarithme discret.md index c650ea0d..0388edc1 100644 --- a/fonction logarithme discret.md +++ b/fonction logarithme discret.md @@ -1,6 +1,6 @@ up:: [[fonction à sens unique]] title:: $a^{b}$ dans un groupe fini -#informatique +#s/informatique --- diff --git a/fonction mesurable.md b/fonction mesurable.md index 6e0b0ff2..55e1168c 100644 --- a/fonction mesurable.md +++ b/fonction mesurable.md @@ -5,7 +5,7 @@ aliases: - mesurables --- up:: [[fonction]], [[espace mesurable]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[fonction mesurable]] > Soient $\mathcal{A}$ une tribu sur $E$ et $\mathcal{B}$ une tribu sur $F$ diff --git a/fonction monotone.md b/fonction monotone.md index 3056227a..719eaefd 100644 --- a/fonction monotone.md +++ b/fonction monotone.md @@ -1,5 +1,5 @@ up::[[fonction]] -#maths/analyse +#s/maths/analyse ---- Une fonction $f$ est _monotone_ sur un intervalle $I$ ssi elle est croissante sur $I$ ou décroissante sur $I$ (c'est à dire qu'elle ne change pas de sens de variation). diff --git a/fonction nulle.md b/fonction nulle.md index 5756252f..6e588cc4 100644 --- a/fonction nulle.md +++ b/fonction nulle.md @@ -1,6 +1,6 @@ up:: [[fonction]] title:: "$f: x \mapsto 0$" -#maths/analyse +#s/maths/analyse --- diff --git a/fonction négligeable devant une autre.md b/fonction négligeable devant une autre.md index 91383837..445de56b 100644 --- a/fonction négligeable devant une autre.md +++ b/fonction négligeable devant une autre.md @@ -7,7 +7,7 @@ alias: ["négligeable", "négligeabilité", "fonction négligeable"] up::[[fonction]] sibling::[[fonction dominée en un point|domination]], [[fonctions équivalentes|équivalence]] title::"$f=o_{x_{0}}(g) \iff \lim\limits_{x \to x_{0}} \dfrac{f(x)}{g(x)}=0$" -#maths/analyse +#s/maths/analyse ---- diff --git a/fonction négligeable.md b/fonction négligeable.md index 2b89aec9..1299e21e 100644 --- a/fonction négligeable.md +++ b/fonction négligeable.md @@ -1,5 +1,5 @@ up:: [[propriété vraie presque partout]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Dans l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/fonction paire.md b/fonction paire.md index 1399e2d6..bf83aa2b 100644 --- a/fonction paire.md +++ b/fonction paire.md @@ -5,7 +5,7 @@ up::[[fonction]] sibling::[[fonction impaire]] title::"$f(x) = -f(x)$" description::"$\forall x \in \mathscr{D}_{f}, f(x) = -f(x)$" -#maths/analyse +#s/maths/analyse ---- Une fonction $f$ est paire si et seulement si: diff --git a/fonction produit de deux nombres.md b/fonction produit de deux nombres.md index 787ce75f..89f9f967 100644 --- a/fonction produit de deux nombres.md +++ b/fonction produit de deux nombres.md @@ -1,6 +1,6 @@ up:: [[fonction à sens unique]] title:: $p : (a,b) \mapsto ab$, base de RSA -#informatique +#s/informatique --- diff --git a/fonction pure.md b/fonction pure.md index c106748b..6ef14d5f 100644 --- a/fonction pure.md +++ b/fonction pure.md @@ -1,5 +1,5 @@ up:: [[programmation.fonction|fonction]] -#informatique +#s/informatique > [!definition] fonction pure > Une fonction pure est une fonction : diff --git a/fonction rampe.md b/fonction rampe.md index da16d3d0..93fd73ab 100644 --- a/fonction rampe.md +++ b/fonction rampe.md @@ -1,6 +1,6 @@ up::[[fonctions particulières]] title::"$R(x) = \begin{cases} x \text{ si } x \geq 0,\quad\\ 0 \text{ si } x < 0 \end{cases}$" -#maths/analyse +#s/maths/analyse ---- La fonction _rampe_ Est la [[fonction]] définie par : diff --git a/fonction signe.md b/fonction signe.md index aad9dd35..e0ea89a7 100644 --- a/fonction signe.md +++ b/fonction signe.md @@ -1,5 +1,5 @@ up::[[fonctions particulières]] -#maths/analyse +#s/maths/analyse ---- diff --git a/fonction sinus hyperbolique.md b/fonction sinus hyperbolique.md index cc03b519..d2eb9fa3 100644 --- a/fonction sinus hyperbolique.md +++ b/fonction sinus hyperbolique.md @@ -11,7 +11,7 @@ derivative::[[fonction cosinus hyperbolique|ch]] primitive::"" description::"$\mathbb{R} \to \mathbb{R}$", "$x \mapsto \dfrac{e^{x}-e^{-x}}{2}$" title::$\mathrm{sh}$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- Noté $\sinh$, ou $\text{sh}$. diff --git a/fonction sinus.md b/fonction sinus.md index ac6f7284..b4b8a74d 100644 --- a/fonction sinus.md +++ b/fonction sinus.md @@ -8,7 +8,7 @@ properties::[[fonction impaire|impaire]] derivative::[[fonction cosinus|cos]] description::"$\mathbb{R} \to [-1;1]$", "$x \mapsto \dfrac{e^{ix}-e^{-ix}}{2i}$" title::$\sin$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- Notée $\sin$. diff --git a/fonction stable sur un ensemble.md b/fonction stable sur un ensemble.md index 9f792c37..78fd5877 100644 --- a/fonction stable sur un ensemble.md +++ b/fonction stable sur un ensemble.md @@ -1,5 +1,5 @@ up:: [[fonction]] -#maths/analyse +#s/maths/analyse > [!definition] fonction stable sur un ensemble > Soit $E$ un ensemble non vide diff --git a/fonction tangente hyperbolique.md b/fonction tangente hyperbolique.md index d64f5fe0..97e960bd 100644 --- a/fonction tangente hyperbolique.md +++ b/fonction tangente hyperbolique.md @@ -6,7 +6,7 @@ properties::[[fonction impaire|impaire]], [[bijection|bijective]] derivative::$\dfrac{1}{\mathrm{ch}^{2}(x)}$ description::"$\mathbb{R} \to [-1; 1]$", "$x \mapsto \dfrac{\mathrm{sh}(x)}{\mathrm{ch}(x)} = \dfrac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$" title::$\mathrm{th}$ -#maths/trigonométrie #maths/analyse +#s/maths/trigonométrie #s/maths/analyse ---- La *tangente hyperbolique* est la [[fonction]] suivante : diff --git a/fonction tangente.md b/fonction tangente.md index 7bf3020e..436ce5bc 100644 --- a/fonction tangente.md +++ b/fonction tangente.md @@ -5,7 +5,7 @@ description::"$\mathbb{R} \setminus \frac{\pi}{2}\mathbb{Z} \to \mathbb{R}$", "$ derivative::$1+\tan^{2}(x) = \frac{1}{\cos^{2}(x)}$ primitive::"$- \ln \left| \cos x \right| + \text{cste.}$" title::$\tan$ -#maths/analyse #maths/trigonométrie +#s/maths/analyse #s/maths/trigonométrie ---- Notée $\tan$. Fonction trigonométrique (fonction circulaire). diff --git a/fonction uniformément continue.md b/fonction uniformément continue.md index 4f5e13d8..b928696b 100644 --- a/fonction uniformément continue.md +++ b/fonction uniformément continue.md @@ -3,7 +3,7 @@ alias: [ "uniformément continue" ] --- up::[[fonction continue]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/fonction vs procédure.md b/fonction vs procédure.md index 7448cd70..e90607bf 100644 --- a/fonction vs procédure.md +++ b/fonction vs procédure.md @@ -1,5 +1,5 @@ up:: [[programmation.fonction|fonction]], [[programmation.procédure|procédure]] -#informatique +#s/informatique > [!definition] Différence entre fonction et procédure > La fonction à une connotation plus mathématique, la procédure une connotation plus programmatique diff --git a/fonction à sens unique.md b/fonction à sens unique.md index 152d8cf5..f39253d8 100644 --- a/fonction à sens unique.md +++ b/fonction à sens unique.md @@ -1,6 +1,6 @@ up:: [[cryptologie]] title:: "à partir de $x$, facile de calculer $f(x)$", "à partir de $y$, difficile de trouver $x$ tel que $y = f(x)$" -#informatique +#s/informatique --- diff --git a/fonction étagée positive.md b/fonction étagée positive.md index b0538a9f..ac93fc62 100644 --- a/fonction étagée positive.md +++ b/fonction étagée positive.md @@ -3,7 +3,7 @@ aliases: - fonctions étagées positives --- up:: [[fonctions particulières]] -#maths/analyse +#s/maths/analyse > [!definition] [[fonction étagée positive]] > Une fonction étagée est une fonction $f : E \to \mathbb{R}^{+}$ qui s'écrit : diff --git a/fonction.md b/fonction.md index 94e1be86..a9c5ec08 100644 --- a/fonction.md +++ b/fonction.md @@ -4,7 +4,7 @@ up: down: - "[[fonctions particulières]]" tags: - - "#maths/analyse" + - "#s/maths/analyse" sibling: - "[[programmation.fonction]]" --- diff --git a/fonctions particulières.md b/fonctions particulières.md index 17a9028e..7d4571a0 100644 --- a/fonctions particulières.md +++ b/fonctions particulières.md @@ -1,5 +1,5 @@ up:: [[fonction]] -#maths +#s/maths [[fonction|fonctions]] particulières diff --git a/fonctions trigonométriques.md b/fonctions trigonométriques.md index 762ebfbc..62ef6992 100644 --- a/fonctions trigonométriques.md +++ b/fonctions trigonométriques.md @@ -1,6 +1,6 @@ up:: [[trigonométrie]] sibling:: [[formules de trigonométrie|formule de trigonométrie]] -#maths/trigonométrie +#s/maths/trigonométrie > [!query] Sous-notes de `=this.file.link` > ```dataview diff --git a/fonctions égales presque partout.md b/fonctions égales presque partout.md index e4074b89..4eafb3df 100644 --- a/fonctions égales presque partout.md +++ b/fonctions égales presque partout.md @@ -1,5 +1,5 @@ up:: [[propriété vraie presque partout]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Dans l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/fonctions équivalentes.md b/fonctions équivalentes.md index d3c3a25e..67e59b41 100644 --- a/fonctions équivalentes.md +++ b/fonctions équivalentes.md @@ -7,7 +7,7 @@ alias: ["équivalente"] up::[[fonction]] sibling::[[fonction négligeable devant une autre]], [[fonction dominée en un point|domination]] title::"$f \sim_{x_{0}} g \iff \lim\limits_{x \to x_{0}} \dfrac{f(x)}{g(x)} = 1$" -#maths/analyse +#s/maths/analyse ---- diff --git a/foo.md b/foo.md index 7594f72d..d5793563 100644 --- a/foo.md +++ b/foo.md @@ -4,7 +4,7 @@ supercool: 2020-10-10 --- link:: title:: -#personne +#t/personne --- Anniversaire : diff --git a/forme algébrique.md b/forme algébrique.md index 2c3db5b2..9df16637 100644 --- a/forme algébrique.md +++ b/forme algébrique.md @@ -4,7 +4,7 @@ sr-interval: 116 sr-ease: 270 --- up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes ---- Soit $z\in\mathbb C$, la _forme algébrique_ de $z$ est la forme $z=a+ib$ avec $(a,b)\in\mathbb R^2$. diff --git a/forme bilinéaire antisymétrique.md b/forme bilinéaire antisymétrique.md index 431c9b41..700725b9 100644 --- a/forme bilinéaire antisymétrique.md +++ b/forme bilinéaire antisymétrique.md @@ -3,7 +3,7 @@ alias: [ "antisymétrique" ] --- up:: [[forme bilinéaire]] title:: "$f(u, v) = -f(v, u)$" -#maths/algèbre +#s/maths/algèbre > [!definition] Forme bilinéaire antisymétrique diff --git a/forme bilinéaire d'une matrice.md b/forme bilinéaire d'une matrice.md index 66a2b54d..58458a9b 100644 --- a/forme bilinéaire d'une matrice.md +++ b/forme bilinéaire d'une matrice.md @@ -4,7 +4,7 @@ alias: [ "forme bilinéaire associée à une matrice", "forme bilinéaire associ up:: [[forme bilinéaire]], [[matrice]] sibling:: [[matrice d'une forme bilinéaire]] title:: $f(X, Y) = \,^TX \times M \times Y$ -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme bilinéaire définie.md b/forme bilinéaire définie.md index 73306794..6db6e203 100644 --- a/forme bilinéaire définie.md +++ b/forme bilinéaire définie.md @@ -3,7 +3,7 @@ alias: [ "définie" ] --- up:: [[forme bilinéaire]] title:: "$b(x, x) = 0 \iff x=\vec{0}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme bilinéaire positive.md b/forme bilinéaire positive.md index 7ab11b42..fa05b320 100644 --- a/forme bilinéaire positive.md +++ b/forme bilinéaire positive.md @@ -3,7 +3,7 @@ alias: [ "positive" ] --- up:: [[forme bilinéaire]] title:: "$b(x, x) \geq 0$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme bilinéaire symétrique associée à une forme quadratique.md b/forme bilinéaire symétrique associée à une forme quadratique.md index cd5a742f..622206b9 100644 --- a/forme bilinéaire symétrique associée à une forme quadratique.md +++ b/forme bilinéaire symétrique associée à une forme quadratique.md @@ -3,7 +3,7 @@ alias: [ "forme quadratique associée à une forme bilinéaire symétrique", "fo --- up:: [[forme bilinéaire]], [[forme quadratique]] title:: "$b(x, x) = q(x)$", "$b$ une [[forme bilinéaire symétrique]]", "$q$ une [[forme quadratique]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme bilinéaire symétrique.md b/forme bilinéaire symétrique.md index b24b1192..c1e75840 100644 --- a/forme bilinéaire symétrique.md +++ b/forme bilinéaire symétrique.md @@ -3,7 +3,7 @@ alias: [ "symétrique" ] --- up::[[forme bilinéaire]] title::"$f(u, v) = f(v, u)$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme bilinéaire.md b/forme bilinéaire.md index 88afbfa5..e27c40d4 100644 --- a/forme bilinéaire.md +++ b/forme bilinéaire.md @@ -4,7 +4,7 @@ alias: [ "bilinéaire" ] up:: [[application bilinéaire]] sibling:: [[forme linéaire]] title::"$f: E^{2} \to \mathbf{K}$ linéaire par rapport à ses deux paramètres" -#maths/algèbre +#s/maths/algèbre --- > [!definition] Forme bilinéaire diff --git a/forme exponentielle.md b/forme exponentielle.md index f06c39bb..fc71a434 100644 --- a/forme exponentielle.md +++ b/forme exponentielle.md @@ -4,7 +4,7 @@ sr-interval: 123 sr-ease: 296 --- up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes ---- Soit $z\in\mathbb C$, la _forme exponentielle_ de $z$ est $z=re^{i\theta}$ avec $(r,\theta)\in\mathbb R^2$, et où on sait que $r = |z|$ et $\theta=\arg(z)$ diff --git a/forme linéaire définie.md b/forme linéaire définie.md index 3d48497c..16239425 100644 --- a/forme linéaire définie.md +++ b/forme linéaire définie.md @@ -1,6 +1,6 @@ up::[[forme linéaire]] title:: $\varphi(x) = 0 \iff \vec{x} = \vec{0}$ -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme linéaire.md b/forme linéaire.md index 873e89a9..2181a002 100644 --- a/forme linéaire.md +++ b/forme linéaire.md @@ -1,6 +1,6 @@ up:: [[application linéaire]] title:: "$f : E \to \mathbb{R}$, $E$ un [[espace vectoriel|ev]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme normale de chomsky.md b/forme normale de chomsky.md index 69ff3cf5..9313b676 100644 --- a/forme normale de chomsky.md +++ b/forme normale de chomsky.md @@ -5,7 +5,7 @@ aliases: --- up:: [[grammaire non-contextuelle]] author:: [[noam chomsky]] -#informatique +#s/informatique > [!definition] forme normale de chomsky d'une [[grammaire non-contextuelle]] > Une [[grammaire non-contextuelle]] est sous *forme normale de chomsky* si et seulement si toutes ses règles de production sont de la forme : diff --git a/forme quadratique définie.md b/forme quadratique définie.md index 91c0c494..bf514b11 100644 --- a/forme quadratique définie.md +++ b/forme quadratique définie.md @@ -3,7 +3,7 @@ alias: [ "définie" ] --- up:: [[forme quadratique]] title:: "$\varphi(x) = 0 \iff x = \vec 0$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme quadratique dégénérée.md b/forme quadratique dégénérée.md index b64d5a2e..dd7bfe99 100644 --- a/forme quadratique dégénérée.md +++ b/forme quadratique dégénérée.md @@ -4,7 +4,7 @@ alias: [ "dégénérée" ] up:: [[forme quadratique]] sibling:: [[forme quadratique non dégénérée]] title:: "signature $(a, b)$ telle que $a + b < \dim E$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme quadratique non dégénérée.md b/forme quadratique non dégénérée.md index ee6b6b38..707e7574 100644 --- a/forme quadratique non dégénérée.md +++ b/forme quadratique non dégénérée.md @@ -1,6 +1,6 @@ up:: [[forme quadratique]] title:: "signature $(a, b)$ telle que $a + b = \dim E$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme quadratique négative.md b/forme quadratique négative.md index 45c5d3a2..d57ea1f9 100644 --- a/forme quadratique négative.md +++ b/forme quadratique négative.md @@ -4,7 +4,7 @@ alias: [ "négative" ] up:: [[forme quadratique]] sibling::[[forme quadratique positive]] title:: "$\varphi(x) \leq 0$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme quadratique positive.md b/forme quadratique positive.md index 14cb5d03..d1bc0cbe 100644 --- a/forme quadratique positive.md +++ b/forme quadratique positive.md @@ -4,7 +4,7 @@ alias: [ "positive" ] up:: [[forme quadratique]] sibling::[[forme quadratique négative]] title:: "$\varphi(x) \geq 0$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/forme quadratique.md b/forme quadratique.md index ed8cec2c..198741d2 100644 --- a/forme quadratique.md +++ b/forme quadratique.md @@ -1,6 +1,6 @@ up:: [[algèbre]] title:: -#maths/algèbre +#s/maths/algèbre ---- diff --git a/forme trigonométrique d'un complexe.md b/forme trigonométrique d'un complexe.md index 23ddc025..74d00ec6 100644 --- a/forme trigonométrique d'un complexe.md +++ b/forme trigonométrique d'un complexe.md @@ -4,7 +4,7 @@ sr-interval: 94 sr-ease: 315 --- up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes ---- Soit $z\in\mathbb C$, la _forme trigonométrique_ de $z$ est $z=r(\cos\theta+i\sin\theta)$, où on sait que $r=|z|$ et $\theta=\arg(z)$. diff --git a/formules de Taylor.md b/formules de Taylor.md index a6fca2d0..1cc90b2e 100644 --- a/formules de Taylor.md +++ b/formules de Taylor.md @@ -1,6 +1,6 @@ up::[[développement limité]] title::"$\displaystyle f(x_{0}) = \sum_{k=0}^{n} \left( \frac{f^{(k)}(x_{0})}{k!}\cdot(x-x_{0})^{k} \right)$" -#maths/analyse +#s/maths/analyse ---- Formules pour calculer la décomposition en [[série entière]] d'une fonction, et son [[développement limité]]. diff --git a/formules de trigonométrie.md b/formules de trigonométrie.md index e5811222..ff2cb3d2 100644 --- a/formules de trigonométrie.md +++ b/formules de trigonométrie.md @@ -2,7 +2,7 @@ alias: "formule de trigonométrie" --- up::[[trigonométrie]] -#maths/trigonométrie +#s/maths/trigonométrie > [!smallquery]- Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/frontière d'une partie d'un espace métrique.md b/frontière d'une partie d'un espace métrique.md new file mode 100644 index 00000000..9b4525a7 --- /dev/null +++ b/frontière d'une partie d'un espace métrique.md @@ -0,0 +1,24 @@ +--- +aliases: + - frontière +up: + - "[[espace métrique]]" +tags: + - s/maths/topologie +sibling: + - "[[intérieur d'un espace métrique|intérieur]]" + - "[[adhérence d'un espace métrique|adhérence]]" +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Soit $A \subset X$ +> On appelle **frontière** de $A$ l'ensemble : +> $\partial A = \mathring{A}\setminus \bar{A}$ +^definition + +# Propriétés + +# Exemples + +- = $\overline{B}(p, r) \setminus B(p, r) = S(p, r)$ diff --git a/gantt diagram.md b/gantt diagram.md index cc21b8e0..ce5e008e 100644 --- a/gantt diagram.md +++ b/gantt diagram.md @@ -1,7 +1,7 @@ up::[[outils de gestion de projet]] title::"planification, suivi, contrôle" link::[présentation de gantt (yt)](https://www.youtube.com/watch?v=TAndnWJd1Lo) -#PM +#s/PM ---- diff --git a/gaspillage alimentaire.md b/gaspillage alimentaire.md index 68e7959a..6e3a2340 100644 --- a/gaspillage alimentaire.md +++ b/gaspillage alimentaire.md @@ -1,4 +1,4 @@ -#science +#s/science ---- diff --git a/gestion de l'espace libre par bit table.md b/gestion de l'espace libre par bit table.md index 5a3ede92..cec0b512 100644 --- a/gestion de l'espace libre par bit table.md +++ b/gestion de l'espace libre par bit table.md @@ -1,6 +1,6 @@ up:: [[méthodes de gestion de l'espace libre pour les fichiers]] title:: "vecteur de bits qui dit si chacun des blocs est libre ou non" -#informatique/unix +#s/informatique/unix --- diff --git a/gestion de l'espace libre par indexation.md b/gestion de l'espace libre par indexation.md index e1ad2b46..ee3d165e 100644 --- a/gestion de l'espace libre par indexation.md +++ b/gestion de l'espace libre par indexation.md @@ -1,6 +1,6 @@ up:: [[méthodes de gestion de l'espace libre pour les fichiers]] title:: "similaire à la [[méthode d'allocation indexée]], on consid" -#informatique/unix +#s/informatique/unix --- diff --git a/gestion de l'espace libre par partitions libres chaînées.md b/gestion de l'espace libre par partitions libres chaînées.md index 616e81ad..0032e96b 100644 --- a/gestion de l'espace libre par partitions libres chaînées.md +++ b/gestion de l'espace libre par partitions libres chaînées.md @@ -1,6 +1,6 @@ up:: [[méthodes de gestion de l'espace libre pour les fichiers]] title:: "on chaîne les portions libres" -#informatique/unix +#s/informatique/unix --- diff --git a/gilles castel.md b/gilles castel.md index 98e6fbec..a37c1799 100644 --- a/gilles castel.md +++ b/gilles castel.md @@ -1,6 +1,6 @@ link::https://castel.dev/ title::"vim, unix, $\LaTeX$" -#personne +#t/personne ---- diff --git a/git configuration.md b/git configuration.md index e0fe7771..6298aa79 100644 --- a/git configuration.md +++ b/git configuration.md @@ -1,6 +1,6 @@ up::[[git]] title::"configurations de git (username, email, editor...)" -#informatique +#s/informatique ---- diff --git a/git create branch from commit.md b/git create branch from commit.md index a59e5f46..cf10a7b1 100644 --- a/git create branch from commit.md +++ b/git create branch from commit.md @@ -5,7 +5,7 @@ name: "create branch from commit" up::[[Git Branches]] title::"`git checkout -b `" title::"`git branch `" -#informatique +#s/informatique ---- diff --git a/git create branch.md b/git create branch.md index 6dd5f998..324e0c32 100644 --- a/git create branch.md +++ b/git create branch.md @@ -4,7 +4,7 @@ name: "create branch" --- up::[[Git Branches]] title::"`git checkout -b ` create and switch to", "`git branch ` create but don't switch" -#informatique +#s/informatique ---- diff --git a/git switch to branch.md b/git switch to branch.md index 1bebc262..3eef5698 100644 --- a/git switch to branch.md +++ b/git switch to branch.md @@ -4,7 +4,7 @@ name: "switch to branch" --- up::[[Git Branches]] title::"`git checkout `" -#informatique +#s/informatique ---- diff --git a/git.md b/git.md index bafdad03..4d679d29 100644 --- a/git.md +++ b/git.md @@ -1,6 +1,6 @@ up::[[versioning]], [[terminal commandes]] title::"Système de [[versioning]]" -#PM #informatique +#s/PM #s/informatique ---- diff --git a/gradient d'une fonction.md b/gradient d'une fonction.md index 052fb281..636d4fdf 100644 --- a/gradient d'une fonction.md +++ b/gradient d'une fonction.md @@ -3,7 +3,7 @@ aliases: - gradient --- up:: [[fonction de plusieurs variables]] -#maths/analyse +#s/maths/analyse > [!definition] gradient d'une fonction diff --git a/grammaire non-contextuelle.md b/grammaire non-contextuelle.md index 71a84cef..7956b0e1 100644 --- a/grammaire non-contextuelle.md +++ b/grammaire non-contextuelle.md @@ -7,7 +7,7 @@ aliases: --- up:: [[grammaire]] sibling:: [[langage non-contextuel]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/graphe d'une fonction.md b/graphe d'une fonction.md index e12b32d5..48c2367a 100644 --- a/graphe d'une fonction.md +++ b/graphe d'une fonction.md @@ -3,7 +3,7 @@ aliases: [] --- up::[[fonction]] title::"$\big\{ (x;f(x)) \mid x \in \mathscr{D}_{f} \big\}$" -#maths/analyse +#s/maths/analyse ---- Le graphe d'une fonction est l'ensemble des couples (valeur, image). diff --git a/graphe d'une relation d'équivalence.md b/graphe d'une relation d'équivalence.md index a190d765..81cdb40a 100644 --- a/graphe d'une relation d'équivalence.md +++ b/graphe d'une relation d'équivalence.md @@ -1,5 +1,5 @@ up::[[relation d'équivalence]] -#maths/algèbre #maths/graphes +#s/maths/algèbre #s/maths/graphes ---- diff --git a/graphe de connaissances.md b/graphe de connaissances.md index 75e37e57..5b5f9df0 100644 --- a/graphe de connaissances.md +++ b/graphe de connaissances.md @@ -2,7 +2,7 @@ aliases: [ "ontologie" ] --- up:: [[graphe]], [[connaissance (informatique)]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/graphe non orienté simple.md b/graphe non orienté simple.md index adcda650..a05faf15 100644 --- a/graphe non orienté simple.md +++ b/graphe non orienté simple.md @@ -1,5 +1,5 @@ up:: [[graphe non orienté étiquetté]] -#maths/graphes +#s/maths/graphes > [!definition] Définition > Soit $n \in \mathbb{N}^{*}$ et $\underline{n} = [\![1;n]\!]$ diff --git a/graphe non orienté étiquetté.md b/graphe non orienté étiquetté.md index b13f535f..29a651ac 100644 --- a/graphe non orienté étiquetté.md +++ b/graphe non orienté étiquetté.md @@ -3,7 +3,7 @@ aliases: - graphes non orientés --- up:: [[graphe]] -#maths/graphes +#s/maths/graphes > [!definition] Définition > Soit $n \in \mathbb{N}^{*}$ diff --git a/graphe orienté.md b/graphe orienté.md index 7a87b956..c2f3ff27 100644 --- a/graphe orienté.md +++ b/graphe orienté.md @@ -1,5 +1,5 @@ up::[[graphe]] -#maths/graphes +#s/maths/graphes ---- diff --git a/graphe régulier étiquetté.md b/graphe régulier étiquetté.md index 96458ad8..ccee84bb 100644 --- a/graphe régulier étiquetté.md +++ b/graphe régulier étiquetté.md @@ -1,5 +1,5 @@ up:: [[graphe non orienté étiquetté]] -#maths/graphes +#s/maths/graphes > [!definition] Définition > Soit $n \in \mathbb{N}^{*}$ diff --git a/graphe simple régulier.md b/graphe simple régulier.md index dd9fc6a9..7afdf21c 100644 --- a/graphe simple régulier.md +++ b/graphe simple régulier.md @@ -1,2 +1,2 @@ up:: [[graphe non orienté simple]], [[graphe régulier étiquetté]] -#maths/graphes +#s/maths/graphes diff --git a/graphe.md b/graphe.md index c7c0eca6..6b3d95ef 100644 --- a/graphe.md +++ b/graphe.md @@ -1,4 +1,4 @@ -#maths/graphes +#s/maths/graphes # Définitions diff --git a/groupe abélien.md b/groupe abélien.md index b9a40403..86d59b8b 100644 --- a/groupe abélien.md +++ b/groupe abélien.md @@ -6,7 +6,7 @@ aliases: - abélien --- up::[[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Un _groupe abélien_ est un [[groupe]] dont la [[loi de composition interne]] est [[commutativité|commutative]]. diff --git a/groupe alterné.md b/groupe alterné.md index 8200dafd..3611d027 100644 --- a/groupe alterné.md +++ b/groupe alterné.md @@ -1,6 +1,6 @@ --- up: "[[permutation]]" -tags: "#maths/algèbre" +tags: "#s/maths/algèbre" --- > [!definition] [[groupe alterné]] diff --git a/groupe cyclique.md b/groupe cyclique.md index 8c61d68f..0cb3479f 100644 --- a/groupe cyclique.md +++ b/groupe cyclique.md @@ -3,7 +3,7 @@ aliases: - cyclique --- up:: [[groupe monogène]], [[groupe fini]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe cyclique]] > Un groupe $G$ est **cyclique** si il est [[groupe monogène|monogène]] et [[groupe fini|fini]] diff --git a/groupe des automorphismes d'un groupe.md b/groupe des automorphismes d'un groupe.md index cf15e44b..dd6ed4bf 100644 --- a/groupe des automorphismes d'un groupe.md +++ b/groupe des automorphismes d'un groupe.md @@ -1,5 +1,5 @@ up:: [[automorphisme de groupes]], [[Groupe des bijections]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un [[groupe]] diff --git a/groupe des automorphismes intérieurs.md b/groupe des automorphismes intérieurs.md index d81d33e6..35608c34 100644 --- a/groupe des automorphismes intérieurs.md +++ b/groupe des automorphismes intérieurs.md @@ -1,5 +1,5 @@ up:: [[automorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un groupe. diff --git a/groupe des classes modulo n premières avec n.md b/groupe des classes modulo n premières avec n.md index 1ca214a2..c4e4c7e5 100644 --- a/groupe des classes modulo n premières avec n.md +++ b/groupe des classes modulo n premières avec n.md @@ -1,5 +1,5 @@ up:: [[groupe des classes modulo n]] -#maths/algèbre +#s/maths/algèbre > [!definition] groupe des classes modulo $n$ premières avec $n$ > Soit $(\mathbb{Z} / n\mathbb{Z})^{\times } = \{ \overline{k} \in \mathbb{Z}/n\mathbb{Z} \mid \mathrm{pgcd}(k, n) = 1 \}$ diff --git a/groupe des classes modulo n.md b/groupe des classes modulo n.md index f2ebbb12..20212f92 100644 --- a/groupe des classes modulo n.md +++ b/groupe des classes modulo n.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] groupe des classes d'équivalence modulo $n$ > $(\mathbb{Z} / n\mathbb{Z}, +)$ diff --git a/groupe des isométries.md b/groupe des isométries.md index def24e6f..e36b5114 100644 --- a/groupe des isométries.md +++ b/groupe des isométries.md @@ -1,6 +1,6 @@ up:: [[rotation]], [[symétrie vectorielle]], [[groupe]] title:: "$O(n)$ en dimension $n$", "rotations et symétries" -#maths/algèbre +#s/maths/algèbre --- diff --git a/groupe des matrices rationnelles inversibles carrées de taille 2.md b/groupe des matrices rationnelles inversibles carrées de taille 2.md index 1c719d1e..1c122cf7 100644 --- a/groupe des matrices rationnelles inversibles carrées de taille 2.md +++ b/groupe des matrices rationnelles inversibles carrées de taille 2.md @@ -1,5 +1,5 @@ up:: [[groupe]], [[inverse d'une matrice]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > L'ensemble $SL_{2}(\mathbb{Z})$ des matrices $2\times 2$ d'entiers de déterminant $1$ est un groupe pour la loi $\times$ diff --git a/groupe des racines complexes de l'unité.md b/groupe des racines complexes de l'unité.md index 2225eb57..ad6b713a 100644 --- a/groupe des racines complexes de l'unité.md +++ b/groupe des racines complexes de l'unité.md @@ -1,5 +1,5 @@ up:: [[nombre complexe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe des racines complexes de l'unité]] > $\mu _{n}(\mathbb{C})$ est le groupe des racines complexes de l'unité : diff --git a/groupe des rotations.md b/groupe des rotations.md index 60a5cd75..b26a5dbe 100644 --- a/groupe des rotations.md +++ b/groupe des rotations.md @@ -1,6 +1,6 @@ up:: [[groupe des isométries]], [[rotation]] title:: "$O^{+}(n)$ en [[dimension d'un espace vectoriel|dimension]] $n$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/groupe diédral d'ordre 4.md b/groupe diédral d'ordre 4.md index a553eae4..fd2259e0 100644 --- a/groupe diédral d'ordre 4.md +++ b/groupe diédral d'ordre 4.md @@ -7,7 +7,7 @@ tags: excalidraw-open-md: true --- up:: [[groupe diédral]] -#maths/algèbre +#s/maths/algèbre `$= "![[" + dv.current().file.name + ".svg|700]]" ` diff --git a/groupe diédral.md b/groupe diédral.md index 846cbb74..f7e3ada9 100644 --- a/groupe diédral.md +++ b/groupe diédral.md @@ -1,5 +1,5 @@ up:: [[groupes particuliers]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe diédral]] > Le groupe diédral est défini par : diff --git a/groupe du rubik's cube.md b/groupe du rubik's cube.md index 99459657..ad146ed3 100644 --- a/groupe du rubik's cube.md +++ b/groupe du rubik's cube.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[groupes particuliers]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe du rubik's cube]] > Le groupe du rubik's cube peu être vu comme le [[sous groupe]] de $\mathfrak{S}_{48}$ engendré par $\left\langle R, L, U, D, F, B \right\rangle$ diff --git a/groupe dérivé.md b/groupe dérivé.md index 093463cd..cca8081e 100644 --- a/groupe dérivé.md +++ b/groupe dérivé.md @@ -1,5 +1,5 @@ up:: [[commutateur d'un groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe dérivé]] > Soit $G$ un groupe diff --git a/groupe fini.md b/groupe fini.md index 249a2bce..a896f17b 100644 --- a/groupe fini.md +++ b/groupe fini.md @@ -3,7 +3,7 @@ aliases: - fini --- up:: [[groupe]], [[ordre d'un groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe fini]] > Un groupe $G$ est **fini** si son [[ordre d'un groupe|ordre]] est fini, c'est-à-dire si le cardinal de $G$ est fini : $\#G < \infty$ diff --git a/groupe libre.md b/groupe libre.md index 4e480acd..7267c548 100644 --- a/groupe libre.md +++ b/groupe libre.md @@ -1,5 +1,5 @@ up:: [[groupe]], [[sous groupe engendré]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe libre]] > Le groupe libre à $n$ générateurs est le groupe à $n$ éléments et muni de la concaténation-réduction. diff --git a/groupe linéaire d'un espace vectoriel.md b/groupe linéaire d'un espace vectoriel.md index 55d0d36d..77c4dad7 100644 --- a/groupe linéaire d'un espace vectoriel.md +++ b/groupe linéaire d'un espace vectoriel.md @@ -1,6 +1,6 @@ up::[[groupe]], [[ensemble des applications linéaires]] title::$\mathrm{GL}(E) =$ ensemble des [[automorphisme|automorphismes]] de $E$ munis de $\circ$ -#maths/algèbre +#s/maths/algèbre ---- Soit $(E, +, \cdot)$ un $\mathbf{K}$-[[espace vectoriel]] diff --git a/groupe linéaire des matrices inversibles.md b/groupe linéaire des matrices inversibles.md index 1295f77e..208b1a08 100644 --- a/groupe linéaire des matrices inversibles.md +++ b/groupe linéaire des matrices inversibles.md @@ -1,6 +1,6 @@ up::[[ensemble des matrices]] title::"$\mathrm{GL}_{n}(E)=\{ m\in\mathcal{M}_{n}(E) \mid \det(m) \neq 0 \wedge m^{-1} \in \mathcal{M}_{n}(E)\}$" -#maths/algèbre +#s/maths/algèbre ---- Le [[groupe]] linéaire des [[matrice|matrices]] [[inverse d'une matrice#Matrice inversible|inversibles]] de dimension $n\times n$ à coefficients dans l'ensemble $E$ et dont **les inverses sont aussi à coefficients dans $E$** se note $\text{GL}_n(E)$ diff --git a/groupe linéaire des matrices modulaires.md b/groupe linéaire des matrices modulaires.md index 7be85515..3f053492 100644 --- a/groupe linéaire des matrices modulaires.md +++ b/groupe linéaire des matrices modulaires.md @@ -1,6 +1,6 @@ up:: [[matrices modulaires|matrice modulaire]] sibling:: [[groupe linéaire des matrices inversibles]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe linéaire des matrices modulaires]] > Soit $p$ un [[nombre premier]] diff --git a/groupe monogène.md b/groupe monogène.md index 2c6d3c4f..32b0313c 100644 --- a/groupe monogène.md +++ b/groupe monogène.md @@ -3,7 +3,7 @@ aliases: - monogène --- up:: [[sous groupe engendré]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe monogène]] > On dit qu'un groupe $G$ est **monogène** s'il est engendré par un élément : diff --git a/groupe parfait.md b/groupe parfait.md index 2cd89b02..64b57f5a 100644 --- a/groupe parfait.md +++ b/groupe parfait.md @@ -1,5 +1,5 @@ up:: [[groupe dérivé]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe parfait]] > Un groupe $G$ est dit **parfait** si il est égal à son [[groupe dérivé]], c'est-à-dire si $D(G) = G$ diff --git a/groupe quotient.md b/groupe quotient.md index 4fc908dc..4f7bfb1c 100644 --- a/groupe quotient.md +++ b/groupe quotient.md @@ -2,7 +2,7 @@ up: - "[[groupe]]" - "[[ensemble quotient]]" -tags: "#maths/algèbre" +tags: "#s/maths/algèbre" --- > [!definition] Définition diff --git a/groupe résoluble.md b/groupe résoluble.md index 7fee0a7c..ed7b2d05 100644 --- a/groupe résoluble.md +++ b/groupe résoluble.md @@ -1,5 +1,5 @@ up:: [[groupe dérivé]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[groupe résoluble]] > Un [[groupe]] $G$ est dit **résoluble** si $D(\cdots (D(D(G)))) = \{ 1 \}$, c'est-à-dire si on peut atteindre le [[sous groupe trivial]] à partir de $G$ par seul passage au [[groupe dérivé]]. diff --git a/groupe symétrique.md b/groupe symétrique.md index 7cdaf3e3..dff63608 100644 --- a/groupe symétrique.md +++ b/groupe symétrique.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] groupe symétrique d'indice $n$ > Soit $n \in \mathbb{N}^{*}$ diff --git a/groupe.md b/groupe.md index ce5f23bb..aadf8a54 100644 --- a/groupe.md +++ b/groupe.md @@ -4,7 +4,7 @@ sr-interval: 365 sr-ease: 346 --- up::[[structure algébrique]] -#maths/algèbre +#s/maths/algèbre > [!definition] groupe > Un ensemble $G$ muni d'une [[loi de composition interne]] $*$ est un _groupe_ ssi : diff --git a/groupes isomorphes.md b/groupes isomorphes.md index 5d6d14cf..0d39daeb 100644 --- a/groupes isomorphes.md +++ b/groupes isomorphes.md @@ -1,5 +1,5 @@ up:: [[isomorphisme de groupes|isomorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soient deux groupes $A$ et $B$ diff --git a/groupes particuliers.md b/groupes particuliers.md index e96ae966..a79b0f4f 100644 --- a/groupes particuliers.md +++ b/groupes particuliers.md @@ -1,5 +1,5 @@ up:: [[groupe]] -#maths/algèbre +#s/maths/algèbre > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/grève générale.md b/grève générale.md index 9976bccc..f4475292 100644 --- a/grève générale.md +++ b/grève générale.md @@ -1,3 +1,3 @@ up:: [[grève]] -#politique +#s/politique diff --git a/grève.md b/grève.md index bc3a370e..a3129248 100644 --- a/grève.md +++ b/grève.md @@ -1,5 +1,5 @@ up:: [[militantisme.méthodes d'action|méthodes d'action]] -#politique +#s/politique > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/génie logiciel TP gantt 2022-09-22.md b/génie logiciel TP gantt 2022-09-22.md index b832797e..a3d0f497 100644 --- a/génie logiciel TP gantt 2022-09-22.md +++ b/génie logiciel TP gantt 2022-09-22.md @@ -1,5 +1,5 @@ up::[[gantt diagram]] -#exercice +#t/exercice ---- diff --git a/génie logiciel et gestion de projet.md b/génie logiciel et gestion de projet.md index b968abbc..ee59ead4 100644 --- a/génie logiciel et gestion de projet.md +++ b/génie logiciel et gestion de projet.md @@ -3,7 +3,7 @@ aliases: - génie logiciel - gestion de projet --- -#informatique +#s/informatique ---- diff --git a/génocide.md b/génocide.md index 3b11a1cc..3d9090af 100644 --- a/génocide.md +++ b/génocide.md @@ -1,5 +1,5 @@ down:: [[étapes d'un génocide]] -#science/histoire +#s/science/histoire > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/général de gaule.md b/général de gaule.md index 617fd42b..ccf7c481 100644 --- a/général de gaule.md +++ b/général de gaule.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/géométrie.md b/géométrie.md index 81c21e8e..a6f2e290 100644 --- a/géométrie.md +++ b/géométrie.md @@ -1,4 +1,4 @@ -#maths/géométrie +#s/maths/géométrie ---- diff --git a/handicap à l'université.md b/handicap à l'université.md index 9d04f3bf..f30aac7f 100644 --- a/handicap à l'université.md +++ b/handicap à l'université.md @@ -1,5 +1,5 @@ up:: [[handicap]], [[université]] -#fac +#s/fac > [!info] statistiques diff --git a/haskell.md b/haskell.md index b5b281e3..ee9fb88e 100644 --- a/haskell.md +++ b/haskell.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title:: "fonctionnel, basé sur la théorie des types" -#informatique +#s/informatique --- diff --git a/histoire de l'informatique.md b/histoire de l'informatique.md index 755335e8..763c97d3 100644 --- a/histoire de l'informatique.md +++ b/histoire de l'informatique.md @@ -1,6 +1,6 @@ up::[[informatique]] title::"historique de la création de l'informatique" -#informatique +#s/informatique ---- diff --git a/historique des mémoires à tore.md b/historique des mémoires à tore.md index fb9682f4..82dae1c4 100644 --- a/historique des mémoires à tore.md +++ b/historique des mémoires à tore.md @@ -1,5 +1,5 @@ up:: [[mémoire à tore de ferrite]] -#informatique #physique +#s/informatique #s/physique # évolution des caractéristiques diff --git a/hiérarchie sociale des métiers.md b/hiérarchie sociale des métiers.md index 2a5fbd04..abe3354c 100644 --- a/hiérarchie sociale des métiers.md +++ b/hiérarchie sociale des métiers.md @@ -1,5 +1,5 @@ up:: [[travail]] -#science/sociologie +#s/science/sociologie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/homebrew désinstaller.md b/homebrew désinstaller.md index 3ee4d8a4..3d4dccdf 100644 --- a/homebrew désinstaller.md +++ b/homebrew désinstaller.md @@ -3,7 +3,7 @@ alias: [ "homebrew désinstaller avec les dépendances" ] --- up:: [[homebrew]] title:: "`brew uninstall && brew autoremove`" -#informatique +#s/informatique --- diff --git a/homebrew.md b/homebrew.md index 845e7f28..0ded4f8b 100644 --- a/homebrew.md +++ b/homebrew.md @@ -1,6 +1,6 @@ up::[[installing things]] title::"macos package manager" -#informatique +#s/informatique ---- diff --git a/homogénéité des intérêts de la bourgeoisie.md b/homogénéité des intérêts de la bourgeoisie.md index dd224e90..6d5b85ba 100644 --- a/homogénéité des intérêts de la bourgeoisie.md +++ b/homogénéité des intérêts de la bourgeoisie.md @@ -2,7 +2,7 @@ author:: source:: [[Bourgeoisie — Wikirouge]] link:: https://wikirouge.net/Bourgeoisie date-seen::2024-05-24 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source, "[voir]("+dv.current().link+")"].filter((s)=>s!==null).join(" — ")` diff --git a/how internet changed the way we live.md b/how internet changed the way we live.md index a451dcb0..74c575bf 100644 --- a/how internet changed the way we live.md +++ b/how internet changed the way we live.md @@ -1,8 +1,6 @@ --- - mindmap-plugin: rich -tags: [ "#anglais", "" ] - +tags: [ "#s/anglais", "" ] --- # how internet changed the way we live diff --git a/html.md b/html.md index 9a85b037..25e4864a 100644 --- a/html.md +++ b/html.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique ---- Langage pour décrire des pages web avec des lien (hypertexte). diff --git a/http.md b/http.md index 345775e1..14056f8b 100644 --- a/http.md +++ b/http.md @@ -1,6 +1,6 @@ up::[[internet]] sibling::[[https]] -#informatique +#s/informatique ---- Voir : [[https]] : version sécurisée du protocole diff --git a/https.md b/https.md index 519af725..ad756945 100644 --- a/https.md +++ b/https.md @@ -1,6 +1,6 @@ up::[[internet]] sibling::[[http]] -#informatique +#s/informatique ---- protocole de transfer d'hyper texte sécurisé. diff --git a/hugging chat.md b/hugging chat.md index 242a274c..00e34290 100644 --- a/hugging chat.md +++ b/hugging chat.md @@ -4,7 +4,7 @@ alias: [ "free open source AI chatbot" ] up:: [[AI]] title:: "alternative to [[chat GPT]]" link:: https://huggingface.co/ -#informatique +#s/informatique --- diff --git a/hussards noirs.md b/hussards noirs.md index b628692d..dbafddf0 100644 --- a/hussards noirs.md +++ b/hussards noirs.md @@ -1,5 +1,5 @@ up:: -#science/histoire +#s/science/histoire > [!definition] hussards noirs > Les "hussards noirs" étaient les instituteurs sous la [[3ème république]] diff --git a/hyperplan vectoriel.md b/hyperplan vectoriel.md index 753bfa1b..de8de7ac 100644 --- a/hyperplan vectoriel.md +++ b/hyperplan vectoriel.md @@ -3,7 +3,7 @@ alias: [ "hyperplan" ] --- up:: [[sous espace vectoriel|sev]] title:: "[[sous espace vectoriel|sev]] de [[dimension d'un espace vectoriel|dimension]] $n-1$ dans un [[espace vectoriel|ev]] de [[dimension d'un espace vectoriel|dimension]] $n$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/hypersphère.md b/hypersphère.md index 0d0ce5c9..2b30601a 100644 --- a/hypersphère.md +++ b/hypersphère.md @@ -3,7 +3,7 @@ aliases: - hyperboule --- up:: [[géométrie]] -#maths/géométrie +#s/maths/géométrie > [!definition] hypersphère diff --git a/hystérésis magnétique.md b/hystérésis magnétique.md index fbbc6692..685cabd1 100644 --- a/hystérésis magnétique.md +++ b/hystérésis magnétique.md @@ -1,5 +1,5 @@ up:: [[hystérésis]] -#physique +#s/physique > [!definition] hystérésis magnétique diff --git a/hystérésis élastique.md b/hystérésis élastique.md index 51e28a98..1390bf8e 100644 --- a/hystérésis élastique.md +++ b/hystérésis élastique.md @@ -1,5 +1,5 @@ up:: [[hystérésis]] -#physique +#s/physique > [!definition] hystérésis élastique > Lors d'une déformation élastique, il y à hystérésis. diff --git a/hystérésis.md b/hystérésis.md index 9213bd14..966125d8 100644 --- a/hystérésis.md +++ b/hystérésis.md @@ -1,5 +1,5 @@ up:: [[physique]] -#physique +#s/physique > [!definition] hystérésis > Propriété d'un système dont l'évolution ne suit pas le même chemin selon qu'une cause extérieure augmente ou diminue diff --git a/héritage.md b/héritage.md index 04c67070..0c9f9067 100644 --- a/héritage.md +++ b/héritage.md @@ -1,3 +1,3 @@ up:: [[paradigme programmation orientée objet]] -#informatique +#s/informatique diff --git a/icosaèdre.md b/icosaèdre.md index 1c46b6dd..c53d31f1 100644 --- a/icosaèdre.md +++ b/icosaèdre.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre ---- symbole de shläfli : $\{3, 5\}$ diff --git a/identité sociale.md b/identité sociale.md index 7c5ee163..53933aff 100644 --- a/identité sociale.md +++ b/identité sociale.md @@ -1,5 +1,5 @@ up:: [[sociologie]] -#science/sociologie +#s/science/sociologie Fait de se reconnaître dans un groupe (l'[[endogroupe]]), ou bien de se positionner contre d'autres groupes (certains [[exogroupes]]). diff --git a/identités remarquables.md b/identités remarquables.md index 7be5dd4a..f5ee3d11 100644 --- a/identités remarquables.md +++ b/identités remarquables.md @@ -3,7 +3,7 @@ alias: [ "identité remarquable" ] --- up:: [[analyse|analyse]] title:: "$a^{2}+2ab+b^{2} = (a+b)^{2}$", "$a^{2} - 2ab+b^{2} = (a-b)^{2}$", "$a^{2} - b^{2} = (a+b)(a-b)$" -#maths/analyse +#s/maths/analyse --- diff --git a/idée présentations salsiphi.md b/idée présentations salsiphi.md index 97d54cee..262639e7 100644 --- a/idée présentations salsiphi.md +++ b/idée présentations salsiphi.md @@ -3,7 +3,7 @@ tags: - PKM --- up:: [[salsiphi]], [[post queues]] -#science +#s/science > [!todo] explication simple de la théorie des groupes > - exemples pratiques et concrêts de groupes diff --git a/il est né le divin enfant (jean yanne).md b/il est né le divin enfant (jean yanne).md index 8566a0c5..04c99461 100644 --- a/il est né le divin enfant (jean yanne).md +++ b/il est né le divin enfant (jean yanne).md @@ -1,7 +1,7 @@ up:: [[chansons]] author:: [[Jean Yanne]] title:: "il est né le divin enfant, Jouez transistors, résonnez cassettes" -#art/musique +#s/art/musique --- diff --git a/il faut agir de manière non conventionnelle.md b/il faut agir de manière non conventionnelle.md index fd960c8f..85276d85 100644 --- a/il faut agir de manière non conventionnelle.md +++ b/il faut agir de manière non conventionnelle.md @@ -3,7 +3,7 @@ alias: [ "actions non conventionnelles" ] --- up:: [[principes généraux de mise en place de l'action]] source:: [[conférence gesticulée.Inculture 4 - le plein d'énergie]] -#politique +#s/politique [[il faut agir de manière non conventionnelle]] Les actions innatendues ont plus d'effet que les actions conventionnelles (manifestations...). ^0d4ed3 diff --git a/il faut fêter les actions militantes.md b/il faut fêter les actions militantes.md index fc3b717e..03d352e4 100644 --- a/il faut fêter les actions militantes.md +++ b/il faut fêter les actions militantes.md @@ -1,6 +1,6 @@ up:: [[principes généraux de mise en place de l'action]] source:: [[conférence gesticulée.Inculture 4 - le plein d'énergie]] -#politique +#s/politique Le fait de fêter les actions militantes est important pour en conserver la **mémoire** : une action est façilement oubliable, mais une fête devant son résultat reste dans les mémoires. diff --git a/il faut opposer au capitalisme une offre pulsionnelle au moins aussi attractive.md b/il faut opposer au capitalisme une offre pulsionnelle au moins aussi attractive.md index d4770060..b057268c 100644 --- a/il faut opposer au capitalisme une offre pulsionnelle au moins aussi attractive.md +++ b/il faut opposer au capitalisme une offre pulsionnelle au moins aussi attractive.md @@ -6,7 +6,7 @@ author:: [[Frédéric Lordon]] source:: [[En travail - Conversations sur le communisme]] link:: date-seen::2024-06-17 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Derrière le capitalisme, derrière ses structures, ses institutions, ce qu'il faut ne pas oublier de voir, c'est qu'il y à une offre pulsionnelle d'une puissance absolument incroyable. La profondeur des ressorts que le capitalisme fait vibrer en nous, par lesquels ils nous attrape, est quelque chose d'absolument admirable, terrifiant. C'est une très grande réussite. Et comme pour la proposition fasciste en face de laquelle il faut mettre une proposition communiste, à l'offre pulsionnelle capitaliste il faut répondre par une offre pulsionnelle qui soit au moins aussi attractive; drôlement pas facile à élaborer. Alors, drôlement pas facile, mais pas complètement impossible, parce que, précisément, ce qu'il faut plaider, c'est la cause des récupérations de puissance dans le capitalisme. diff --git a/image d'un morphisme de groupes.md b/image d'un morphisme de groupes.md index 04b321a6..81c50083 100644 --- a/image d'un morphisme de groupes.md +++ b/image d'un morphisme de groupes.md @@ -1,6 +1,6 @@ up:: [[morphisme de groupes]] sibling:: [[noyau d'un morphisme de groupes]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $f : G \to G'$ un [[morphisme de groupes]] de [[groupe]] diff --git a/image d'une application linéaire.md b/image d'une application linéaire.md index 69711ae3..ccf83b47 100644 --- a/image d'une application linéaire.md +++ b/image d'une application linéaire.md @@ -1,5 +1,5 @@ up::[[application linéaire]] -#maths/algèbre +#s/maths/algèbre > [!définition] > Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] réels, et $f$ une [[application linéaire]] de $E$ dans $F$, diff --git a/image d'une requête.md b/image d'une requête.md index 464a507a..21ab7ca4 100644 --- a/image d'une requête.md +++ b/image d'une requête.md @@ -1,5 +1,5 @@ up::[[requête]] -#informatique +#s/informatique ---- Soit $q$ une [[requête]] $ans(u)\leftarrow R_1(u_1), \ldots, R_n(u_n)$ diff --git a/image réciproque d'un ensemble.md b/image réciproque d'un ensemble.md index ac4cd3e1..c8f64a37 100644 --- a/image réciproque d'un ensemble.md +++ b/image réciproque d'un ensemble.md @@ -1,5 +1,5 @@ up:: [[application réciproque]] -#maths/ensembles +#s/maths/ensembles > [!definition] Définition > Soit $f : E \to F$ une application diff --git a/impact des énergies fossiles.md b/impact des énergies fossiles.md index fd82dbc9..9e3f684c 100644 --- a/impact des énergies fossiles.md +++ b/impact des énergies fossiles.md @@ -1,6 +1,6 @@ up::[[ressources fossiles]] title:: -#politique #science/écologie +#s/politique #s/science/écologie --- diff --git a/importance de l'éducation politique.md b/importance de l'éducation politique.md index 61fe0677..621b26a2 100644 --- a/importance de l'éducation politique.md +++ b/importance de l'éducation politique.md @@ -3,7 +3,7 @@ alias: [ "importance de l'éducation populaire" ] --- up:: [[éducation populaire]] title:: -#politique #apprendre +#s/politique #s/apprendre --- diff --git a/importance des corps de métier.md b/importance des corps de métier.md index ac968542..ea97b9a0 100644 --- a/importance des corps de métier.md +++ b/importance des corps de métier.md @@ -3,7 +3,7 @@ alias: [ "corps de métier" ] --- up:: [[travail]] title:: -#politique +#s/politique --- diff --git a/incels.md b/incels.md index db4cf4af..89734d0a 100644 --- a/incels.md +++ b/incels.md @@ -1,5 +1,5 @@ up:: [[personnalités]] -#science/sociologie +#s/science/sociologie > [!definition] [[incels]] > [[homme|Hommes]] qui n'obtiennent pas de succès dans les relations avec les [[femme|femmes]], et qui rendent les femmes responsables de leur échec, plutôt qu'eux-même ([[erreur fondamentale d'attribution]]). diff --git a/inconsistence of english prononciation.md b/inconsistence of english prononciation.md index f70eb339..8f0a8101 100644 --- a/inconsistence of english prononciation.md +++ b/inconsistence of english prononciation.md @@ -3,7 +3,7 @@ alias: [ "english prononciation inconsistences" ] --- up:: [[anglais]] title:: "inconsitences in the prononciation of english" -#anglais +#s/anglais --- diff --git a/individu.md b/individu.md index abd7cf7d..29f071d7 100644 --- a/individu.md +++ b/individu.md @@ -1,5 +1,5 @@ up:: [[philosophie]] -#philosphie +#s/philosphie > [!definition] selon [[Baruch de Spinoza|Spinoza]] > L'individu est un [[mode fini]] en tant qu'il est [[affect|affecté]]. diff --git a/informatique.algorithmes.md b/informatique.algorithmes.md index a76fdc94..12fa76e7 100644 --- a/informatique.algorithmes.md +++ b/informatique.algorithmes.md @@ -2,7 +2,7 @@ alias: [ "algorithme", "algorithmes" ] --- up::[[informatique|informatique]] -#informatique +#s/informatique --- diff --git a/informatique.md b/informatique.md index 1cbb6d3e..560ef2db 100644 --- a/informatique.md +++ b/informatique.md @@ -1,15 +1,15 @@ -#informatique - ----- - -> [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> title: false -> type: tree -> dir: down -> depth: -2 -> ``` +--- +tags: "#s/informatique" +--- +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/initialiser un projet express JS.md b/initialiser un projet express JS.md index 00eb267e..b34979c3 100644 --- a/initialiser un projet express JS.md +++ b/initialiser un projet express JS.md @@ -1,6 +1,6 @@ up:: [[express JS]] next:: [[démarrer un projet express]] -#informatique/langage/javascript +#s/informatique/langage/javascript ```sh $> npm init diff --git a/injection.md b/injection.md index 4c8ad1a1..e403138f 100644 --- a/injection.md +++ b/injection.md @@ -6,7 +6,7 @@ alias: "injective" --- up::[[application]] sibling::[[surjection]] -#maths/analyse +#s/maths/analyse > [!definition] Définition > Soit f une application de $E$ dans $F$ : diff --git a/installing ruby on macos.md b/installing ruby on macos.md index eb3c723d..b23303f2 100644 --- a/installing ruby on macos.md +++ b/installing ruby on macos.md @@ -1,7 +1,7 @@ up::[[installing things]], [[ruby]] title::"how to install ruby and gem" description::"`brew install chruby ruby-install`", "`ruby-install ruby`" -#informatique +#s/informatique ---- diff --git a/institution.md b/institution.md index e5acc05d..8508393f 100644 --- a/institution.md +++ b/institution.md @@ -3,7 +3,7 @@ aliases: - institutions --- up:: -#politique +#s/politique > [!definition] institution diff --git a/instructions de magie.md b/instructions de magie.md index ce874bb0..410cbd4c 100644 --- a/instructions de magie.md +++ b/instructions de magie.md @@ -1,5 +1,5 @@ up:: [[magie]] -#art/magie +#s/art/magie # murphy's magic diff --git a/intelligence artificielle.md b/intelligence artificielle.md index da92b9c3..2a616b33 100644 --- a/intelligence artificielle.md +++ b/intelligence artificielle.md @@ -3,7 +3,7 @@ aliases: - IA - AI --- -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/interesting stats.md b/interesting stats.md index 58024f58..ffad2a19 100644 --- a/interesting stats.md +++ b/interesting stats.md @@ -4,13 +4,13 @@ There are `$= dv.pages().length` notes in this vault. - my notes contain : - - `$= dv.pages("#maths").length` #maths notes - - `$= dv.pages("#maths/algèbre").length` #maths/algèbre notes - - `$= dv.pages("#science").length` #science notes - - `$= dv.pages("#politique").length` #politique notes - - `$= dv.pages("#informatique").length` #informatique notes + - `$= dv.pages("#maths").length` #s/maths notes + - `$= dv.pages("#maths/algèbre").length` #s/maths/algèbre notes + - `$= dv.pages("#science").length` #s/science notes + - `$= dv.pages("#politique").length` #s/politique notes + - `$= dv.pages("#informatique").length` #s/informatique notes - `$= dv.pages("#PKM").length` #PKM notes - - `$= dv.pages("#obsidian").length` #obsidian notes + - `$= dv.pages("#obsidian").length` #s/obsidian notes Statistics : diff --git a/interfaces graphiques.md b/interfaces graphiques.md index 8a8f60da..4ed7d18e 100644 --- a/interfaces graphiques.md +++ b/interfaces graphiques.md @@ -1,5 +1,5 @@ up::[[Ergonomie des Interfaces Hommes Machines|Ergonomie des IHM]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/internet.md b/internet.md index 060c3774..eb85a449 100644 --- a/internet.md +++ b/internet.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique ---- Fédération de réseaux conNectés entre eux à travers des passerelLes intelligentes diff --git a/interprétation.md b/interprétation.md index e0c8f892..f401dccc 100644 --- a/interprétation.md +++ b/interprétation.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Tout application $I$ attribuant une valeur de vérité aux [[proposition|propositions]] $P$ d'un système logique : $I(P)\in\{V, F\}$ diff --git a/interruption horloge.md b/interruption horloge.md index fedd772f..70b58fd9 100644 --- a/interruption horloge.md +++ b/interruption horloge.md @@ -1,5 +1,5 @@ up:: [[Commutation de Processus]] -#informatique +#s/informatique ---- diff --git a/intersection de sous espaces affines.md b/intersection de sous espaces affines.md index a8960c29..915e6e2b 100644 --- a/intersection de sous espaces affines.md +++ b/intersection de sous espaces affines.md @@ -1,6 +1,6 @@ up:: [[sous espace affine]] title:: "soit vide, soit un [[sous espace affine]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/intersection de sous espaces vectoriels.md b/intersection de sous espaces vectoriels.md index ffacdc46..2a908dc8 100644 --- a/intersection de sous espaces vectoriels.md +++ b/intersection de sous espaces vectoriels.md @@ -2,7 +2,7 @@ sibling:: [[union de sous espaces vectoriels]] up::[[sous espace vectoriel]] sibling::[[union de sous espaces vectoriels]] title::"l'intersection de [[sous espace vectoriel|sev]] est toujours un [[sous espace vectoriel|sev]]" -#maths/algèbre +#s/maths/algèbre L'intersection de deux [[sous espace vectoriel|sev]] est **toujours** un [[sous espace vectoriel|sev]]. diff --git a/intersection de sous groupes.md b/intersection de sous groupes.md index 98cc1885..78a40832 100644 --- a/intersection de sous groupes.md +++ b/intersection de sous groupes.md @@ -1,5 +1,5 @@ up::[[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!proposition] Intersection de sous-groups > Soit $G$ un [[groupe]] diff --git a/intervalle de confiance.md b/intervalle de confiance.md index 0753b128..7873eb6c 100644 --- a/intervalle de confiance.md +++ b/intervalle de confiance.md @@ -1,5 +1,5 @@ up:: [[statistiques]] -#maths/probabilités +#s/maths/probabilités On cherche à estimer une valeur sur des données $g^{\star}$ à partir d'un échantillon ${} \hat{g} {}$. Précisément, on veut savoir quelle taille doit avoir l'échantillon pour avoir une probabilité ${} >p$ (une confiance $\delta = 1-p$) que notre prédiction soit dans un intervalle $[g_{r}, g_{l}]$ de largeur $\varepsilon = g_{r} - g_{l}$. diff --git a/introduction newsletter 1.md b/introduction newsletter 1.md index f108cebe..5d23b509 100644 --- a/introduction newsletter 1.md +++ b/introduction newsletter 1.md @@ -1,5 +1,5 @@ up:: [[newsletter informethique]] -#informatique #philosphie #politique +#s/informatique #s/philosphie #s/politique - définition minimale de la démocratie - lorsque les responsable politiques doivent rendre compte et prendre leur responsabilités devant le peuple diff --git a/intégrale absolument convergente.md b/intégrale absolument convergente.md index 501b391e..14c82cfb 100644 --- a/intégrale absolument convergente.md +++ b/intégrale absolument convergente.md @@ -3,7 +3,7 @@ alias: [ "absolument convergente", "convergence absolue" ] --- up:: [[intégration généralisée]] title:: "$\displaystyle \int_{a}^{b} f(x) \, dx$ est absolument convergente ssi $\displaystyle \int_{a}^{b} |f(x)| \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/intégrale d'une somme.md b/intégrale d'une somme.md index f4461649..f10e68e8 100644 --- a/intégrale d'une somme.md +++ b/intégrale d'une somme.md @@ -1,5 +1,5 @@ up:: [[intégration]], [[intégrale de lebesgue]] -#maths/intégration +#s/maths/intégration > [!proposition] intégrale d'une somme > Soient $f$ et $g$ des fonctions [[fonction mesurable|mesurables]] positives diff --git a/intégrale de 1 sur x carré plus a carré.md b/intégrale de 1 sur x carré plus a carré.md index 1cc43053..3127d35c 100644 --- a/intégrale de 1 sur x carré plus a carré.md +++ b/intégrale de 1 sur x carré plus a carré.md @@ -3,7 +3,7 @@ alias: [ "intégrale de 1/(x²+a²)" ] --- up:: [[intégration]] title:: "$\displaystyle \int \frac{1}{x^{2}+a^{2}} \, dx = \frac{1}{a}\arctan\left( \frac{x}{a} \right)$" -#maths/analyse +#s/maths/analyse --- diff --git a/intégrale de Riemann.md b/intégrale de Riemann.md index 87af4737..7d0f6f21 100644 --- a/intégrale de Riemann.md +++ b/intégrale de Riemann.md @@ -7,7 +7,7 @@ excalidraw-open-md: true up::[[intégration]] sigling:: [[intégrale de lebesgue]] author::[[Riemann]] -#maths/analyse +#s/maths/analyse > [!definition] Intégrale de Riemann > Soit $\varphi\in\varepsilon([a,b])$ une [[fonction escalier]] sur $[a,b]$ diff --git a/intégrale de lebesgue.md b/intégrale de lebesgue.md index c536d00a..aee68e38 100644 --- a/intégrale de lebesgue.md +++ b/intégrale de lebesgue.md @@ -1,6 +1,6 @@ up:: [[intégration]] sibling:: [[intégrale de Riemann]] -#maths/analyse +#s/maths/analyse > [!definition] [[intégrale de lebesgue]] sur des [[fonction étagée positive|fonctions étagées positives]] > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/intégrales comparées.md b/intégrales comparées.md index 7a26af01..fb6224e7 100644 --- a/intégrales comparées.md +++ b/intégrales comparées.md @@ -1,6 +1,6 @@ up:: [[intégration]] title:: "$m(x) \leq f(x) \leq M(x) \implies \int_{a}^{b} m(x) \, dx \leq \int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} M(x) \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/intégrales de Bertrand.md b/intégrales de Bertrand.md index ee5f3a21..7d5dd02f 100644 --- a/intégrales de Bertrand.md +++ b/intégrales de Bertrand.md @@ -4,7 +4,7 @@ alias: [ "critère de Bertrand" ] up:: [[intégration généralisée]] title:: "$\displaystyle\int_{0}^{me}^{+\infty} \frac{1}{t^{\alpha}(\ln(t))^{\beta}} \, dt$" description:: "$\displaystyle\int_{0}^{m1 \end{cases}$", "$\displaystyle\int_{m>e}^{+\infty} \frac{1}{t^{\alpha}(\ln(t))^{\beta}} \, dt \text{ CV} \iff\begin{cases} \alpha > 1\\ \text{ou}\\ \alpha = 1 \text{ et } \beta > 1 \end{cases}$" -#maths/analyse +#s/maths/analyse --- diff --git a/intégrales particulières.md b/intégrales particulières.md index 4005d452..c1915b2d 100644 --- a/intégrales particulières.md +++ b/intégrales particulières.md @@ -1,5 +1,5 @@ up:: [[intégration]] -#maths/intégration +#s/maths/intégration > [!proposition]+ > $\displaystyle \int_{\mathbb{R}} e^{ itx } \frac{1}{\pi} \frac{1}{1+x^{2}} \, dx = e^{ -|t| }$ diff --git a/intégrales positives majorées.md b/intégrales positives majorées.md index e28361fc..f38fa2f9 100644 --- a/intégrales positives majorées.md +++ b/intégrales positives majorées.md @@ -1,6 +1,6 @@ up:: [[intégration généralisée|intégrale impropre]] title:: "l'intégrale sur $[a; +\infty[$ d'une fonction positive converge" -#maths/analyse +#s/maths/analyse --- diff --git a/intégration généralisée.md b/intégration généralisée.md index f2ea69fd..57a25239 100644 --- a/intégration généralisée.md +++ b/intégration généralisée.md @@ -2,7 +2,7 @@ alias: [ "intégrale généralisée", "intégrale impropre" ] --- up::[[intégration]] -#maths/analyse +#s/maths/analyse ---- Soit $]a; b]$ (resp. $[a; b[$) un intervalle de $\overline{\mathbb{R}}$ diff --git a/intégration par parties.md b/intégration par parties.md index 9f2b9720..de07e343 100644 --- a/intégration par parties.md +++ b/intégration par parties.md @@ -3,7 +3,7 @@ quickshare-date: 2023-04-05 13:47:36 quickshare-url: "https://noteshare.space/note/clg3mk7h9706501pjm41my9in#4ZjKaXyJjespwdodKgrSvFMCQpB/+5JvxI6eoIZFwRM" --- up::[[intégration]] -#maths/analyse +#s/maths/analyse ---- diff --git a/intégration passage en coordonnées polaires.md b/intégration passage en coordonnées polaires.md index a99c76d1..740497c2 100644 --- a/intégration passage en coordonnées polaires.md +++ b/intégration passage en coordonnées polaires.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[intégration.changement de variables]] -#maths/intégration +#s/maths/intégration $D = \mathbb{R}^{2} \setminus (\mathbb{R}^{-} \times \{ 0 \})$ $\Delta = ]0; +\infty[ \times ]-\pi; \pi[$ diff --git a/intégration.changement de variables.md b/intégration.changement de variables.md index 7d9fe88c..904df339 100644 --- a/intégration.changement de variables.md +++ b/intégration.changement de variables.md @@ -1,5 +1,5 @@ up:: [[intégration]] -#maths/intégration +#s/maths/intégration ```breadcrumbs diff --git a/intégration.md b/intégration.md index 8cd9fea7..210d4631 100644 --- a/intégration.md +++ b/intégration.md @@ -4,7 +4,7 @@ alias: - primitive --- up:: [[analyse|analyse]] -#maths/analyse #not-done +#s/maths/analyse #not-done ```breadcrumbs title: "Sous-notes" diff --git a/intérieur d'un espace métrique.md b/intérieur d'un espace métrique.md index 6dc97a42..718a37fa 100644 --- a/intérieur d'un espace métrique.md +++ b/intérieur d'un espace métrique.md @@ -1,10 +1,10 @@ --- aliases: - intérieur +up: "[[espace métrique]]" +sibling: "[[adhérence d'un espace métrique|adhérence]]" +tags: "#s/maths/topologie" --- -up:: [[espace métrique]] -sibling:: [[adhérence d'un espace métrique|adhérence]] -#maths/topologie > [!definition] [[intérieur d'un espace métrique]] > Soit $(X, d)$ un [[espace métrique]] et $A \subset X$ une partie quelconque de $X$ @@ -12,6 +12,21 @@ sibling:: [[adhérence d'un espace métrique|adhérence]] > On l'appelle **intérieur** de $A$ ^definition +> [!definition]+ Autre définition +>$\mathring{A} = \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ +> - I l'ensemble des points de $A$ qui ont un voisinage dans $A$ +> +> ![[intérieur et extérieur d'un espace métrique.excalidraw]] +> > [!démonstration]- Démonstration de l'équivalence +> > On procède par double inclusion. +> > Si $x \in \mathring{A}$, comme $\mathring{A}$ est ouvert, il existe $r > 0$ tel que $B(x, r) \subset \mathring{A}$ et, comme $\mathring{A} \subset A$, on a donc $B(x, r) \subset A$ +> > D'où $\mathring{A} \subset \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ +> > Montrons l'inclusion inverse. +> > Soit $x \in \{ \cdots \}$ on veut montrer que $x \in \mathring{A}$ +> > on a $x \in B(x, r) \subset A$ +> > en particulier, $B(x, r) \subset \mathring{A}$ +> > donc $x \in \mathring{A}$ +> > Ce qui montre $\mathring{A} = \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ # Propriétés @@ -23,21 +38,6 @@ sibling:: [[adhérence d'un espace métrique|adhérence]] > > Donc $\mathring{A}$ est le plus grand ouvert contenu dans $A$. > > On peut toujours trouver un $V$ ouvert tel que $V \subset A$, car $A$ est un tel ouvert -> [!proposition]+ Autre définition ->$\mathring{A} = \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ -> -> ![[intérieur et extérieur d'un espace métrique.excalidraw]] -> > [!démonstration]- Démonstration -> > On possède par double inclusion. -> > Si $x \in \mathring{A}$, comme $\mathring{A}$ est ouvert, il existe $r > 0$ tel que $B(x, r) \subset \mathring{A}$ et, comme $\mathring{A} \subset A$, on a donc $B(x, r) \subset A$ -> > D'où $\mathring{A} \subset \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ -> > Montrons l'inclusion inverse. -> > Soit $x \in \{ \cdots \}$ on veut montrer que $x \in \mathring{A}$ -> > on a $x \in B(x, r) \subset A$ -> > en particulier, $B(x, r) \subset \mathring{A}$ -> > donc $x \in \mathring{A}$ -> > Ce qui montre $\mathring{A} = \{ x \in A \mid \exists r>0,\quad B(x, r) \subset A \}$ - > [!proposition]+ Lien avec l'[[adhérence d'un espace métrique|adhérence]] > Sur l'[[espace métrique]] $(X, d)$ : > - $\mathring{A} = \left( \overline{A^{\complement} }\right)^{\complement}$ autrement dit $\mathring{A} = X \setminus \left( \overline{X \setminus A} \right)$ @@ -60,8 +60,6 @@ sibling:: [[adhérence d'un espace métrique|adhérence]] > [!proposition]+ Lien avec l'[[partie ouverte d'un espace métrique|ouverture]] > $A$ est ouvert $\iff$ $A = \mathring{A}$ -> [!proposition]+ Proposition -> # Exemples diff --git a/intérieur d'un intervalle.md b/intérieur d'un intervalle.md index 56ce21fe..45a39a1c 100644 --- a/intérieur d'un intervalle.md +++ b/intérieur d'un intervalle.md @@ -1,5 +1,5 @@ up:: [[intérieur d'un espace métrique|intérieur]] -#maths/ensembles +#s/maths/ensembles Soit $I$ un intervalle. On apelle _intérieur de $I$_, et on note $\mathring{I}$, le plus grand intervalle [[partie ouverte d'un espace métrique|ouvert]] contenu dans $I$. diff --git a/intérêts de la bourgeoisie.md b/intérêts de la bourgeoisie.md index 48c6d8c3..5d49b0e9 100644 --- a/intérêts de la bourgeoisie.md +++ b/intérêts de la bourgeoisie.md @@ -1,5 +1,5 @@ up:: [[bourgeoisie]] -#politique +#s/politique source:: ![[homogénéité des intérêts de la bourgeoisie#^cite]] diff --git a/invariant par une permutation.md b/invariant par une permutation.md index a82a5e19..e0c25ed6 100644 --- a/invariant par une permutation.md +++ b/invariant par une permutation.md @@ -1,5 +1,5 @@ up::[[permutation]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/inverse d'une matrice.md b/inverse d'une matrice.md index 72bc407a..a7a5bc8c 100644 --- a/inverse d'une matrice.md +++ b/inverse d'une matrice.md @@ -3,7 +3,7 @@ alias: "inverse" --- up::[[matrice]] title::"$M^{-1}$ telle que $M^{-1}\times M= M \times M^{-1} = \mathrm{Id}$" -#maths/algèbre +#s/maths/algèbre ---- Soit $M$ une [[matrice]]. On note $M^{-1}$ la matrice _inverse_ de $M$, si elle existe, la matrice telle que $M\times M^{-1} = M^{-1}\times M = Id$ la [[matrice identité]] diff --git a/inversion des mots processus et des mots états.md b/inversion des mots processus et des mots états.md index 9bce259d..25479a7b 100644 --- a/inversion des mots processus et des mots états.md +++ b/inversion des mots processus et des mots états.md @@ -1,5 +1,5 @@ up:: [[élément de langage]] -#politique #rhétorique +#s/politique #s/rhétorique > [!definition] inversion des mots processus et des mots états > Inverser des mots qui désignent des processus avec des mots qui désignent des états diff --git a/inversion du sens des mots.md b/inversion du sens des mots.md index 4f5a8be7..d2c6d374 100644 --- a/inversion du sens des mots.md +++ b/inversion du sens des mots.md @@ -1,5 +1,5 @@ up:: [[élément de langage]] -#politique #rhétorique +#s/politique #s/rhétorique On inverse le sens des mots pour qu'ils soient mieux acceptés diff --git a/inégalité de Minkowski.md b/inégalité de Minkowski.md index efb2ca98..0c305f46 100644 --- a/inégalité de Minkowski.md +++ b/inégalité de Minkowski.md @@ -1,7 +1,7 @@ up:: [[norme]], [[produit scalaire]] sibling:: [[inégalité triangulaire]] title:: "$\|u + v\| \leq \|u\| + \|v\|$" -#maths/algèbre +#s/maths/algèbre > [!definition] inégalité de Minkowski diff --git a/inégalité de cauchy schwartz.md b/inégalité de cauchy schwartz.md index 5d112c68..18ec6538 100644 --- a/inégalité de cauchy schwartz.md +++ b/inégalité de cauchy schwartz.md @@ -1,7 +1,7 @@ up:: [[produit scalaire]], [[norme]] sibling:: [[inégalité de Minkowski]] title:: "$|\langle u, v\rangle| \leq \|u\|\cdot\|v\|$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/inégalité triangulaire.md b/inégalité triangulaire.md index ea15539e..9622f42b 100644 --- a/inégalité triangulaire.md +++ b/inégalité triangulaire.md @@ -4,7 +4,7 @@ alias: [ "démonstration" ] up:: [[norme]] sibling:: [[inégalité de Minkowski]] title:: "$d(a, c) \leq d(a, b) + d(b, c)$", "$\|a+b\| \leq \|a\| + \|b\|$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/isobarycentre d'un triangle.md b/isobarycentre d'un triangle.md index b0264da9..98c851bf 100644 --- a/isobarycentre d'un triangle.md +++ b/isobarycentre d'un triangle.md @@ -4,7 +4,7 @@ alias: [ "centre de gravité d'un triangle" ] up:: [[triangle]] sibling:: [[médianes d'un triangle]] title:: "intersection des [[médianes d'un triangle|médianes]]" -#maths/géométrie +#s/maths/géométrie --- diff --git a/isobarycentre.md b/isobarycentre.md index 81f68981..0db60478 100644 --- a/isobarycentre.md +++ b/isobarycentre.md @@ -1,6 +1,6 @@ up:: [[barycentre d'un système de points pondérés|barycentre]] title:: "barycentre avec des poids tous identiques" -#maths/algèbre +#s/maths/algèbre --- diff --git a/isomorphisme de graphes.md b/isomorphisme de graphes.md index 7769c455..bbed9f66 100644 --- a/isomorphisme de graphes.md +++ b/isomorphisme de graphes.md @@ -1,5 +1,5 @@ up:: [[graphe non orienté étiquetté]], [[isomorphisme de groupes|isomorphisme]] -#maths/graphes +#s/maths/graphes > [!definition] Définition > Soit $n \in \mathbb{N}^{*}$ et $\underline{n} = [\![1;n]\!]$ diff --git a/isomorphisme de groupes.md b/isomorphisme de groupes.md index f4510b56..53c2687e 100644 --- a/isomorphisme de groupes.md +++ b/isomorphisme de groupes.md @@ -4,7 +4,7 @@ aliases: - isomorphisme --- up:: [[morphisme de groupes]], [[isomorphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[isomorphisme de groupes]] > Un _isomorphisme_ est un [[morphisme de groupes]] [[bijection|bijectif]]. diff --git a/isomorphisme.md b/isomorphisme.md index b93c2156..f28d9154 100644 --- a/isomorphisme.md +++ b/isomorphisme.md @@ -1,5 +1,5 @@ up:: [[morphisme]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Un **isomorphisme** est un [[morphisme]] [[bijection|bijectif]]. diff --git a/isométrie.md b/isométrie.md index 7d4275c9..335a0454 100644 --- a/isométrie.md +++ b/isométrie.md @@ -1,6 +1,6 @@ up:: [[application]], [[distance]] title:: "$d(f(x), f(y)) = d(x, y)$", "$d$ une distance" -#maths/algèbre #maths/analyse +#s/maths/algèbre #s/maths/analyse --- diff --git a/java classe abstraite vs interface.md b/java classe abstraite vs interface.md index 02df4647..74db4f04 100644 --- a/java classe abstraite vs interface.md +++ b/java classe abstraite vs interface.md @@ -1,5 +1,5 @@ up::[[java classe abstraite]], [[java interfaces]] -#informatique +#s/informatique ---- diff --git a/java classe abstraite.md b/java classe abstraite.md index c9a6b762..38ddb446 100644 --- a/java classe abstraite.md +++ b/java classe abstraite.md @@ -1,6 +1,6 @@ up::[[java objets]] sibling::[[java interfaces]] -#informatique +#s/informatique ---- Une classe abstraite est une classe pour laquelle on ne définit pas d'implémentation des méthodes. Le but est de pouvoir hériter de cette méthode diff --git a/java collections.md b/java collections.md index 97e045a3..3b7cdfcd 100644 --- a/java collections.md +++ b/java collections.md @@ -1,6 +1,6 @@ up:: [[java]] title:: "gérer des ensemble d'obets" -#informatique +#s/informatique --- diff --git a/java enterprise edition.md b/java enterprise edition.md index 8ac1daa1..aaa170cc 100644 --- a/java enterprise edition.md +++ b/java enterprise edition.md @@ -1,5 +1,5 @@ up:: [[java]] -#informatique/langage/java +#s/informatique/langage/java ```breadcrumbs title: "Sous-notes" diff --git a/java exceptions.md b/java exceptions.md index a992e24e..7f740886 100644 --- a/java exceptions.md +++ b/java exceptions.md @@ -1,6 +1,6 @@ up::[[java]] title::"gestion des erreurs" -#informatique +#s/informatique ---- diff --git a/java généricité.md b/java généricité.md index b3bf050b..cfa0eec2 100644 --- a/java généricité.md +++ b/java généricité.md @@ -1,6 +1,6 @@ up:: [[java]] title:: "code utilisable sur un type quelconque" -#informatique +#s/informatique --- diff --git a/java héritage.md b/java héritage.md index 3bae40d5..1798b2b3 100644 --- a/java héritage.md +++ b/java héritage.md @@ -2,7 +2,7 @@ alias: "héritage" --- up::[[java]], [[programmation orientée objet java|OOP java]] -#informatique +#s/informatique ---- diff --git a/java interfaces.md b/java interfaces.md index 6192ddbc..b65020b0 100644 --- a/java interfaces.md +++ b/java interfaces.md @@ -1,6 +1,6 @@ up::[[java objets]] sibling::[[java classe abstraite]] -#informatique +#s/informatique ---- Une classe peut implémenter plusieurs interfaces (simule l'[[java héritage|héritage]] multiple). diff --git a/java objets.md b/java objets.md index 8434c8c7..c7428cd2 100644 --- a/java objets.md +++ b/java objets.md @@ -1,5 +1,5 @@ up::[[java]], [[programmation orientée objet java|OOP java]] -#informatique +#s/informatique ---- diff --git a/java persistance api.md b/java persistance api.md index 17579287..b6b5927b 100644 --- a/java persistance api.md +++ b/java persistance api.md @@ -3,7 +3,7 @@ aliases: - JPA --- up:: [[EJB entity bean]] -#informatique/langage/java +#s/informatique/langage/java Annotations java qui permettent de créer facilement des [[EJB entity bean|entity beans]] diff --git a/java polymorphisme.md b/java polymorphisme.md index a27f4c52..c98cfd52 100644 --- a/java polymorphisme.md +++ b/java polymorphisme.md @@ -1,5 +1,5 @@ up::[[java objets]] -#informatique +#s/informatique ---- diff --git a/java.md b/java.md index 57420cf5..846052dd 100644 --- a/java.md +++ b/java.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"[[paradigme programmation orientée objet|OOP]], haut niveau" -#informatique +#s/informatique > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/javascript litterate strings.md b/javascript litterate strings.md index 98caa6a8..21a24af6 100644 --- a/javascript litterate strings.md +++ b/javascript litterate strings.md @@ -1,5 +1,5 @@ up::[[javascript string manipulation]] -#informatique/langage/javascript +#s/informatique/langage/javascript ```js let myName = 'Chris'; diff --git a/javascript string manipulation.md b/javascript string manipulation.md index a1dfde59..41aec553 100644 --- a/javascript string manipulation.md +++ b/javascript string manipulation.md @@ -1,5 +1,5 @@ up:: [[javascript]] -#informatique/langage/javascript +#s/informatique/langage/javascript > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/javascript.md b/javascript.md index c879f006..2bd09b83 100644 --- a/javascript.md +++ b/javascript.md @@ -4,7 +4,7 @@ aliases: --- up::[[langage de programmation]] title::"le langage du web... :fas_poo:" -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git "a/jeu de la vie \"parlons de science\".md" "b/jeu de la vie \"parlons de science\".md" index eddfb45e..0e6c9245 100644 --- "a/jeu de la vie \"parlons de science\".md" +++ "b/jeu de la vie \"parlons de science\".md" @@ -3,7 +3,7 @@ date::2020-06-18 description::"conférence filmée avec l'université d'orléans" compétences:: 🧑‍🏫 🗣️ 🧮 💻 link::[sur youtube](https://www.youtube.com/watch?v=fCw2iP04udc) -#CV #maths #informatique +#CV #s/maths #s/informatique ---- Pour remplacer une conférence au _stage Evariste Gallois_, annulée à cause du COVID-19. diff --git a/jugement analytique.md b/jugement analytique.md index 71e6f897..0baf67c3 100644 --- a/jugement analytique.md +++ b/jugement analytique.md @@ -3,7 +3,7 @@ aliases: - proposition analytique --- up:: [[philosophie]] -#philosphie +#s/philosphie > [!definition] jugement analytique > Jugement obtenu en analysant son sujet sans aucun autre élément extérieur. diff --git a/jugement.md b/jugement.md index 071a9424..5de63e0f 100644 --- a/jugement.md +++ b/jugement.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Un _jugement_ est une affirmation à laquelle on peut attribuer une valeur de vérité ($\mathbb{V}$ ou $\mathbb{F}$) diff --git a/justifications de la domination des élites.md b/justifications de la domination des élites.md index 96170a82..c30ae227 100644 --- a/justifications de la domination des élites.md +++ b/justifications de la domination des élites.md @@ -3,7 +3,7 @@ alias: [ "justifier la domination des élites" ] --- up:: [[élites]] title:: "différences qui justifient que l'élite reste la même et dirige :", " - [[différence entre l'éducation et l'instruction|instruction]]", " - [[culture légitime et illégitime|culture (légitime)]]", " - [[le pouvoir de l'éloquence|éloquence]]" -#politique +#s/politique --- diff --git a/k-cycle.md b/k-cycle.md index b2da2cf9..a943fe6c 100644 --- a/k-cycle.md +++ b/k-cycle.md @@ -2,7 +2,7 @@ alias: "cycle" --- up::[[permutation]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[k-cycle]] > Soit $k \geq 2$ diff --git a/karl voit.md b/karl voit.md index 7c9cd4b9..a61dddfb 100644 --- a/karl voit.md +++ b/karl voit.md @@ -1,5 +1,5 @@ link:: https://karl-voit.at/ -#personne +#t/personne ```dataview diff --git a/keyboard layout.md b/keyboard layout.md index 520abb39..9f2dffe3 100644 --- a/keyboard layout.md +++ b/keyboard layout.md @@ -1,6 +1,6 @@ up:: title:: "personnal notes on my keyboard layout" -#informatique +#s/informatique --- diff --git a/l'homme est né libre et partout il est dans les fers.md b/l'homme est né libre et partout il est dans les fers.md index aafbc8eb..0cc92b8f 100644 --- a/l'homme est né libre et partout il est dans les fers.md +++ b/l'homme est né libre et partout il est dans les fers.md @@ -3,7 +3,7 @@ source:: [[du contrat social]] chapitre:: 1, sujet de ce premier livre link:: date-seen::2024-06-14 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > l'Homme est né libre, et partout il est dans les fers.Tel se croit le maître des autres, qui ne laisse d'être plus esclave qu'eux. Comment ce changement c'est-t-il fait ? Je l'ignore. Qu'est-ce qui peut le rendre légitime ? Je crois pouvoir résoudre cette question. diff --git a/l'école de jules ferry.md b/l'école de jules ferry.md index 69a139f4..a71616f8 100644 --- a/l'école de jules ferry.md +++ b/l'école de jules ferry.md @@ -1,6 +1,6 @@ up:: title:: -#politique #apprendre +#s/politique #s/apprendre --- diff --git a/l'éducation divise.md b/l'éducation divise.md index ac149008..144db940 100644 --- a/l'éducation divise.md +++ b/l'éducation divise.md @@ -1,5 +1,5 @@ up:: [[éducation]] -#apprendre +#s/apprendre - toutes les pédagogies ne divisent pas diff --git a/l'épargne ne peut pas remplacer les retraites.md b/l'épargne ne peut pas remplacer les retraites.md index d5aee71a..28669258 100644 --- a/l'épargne ne peut pas remplacer les retraites.md +++ b/l'épargne ne peut pas remplacer les retraites.md @@ -1,5 +1,5 @@ up::[[épargne]], [[retraites]] -#politique #science/économie +#s/politique #s/science/économie Une épargne individuèle auprès d'une banque ne peut pas remplacer une caisse de [[retraites par répartition]]. diff --git a/la culture sert à reproduire les rapports sociaux.md b/la culture sert à reproduire les rapports sociaux.md index 76bdade3..667b0a14 100644 --- a/la culture sert à reproduire les rapports sociaux.md +++ b/la culture sert à reproduire les rapports sociaux.md @@ -2,7 +2,7 @@ alias: [ "culture reproduit rapports sociaux", "la culture reproduit les rapports sociaux" ] --- up:: [[culture]] -#politique +#s/politique C'est [[Pierre Bourdieu]] qui dit que l'école (donc la [[culture institutionnelle]]) est ce qui sert à [[reproduction des rapports sociaux|reproduire les rapports sociaux]]. diff --git a/la droite pense que nous sommes individuellement responsables.md b/la droite pense que nous sommes individuellement responsables.md index 11223e6c..ad37c401 100644 --- a/la droite pense que nous sommes individuellement responsables.md +++ b/la droite pense que nous sommes individuellement responsables.md @@ -5,7 +5,7 @@ up:: [[politique.droite]] author:: [[Frank Lepage]] source:: [[conférence gesticulée.Inculture 1|Inculture 1]] date-seen:: 2024-06-11 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > La droite, c'est une attitude politique, mentale, qui consiste à penser que nous sommes individuellement responsable de notre situation. "Il suffit de se bouger". diff --git a/la décentralisation c'est la mise en concurrence des territoires.md b/la décentralisation c'est la mise en concurrence des territoires.md index 44e02260..e3d6c76d 100644 --- a/la décentralisation c'est la mise en concurrence des territoires.md +++ b/la décentralisation c'est la mise en concurrence des territoires.md @@ -2,7 +2,7 @@ author:: [[Frank Lepage]] source:: [[conférence gesticulée.Inculture 1]] link:: https://www.youtube.com/watch?v=joq8_E3LDMc date-seen::2024-06-11 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > La décentralisation, c'est la mise en concurrence de tous les territoires sur le modèle de l'entreprise. diff --git a/la hiérarchie des métiers n'est pas liée au niveau de qualification.md b/la hiérarchie des métiers n'est pas liée au niveau de qualification.md index d7065238..efa0edb8 100644 --- a/la hiérarchie des métiers n'est pas liée au niveau de qualification.md +++ b/la hiérarchie des métiers n'est pas liée au niveau de qualification.md @@ -4,7 +4,7 @@ alias: [ "hiérarchie des métiers ≠ qualification" ] --- up:: [[hiérarchie sociale des métiers]], [[les mythes du capitalisme]] source:: [[video.Denis La Marche.qualifications & compétences]] -#politique #science/sociologie +#s/politique #s/science/sociologie Certains emplois : - procurent plus de **prestige**. diff --git a/la nuit des maths.md b/la nuit des maths.md index 234ae2b2..77c576e3 100644 --- a/la nuit des maths.md +++ b/la nuit des maths.md @@ -1,3 +1,3 @@ -#science +#s/science ---- diff --git a/la plus ancienne forme de société est celle de la famille.md b/la plus ancienne forme de société est celle de la famille.md index 600aabdb..ef42ee0b 100644 --- a/la plus ancienne forme de société est celle de la famille.md +++ b/la plus ancienne forme de société est celle de la famille.md @@ -2,7 +2,7 @@ author:: [[jacques rousseau]] source:: [[du contrat social]] chapitre:: 2, des premières sociétés date-seen::2024-06-14 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > La plus ancienne forme de toutes les sociétés et la seule naturelle est celle de la famille. Encore les enfants ne restent ils liés au père qu'aussi longtemps qu'ils ont besoin de lui pour se conserver. [...] S'ils continuent de rester unis, ce n'est plus naturellement c'est volontairement, et la famille elle-même ne se maintient que par convention. diff --git a/la raison ne saurait réprimer les affects.md b/la raison ne saurait réprimer les affects.md index 70a8a3c5..13ff7b8b 100644 --- a/la raison ne saurait réprimer les affects.md +++ b/la raison ne saurait réprimer les affects.md @@ -9,7 +9,7 @@ author::[[Baruch de Spinoza]] source::[[Spinoza - Ethique]] link:: date-seen::2024-04-15 -#citation +#t/citation > [!cite] Spinoza - Ethique > La connaissance vraie du bien et du mal ne peut réprimer aucun affect en tant qu'elle est une connaissance vraie, mais seulement en tant qu'elle est considérée comme un affect. diff --git a/la vertu ne sauvera pas le monde.md b/la vertu ne sauvera pas le monde.md index dd86c724..e988928f 100644 --- a/la vertu ne sauvera pas le monde.md +++ b/la vertu ne sauvera pas le monde.md @@ -2,7 +2,7 @@ author::[[Frédéric Lordon]] source::Les blogs du monde diplo - La pompe à finance link::https://blog.mondediplo.net/detruire-le-capitalisme-avant-qu-il-ne-nous date-seen::2024-05-16 -#citation #politique #science/économie +#t/citation #s/politique #s/science/économie > [!cite] `$= dv.current().author + (" — " + dv.current().source).repeat(!!dv.current().source)` > Il n’y a que les amateurs de bondieuseries sécularisées pour croire que la vertu sauvera le monde, c’est-à-dire auto-régulera les salaires patronaux, auto-disciplinera la finance, et auto-nettoiera les petites salissures de l’industrie. Sauf imbécillité complète caparaçonnée d’idéologie, nul ne peut croire que ceux à qui on donne toutes les autorisations n’iront pas au bout de toutes les autorisations. D’ailleurs ils y vont. diff --git a/langage accepté par une machine de Turing.md b/langage accepté par une machine de Turing.md index 9aecfe8c..7aa97a1d 100644 --- a/langage accepté par une machine de Turing.md +++ b/langage accepté par une machine de Turing.md @@ -1,5 +1,5 @@ up:: [[machine de turing]], [[langages formels|langage formel]] -#informatique +#s/informatique > [!definition] langage accepté par une machine de Turing > Un [[langages formels|langage]] est accepté par une [[machine de turing]] $M$ si pour tout mot de ce langage, l'exécution de $M$ conduit à un état acceptateur. diff --git a/langage de description de schéma XML.md b/langage de description de schéma XML.md index 70195a8b..5d44d7bf 100644 --- a/langage de description de schéma XML.md +++ b/langage de description de schéma XML.md @@ -4,7 +4,7 @@ aliases: --- down:: [[DTD]] up:: [[xml]], [[langage descriptif]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/langage de programmation.md b/langage de programmation.md index ef017b3d..fc3a4cd5 100644 --- a/langage de programmation.md +++ b/langage de programmation.md @@ -1,17 +1,11 @@ -up:: [[programmation]], [[langages]] -#informatique - -> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> type: tree -> collapse: false -> show-attributes: [field] -> field-groups: [downs] -> depth: [0, 0] -> ``` +--- +up: + - "[[programmation]]" + - "[[langages]]" +tags: "#s/informatique" +--- # Liste des langages -Listes des langages référencés dans ce vault ```dataview LIST title FROM #informatique diff --git a/langage descriptif.md b/langage descriptif.md index 47e23bc3..bb50e48c 100644 --- a/langage descriptif.md +++ b/langage descriptif.md @@ -1,5 +1,5 @@ up:: [[langages]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/langage décidé.md b/langage décidé.md index 2001a2a7..1050f873 100644 --- a/langage décidé.md +++ b/langage décidé.md @@ -1,6 +1,6 @@ up:: [[langages formels|langage formel]], [[machine de turing]] sibling:: [[décidabilité]] -#informatique +#s/informatique > [!definition] langage décidé > Un langage est dit *décidé* si il est [[langage accepté par une machine de Turing|accepté]] par une [[machine de turing]] ET que cette machine n'a aucune exécution infinie. diff --git a/langage formel alphabet.md b/langage formel alphabet.md index 5e322a87..926d4900 100644 --- a/langage formel alphabet.md +++ b/langage formel alphabet.md @@ -3,7 +3,7 @@ aliases: - alphabet --- up:: [[langages formels|langage formel]] -#informatique +#s/informatique > [!definition] Alphabet > Un **alphabet** est un ensemble fini de symboles. diff --git a/langage général.md b/langage général.md index b1465c5f..2361704a 100644 --- a/langage général.md +++ b/langage général.md @@ -1,5 +1,5 @@ up::[[langages]] -#informatique +#s/informatique > [!definition] langage général > un système de signes identifiés permettant une communicatione ntre une ou plusieurs entités diff --git a/langage hors-contexte.md b/langage hors-contexte.md index 0974681a..40199f6a 100644 --- a/langage hors-contexte.md +++ b/langage hors-contexte.md @@ -3,4 +3,4 @@ aliases: - langages hors-contexte --- up::[[langage contextuel]] -#informatique \ No newline at end of file +#s/informatique \ No newline at end of file diff --git a/langage régulier.md b/langage régulier.md index d5a25374..3dbfe6de 100644 --- a/langage régulier.md +++ b/langage régulier.md @@ -3,4 +3,4 @@ aliases: - langages réguliers --- up:: [[langage hors-contexte]] -#informatique \ No newline at end of file +#s/informatique \ No newline at end of file diff --git a/langage à base de règles.md b/langage à base de règles.md index 001adfa9..d8f454e4 100644 --- a/langage à base de règles.md +++ b/langage à base de règles.md @@ -1,5 +1,5 @@ up::[[BDD language de requête]] -#informatique +#s/informatique Une [[requête conjonctive]] sur un shéma de base données $D$ est une expression de la forme : $ans(u) \leftarrow R_1(u_1),\ldots,R_n(u_n)$ diff --git a/langages formels.md b/langages formels.md index e2c1e3b9..82c4c2ed 100644 --- a/langages formels.md +++ b/langages formels.md @@ -3,7 +3,7 @@ aliases: - langage formel --- up::[[langages]] -#maths/logique +#s/maths/logique ---- diff --git a/langages.md b/langages.md index bd8c9b02..33b0822c 100644 --- a/langages.md +++ b/langages.md @@ -1,4 +1,4 @@ -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/latex as fast as handwriting.md b/latex as fast as handwriting.md index 6122c824..323bbfab 100644 --- a/latex as fast as handwriting.md +++ b/latex as fast as handwriting.md @@ -3,7 +3,7 @@ down:: [[obsidian plugin LaTeX suite|LaTeX suite]] link:: https://castel.dev/post/lecture-notes-1/ author:: [[gilles castel]] title::"raccourcis pout taper du $\LaTeX$" -#informatique/vim #informatique/langage/latex +#s/informatique/vim #s/informatique/langage/latex ---- Système de raccourcis (snippets) qui permet de taper du $\LaTeX$ aussi vite (ou presque) que l'écriture à la main. diff --git a/latex indice et exposant décalés.md b/latex indice et exposant décalés.md index 3934dbe1..39db5fb2 100644 --- a/latex indice et exposant décalés.md +++ b/latex indice et exposant décalés.md @@ -1,3 +1,3 @@ up:: [[LaTeX cheat sheet]] -#informatique/langage/latex +#s/informatique/langage/latex code:: $x_{n}{}^{2}$ \ No newline at end of file diff --git a/latex longue flèche pour les limites.md b/latex longue flèche pour les limites.md index 0cd4b641..6c7b6afd 100644 --- a/latex longue flèche pour les limites.md +++ b/latex longue flèche pour les limites.md @@ -1,6 +1,6 @@ up:: [[LaTeX cheat sheet]] code:: $u_{n} \xrightarrow{n\to \infty} l$ -#informatique/langage/latex +#s/informatique/langage/latex diff --git a/latex package polynom polylongdiv.md b/latex package polynom polylongdiv.md index 3792520d..f5f2a71b 100644 --- a/latex package polynom polylongdiv.md +++ b/latex package polynom polylongdiv.md @@ -3,7 +3,7 @@ alias: [ "latex division de polynômes", "polylongdiv" ] --- up:: [[LaTeX package polynom]] title:: "afficher une division de polynômes" -#informatique +#s/informatique --- diff --git a/latex package polynom polyset (paramètres).md b/latex package polynom polyset (paramètres).md index 23e0d409..75ad150f 100644 --- a/latex package polynom polyset (paramètres).md +++ b/latex package polynom polyset (paramètres).md @@ -1,6 +1,6 @@ up::[[LaTeX package polynom]] title::"changer les paramètres avec `\polyset{option=value}`" -#informatique +#s/informatique --- diff --git a/le capitalisme à imposé le salariat comme unique moyen d'accès à l'argent.md b/le capitalisme à imposé le salariat comme unique moyen d'accès à l'argent.md index 57107ae2..7ec1a116 100644 --- a/le capitalisme à imposé le salariat comme unique moyen d'accès à l'argent.md +++ b/le capitalisme à imposé le salariat comme unique moyen d'accès à l'argent.md @@ -5,13 +5,13 @@ aliases: up:: [[capitalisme]], [[salaire]] author:: [[Frédéric Lordon]] source:: -#politique #citation +#s/politique #t/citation author:: source:: link:: date-seen::2024-05-29 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > La grande force du capitalisme, c'est d'avoir imposé le salariat comme quasi-unique solution d'accès à l'argent. diff --git a/le devoir est le moyen des puissants pour canaliser les puissances.md b/le devoir est le moyen des puissants pour canaliser les puissances.md index d4f0db17..296ac12f 100644 --- a/le devoir est le moyen des puissants pour canaliser les puissances.md +++ b/le devoir est le moyen des puissants pour canaliser les puissances.md @@ -1,7 +1,7 @@ author:: [[Bertrand Russel]] source:: [[éloge de l'oisiveté]] date-seen::2024-06-15 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > La notion de devoir, du point de vue historique s'entend, fut un moyen qu'ont employé les puissants pour amener les autres à consacrer leur vie aux intérêts de leurs maîtres plutôt qu'aux leurs. diff --git a/le général de gaule à propos du capitalisme.md b/le général de gaule à propos du capitalisme.md index bf58e842..f5309897 100644 --- a/le général de gaule à propos du capitalisme.md +++ b/le général de gaule à propos du capitalisme.md @@ -1,7 +1,7 @@ up:: [[capitalisme]] author:: [[général de gaule]] link:: https://mediaclip.ina.fr/fr/i19130833-le-general-de-gaulle-a-propos-du-capitalisme.html -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > le capitalisme dit, "grâce au profit, qui sucite l'initiative, frabriquons de plus en plus de richesses, qui en se répartissant par le libre marché, élèvent, en somme, le niveau du corp social tout entier". diff --git a/le labeur a de la valeur par le loisir qu'il permet.md b/le labeur a de la valeur par le loisir qu'il permet.md index 19d83698..ca8a9497 100644 --- a/le labeur a de la valeur par le loisir qu'il permet.md +++ b/le labeur a de la valeur par le loisir qu'il permet.md @@ -1,7 +1,7 @@ author:: [[Bertrand Russel]] source:: [[éloge de l'oisiveté]] date-seen::2024-06-15 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Le loisir est indispensable à la civilisation, et, jadis, le loisir d'un petit nombre n'était possible que grâce au labeur du grand nombre. Mais ce labeur avait une valeur, non parce que le travail est une bonne chose, mais parce que le loisir est une bonne chose. diff --git a/le pouvoir de l'éloquence.md b/le pouvoir de l'éloquence.md index 771090c6..6989cfd2 100644 --- a/le pouvoir de l'éloquence.md +++ b/le pouvoir de l'éloquence.md @@ -1,5 +1,5 @@ up:: [[politique]] -#politique +#s/politique L'éloquence permet de convaincre et même persuader ([[différence entre convaincre et persuader]]). Elle est l'arme des ([[bourgeoisie]]), qui leur permet de garder leur position, en ayant plus de voix que ceux qui ne sont pas éloquents. diff --git a/le souverain est toujours ce qu'il doit être.md b/le souverain est toujours ce qu'il doit être.md index c9b3a94c..3cbed26e 100644 --- a/le souverain est toujours ce qu'il doit être.md +++ b/le souverain est toujours ce qu'il doit être.md @@ -2,7 +2,7 @@ author:: [[jacques rousseau]] source:: [[du contrat social. chapitre VII, du souverain]] link:: date-seen::2024-06-18 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Or le souverain n'étant formé que des particuliers qui le composent n'a ni ne peut avoir d'intérêt contraire au leur; par conséquent la puissance Souveraine n'a nul besoin de garants envers ses sujets, parce qu'il est impossible que le corps veuille nuire à tous ses membres, et nous verrons ci-après qu'il ne peut nuire à aucun en particulier. Le Souverain, par cela seul qu'il est, est toujours ce qu'il doit être. diff --git a/lemme de Fatou.md b/lemme de Fatou.md index fb202e0c..a9d8a957 100644 --- a/lemme de Fatou.md +++ b/lemme de Fatou.md @@ -1,6 +1,6 @@ up:: [[intégration]], [[intégrale de lebesgue]] sibling:: [[théorème de convergence monotone des intégrales|théorème de convergence monotone]] -#maths/intégration +#s/maths/intégration > [!proposition]+ [[lemme de Fatou]] > Soient $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] et $(f_{n})_{n\geq 0}$ une suite de fonctions [[fonction mesurable|mesurables]] positives diff --git a/les conventions sont la seule base pour toute autorité légitime.md b/les conventions sont la seule base pour toute autorité légitime.md index 8eafa36a..ce520796 100644 --- a/les conventions sont la seule base pour toute autorité légitime.md +++ b/les conventions sont la seule base pour toute autorité légitime.md @@ -1,7 +1,7 @@ author:: [[jacques rousseau]] source:: [[du contrat social. chapitre IV, de l'esclavage]] date-seen::2024-06-14 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Puisqu'aucun Homme n'a une autorité naturelle sur son semblable, et puisque la force ne produit aucun droit, restent donc les conventions pour base de toute autorité légtitime parmi les Hommes. diff --git a/les dominants passent plus de temps à préserver leur pouvoir qu'a travailler.md b/les dominants passent plus de temps à préserver leur pouvoir qu'a travailler.md index ce4ce2dd..3819d94a 100644 --- a/les dominants passent plus de temps à préserver leur pouvoir qu'a travailler.md +++ b/les dominants passent plus de temps à préserver leur pouvoir qu'a travailler.md @@ -4,7 +4,7 @@ alias: [ "" ] author:: [[Frédéric Lordon]] source:: [[Le complotisme de l'anticomplotisme]] date-seen::2024-06-18 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > C’est que, par construction, être un dominant, c’est participer à des jeux de pouvoir, être immergé dans leurs luttes, en vivre toutes les tensions, et notamment l’impérieuse obligation de la vigilance, c’est-à-dire l’anticipation des menées adverses, l’élaboration de ses propres stratégies et contre-stratégies pour conserver ou bien développer ses positions de pouvoir. En réalité, dans ses strates les plus hautes, la division fonctionnelle du travail est inévitablement doublée par une division du pouvoir… la seconde ayant pour propriété de vampiriser la première : les hommes de pouvoir, dans l’entreprise comme dans n’importe quelle institution, s’activent en fait bien moins à servir la fonction où les a placés la division du travail qu’à protéger les positions dont ils ont été par là dotés dans la division du pouvoir. Or la logique sociale du pouvoir est si forte qu’accéder à une position conduit dans l’instant à envisager surtout le moyen de s’y faire reconduire, ou bien de se hausser jusqu’à la suivante. On rêverait de pouvoir observer les journées d’un patron de chaîne, d’un directeur de journal, d’un cadre dirigeant, d’un haut fonctionnaire, d’un magistrat ou d’un mandarin universitaire louchant vers le ministère, pour y chronométrer, par une sorte de taylorisme retourné à l’envoyeur, les parts de son temps respectivement consacrées à remplir la fonction et à maintenir la position. La pathétique vérité des organisations peut conduire jusqu’à cette extrémité, en fait fréquemment atteinte, où un dirigeant pourra préférer attenter aux intérêts généraux de l’institution dont il a la charge si c’est le moyen de défaire une opposition interne inquiétante ou d’obtenir la faveur décisive de son suzerain — et il y a dans ces divisions duales, celle du travail et celle du pouvoir, une source trop méconnue de la dysfonctionnalité essentielle des institutions. diff --git a/les experts reconnaissent, les débutants raisonnent.md b/les experts reconnaissent, les débutants raisonnent.md index c8de1d12..283d7f95 100644 --- a/les experts reconnaissent, les débutants raisonnent.md +++ b/les experts reconnaissent, les débutants raisonnent.md @@ -3,7 +3,7 @@ aliases: - experts recognize, beginners reason --- up:: [[apprentissage]] -#apprendre +#s/apprendre > [!definition] les experts reconnaissent, les débutants raisonnent > Reconnaître des schémas existants est plus efficace que de réfléchir à une situation ([[système 1, système 2]]). diff --git a/les goûts sont des dégoûts.md b/les goûts sont des dégoûts.md new file mode 100644 index 00000000..cf183282 --- /dev/null +++ b/les goûts sont des dégoûts.md @@ -0,0 +1,11 @@ +--- +aliases: + - nos goûts sont des dégoûts +up: + - "[[sociologie distinction]]" +tags: + - "#s/science/sociologie" +--- +> [!definition] [[les goûts sont des dégoûts]] +> Nos goûts sont construits en opposition au goûts des autres, par distinction d'avec ce dont on est dégoûté. + diff --git a/les messages de haine ont plus d'impact sur les réseaux sociaux.md b/les messages de haine ont plus d'impact sur les réseaux sociaux.md index 5234aba5..bc124391 100644 --- a/les messages de haine ont plus d'impact sur les réseaux sociaux.md +++ b/les messages de haine ont plus d'impact sur les réseaux sociaux.md @@ -3,7 +3,7 @@ alias: [ "les messages de haine ont plus d'impact" ] --- up:: [[réseaux sociaux]], [[zetetique]] title:: "plus partagés, plus amplifiés, plus impliquants" -#science #science/zetetique +#s/science #s/science/zetetique --- diff --git a/les premiers termes ne changent pas la convergence d'une série.md b/les premiers termes ne changent pas la convergence d'une série.md index 41fb9f37..dd3d851f 100644 --- a/les premiers termes ne changent pas la convergence d'une série.md +++ b/les premiers termes ne changent pas la convergence d'une série.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série numérique]] title:: "Soient $(u_{n})$ et $(\overline{u}_{n})$", "avec $u_{n}= \overline{u}_{n}$ pour $n \leq n_0$", "$\sum\limits u_{n}$ et $\sum\limits \overline{u}_{n}$ ont la même convergence" -#maths/analyse +#s/maths/analyse --- diff --git a/les riches salariés paient pour les riches frodeurs.md b/les riches salariés paient pour les riches frodeurs.md index b0c8bb3b..037ec24b 100644 --- a/les riches salariés paient pour les riches frodeurs.md +++ b/les riches salariés paient pour les riches frodeurs.md @@ -2,7 +2,7 @@ alias: [ "riches salariées paient les frôdes", "les taxes sur les salariés paient les fraudes fiscales" ] --- up:: [[répartition des impôts]] -#politique #science/économie +#s/politique #s/science/économie > Les riches salariés paient pour les riches frodeurs [[daniel balavoine]] diff --git a/les symboles comme outils pour diviser.md b/les symboles comme outils pour diviser.md index 00d4eaf5..b5d0c48a 100644 --- a/les symboles comme outils pour diviser.md +++ b/les symboles comme outils pour diviser.md @@ -2,7 +2,7 @@ alias: [ "les symboles divisent" ] --- up:: [[classifier et diviser les personnes]] -#philosphie #science/zetetique +#s/philosphie #s/science/zetetique Les symboles sont un outil puissant pour [[classifier et diviser les personnes]] : diff --git a/les valeurs nous dispersent.md b/les valeurs nous dispersent.md index 03584fdc..cb949585 100644 --- a/les valeurs nous dispersent.md +++ b/les valeurs nous dispersent.md @@ -1,6 +1,6 @@ up:: [[politique.valeur|valeurs]] -#politique #philosphie +#s/politique #s/philosphie Les valeurs ne rassemblent pas, au contraire elles créent du **dissensus** - parce qu'elles s'opposent entre elles diff --git a/les valeurs s'inscrivent dans des systèmes moraux.md b/les valeurs s'inscrivent dans des systèmes moraux.md index 1e0e8ad6..46c7c11f 100644 --- a/les valeurs s'inscrivent dans des systèmes moraux.md +++ b/les valeurs s'inscrivent dans des systèmes moraux.md @@ -1,5 +1,5 @@ up:: [[politique.valeur|valeurs]], [[morale]] -#politique #philosphie +#s/politique #s/philosphie Les [[politique.valeur|valeurs]] ne sont pas neutres moralement ([[les valeurs nous dispersent]]) Les valeurs servent à justifier ***a posteriori*** les choix d'une société diff --git a/leviers d'action pour l'écologie.md b/leviers d'action pour l'écologie.md index 1fd19a16..9636932b 100644 --- a/leviers d'action pour l'écologie.md +++ b/leviers d'action pour l'écologie.md @@ -3,7 +3,7 @@ alias: [ "leviers action écologie" ] --- up:: [[écologie]] title:: "moyens d'action politiques pour l'écologie" -#politique #science/écologie +#s/politique #s/science/écologie --- diff --git a/ligne de commande.md b/ligne de commande.md index 61900cd7..0bba4907 100644 --- a/ligne de commande.md +++ b/ligne de commande.md @@ -1,5 +1,5 @@ up::[[informatique]] -#informatique +#s/informatique ---- diff --git a/limite d'une fonction.md b/limite d'une fonction.md index aa8c09b7..fd20f8fc 100644 --- a/limite d'une fonction.md +++ b/limite d'une fonction.md @@ -1,5 +1,5 @@ up::[[fonction]] -#maths/analyse +#s/maths/analyse ---- diff --git a/limite inférieure d'une suite.md b/limite inférieure d'une suite.md index 54d36f67..864266bb 100644 --- a/limite inférieure d'une suite.md +++ b/limite inférieure d'une suite.md @@ -3,7 +3,7 @@ alias: [ "lim inf", "limite inf", "limite inférieure" ] --- up::[[suite]] sibling::[[limite supérieure d'une suite]] -#maths/analyse +#s/maths/analyse > [!definition] [[limite inférieure d'une suite]] > $\lim\limits_{ n \to \infty } u_{n} = \lim\limits_{ n \to \infty } \inf\limits_{k \geq n} f_{k}$ diff --git a/limite supérieure d'une suite.md b/limite supérieure d'une suite.md index 08262940..6d981332 100644 --- a/limite supérieure d'une suite.md +++ b/limite supérieure d'une suite.md @@ -9,7 +9,7 @@ sibling:: [[limite inférieure d'une suite]] up::[[suite]] sibling::[[limite inférieure d'une suite]] title::"$\sup\big\{u_{n} \mid n>k\big\}$ quand $k \to +\infty$" -#maths/analyse +#s/maths/analyse ---- Soit $(x_{n})$ une suite réelle diff --git a/limiter la charge de la batterie.md b/limiter la charge de la batterie.md index 46f3d772..5870c08a 100644 --- a/limiter la charge de la batterie.md +++ b/limiter la charge de la batterie.md @@ -2,7 +2,7 @@ aliases: [] --- up:: -#informatique +#s/informatique Une batterie chargée à 100% s'abime et perd de la capacité. Pour la préserver, il vaut mieux ne pas la charger à 100%. diff --git a/limites usuelles.md b/limites usuelles.md index c10f3a16..c5960887 100644 --- a/limites usuelles.md +++ b/limites usuelles.md @@ -1,5 +1,5 @@ up::[[limite d'une fonction]] -#maths/analyse +#s/maths/analyse ---- Voir [[limite d'une fonction|limite]] d'une [[fonction]] diff --git a/linux.md b/linux.md index cd7f95ff..e122fd8d 100644 --- a/linux.md +++ b/linux.md @@ -1,2 +1,2 @@ up:: [[unix]] -#informatique/unix \ No newline at end of file +#s/informatique/unix \ No newline at end of file diff --git a/linéarité de l'intégrale.md b/linéarité de l'intégrale.md index 88ed4451..dff2e72a 100644 --- a/linéarité de l'intégrale.md +++ b/linéarité de l'intégrale.md @@ -1,5 +1,5 @@ up:: [[intégrale de lebesgue]] -#maths/intégration +#s/maths/intégration > [!lemme]- Linéarité de l'intégrale sur des fonctions étagées positives > Sur l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/liste indépendante des sciences et techniques estudiantine.md b/liste indépendante des sciences et techniques estudiantine.md index 0f5fd216..a4be51b4 100644 --- a/liste indépendante des sciences et techniques estudiantine.md +++ b/liste indépendante des sciences et techniques estudiantine.md @@ -1,6 +1,6 @@ up:: [[CV]] sibling:: [[syndicat étudiant de blois|SEB]] -#CV #fac +#CV #s/fac > [!tldr] Résumé diff --git a/logiciel libre.md b/logiciel libre.md index 7bcde409..4abaaa65 100644 --- a/logiciel libre.md +++ b/logiciel libre.md @@ -1,5 +1,5 @@ up:: [[informatique]] -#informatique +#s/informatique - respecte notre liberté diff --git a/logique approche sémantique.md b/logique approche sémantique.md index ade45ac4..22a42913 100644 --- a/logique approche sémantique.md +++ b/logique approche sémantique.md @@ -2,7 +2,7 @@ alias: [ "approche sémantique de la logique", "approche sémantique" ] --- up::[[logique formelle]] -#maths/logique +#s/maths/logique --- diff --git a/logique des predicats du premier ordre.md b/logique des predicats du premier ordre.md index 83d963a7..94d01e97 100644 --- a/logique des predicats du premier ordre.md +++ b/logique des predicats du premier ordre.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/logique formelle.md b/logique formelle.md index f186d657..17287cea 100644 --- a/logique formelle.md +++ b/logique formelle.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/logique.md b/logique.md index 2d15e2fd..0597e5e5 100644 --- a/logique.md +++ b/logique.md @@ -3,7 +3,7 @@ "BC-tag-note-field:": up --- up:: [[mathématiques]] -#maths/logique +#s/maths/logique > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/loi de composition externe.md b/loi de composition externe.md index a846945b..ae054909 100644 --- a/loi de composition externe.md +++ b/loi de composition externe.md @@ -1,5 +1,5 @@ up::[[loi de composition]] -#maths/algèbre +#s/maths/algèbre ---- Une _loi de composition externe_ est une [[loi de composition]] qui n'est **pas** [[loi de composition interne|interne]]. diff --git a/loi de composition interne.md b/loi de composition interne.md index 2fcd2861..d64ccae4 100644 --- a/loi de composition interne.md +++ b/loi de composition interne.md @@ -5,7 +5,7 @@ sr-ease: 330 alias: "lci" --- up::[[loi de composition]] -#maths/algèbre +#s/maths/algèbre Une _loi de composition interne_ est une [[loi de composition]] qui est interne, cad. que tout composé est aussi dans l'ensemble de départ. diff --git a/loi de composition stable sur un ensemble.md b/loi de composition stable sur un ensemble.md index 9fc89379..42f5ee93 100644 --- a/loi de composition stable sur un ensemble.md +++ b/loi de composition stable sur un ensemble.md @@ -1,5 +1,5 @@ up:: [[loi de composition interne]] -#maths/algèbre +#s/maths/algèbre > [!definition] loi de composition stable sur un ensemble > Soit $E$ un ensemble non vide diff --git a/loi de composition.md b/loi de composition.md index f84c43f0..752a3ed2 100644 --- a/loi de composition.md +++ b/loi de composition.md @@ -5,7 +5,7 @@ sr-interval: 365 sr-ease: 359 --- up::[[opérateur binaire]] -#maths/algèbre +#s/maths/algèbre ---- Soient $E$ et $F$ deux ensembles (non vides) diff --git a/loi de probabilités.md b/loi de probabilités.md index ecd13d27..c5a0d104 100644 --- a/loi de probabilités.md +++ b/loi de probabilités.md @@ -1,5 +1,5 @@ up:: [[probabilités]] title:: -#maths/probabilités +#s/maths/probabilités --- \ No newline at end of file diff --git a/loi des sinus.md b/loi des sinus.md index e8526171..dcd11713 100644 --- a/loi des sinus.md +++ b/loi des sinus.md @@ -1,6 +1,6 @@ up::[[trigonométrie]] title:: "$\displaystyle \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$" -#maths/géométrie +#s/maths/géométrie --- diff --git a/machine de turing.md b/machine de turing.md index 476aeb60..4ba3ec38 100644 --- a/machine de turing.md +++ b/machine de turing.md @@ -1,5 +1,5 @@ up:: [[automate]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/magie.gérer les spectateurs chiants.md b/magie.gérer les spectateurs chiants.md index 03798ca4..5ae5e779 100644 --- a/magie.gérer les spectateurs chiants.md +++ b/magie.gérer les spectateurs chiants.md @@ -1,4 +1,4 @@ -#art/magie +#s/art/magie # Types de spectateurs chiants diff --git a/magie.md b/magie.md index d7cd5bf5..40baff17 100644 --- a/magie.md +++ b/magie.md @@ -1,5 +1,5 @@ up:: [[index]] -#art/magie +#s/art/magie ```breadcrumbs title: "Sous-notes" diff --git a/maintenance logiciel.md b/maintenance logiciel.md index 8ecad710..3e8d2397 100644 --- a/maintenance logiciel.md +++ b/maintenance logiciel.md @@ -1,5 +1,5 @@ up::[[génie logiciel et gestion de projet]] -#informatique +#s/informatique ---- diff --git a/making a new apl.md b/making a new apl.md index c800baf9..eecd5a71 100644 --- a/making a new apl.md +++ b/making a new apl.md @@ -1,6 +1,6 @@ up:: [[APL]] title:: "ideas for modifying the design of APL" -#informatique +#s/informatique --- diff --git a/manichéisme.md b/manichéisme.md index a9ec05dc..bcb2fef7 100644 --- a/manichéisme.md +++ b/manichéisme.md @@ -1,5 +1,5 @@ up:: [[philosophie]], [[zetetique|zététique]] -#philosphie #science/zetetique +#s/philosphie #s/science/zetetique > [!definition] manichéisme > Attitude consistant à **simplifier les rapports** du monde, ramenés à une simple opposition du **bien et du mal**. diff --git a/manim Annulus.md b/manim Annulus.md index 46ec7e9b..27613a5d 100644 --- a/manim Annulus.md +++ b/manim Annulus.md @@ -1,6 +1,6 @@ up:: [[manim mobjects]] title:: "`Annulus(inner_radius: float =1, outer_radius: float =2, color...)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Axes.md b/manim Axes.md index 2d95571a..427041d0 100644 --- a/manim Axes.md +++ b/manim Axes.md @@ -1,6 +1,6 @@ up:: [[manim mobjects]] title:: "`Axes(x_range=(-3, 3), y_range(-3, 3))`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Circle.md b/manim Circle.md index f4e0df69..10408829 100644 --- a/manim Circle.md +++ b/manim Circle.md @@ -1,6 +1,6 @@ up:: [[manim mobjects]] title:: "`Circle(radius: float =1, color...)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Circumscribe.md b/manim Circumscribe.md index b76254c5..00303db2 100644 --- a/manim Circumscribe.md +++ b/manim Circumscribe.md @@ -1,6 +1,6 @@ up:: [[manim animations]] title:: `Circumscribe(Mobject)` -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Create.md b/manim Create.md index b4a1aa30..0c82e505 100644 --- a/manim Create.md +++ b/manim Create.md @@ -1,6 +1,6 @@ up:: [[manim animations]] title:: "créer progressivement une forme" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Ellipse.md b/manim Ellipse.md index 9ae6f039..23b1b662 100644 --- a/manim Ellipse.md +++ b/manim Ellipse.md @@ -1,6 +1,6 @@ up:: [[manim mobjects]] title:: "`Ellipse(width: float =2, height: float =1, color...)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim FadeIn.md b/manim FadeIn.md index 402ca4a7..167e2c2b 100644 --- a/manim FadeIn.md +++ b/manim FadeIn.md @@ -1,6 +1,6 @@ up:: [[manim animations]] title:: `FadeIn(Shape)` -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim FadeOut.md b/manim FadeOut.md index eaec59e4..66a87fcb 100644 --- a/manim FadeOut.md +++ b/manim FadeOut.md @@ -1,5 +1,5 @@ up:: [[manim animations]] title:: `FadeOut(shape)` -#informatique/langage/python +#s/informatique/langage/python --- \ No newline at end of file diff --git a/manim GrowFromCenter.md b/manim GrowFromCenter.md index 95390804..ad22caa4 100644 --- a/manim GrowFromCenter.md +++ b/manim GrowFromCenter.md @@ -1,5 +1,5 @@ up:: [[manim animations]] title:: `GrowFromCenter(Shape)` -#informatique/langage/python +#s/informatique/langage/python --- \ No newline at end of file diff --git a/manim Indicate.md b/manim Indicate.md index 72015d78..bad258e9 100644 --- a/manim Indicate.md +++ b/manim Indicate.md @@ -1,6 +1,6 @@ up:: [[manim animations]] title:: "`Indicate(Mobject)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Rectangle.md b/manim Rectangle.md index beee5ec9..61d5006b 100644 --- a/manim Rectangle.md +++ b/manim Rectangle.md @@ -1,6 +1,6 @@ up:: [[manim mobjects]] title:: "`Rectangle(height: float, width: float, color, ...)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim Transform.md b/manim Transform.md index 0c8c76c4..80e0f44f 100644 --- a/manim Transform.md +++ b/manim Transform.md @@ -6,7 +6,7 @@ title:| ``` --- up:: [[manim animations]] -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim add.md b/manim add.md index 8d688074..30c636a9 100644 --- a/manim add.md +++ b/manim add.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: "ajouter une forme sur l'écran" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim animations.md b/manim animations.md index 46336f25..bf61e746 100644 --- a/manim animations.md +++ b/manim animations.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: "types d'animations" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim compiler une scène.md b/manim compiler une scène.md index 646e7fb3..9689dd28 100644 --- a/manim compiler une scène.md +++ b/manim compiler une scène.md @@ -3,7 +3,7 @@ alias: [ "manim render" ] --- up:: [[manim]] title:: "`manim -qm nom_du_fichier.py NomDeLaScene`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim créer un fichier de configuration.md b/manim créer un fichier de configuration.md index 5e22ca6b..b7633a4f 100644 --- a/manim créer un fichier de configuration.md +++ b/manim créer un fichier de configuration.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: `manim cfg write default -l cwd` -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim créer une scène.md b/manim créer une scène.md index ff5533a1..31fe2b2f 100644 --- a/manim créer une scène.md +++ b/manim créer une scène.md @@ -10,7 +10,7 @@ title: | ``` --- up:: [[manim]] -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim déplacer des mobjets.md b/manim déplacer des mobjets.md index 1acc3416..281f4dd5 100644 --- a/manim déplacer des mobjets.md +++ b/manim déplacer des mobjets.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: "`mobject.shift(vector)`", "`mobject.move_to(vector)`" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim interagir pendant le preview.md b/manim interagir pendant le preview.md index d23b7a1b..a792cf72 100644 --- a/manim interagir pendant le preview.md +++ b/manim interagir pendant le preview.md @@ -3,7 +3,7 @@ alias: [ "manim interactive embed", "manim shell pendant l'exécution" ] --- up:: [[manim openGL]] title:: "ouvrir un shell ipython pour intéragir avec le preview ([[manim openGL|open gl]] seulement)" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim mobjects.md b/manim mobjects.md index 52e49753..93e0ebd7 100644 --- a/manim mobjects.md +++ b/manim mobjects.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: "types de formes (Shapes) dans manim" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim openGL.md b/manim openGL.md index bcfe12da..c2ed9d1b 100644 --- a/manim openGL.md +++ b/manim openGL.md @@ -1,6 +1,6 @@ up::[[manim]], [[openGL]] title:: "renderer alternatif" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim tracer une fonction.md b/manim tracer une fonction.md index 82673c00..c80e0101 100644 --- a/manim tracer une fonction.md +++ b/manim tracer une fonction.md @@ -1,6 +1,6 @@ up:: [[manim]] title:: "Voir [[manim Axes]]" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manim.md b/manim.md index 2ff71f23..603b9a89 100644 --- a/manim.md +++ b/manim.md @@ -1,6 +1,6 @@ up:: [[python modules]] title:: "animations mathématiques" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/manuels lavisse.md b/manuels lavisse.md index c8a38f76..a288b53f 100644 --- a/manuels lavisse.md +++ b/manuels lavisse.md @@ -1,5 +1,5 @@ author:: [[Ernest Lavisse]] -#science/histoire +#s/science/histoire Manuels scolaires diff --git a/marché de l'art.md b/marché de l'art.md index 4b1ab683..aa07b1c3 100644 --- a/marché de l'art.md +++ b/marché de l'art.md @@ -1,3 +1,3 @@ up:: [[marché]] -#politique #art +#s/politique #s/art diff --git a/marché de l'emploi.md b/marché de l'emploi.md index 4b1967bc..c83a1d70 100644 --- a/marché de l'emploi.md +++ b/marché de l'emploi.md @@ -1,3 +1,3 @@ up:: [[marché]], [[emploi]] -#politique +#s/politique diff --git a/markdown.md b/markdown.md index 8d5abbcc..aa4b7e5f 100644 --- a/markdown.md +++ b/markdown.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"langage de balisage léger (formattage de texte)" -#informatique +#s/informatique ---- diff --git a/markmind outline.md b/markmind outline.md index 343dc0db..5029f10b 100644 --- a/markmind outline.md +++ b/markmind outline.md @@ -1,9 +1,7 @@ --- - mindmap-plugin: basic display-mode: outline -tags: [ "#obsidian", ""] - +tags: [ "#s/obsidian", ""] --- diff --git a/math-as-code (Python version).md b/math-as-code (Python version).md index 930b039b..161a6347 100644 --- a/math-as-code (Python version).md +++ b/math-as-code (Python version).md @@ -1,7 +1,7 @@ --- source:https://github.com/Jam3/math-as-code/blob/master/PYTHON-README.md --- -#informatique #maths +#s/informatique #s/maths ---- diff --git a/maths pour l'ingénieur feuille d'exercice 1.md b/maths pour l'ingénieur feuille d'exercice 1.md index be860f74..ed8537cb 100644 --- a/maths pour l'ingénieur feuille d'exercice 1.md +++ b/maths pour l'ingénieur feuille d'exercice 1.md @@ -1,4 +1,4 @@ -#exercice #maths +#t/exercice #s/maths ---- diff --git a/mathématiques.md b/mathématiques.md index abf72679..0bbe3cfa 100644 --- a/mathématiques.md +++ b/mathématiques.md @@ -1,5 +1,5 @@ up:: [[index]] -#maths +#s/maths ```breadcrumbs title: "Sous-notes" diff --git a/matrice adjointe.md b/matrice adjointe.md index 833a2af9..1b1d3fec 100644 --- a/matrice adjointe.md +++ b/matrice adjointe.md @@ -1,6 +1,6 @@ up:: [[matrice]], [[endomorphisme adjoint]] title:: "sur $\mathcal{M}_{m,n}(\mathbb{C})$: [[matrice transconjuguée]]", "matrices carrées : [[endomorphisme adjoint]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice antisymétrique.md b/matrice antisymétrique.md index 5502fc36..a5b80c95 100644 --- a/matrice antisymétrique.md +++ b/matrice antisymétrique.md @@ -4,7 +4,7 @@ alias: [ "antisymétrique" ] up::[[matrice]] sibling:: [[matrice symétrique]] title::"$M^{T} = -M$ ([[transposée]])" -#maths/algèbre +#s/maths/algèbre ---- Soit $M\in M_{n,n}(\mathbb{R})$ une [[matrice]], $M$ est _antisymétrique_ ssi : diff --git a/matrice associée à une application linéaire.md b/matrice associée à une application linéaire.md index c813abea..cd32ed2c 100644 --- a/matrice associée à une application linéaire.md +++ b/matrice associée à une application linéaire.md @@ -2,7 +2,7 @@ alias: [ "application linéaire associée à une matrice", "matrice associée", "application linéaire associée", "matrice d'un application linéaire" ] --- up::[[application linéaire]], [[matrice]] -#maths/algèbre +#s/maths/algèbre ---- Soient $E$ et $F$ deux $\mathbb{R}$-[[espace vectoriel|espaces vectoriels]] de [[dimension d'un espace vectoriel|dimension]] finie, de [[base d'un espace vectoriel|base]] respective $\mathcal B = \{e_1,\ldots,e_n\}$ et $\mathcal C = \{f_1,\ldots,f_n\}$, diff --git a/matrice conjuguée.md b/matrice conjuguée.md index 044a51de..bcad4363 100644 --- a/matrice conjuguée.md +++ b/matrice conjuguée.md @@ -1,6 +1,6 @@ up:: [[matrice]] title:: $\overline{M}_{i,j} = \overline{(M_{i,j})}$ -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice d'eisenhower.md b/matrice d'eisenhower.md index 72b19f54..67b3da2d 100644 --- a/matrice d'eisenhower.md +++ b/matrice d'eisenhower.md @@ -1,4 +1,4 @@ up:: -#PM +#s/PM ;![[matrice d'eisenhower 2024-10-22 19.30.30.excalidraw]] \ No newline at end of file diff --git a/matrice d'un vecteur dans une base.md b/matrice d'un vecteur dans une base.md index 7c96c46d..032bc8bb 100644 --- a/matrice d'un vecteur dans une base.md +++ b/matrice d'un vecteur dans une base.md @@ -1,5 +1,5 @@ up::[[matrice]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/matrice d'une forme bilinéaire.md b/matrice d'une forme bilinéaire.md index f9ba0f38..10e44c35 100644 --- a/matrice d'une forme bilinéaire.md +++ b/matrice d'une forme bilinéaire.md @@ -3,7 +3,7 @@ alias: [ "matrice associée à une forme bilinéaire", "matrice associée" ] --- up:: [[forme bilinéaire|forme bilinéaire]], [[matrice]] title:: "$M_{i,j} = f(e_{i}, e_{j})$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice d'une forme quadratique.md b/matrice d'une forme quadratique.md index 0807103b..bcaf315e 100644 --- a/matrice d'une forme quadratique.md +++ b/matrice d'une forme quadratique.md @@ -3,7 +3,7 @@ alias: [ "matrice associée à une forme quadratique", "matrice associée" ] --- up:: [[forme quadratique]], [[matrice]] title:: "matrice $M$ [[matrice symétrique|symétrique]] telle que $\varphi(x) = \,^T\!xMx$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice de rotation.md b/matrice de rotation.md index bc2f3978..ad2ccde8 100644 --- a/matrice de rotation.md +++ b/matrice de rotation.md @@ -4,7 +4,7 @@ alias: [ "rotation" ] up::[[matrice]], [[rotation]], [[matrice orthogonale]] sibling:: [[matrice de symétrie]] title::"[[matrice orthogonale]] de [[déterminant d'une matrice|déterminant]] 1", "$\begin{pmatrix}a&b\\ b&-a\end{pmatrix}$ avec $a^{2}+b^{2}=1$ en 2D" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice de symétrie.md b/matrice de symétrie.md index a0bd688c..bced22b5 100644 --- a/matrice de symétrie.md +++ b/matrice de symétrie.md @@ -1,7 +1,7 @@ up::[[matrice]], [[symétrie vectorielle orthogonale]] sibling:: [[matrice de rotation]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice diagonale.md b/matrice diagonale.md index d1fd04f8..b7eab82e 100644 --- a/matrice diagonale.md +++ b/matrice diagonale.md @@ -1,7 +1,7 @@ up::[[matrice]] title::"telle que $i\neq j \implies M_{i,j} = 0$" description::"seuls les éléments de sa diagonale sont non-nuls" -#maths/algèbre +#s/maths/algèbre ---- Une *matrice diagonale* est une [[matrice]] particulière telle que seuls les éléments de sa diagonale sont non nuls. diff --git a/matrice hessienne.md b/matrice hessienne.md index 7ab3ca2d..f03aebdb 100644 --- a/matrice hessienne.md +++ b/matrice hessienne.md @@ -1,5 +1,5 @@ up:: [[points critiques d'une fonction]], [[fonction de plusieurs variables]] -#maths/analyse +#s/maths/analyse > [!definition] matrice hessienne > Soit une fonction $\begin{align} f :\;& \mathbb{R}^{n}\to\mathbb{R}\\&(x_1, x_2, \dots ,x_{n}) \mapsto f(x_1,\dots,x_{n}) \end{align}$ diff --git a/matrice identité.md b/matrice identité.md index a6696bb0..8568c47c 100644 --- a/matrice identité.md +++ b/matrice identité.md @@ -1,6 +1,6 @@ up::[[matrice]] title::"$\mathrm{Id}_{i,j} = \delta _{i,j} = [i=j]$" -#maths/algèbre +#s/maths/algèbre ---- La matrice identité de taille $n$ est la [[matrice]] $Id_n$ telle que : diff --git a/matrice jacobienne.md b/matrice jacobienne.md index 77e12b27..2b4b6939 100644 --- a/matrice jacobienne.md +++ b/matrice jacobienne.md @@ -1,5 +1,5 @@ up:: [[intégration.changement de variables]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit diff --git a/matrice orthogonale triangulaire.md b/matrice orthogonale triangulaire.md index 3615a1f2..df475e96 100644 --- a/matrice orthogonale triangulaire.md +++ b/matrice orthogonale triangulaire.md @@ -1,6 +1,6 @@ up:: [[matrice orthogonale]], [[matrice triangulaire]] title:: "de la forme $\begin{pmatrix} \pm 1&0&\cdots &0\\0&\pm 1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\pm 1\end{pmatrix}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice orthogonale.md b/matrice orthogonale.md index 8a8c1d3f..ed379510 100644 --- a/matrice orthogonale.md +++ b/matrice orthogonale.md @@ -3,7 +3,7 @@ alias: [ "orthogonale" ] --- up:: [[matrice]] title:: "$\,^T\!M M = Id$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice stochastique.md b/matrice stochastique.md index cf814597..8eceb2ff 100644 --- a/matrice stochastique.md +++ b/matrice stochastique.md @@ -1,6 +1,6 @@ up:: [[matrice]] title:: "coefficients dans $[0, 1]$", "somme des lignes vaut 1" -#maths/algèbre #maths/probabilités +#s/maths/algèbre #s/maths/probabilités --- diff --git a/matrice symétrique.md b/matrice symétrique.md index e58d94d1..dae34599 100644 --- a/matrice symétrique.md +++ b/matrice symétrique.md @@ -4,7 +4,7 @@ alias: [ "symétrique" ] up::[[matrice]] sibling:: [[matrice antisymétrique]] title::"telle que $M = M^{T}$ ([[transposée]])" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/matrice transconjuguée.md b/matrice transconjuguée.md index 688f2be3..d30472c3 100644 --- a/matrice transconjuguée.md +++ b/matrice transconjuguée.md @@ -1,6 +1,6 @@ up:: [[matrice]] title:: "[[transposée]] du [[conjugé complexe]] de chaque valeur" -#maths/algèbre +#s/maths/algèbre --- diff --git a/matrice.md b/matrice.md index 23e284dd..552dbde2 100644 --- a/matrice.md +++ b/matrice.md @@ -1,5 +1,5 @@ up::[[algèbre]] -#maths/algèbre +#s/maths/algèbre Une matrice est l'objet mathématique désignant un tableau. diff --git a/matrices modulaires.md b/matrices modulaires.md index 23f6827d..0df3b5a4 100644 --- a/matrices modulaires.md +++ b/matrices modulaires.md @@ -3,7 +3,7 @@ aliases: - matrice modulaire --- up:: [[matrice]], [[groupe des classes modulo n]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[matrices modulaires]] > Soient $m, n \in \mathbb{N}_{\geq 2}$ diff --git a/matériel réseau informatique.md b/matériel réseau informatique.md index 829e1e79..144884c5 100644 --- a/matériel réseau informatique.md +++ b/matériel réseau informatique.md @@ -1,6 +1,6 @@ up::[[réseau informatique]] title::"hardware pour la mise en place d'un réseau" -#informatique +#s/informatique ---- diff --git a/maximum.md b/maximum.md index 32525351..6b8fcff9 100644 --- a/maximum.md +++ b/maximum.md @@ -1,6 +1,6 @@ up:: [[analyse]] sibling:: [[minimum]] -#maths/analyse +#s/maths/analyse > [!definition] [[maximum]] entre deux valeurs > la fonction $\max : \mathbb{R}^{2} \to \mathbb{R}$ est définie comme : diff --git a/mermaid-cli.md b/mermaid-cli.md index c1d5185d..edfb8406 100644 --- a/mermaid-cli.md +++ b/mermaid-cli.md @@ -1,4 +1,4 @@ up:: [[terminal commandes]] -#informatique +#s/informatique Outil pour compiler le mermaid en images png/svg/pdf \ No newline at end of file diff --git a/mesure algébrique.md b/mesure algébrique.md index 3f9d223d..8d0f9420 100644 --- a/mesure algébrique.md +++ b/mesure algébrique.md @@ -1,6 +1,6 @@ up:: [[espace affine]] title:: "norme signée selon le sens du vecteur directeur de la droite" -#maths/algèbre #maths/géométrie +#s/maths/algèbre #s/maths/géométrie --- diff --git a/mesure binomiale.md b/mesure binomiale.md index 89bd9521..2b260e5b 100644 --- a/mesure binomiale.md +++ b/mesure binomiale.md @@ -1,5 +1,5 @@ up:: [[mesure de probabilité]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure binomiale]] > Mesure définie, pour $n \in \mathbb{N}^{*}$ et $p \in [0; 1]$, comme : diff --git a/mesure de Bernoulli.md b/mesure de Bernoulli.md index cd744cbc..b01d92d2 100644 --- a/mesure de Bernoulli.md +++ b/mesure de Bernoulli.md @@ -1,6 +1,6 @@ up:: [[mesure discrète]], [[mesure de Dirac]] author:: [[Jacques Bernoulli]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure de Bernoulli]] diff --git a/mesure de Dirac.md b/mesure de Dirac.md index f259b653..a2b0809f 100644 --- a/mesure de Dirac.md +++ b/mesure de Dirac.md @@ -1,6 +1,6 @@ up:: [[mesure discrète]] author:: [[Paul Dirac]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure de Dirac]] > Soit $(E, \mathcal{A})$ un espace mesurable et $a \in E$ diff --git a/mesure de Lebesgue.md b/mesure de Lebesgue.md index bd18e93f..d0662520 100644 --- a/mesure de Lebesgue.md +++ b/mesure de Lebesgue.md @@ -1,6 +1,6 @@ up:: [[mesure positive d'une application|mesure]] author:: [[Henri Lebesgue]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure de Lebesgue]] > Il existe une unique mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, notée $\lambda$ et appelée **mesure de Lebesgue** telle que : diff --git a/mesure de probabilité.md b/mesure de probabilité.md index 60abd2ce..ba4a9fa7 100644 --- a/mesure de probabilité.md +++ b/mesure de probabilité.md @@ -1,6 +1,6 @@ up:: [[mesure positive d'une application|mesure]] sibling:: [[loi de probabilités]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure de probabilité]] > Soit $(E, \mathcal{A})$ un [[espace mesurable]] diff --git a/mesure discrète.md b/mesure discrète.md index 6c311bd2..bf00eff0 100644 --- a/mesure discrète.md +++ b/mesure discrète.md @@ -1,5 +1,5 @@ up:: [[mesure positive d'une application|mesure]] -#maths/intégration +#s/maths/intégration > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/mesure finie.md b/mesure finie.md index b95f13ba..8ae7d2c4 100644 --- a/mesure finie.md +++ b/mesure finie.md @@ -1,5 +1,5 @@ up:: [[mesure positive d'une application|mesure]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure finie]] > Soit $(E, \mathcal{A})$ un [[espace mesurable]] diff --git a/mesure image.md b/mesure image.md index b25209a9..f9e871af 100644 --- a/mesure image.md +++ b/mesure image.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[mesure positive d'une application|mesure]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure image]] > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/mesure positive d'une application.md b/mesure positive d'une application.md index 8bc7acd4..0a0c8fc4 100644 --- a/mesure positive d'une application.md +++ b/mesure positive d'une application.md @@ -4,7 +4,7 @@ aliases: - mesure --- up:: [[fonction mesurable]], [[espace mesurable]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[mesure positive d'une application]] > Soit $(E, \mathcal{A})$ un espace mesurable. diff --git a/mesure produit.md b/mesure produit.md index 4d9dc1fa..5c266b78 100644 --- a/mesure produit.md +++ b/mesure produit.md @@ -1,5 +1,5 @@ up:: [[mesure positive d'une application|mesure]], [[tribu produit]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soient $(E, \mathcal{A}, \mu)$ et $(F, \mathcal{B}, \nu)$ deux [[espace mesuré|espaces mesurés]] que l'on suppose [[mesure sigma finie|σ-finis]] diff --git a/mesure sigma finie.md b/mesure sigma finie.md index e20c38aa..093a274b 100644 --- a/mesure sigma finie.md +++ b/mesure sigma finie.md @@ -4,7 +4,7 @@ aliases: - σ-finies --- up:: [[mesure finie]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure sigma finie]] > Soit $(E, \mathcal{A})$ un [[espace mesurable]] diff --git a/mesure trace.md b/mesure trace.md index 3ece4105..77d65c66 100644 --- a/mesure trace.md +++ b/mesure trace.md @@ -1,5 +1,5 @@ up:: [[tribu trace]], [[mesure positive d'une application|mesure]] -#maths/intégration +#s/maths/intégration > [!definition] [[mesure trace]] > Soit l'application de $\nu: \mathcal{B} \to \overline{\mathbb{R}}_{+}$ définie par : diff --git a/mesurer l'importance dans un graphe de connaissances.md b/mesurer l'importance dans un graphe de connaissances.md index 6ad3d1a0..bcff447a 100644 --- a/mesurer l'importance dans un graphe de connaissances.md +++ b/mesurer l'importance dans un graphe de connaissances.md @@ -4,7 +4,7 @@ aliases: --- up:: [[graphe de connaissances]] link:: https://www.rankingdom.org/ -#informatique +#s/informatique diff --git a/militantisme.md b/militantisme.md index b8d3207b..c3973892 100644 --- a/militantisme.md +++ b/militantisme.md @@ -1,5 +1,5 @@ up:: [[politique]] -#politique +#s/politique ```breadcrumbs title: "Sous-notes" diff --git a/militantisme.méthodes d'action.md b/militantisme.méthodes d'action.md index f6c22a89..444a2c44 100644 --- a/militantisme.méthodes d'action.md +++ b/militantisme.méthodes d'action.md @@ -3,7 +3,7 @@ aliases: - méthodes d'action --- up:: [[militantisme]] -#politique +#s/politique ```breadcrumbs title: "Sous-notes" diff --git a/misanthropie politique.md b/misanthropie politique.md index 22cb4d4c..b52f7104 100644 --- a/misanthropie politique.md +++ b/misanthropie politique.md @@ -1,5 +1,5 @@ up:: [[théorie politique]] %% TODO: changer ce lien %% -#politique +#s/politique > [!definition] Définition > Idée que l'humain est naturellement mauvais dans ses relations (politique) à autrui. diff --git a/module d'un complexe.md b/module d'un complexe.md index d1212cf9..67bd75ae 100644 --- a/module d'un complexe.md +++ b/module d'un complexe.md @@ -1,5 +1,5 @@ up::[[nombre complexe]] -#maths/analyse/complexes +#s/maths/analyse/complexes ---- Soit $z = a+ib$ (un [[nombre complexe]]). diff --git a/modèle OSI.md b/modèle OSI.md index 501e7db2..1d3fa8b5 100644 --- a/modèle OSI.md +++ b/modèle OSI.md @@ -1,5 +1,5 @@ up::[[réseau informatique]] -#informatique +#s/informatique ---- diff --git a/modèle en cascade.md b/modèle en cascade.md index 048c9f91..ed4f2bdf 100644 --- a/modèle en cascade.md +++ b/modèle en cascade.md @@ -1,5 +1,5 @@ up::[[cycle de vie nominal d'un logiciel]] -#informatique +#s/informatique ---- diff --git a/modèle entité association.md b/modèle entité association.md index 6f6d56dc..21f0841b 100644 --- a/modèle entité association.md +++ b/modèle entité association.md @@ -1,5 +1,5 @@ up::[[concepts des bases de données]] -#informatique +#s/informatique ---- diff --git a/modèle logique.md b/modèle logique.md index 1f1136cd..4c78d98e 100644 --- a/modèle logique.md +++ b/modèle logique.md @@ -1,5 +1,5 @@ up::[[BDD niveaux d'abstraction]] -#informatique +#s/informatique ---- diff --git a/modèle.md b/modèle.md index fab85630..2b221302 100644 --- a/modèle.md +++ b/modèle.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/monoïde.md b/monoïde.md index 6cb61d5a..950b4540 100644 --- a/monoïde.md +++ b/monoïde.md @@ -5,7 +5,7 @@ sr-ease: 296 --- up::[[structure algébrique]] title::"ensemble muni d'une [[loi de composition interne|lci]] [[associativité|associative]] qui possède un [[élément neutre]]" -#maths/algèbre +#s/maths/algèbre ---- Un ensemble $E$ muni d'une [[loi de composition interne]] $*$ est un _monoïde_ ssi : diff --git a/morale.md b/morale.md index 2fa813bd..afb5c8de 100644 --- a/morale.md +++ b/morale.md @@ -1,5 +1,5 @@ up:: [[philosophie]] -#philosphie +#s/philosphie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/morceau de musique.md b/morceau de musique.md index 888b30c8..ca0e8633 100644 --- a/morceau de musique.md +++ b/morceau de musique.md @@ -1,5 +1,5 @@ up::[[musique]] -#art/musique +#s/art/musique --- diff --git a/morphisme de groupes.md b/morphisme de groupes.md index f6492d8f..d9d8ad02 100644 --- a/morphisme de groupes.md +++ b/morphisme de groupes.md @@ -8,7 +8,7 @@ aliases: up: - "[[morphisme]]" - "[[groupe]]" -tags: "#maths/algèbre" +tags: "#s/maths/algèbre" --- > [!definition] [[morphisme de groupes]] diff --git a/morphisme.md b/morphisme.md index d80451d9..b5f28c83 100644 --- a/morphisme.md +++ b/morphisme.md @@ -1,4 +1,4 @@ -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soient $E$ et $F$ deux ensembles quelconques diff --git a/moving between panes with vim and tmux.md b/moving between panes with vim and tmux.md index 7f547c47..39274471 100644 --- a/moving between panes with vim and tmux.md +++ b/moving between panes with vim and tmux.md @@ -1,5 +1,5 @@ up:: [[terminal workflow]] -#informatique/vim #informatique/unix +#s/informatique/vim #s/informatique/unix ![[shortcuts for moving between panes.excalidraw|1000]] diff --git a/multiplication de matrices.md b/multiplication de matrices.md index c17a0aa3..07de68e4 100644 --- a/multiplication de matrices.md +++ b/multiplication de matrices.md @@ -1,5 +1,5 @@ up:: [[matrice]] -#maths/algèbre +#s/maths/algèbre --- diff --git a/multiplicité d'un point d'une courbe paramétrée.md b/multiplicité d'un point d'une courbe paramétrée.md index 6f413d2b..22da9fa0 100644 --- a/multiplicité d'un point d'une courbe paramétrée.md +++ b/multiplicité d'un point d'une courbe paramétrée.md @@ -5,7 +5,7 @@ sr-interval: 30 sr-ease: 308 --- up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse ---- diff --git a/multiplicité d'une racine.md b/multiplicité d'une racine.md index 524c0d50..714d424b 100644 --- a/multiplicité d'une racine.md +++ b/multiplicité d'une racine.md @@ -3,7 +3,7 @@ alias: [ "multiplicité", "ordre d'une racine", "ordre" ] --- up::[[racines d'un polynôme]] title:: "pour une racine $r$", "$n$ tel que $P^{(n-1)}(r) = 0$ et $P^{(n)}(r) \neq 0$" -#maths/analyse +#s/maths/analyse ---- > [!definition] ordre d'une racine d'un polynôme diff --git a/musique morceau dreaming Thierry Eliez.md b/musique morceau dreaming Thierry Eliez.md index daad39a8..e109e387 100644 --- a/musique morceau dreaming Thierry Eliez.md +++ b/musique morceau dreaming Thierry Eliez.md @@ -1,7 +1,7 @@ up:: [[morceau de musique]] author:: [[Thierry Eliez]] title:: -#art/musique +#s/art/musique --- diff --git a/musique.md b/musique.md index 4c329576..fc156e32 100644 --- a/musique.md +++ b/musique.md @@ -1,5 +1,5 @@ up:: [[art]], [[sept arts libéraux]] -#art/musique +#s/art/musique --- diff --git a/mythe de l'ascention sociale.md b/mythe de l'ascention sociale.md index 20b7ebb4..2bd798ec 100644 --- a/mythe de l'ascention sociale.md +++ b/mythe de l'ascention sociale.md @@ -2,7 +2,7 @@ alias: [ "ascention sociale", "mythe de l'ascention sociale" ] --- up:: [[les mythes du capitalisme]] -#science/sociologie #politique +#s/science/sociologie #s/politique Mythe selon lequel il est possible pour tous de réussir à "monter" dans l'échelle sociale, c'est-à-dire à accéder à des [[classes sociales]] supérieures. diff --git a/mythe de la méritocratie.md b/mythe de la méritocratie.md index 7bb10ba9..d4848ebb 100644 --- a/mythe de la méritocratie.md +++ b/mythe de la méritocratie.md @@ -8,7 +8,7 @@ aliases: - mérite --- up:: [[les mythes du capitalisme]] -#politique +#s/politique Dans le contexte d'une société de [[classes sociales|classes]] (libérale). Mythe qui fait croire que la **réussite** est due au **mérite** de chacun. diff --git a/mythe du self made man.md b/mythe du self made man.md index b297af3f..afd5381d 100644 --- a/mythe du self made man.md +++ b/mythe du self made man.md @@ -2,7 +2,7 @@ alias: [ "self made man" ] --- supports:: [[mythe de l'ascention sociale]], [[mythe de la méritocratie]] -#politique #science/économie +#s/politique #s/science/économie > [!definition] Mythe du self made man > Idée selon laquelle les grandes fortunes (les grands [[bourgeoisie|bourgeois]]) sont devenus riches par leurs efforts personnels (la [[mythe de la méritocratie|méritocratie]] leur aurait permi une [[mythe de l'ascention sociale|ascention sociale]]). diff --git a/mythes.nos ancêtres les Gaulois.md b/mythes.nos ancêtres les Gaulois.md index 0b274079..6bb4f7d0 100644 --- a/mythes.nos ancêtres les Gaulois.md +++ b/mythes.nos ancêtres les Gaulois.md @@ -3,6 +3,6 @@ aliases: - mythe "nos ancêtres les Gaulois" --- up:: [[roman national]] -#science/histoire #politique +#s/science/histoire #s/politique diff --git a/médias.md b/médias.md index 0e2a2e46..cabb4fac 100644 --- a/médias.md +++ b/médias.md @@ -1,5 +1,5 @@ up:: [[information]] -#médias +#s/médias > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/médiatrice.md b/médiatrice.md index a7d21c2d..ecb99af3 100644 --- a/médiatrice.md +++ b/médiatrice.md @@ -1,5 +1,5 @@ up:: [[géométrie]] title:: "perpendiculaire passant par le milieu" -#maths/géométrie +#s/maths/géométrie --- \ No newline at end of file diff --git a/médiatrices d'un triangle.md b/médiatrices d'un triangle.md index 722a5a16..7c6f3060 100644 --- a/médiatrices d'un triangle.md +++ b/médiatrices d'un triangle.md @@ -1,6 +1,6 @@ up:: [[médiatrice]] title:: "se croisent au centre du [[cercle circonscrit à un triangle|cercle circonscrit]] " -#maths/géométrie #not-done +#s/maths/géométrie #not-done --- diff --git a/méfie toi de ceux qui tiennent des listes.md b/méfie toi de ceux qui tiennent des listes.md index 3140a851..725fa332 100644 --- a/méfie toi de ceux qui tiennent des listes.md +++ b/méfie toi de ceux qui tiennent des listes.md @@ -1,5 +1,5 @@ up:: [[philosophie]] -#philosphie #politique +#s/philosphie #s/politique > Méfie toi de ceux qui tiennent des listes grand-mère de l'interviewer de [[thinkerview]] diff --git a/mémoire de L3.md b/mémoire de L3.md index 44b120bd..43574a2c 100644 --- a/mémoire de L3.md +++ b/mémoire de L3.md @@ -1,5 +1,5 @@ up:: [[notes mémoire de L3]] -#informatique #fac +#s/informatique #s/fac # Introduction ![[notes mémoire de L3#^abstract]] diff --git a/mémoire informatique.md b/mémoire informatique.md index a900a6ed..f1bcb225 100644 --- a/mémoire informatique.md +++ b/mémoire informatique.md @@ -3,7 +3,7 @@ aliases: - mémoire (informatique) - mémoire tags: - - informatique + - s/informatique --- up:: [[architecture des ordinateurs]] diff --git a/mémoire à cordes de ferrites.md b/mémoire à cordes de ferrites.md index cfb4f123..6d8b0c87 100644 --- a/mémoire à cordes de ferrites.md +++ b/mémoire à cordes de ferrites.md @@ -1,5 +1,5 @@ up:: [[mémoire à tore de ferrite]] -#informatique #physique +#s/informatique #s/physique > [!definition] mémoire à cordes de ferrites diff --git a/mémoire à tore de ferrite matricielle.md b/mémoire à tore de ferrite matricielle.md index 21dc940c..8a28dcea 100644 --- a/mémoire à tore de ferrite matricielle.md +++ b/mémoire à tore de ferrite matricielle.md @@ -1,4 +1,4 @@ up:: [[mémoire à tore de ferrite]] -#informatique +#s/informatique ![[mémoire à tore de ferrite grille.excalidraw|800]] \ No newline at end of file diff --git a/mémoire à tore de ferrite.md b/mémoire à tore de ferrite.md index 95105ac3..3e678dce 100644 --- a/mémoire à tore de ferrite.md +++ b/mémoire à tore de ferrite.md @@ -1,5 +1,5 @@ up:: [[mémoire informatique]] -#informatique #physique +#s/informatique #s/physique > [!definition] mémoire à tore de ferrite > Type de [[mémoire informatique]] qui utilise l'[[hystérésis magnétique]] pour stocker de l'information binaire dans un toroide de métal magnétique (notamment la ferrite). diff --git a/mémoriser.md b/mémoriser.md index 3b655bd4..2576cd0b 100644 --- a/mémoriser.md +++ b/mémoriser.md @@ -4,7 +4,7 @@ aliases: - mémoire --- up:: [[PKM]] -#PKM #apprendre/mémoire +#PKM #s/apprendre/mémoire > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/métacognition.md b/métacognition.md index 02fc5167..7f63854c 100644 --- a/métacognition.md +++ b/métacognition.md @@ -1,5 +1,5 @@ up:: [[cognition]] -#science/psychologie +#s/science/psychologie > [!definition] métacognition > Fait de connaître son propre fonctionnement, de ses propres ressorts de pensée. diff --git a/méthode d'allocation chaînée.md b/méthode d'allocation chaînée.md index 19afa928..4dc4d3bd 100644 --- a/méthode d'allocation chaînée.md +++ b/méthode d'allocation chaînée.md @@ -1,6 +1,6 @@ up:: [[méthodes d'allocation de fichiers]] title:: "allocation bloc-par-bloc, avec une structure de liste chaînée" -#informatique/unix +#s/informatique/unix --- diff --git a/méthode d'allocation contigüe.md b/méthode d'allocation contigüe.md index 78d04fbb..fd28e20f 100644 --- a/méthode d'allocation contigüe.md +++ b/méthode d'allocation contigüe.md @@ -1,6 +1,6 @@ up:: [[méthodes d'allocation de fichiers]] title:: "on cherche à stocker tous les fichiers comme une seulf [[portion d'un disque|portion]] " -#informatique/unix +#s/informatique/unix --- diff --git a/méthode d'allocation indexée.md b/méthode d'allocation indexée.md index 534e4005..04c718ea 100644 --- a/méthode d'allocation indexée.md +++ b/méthode d'allocation indexée.md @@ -1,6 +1,6 @@ up:: [[méthodes d'allocation de fichiers]] title:: "un bloc index des portions de fichier" -#informatique/unix +#s/informatique/unix --- diff --git a/méthode de Newton.md b/méthode de Newton.md index b61d37e8..6019464c 100644 --- a/méthode de Newton.md +++ b/méthode de Newton.md @@ -1,7 +1,7 @@ up:: title:: "$x_{n+1} = x_{n} - \dfrac{f(x_{n})}{f'(x_{n})}$ CV vers un [[racine]] de $f$" author:: [[Isaac Newton]] -#maths/analyse +#s/maths/analyse > [!definition] méthode de Newton > Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de [[classe d'une fonction|classe]] $C^{2}$. diff --git a/méthodes d'allocation de fichiers.md b/méthodes d'allocation de fichiers.md index 0861843b..5835f357 100644 --- a/méthodes d'allocation de fichiers.md +++ b/méthodes d'allocation de fichiers.md @@ -1,6 +1,6 @@ up:: [[allocation de fichiers]] title:: "différentes méthodes d'allocation" -#informatique/unix +#s/informatique/unix --- diff --git a/méthodes de gestion de l'espace libre pour les fichiers.md b/méthodes de gestion de l'espace libre pour les fichiers.md index 22df953f..dc1acaa2 100644 --- a/méthodes de gestion de l'espace libre pour les fichiers.md +++ b/méthodes de gestion de l'espace libre pour les fichiers.md @@ -1,6 +1,6 @@ up:: [[sous-système de gestion des fichiers]] title:: "méthodes pour gérer les blocs libres" -#informatique/unix +#s/informatique/unix --- diff --git a/méthodologie agile.md b/méthodologie agile.md index cebcc489..7166086e 100644 --- a/méthodologie agile.md +++ b/méthodologie agile.md @@ -1,6 +1,6 @@ up::[[outils de gestion de projet]] link::https://www.agilemanifesto.org -#PM +#s/PM ---- diff --git a/méthodologie scrum.md b/méthodologie scrum.md index 2779c43a..f87c4eb6 100644 --- a/méthodologie scrum.md +++ b/méthodologie scrum.md @@ -1,5 +1,5 @@ up::[[méthodologie agile]] -#PM +#s/PM ---- diff --git a/métonymie.md b/métonymie.md index dea74df3..2b608fd7 100644 --- a/métonymie.md +++ b/métonymie.md @@ -1,5 +1,5 @@ up:: [[figure de style]] -#art +#s/art > [!definition] métonymie > Utilisation d'un mot parler d'un autre qui est lié. diff --git a/newsletter informethique.md b/newsletter informethique.md index 8a058c38..adfd7a09 100644 --- a/newsletter informethique.md +++ b/newsletter informethique.md @@ -1,5 +1,5 @@ up:: [[infomethique]] -#informatique #philosphie #politique +#s/informatique #s/philosphie #s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/noam chomsky.md b/noam chomsky.md index d7490dc3..f3d61a09 100644 --- a/noam chomsky.md +++ b/noam chomsky.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne Linguiste et informaticien. diff --git a/node js commandes.md b/node js commandes.md index e4d3d516..e01e95f0 100644 --- a/node js commandes.md +++ b/node js commandes.md @@ -1,2 +1,2 @@ up:: [[Node JS]] -#informatique/langage/javascript \ No newline at end of file +#s/informatique/langage/javascript \ No newline at end of file diff --git a/nombre complexe.md b/nombre complexe.md index 51bce5e0..fb164f80 100644 --- a/nombre complexe.md +++ b/nombre complexe.md @@ -1,6 +1,6 @@ up::[[ensembles de nombres]] title::"$\mathbb{C} := \{ a + ib \mid (a, b) \in \mathbb{R} \}$ où $i^{2} = -1$" -#maths/analyse/complexes +#s/maths/analyse/complexes ---- On a créé un objet noté $i$ tel que $i^2 = -1$ diff --git a/nombre d'inversions d'une permutations.md b/nombre d'inversions d'une permutations.md index 01237f8a..b598492c 100644 --- a/nombre d'inversions d'une permutations.md +++ b/nombre d'inversions d'une permutations.md @@ -1,5 +1,5 @@ up::[[permutation]] -#maths/algèbre +#s/maths/algèbre ---- Le _nombre d'inversions_ d'une permutation $\sigma\in\mathfrak S_n$ est le nombre de couples $(i, j)\in[\![1; n]\!]$ tels que $i \sigma(j)$, c'est-à-dire que la permutation $\sigma$ "inverse le sens" de $i$ et de $j$. diff --git a/nombre négatif comme argument en ligne de commande.md b/nombre négatif comme argument en ligne de commande.md index 7d7b7572..e1d83d0a 100644 --- a/nombre négatif comme argument en ligne de commande.md +++ b/nombre négatif comme argument en ligne de commande.md @@ -1,6 +1,6 @@ up:: [[bash]], [[arguments en ligne de commande]] title:: "`commande --=-42`" -#informatique +#s/informatique --- diff --git a/nombre premier.md b/nombre premier.md index 1f1b81d6..1ccdd799 100644 --- a/nombre premier.md +++ b/nombre premier.md @@ -3,7 +3,7 @@ alias: [ "premier" ] --- up::[[arithmétique]] title::"$p$ tel que les seuls diviseurs de $p$ sont $1$ et $p$ et que $p \neq 1$" -#maths/arithmétique +#s/maths/arithmétique ---- diff --git a/nombres algébriques.md b/nombres algébriques.md index 76f3de09..6eab0de8 100644 --- a/nombres algébriques.md +++ b/nombres algébriques.md @@ -4,7 +4,7 @@ alias: [ "nombre algébrique", "algébrique" ] up::[[ensembles de nombres]] sibling:: [[nombres transcendants]] title::"solutions d'[[équation polynomiale|équations polynômiales]] à coefficients [[nombres rationnels|rationnels]]" -#maths +#s/maths ---- > [!definition] nombre algébrique diff --git a/nombres entiers naturels.md b/nombres entiers naturels.md index 5fcd74ff..452bcdb1 100644 --- a/nombres entiers naturels.md +++ b/nombres entiers naturels.md @@ -2,7 +2,7 @@ alias: [ "entiers naturels", "entier naturel", "naturels", "naturel" ] --- up::[[ensembles de nombres]] -#maths +#s/maths ---- diff --git a/nombres irrationels.md b/nombres irrationels.md index 3303213c..a41c60ef 100644 --- a/nombres irrationels.md +++ b/nombres irrationels.md @@ -4,7 +4,7 @@ alias: "nombre irrationnel" up::[[ensembles de nombres]] sibling::[[nombres rationnels]] title::"$q$ tel que $\not \exists (a, b) \in \mathbb{Z}^{2}, \dfrac{a}{b}=q$" -#maths +#s/maths ---- diff --git a/nombres irrationnels quadratiques.md b/nombres irrationnels quadratiques.md index f12b1c0f..a0a43758 100644 --- a/nombres irrationnels quadratiques.md +++ b/nombres irrationnels quadratiques.md @@ -1,6 +1,6 @@ up::[[nombres rationnels]] title::"$\mathbb{Q}[\sqrt{ d }] = \{ m + \sqrt{ d }n \mid (m, n)\in \mathbb{Q}^{2} \}$ où $d$ n'est pas un carré" -#maths +#s/maths ---- Un _irrationnel quadratique_ est un [[nombres irrationels|nombre irrationnel]] qui est solution d'une [[équation quadratique]] à coefficients [[nombres rationnels|rationnels]]. diff --git a/nombres premiers entre eux.md b/nombres premiers entre eux.md index 640a0182..24c9deec 100644 --- a/nombres premiers entre eux.md +++ b/nombres premiers entre eux.md @@ -2,7 +2,7 @@ alias: [ "premiers entre eux" ] --- up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- diff --git a/nombres rationnels.md b/nombres rationnels.md index 0c7a8eb8..9ef6e155 100644 --- a/nombres rationnels.md +++ b/nombres rationnels.md @@ -3,7 +3,7 @@ alias: [ "nombre rationnel", "rationnel", "rationnels" ] --- sibling:: [[nombres irrationels]] up:: [[ensembles de nombres]] -#maths +#s/maths > [!definition] nombres rationnels > On note $\mathbb{Q}$ l'ensemble des _nombres rationnels_. diff --git a/nombres transcendants.md b/nombres transcendants.md index 6e4ee82e..44030bf4 100644 --- a/nombres transcendants.md +++ b/nombres transcendants.md @@ -1,7 +1,7 @@ up::[[ensembles de nombres]] sibling::[[nombres algébriques]] title::"[[nombre complexe]] qui n'est pas [[nombres algébriques|algébrique]]" -#maths +#s/maths ---- diff --git a/normalisateur d'une partie d'un groupe.md b/normalisateur d'une partie d'un groupe.md index 57efacac..f852ed14 100644 --- a/normalisateur d'une partie d'un groupe.md +++ b/normalisateur d'une partie d'un groupe.md @@ -4,7 +4,7 @@ aliases: --- up:: [[groupe]] sibling:: [[centralisateur d'une partie d'un groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[normalisateur d'une partie d'un groupe]] > Soit $G$ un [[groupe]] et soit $A \subseteq G$ diff --git a/norme d'algèbre.md b/norme d'algèbre.md index b01fdb49..6ceeef43 100644 --- a/norme d'algèbre.md +++ b/norme d'algèbre.md @@ -1,7 +1,23 @@ up:: [[norme]], [[structure d'algèbre|algèbre]] -#maths/algèbre +#s/maths/algèbre > [!definition] norme d'algèbre > Une norme $\|\|$ sur une $\mathbb{R}$-[[structure d'algèbre|algèbre]] $E$ est dite **norme d'algèbre** si : > $\forall x, y \in E \quad \|x\cdot y\| \leq \|x\|\cdot \|y\|$ -^definition \ No newline at end of file +^definition + +# Propriétés + +# Exemples + +> [!example] sur $\mathbb{R}^{n}$ +> On peut munir $\mathbb{R}^{n}$ d'une structure d'algèbre en définissant $\times$ : +> $\forall x, y \in \mathbb{R}^{n},\quad x \times y = (x_1, x_2 , \dots ,x_{n}) \times (y_1, y_2, \dots, y_{n}) = (x_1y_1, x_2y_2, \dots, x_{n}y_{n})$ +> le produit dimension par dimension. +> On peut alors vérifier que $\|\cdot\|_{\infty}$ la [[norme infini]] est une [[norme d'algèbre]] : +> On a pour $1 \leq k \leq n$ : +> $|x_{k}y_{k}| = |x_{k}| |y_{k}| \leq \|x_{k}\|_{\infty} \|y_{k}\|_{\infty}$ +> Ainsi, en prenant le maximum, on obtient : +> $\|x_{k}y_{k}\|_{\infty} \leq \|x_{k}\|_{\infty}\|y_{k}\|_{\infty}$ + + diff --git a/norme de manhattan.md b/norme de manhattan.md index d1ecf171..0cf90716 100644 --- a/norme de manhattan.md +++ b/norme de manhattan.md @@ -1,5 +1,5 @@ up:: [[distances particulières]] -#maths/algèbre +#s/maths/algèbre > [!definition] distance de Manhattan > On appelle norme de Manhattan la norme $\|\cdot \|_{1}$ définie sur $\mathbb{R}^{n}$ par : diff --git a/norme induite.md b/norme induite.md new file mode 100644 index 00000000..951f80a2 --- /dev/null +++ b/norme induite.md @@ -0,0 +1,22 @@ +--- +aliases: + - restriction d'une norme sur un sous espace vectoriel +up: + - "[[norme]]" +tags: + - "#s/maths/algèbre" + - "#s/maths/topologie" +--- + +> [!definition] Définition +> Soit $(E, \mathcal{N})$ un [[espace vectoriel normé]] +> Soit $F \subset E$ un [[sous espace vectoriel]] +> La restriction : +> $\begin{align} \mathcal{N}_{F} : F &\to \mathbb{R}^{+} \\ x &\mapsto \mathcal{N}(x) \end{align}$ +> définit une [[norme]] sur $F$ appelée **norme induite** +^definition + +# Propriétés + +# Exemples + diff --git a/norme infini.md b/norme infini.md index 3c8fa72c..30d8dbad 100644 --- a/norme infini.md +++ b/norme infini.md @@ -3,7 +3,7 @@ alias: [ "distance d'une suite à l'axe des abscisses", "║uₙ║ ͚", "norme --- up:: [[norme p]], [[distances particulières]] title:: "$\|u\|_{\infty} = \sup\limits_{x \in I} \big|u(x)\big|$ la distance suprémale entre $u$ et l'axe des abscisses" -#maths/analyse +#s/maths/analyse > [!definition] distance d'une suite à l'axe des abscisses diff --git a/norme p.md b/norme p.md index edd86f34..f9c4455b 100644 --- a/norme p.md +++ b/norme p.md @@ -4,7 +4,7 @@ aliases: - normes p --- up:: [[distances particulières]] -#maths/algèbre +#s/maths/algèbre > [!definition] norme $p$ - définition sur $\mathbb{R}^{n}$ > On définit sur $\mathbb{R}^{n}$ la norme $\|\cdot \|_{p}$ : @@ -17,3 +17,12 @@ On peut également définir la norme $p$ sur des [[espace vectoriel|espaces vect > Sur $\mathcal{C}^{0}([a; b])$, l'[[ensemble des fonctions continues]] sur le segment $[a; b]$ : > $\displaystyle \|f\|_{p} = \left( \int _{a}^{b} |f(t)|^{p }\, dt \right)^{\frac{1}{p}}$ ^definition + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` \ No newline at end of file diff --git a/norme triple.md b/norme triple.md index c1a31758..ea74314c 100644 --- a/norme triple.md +++ b/norme triple.md @@ -5,7 +5,7 @@ aliases: - norme subordonnée --- up:: [[application linéaire continue]], [[norme]] -#maths/topologie +#s/maths/topologie > [!definition] [[norme triple]] > Soient $E$ et $F$ deux [[espace vectoriel]] quelconques diff --git a/normes équivalentes.md b/normes équivalentes.md index dd54db55..a7b4278b 100644 --- a/normes équivalentes.md +++ b/normes équivalentes.md @@ -1,5 +1,5 @@ up:: [[norme]] -#maths/algèbre +#s/maths/algèbre > [!definition] normes équivalentes > Si on a deux normes $\|\cdot \|_{A}$ et $\|\cdot \|_{B}$ sur un même $\mathbb{R}$-[[espace vectoriel]] $E$. diff --git a/notation de Conway.md b/notation de Conway.md index 422a54fd..f8684cdf 100644 --- a/notation de Conway.md +++ b/notation de Conway.md @@ -1,6 +1,6 @@ up::[[polyèdre]] autho::[[John Horton Conway]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre Notation pour décrire des polyèdres Chaque polyèdre est défini en partant d'un polyèdre de base (souvent les [[solides de platon]]), et en y appliquant successivement des transformations diff --git a/notations article meringer.md b/notations article meringer.md index c28eb809..e71bc938 100644 --- a/notations article meringer.md +++ b/notations article meringer.md @@ -1,5 +1,5 @@ up:: [[mémoire L3 maths]] -#fac #maths/graphes +#s/fac #s/maths/graphes # Définition des graphes - $\underline{n} := [\![1; n]\!] = \{ 1, 2, \dots, n \}$ pour $n \in \mathbb{N}^{*}$ diff --git a/notes 2022-09-01.md b/notes 2022-09-01.md index 91df38ef..515d210b 100644 --- a/notes 2022-09-01.md +++ b/notes 2022-09-01.md @@ -1,5 +1,5 @@ down:: [[comment progresser en L2 (boris)]] -#cours +#t/cours ---- diff --git a/notes mémoire de L3.md b/notes mémoire de L3.md index 2a427343..23d8fbff 100644 --- a/notes mémoire de L3.md +++ b/notes mémoire de L3.md @@ -4,7 +4,7 @@ due: 2024-03-05 --- up::[[devoirs]] title:: -#devoir-fait #fac #informatique +#devoir-fait #s/fac #s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/notes rentrée Blois 2022-09-02.md b/notes rentrée Blois 2022-09-02.md index 125dbad7..4a93e974 100644 --- a/notes rentrée Blois 2022-09-02.md +++ b/notes rentrée Blois 2022-09-02.md @@ -1,4 +1,4 @@ -#cours +#t/cours ---- diff --git a/notes stage de L3.md b/notes stage de L3.md index e4686d8e..d3715a86 100644 --- a/notes stage de L3.md +++ b/notes stage de L3.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[stage de L3]] -#fac #informatique +#s/fac #s/informatique - semaine 1 : diff --git a/noyau d'un morphisme de groupes.md b/noyau d'un morphisme de groupes.md index 871d4b98..46fd3fa6 100644 --- a/noyau d'un morphisme de groupes.md +++ b/noyau d'un morphisme de groupes.md @@ -1,6 +1,6 @@ up:: [[morphisme de groupes]] sibling:: [[image d'un morphisme de groupes]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $f : G \to G'$ un [[morphisme de groupes]] de [[groupe]] diff --git a/noyau d'une forme linéaire.md b/noyau d'une forme linéaire.md index ccccfd6c..9bb0bc4e 100644 --- a/noyau d'une forme linéaire.md +++ b/noyau d'une forme linéaire.md @@ -1,6 +1,6 @@ up:: [[forme linéaire]] title:: "soit $f$ une forme linéaire de $\mathbf{K}^{n} \to \mathbf{K}$", "$\ker f$ est un hyperplan (de [[dimension d'un espace vectoriel|dimension]] $n - 1$)" -#maths/algèbre +#s/maths/algèbre > [!definition] Noyau d'une forme linéaire > Soit $\mathbf{K}$ un [[corps]] diff --git a/numérisation de documents.md b/numérisation de documents.md index 90e57ebc..50ef8a85 100644 --- a/numérisation de documents.md +++ b/numérisation de documents.md @@ -1,6 +1,8 @@ -up:: [[documents]] -source:: [[MADICS 2024]] -#informatique +--- +up: "[[documents]]" +source: "[[MADICS 2024]]" +tags: "#s/informatique" +--- - les [[documents textuels]] sont souvent utilisée (plus simples à générer, traiter, indexer) - problème : perte de diff --git a/o-tomat.md b/o-tomat.md index 5592e09b..ff9bb892 100644 --- a/o-tomat.md +++ b/o-tomat.md @@ -1,6 +1,6 @@ up:: title:: -#informatique +#s/informatique --- diff --git a/obdsidian plugin desmos.md b/obdsidian plugin desmos.md index c345c08b..d32d4c58 100644 --- a/obdsidian plugin desmos.md +++ b/obdsidian plugin desmos.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/Nigecat/obsidian-desmos title::"tracer des fonctions mathématiques" -#obsidian +#s/obsidian ---- diff --git a/obsidian callouts.md b/obsidian callouts.md index 36b63a99..dc44b3c3 100644 --- a/obsidian callouts.md +++ b/obsidian callouts.md @@ -4,7 +4,7 @@ quickshare-url: "https://noteshare.space/note/clnoj77iw3420201mw55s98kke#/MyH+W3 --- up::[[obsidian syntaxe]] title::"sytaxe, types de callouts, callouts persos" -#obsidian +#s/obsidian > [!info] > les callouts permettent de faire des blocks d'information, pour grouper certaines parties des notes. diff --git a/obsidian gantt diagram.md b/obsidian gantt diagram.md index 99d279b7..89f12c40 100644 --- a/obsidian gantt diagram.md +++ b/obsidian gantt diagram.md @@ -1,5 +1,5 @@ up::[[gantt diagram]], [[obsidian syntaxe]] -#informatique +#s/informatique ---- diff --git a/obsidian plugin LaTeX suite.md b/obsidian plugin LaTeX suite.md index 56950ea9..49c103dc 100644 --- a/obsidian plugin LaTeX suite.md +++ b/obsidian plugin LaTeX suite.md @@ -4,7 +4,7 @@ alias: "LaTeX suite" up::[[obsidian plugins]] link::https://github.com/artisticat1/obsidian-latex-suite title::"raccourcis et conceal pour LaTeX" -#obsidian #informatique/langage/latex +#s/obsidian #s/informatique/langage/latex ---- - raccourcis clavier pour taper du LaTeX diff --git a/obsidian plugin advanced URI.md b/obsidian plugin advanced URI.md index c8d3d179..28c1bbf0 100644 --- a/obsidian plugin advanced URI.md +++ b/obsidian plugin advanced URI.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/Vinzent03/obsidian-advanced-uri title::"utiliser des URI pour faire différentes actions dans obsidian" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin advanced slides.md b/obsidian plugin advanced slides.md index 58e3b142..13e30bd3 100644 --- a/obsidian plugin advanced slides.md +++ b/obsidian plugin advanced slides.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/MSzturc/obsidian-advanced-slides title::"faire des présentation en markdown" -#obsidian +#s/obsidian ---- - Slides plus jolies diff --git a/obsidian plugin annotator.md b/obsidian plugin annotator.md index f6adda5d..b722c311 100644 --- a/obsidian plugin annotator.md +++ b/obsidian plugin annotator.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/elias-sundqvist/obsidian-annotator title::"annoter des pdf" -#obsidian +#s/obsidian ---- - Annoter des pdf (et des epub) diff --git a/obsidian plugin breadcrumbs.md b/obsidian plugin breadcrumbs.md index 8f7172ce..62dc10b6 100644 --- a/obsidian plugin breadcrumbs.md +++ b/obsidian plugin breadcrumbs.md @@ -2,7 +2,7 @@ alias: [ "breadcrumbs" ] --- up::[[obsidian plugins]] -#obsidian #PKM +#s/obsidian #PKM --- diff --git a/obsidian plugin calendar.md b/obsidian plugin calendar.md index 602ea205..bd94dda9 100644 --- a/obsidian plugin calendar.md +++ b/obsidian plugin calendar.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/liamcain/obsidian-calendar-plugin title::"avoir un calendrier pour ouvrir des daily notes" -#obsidian +#s/obsidian ---- - Vue "calendrier" sur les [[obsidian plugins#Daily notes|daily notes]] diff --git a/obsidian plugin completr.md b/obsidian plugin completr.md index 2199bfa5..5ea78e1c 100644 --- a/obsidian plugin completr.md +++ b/obsidian plugin completr.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/tth05/obsidian-completr title::"auto complétion du texte et de latex" -#obsidian +#s/obsidian ---- - Auto-complétion diff --git a/obsidian plugin daily notes.md b/obsidian plugin daily notes.md index ce1ee207..256ad668 100644 --- a/obsidian plugin daily notes.md +++ b/obsidian plugin daily notes.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::"core plugin" title::"plugin pour créer des daily notes" -#obsidian +#s/obsidian ---- - Créer et ouvrir des _daily notes_ diff --git a/obsidian plugin dataview.md b/obsidian plugin dataview.md index 8e990aa2..b04d413f 100644 --- a/obsidian plugin dataview.md +++ b/obsidian plugin dataview.md @@ -1,6 +1,6 @@ up::[[obsidian plugins]] title::"traîter le vault comme une base de donnée" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin day planner.md b/obsidian plugin day planner.md index ae9adb13..9dc6d297 100644 --- a/obsidian plugin day planner.md +++ b/obsidian plugin day planner.md @@ -1,6 +1,6 @@ up::[[obsidian plugins]] title::"gérer un emploi du temps" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin desk.md b/obsidian plugin desk.md index 44b92e3d..11f0c1d5 100644 --- a/obsidian plugin desk.md +++ b/obsidian plugin desk.md @@ -1,5 +1,5 @@ up:: [[obsidian plugins]] -#PKM #obsidian +#PKM #s/obsidian Plugin qui permet de voir plusieurs notes (selon des filtres) d'un coup, sous formes de cartes au format $4\times 6$ (type cartes zettlekasten). diff --git a/obsidian plugin diagrams.md b/obsidian plugin diagrams.md index cc933cb0..fc6129d9 100644 --- a/obsidian plugin diagrams.md +++ b/obsidian plugin diagrams.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/zapthedingbat/drawio-obsidian title::"intégration de draw.io" -#obsidian +#s/obsidian ---- - Intégration de [drawio](https://draw.io) diff --git a/obsidian plugin excalidraw.md b/obsidian plugin excalidraw.md index 4012472a..f702a3c1 100644 --- a/obsidian plugin excalidraw.md +++ b/obsidian plugin excalidraw.md @@ -1,6 +1,6 @@ link::https://github.com/zsviczian/obsidian-excalidraw-plugin title::"dessins / shémas (intégration de excalidraw)" -#obsidian +#s/obsidian ---- - Intégration du site génial : [excalidraw](https://excalidraw.com) diff --git a/obsidian plugin extended mathJax.md b/obsidian plugin extended mathJax.md index 642e64cd..95f72bf0 100644 --- a/obsidian plugin extended mathJax.md +++ b/obsidian plugin extended mathJax.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/xldenis/obsidian-latex title::"préambule LaTeX, packages supplémentaires" -#obsidian +#s/obsidian ---- ## Extended mathJax diff --git a/obsidian plugin filename heading sync.md b/obsidian plugin filename heading sync.md index c198c625..ca92f56a 100644 --- a/obsidian plugin filename heading sync.md +++ b/obsidian plugin filename heading sync.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/dvcrn/obsidian-filename-heading-sync title:"inclure le nom du fichier directement dans la note" -#obsidian +#s/obsidian ---- - Le premier h1 du fichier est aussi le nom du fichier diff --git a/obsidian plugin fullscreen mode plugin.md b/obsidian plugin fullscreen mode plugin.md index f4fb5ccc..bb4d6b32 100644 --- a/obsidian plugin fullscreen mode plugin.md +++ b/obsidian plugin fullscreen mode plugin.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/Razumihin/obsidian-fullscreen-plugin title::"mettre une page en plein écran" -#obsidian +#s/obsidian ---- - mettre une page en plein écran diff --git a/obsidian plugin functionplot.md b/obsidian plugin functionplot.md index 6e512e26..4b4664ec 100644 --- a/obsidian plugin functionplot.md +++ b/obsidian plugin functionplot.md @@ -1,6 +1,6 @@ up::[[obsidian plugins]] title::"tracer des fonctions mathématiques" -#obsidian +#s/obsidian ---- Pour tracer des fonctions mathématiques diff --git a/obsidian plugin heatmap calendar.md b/obsidian plugin heatmap calendar.md index ca6947e0..f3577f4e 100644 --- a/obsidian plugin heatmap calendar.md +++ b/obsidian plugin heatmap calendar.md @@ -1,6 +1,6 @@ up:: [[obsidian plugins]] title:: "show a heatmap from a daily dataview attributes (use with dataviewJS)" -#obsidian #PKM +#s/obsidian #PKM --- diff --git a/obsidian plugin home tab.md b/obsidian plugin home tab.md index 9f53c7d9..6601c22b 100644 --- a/obsidian plugin home tab.md +++ b/obsidian plugin home tab.md @@ -1,6 +1,6 @@ up:: [[obsidian plugins]] title:: "search bar on empty tabs. embed search bars on notes" -#obsidian +#s/obsidian --- diff --git a/obsidian plugin hover editor.md b/obsidian plugin hover editor.md index 3fdfeae7..4ecc853a 100644 --- a/obsidian plugin hover editor.md +++ b/obsidian plugin hover editor.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/nothingislost/obsidian-hover-editor title::"ouvrir un lien sur une fenêtre appart dans obsidian" -#obsidian +#s/obsidian ---- - Permet d'avoir une fenêtre _dans_ obsidian diff --git a/obsidian plugin hypothesis.md b/obsidian plugin hypothesis.md index 6cc515cb..69a1949e 100644 --- a/obsidian plugin hypothesis.md +++ b/obsidian plugin hypothesis.md @@ -1,5 +1,5 @@ up:: [[obsidian plugins]] -#obsidian #PKM +#s/obsidian #PKM Plugin pour importer les annotations de [[hypothes is]] dans obsidian diff --git a/obsidian plugin kanban.md b/obsidian plugin kanban.md index 62922952..9c843078 100644 --- a/obsidian plugin kanban.md +++ b/obsidian plugin kanban.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/mgmeyers/obsidian-kanban title::"kanban (scrum) boards dans obsidian" -#obsidian +#s/obsidian ---- - faire des kanban board diff --git a/obsidian plugin list callouts.md b/obsidian plugin list callouts.md index bdf33ef2..95a000f5 100644 --- a/obsidian plugin list callouts.md +++ b/obsidian plugin list callouts.md @@ -1,6 +1,6 @@ up:: [[obsidian plugins]], [[obsidian syntaxe]] sibling:: [[obsidian syntaxe checkboxes (tasks)]] -#obsidian +#s/obsidian # List callouts diff --git a/obsidian plugin markmind demo.md b/obsidian plugin markmind demo.md index 8ac16c99..fe6b3d1c 100644 --- a/obsidian plugin markmind demo.md +++ b/obsidian plugin markmind demo.md @@ -1,6 +1,6 @@ --- mindmap-plugin: rich -tags: [ "#obsidian", "" ] +tags: [ "#s/obsidian", "" ] --- diff --git a/obsidian plugin markmind.md b/obsidian plugin markmind.md index 35eb6b11..556f9d1c 100644 --- a/obsidian plugin markmind.md +++ b/obsidian plugin markmind.md @@ -1,6 +1,6 @@ up::[[obsidian plugins]] title::"mindmaps et annotations de pdfs" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin mathlinks.md b/obsidian plugin mathlinks.md index 7513386a..08a384bc 100644 --- a/obsidian plugin mathlinks.md +++ b/obsidian plugin mathlinks.md @@ -1,7 +1,7 @@ up:: [[obsidian plugins]] link::https://github.com/zhaoshenzhai/obsidian-mathlinks title:: "afficher du $\LaTeX$ dans les liens" -#obsidian #todo +#s/obsidian #todo --- diff --git a/obsidian plugin meta bind.md b/obsidian plugin meta bind.md index 9296522f..f3c0b9a7 100644 --- a/obsidian plugin meta bind.md +++ b/obsidian plugin meta bind.md @@ -10,7 +10,7 @@ date_test: 2005-05-25 up:: [[obsidian plugins]] title:: "Input fields inside notes, that change metadata" link:: https://mprojectscode.github.io/obsidian-meta-bind-plugin-docs -#obsidian +#s/obsidian --- diff --git a/obsidian plugin mindmap.md b/obsidian plugin mindmap.md index 8b3ef162..d1315f86 100644 --- a/obsidian plugin mindmap.md +++ b/obsidian plugin mindmap.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/lynchjames/obsidian-mind-map title::"afficher une note comme une carte mentale" -#obsidian +#s/obsidian ---- - Mindmap sur obsidian diff --git a/obsidian plugin ob table enhancer.md b/obsidian plugin ob table enhancer.md index b9a280af..5628e25d 100644 --- a/obsidian plugin ob table enhancer.md +++ b/obsidian plugin ob table enhancer.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/Stardusten/ob-table-enhancer/tree/master title::"edition de tables, javascript dans les cellules" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin pandoc.md b/obsidian plugin pandoc.md index 8f7e5f4d..8c3e7bdd 100644 --- a/obsidian plugin pandoc.md +++ b/obsidian plugin pandoc.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/OliverBalfour/obsidian-pandoc title::"export des notes (différents formats)" -#obsidian +#s/obsidian ---- - exporter les fichiers markdown sous plusieurs formats avec pandoc diff --git a/obsidian plugin qrcode.md b/obsidian plugin qrcode.md index ebc72c3b..730437bd 100644 --- a/obsidian plugin qrcode.md +++ b/obsidian plugin qrcode.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/rudimuc/obsidian-qrcode title::"créer le qrcode pour un texte donné" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin quick LaTeX.md b/obsidian plugin quick LaTeX.md index be992b92..436427bd 100644 --- a/obsidian plugin quick LaTeX.md +++ b/obsidian plugin quick LaTeX.md @@ -4,7 +4,7 @@ alias: "quick latex" up::[[obsidian plugins]] link::https://github.com/joeyuping/quick_latex_obsidian title::"raccourcis clavier pour taper du LaTeX" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin quick explorer.md b/obsidian plugin quick explorer.md index 4083884d..f2b06b9c 100644 --- a/obsidian plugin quick explorer.md +++ b/obsidian plugin quick explorer.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/pjeby/quick-explorer/ title::"alternate file explorer with shortcuts" -#obsidian +#s/obsidian ---- - alternate file explorer diff --git a/obsidian plugin quick switcher.md b/obsidian plugin quick switcher.md index fa71f5c3..d903599f 100644 --- a/obsidian plugin quick switcher.md +++ b/obsidian plugin quick switcher.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::"core plugin" title::"fuzzy finder pour ouvrir les fichiers rapidement" -#obsidian +#s/obsidian ---- - ouvrir rapidement un fichier diff --git a/obsidian plugin slides.md b/obsidian plugin slides.md index 1deaa49e..ce220c97 100644 --- a/obsidian plugin slides.md +++ b/obsidian plugin slides.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::"core plugin" title::"créer des présentation en markdown" -#obsidian +#s/obsidian ---- - Créer des slides avec du markdown diff --git a/obsidian plugin sliding panes.md b/obsidian plugin sliding panes.md index 1a1855ac..5aa1eec7 100644 --- a/obsidian plugin sliding panes.md +++ b/obsidian plugin sliding panes.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/deathau/sliding-panes-obsidian title::"window manager avec une largeur infinie" -#obsidian +#s/obsidian ---- - autre vision du tiling window manager diff --git a/obsidian plugin spaced repetition.md b/obsidian plugin spaced repetition.md index cd6b8044..04e3d9fa 100644 --- a/obsidian plugin spaced repetition.md +++ b/obsidian plugin spaced repetition.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/st3v3nmw/obsidian-spaced-repetition title::"flashcards et [[sources/spaced repetition|répétition espacée]] dans obsidian" -#obsidian +#s/obsidian ---- - répétition espacée (flashcards) diff --git a/obsidian plugin tag and wordcloud.md b/obsidian plugin tag and wordcloud.md index df01ecf8..9ae5332e 100644 --- a/obsidian plugin tag and wordcloud.md +++ b/obsidian plugin tag and wordcloud.md @@ -1,6 +1,6 @@ up:: [[obsidian plugins]] title:: "afficher des nuages de mots/liens" -#obsidian +#s/obsidian --- diff --git a/obsidian plugin task progress bar.md b/obsidian plugin task progress bar.md index 75870169..975e347c 100644 --- a/obsidian plugin task progress bar.md +++ b/obsidian plugin task progress bar.md @@ -1,7 +1,7 @@ up::[[obsidian plugins]] link::https://github.com/Quorafind/Obsidian-Task-Progress-Bar title::"barre de progression des tasks" -#obsidian +#s/obsidian ---- - permet d'avoir des barres de progression pour chaque item de task (`- [ ]`), qui se met à jour quand on change le task comme faît (`- [x]`) diff --git a/obsidian plugin tasks.md b/obsidian plugin tasks.md index 704f2cb3..db448449 100644 --- a/obsidian plugin tasks.md +++ b/obsidian plugin tasks.md @@ -1,6 +1,6 @@ up::[[obsidian plugins]] title::"task management" -#obsidian +#s/obsidian ---- diff --git a/obsidian plugin various complements.md b/obsidian plugin various complements.md index 6c625a61..634146eb 100644 --- a/obsidian plugin various complements.md +++ b/obsidian plugin various complements.md @@ -3,7 +3,7 @@ alias: [ "various complements" ] --- up:: [[obsidian plugins]] title:: "diverses auto-complétions", " - noms de fichiers", " - mots du fichier" -#obsidian +#s/obsidian --- diff --git a/obsidian plugins.md b/obsidian plugins.md index a7e778c8..9e277f92 100644 --- a/obsidian plugins.md +++ b/obsidian plugins.md @@ -1,5 +1,5 @@ up::[[Obsidian]] -#obsidian +#s/obsidian > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/obsidian publier un vault.md b/obsidian publier un vault.md index edd1ca0a..6eb9481e 100644 --- a/obsidian publier un vault.md +++ b/obsidian publier un vault.md @@ -1,6 +1,6 @@ up:: [[Obsidian]] title::"publier un vault obsidian _sans obsidian publish_ (sites/techniques)" -#obsidian +#s/obsidian ---- diff --git a/obsidian sequence shortcuts.md b/obsidian sequence shortcuts.md index 2f914acb..c52d76d0 100644 --- a/obsidian sequence shortcuts.md +++ b/obsidian sequence shortcuts.md @@ -1,5 +1,5 @@ up:: [[obsidian workflow]] -#informatique #obsidian +#s/informatique #s/obsidian ![[obsidian sequence shortcuts 2023-08-09 00.19.57.excalidraw]] diff --git a/obsidian syntaxe checkboxes (tasks).md b/obsidian syntaxe checkboxes (tasks).md index d16a371a..7db29cdb 100644 --- a/obsidian syntaxe checkboxes (tasks).md +++ b/obsidian syntaxe checkboxes (tasks).md @@ -1,6 +1,6 @@ up::[[obsidian syntaxe]] sibling:: [[obsidian plugin list callouts]] -#obsidian +#s/obsidian les types de checkboxes diff --git a/obsidian syntaxe.md b/obsidian syntaxe.md index 1a6f1975..c96fca45 100644 --- a/obsidian syntaxe.md +++ b/obsidian syntaxe.md @@ -1,6 +1,6 @@ up:: [[Obsidian]] title::"syntaxe de base de obsidian" -#obsidian +#s/obsidian # Titre diff --git a/obsidian tags.md b/obsidian tags.md new file mode 100644 index 00000000..ae4500bf --- /dev/null +++ b/obsidian tags.md @@ -0,0 +1,15 @@ +--- +aliases: +up: + - "[[obsidian workflow]]" +tags: + - s/obsidian + - PKM +--- + +# Nom des tags +## `s/` tags de sujets +les tags dans `#s/` servent à décrire le sujet de la note + +## `t/` tags de type +les tags dans `#t/` servent à décrire le type de la note : [[citations|citation]], démonstration, note représentant une [[personnes|personne]], [[Map of content|MOC]] diff --git a/obsidian workflow MOCs.md b/obsidian workflow MOCs.md index 5b559ef5..3965b563 100644 --- a/obsidian workflow MOCs.md +++ b/obsidian workflow MOCs.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"workflow for creating MOCs" -#obsidian #PKM +#s/obsidian #PKM ---- How I create my [[Map of content|Maps Of Content]] diff --git a/obsidian workflow cours.md b/obsidian workflow cours.md index 5f187300..3bba7122 100644 --- a/obsidian workflow cours.md +++ b/obsidian workflow cours.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"how to take notes about a lesson" -#obsidian +#s/obsidian ---- diff --git a/obsidian workflow daily note.md b/obsidian workflow daily note.md index cfc35cc2..7bbf4a3a 100644 --- a/obsidian workflow daily note.md +++ b/obsidian workflow daily note.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"how i create/use daily notes" -#obsidian #PKM +#s/obsidian #PKM ---- diff --git a/obsidian workflow exercices.md b/obsidian workflow exercices.md index 7538d822..9cb2104a 100644 --- a/obsidian workflow exercices.md +++ b/obsidian workflow exercices.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"how and why of exercice notes" -#obsidian #PKM +#s/obsidian #PKM ---- Pour les exercices faits sur obsidian @@ -8,7 +8,7 @@ Pour les exercices faits sur obsidian ![[Excalidraw/workflow.excalidraw.md#^group=xtPo1W30o9e5a0jUcd5qC|1000]] > [!important] -> - on utilise le tag #exercice pour désigner un exercice +> - on utilise le tag #t/exercice pour désigner un exercice > - le titre contient la date (pour rendre les exercices uniques) > - on définit l'attribut `date::` > - on préfère lier vers cet exercice, soit dans une [[obsidian workflow daily note|daily note]], soit dans une [[obsidian workflow cours|note de cours]] diff --git a/obsidian workflow naming notes.md b/obsidian workflow naming notes.md index a096c0b1..6ac75371 100644 --- a/obsidian workflow naming notes.md +++ b/obsidian workflow naming notes.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"how to properly name notes in obsidian" -#obsidian #PKM +#s/obsidian #PKM How i try to name notes consistently diff --git a/obsidian workflow sources.md b/obsidian workflow sources.md index 4de730a6..e1372264 100644 --- a/obsidian workflow sources.md +++ b/obsidian workflow sources.md @@ -1,6 +1,6 @@ up::[[obsidian workflow]] title::"how to denote sources (general informations)" -#obsidian #PKM +#s/obsidian #PKM Les sources sont tout les éléments extérieurs qui sont intéressants : - vidéos diff --git a/obsidian workflow.md b/obsidian workflow.md index 7fa0d14d..e6a558ab 100644 --- a/obsidian workflow.md +++ b/obsidian workflow.md @@ -1,4 +1,4 @@ -#obsidian #PKM +#s/obsidian #PKM up::[[Obsidian]], [[workflow]] title::"how i work in obsidian" diff --git a/octaèdre.md b/octaèdre.md index a76f3664..dedc45f6 100644 --- a/octaèdre.md +++ b/octaèdre.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre ---- symbole de shläfli : $\{3, 4\}$ diff --git a/opérateur argument.md b/opérateur argument.md index 765ede42..e432cde3 100644 --- a/opérateur argument.md +++ b/opérateur argument.md @@ -2,7 +2,7 @@ alias: [ "arg" ] --- up::[[opérateur fonctionnel]] -#maths/analyse +#s/maths/analyse ---- $\arg$ est un [[opérateur fonctionnel]] qui, à une [[application]] associe sa [[application réciproque|réciproque]] diff --git a/opérateur binaire.md b/opérateur binaire.md index 2f00e8bc..ae988463 100644 --- a/opérateur binaire.md +++ b/opérateur binaire.md @@ -1,5 +1,5 @@ up::[[algèbre]] -#maths/algèbre#not-done +#s/maths/algèbre#not-done ---- diff --git a/opérateur fonctionnel.md b/opérateur fonctionnel.md index e515f753..e897903d 100644 --- a/opérateur fonctionnel.md +++ b/opérateur fonctionnel.md @@ -1,5 +1,5 @@ up::[[opérateur]] -#maths/analyse +#s/maths/analyse ---- Un _opérateur fonctionnel_ est un [[opérateur]] qui opère sur des [[fonction|fonctions]] diff --git a/opérateur.md b/opérateur.md index 8e04019b..3772334a 100644 --- a/opérateur.md +++ b/opérateur.md @@ -1,4 +1,4 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse ---- diff --git a/opérations de base sur un répertoire.md b/opérations de base sur un répertoire.md index fd960d4f..a2b8d8ed 100644 --- a/opérations de base sur un répertoire.md +++ b/opérations de base sur un répertoire.md @@ -1,6 +1,6 @@ up:: [[sous-système de gestion des fichiers]] title:: -#informatique +#s/informatique --- diff --git a/orbite d'un groupe.md b/orbite d'un groupe.md index 3da97f09..ae53d279 100644 --- a/orbite d'un groupe.md +++ b/orbite d'un groupe.md @@ -1,6 +1,6 @@ up:: [[action de groupe]] sibling:: [[stabilisateur d'un groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $\cdot$ une [[action de groupe]] de $G$ sur $X$ diff --git a/orbites du groupe symétrique.md b/orbites du groupe symétrique.md index 6ca8899a..ecbc00c1 100644 --- a/orbites du groupe symétrique.md +++ b/orbites du groupe symétrique.md @@ -3,7 +3,7 @@ aliases: - σ-orbites --- up:: [[groupe symétrique]], [[orbite d'un groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition]+ $\sigma$-orbites > Soit $\sigma \in \mathfrak{S}_{n}$, on considère la relation suivante sur $\{ 1,\dots,n \}$ : diff --git a/ordonnancement traditionel unix.md b/ordonnancement traditionel unix.md index 494f5971..1cdde9dd 100644 --- a/ordonnancement traditionel unix.md +++ b/ordonnancement traditionel unix.md @@ -1,6 +1,6 @@ up::[[Ordonnancement d'exécution des processus|ordonnancement]] title:: -#informatique +#s/informatique ---- diff --git a/ordre d'un groupe.md b/ordre d'un groupe.md index f2f6e039..f8720f40 100644 --- a/ordre d'un groupe.md +++ b/ordre d'un groupe.md @@ -3,7 +3,7 @@ aliases: - ordre --- up::[[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] > L'ordre d'un [[groupe]] est le cardinal de son ensemble sous-jacent, c'est-à-dire le nombre d'éléments de ce groupe. diff --git a/ordre d'un élément d'un groupe.md b/ordre d'un élément d'un groupe.md index a0dde4e3..bfb13525 100644 --- a/ordre d'un élément d'un groupe.md +++ b/ordre d'un élément d'un groupe.md @@ -4,7 +4,7 @@ aliases: - ordre d'un élément --- up::[[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Ordre d'un groupe > Soit $(G, *)$ un groupe, et $a\in G$. diff --git a/ordre d'une valeur propre.md b/ordre d'une valeur propre.md index e3bc2fd8..b13d3510 100644 --- a/ordre d'une valeur propre.md +++ b/ordre d'une valeur propre.md @@ -3,7 +3,7 @@ alias: [ "multiplicité d'une valeur propre", "ordre", "multiplicité" ] --- up:: [[valeur propre d'une application linéaire|valeur propre]], [[valeur propre d'une matrice|valeur propre]], [[sous espace propre]] title:: "[[multiplicité d'une racine|multiplicité de la racine]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/organisation physique.md b/organisation physique.md index 39bbd998..7a8980c3 100644 --- a/organisation physique.md +++ b/organisation physique.md @@ -1,6 +1,6 @@ up::[[réseau informatique]] title::"types d'architectures de réseau" -#informatique +#s/informatique ---- diff --git a/organisation politique par projets.md b/organisation politique par projets.md index 417f7a52..2ac19850 100644 --- a/organisation politique par projets.md +++ b/organisation politique par projets.md @@ -8,7 +8,7 @@ aliases: - gestion par projets --- up:: [[élément de langage]] -#politique +#s/politique Evaluer et financer les gens selon leur projets permet au système [[capitalisme|capitaliste]] de ne pas reconnaître les [[compétence vs qualification|qualifications]] et les [[importance des corps de métier|corps de métier]]. diff --git a/orthogonal d'un sous espace vectoriel.md b/orthogonal d'un sous espace vectoriel.md index 9afda949..fa267c75 100644 --- a/orthogonal d'un sous espace vectoriel.md +++ b/orthogonal d'un sous espace vectoriel.md @@ -3,7 +3,7 @@ alias: [ "orthogonal", "sev orthogonal", "sous espace vectoriel orthogonal", "es --- up:: [[espace préhilbertien]], [[sous espace vectoriel|sev]] title:: "ensemble des [[vecteurs orthogonaux]] à tous les vecteurs d'un [[sous espace vectoriel|sev]]", "$F^{\bot} = \{ u \in E \mid \forall f \in F, \quad \langle u, f\rangle = 0 \}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/outils de gestion de projet.md b/outils de gestion de projet.md index 238e10fa..f4667677 100644 --- a/outils de gestion de projet.md +++ b/outils de gestion de projet.md @@ -1,5 +1,5 @@ up::[[génie logiciel et gestion de projet]] -#PM +#s/PM ---- diff --git a/outils pédagogiques.md b/outils pédagogiques.md index ad1bc8c5..4dd97277 100644 --- a/outils pédagogiques.md +++ b/outils pédagogiques.md @@ -1,5 +1,5 @@ up:: [[pédagogie]] -#apprendre +#s/apprendre > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/paradigme de l'assignation simultanée.md b/paradigme de l'assignation simultanée.md index e44be994..feb3593d 100644 --- a/paradigme de l'assignation simultanée.md +++ b/paradigme de l'assignation simultanée.md @@ -1,6 +1,6 @@ up:: [[paradigme de programmation|paradigmes]] source::[[floydParadigmsProgramming1979]] -#informatique +#s/informatique > [!definition] paradigme de l'assignation simultanée > Consiste à faire en sorte que plusieurs variables soient modifiées sans que leurs effets de bord ne se mélangent (les effets de bord sont "reardés" après l'assignation). diff --git a/paradigme de programmation avec non déterminisme observable.md b/paradigme de programmation avec non déterminisme observable.md index 71b50722..e43e52cd 100644 --- a/paradigme de programmation avec non déterminisme observable.md +++ b/paradigme de programmation avec non déterminisme observable.md @@ -1,5 +1,5 @@ up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] non déterminisme observable > Un [[paradigme de programmation]] peut exprimer du *non déterminisme* quand le résultat des programmes n'est **pas complètement déterminé par leur spécifications**, c'est-à-dire que certains choix sont fait durant l'exécution, et ne dépendent pas du programme en lui-même (notamment, l'[[Ordonnancement d'exécution des processus|ordonnancement]] est source de ces choix). diff --git a/paradigme de programmation.md b/paradigme de programmation.md index 2ef4ba69..e5a3560c 100644 --- a/paradigme de programmation.md +++ b/paradigme de programmation.md @@ -6,7 +6,7 @@ aliases: --- up:: [[programmation]] source:: [[ParadigmeProgrammation]] -#informatique +#s/informatique > [!definition] paradigme de programmation > Un paradigme est une façon d'approcher la [[programmation]] et de formuler les problèmes et leurs formalisation dans un [[langage de programmation]]. Ce n'est pas la méthodologie (concept plus bas niveau). diff --git a/paradigme programmation concurrente.md b/paradigme programmation concurrente.md index c2d154ae..5ff3e753 100644 --- a/paradigme programmation concurrente.md +++ b/paradigme programmation concurrente.md @@ -1,5 +1,5 @@ up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] programmation concurrente > Lorsque plusieurs "fils d'exécution", plusieurs [[processus]], plusieurs activités, sont indépendantes dans un programme (et peuvent donc être exécutée dans des périodes de temps qui se superposent) diff --git a/paradigme programmation dynamique.md b/paradigme programmation dynamique.md index 1f741e86..43c0a309 100644 --- a/paradigme programmation dynamique.md +++ b/paradigme programmation dynamique.md @@ -1,4 +1,4 @@ up:: [[paradigme de programmation]] -#informatique +#s/informatique diff --git a/paradigme programmation fonctionnelle.md b/paradigme programmation fonctionnelle.md index 3c99d20b..cb725258 100644 --- a/paradigme programmation fonctionnelle.md +++ b/paradigme programmation fonctionnelle.md @@ -3,7 +3,7 @@ aliases: - programmation fonctionnelle --- up:: [[paradigme de programmation|paradigme]] -#informatique +#s/informatique > [!definition] programmation fonctionnelle > La programmation fonctionnelle est un paradigme de programmation dans lequel : diff --git a/paradigme programmation impérative.md b/paradigme programmation impérative.md index 8092d007..e2f65576 100644 --- a/paradigme programmation impérative.md +++ b/paradigme programmation impérative.md @@ -3,5 +3,5 @@ aliases: - programmation impérative --- up:: [[paradigme de programmation]] -#informatique +#s/informatique diff --git a/paradigme programmation modulaire.md b/paradigme programmation modulaire.md index f14fa79b..6d3cd97a 100644 --- a/paradigme programmation modulaire.md +++ b/paradigme programmation modulaire.md @@ -1,3 +1,3 @@ up:: [[paradigme de programmation]] -#informatique +#s/informatique diff --git a/paradigme programmation orientée objet.md b/paradigme programmation orientée objet.md index c58ce7b2..be9ac253 100644 --- a/paradigme programmation orientée objet.md +++ b/paradigme programmation orientée objet.md @@ -2,7 +2,7 @@ alias: ["orienté objet", "programmation orientée objet", "OOP"] --- up::[[paradigme de programmation]] -#informatique +#s/informatique Contrairement a la programmation [[paradigme programmation procédurale|procédurale]] (définition de _procédures_), la programmation _orientée objet_ repose sur la définition de _classes_, qui instancient des *objets*. diff --git a/paradigme programmation orientée tableaux.md b/paradigme programmation orientée tableaux.md index 4ed71e98..0127cc07 100644 --- a/paradigme programmation orientée tableaux.md +++ b/paradigme programmation orientée tableaux.md @@ -4,7 +4,7 @@ aliases: - programmation orientée tableaux --- up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] programmation orientée tableaux > La programmation orientée tableaux (ou programmation matricielle, de l'anglais *array programming*) est un paradigme de programmation dans lequel les programmes sont des manipulations par des opérateurs généralisés de tableaux. Le principe est donc de manipuler des tableaux entiers, plutôt que de s'occuper individuellement de leurs éléments. diff --git a/paradigme programmation procédurale.md b/paradigme programmation procédurale.md index b8f5a94c..041b1bd6 100644 --- a/paradigme programmation procédurale.md +++ b/paradigme programmation procédurale.md @@ -3,7 +3,7 @@ aliases: - programmation procédurale --- up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] programmation procédurale > La programmation procédurale est un type de [[paradigme programmation impérative|programmation impérative]] dans lequel le programme est exprimé comme des [[programmation.procédure|procédures]] qui s'appellent entre elles. diff --git a/paradigme programmation structurée.md b/paradigme programmation structurée.md index 9a2a8ac9..e5ad6942 100644 --- a/paradigme programmation structurée.md +++ b/paradigme programmation structurée.md @@ -3,7 +3,7 @@ aliases: - programmation structurée --- up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] programmation structurée > La programmation structurée est un type de [[paradigme programmation impérative|programmation impérative]] dans lequel : diff --git a/paradigme programmation symbolique.md b/paradigme programmation symbolique.md index 8d536b54..329f7060 100644 --- a/paradigme programmation symbolique.md +++ b/paradigme programmation symbolique.md @@ -1,5 +1,5 @@ up:: [[ParadigmeProgrammation]] -#informatique +#s/informatique > [!definition] programmation symbolique > La programmation symbolique est un [[paradigme de programmation]] dans lequel on manipule des **symboles** et des [[structure de données.liste|listes]] de symboles, en opposition a la manipulation de types de base seuls (nombres, chaînes de caractères...). diff --git a/paradoxe de simpson.md b/paradoxe de simpson.md index 27515a2c..9eaebd8d 100644 --- a/paradoxe de simpson.md +++ b/paradoxe de simpson.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[probabilités]] -#maths/probabilités +#s/maths/probabilités diff --git a/parallélépipède.md b/parallélépipède.md index 65d9fb57..7b9239b7 100644 --- a/parallélépipède.md +++ b/parallélépipède.md @@ -1,6 +1,6 @@ up::[[géométrie]] source::https://mathcurve.com/polyedres/parallelepipede/pallelepipede.shtml -#maths/géométrie +#s/maths/géométrie ---- diff --git a/paramètre d'une fonction.md b/paramètre d'une fonction.md index 956ecb05..03e16372 100644 --- a/paramètre d'une fonction.md +++ b/paramètre d'une fonction.md @@ -5,7 +5,7 @@ aliases: --- up::[[programmation.procédure]] sibling:: [[argument d'une fonction]] -#informatique +#s/informatique > [!definition] paramètre d'une fonction > Un paramètre d'une [[programmation.fonction|fonction]] est une variable particulière, utilisée dans la définition diff --git a/parcours master.md b/parcours master.md index 538a9fbc..8f4ae977 100644 --- a/parcours master.md +++ b/parcours master.md @@ -1,4 +1,4 @@ -#fac +#s/fac - parcours de recherche dans ARIAS - immersion dans une équipe de recherche diff --git a/parti politique.md b/parti politique.md index f50db9c2..33d14797 100644 --- a/parti politique.md +++ b/parti politique.md @@ -1,5 +1,5 @@ up:: [[politique]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/parti socialiste.md b/parti socialiste.md index e695d0a4..9c2a8d68 100644 --- a/parti socialiste.md +++ b/parti socialiste.md @@ -1,3 +1,3 @@ up:: [[parti politique]] -#politique +#s/politique diff --git a/partie antisymétrique d'une forme bilinéaire.md b/partie antisymétrique d'une forme bilinéaire.md index 5b5acb65..624303a0 100644 --- a/partie antisymétrique d'une forme bilinéaire.md +++ b/partie antisymétrique d'une forme bilinéaire.md @@ -1,7 +1,7 @@ up:: [[matrice d'une forme bilinéaire]] sibling:: [[partie symétrique d'une forme bilinéaire]] title:: "[[forme bilinéaire d'une matrice|forme bilinéaire associée]] à la [[partie antisymétrique d'une matrice|partie antisymétrique]] de la [[matrice d'une forme bilinéaire|matrice]] de $f$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/partie antisymétrique d'une matrice.md b/partie antisymétrique d'une matrice.md index f6a0d2c4..d72012f4 100644 --- a/partie antisymétrique d'une matrice.md +++ b/partie antisymétrique d'une matrice.md @@ -1,6 +1,6 @@ up:: [[décomposition en somme d'une matrice symétrique et d'une antisymétrique]] title:: "Partie antisymétrique de la [[décomposition en somme d'une matrice symétrique et d'une antisymétrique]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/partie bornée.md b/partie bornée.md index 183009fa..ad5b3918 100644 --- a/partie bornée.md +++ b/partie bornée.md @@ -3,7 +3,7 @@ aliases: - borné --- up:: [[espace métrique]], [[boule]] -#maths/algèbre +#s/maths/algèbre > [!definition] partie bornée d'un espace métrique > Soit $(X, d)$ un [[espace métrique]] @@ -11,11 +11,16 @@ up:: [[espace métrique]], [[boule]] > $\exists x_0 \in X, \quad \exists r >0, \quad A \subset B(x_0, r)$ ^definition +> [!definition] partie bornée - définition à partir du diamètre +> Soit $(X, d)$ un [[espace métrique]] +> Une partie $A \subset X$ est dite **bornée** si son [[diamètre]] est fini, autrement dit si : +> $\operatorname{Diam}(A) = \sup\limits_{x, y \in A} d(x, y)$ est fini + # Propriétés > [!info] Proposition > Si $A$ est une partie bornée de $X$, alors $\mathrm{diam}(A) < \infty$ -> > [!démonstration] Démonstration +> > [!démonstration]- Démonstration > > Soient $x_0 \in X$ et $r > 0$ tels que $A \subset B(x_0, r)$ > > Soient $x, y \in A$ > > on a $x, y \in B(x_0, r)$, c'est-à-dire $d(x, x_0) < r$ et $d(y, x_0) < r$ diff --git a/partie d'un espace métrique.md b/partie d'un espace métrique.md new file mode 100644 index 00000000..25a694b8 --- /dev/null +++ b/partie d'un espace métrique.md @@ -0,0 +1,21 @@ +--- +aliases: + - partie +up: + - "[[espace métrique]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Une partie d'un espace métrique $(X, d)$ est un [[sous-ensemble]] de $X$ +^definition + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/partie dense d'un espace métrique.md b/partie dense d'un espace métrique.md new file mode 100644 index 00000000..0431d2ab --- /dev/null +++ b/partie dense d'un espace métrique.md @@ -0,0 +1,36 @@ +up:: [[boule]] +#s/maths/topologie + +> [!definition] [[partie dense d'un espace métrique]] +> Soit $(X, d)$ un [[espace métrique]] +> Une partie $A \subset X$ est **dense dans $X$** si et seulement si : +> $\overline{A} = X$ +^definition + +> [!definition] autre définition +> Soit $(X, d)$ un [[espace métrique]] +> Une partie $A \subset X$ est **dense dans $X$** si et seulement si : +> $\boxed{\forall x \in X,\quad \forall \varepsilon>0,\quad B_{E}(x, \varepsilon) \cap A \neq \emptyset}$ +> - I Aucun élément de $E$ n'a de voisinage qui ne touche pas $H$ +> +> > [!démonstration]- Démonstration de l'équivalence +> > - Supposons $A$ dense, c'est-à-dire $\overline{A} = X$ +> > Quels que soient $p \in X$ et $\varepsilon > 0$ +> > Comme $\overline{A} = X$, on sait que $p$ est adhérent à $A$, et donc il existe une suite $(x_{n})\in A^{\mathbb{N}}$ d'éléments de $A$ qui converge vers $p$. +> > Ainsi, pour $n$ assez grand, on a bien $x_{n} \in B(p, \varepsilon)$, ce qui donne bien $B(p, \varepsilon) \cap A \neq \emptyset$ +> > +> > - Supposons maintenant que $\forall x \in X,\quad \forall \varepsilon > 0,\quad B(x, \varepsilon) \cap A \neq \emptyset$ +> > Ainsi, on sait que l'on peut construire une suite $(x_{n})$ telle que $x_{n} \in B\left( x, \frac{1}{n} \right) \cap A$ (car cet ensemble n'est pas vide pour $n$ suffisament grand). +> > Or, $\frac{1}{n} \xrightarrow{n \to \infty} 0$ et $\frac{1}{n} >0$ pour $n \in \mathbb{N}^{*}$, ainsi $x_{n} \xrightarrow{n \to \infty} x$ +> > Comme cela est vrai pour tout $x \in X$, on a montré que tout point de $X$ est la limite d'une suite d'éléments de $A$. +> > De là il appert que $\overline{A} = X$ + +# Propriétés + + +# Exemples + +> [!example] Dans $\mathbb{R}$ +> - $\mathbb{Q}$ est une partie dense de $\mathbb{R}$ +> - $\mathbb{R} \setminus \mathbb{Q}$ est une partie dense de $\mathbb{R}$ +> diff --git a/partie discrète d'un espace métrique.md b/partie discrète d'un espace métrique.md new file mode 100644 index 00000000..32e24009 --- /dev/null +++ b/partie discrète d'un espace métrique.md @@ -0,0 +1,21 @@ +--- +aliases: + - partie discrète + - discrète + - discret +up: + - "[[partie d'un espace métrique]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Une [[partie d'un espace métrique|partie]] $A$ de $X$ est dite **discrète** si tout ses points sont [[point isolé d'un espace métrique|isolés]], c'est-à-dire si : +> $\forall a \in A,\quad \underbrace{\exists \varepsilon>0,\quad B(a, \varepsilon) \cap A = \{ a \}}_{a \text{ est isolé dans } A}$ +^definition + +# Propriétés + +# Exemples + diff --git a/partie entière.md b/partie entière.md index 80497697..21672bdc 100644 --- a/partie entière.md +++ b/partie entière.md @@ -1,5 +1,5 @@ up::[[analyse]], [[arithmétique]] -#maths/analyse #maths/arithmétique +#s/maths/analyse #s/maths/arithmétique ---- La _partie entière_ de $x\in\R$ est l'unique entier $n\in\Z$ tel que $n \leq x < n+1$. diff --git a/partie fermée d'un espace métrique.md b/partie fermée d'un espace métrique.md index aed92271..1de3d024 100644 --- a/partie fermée d'un espace métrique.md +++ b/partie fermée d'un espace métrique.md @@ -1,10 +1,12 @@ --- aliases: - fermé + - fermés +up: "[[espace métrique]]" +sibling: "[[partie ouverte d'un espace métrique]]" +tags: "#s/maths/algèbre" --- -up:: [[espace métrique]] -sibling:: [[partie ouverte d'un espace métrique]] -#maths/algèbre + > [!definition] [[partie fermée d'un espace métrique]] > Soit $(X, d)$ un [[espace métrique]] > Une partie $A \subset X$ est dite **fermée** si pour toute suite $(a_{n})$ d'éléments de $A$ qui converge vers $l \in X$, on a $l \in A$. diff --git a/partie négative d'une fonction.md b/partie négative d'une fonction.md index bf916b1d..b11cd30d 100644 --- a/partie négative d'une fonction.md +++ b/partie négative d'une fonction.md @@ -1,6 +1,6 @@ up:: [[fonction]] sibling:: [[partie positive d'une fonction]] -#maths/analyse +#s/maths/analyse > [!definition] [[partie négative d'une fonction]] > Soit l'application $f : E \to \mathbb{R}$ diff --git a/partie ouverte d'un espace métrique.md b/partie ouverte d'un espace métrique.md index 056ef62b..37e9bceb 100644 --- a/partie ouverte d'un espace métrique.md +++ b/partie ouverte d'un espace métrique.md @@ -2,10 +2,10 @@ aliases: - ouvert - ouverts +up: "[[espace métrique]]" +sibling: "[[partie fermée d'un espace métrique]]" +tags: "#s/maths/algèbre" --- -up:: [[espace métrique]] -sibling:: [[partie fermée d'un espace métrique]] -#maths/algèbre > [!definition] [[partie ouverte d'un espace métrique]] > Une partie $O \subset X$ est dite ouverte si : diff --git a/partie positive d'une fonction.md b/partie positive d'une fonction.md index fc49c0e8..985aab32 100644 --- a/partie positive d'une fonction.md +++ b/partie positive d'une fonction.md @@ -1,6 +1,6 @@ up::[[programmation.fonction|fonction]] sibling:: [[partie négative d'une fonction]] -#maths/analyse +#s/maths/analyse > [!definition] [[partie positive d'une fonction]] > Soit l'application $f : E \to \mathbb{R}$ diff --git a/partie symétrique d'une forme bilinéaire.md b/partie symétrique d'une forme bilinéaire.md index 61908cb4..388c4d1d 100644 --- a/partie symétrique d'une forme bilinéaire.md +++ b/partie symétrique d'une forme bilinéaire.md @@ -1,7 +1,7 @@ up:: [[matrice d'une forme bilinéaire]] sibling:: [[partie symétrique d'une forme bilinéaire]] title:: "[[forme bilinéaire d'une matrice|forme bilinéaire associée]] à la [[partie symétrique d'une matrice|partie symétrique]] de la [[matrice d'une forme bilinéaire|matrice]] de $f$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/partie symétrique d'une matrice.md b/partie symétrique d'une matrice.md index 11fb6a45..0d25c848 100644 --- a/partie symétrique d'une matrice.md +++ b/partie symétrique d'une matrice.md @@ -3,7 +3,7 @@ alias: [ "partie symétrique" ] --- up:: [[décomposition en somme d'une matrice symétrique et d'une antisymétrique|décomposition d'une matrice]] title:: "Partie symétrique de la [[décomposition en somme d'une matrice symétrique et d'une antisymétrique|décomposition en matrice symétrique et antisymétrique]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/partition canonique d'un entier.md b/partition canonique d'un entier.md index e3bb5965..4e9b9a13 100644 --- a/partition canonique d'un entier.md +++ b/partition canonique d'un entier.md @@ -1,5 +1,5 @@ up:: [[partition d'un entier]] -#maths/arithmétique #maths/algèbre +#s/maths/arithmétique #s/maths/algèbre > [!definition] Définition > Soit $n$ un entier. diff --git a/partition d'un entier.md b/partition d'un entier.md index e1a6d600..e06048a2 100644 --- a/partition d'un entier.md +++ b/partition d'un entier.md @@ -2,7 +2,7 @@ aliases: - partition --- -#maths/arithmétique #maths/algèbre +#s/maths/arithmétique #s/maths/algèbre > [!definition] Définition > Soit $n \in \mathbb{N}$ diff --git a/pass VIP nuit des maths.md b/pass VIP nuit des maths.md index 9cd33b8d..6f84f299 100644 --- a/pass VIP nuit des maths.md +++ b/pass VIP nuit des maths.md @@ -1,7 +1,7 @@ up::[[CV]] date::2019-01-01 description::"pass VIP offert par l'organisateur" -#CV #maths +#CV #s/maths - [ ] #todo: check date ---- diff --git a/passage coordonnées cartésiennes à coordonnées polaires.md b/passage coordonnées cartésiennes à coordonnées polaires.md index cb49a970..e1db5a1a 100644 --- a/passage coordonnées cartésiennes à coordonnées polaires.md +++ b/passage coordonnées cartésiennes à coordonnées polaires.md @@ -1,6 +1,6 @@ up:: [[coordonnées polaires]] title:: "$\text{d}x \text{d}y \to \mathbf{r} \text{d}\mathbf{r} \text{d} \theta$" -#maths/analyse +#s/maths/analyse --- diff --git a/passive voice.md b/passive voice.md index c1774f9e..80f8c0e7 100644 --- a/passive voice.md +++ b/passive voice.md @@ -2,7 +2,7 @@ description::"$\underline{\text{subject}} + \boxed{Aux BE} + V_{3}(PP)$" when::" - you describe a process", " - you don't know who performs the action" up::[[english grammar]] title::"quand le sujet subit l'action" -#anglais +#s/anglais ---- diff --git a/passivité de la dépossession.md b/passivité de la dépossession.md index e4fa030c..c7db68ee 100644 --- a/passivité de la dépossession.md +++ b/passivité de la dépossession.md @@ -1,5 +1,5 @@ up:: [[aliénation sociale|aliénation]] -#politique +#s/politique - habitus mis dans le corps de l'électeur - notamment dans l'institution électorale diff --git a/payer les enseignants en fonction du nombre d'étudiants.md b/payer les enseignants en fonction du nombre d'étudiants.md index 0d2e2bc4..d31fe4fd 100644 --- a/payer les enseignants en fonction du nombre d'étudiants.md +++ b/payer les enseignants en fonction du nombre d'étudiants.md @@ -1,5 +1,5 @@ up:: [[éducation nationale]] -#science/économie #apprendre +#s/science/économie #s/apprendre > [!idea] Payer les enseignants en fonction du nombre d'étudiants diff --git a/permutation limite et intégrale d'une suite de fonctions.md b/permutation limite et intégrale d'une suite de fonctions.md index 1b7566d2..3bd14d6e 100644 --- a/permutation limite et intégrale d'une suite de fonctions.md +++ b/permutation limite et intégrale d'une suite de fonctions.md @@ -1,6 +1,6 @@ up:: [[suite de fonctions convergence uniforme]] title:: "Si $(f_{n})$ est [[suite de fonctions convergence uniforme|uniformément convergente]], alors $\displaystyle \lim\limits_{ n \to +\infty } \int_{a}^{b} f_{n}(x) \, dx = \int_{a}^{b} \lim\limits_{ n } f_{n}(x) \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/permutation somme et intégrale sur une série.md b/permutation somme et intégrale sur une série.md index e6b4abcd..99b62fc3 100644 --- a/permutation somme et intégrale sur une série.md +++ b/permutation somme et intégrale sur une série.md @@ -1,6 +1,6 @@ up:: [[série de fonctions convergence uniforme]] title:: "Si $\sum\limits f_{n}$ [[série de fonctions convergence uniforme|CVU]] $\displaystyle \int_{a}^{b} \left( \sum\limits_{n=0}^{+\infty} f_{n}(x) \right) \, dx = \sum\limits_{n=0}^{+\infty} \int_{a}^{b} f_{n}(x) \, dx$" -#maths/analyse +#s/maths/analyse --- diff --git a/permutation.md b/permutation.md index ba36ca45..402e69d5 100644 --- a/permutation.md +++ b/permutation.md @@ -9,7 +9,7 @@ aliases: - permutations --- up::[[algèbre]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Une permutation est une [[bijection]] d'un ensemble dans lui-même. diff --git a/personnal SQL symbols.md b/personnal SQL symbols.md index 1f6b9b89..437479fa 100644 --- a/personnal SQL symbols.md +++ b/personnal SQL symbols.md @@ -1,5 +1,5 @@ up::[[SQL]] -#informatique +#s/informatique ---- diff --git a/personnalités autoritaires.md b/personnalités autoritaires.md index e1cee0dd..6f36dd1f 100644 --- a/personnalités autoritaires.md +++ b/personnalités autoritaires.md @@ -1,5 +1,5 @@ up:: [[politique]], [[psychologie]], [[sociologie]] -#politique #science/sociologie +#s/politique #s/science/sociologie # Traits de personnalités - conventionnalisme diff --git a/personnes.md b/personnes.md index 868f98a3..1ad9a56e 100644 --- a/personnes.md +++ b/personnes.md @@ -3,7 +3,7 @@ BC-tag-note: "#personne" BC-tag-note-field: down --- sibling:: [[citations]] -#personne #PKM +#t/personne #PKM ```breadcrumbs type: tree diff --git a/petite bourgeoisie intellectuelle.md b/petite bourgeoisie intellectuelle.md index 1c67ef32..80fb96bd 100644 --- a/petite bourgeoisie intellectuelle.md +++ b/petite bourgeoisie intellectuelle.md @@ -1,6 +1,6 @@ up:: [[classes sociales]] title:: "les riches avec un haut capital [[culture|culturel]]" -#politique +#s/politique --- diff --git a/peur de la prise de parole en public.md b/peur de la prise de parole en public.md index e2f82cb4..2bdb7fc1 100644 --- a/peur de la prise de parole en public.md +++ b/peur de la prise de parole en public.md @@ -1,7 +1,7 @@ up:: [[le pouvoir de l'éloquence]] title:: "68% des Francais ressent peur ou stress quand ils doivent parler en public." link:: [[2022-etude-la-prise-de-parole-en-public .pdf]] -#science/sociologie +#s/science/sociologie - 68% des Français ressentent de la peur ou du stress quand ils doivent prendre la parole en public diff --git a/pgcd.md b/pgcd.md index b07e76d0..4c2bc927 100644 --- a/pgcd.md +++ b/pgcd.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- Le Plus Grand Commun Diviseur de plusieurs nombres (souvent deux) est noté $\text{pgcd}(a; b; c;\cdots)$ et est le plus grand nombre qui divise tous ces nombres diff --git a/phil chetwynd sur la scandalisation du contexte.md b/phil chetwynd sur la scandalisation du contexte.md index b1d3f18a..29a7ea2a 100644 --- a/phil chetwynd sur la scandalisation du contexte.md +++ b/phil chetwynd sur la scandalisation du contexte.md @@ -6,7 +6,7 @@ author:: [[Phil Chetwynd]] source:: Le 1 hebdo n°471 link:: date-seen::2024-05-20 -#citation +#t/citation > [!cite] `$= dv.current().author + (" - " + dv.current().source).repeat(!!dv.current().source)` > Dans un épisode récent du podcast *The Ezra Klein Show* , ce journaliste américain, évoquant les attentats du 11 septembre 2001, parle de "*scandalization of context*" : tenter de contextualiser un tel drame, explique-t-il, était devenu un scandale. Depuis le 7 octobre, nous faisons face aux mêmes difficultés. Informer, contextualiser devient, dans notre société de plus en plus polarisée, une gageure. L'explication n'a plus de place, seule la prise de position compte. C'est une crise pour la presse, mais aussi pour la démocratie. diff --git a/philosophie.md b/philosophie.md index c23e12e6..3f0aa957 100644 --- a/philosophie.md +++ b/philosophie.md @@ -1,5 +1,5 @@ up:: [[index]] -#philosphie +#s/philosphie > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/plan com soirées jeux.md b/plan com soirées jeux.md index 1b94bab2..1c0e81c9 100644 --- a/plan com soirées jeux.md +++ b/plan com soirées jeux.md @@ -1,4 +1,4 @@ up:: [[kanban soirée jeux]] -#fac +#s/fac pour l'IUT : bontemps laeticia diff --git a/plan du mémoire de L3.md b/plan du mémoire de L3.md index 6ba4f80c..699872a8 100644 --- a/plan du mémoire de L3.md +++ b/plan du mémoire de L3.md @@ -1,5 +1,5 @@ up:: [[notes mémoire de L3]] -#fac #informatique +#s/fac #s/informatique Problématique : pourquoi existe-t-il de nombreux paradigmes de programmation. diff --git a/plan vectoriel.md b/plan vectoriel.md index 35a8f2c9..d5f2059e 100644 --- a/plan vectoriel.md +++ b/plan vectoriel.md @@ -2,7 +2,7 @@ sibling:: [[droite vectorielle]] up::[[espace vectoriel]] sibling::[[droite vectorielle]] title::"[[espace vectoriel]] de [[dimension d'un espace vectoriel|dimension]] 2" -#maths/algèbre +#s/maths/algèbre ---- Un _plan vectoriel_ est un [[espace vectoriel]] de [[dimension d'un espace vectoriel|dimension]] 2. diff --git a/point adhérent d'un espace métrique.md b/point adhérent d'un espace métrique.md new file mode 100644 index 00000000..f147328e --- /dev/null +++ b/point adhérent d'un espace métrique.md @@ -0,0 +1,21 @@ +--- +aliases: + - point adhérent +up: + - "[[point d'un espace métrique]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Soit $A \subset X$ une partie de $X$ +> Soit $p \in X$ un point (pas nécessairement dans $A$) +^definition + +# Propriétés + + - L'[[adhérence d'un espace métrique|adhérence]] de $A$ est l'ensemble des points de $X$ adhérents à $A$ + +# Exemples + diff --git a/point d'adhérence d'un ensemble.md b/point d'adhérence d'un ensemble.md index 7a41b190..9a3a970e 100644 --- a/point d'adhérence d'un ensemble.md +++ b/point d'adhérence d'un ensemble.md @@ -1,10 +1,9 @@ --- alias: [ "point d'adhérence", "points d'adhérence" ] +up: "[[espace métrique]]" +sibling: "[[valeur d'adhérence d'une suite]]" +tags: "#s/maths/topologie" --- -up:: [[espace métrique]] -sibling:: [[valeur d'adhérence d'une suite]] -title:: "point pour lequel on trouve une infinité de voisins aussi proches que l'on veut" -#maths/topologie > [!definition] Point d'adhérence d'un ensemble > Soit $E$ un ensemble muni d'une distance $d$ diff --git a/point d'un espace métrique.md b/point d'un espace métrique.md new file mode 100644 index 00000000..3733560d --- /dev/null +++ b/point d'un espace métrique.md @@ -0,0 +1,26 @@ +--- +aliases: +up: + - "[[espace métrique]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Un **point** de cet espace est un élément de $X$. +^definition + +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` + +# Propriétés + +# Exemples + diff --git a/point isolé d'un espace métrique.md b/point isolé d'un espace métrique.md new file mode 100644 index 00000000..b72dc6ca --- /dev/null +++ b/point isolé d'un espace métrique.md @@ -0,0 +1,22 @@ +--- +aliases: + - point isolé +up: + - "[[point d'un espace métrique]]" +tags: + - s/maths/topologie +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Soit $A\subset X$ une [[partie d'un espace métrique|partie]] de $X$ +> Un point $x \in X$ est dit **isolé dans $A$** si et seulement si : +> $\exists \varepsilon >0,\quad A \cap B(x, \varepsilon) = \{ x \}$ +^definition + +- I Un point isolé de $A$ est un point sans voisinage dans $A$ + +# Propriétés + +# Exemples + diff --git a/point régulier d'une courbe paramétrique.md b/point régulier d'une courbe paramétrique.md index 63582cff..66aedf8e 100644 --- a/point régulier d'une courbe paramétrique.md +++ b/point régulier d'une courbe paramétrique.md @@ -1,6 +1,6 @@ up::[[courbe paramétrée]] sibling:: [[point stationnaire d'une courbe paramétrique]] -#maths/analyse +#s/maths/analyse > [!definition] Définition > Soit $\begin{align}f : & D\subset \mathbb{R} \rightarrow \mathbb{R}^{2}\\& t \mapsto (x(t); y(t)) \end{align}$ une [[courbe paramétrée]] [[dérivée d'une courbe paramétrée|dérivable]] sur $D$ diff --git a/politique.droite.md b/politique.droite.md index 1dbb6194..9b5039d8 100644 --- a/politique.droite.md +++ b/politique.droite.md @@ -4,7 +4,7 @@ alias: [ "droite" ] up::[[politique]] sibling:: [[politique.gauche|gauche]] opposes:: [[politique.gauche]] -#politique +#s/politique citation:: ![[la droite pense que nous sommes individuellement responsables#^cite]] diff --git a/politique.gauche.md b/politique.gauche.md index 1ece4ac8..88fcae2a 100644 --- a/politique.gauche.md +++ b/politique.gauche.md @@ -4,7 +4,7 @@ aliases: --- up::[[politique]] sibling::[[politique.droite|droite]] -#politique +#s/politique > [!definition] Gauche politique > diff --git a/politique.md b/politique.md index 24da2ca2..2df4184e 100644 --- a/politique.md +++ b/politique.md @@ -1,6 +1,6 @@ up:: [[index]] title:: -#politique +#s/politique > [!definition] Définition de la politique > - la gestion de la vie d'une _polis_ (étymologiquement) diff --git a/politique.valeur.md b/politique.valeur.md index 64162b5d..8e03c798 100644 --- a/politique.valeur.md +++ b/politique.valeur.md @@ -2,7 +2,7 @@ alias: [ "valeurs" ] --- up:: [[politique]] -#politique +#s/politique Les valeurs sont de [[politique.droite|droite]]. La [[politique.gauche|gauche]] n'a pas de valeurs : elle avance justement quand elle élimine des valeurs. diff --git a/politique.valeur.mérite.md b/politique.valeur.mérite.md index 5557f951..7261bebe 100644 --- a/politique.valeur.mérite.md +++ b/politique.valeur.mérite.md @@ -1,3 +1,3 @@ up:: [[politique.valeur]] -#politique +#s/politique diff --git a/politique.égalité.md b/politique.égalité.md index ae07f9d4..1da1b01b 100644 --- a/politique.égalité.md +++ b/politique.égalité.md @@ -2,6 +2,6 @@ alias: [ "égalité" ] --- up:: [[politique]] -#politique +#s/politique diff --git a/politique.état.md b/politique.état.md index 4b013f48..bde9601f 100644 --- a/politique.état.md +++ b/politique.état.md @@ -1,3 +1,3 @@ up:: [[politique]], [[institution]] -#politique #science/sociologie +#s/politique #s/science/sociologie diff --git a/polygone.md b/polygone.md index 13eef466..355723cf 100644 --- a/polygone.md +++ b/polygone.md @@ -1,5 +1,5 @@ up::[[géométrie]] -#maths/géométrie +#s/maths/géométrie ---- Un **polygone** est une figure géométrique plane formée d'une _ligne brisée_ **fermée**, c'est-à-dire d'une suite cyclique de segments consécutifs diff --git a/polynôme caractéristique d'un endomorphisme linéaire.md b/polynôme caractéristique d'un endomorphisme linéaire.md index 148ef0dc..f94e7f3a 100644 --- a/polynôme caractéristique d'un endomorphisme linéaire.md +++ b/polynôme caractéristique d'un endomorphisme linéaire.md @@ -1,7 +1,7 @@ up:: [[endomorphisme linéaire]] sibling:: [[polynôme caractéristique d'une matrice]] title:: "[[polynôme caractéristique d'une matrice|polynôme caractéristique de la matrice]] associée" -#maths/algèbre +#s/maths/algèbre --- diff --git a/polynôme caractéristique d'une matrice.md b/polynôme caractéristique d'une matrice.md index e43ae0c9..fde5b63b 100644 --- a/polynôme caractéristique d'une matrice.md +++ b/polynôme caractéristique d'une matrice.md @@ -4,7 +4,7 @@ alias: [ "matrice polynôme caractéristique" ] up:: [[matrice]], [[endomorphisme linéaire]] sibling:: [[polynôme caractéristique d'un endomorphisme linéaire]] title:: "$\det(M - \lambda \text{Id}_{n})$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/polynôme homogène.md b/polynôme homogène.md index 9e0d7ba7..0db4c452 100644 --- a/polynôme homogène.md +++ b/polynôme homogène.md @@ -1,6 +1,6 @@ up::[[polynôme]] title::"tous les termes sont de même degré (notamment intéressant avec plusieurs variables)" -#maths/analyse +#s/maths/analyse ---- Quand tous les termes sont du même degré. diff --git a/polynôme inversible.md b/polynôme inversible.md index 93ed83e7..40fa3df4 100644 --- a/polynôme inversible.md +++ b/polynôme inversible.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/algèbre #maths/analyse +#s/maths/algèbre #s/maths/analyse ---- soit $P$ un [[polynôme]] diff --git a/polynôme irréductible.md b/polynôme irréductible.md index 5de23de3..ce8a14bf 100644 --- a/polynôme irréductible.md +++ b/polynôme irréductible.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/analyse #maths/algèbre +#s/maths/analyse #s/maths/algèbre ---- Soit $P$ un [[polynôme]] diff --git a/polynôme premier.md b/polynôme premier.md index c0183db0..8b0d6728 100644 --- a/polynôme premier.md +++ b/polynôme premier.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/algèbre #maths/analyse +#s/maths/algèbre #s/maths/analyse ---- Soit $P$ un [[polynôme]] dans $A[X]$ diff --git a/polynôme scindé.md b/polynôme scindé.md index a6807f87..57de1a12 100644 --- a/polynôme scindé.md +++ b/polynôme scindé.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/analyse +#s/maths/analyse ---- diff --git a/polynôme unitaire.md b/polynôme unitaire.md index 3056d82a..4b776b7b 100644 --- a/polynôme unitaire.md +++ b/polynôme unitaire.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/analyse +#s/maths/analyse ---- Un [[polynôme]] _unitaire_ est un polynôme dont le coefficient du terme de plus haut [[polynôme#Degré|degré]] est $1$ diff --git a/polynôme.md b/polynôme.md index 955f32e4..1f7c7182 100644 --- a/polynôme.md +++ b/polynôme.md @@ -1,5 +1,5 @@ up::[[MOC polynômes]] -#maths/analyse +#s/maths/analyse ---- diff --git a/polyèdre adouci.md b/polyèdre adouci.md index f65f4190..62332ba0 100644 --- a/polyèdre adouci.md +++ b/polyèdre adouci.md @@ -1,4 +1,4 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre/transformation #not-done +#s/maths/géométrie/polyèdre/transformation #not-done ---- diff --git a/polyèdre tronqué.md b/polyèdre tronqué.md index 8f530216..d2f2b3fc 100644 --- a/polyèdre tronqué.md +++ b/polyèdre tronqué.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre/transformation +#s/maths/géométrie/polyèdre/transformation ---- diff --git a/portion d'un disque.md b/portion d'un disque.md index 800f16ef..bd63e68e 100644 --- a/portion d'un disque.md +++ b/portion d'un disque.md @@ -4,7 +4,7 @@ alias: [ "portion", "portions" ] up::[[sous-système de gestion des fichiers]] sibling:: [[bloc mémoire]] title:: "ensemble de blocs contigus" -#informatique/unix +#s/informatique/unix --- diff --git a/position de la tangente d'une courbe paramétrée.md b/position de la tangente d'une courbe paramétrée.md index 56292e14..d38d1481 100644 --- a/position de la tangente d'une courbe paramétrée.md +++ b/position de la tangente d'une courbe paramétrée.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/algèbre +#s/maths/algèbre Soit une [[courbe paramétrée]] $f: t \mapsto M(t)$ Lorsque la courbe approche sa tangente en un point $t_0$, la courbe peut être positionée de plusieurs manières par rapport à sa tangente : diff --git a/position relative de droites vectorielles.md b/position relative de droites vectorielles.md index e936af0a..0a1b7fcf 100644 --- a/position relative de droites vectorielles.md +++ b/position relative de droites vectorielles.md @@ -1,7 +1,7 @@ up::[[droite vectorielle]] title::"" description::"deux [[droite vectorielle|droites vectorielles]] sont confondues ou d'intersection $\{ 0_{E} \}$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/post queue discord science.md b/post queue discord science.md index 114b2d8b..893aec51 100644 --- a/post queue discord science.md +++ b/post queue discord science.md @@ -1,5 +1,5 @@ up::[[post queues]] -#science +#s/science ---- diff --git a/post queue docstring.md b/post queue docstring.md index 27485393..374ee251 100644 --- a/post queue docstring.md +++ b/post queue docstring.md @@ -1,5 +1,5 @@ up::[[post queues]] -#informatique +#s/informatique > [!done] Prise de notes avec $\LaTeX$ diff --git a/postulat de la logique formelle.md b/postulat de la logique formelle.md index b82f215f..e37a7293 100644 --- a/postulat de la logique formelle.md +++ b/postulat de la logique formelle.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- > La validité des raisonnements ne dépend que de leur forme et est indépendante du contenu des propositions qui les composent diff --git a/pourquoi réduire les énergies fossiles d'abord.md b/pourquoi réduire les énergies fossiles d'abord.md index 96651a53..16d4d29d 100644 --- a/pourquoi réduire les énergies fossiles d'abord.md +++ b/pourquoi réduire les énergies fossiles d'abord.md @@ -2,7 +2,7 @@ alias: [ "réduire énergies fossiles d'abord" ] --- up:: [[impact des énergies fossiles]] -#politique #science/écologie +#s/politique #s/science/écologie --- diff --git a/ppcm.md b/ppcm.md index 2c80c7ff..95843cc1 100644 --- a/ppcm.md +++ b/ppcm.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique ---- Le _Plus Petit Commun Multiple_ (plus petit multiple commun) de plusieurs nombres (souvent deux) est noté $\mathrm{ppcm}(a;b;c;\cdots )$ et est le plus petit nombre qui soit multiple de tous ces nombres. diff --git a/preuve de travail.md b/preuve de travail.md index da3e2674..3168e7db 100644 --- a/preuve de travail.md +++ b/preuve de travail.md @@ -1,6 +1,6 @@ up:: [[cryptologie]] title:: -#informatique +#s/informatique --- diff --git a/preuve tan(a+b).md b/preuve tan(a+b).md index f916f53d..fc0297d8 100644 --- a/preuve tan(a+b).md +++ b/preuve tan(a+b).md @@ -1,5 +1,5 @@ up::[[trigonométrie]] -#maths/trigonométrie #démonstration +#s/maths/trigonométrie #t/démonstration ---- diff --git a/principe de l'extension créative.md b/principe de l'extension créative.md index 3104a24b..ec2aa141 100644 --- a/principe de l'extension créative.md +++ b/principe de l'extension créative.md @@ -3,7 +3,7 @@ aliases: - creative extension principle --- up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] principe de l'extension créative > Un [[paradigme de programmation]] est un ensemble de concept, mais tout ensemble de concepts ne forme pas un paradigme. diff --git a/principe de récurrence.md b/principe de récurrence.md index 569aeede..4c82060c 100644 --- a/principe de récurrence.md +++ b/principe de récurrence.md @@ -1,6 +1,6 @@ up::[[axiomatique]] title::"$P(0) \wedge \forall n, P(n) \implies P(n+1)$" -#maths +#s/maths ---- Si un propriété est vraie pour $x_{0}$, et si pour tout $n > x_{0}$ on a $P(n) \implies P(n+1)$, alors on à $\forall n > x_{0}, P(n)$. diff --git a/principe du parapluie.md b/principe du parapluie.md index d176bb73..eb050891 100644 --- a/principe du parapluie.md +++ b/principe du parapluie.md @@ -8,7 +8,7 @@ tags: excalidraw-open-md: true --- up:: -#maths #philosphie +#s/maths #s/philosphie > [!definition] parapluie diff --git a/principes FAIR.md b/principes FAIR.md index 3e43dd34..ea53b8a2 100644 --- a/principes FAIR.md +++ b/principes FAIR.md @@ -1,5 +1,5 @@ sibling:: [[science ouverte]] -#informatique +#s/informatique > [!definition] > FAIR : diff --git a/principes généraux de mise en place de l'action.md b/principes généraux de mise en place de l'action.md index 6d00ad8a..83ce7717 100644 --- a/principes généraux de mise en place de l'action.md +++ b/principes généraux de mise en place de l'action.md @@ -1,5 +1,5 @@ up:: [[militantisme]] -#politique +#s/politique ```breadcrumbs title: "Sous-notes" diff --git a/probabilités univers.md b/probabilités univers.md index a13af0c8..858d9f7c 100644 --- a/probabilités univers.md +++ b/probabilités univers.md @@ -3,6 +3,6 @@ alias: [ "univers" ] --- up:: [[espace probabilisé]] title:: "ensemble d'[[probabilités événement]]" -#maths/probabilités +#s/maths/probabilités --- \ No newline at end of file diff --git a/probabilités variable aléatoire fonction de répartition.md b/probabilités variable aléatoire fonction de répartition.md index 26c4d09e..3089ff3e 100644 --- a/probabilités variable aléatoire fonction de répartition.md +++ b/probabilités variable aléatoire fonction de répartition.md @@ -3,7 +3,7 @@ alias: [ "fonction de répartition", "fonction de répartition d'une variable al --- up:: [[variable aléatoire]] title:: "$\begin{align} F:\,& \mathbb{R} \to \mathbb{R}\\ &x \mapsto P(X \leq x) \end{align}$" -#maths/probabilités +#s/maths/probabilités > [!definition] fonction de répartition diff --git a/probabilités événement.md b/probabilités événement.md index cc000026..36a8fd15 100644 --- a/probabilités événement.md +++ b/probabilités événement.md @@ -3,7 +3,7 @@ alias: [ "événement", "événements" ] --- up:: [[probabilités univers]] title:: "un sous-ensemble de l'[[probabilités univers|univers]]" -#maths/probabilités +#s/maths/probabilités --- diff --git a/probabilités.md b/probabilités.md index 018f2b39..69c30e76 100644 --- a/probabilités.md +++ b/probabilités.md @@ -1,4 +1,4 @@ -#maths +#s/maths --- diff --git a/problèmes de la liberté d'expression.md b/problèmes de la liberté d'expression.md index 6805c365..1d23b214 100644 --- a/problèmes de la liberté d'expression.md +++ b/problèmes de la liberté d'expression.md @@ -1,6 +1,6 @@ up:: [[liberté d'expression]] title:: "les problèmes que pose la liberté d'expression" -#science/zetetique +#s/science/zetetique --- diff --git a/problèmes des mémoires à tores de ferrite.md b/problèmes des mémoires à tores de ferrite.md index ac424e6f..1f7d01d7 100644 --- a/problèmes des mémoires à tores de ferrite.md +++ b/problèmes des mémoires à tores de ferrite.md @@ -4,7 +4,7 @@ aliases: --- up:: [[mémoire à tore de ferrite]] opposes:: [[avantages des mémoires à tores de ferrite]] -#informatique #physique +#s/informatique #s/physique # Sensibilité à la température diff --git a/processus.md b/processus.md index 399309a6..f1568913 100644 --- a/processus.md +++ b/processus.md @@ -1,5 +1,5 @@ up::[[unix]] -#informatique/unix +#s/informatique/unix ---- diff --git a/procrastination.md b/procrastination.md index a62bc29d..2bc32f5c 100644 --- a/procrastination.md +++ b/procrastination.md @@ -4,7 +4,7 @@ tags: - excalidraw excalidraw-open-md: true --- -#apprendre +#s/apprendre up:: - Distraction diff --git a/produit cartésien.md b/produit cartésien.md index 5cf73118..694c7124 100644 --- a/produit cartésien.md +++ b/produit cartésien.md @@ -1,6 +1,6 @@ up:: [[MOC ensembles]] title:: "$A\times B = \{ (a, b) \mid a \in A \wedge b \in B \}$" -#maths/ensembles +#s/maths/ensembles --- diff --git a/produit d'espaces vectoriels normés.md b/produit d'espaces vectoriels normés.md new file mode 100644 index 00000000..a7c92ab4 --- /dev/null +++ b/produit d'espaces vectoriels normés.md @@ -0,0 +1,24 @@ +--- +aliases: +up: + - "[[espace vectoriel normé]]" +tags: + - "#s/maths/algèbre" + - "#s/maths/topologie" +--- + +> [!definition] Définition +> Soient $(E_{i}, \mathcal{N}_{i})$ pour $1 \leq i \leq n$ des [[espace vectoriel normé|espaces vectoriels normés]] +> Soit $E = E_1 \times E_2 \times \cdots \times E_{n} = \prod\limits_{i=1}^{n} E_{i}$ le produit de ces espaces vectoriels +> On définit pour $p \geq 1$ la norme : +>$\begin{align} \|\cdot\|_{p} : \prod\limits_{i=1}^{n} E_{i} &\to \mathbb{R}^{+} \\ X &\mapsto \left( \sum\limits_{k=1}^{n} \mathcal{N}_{k}(x_{k})^{p} \right)^{\frac{1}{p}} \end{align}$ +> Ainsi que la norme : +> $\begin{align} \|\cdot\|_{\infty} : \prod\limits_{i=1}^{n}E_{i} &\to \mathbb{R}^{+} \\ X &\mapsto \max_{1\leq k \leq n} \mathcal{N}_{k}(X) \end{align}$ +> +> Ainsi on peut donner une structure d'espace vectoriel normé à un produit d'espaces vectoriels normés. +^definition + +# Propriétés + +# Exemples + diff --git a/produit de Cauchy.md b/produit de Cauchy.md index d793b162..3ccc4e8c 100644 --- a/produit de Cauchy.md +++ b/produit de Cauchy.md @@ -2,7 +2,7 @@ alias: [ "produit de séries entières" ] --- up:: [[série entière]], [[produit de séries]] title:: "$\left( \sum\limits_{i \geq 0}\left( a_{i}x^{i} \right) \right) \cdot \left( \sum\limits_{j \geq 0}(b_{j}x^{j}) \right) = \sum\limits_{i \geq 0} \left( \sum\limits_{j=0}^{i} \left( a_{j}b_{i-j} \right) \; x^{i} \right)$" -#maths/analyse +#s/maths/analyse --- diff --git a/produit de hadamard.md b/produit de hadamard.md index 4e836eb7..b73b99a9 100644 --- a/produit de hadamard.md +++ b/produit de hadamard.md @@ -1,5 +1,5 @@ up:: [[matrice]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[produit de hadamard]] > Soient $A$ et $B$ des matrices de même dimension, le produit de hadamard $A \odot B$ est la produit terme-à-terme de $A$ et de $B$ : diff --git a/produit direct de groupes abéliens.md b/produit direct de groupes abéliens.md index cad3e6ef..adb53f85 100644 --- a/produit direct de groupes abéliens.md +++ b/produit direct de groupes abéliens.md @@ -5,7 +5,7 @@ aliases: - produit de groupes abéliens --- up:: [[groupe abélien]], [[produit direct de groupes]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[produit direct de groupes abéliens]] > Soient $G$ et $H$ deux groupes diff --git a/produit direct de groupes.md b/produit direct de groupes.md index 330d2dca..6d45daef 100644 --- a/produit direct de groupes.md +++ b/produit direct de groupes.md @@ -1,6 +1,6 @@ up:: [[groupe]] down:: [[produit direct de groupes abéliens]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[produit direct de groupes]] > Soient $(G, *_{G})$ et $(H, *_{H})$ deux [[groupe|groupes]] diff --git a/produit du pgcd et du ppcm.md b/produit du pgcd et du ppcm.md index b2c10d2b..26a97f2a 100644 --- a/produit du pgcd et du ppcm.md +++ b/produit du pgcd et du ppcm.md @@ -4,5 +4,5 @@ up: - "[[pgcd]]" - "[[ppcm]]" tags: - - maths/arithmétique + - s/maths/arithmétique --- diff --git a/produit externe.md b/produit externe.md index 8c0ff720..bea6c0bd 100644 --- a/produit externe.md +++ b/produit externe.md @@ -1,4 +1,4 @@ -#informatique #not-done +#s/informatique #not-done ---- Le produit externe est un opérateur de degré supérieur. diff --git a/produit scalaire.md b/produit scalaire.md index dd9f051d..28540bed 100644 --- a/produit scalaire.md +++ b/produit scalaire.md @@ -1,6 +1,6 @@ up::[[vecteur]], [[forme bilinéaire]] title:: "[[forme bilinéaire]] [[forme bilinéaire symétrique|symétrique]] [[forme bilinéaire définie|définie]] [[forme bilinéaire positive|positive]]" -#maths/algèbre +#s/maths/algèbre > [!definition] produit scalaire > Soit $E$ un [[espace vectoriel]] diff --git a/produit vectoriel.md b/produit vectoriel.md index 7ca906db..c4f749d4 100644 --- a/produit vectoriel.md +++ b/produit vectoriel.md @@ -1,7 +1,7 @@ up::[[vecteur]] title::$\begin{pmatrix}x\\y\\z\end{pmatrix}\wedge \begin{pmatrix}x'\\y'\\z'\end{pmatrix}= \begin{pmatrix}yz'-y'z\\zx'-z'x\\xy'-x'y\end{pmatrix}$ description::"$u \wedge v \wedge w$ = volume du [[parallélépipède]] porté par $u, v, w$" -#maths/géométrie #maths/algèbre +#s/maths/géométrie #s/maths/algèbre ---- Le *produit vectoriel* de deux [[vecteur|vecteurs]] $\overrightarrow{u}$ et $\overrightarrow{v}$ est noté : diff --git a/profession de foi assesseur étudiant.md b/profession de foi assesseur étudiant.md index cbfa17eb..0d6f2942 100644 --- a/profession de foi assesseur étudiant.md +++ b/profession de foi assesseur étudiant.md @@ -1,5 +1,5 @@ up:: [[UT UFR ST conseil]] -#fac +#s/fac Bonjour à tous, vous le savez peut être, je présente maintenant diff --git a/program counter.md b/program counter.md index 70fc8301..a7f5042c 100644 --- a/program counter.md +++ b/program counter.md @@ -3,6 +3,6 @@ alias: [ "PC" ] --- up::[[architecture des ordinateurs]] title:: "registre qui contient l'addresse de l'instruction actuelle" -#informatique +#s/informatique --- \ No newline at end of file diff --git a/programmation déclarative.md b/programmation déclarative.md index 3fcdb57c..30e09bca 100644 --- a/programmation déclarative.md +++ b/programmation déclarative.md @@ -1,6 +1,6 @@ up:: [[paradigme de programmation|paradigme]] opposes:: [[paradigme programmation impérative|programmation impérative]] -#informatique +#s/informatique > [!definition] programmation déclarative > La programmation déclarative est un paradigme de programmation (ou plutôt un style de paradigme) dans lequel la définition des programme se fait en déclarant la forme du résultat plutôt que la manière l'obtenir (comme en [[paradigme programmation impérative|programmation impérative]]). diff --git a/programmation orientée objet java.md b/programmation orientée objet java.md index a3be4adf..4a1c8819 100644 --- a/programmation orientée objet java.md +++ b/programmation orientée objet java.md @@ -3,5 +3,5 @@ aliases: - OOP java --- up:: [[paradigme programmation orientée objet]] -#informatique +#s/informatique diff --git a/programmation serveur (backend).md b/programmation serveur (backend).md index fbb886b4..aa6bd8e5 100644 --- a/programmation serveur (backend).md +++ b/programmation serveur (backend).md @@ -5,7 +5,7 @@ aliases: - programmation serveur --- up:: [[programmation web]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/programmation web.md b/programmation web.md index b39b49f0..e25f922a 100644 --- a/programmation web.md +++ b/programmation web.md @@ -1,5 +1,5 @@ up:: [[programmation]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/programmation.effet de bord.md b/programmation.effet de bord.md index 8d4dc5bd..a1d1f2e5 100644 --- a/programmation.effet de bord.md +++ b/programmation.effet de bord.md @@ -5,7 +5,7 @@ aliases: - effets de bord --- up:: [[programmation]] -#informatique +#s/informatique > [!definition] effet de bord > En programmation, une [[programmation.fonction|fonction]] est dite à effet de bord si elle modifie un [[programmation.état|état]] en dehors de son environnement local. diff --git a/programmation.fonction.md b/programmation.fonction.md index 81ef58a5..f1611f4f 100644 --- a/programmation.fonction.md +++ b/programmation.fonction.md @@ -5,7 +5,7 @@ aliases: up: - "[[programmation]]" tags: - - "#informatique" + - "#s/informatique" sibling: - "[[fonction]]" - "[[programmation.procédure|procédure]]" diff --git a/programmation.md b/programmation.md index c31dc1d8..86fded13 100644 --- a/programmation.md +++ b/programmation.md @@ -1,15 +1,17 @@ -up:: [[informatique|informatique]] -title:: -#informatique +--- +up: "[[informatique]]" +tags: "#s/informatique" +--- -> [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> title: false -> type: tree -> dir: down -> depth: -1 -> ``` +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/programmation.modification des paramètres.md b/programmation.modification des paramètres.md index ea23f1d5..3e38c86a 100644 --- a/programmation.modification des paramètres.md +++ b/programmation.modification des paramètres.md @@ -4,7 +4,7 @@ aliases: - modification des arguments --- up:: [[paramètre d'une fonction]] -#informatique +#s/informatique > [!definition] modification des paramètres > La modification des paramètres désigne le fait, pour une [[programmation.fonction|fonction]] ou une [[programmation.procédure|procédure]], de modifier la valeur de ses [[programmation.argument d'une fonction|arguments]] (modifier la valeur des variables qui lui sont passées) en passant par la modification de ses [[paramètre d'une fonction|paramètres]] (la modification du paramètre entraine la modification de l'argument). diff --git a/programmation.polymorphisme.md b/programmation.polymorphisme.md index 35fdcdc8..dfb16ccf 100644 --- a/programmation.polymorphisme.md +++ b/programmation.polymorphisme.md @@ -3,7 +3,7 @@ aliases: - polymorphisme --- up::[[paradigme programmation orientée objet]] -#informatique +#s/informatique > [!definition] polymorphisme > Le polymorphisme est le fait qu'un même appel (une même action, un même [[envoi de messages entre objets|message]]) aie plusieurs effets différents **selon le contexte**. diff --git a/programmation.procédure.md b/programmation.procédure.md index 3a8f144b..aa69abf2 100644 --- a/programmation.procédure.md +++ b/programmation.procédure.md @@ -5,7 +5,7 @@ aliases: --- up:: [[programmation]] sibling:: [[programmation.fonction|fonction]] -#informatique +#s/informatique > [!definition] procédure diff --git a/programmation.état.md b/programmation.état.md index 84e57fc3..fa4e7967 100644 --- a/programmation.état.md +++ b/programmation.état.md @@ -5,7 +5,7 @@ aliases: - états --- up:: [[programmation]] -#informatique +#s/informatique > [!definition] état > L'état est la capacité à retenir de l'information. diff --git a/programme GPS Obésité.md b/programme GPS Obésité.md new file mode 100644 index 00000000..2716ee0b --- /dev/null +++ b/programme GPS Obésité.md @@ -0,0 +1,30 @@ +--- +aliases: +up: + - "[[handicap]]" + - "[[université de Tours]]" +tags: + - s/fac +link: https://www.gps-obesite.fr/ +--- + + +> [!cite] Mail 2024-2025 +> Chères étudiantes, chers étudiants, +> +> Du 24/02/25 au 31/03/25, le Service de Santé Etudiante propose de nouveau le programme GPSO, destiné aux étudiants en situation de surpoids ou d’obésité. +> +> Les infos utiles : +> * Un parcours sur 1,5 ans, intégralement pris en charge. +> * Une équipe pluridisciplinaire de diététicienne, psychologues, médecin généraliste, socio-esthéticienne et enseignant en activité physique adaptée. +> * Sous forme d'ateliers en groupe et/ou de consultations individuelles. +> Les objectifs : +> - Améliorer l’estime de soi +> - Prendre plaisir à pratiquer une activité physique adaptée +> - Faire des choix alimentaires appropriés aux besoins du corps +> - Recréer du lien social +> +> Clôture des inscriptions début février 2025. +> +> N'hésitez pas à vous inscrire auprès d'Emilie Clément, diététicienne au SSE et coordinatrice du projet, à: **[coordo3741@gps-obesite.fr](mailto:coordo3741@gps-obesite.fr)**. + diff --git a/programmer permet de montrer que l'on connait.md b/programmer permet de montrer que l'on connait.md index c19d1476..d2cd38c2 100644 --- a/programmer permet de montrer que l'on connait.md +++ b/programmer permet de montrer que l'on connait.md @@ -1,6 +1,6 @@ up:: [[connaissance]] author:: [[Alan Perlis]] -#informatique #philosphie #citation +#s/informatique #s/philosphie #t/citation > [!cite]+ [Special Feature: Epigrams on programming](zotero://select/groups/5383243/items/WCBTJR4H) - [Page 7](zotero://open-pdf/groups/5383243/items/E4IWF2MD?page=7&annotation=YP4AULVD) diff --git a/projection d'un vecteur sur une droite vectorielle.md b/projection d'un vecteur sur une droite vectorielle.md index 28ac9014..eaa37dfb 100644 --- a/projection d'un vecteur sur une droite vectorielle.md +++ b/projection d'un vecteur sur une droite vectorielle.md @@ -3,7 +3,7 @@ alias: "projection" --- up::[[droite vectorielle]] title::"soit $D_{1}=Vect(e_{1})$", "soit $u=xe_{1}+ye_{2}+\dots$", "$p_{1}: u \mapsto xe_{1}$ est la _projection sur_ $D_{1}$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/projet M.chanson.md b/projet M.chanson.md index ea3a014f..832f0a92 100644 --- a/projet M.chanson.md +++ b/projet M.chanson.md @@ -6,7 +6,7 @@ up:: [[projet M]] up::[[devoirs]] title:: -#devoir +#t/devoir --- # Idées diff --git a/projet gestion et simulation d'entreprise.md b/projet gestion et simulation d'entreprise.md index 423661c9..afeec116 100644 --- a/projet gestion et simulation d'entreprise.md +++ b/projet gestion et simulation d'entreprise.md @@ -2,7 +2,7 @@ quickshare-date: 2023-12-05 00:40:09 quickshare-url: "https://noteshare.space/note/clprk0jwb705901mwau87lhdw#DKw7CSZuwW7NXbs1m6il1LCcx35BGeiGtw+7sCvwHAI" --- -#fac #PM +#s/fac #s/PM versa-tile diff --git a/projeté orthogonal d'un vecteur.md b/projeté orthogonal d'un vecteur.md index 0a3df719..f07d1f69 100644 --- a/projeté orthogonal d'un vecteur.md +++ b/projeté orthogonal d'un vecteur.md @@ -1,6 +1,6 @@ up::[[vecteur]] title:: "$\displaystyle\mathrm{proj}_{u}(v) = \frac{\langle u, v \rangle}{\| u \| ^{2}}u$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/prolétariat.md b/prolétariat.md index 370764d2..020c692a 100644 --- a/prolétariat.md +++ b/prolétariat.md @@ -1,5 +1,5 @@ up::[[classes sociales]] -#science/sociologie +#s/science/sociologie Ceux qui créent la richesse par leur force de travail. diff --git a/propriété d'Archimède.md b/propriété d'Archimède.md index b692c7c4..7eecdb09 100644 --- a/propriété d'Archimède.md +++ b/propriété d'Archimède.md @@ -1,6 +1,6 @@ up::[[arithmétique|arithmétique]] title:: "$\forall b \in \mathbb{N}^{*}, \quad \forall a \in \mathbb{N}, \quad \exists k \in \mathbb{N}, \quad kb > a$" -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/propriété vraie presque partout.md b/propriété vraie presque partout.md index 541a2d2a..8ba0a3e4 100644 --- a/propriété vraie presque partout.md +++ b/propriété vraie presque partout.md @@ -3,7 +3,7 @@ aliases: - presque partout --- up:: [[ensemble négligeable]] -#maths/intégration +#s/maths/intégration > [!definition] [[propriété vraie presque partout]] > Une propriété $\mathscr{P}$ est dit vraie "$\mu$ presque partout" si l'ensemble des points où elle est fausse est [[ensemble négligeable|négligeable]] pour la mesure $\mu$ diff --git a/propriétés des requêtes conjonctives.md b/propriétés des requêtes conjonctives.md index 233aa53f..5d4757c5 100644 --- a/propriétés des requêtes conjonctives.md +++ b/propriétés des requêtes conjonctives.md @@ -1,5 +1,5 @@ up::[[requête conjonctive]] -#informatique +#s/informatique ---- diff --git a/protocole TCP IP.md b/protocole TCP IP.md index ba78e098..261a1ac3 100644 --- a/protocole TCP IP.md +++ b/protocole TCP IP.md @@ -1,6 +1,6 @@ up:: [[réseau informatique]] title:: -#informatique +#s/informatique --- diff --git a/protocole TCP.md b/protocole TCP.md index a9d9b24e..6d666b09 100644 --- a/protocole TCP.md +++ b/protocole TCP.md @@ -3,6 +3,6 @@ alias: [ "TCP" ] --- up:: [[protocole TCP IP]] title:: -#informatique +#s/informatique --- \ No newline at end of file diff --git a/protocoles.md b/protocoles.md index 6d7ac99c..7fabe15a 100644 --- a/protocoles.md +++ b/protocoles.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique ---- diff --git a/pré-allocation de fichiers.md b/pré-allocation de fichiers.md index 9252cc74..d4cf4071 100644 --- a/pré-allocation de fichiers.md +++ b/pré-allocation de fichiers.md @@ -1,7 +1,7 @@ up::[[allocation de fichiers]] sibling:: [[allocation dynamique de fichiers]] title:: "allouer tout l'espace nécessaire dès le début", " - [p] plus efficace", " - [c] on ne connaît pas toujours la taille d'un fichier" -#informatique/unix +#s/informatique/unix --- allouer tout l'espace nécessaire dès la création du fichier diff --git a/prémisses.md b/prémisses.md index e7a4f235..8c7bc756 100644 --- a/prémisses.md +++ b/prémisses.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/présentation anglais réseaux sociaux.md b/présentation anglais réseaux sociaux.md index 76d5a441..be1f434d 100644 --- a/présentation anglais réseaux sociaux.md +++ b/présentation anglais réseaux sociaux.md @@ -1,6 +1,6 @@ up::[[fac.cours anglais]] link:: [[présentation_anglais_social_networks.excalidraw]] -#anglais +#s/anglais # Problems of social networks diff --git a/psychologie.md b/psychologie.md index 8f18f230..9cbdc200 100644 --- a/psychologie.md +++ b/psychologie.md @@ -1,5 +1,5 @@ up:: [[science]] -#science/psychologie +#s/science/psychologie ```breadcrumbs title: "Sous-notes" diff --git a/puissance d'expression.md b/puissance d'expression.md index 689a3c1a..58cae16f 100644 --- a/puissance d'expression.md +++ b/puissance d'expression.md @@ -3,7 +3,7 @@ aliases: - pouvoir d'expression --- up:: [[programmation]] -#informatique +#s/informatique > [!definition] puissance d'expression > La puissance d'expression (ou pouvoir d'expression, ou expressivité) est la quantité d'idées qui peuvent être représentées et communiquées dans un langage. diff --git a/pulse detector (dirac on NRZ).md b/pulse detector (dirac on NRZ).md index b8721f73..e1a3d8a6 100644 --- a/pulse detector (dirac on NRZ).md +++ b/pulse detector (dirac on NRZ).md @@ -1,6 +1,6 @@ up:: [[Logique séquentielle]] title:: "[[distribution de Dirac|dirac]] each time the input goes from low to high" -#science +#s/science --- diff --git a/python design pattern singleton.md b/python design pattern singleton.md index e9979476..83c39d44 100644 --- a/python design pattern singleton.md +++ b/python design pattern singleton.md @@ -1,5 +1,5 @@ up:: [[design pattern singleton]], [[python design patterns]] -#informatique/langage/python +#s/informatique/langage/python # implémentations possibles diff --git a/python design patterns.md b/python design patterns.md index 0b2d1483..f4b91356 100644 --- a/python design patterns.md +++ b/python design patterns.md @@ -1,5 +1,5 @@ up:: [[python]] -#informatique/langage/python +#s/informatique/langage/python ```breadcrumbs title: "Sous-notes" diff --git a/python module collections.md b/python module collections.md index af9dfdc9..34a6cd14 100644 --- a/python module collections.md +++ b/python module collections.md @@ -12,7 +12,7 @@ description: | --- up::[[python modules]] title::"des types conteneurs alternatifs" -#informatique/langage/python +#s/informatique/langage/python ---- diff --git a/python modules.md b/python modules.md index 39ae3d05..0b39d13a 100644 --- a/python modules.md +++ b/python modules.md @@ -1,6 +1,6 @@ up::[[python]] title::"liste de modules python" -#informatique/langage/python +#s/informatique/langage/python ---- diff --git a/python références cycliques.md b/python références cycliques.md index e16b4fc9..6d4ec58b 100644 --- a/python références cycliques.md +++ b/python références cycliques.md @@ -4,7 +4,7 @@ aliases: --- up:: [[python]] source:: [[Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir]] -#informatique/langage/python : +#s/informatique/langage/python : Normalement, lorsque toutes les références à un objet sont supprimées, sa méthode `__del__` est appelée, puis il est supprimé de la mémoire : ```python diff --git a/python références faibles.md b/python références faibles.md index 890c07b7..eb9a17da 100644 --- a/python références faibles.md +++ b/python références faibles.md @@ -1,5 +1,5 @@ source:: [[Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir]] -#informatique/langage/python +#s/informatique/langage/python Une solution possible pour libérer la mémoire malgré les [[python références cycliques|références cycliques]]. diff --git a/python tips.md b/python tips.md index c32c24f9..f3742393 100644 --- a/python tips.md +++ b/python tips.md @@ -1,6 +1,6 @@ up::[[python]] title::"interesting python codes and techniques" -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/python tree with defaultdicts.md b/python tree with defaultdicts.md index 704aa589..05a75dc6 100644 --- a/python tree with defaultdicts.md +++ b/python tree with defaultdicts.md @@ -24,7 +24,7 @@ link::https://gist.github.com/hrldcpr/2012250 author::[[harold cooper]] title::"definir des [[structure de données.arbre|arbres]] avec les defaultdicts du module [[python module collections]]" -#informatique/langage/python +#s/informatique/langage/python ---- Permet de définir la structure d'[[structure de données.arbre]] de manière simple, grace aux `defaultdicts` (module collections) diff --git a/python type hinting.md b/python type hinting.md index 0b2d1483..f4b91356 100644 --- a/python type hinting.md +++ b/python type hinting.md @@ -1,5 +1,5 @@ up:: [[python]] -#informatique/langage/python +#s/informatique/langage/python ```breadcrumbs title: "Sous-notes" diff --git a/python.md b/python.md index 48f58fa8..d090cb91 100644 --- a/python.md +++ b/python.md @@ -1,6 +1,6 @@ up::[[langage de programmation]] title::"langage de programmation interprété et dynamiquement typé" -#informatique +#s/informatique ```breadcrumbs title: "Sous-notes" diff --git a/pédagogie explicite.md b/pédagogie explicite.md index 212ac0f0..103c8876 100644 --- a/pédagogie explicite.md +++ b/pédagogie explicite.md @@ -1,5 +1,5 @@ up:: [[pédagogie]] -#apprendre +#s/apprendre > [!definition] pédagogie explicite > Fait d'expliciter les attentes, et de ne pas demander des choses non explicitées diff --git a/qalc.md b/qalc.md index a157c531..4d16f8b9 100644 --- a/qalc.md +++ b/qalc.md @@ -1,6 +1,6 @@ up:: [[terminal commandes|utilitaires ligne de commande]] title:: "calculatrice formelle" -#informatique/unix #maths +#s/informatique/unix #s/maths Calculatrice formelle diff --git a/quadrivium.md b/quadrivium.md index 360dea42..b59a4447 100644 --- a/quadrivium.md +++ b/quadrivium.md @@ -1,5 +1,5 @@ sibling:: [[trivium]] -#science +#s/science ---- Ensemble de 4 sciences [[mathématiques]] qui se rapportent au "pouvoir des nombres" diff --git a/qualification.md b/qualification.md index a7f5f1e0..4e596478 100644 --- a/qualification.md +++ b/qualification.md @@ -3,7 +3,7 @@ alias: [ "qualification", "qualifications" ] --- up:: [[travail]] sibling:: [[compétence]] -#science/sociologie +#s/science/sociologie > [!definition] Qualification > Appréciation de la valeur d'une personne dans un contexte précis, en fonction de ses capacités, de son expérience... diff --git a/quantificateurs.il existe.md b/quantificateurs.il existe.md index e5d60cd4..101f0f2b 100644 --- a/quantificateurs.il existe.md +++ b/quantificateurs.il existe.md @@ -3,7 +3,7 @@ aliases: - quantificateur existanciel --- up:: [[quantificateurs]] -#maths/logique +#s/maths/logique diff --git a/quantificateurs.md b/quantificateurs.md index 7bece894..b25d85b2 100644 --- a/quantificateurs.md +++ b/quantificateurs.md @@ -1,5 +1,5 @@ up:: [[logique]] -#maths/logique +#s/maths/logique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/quarto blog.md b/quarto blog.md index 7daff434..fb450b2d 100644 --- a/quarto blog.md +++ b/quarto blog.md @@ -1,7 +1,7 @@ up:: [[terminal commandes]] title:: "producing documents from rmarkdown" link:: https://quarto.org/docs/get-started/hello/text-editor.html, https://quarto.org/docs/get-started/authoring/text-editor.html -#informatique +#s/informatique ```breadcrumbs title: "Sous-notes" diff --git a/quarto callouts.md b/quarto callouts.md index 101d892a..74411a65 100644 --- a/quarto callouts.md +++ b/quarto callouts.md @@ -1,5 +1,5 @@ up:: [[quarto blog]] -#informatique #blog +#s/informatique #s/blog ``` ::: {.callout-note} @@ -16,6 +16,7 @@ Contents of the callout ## The title contents +::: ``` diff --git a/quarto command line.md b/quarto command line.md index 7579a9f4..41ac5f7b 100644 --- a/quarto command line.md +++ b/quarto command line.md @@ -1,5 +1,5 @@ up:: [[quarto blog]] -#informatique #blog +#s/informatique #s/blog > [!info]- creating a blog > - **Create :** `quarto create-project myblog --type website:blog` diff --git a/quarto extension collapse-callout.md b/quarto extension collapse-callout.md index 979eec00..0bb1ca1f 100644 --- a/quarto extension collapse-callout.md +++ b/quarto extension collapse-callout.md @@ -1,6 +1,6 @@ up:: [[quarto extensions]] link:: https://www.github.com/shafayetShafee/collapse-callout -#informatique +#s/informatique Gérer les [[quarto callouts|callouts]] touts d'un coup. Permet également de faire en sorte que des callouts soient pliables mais ouverts par défaut. diff --git a/quarto extension nutshell.md b/quarto extension nutshell.md index 71ff47d0..44624394 100644 --- a/quarto extension nutshell.md +++ b/quarto extension nutshell.md @@ -1,6 +1,6 @@ up:: [[quarto extensions]] link:: https://github.com/schochastics/quarto-nutshell, https://ncase.me/nutshell/ -#informatique #blog +#s/informatique #s/blog Nutshell est un système pour faire des inclusions de texte dépliables. diff --git a/quarto extensions.md b/quarto extensions.md index 0403175d..01da0d7e 100644 --- a/quarto extensions.md +++ b/quarto extensions.md @@ -1,5 +1,5 @@ up:: [[quarto blog]] -#informatique #blog +#s/informatique #s/blog > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/quarto tabsets.md b/quarto tabsets.md index 70f19fe2..413fa839 100644 --- a/quarto tabsets.md +++ b/quarto tabsets.md @@ -1,6 +1,10 @@ -up:: [[quarto blog]] -link:: https://quarto.org/docs/output-formats/html-basics.html -#informatique #blog +--- +up: "[[quarto blog]]" +link: https://quarto.org/docs/output-formats/html-basics.html +tags: + - "#s/informatique" + - "#s/blog" +--- Pour faire une petite fenêtre avec des onglets (par exemple, montrer plusieurs langages). diff --git a/quarto yaml options.md b/quarto yaml options.md index 425ab9c3..22724863 100644 --- a/quarto yaml options.md +++ b/quarto yaml options.md @@ -1,5 +1,5 @@ up:: [[quarto blog]] -#informatique #blog +#s/informatique #s/blog > [!info] Set the title > and other usefull data diff --git a/quaternions.md b/quaternions.md index 2ebf44f6..83c27c55 100644 --- a/quaternions.md +++ b/quaternions.md @@ -1,5 +1,5 @@ up::[[algèbre]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/racine.md b/racine.md index da942899..eff955be 100644 --- a/racine.md +++ b/racine.md @@ -1,5 +1,5 @@ up::[[analyse]] -#maths/analyse +#s/maths/analyse ---- Soit $f$ une fonction de $E$ dans $F$. diff --git a/racines d'un polynôme.md b/racines d'un polynôme.md index 49cc7127..f98b9006 100644 --- a/racines d'un polynôme.md +++ b/racines d'un polynôme.md @@ -2,7 +2,7 @@ alias: [ "racine", "racines" ] --- up::[[polynôme]] -#maths/analyse +#s/maths/analyse ---- Les _racines_ d'un [[polynôme]] $P$ sont les valeurs $r$ telles que $P(r) = 0$ diff --git a/raisonnement valide.md b/raisonnement valide.md index b404b7ec..72c3d163 100644 --- a/raisonnement valide.md +++ b/raisonnement valide.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Un raisonnement est dit _valide_ ssi sa conclusion est la conséquence logique de ses prémisses. diff --git a/rang d'une application linéaire.md b/rang d'une application linéaire.md index c4572cc6..9d26641f 100644 --- a/rang d'une application linéaire.md +++ b/rang d'une application linéaire.md @@ -1,6 +1,6 @@ up::[[application linéaire]] title::"$\mathrm{rang} f = \dim \mathrm{Im} f$" -#maths/algèbre +#s/maths/algèbre ---- Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] diff --git a/rang d'une famille de vecteurs.md b/rang d'une famille de vecteurs.md index 07342fe3..2d71be66 100644 --- a/rang d'une famille de vecteurs.md +++ b/rang d'une famille de vecteurs.md @@ -1,7 +1,7 @@ up::[[famille de vecteurs]] sibling:: [[rang d'une matrice]] title:: "[[dimension d'un espace vectoriel|dimension]] de leur [[espace vectoriel engendré par une famille de vecteurs|ev engendré]] " -#maths/algèbre +#s/maths/algèbre ---- diff --git a/rang d'une forme bilinéaire.md b/rang d'une forme bilinéaire.md index b3dd36ce..5611dcfa 100644 --- a/rang d'une forme bilinéaire.md +++ b/rang d'une forme bilinéaire.md @@ -1,6 +1,6 @@ up:: [[forme bilinéaire]] title:: "rang de la [[matrice d'une forme bilinéaire|matrice associée]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/rang d'une matrice.md b/rang d'une matrice.md index 4920b335..daa1b33d 100644 --- a/rang d'une matrice.md +++ b/rang d'une matrice.md @@ -1,7 +1,7 @@ up:: [[matrice]] sibling:: [[rang d'une application linéaire]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/rayon de convergence de la dérivée.md b/rayon de convergence de la dérivée.md index 65c1ca08..b5da8464 100644 --- a/rayon de convergence de la dérivée.md +++ b/rayon de convergence de la dérivée.md @@ -3,7 +3,7 @@ alias: [ "rayon de convergence de la dérivée d'une série entière" ] --- up:: [[rayon de convergence]], [[dérivée d'une série entière]] title:: "le [[rayon de convergence]] de la dérivée est le même que celui de la fonction d'origine" -#maths/analyse +#s/maths/analyse --- diff --git a/rayon de convergence.md b/rayon de convergence.md index f6090f75..f71fed27 100644 --- a/rayon de convergence.md +++ b/rayon de convergence.md @@ -3,7 +3,7 @@ alias: [ "rayon de convergence d'une série entière", "rayon de convergence d'u --- up:: [[série entière]] title:: "intervalle de convergence de la série" -#maths/analyse +#s/maths/analyse --- > [!definition] Rayon de convergence d'une série numérique diff --git a/recette cake.md b/recette cake.md index d69f6e63..0cbfec7c 100644 --- a/recette cake.md +++ b/recette cake.md @@ -1,5 +1,5 @@ up::[[cuisine]] -#cuisine +#s/cuisine ---- diff --git a/recherche opérationnelle.md b/recherche opérationnelle.md index 444f907d..49bd1b1d 100644 --- a/recherche opérationnelle.md +++ b/recherche opérationnelle.md @@ -7,7 +7,7 @@ tags: excalidraw-open-md: true --- up:: [[science]] -#informatique/RO +#s/informatique/RO - aim développer des outils d'aide à la décision : rationaliser, simuler, optimiser l'architecture et le fonctionnement de systèmes diff --git a/recherche scientifique.md b/recherche scientifique.md index 98bf4cf4..d70a67fb 100644 --- a/recherche scientifique.md +++ b/recherche scientifique.md @@ -1,5 +1,5 @@ up:: [[science]] -#science +#s/science # Processus de la recherche scientifique diff --git a/recouvrement d'ensemble.md b/recouvrement d'ensemble.md index 50318a19..f9d0c355 100644 --- a/recouvrement d'ensemble.md +++ b/recouvrement d'ensemble.md @@ -3,7 +3,7 @@ aliases: - recouvrement --- up:: [[ensemble]], [[famille]] -#maths/topologie +#s/maths/topologie > [!definition] Définition > Soit $X$ un ensemble diff --git a/recouvrement extrait.md b/recouvrement extrait.md index 238c2127..32925183 100644 --- a/recouvrement extrait.md +++ b/recouvrement extrait.md @@ -3,7 +3,7 @@ aliases: - sous-recouvrement --- up:: [[recouvrement d'ensemble]] -#maths/topologie +#s/maths/topologie > [!definition] Définition > Soit $X$ un ensemble, et $(A_{i})_{i \in I}$ un [[recouvrement d'ensemble|recouvrement]] de $X$. diff --git a/recouvrement par des ouverts.md b/recouvrement par des ouverts.md index 5983cfaa..3c4bee8f 100644 --- a/recouvrement par des ouverts.md +++ b/recouvrement par des ouverts.md @@ -1,5 +1,5 @@ up:: [[recouvrement d'ensemble]], [[partie ouverte d'un espace métrique|ouvert]] -#maths/topologie +#s/maths/topologie > [!definition] Définition > Soit $(X, d)$ un [[espace métrique]] diff --git a/registres.md b/registres.md index 7e0c0b31..7e601624 100644 --- a/registres.md +++ b/registres.md @@ -1,5 +1,5 @@ up::[[mémoire informatique]] -#informatique +#s/informatique ---- diff --git a/relation antisymétrique.md b/relation antisymétrique.md index 260b444d..2d5fc696 100644 --- a/relation antisymétrique.md +++ b/relation antisymétrique.md @@ -1,6 +1,6 @@ up:: [[relation]] title:: "$x\mathcal{R}y \wedge y\mathcal{R}x \implies x = y$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/relation d'ordre totale.md b/relation d'ordre totale.md index 85101b76..d3ab9414 100644 --- a/relation d'ordre totale.md +++ b/relation d'ordre totale.md @@ -4,7 +4,7 @@ aliases: --- up:: [[relation d'ordre]] title:: "$\forall (x, y) \in E, x \mathcal{R}y \text{ existe}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/relation d'ordre.md b/relation d'ordre.md index 4782b3c2..da9915c4 100644 --- a/relation d'ordre.md +++ b/relation d'ordre.md @@ -1,6 +1,6 @@ up:: [[relation]] title:: "[[relation réflexive|réflexive]] : $x \mathcal{R} x$", "[[relation antisymétrique|antisymétrie]] : $x\mathcal{R}y \wedge y\mathcal{R}x \implies x=y$", "[[relation transitive|transitive]] : $x\mathcal{R}y \wedge y\mathcal{R}z \implies x\mathcal{R}z$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/relation d'équivalence.md b/relation d'équivalence.md index f24df32a..33662400 100644 --- a/relation d'équivalence.md +++ b/relation d'équivalence.md @@ -4,7 +4,7 @@ sr-interval: 113 sr-ease: 291 --- up::[[relation]] -#maths/algèbre +#s/maths/algèbre ---- Soient $E$ un ensemble non vide, et $\mathscr R$ une [[relation]]. diff --git a/relation réflexive.md b/relation réflexive.md index afd4215b..c31d8d60 100644 --- a/relation réflexive.md +++ b/relation réflexive.md @@ -2,7 +2,7 @@ alias: [ "réflexive", "réflexivité" ] --- up::[[relation]] -#maths/algèbre +#s/maths/algèbre ---- Soit $\mathscr R$ une [[relation]] sur $E$. diff --git a/relation symétrique.md b/relation symétrique.md index a782e575..9c38f63e 100644 --- a/relation symétrique.md +++ b/relation symétrique.md @@ -2,7 +2,7 @@ alias: [ "symétrie", "symétrique" ] --- up::[[relation]] -#maths/algèbre +#s/maths/algèbre ---- Soit $\mathscr R$ une [[relation]] sur $E$. diff --git a/relation transitive.md b/relation transitive.md index 38531629..1b1ca78f 100644 --- a/relation transitive.md +++ b/relation transitive.md @@ -3,7 +3,7 @@ alias: ["transitivité", "transitive"] --- up::[[relation]] title:: "$x\mathscr Ry \vee y\mathscr Rz \implies x\mathscr Rz$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/relation.md b/relation.md index 6907aacb..5e2a9e5c 100644 --- a/relation.md +++ b/relation.md @@ -1,6 +1,6 @@ --- up: "[[algèbre]]" -tags: "#maths/algèbre" +tags: "#s/maths/algèbre" --- > [!definition] diff --git a/relativisme moral.md b/relativisme moral.md index 078a6ab2..bf4b247a 100644 --- a/relativisme moral.md +++ b/relativisme moral.md @@ -1,6 +1,6 @@ up:: [[morale]] sibling:: [[subjectivisme moral]] -#philosphie +#s/philosphie Idée que le bien et le mal ne sont pas expliquables par la nature des choses : une chose n'est pas bonne en elle-même, sa nature n'explique pas sa bonté ou son mal. Le relativisme n'exclut pas une forme de vérité dans la moralité. Il explique simplement que cette moralité dépend de l'individu à laquelle on doit l'appliquer. diff --git a/remplacement de page - algorithme FIFO.md b/remplacement de page - algorithme FIFO.md index 5d29597c..fdbff571 100644 --- a/remplacement de page - algorithme FIFO.md +++ b/remplacement de page - algorithme FIFO.md @@ -1,6 +1,6 @@ up:: [[algorithme de remplacement de page]] title:: "remplacer la plus ancienne page chargée" -#informatique +#s/informatique --- diff --git a/remplacement de page - algorithme FINUFO.md b/remplacement de page - algorithme FINUFO.md index 6d2f9da2..10b53850 100644 --- a/remplacement de page - algorithme FINUFO.md +++ b/remplacement de page - algorithme FINUFO.md @@ -1,6 +1,6 @@ up:: [[algorithme de remplacement de page]] title:: "First In Not Used First Out" -#informatique +#s/informatique --- diff --git a/remplacement de page - algorithme LRU.md b/remplacement de page - algorithme LRU.md index c9c16013..e5164db8 100644 --- a/remplacement de page - algorithme LRU.md +++ b/remplacement de page - algorithme LRU.md @@ -1,6 +1,6 @@ up:: [[algorithme de remplacement de page]] title:: "Least Recently Used" -#informatique +#s/informatique --- diff --git a/remplacement de page - algorithme WS.md b/remplacement de page - algorithme WS.md index 7a2c0d6e..3fc79584 100644 --- a/remplacement de page - algorithme WS.md +++ b/remplacement de page - algorithme WS.md @@ -3,7 +3,7 @@ alias: [ "algorithme Working Set", "Algorithme par gestion de fenêtre" ] --- up:: algorithme de gestion [[algorithme de remplacement de page]] title:: -#informatique +#s/informatique --- diff --git a/remplacement de page - algorithme optimal.md b/remplacement de page - algorithme optimal.md index e0f52cae..1a57d75d 100644 --- a/remplacement de page - algorithme optimal.md +++ b/remplacement de page - algorithme optimal.md @@ -1,6 +1,6 @@ up:: [[algorithme de remplacement de page]] title:: "on doit connaître le futur ==> impossible à implémenter" -#informatique +#s/informatique --- diff --git a/rendez-vous de l'histoire.md b/rendez-vous de l'histoire.md index 8236354d..9b04eda0 100644 --- a/rendez-vous de l'histoire.md +++ b/rendez-vous de l'histoire.md @@ -3,5 +3,5 @@ aliases: - RDV de l'histoire - rendez vous de l'histoire --- -#science/histoire +#s/science/histoire diff --git a/reproduction des rapports sociaux.md b/reproduction des rapports sociaux.md index c4f984eb..c8b083ca 100644 --- a/reproduction des rapports sociaux.md +++ b/reproduction des rapports sociaux.md @@ -1,5 +1,5 @@ up::[[société de classes]] -#science/sociologie +#s/science/sociologie Dans une [[société de classes]], les **rapports sociaux** ont tendance à se **reproduire** : les enfants ont la même place dans la société que leurs parents. diff --git a/représentation des nombres en binaire.md b/représentation des nombres en binaire.md index 87dc8616..f49b8738 100644 --- a/représentation des nombres en binaire.md +++ b/représentation des nombres en binaire.md @@ -1,6 +1,6 @@ up::[[représentations en binaire]] down:: [[codage binaire des nombres réels en virgule flottante]], [[codage binaire des nombres réels en virgule fixe]] -#informatique +#s/informatique ---- diff --git a/représentation matricielle d'un SL.md b/représentation matricielle d'un SL.md index 639e9341..a3cdb25b 100644 --- a/représentation matricielle d'un SL.md +++ b/représentation matricielle d'un SL.md @@ -1,5 +1,5 @@ up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- Soit $(S)$ le [[système linéaire]] suivant : diff --git a/représentations en binaire.md b/représentations en binaire.md index eb4c314c..c3fe5283 100644 --- a/représentations en binaire.md +++ b/représentations en binaire.md @@ -1,7 +1,7 @@ down:: [[down of représentations en binaire]] up::[[binaire]] down::[[représentation des nombres en binaire]] -#informatique +#s/informatique ---- diff --git a/requête conjonctive.md b/requête conjonctive.md index 8d801539..f4f76e0e 100644 --- a/requête conjonctive.md +++ b/requête conjonctive.md @@ -1,4 +1,4 @@ up::[[requête]] -#informatique +#s/informatique ---- diff --git a/requête.md b/requête.md index b4276a0f..e6fdb188 100644 --- a/requête.md +++ b/requête.md @@ -1,5 +1,5 @@ up::[[base de données]] -#informatique +#s/informatique Une "question" que l'on pose à une [[base de données]]. diff --git a/requêtes SQL.md b/requêtes SQL.md index 666f30b0..d01ab9c9 100644 --- a/requêtes SQL.md +++ b/requêtes SQL.md @@ -1,5 +1,5 @@ up::[[SQL]] -#informatique +#s/informatique ---- Dans une [[base de données]] diff --git a/requêtes monotones.md b/requêtes monotones.md index 026e31d4..185a19c5 100644 --- a/requêtes monotones.md +++ b/requêtes monotones.md @@ -1,7 +1,7 @@ up::[[propriétés des requêtes conjonctives]] title::"$I \subseteq J \implies q(I) \subseteq q(J)$ avec $I, J$ des instances et $q$ une [[requête]]" description::"ajouter des données dans l'instance ajoute au minimum 0 données dans le résultat d'une requête" -#informatique +#s/informatique ---- diff --git a/requêtes équivalentes.md b/requêtes équivalentes.md index ac768b8d..5a58ca52 100644 --- a/requêtes équivalentes.md +++ b/requêtes équivalentes.md @@ -1,5 +1,5 @@ up::[[propriétés des requêtes conjonctives]] -#informatique #not-done +#s/informatique #not-done ---- diff --git a/ressources fossiles.md b/ressources fossiles.md index 3a57e2e0..588c4f5c 100644 --- a/ressources fossiles.md +++ b/ressources fossiles.md @@ -1,6 +1,6 @@ up:: [[énergie]], [[climat]] title:: -#science/écologie #todo +#s/science/écologie #todo --- diff --git a/restart wacom drivers.md b/restart wacom drivers.md index 8c65df46..89a6b2d3 100644 --- a/restart wacom drivers.md +++ b/restart wacom drivers.md @@ -3,7 +3,7 @@ alias: [ "restart wacom graphic tablet drivers", "redémarrer les drivers wacom" --- up:: title:: -#informatique +#s/informatique --- diff --git a/reste d'ordre n d'une suite.md b/reste d'ordre n d'une suite.md index f3a66a23..b6ab6dad 100644 --- a/reste d'ordre n d'une suite.md +++ b/reste d'ordre n d'une suite.md @@ -4,7 +4,7 @@ alias: [ "reste d'ordre n", "reste d'une suite", "reste" ] up:: [[suite]] sibling:: [[somme partielle d'une suite]] title:: $\displaystyle R_{n} = \sum\limits_{k=n+1}^{n} u_{n}$ -#maths/analyse +#s/maths/analyse --- diff --git a/reste d'une série.md b/reste d'une série.md index 341a8252..f471bcc4 100644 --- a/reste d'une série.md +++ b/reste d'une série.md @@ -1,6 +1,6 @@ up:: [[série]] title:: "$R_{n} = \sum\limits_{k=n}^{+\infty} u_{n}$" -#maths/analyse +#s/maths/analyse --- diff --git a/rhombicuboctaèdre.md b/rhombicuboctaèdre.md index 859c218f..124ca02c 100644 --- a/rhombicuboctaèdre.md +++ b/rhombicuboctaèdre.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre ---- aussi **petit rhombicuboctaèdre** diff --git a/riches salariés.md b/riches salariés.md index 2b16910e..121d2558 100644 --- a/riches salariés.md +++ b/riches salariés.md @@ -1,5 +1,5 @@ up:: [[classes sociales]] -#science/économie #politique +#s/science/économie #s/politique Les riches salariés sont les riches qui sont effectivement devenus riches **par leur travail**. diff --git a/rivière du doute.md b/rivière du doute.md index a55e75c4..b01edd20 100644 --- a/rivière du doute.md +++ b/rivière du doute.md @@ -1,5 +1,5 @@ up:: [[idées d'activités associatives]] -#fac/associations +#s/fac/associations exercice pour "break the ice" similaire au [[débat m]] diff --git a/roman national.md b/roman national.md index 18170881..1dc0ca74 100644 --- a/roman national.md +++ b/roman national.md @@ -1,5 +1,5 @@ up:: [[mythes]] -#science/histoire #politique +#s/science/histoire #s/politique > [!definition] roman national > Histoire romancée qu'une nation se raconte. diff --git a/rotation vectorielle.md b/rotation vectorielle.md index b5c42ee1..7a2c0587 100644 --- a/rotation vectorielle.md +++ b/rotation vectorielle.md @@ -1,6 +1,6 @@ up:: [[rotation]] title::"[[dimension d'un espace vectoriel|2D]] : $r_{\theta} \;\widehat{=} \begin{pmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{pmatrix}$" -#maths +#s/maths ---- diff --git a/rotation.md b/rotation.md index 40de28fc..4bcd5c9f 100644 --- a/rotation.md +++ b/rotation.md @@ -1,5 +1,5 @@ up::[[transformations]] down:: [[rotation vectorielle]] -#maths +#s/maths ---- diff --git a/routage.md b/routage.md index 3573440b..d79dba58 100644 --- a/routage.md +++ b/routage.md @@ -1,6 +1,6 @@ up::[[réseau informatique]] sibling::[[routeur réseau]] -#informatique +#s/informatique ---- diff --git a/routeur réseau.md b/routeur réseau.md index ea3022f7..2edb7b5f 100644 --- a/routeur réseau.md +++ b/routeur réseau.md @@ -2,7 +2,7 @@ alias: [ "routeur" ] --- up::[[couche réseau]], [[matériel réseau informatique]] -#informatique#not-done +#s/informatique#not-done ---- diff --git a/rstview.md b/rstview.md index a4091985..87a7f481 100644 --- a/rstview.md +++ b/rstview.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"lecteur de [[ReStructuredText]] (rst)" -#informatique/unix +#s/informatique/unix ---- Utilitaire pour afficher (dans un navigateur) un fichier [[ReStructuredText]] (.rst) diff --git a/ruby.md b/ruby.md index 65b90c29..44a3b365 100644 --- a/ruby.md +++ b/ruby.md @@ -1,5 +1,5 @@ up::[[langage de programmation]] -#informatique +#s/informatique ---- diff --git a/règle d'Abel pour les intégrales.md b/règle d'Abel pour les intégrales.md index edcb0e52..ac75fb30 100644 --- a/règle d'Abel pour les intégrales.md +++ b/règle d'Abel pour les intégrales.md @@ -3,7 +3,7 @@ alias: [ "critère d'Abel", "critère d'Abel pour les intégrales" ] --- up:: [[intégration généralisée]] title:: "$f, g \in C^{0}([a, +\infty[)$", "$f \in C^{1}([a; +\infty])$ décroissante, et $f \to _{+\infty} 0$", "$\displaystyle G: x \mapsto \int_{a}^{x} g(x) \, dx$ est bornée", "$\displaystyle \implies \int_{a}^{+\infty} f(x)g(x) \, dx$ converge" -#maths/analyse +#s/maths/analyse --- diff --git a/règle d'Abel pour les séries trigonométriques.md b/règle d'Abel pour les séries trigonométriques.md index 5cefe869..4f5a3532 100644 --- a/règle d'Abel pour les séries trigonométriques.md +++ b/règle d'Abel pour les séries trigonométriques.md @@ -3,7 +3,7 @@ alias: [ "série trigonométrique règle d'Abel", "règle d'Abel" ] --- up:: [[convergence d'une série trigonométrique]] title:: "si $a_{n}$ et $b_{n}$ sont positives décroissantes et tendent vers 0, alors $\sum\limits_{n\geq 0} \big(a_{n}\cos(nx) + b_{n}\sin(nx)\big)$ CVU sur $\mathbb{R}\setminus 2\pi \mathbb{Z}$" -#maths/analyse +#s/maths/analyse --- diff --git a/règle d'Abel pour les séries.md b/règle d'Abel pour les séries.md index 940a60c6..b1710811 100644 --- a/règle d'Abel pour les séries.md +++ b/règle d'Abel pour les séries.md @@ -3,7 +3,7 @@ alias: [ "critère d'Abel", "critère d'Abel pour les séries", "séries numéri --- up:: [[convergence d'une série numérique]] title:: "Soient $(a_{n})$, $(b_{n})$ telles que", " - $\lim\limits_{ n \to \infty }(a_{n}) = 0$ et $(a_{n})$ est [[suite décroissante|décroissante]]", " - la suite des [[somme partielle d'une suite|sommes partielles]] de $b_{n}$ est bornée" -#maths/analyse +#s/maths/analyse --- diff --git a/règle d'Abel uniforme.md b/règle d'Abel uniforme.md index c372375d..98e80952 100644 --- a/règle d'Abel uniforme.md +++ b/règle d'Abel uniforme.md @@ -2,7 +2,7 @@ alias: [ "critère d'Abel uniforme", "critère d'Abel uniforme pour les séries", "séries numériques critère d'Abel uniforme" ] --- up:: [[convergence d'une série numérique]] -#maths/analyse +#s/maths/analyse --- diff --git a/règle d'inférence.md b/règle d'inférence.md index 3ccf024a..8974696f 100644 --- a/règle d'inférence.md +++ b/règle d'inférence.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/règle de d'Alembert pour les séries.md b/règle de d'Alembert pour les séries.md index bd38c45e..2e724a30 100644 --- a/règle de d'Alembert pour les séries.md +++ b/règle de d'Alembert pour les séries.md @@ -5,7 +5,7 @@ up:: [[convergence d'une série numérique]] sibling:: [[série de fonctions critère de d'Alemblert]] author::[[Jean le Rond d'Alembert]] title:: "Si :", " - $\lim\limits_{ n \to +\infty } \dfrac{u_{n+1}}{u_{n}} = 0$", " - $\lim\limits_{ n \to +\infty } u_{n} = 0$", "alors $\sum\limits u_{n}$ CV" -#maths/analyse +#s/maths/analyse --- diff --git a/réaction chimique oscillante.md b/réaction chimique oscillante.md index f1a2e6ba..3e5c7f23 100644 --- a/réaction chimique oscillante.md +++ b/réaction chimique oscillante.md @@ -1,5 +1,5 @@ up:: [[réaction chimique]] -#science/chimie +#s/science/chimie > [!zotero]+ [Réaction oscillante](zotero://select/library/items/ANM9A8QA) - [Page ](zotero://open-pdf/library/items/PC6HDH4T?annotation=XIX5I5RM) > Une réaction oscillante est un mélange complexe de composés chimiques dont la concentration d'un ou plusieurs composants présente des changements périodiques, jusqu'à épuisement de sa source d'énergie (généralement, un des réactifs). diff --git a/réaction chimique.md b/réaction chimique.md index 99e3ea11..ca08e638 100644 --- a/réaction chimique.md +++ b/réaction chimique.md @@ -1,5 +1,5 @@ up:: [[chimie]] -#science/chimie +#s/science/chimie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/réciproque (logique).md b/réciproque (logique).md index 2ea5efa2..8323d9bc 100644 --- a/réciproque (logique).md +++ b/réciproque (logique).md @@ -2,7 +2,7 @@ alias: [ "réciproque" ] --- title:: "la réciproque de $P \implies Q$ est $Q \implies P$" -#maths/logique#not-done +#s/maths/logique#not-done ---- diff --git a/réduction de Gauss d'une forme quadratique.md b/réduction de Gauss d'une forme quadratique.md index ff47b1b3..60e1a7c1 100644 --- a/réduction de Gauss d'une forme quadratique.md +++ b/réduction de Gauss d'une forme quadratique.md @@ -1,7 +1,7 @@ up:: [[forme quadratique]] title:: "somme de carrés de combinaisons linéaires : $\pm\left( ax_1+bx_2+cx_3 \right)^{2} \pm \left( dx_2 + ex_3 \right)^{2} \pm fx_3^{2}$" author:: [[Carl Friedrich Gauss]] -#maths/algèbre +#s/maths/algèbre --- diff --git a/réflexion.md b/réflexion.md index 1374e6f8..d9fbc9cf 100644 --- a/réflexion.md +++ b/réflexion.md @@ -1,6 +1,6 @@ up::[[transformations]] down:: [[symétrie vectorielle orthogonale]] -#maths#not-done +#s/maths#not-done ---- diff --git a/répertoire profs fac.md b/répertoire profs fac.md index 405d9156..4b84b0c6 100644 --- a/répertoire profs fac.md +++ b/répertoire profs fac.md @@ -15,7 +15,7 @@ down:: [[aneeksha brigemohun]] down:: [[Patrick marcel]] -#fac +#s/fac ---- diff --git a/réseau adresses IPv6.md b/réseau adresses IPv6.md index f16d6d48..cdb7768f 100644 --- a/réseau adresses IPv6.md +++ b/réseau adresses IPv6.md @@ -3,7 +3,7 @@ alias: [ "IPv6" ] --- up:: [[adresses IP]] title:: "128bits" -#informatique +#s/informatique --- diff --git a/réseau adresses.md b/réseau adresses.md index 8407902d..f8afb28b 100644 --- a/réseau adresses.md +++ b/réseau adresses.md @@ -3,7 +3,7 @@ alias: [ "types d'adresses réseaux" ] --- up::[[réseau informatique]] title::"3 types d'adresses : [[adresses IP|IP]], [[adresse mac|mac]] et [[réseau numéro de port]]" -#informatique/réseau +#s/informatique/réseau --- diff --git a/réseau informatique.md b/réseau informatique.md index f4e30d96..599684b3 100644 --- a/réseau informatique.md +++ b/réseau informatique.md @@ -1,6 +1,6 @@ up::[[informatique|informatique]] title::"ordinateurs connectés, acheminant de l'information entre eux" -#informatique +#s/informatique ---- diff --git a/réseau modes de communication.md b/réseau modes de communication.md index c9a5cf65..5ff53b7c 100644 --- a/réseau modes de communication.md +++ b/réseau modes de communication.md @@ -1,5 +1,5 @@ up::[[couche liaison]] -#informatique +#s/informatique ---- diff --git a/réseaux sociaux.md b/réseaux sociaux.md index c12c12c9..03fdab45 100644 --- a/réseaux sociaux.md +++ b/réseaux sociaux.md @@ -1,4 +1,4 @@ -#science/sociologie #informatique +#s/science/sociologie #s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/résolution d'un SL.md b/résolution d'un SL.md index 2d2f4128..3a33f82f 100644 --- a/résolution d'un SL.md +++ b/résolution d'un SL.md @@ -4,7 +4,7 @@ sr-interval: 4 sr-ease: 274 --- up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/réunion de rentrée Blois.md b/réunion de rentrée Blois.md index dedf68c8..af765360 100644 --- a/réunion de rentrée Blois.md +++ b/réunion de rentrée Blois.md @@ -1,5 +1,5 @@ date:: 2023-09-04 -#fac +#s/fac
**GROUPE 2**
diff --git a/rôles et reseaux sociaux dans les communautés en ligne.md b/rôles et reseaux sociaux dans les communautés en ligne.md index 226df6a7..8f4876e1 100644 --- a/rôles et reseaux sociaux dans les communautés en ligne.md +++ b/rôles et reseaux sociaux dans les communautés en ligne.md @@ -1,6 +1,6 @@ up:: [[réseaux sociaux]] source:: [[MADICS 2024]] -#informatique #science/sociologie +#s/informatique #s/science/sociologie # Etude de [[StackOverflow]] diff --git a/salaire attaché au poste.md b/salaire attaché au poste.md index 681aaaf2..12dd745a 100644 --- a/salaire attaché au poste.md +++ b/salaire attaché au poste.md @@ -4,7 +4,7 @@ aliases: --- up:: [[types de salariat]] sibling:: [[salaire à la qualification personnelle]], [[salaire à la qualification personnelle]] -#politique #science/économie +#s/politique #s/science/économie > [!definition] salaire attaché au poste > Lorsque le salaire dépend du poste de travail. diff --git a/salaire à la qualification personnelle.md b/salaire à la qualification personnelle.md index 001ab47e..8832d6fb 100644 --- a/salaire à la qualification personnelle.md +++ b/salaire à la qualification personnelle.md @@ -6,7 +6,7 @@ aliases: up:: [[types de salariat]] opposes:: [[salaire attaché au poste|salaire au poste]] source:: [[SalaireQualificationPersonnelle2024]] -#politique +#s/politique > [!definition] salaire à la qualification personnelle > Le salaire à la qualification personnelle consiste à verser un "*salaire à vie*" à chaque citoyen en âge de majorité, lié à une qualification personnelle irrévocable. diff --git a/salaire.md b/salaire.md index 10117dc4..2110ec45 100644 --- a/salaire.md +++ b/salaire.md @@ -1,5 +1,5 @@ up:: [[travail]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/salsiphi 2024-01-27.md b/salsiphi 2024-01-27.md index 770cdb84..44dec41b 100644 --- a/salsiphi 2024-01-27.md +++ b/salsiphi 2024-01-27.md @@ -1,5 +1,5 @@ up:: [[salsiphi comptes rendus]] -#science +#s/science # sujets abordés diff --git a/satiation sémantique.md b/satiation sémantique.md index 9b05e7d4..ceba0f52 100644 --- a/satiation sémantique.md +++ b/satiation sémantique.md @@ -1,5 +1,5 @@ up:: [[psychologie]] -#science +#s/science > [!definition] Définition > Phénomène psychologique : lorsque l'on répète un mot (ou une expression), il pert sont sens pour l'auditoire : il devient une suite de sons répétés et dénués de sens. diff --git a/satisfaisable.md b/satisfaisable.md index d112081d..28a2564d 100644 --- a/satisfaisable.md +++ b/satisfaisable.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Une [[proposition]] est _satisfaisable_ si elle admet **au moins un [[modèle]]**. diff --git a/savoir chaud.md b/savoir chaud.md index 6f7d34c1..7fdf5802 100644 --- a/savoir chaud.md +++ b/savoir chaud.md @@ -1,6 +1,6 @@ up:: [[éducation]] title:: "expérience personnelle, savoir de l'histoire d'une personne" -#apprendre +#s/apprendre --- diff --git a/savoir vs connaissance.md b/savoir vs connaissance.md index ece0c9ff..dbe60824 100644 --- a/savoir vs connaissance.md +++ b/savoir vs connaissance.md @@ -5,7 +5,7 @@ tags: excalidraw-open-md: true --- up:: [[savoir]], [[connaissance]], [[théorie de la connaissance]] -#philosphie +#s/philosphie # Définitions ![[savoir#^definition]] diff --git a/savoir.md b/savoir.md index f580bec0..720050da 100644 --- a/savoir.md +++ b/savoir.md @@ -1,6 +1,6 @@ up:: [[théorie de la connaissance]] sibling:: [[connaissance]] -#philosphie +#s/philosphie > [!definition] savoir > Le savoir est un concept ou un ensemble de concept acquis par quelqu'un et qui peuvent être transmis. diff --git a/scandalisation du contexte.md b/scandalisation du contexte.md index 2c806ea4..349db6f5 100644 --- a/scandalisation du contexte.md +++ b/scandalisation du contexte.md @@ -4,7 +4,7 @@ aliases: - rendre la contextualisation scandaleuse --- up:: [[débat public]], [[médias]] -#politique +#s/politique > [!definition] scandalisation du contexte > Lorsque le fait de *contextualiser* un événement grave (attentat, attaque terroriste...), devient scandaleux, notamment à cause de la [[polarisation du débat]]. diff --git a/science ouverte.md b/science ouverte.md index 87938c6d..9710cb3f 100644 --- a/science ouverte.md +++ b/science ouverte.md @@ -3,7 +3,7 @@ aliases: - open science --- up:: [[science]] -#informatique +#s/informatique > [!definition] science ouverte > diff --git a/science.md b/science.md index ba9b5b45..8b2b41f1 100644 --- a/science.md +++ b/science.md @@ -1,4 +1,4 @@ -#science +#s/science > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` @@ -10,7 +10,7 @@ > ``` -# Notes de #science +# Notes de #s/science ```dataview LIST title FROM #science diff --git a/sciences humaines et sociales.md b/sciences humaines et sociales.md index d39d4653..4ac04fc3 100644 --- a/sciences humaines et sociales.md +++ b/sciences humaines et sociales.md @@ -3,4 +3,4 @@ aliases: - SHS --- up:: [[science]] -#science \ No newline at end of file +#s/science \ No newline at end of file diff --git a/seconde inégalité triangulaire.md b/seconde inégalité triangulaire.md index 5a3cdf00..0ada5bd7 100644 --- a/seconde inégalité triangulaire.md +++ b/seconde inégalité triangulaire.md @@ -1,5 +1,5 @@ up:: [[inégalité triangulaire]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[seconde inégalité triangulaire]] > Soit $(X, d)$ un [[espace métrique]] diff --git a/semi groupe.md b/semi groupe.md index 0975e979..5206c396 100644 --- a/semi groupe.md +++ b/semi groupe.md @@ -1,6 +1,6 @@ up::[[structure algébrique]] title::"ensemble muni d'une [[loi de composition interne|lci]] [[associativité|associative]]" -#maths/algèbre +#s/maths/algèbre ---- Soit un ensemble $E$, et $*$ une [[loi de composition interne]] sur $E$. diff --git a/sens.md b/sens.md index 8b37367a..054bcfb7 100644 --- a/sens.md +++ b/sens.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Le sens d'un énoncé logique est **sa valeur de vérité** : $\{\mathbb{V}, \mathbb{F}\}$ diff --git a/sept arts libéraux.md b/sept arts libéraux.md index 92620a5c..b35a84e8 100644 --- a/sept arts libéraux.md +++ b/sept arts libéraux.md @@ -1,4 +1,4 @@ -#science +#s/science ---- Ensemble de 7 arts, répartis entre le [[trivium]] et le [[quadrivium]] : diff --git a/server side.md b/server side.md index e1521931..08e5ee40 100644 --- a/server side.md +++ b/server side.md @@ -1,4 +1,4 @@ up:: [[programmation web]] -#informatique +#s/informatique diff --git a/serveur www.md b/serveur www.md index 200a3140..17ad12b5 100644 --- a/serveur www.md +++ b/serveur www.md @@ -1,5 +1,5 @@ up::[[world wide web]] -#informatique +#s/informatique ---- # Une machine + un logiciel diff --git a/servir un dossier via http.md b/servir un dossier via http.md index 5d1c2f6d..9edeff17 100644 --- a/servir un dossier via http.md +++ b/servir un dossier via http.md @@ -1,6 +1,6 @@ up:: [[python]] title:: `python3 -m http.server [port]` -#informatique/langage/python +#s/informatique/langage/python --- diff --git a/servlet.md b/servlet.md index 9dc4ea44..52d3307a 100644 --- a/servlet.md +++ b/servlet.md @@ -1,5 +1,5 @@ up:: [[cours programmation web serveur]] -#informatique +#s/informatique > [!definition] Servlet > contraction de **serv**er app**let** diff --git a/signature d'une forme quadratique.md b/signature d'une forme quadratique.md index 166ee5bd..38e2557e 100644 --- a/signature d'une forme quadratique.md +++ b/signature d'une forme quadratique.md @@ -3,7 +3,7 @@ alias: [ "signature" ] --- up:: [[forme quadratique]] title:: "(# coefficients positifs, # coefficients négatifs) dans la [[réduction de Gauss d'une forme quadratique|réduction de gauss]]"" -#maths/algèbre +#s/maths/algèbre --- diff --git a/signature d'une permutation.md b/signature d'une permutation.md index dad78c29..5bf6aca6 100644 --- a/signature d'une permutation.md +++ b/signature d'une permutation.md @@ -3,7 +3,7 @@ aliases: - signature --- up::[[permutation]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $s$ une [[permutation]]. diff --git a/similitude vectorielle.md b/similitude vectorielle.md index 5490fead..c98f1e34 100644 --- a/similitude vectorielle.md +++ b/similitude vectorielle.md @@ -1,6 +1,6 @@ up:: [[transformations]] title:: "composée d'une [[isométrie]] et d'une [[homothétie]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/sinus d'une somme.md b/sinus d'une somme.md index af2bd38a..d29502eb 100644 --- a/sinus d'une somme.md +++ b/sinus d'une somme.md @@ -7,7 +7,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus d'une somme]] type::"formule de somme" title::"$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$" -#maths/trigonométrie +#s/maths/trigonométrie ---- "$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$" diff --git a/sinus de pi sur 2 moins x.md b/sinus de pi sur 2 moins x.md index 9f2ede5e..70f1f059 100644 --- a/sinus de pi sur 2 moins x.md +++ b/sinus de pi sur 2 moins x.md @@ -6,7 +6,7 @@ sibling:: [[cosinus pi sur 2 moins x]] up::[[formules de trigonométrie]] sibling::[[cosinus de pi sur 2 moins x]], [[tangente de pi sur 2 moins x]] title::$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/sinus du double.md b/sinus du double.md index 4aa0c4b4..9bcc780e 100644 --- a/sinus du double.md +++ b/sinus du double.md @@ -7,7 +7,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus du double]] type::"formule de duplication" title::$\sin(2x) = 2\sin(x)\cos(x)$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/sinus en fonction de tangente x sur deux.md b/sinus en fonction de tangente x sur deux.md index ac966a0f..862c975f 100644 --- a/sinus en fonction de tangente x sur deux.md +++ b/sinus en fonction de tangente x sur deux.md @@ -2,7 +2,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus en fonction de tangente x sur deux|cosinus en fonction de tan(x/2)]] type::$t = \tan(\frac{x}{2})$ title::$\sin(x) = \dfrac{2t}{1+t^{2}}$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/sinus hyperbolique d'une somme.md b/sinus hyperbolique d'une somme.md index 3769995c..3e9584ff 100644 --- a/sinus hyperbolique d'une somme.md +++ b/sinus hyperbolique d'une somme.md @@ -7,7 +7,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus hyperbolique d'une somme]] type::"formule de somme", "hyperbolique" title::$\mathrm{sh}(a+b) = \mathrm{sh}(a)\mathrm{ch}(b)+\mathrm{sh}(b)\mathrm{ch}(a)$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/sinus hyperbolique du double.md b/sinus hyperbolique du double.md index 3148a5dc..3e965a87 100644 --- a/sinus hyperbolique du double.md +++ b/sinus hyperbolique du double.md @@ -2,7 +2,7 @@ up::[[formules de trigonométrie]] sibling::[[cosinus hyperbolique du double]] type::"formule de duplication", "hyperbolique" title::$\mathrm{sh}(2x) = 2\mathrm{sh}(x)\mathrm{ch}(x)$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/skolem.md b/skolem.md index 80a336c2..d0364d51 100644 --- a/skolem.md +++ b/skolem.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Un _skolem_ est une forme particulière de formules de la [[logique des predicats du premier ordre]]. diff --git a/slam collectif.md b/slam collectif.md index 84541869..4f39f2f4 100644 --- a/slam collectif.md +++ b/slam collectif.md @@ -3,7 +3,7 @@ share_link: https://share.note.sx/pbzxntxy#ZuzN3FUoJmq6qWqRWNekNra9qGMopxw2XmodI share_updated: 2024-11-28T16:54:07+01:00 --- up:: [[slam de poésie|slam]] -#art/slam +#s/art/slam Voici la femme diff --git a/slam de poésie.md b/slam de poésie.md index a508c2fa..aa4ff8de 100644 --- a/slam de poésie.md +++ b/slam de poésie.md @@ -3,7 +3,7 @@ aliases: - slam --- up:: [[art]] -#art/slam +#s/art/slam ```breadcrumbs title: "Sous-notes" diff --git a/slam gilles.md b/slam gilles.md index 1b7dea29..262b3b21 100644 --- a/slam gilles.md +++ b/slam gilles.md @@ -1,5 +1,5 @@ up:: [[slam de poésie|slam]] -#art/slam +#s/art/slam Perdu près d'une prison dont il vole l'argile, il en fait des peaux lisses, mais son art gèle diff --git a/slam ma mémoire.md b/slam ma mémoire.md index e8a4b8ae..9010098f 100644 --- a/slam ma mémoire.md +++ b/slam ma mémoire.md @@ -3,7 +3,7 @@ aliases: up: - "[[slam de poésie|slam]]" tags: - - "#art" + - "#s/art" --- ![[Slam ma mémoire.m4a]] diff --git a/snap.md b/snap.md index f6905a5c..52fd3d2c 100644 --- a/snap.md +++ b/snap.md @@ -1,6 +1,6 @@ title::"alternative à scratch" link::https://snap.berkeley/edu -#informatique #apprendre +#s/informatique #s/apprendre ---- diff --git a/socialisme.md b/socialisme.md index ad1e1512..22c72b1c 100644 --- a/socialisme.md +++ b/socialisme.md @@ -1,6 +1,6 @@ up::[[système politique]] opposes:: [[capitalisme]] -#politique +#s/politique > [!définition] > - restreinde le droit d'accumulation des capitaux diff --git a/sociologie distinction.md b/sociologie distinction.md new file mode 100644 index 00000000..a5cf062b --- /dev/null +++ b/sociologie distinction.md @@ -0,0 +1,16 @@ +--- +aliases: + - distinction sociale +up: + - "[[déterminisme social]]" +tags: + - s/science/sociologie +--- +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/sociologie.md b/sociologie.md index d8fdd46d..112214be 100644 --- a/sociologie.md +++ b/sociologie.md @@ -1,5 +1,5 @@ up:: [[science]] -#science/sociologie +#s/science/sociologie ```breadcrumbs title: "Sous-notes" diff --git a/somme d'espaces vectoriels.md b/somme d'espaces vectoriels.md index b8f0e777..618688dd 100644 --- a/somme d'espaces vectoriels.md +++ b/somme d'espaces vectoriels.md @@ -3,7 +3,7 @@ alias: [ "somme" ] --- up:: [[sous espace vectoriel]] title::"$E_{1}+E_{2} = \{ u_{1}+u_{2} \mid u_{1}\in E_{1} \wedge u_{2} \in E_{2} \}$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/somme des carrés.md b/somme des carrés.md index 245250fe..697fa1b1 100644 --- a/somme des carrés.md +++ b/somme des carrés.md @@ -1,6 +1,6 @@ up::[[dénombrement]] title::$\sum\limits_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$ -#maths +#s/maths ---- La somme des carrés des entiers de $1$ à $n$. diff --git a/somme des cubes.md b/somme des cubes.md index 0ceb9ad9..dc6c5a05 100644 --- a/somme des cubes.md +++ b/somme des cubes.md @@ -1,5 +1,5 @@ up::[[dénombrement]] -#maths +#s/maths ---- diff --git a/somme des termes d'une suite.md b/somme des termes d'une suite.md index 8b88f8e6..18dd599b 100644 --- a/somme des termes d'une suite.md +++ b/somme des termes d'une suite.md @@ -1,5 +1,5 @@ up::[[dénombrement]] -#maths/dénombrement #maths/arithmétique +#s/maths/dénombrement #s/maths/arithmétique ---- Soit $u$ une [[suite]] diff --git a/somme des valeurs d'une suite géométrique.md b/somme des valeurs d'une suite géométrique.md index 4da3b3cd..e7ae1760 100644 --- a/somme des valeurs d'une suite géométrique.md +++ b/somme des valeurs d'une suite géométrique.md @@ -1,6 +1,6 @@ up:: [[suite géométrique]] title:: "$\sum\limits_{k=0}^{n} q^{k} = \dfrac{1-q^{k}}{1-q}$" -#maths/analyse #maths/arithmétique +#s/maths/analyse #s/maths/arithmétique $\displaystyle\sum\limits_{k= p}^{N} x^{k} = \frac{x^{p} - x^{N+1}}{1 - x} = \frac{(\text{premier terme}) - (\text{premier terme pas pris})}{1-x}$ diff --git a/somme directe d'espaces vectoriels.md b/somme directe d'espaces vectoriels.md index 4c313b41..4f9d2444 100644 --- a/somme directe d'espaces vectoriels.md +++ b/somme directe d'espaces vectoriels.md @@ -4,7 +4,7 @@ alias: [ "directe", "somme directe" ] sibling:: [[sous espaces vectoriels supplémentaires]] up::[[somme d'espaces vectoriels]] title::"$F \oplus G : E$ ssi :", " - $F+G = E$ ([[somme d'espaces vectoriels]])", " - $F$ et $G$ sont [[sous espaces vectoriels supplémentaires|supplémentaires]] (toute décomposition est unique)" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/somme partielle d'une suite.md b/somme partielle d'une suite.md index 96d8cf3c..025e48a9 100644 --- a/somme partielle d'une suite.md +++ b/somme partielle d'une suite.md @@ -4,7 +4,7 @@ alias: [ "somme partielle", "sommes partielles" ] up:: [[suite]] sibling:: [[reste d'ordre n d'une suite]] title:: $\displaystyle S_{n} = \sum\limits_{k=0}^{n} u_{k}$ -#maths/analyse +#s/maths/analyse --- diff --git a/somme sinus cosinus comme un déphasage de cos.md b/somme sinus cosinus comme un déphasage de cos.md index 97ee58da..32ccdaec 100644 --- a/somme sinus cosinus comme un déphasage de cos.md +++ b/somme sinus cosinus comme un déphasage de cos.md @@ -7,7 +7,7 @@ alias: --- up:: [[trigonométrie|trigonométrie]] title:: "$a \cos(x) + b \sin(x) = \sqrt{ a^{2}+b^{2} } \sin (x + \varphi)$", "où $\cos \varphi = \dfrac{b}{\sqrt{ a^{2} + b^{2} }}$ et $\sin\varphi = \dfrac{a}{\sqrt{ a^{2} + b^{2} }}$" -#maths/trigonométrie +#s/maths/trigonométrie --- diff --git a/sommes de Riemann.md b/sommes de Riemann.md index 02e68bb7..03acd7db 100644 --- a/sommes de Riemann.md +++ b/sommes de Riemann.md @@ -1,6 +1,6 @@ up:: [[intégrale de Riemann]] title:: "Comment calculer des sommes de Riemann" -#maths/analyse +#s/maths/analyse --- diff --git a/sophisme du juste milieu.md b/sophisme du juste milieu.md index 03a9fc53..c1d9ecf6 100644 --- a/sophisme du juste milieu.md +++ b/sophisme du juste milieu.md @@ -1,5 +1,5 @@ up:: [[sophisme]] -#science/zetetique +#s/science/zetetique > [!definition] sophisme du juste milieu > [[sophisme]] qui consiste à présenter la modération, le "juste milieu" comme étant nécessairement la meilleur solution. diff --git a/sophisme.md b/sophisme.md index 147f0e6f..d600edcc 100644 --- a/sophisme.md +++ b/sophisme.md @@ -1,6 +1,6 @@ up:: [[zetetique]] sibling:: [[paralogisme]] -#science/zetetique +#s/science/zetetique > [!definition] Sophisme > Procédé [[rhétorique]] qui porte l'apparence de la **rigueur**, mais qui est en réalité pas valide au sens de la [[logique]]. diff --git a/soumission au capital.md b/soumission au capital.md index bdbbaf1a..4fa11a8b 100644 --- a/soumission au capital.md +++ b/soumission au capital.md @@ -1,5 +1,5 @@ up:: [[capitalisme]] -#politique +#s/politique > [!definition] soumission au capital diff --git a/sources pour l'esprit critique, la zététique et la méthode scientifique.md b/sources pour l'esprit critique, la zététique et la méthode scientifique.md index 167c15ff..7724f13b 100644 --- a/sources pour l'esprit critique, la zététique et la méthode scientifique.md +++ b/sources pour l'esprit critique, la zététique et la méthode scientifique.md @@ -1,5 +1,5 @@ up:: [[zetetique|zététique]], [[esprit critique]], [[science]] -#science #science/zetetique +#s/science #s/science/zetetique - hygiène mentale diff --git "a/sources/(1) \"Dans la police, on ne balance pas\" Valentin Gendrot raconte son infiltration l Konbini - YouTube.md" "b/sources/(1) \"Dans la police, on ne balance pas\" Valentin Gendrot raconte son infiltration l Konbini - YouTube.md" index 74f58e88..2ce6d27c 100644 --- "a/sources/(1) \"Dans la police, on ne balance pas\" Valentin Gendrot raconte son infiltration l Konbini - YouTube.md" +++ "b/sources/(1) \"Dans la police, on ne balance pas\" Valentin Gendrot raconte son infiltration l Konbini - YouTube.md" @@ -7,7 +7,7 @@ source:: link:: https://www.youtube.com/watch?v=JHYC4BQwEXQ date-seen:: 2024-06-29 date:: -#citation +#t/citation # Description diff --git a/sources/01 Notetaking for Historians - Doing History with Zotero and Obsidian - Obsidian Publish.md b/sources/01 Notetaking for Historians - Doing History with Zotero and Obsidian - Obsidian Publish.md index 0dd87ed5..c509ee90 100644 --- a/sources/01 Notetaking for Historians - Doing History with Zotero and Obsidian - Obsidian Publish.md +++ b/sources/01 Notetaking for Historians - Doing History with Zotero and Obsidian - Obsidian Publish.md @@ -2,9 +2,9 @@ Title: "01 Notetaking for Historians - Doing History with Zotero and Obsidian - Obsidian Publish" URL: https://publish.obsidian.md/history-notes/01+Notetaking+for+Historians Pocket URL: https://getpocket.com/read/3670883865 -Tags: [pocket, obsidian, pkm] +Tags: [pocket, s/obsidian, pkm] Excerpt: > --- -#obsidian, #pkm +#s/obsidian, #pkm diff --git a/sources/1j01 textual-paint.md b/sources/1j01 textual-paint.md index 2436988f..3c36af37 100644 --- a/sources/1j01 textual-paint.md +++ b/sources/1j01 textual-paint.md @@ -2,9 +2,9 @@ Title: "1j01/textual-paint" URL: https://github.com/1j01/textual-paint Pocket URL: https://getpocket.com/read/3856689512 -Tags: [pocket, informatique, obsidan_export] +Tags: [pocket, s/informatique, obsidan_export] Excerpt: > MS Paint in your terminal. This is a TUI (Text User Interface) image editor, inspired by MS Paint, built with Textual. --- -#informatique, #obsidan_export +#s/informatique, #obsidan_export ![image](https://github.com/1j01/textual-paint/raw/main/screenshot.svg) diff --git a/sources/202401242351.md b/sources/202401242351.md index 6fab574c..14e02876 100644 --- a/sources/202401242351.md +++ b/sources/202401242351.md @@ -6,7 +6,7 @@ aliases: author::[[Julius Dickmann]] source::[[Contributions pour une autocritique du marxisme]] date-seen::2024-01-24 -#citation #politique +#t/citation #s/politique > Le capitalisme n'a pu émerger que parce que la production liée au corporations féodales s'est effondrée pour des raisons internes. Il fut la conséquence et non la cause de cet inélucable déclin. diff --git a/sources/APL Cultivation - APL Wiki.md b/sources/APL Cultivation - APL Wiki.md index 14da54a7..81810bec 100644 --- a/sources/APL Cultivation - APL Wiki.md +++ b/sources/APL Cultivation - APL Wiki.md @@ -2,7 +2,7 @@ up::[[APL]] author:[[Adám Brudzewsky]] link:[APL wiki - APL cultivation](https://aplwiki.com/wiki/APL_Cultivation) title::"cours par chat (90minutes) (dans l'[APL Orchard](apl.chat.md))" -#informatique +#s/informatique - series of 90 minutes chat lessons about [[APL]] - in the [APL Orchard](apl.chat.md) diff --git a/sources/Adám Brudzewsky.md b/sources/Adám Brudzewsky.md index c91079bc..2465cb12 100644 --- a/sources/Adám Brudzewsky.md +++ b/sources/Adám Brudzewsky.md @@ -1,4 +1,4 @@ -#personne +#t/personne ```dataview diff --git a/sources/Alan Perlis.md b/sources/Alan Perlis.md index 25b4d2cf..f14de62a 100644 --- a/sources/Alan Perlis.md +++ b/sources/Alan Perlis.md @@ -1,4 +1,4 @@ -#personne +#t/personne --- Mathématicien, Informaticien diff --git a/sources/Albert Moukheiber.md b/sources/Albert Moukheiber.md index ee4e33b0..d29f79a9 100644 --- a/sources/Albert Moukheiber.md +++ b/sources/Albert Moukheiber.md @@ -1,6 +1,6 @@ link::https://fr.wikipedia.org/wiki/Albert_Moukheiber_(scientifique) title:: "neurosciences, pychologie" -#personne #science +#t/personne #s/science --- diff --git a/sources/Bourgeoisie — Wikirouge.md b/sources/Bourgeoisie — Wikirouge.md index d287c067..652f7819 100644 --- a/sources/Bourgeoisie — Wikirouge.md +++ b/sources/Bourgeoisie — Wikirouge.md @@ -7,4 +7,4 @@ source:: [[wikirouge]] link:: https://wikirouge.net/Bourgeoisie date-seen:: 2024-05-24 date:: -#citation +#t/citation diff --git a/sources/CARD GAME RULES.md b/sources/CARD GAME RULES.md index 85d30e54..b0e0f312 100644 --- a/sources/CARD GAME RULES.md +++ b/sources/CARD GAME RULES.md @@ -2,9 +2,9 @@ Title: "CARD GAME RULES" URL: https://www.pagat.com/ Pocket URL: https://getpocket.com/read/1319170 -Tags: [pocket, jeux, obsidan_export] +Tags: [pocket, s/jeux, obsidan_export] Excerpt: > The Pagat website was founded in 1995. Its aim is to document the rules of traditional card and domino games for the benefit of players who would like to broaden their knowledge and try out unfamiliar games. It takes its name from the Pagat, the lowest trump in the Central European game of Tarock. --- -#jeux, #obsidan_export +#s/jeux, #obsidan_export diff --git a/sources/Computer Modern Font.md b/sources/Computer Modern Font.md index 5960de88..aa52968e 100644 --- a/sources/Computer Modern Font.md +++ b/sources/Computer Modern Font.md @@ -7,7 +7,7 @@ source:: link:: https://www.fontsquirrel.com/fonts/computer-modern date-seen:: 2024-06-18 date:: -#citation +#t/citation Fonte "Computer Modern", par [[Donald E. Knuth]] (la fonte par défaut de [[LaTeX]]) - Au format TTF diff --git a/sources/Descartes.md b/sources/Descartes.md index 694ec78b..907ccc22 100644 --- a/sources/Descartes.md +++ b/sources/Descartes.md @@ -1,6 +1,6 @@ title:: link:: -#personne +#t/personne > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/sources/En travail - Conversations sur le communisme.md b/sources/En travail - Conversations sur le communisme.md index 614bbd9a..4c7d0a78 100644 --- a/sources/En travail - Conversations sur le communisme.md +++ b/sources/En travail - Conversations sur le communisme.md @@ -6,7 +6,7 @@ author:: [[Frédéric Lordon]], [[Bernard Friot]] link:: https://www.youtube.com/watch?v=tn2s6a9wbpA date-seen:: 2024-06-17 date:: 2021-11-15 -#citation +#t/citation > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/sources/Epigrams on programming.md b/sources/Epigrams on programming.md index 452e08e2..4e5f2fb1 100644 --- a/sources/Epigrams on programming.md +++ b/sources/Epigrams on programming.md @@ -1,6 +1,6 @@ author::[[Alan Perlis]] title::"dictons sur la programmation" -#informatique #citation +#s/informatique #t/citation 1. One man's constant is another man's variable. diff --git a/sources/Getting Started.md b/sources/Getting Started.md index 23620cf5..2c68717c 100644 --- a/sources/Getting Started.md +++ b/sources/Getting Started.md @@ -2,9 +2,9 @@ Title: "Getting Started" URL: https://espanso.org/docs/get-started/ Pocket URL: https://getpocket.com/read/2769444793 -Tags: [pocket, informatique] +Tags: [pocket, s/informatique] Excerpt: > In this section, we will cover the basics of Espanso to quickly get you started. Make sure to install Espanso before diving into the next sections. If you followed the installation correctly, Espanso should be running on your computer. --- -#informatique +#s/informatique ![image](https://espanso.org/assets/images/tray_explain_image_windows-a4482a39604313a2484a7361cacf93f8.png) diff --git a/sources/How To Remember Names - Memorize Names and Faces With Ease! - YouTube.md b/sources/How To Remember Names - Memorize Names and Faces With Ease! - YouTube.md index 20842774..50e291ae 100644 --- a/sources/How To Remember Names - Memorize Names and Faces With Ease! - YouTube.md +++ b/sources/How To Remember Names - Memorize Names and Faces With Ease! - YouTube.md @@ -5,7 +5,7 @@ aliases: date-seen:: 2024-05-23 url:: https://www.youtube.com/watch?v=8weFiPGFObk up:: [[mémoriser]] -#apprendre/mémoire +#s/apprendre/mémoire diff --git a/sources/Isaac Newton.md b/sources/Isaac Newton.md index 6b4d9f9c..78c5e2a3 100644 --- a/sources/Isaac Newton.md +++ b/sources/Isaac Newton.md @@ -1,4 +1,4 @@ -#personne +#t/personne ---- diff --git a/sources/Jean Jaurès sur la peine de mort.md b/sources/Jean Jaurès sur la peine de mort.md index 0a7b9a0a..19091ecf 100644 --- a/sources/Jean Jaurès sur la peine de mort.md +++ b/sources/Jean Jaurès sur la peine de mort.md @@ -8,7 +8,7 @@ author:: [[Jean Jaurès]] source:: link:: date-seen::14/09/2023 01:58 -#citation #politique +#t/citation #s/politique --- diff --git a/sources/Jean-Paul Delahaye.md b/sources/Jean-Paul Delahaye.md index 5184dee5..db5fee01 100644 --- a/sources/Jean-Paul Delahaye.md +++ b/sources/Jean-Paul Delahaye.md @@ -1,4 +1,4 @@ -#personne +#t/personne title::"vulgarisation mathématique" ---- diff --git a/sources/La vérité des raisonnements de chacun.md b/sources/La vérité des raisonnements de chacun.md index ec7666ea..4d0ef701 100644 --- a/sources/La vérité des raisonnements de chacun.md +++ b/sources/La vérité des raisonnements de chacun.md @@ -1,7 +1,7 @@ author::[[Descartes]] source::[[Discours de la méthode]] title::"la vérité serait dans les raisonnements de chacun, pas dans ceux des philosophes" -#citation +#t/citation > Car il me semblait que je pourrais rencontrer beaucoup plus de vérité dans les raisonnements que chacun fait touchant les affaires qui lui importent et dont l'événement le doit punir bientôt après s'il à mal jugé, que dans ceux que fait un homme de lettres dans son cabinet touchant des spéculation qui ne produisent aucun effet, et qui ne lui sont d'autre conséquence sinon que peut-être il en tirera d'autant plus de vanité qu'elles seront plus éloignées du sens commun, à cause qu'il aura dû employer d'autant plus d'esprit pour les rendre vraisemblables. diff --git a/sources/Le complotisme de l'anticomplotisme.md b/sources/Le complotisme de l'anticomplotisme.md index d5867a49..717b16d3 100644 --- a/sources/Le complotisme de l'anticomplotisme.md +++ b/sources/Le complotisme de l'anticomplotisme.md @@ -6,7 +6,7 @@ author:: [[Frédéric Lordon]] link:: https://www.monde-diplomatique.fr/2017/10/LORDON/57960 date-seen:: 2024-06-18 date:: 2017-10 -#citation #politique +#t/citation #s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/sources/Learning APL.md b/sources/Learning APL.md index 901c78ea..37cd27a5 100644 --- a/sources/Learning APL.md +++ b/sources/Learning APL.md @@ -2,7 +2,7 @@ up::[[APL]] link::https://xpqz.github.io/learnapl/intro.html author::[[xpqz]] title::"livre (numérique) pour apprendre APL" -#informatique +#s/informatique ---- - introduction assez complète à APL diff --git a/sources/Print Friendly.md b/sources/Print Friendly.md index 9f9f97e6..369319e3 100644 --- a/sources/Print Friendly.md +++ b/sources/Print Friendly.md @@ -2,7 +2,7 @@ link::https://www.printfriendly.com/ date::2022-10-18 title::"imprimer des pages web (en pdf ou sur imprimante)" description::"meilleur rendu (pas d'epaces en plus ou d'éléments mal placés)" -#informatique +#s/informatique --- diff --git a/sources/Programmation concurrente (wikipedia).md b/sources/Programmation concurrente (wikipedia).md index 93c79172..06e9ef8e 100644 --- a/sources/Programmation concurrente (wikipedia).md +++ b/sources/Programmation concurrente (wikipedia).md @@ -2,7 +2,7 @@ up:: [[paradigme programmation concurrente]] date-seen::2024-02-20 author:: [[wikipedia]] link:: https://www.wikiwand.com/fr/Programmation_concurrente -#informatique #citation +#s/informatique #t/citation > [!cite] Définition wikipedia (fr) > [[paradigme de programmation]] tenant compte, dans un programme, l'existence de plusieurs piles sémantiques, qui peuvent être appelées threads, processus ou tâches. Elles sont matérialisées en machine par une pile d'exécution et un ensemble de données privées. diff --git a/sources/Quelles stratégies pour le changement Politique ?.md b/sources/Quelles stratégies pour le changement Politique ?.md index 3153b493..1bfcd8aa 100644 --- a/sources/Quelles stratégies pour le changement Politique ?.md +++ b/sources/Quelles stratégies pour le changement Politique ?.md @@ -6,7 +6,7 @@ author:: [[Frédéric Lordon]], [[Joan Garcés]] link:: https://www.youtube.com/watch?v=RNjPSiQnDG0 date-seen:: 2024-05-23 date:: 2016-06-06 -#citation #politique +#t/citation #s/politique ## Extraits diff --git a/sources/Sarah Carter.md b/sources/Sarah Carter.md index dc994297..d149daf0 100644 --- a/sources/Sarah Carter.md +++ b/sources/Sarah Carter.md @@ -1,5 +1,5 @@ link::https://mathequalslove.net/limits-graph-sketching-activity/ -#personne +#t/personne ---- Prof de maths de lycée diff --git a/sources/The Command Line Heroes BASH! 2.md b/sources/The Command Line Heroes BASH! 2.md index 1c6746b5..7c93edf3 100644 --- a/sources/The Command Line Heroes BASH! 2.md +++ b/sources/The Command Line Heroes BASH! 2.md @@ -3,9 +3,9 @@ Title: "The Command Line Heroes BASH!" URL: https://www.redhat.com/en/command-line-heroes/bash/index.html Pocket URL: https://getpocket.com/read/2490756547 -Tags: [pocket, informatique] +Tags: [pocket, s/informatique] Excerpt: > Test your command line skills. You have {{parseInt(gameDuration/1000)}} seconds to type commands from: Set the terminal on fire. Type PLAY to begin. --- -#informatique +#s/informatique ![image](https://www.redhat.com/en/command-line-heroes/bash/assets/clh-logo-white.svg) diff --git a/sources/The Life Engi.md b/sources/The Life Engi.md index eb9b60eb..65a6c0f9 100644 --- a/sources/The Life Engi.md +++ b/sources/The Life Engi.md @@ -3,7 +3,7 @@ date::2022-09-30 author::[[emergent garden]] title::"simulation simple avec évolution darwinienne" description::"automate cellulaire avec des entités (yeux, bouche, killer, nouriturre...)" -#informatique +#s/informatique ---- diff --git a/sources/Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir.md b/sources/Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir.md index 94f58802..8e487622 100644 --- a/sources/Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir.md +++ b/sources/Variables, scopes et closures en Python - Bibliothèque - Zeste de Savoir.md @@ -2,7 +2,7 @@ Cliped: 2024-05-13 10:07 Source: https://zestedesavoir.com/tutoriels/3163/variables-scopes-et-closures-en-python/ tags: - - informatique/langage/python + - s/informatique/langage/python Comment: --- diff --git a/sources/a delightful & open source framework for Zsh.md b/sources/a delightful & open source framework for Zsh.md deleted file mode 100644 index 8bc29fd5..00000000 --- a/sources/a delightful & open source framework for Zsh.md +++ /dev/null @@ -1,11 +0,0 @@ - ---- -Title: "a delightful & open source framework for Zsh" -URL: https://ohmyz.sh/ -Pocket URL: https://getpocket.com/read/2684404537 -Tags: [pocket, obsidian_export] -Excerpt: > - What is Oh My Zsh? Oh My Zsh is an open source, community-driven framework for managing your Zsh configuration. Sounds boring. Let's try again. Oh My Zsh will not make you a 10x developer... ---- -#obsidian_export - diff --git a/sources/ceux qui donnent des préceptes.md b/sources/ceux qui donnent des préceptes.md index eb7b5ccf..21cb5c0a 100644 --- a/sources/ceux qui donnent des préceptes.md +++ b/sources/ceux qui donnent des préceptes.md @@ -1,7 +1,7 @@ author::[[Descartes]] source::[[Discours de la méthode]] title::"ceux qui donnent des conseils sont responsables si leurs conseils sont mauvais" -#citation +#t/citation > Ceux qui se mêlent de donner des préceptes se doivent estimer plus habiles que ceux auxquels ils les donnent, et si ils manquent en la moindre chose, ils en sont blâmables diff --git a/sources/clippings/Obsidian & Quarto setup, current status and questions - Share & showcase - Obsidian Forum.md b/sources/clippings/Obsidian & Quarto setup, current status and questions - Share & showcase - Obsidian Forum.md new file mode 100644 index 00000000..2fa55017 --- /dev/null +++ b/sources/clippings/Obsidian & Quarto setup, current status and questions - Share & showcase - Obsidian Forum.md @@ -0,0 +1,222 @@ +--- +title: Obsidian & Quarto setup, current status and questions - Share & showcase - Obsidian Forum +source: + - https://forum.obsidian.md/t/obsidian-quarto-setup-current-status-and-questions/75003/2 +author: + - "[[Obsidian Forum]]" +published: 2024-01-15 +created: 2024-12-25 +description: Hi, I am a new user and I have been trying to integrate Obsidian with quarto. quarto is a datascience extension of markdown that renders documents with code into many many publishable formats Here is a 20 sec youtube … +tags: + - t/clippings + - s/obsidian +--- +Hi, + +I am a new user and I have been trying to integrate Obsidian with quarto. + +quarto is a datascience extension of markdown that renders documents with code into many many publishable formats + +Here is a 20 sec youtube video of my current setup: + +[Quarto in Obsidian 241](https://www.youtube.com/watch?v=EJwWlgWFmrA) + +These are the steps I took: + +1. set up a template with the templater plugin so all files I make in the root of the Obsidian fault have a YAML file header that quarto expects. this is the YAMl I use: + +```yaml +--- +title: "Untitled" +format: pdf +--- +``` + +2. Set up the “execute code” plugin so I can run r/python/etc interactively in Obsidian +3. Set up the “shell commands” plugin to run the following command: + +```bash +cp {{file_path:absolute}} tmp/{{file_name}}.rmd +quarto render tmp/{{file_name}}.rmd --to pdf --output-dir +../quarto/ +rm tmp/{{file_name}}.rmd +``` + +in a tmp folder the file is rendered, then te output is stored in the quarto folder and the files I made in the process of rendering are deleted. + +3. set up the commander plugin so I have a neat blue (quarto’s color) button that runs the script to render the file I am looking at right now into pdf. + +Things I still have to fing a solution for: + +1. write a script that changes Obsidian style markdown into quarto style markdown to handle internal links and possibly .bib references, and call-outs (which are coded differently) +2. make Obsidian highlight r code even if I start a code block with \`\`\`{r} instead of \`\`\`r +3. make separate shell scripts to render to other output formats (beamer presentations etc) + +any tips on plugins that would help me solve some of these? + + [![](https://forum.obsidian.md/letter_avatar_proxy/v4/letter/e/e495f1/96.png "Daniel")](https://forum.obsidian.md/u/echej "echej") + +Nice workaround to render from .md with code included! + +Seems like you’ve already got most of the pieces of this workflow in place. Regarding presentations, [here are 101](https://forum.obsidian.md/t/discontinued-advanced-slides-create-markdown-based-reveal-js-presentations-in-obsidian/28243/244) some details about how I work with Reveal.js presentations in Obsidian using Quarto. It’s quite similar to what you are doing. + +Are you’re familiar with [@echej](https://forum.obsidian.md/u/echej)’s work (qmd-as-md plugin maintainer)? + +He has shared a lot of relevant stuff, like a lua filter that can convert Obsidian callouts into Quarto callouts: + +- [Using Wikilinks and Git/Obsidian Callouts in Quarto Markdown | Daniel Borek 82](https://danielborek.me/2023/obsidian-quarto-callouts/) +- This also contains a CSS snippet that makes the Obsidian callouts look the same as the Quarto callouts. +- It also contains a lua filter that can remove the non-supported wikilink formatting. + +If you just want to convert the wikilinks into markdown links, there’s several plugins that support that, like [Links 11](https://github.com/mii-key/obsidian-links). You could use this in conjunction with Commander for a seamless workflow. + +As for citations, these are [natively supported through pandoc citekeys 18](https://quarto.org/docs/authoring/footnotes-and-citations.html), so you shouldn’t need to create a script for this - unless I am misunderstanding what you meant by .bib references. + +Regarding the “execute code” plugin, isn’t that a bit redundant when using Quarto, since big selling point of Quarto is exactly it’s ability to execute code when you render or preview documents? Perhaps you can clarify your workflow a bit in this regard. + +I did try the qmd as md plugin, but the qmd files still weren’t fully featured (i.e internal links and tags not registering I think?). Since this is stille a Obsidian centric workflow I’d prefer to work in Obsidian primarily, only opting into quarto when I need/decide to generate output. Ill see if I can include the lua filter in my workflow and set up a second button to co-op your render too reveal workflow. + +WRT citations, I am currently using the “citations” plugin, which means if I cite a paper using their \[\] citation format its a link tot he note page for that citation, while if I render I obviously want to render the pandoc citekey citation and generate a ref list. I guess I could add this to the lua filter and just build the filter out to accommodate? + +WRT the execute code plugin, I was thinking of going even further. I am thinking of forking it and adding an “environment” pane, which would track and display all user generated variables and objects that are generated in chunks that are evaluated. During the writing/coding process I like to be able to run chucks to evaluate their correct and iteratively debug, way faster then rendering out to debug. + +I think my dream is to have Obsidian basically contain a kind of “RStudio light” so I can freely do statistical thinking/note taking. I would only step out of Obsidian and into RStudio or VScode when I decide an idea becomes a scientific paper, that needs full on IDE/version control/high level data security + +Looking at your reveal.js solution I am really digging the use of “quarto preview” and a fixed port, that could be a great alternative tot he code executer route I am now following! + +I guess both would also be an option, but it wouldn’t be easy in my workflow where I am working in a .md, which kind of prevents processing with quarto preview… gotta figure out whether I can somehow create a tmp .qmd to mirror a specific .md and trigger the mirroring and preview with a commander button. + +Gotta say I am i awe of the flexibility build into Obsidian, wish there was an easy way to bundle all my tweaks and selected/required extension into a single setup so I could share the final setup easily. + +Hi [@Feralflora](https://forum.obsidian.md/u/feralflora), [@Michelnivard](https://forum.obsidian.md/u/michelnivard), + +Could you please share an update about your approach to developing, updating, and sharing your (academic) work Obsidian and Quarto? + +Obsidian has been great for me, but sharing progress updates and outputs my research project is difficult at the moment. + +I’m now figuring out how to use the Git-plugin to generate automatic progress updates for ‘project-components’ (i.e. proposal, DMP, chapters, etc.) like release notes in software development. And Quarto seems perfect for sharing outputs and updates in a unified format. + +Hi [@Opi](https://forum.obsidian.md/u/opi), + +I haven’t really made any changes to my Quarto workflow since I posted here. I’m probably going to try out [@Michelnivard](https://forum.obsidian.md/u/michelnivard)’s solution for executing code from regular markdown files by making a temporary intermediary .qmd file. + +I agree that Quarto is perfect for sharing research in a reproducible manner. In addition, I’m looking into using [Typst 24](https://typst.app/) as the typesetting engine in Quarto, which also has a number of templates available. + +Some find the limitations of working with Quarto in Obsidian to be too limiting, and rather opt for working with Quarto files in VS Code, coupled with the [Foam 40](https://foambubble.github.io/foam/) PKM system / extension for VS Code instead. You could check that out too. + +Hi, + +First of all thanks a lot for all your valuable hints! +I try to get those pieces together, but with little luck ![:slight_smile:](https://forum.obsidian.md/images/emoji/apple/slight_smile.png?v=12 ":slight_smile:") + +The replacement code for wikilinks didn’t work for me, I use + +```css +:gsub("%[%[(.-)%]%]", "[fig](%1)")) +``` + +Unfortunately though the links are replaced fine images aren’t rendered. I get the links in the pdf like so : `![figure](figure.jpg)` + +Has anyone an idea, how to solve this? + +Have you specified the [resource-path 8](https://pandoc.org/MANUAL.html#option--resource-path), or transferred the images to the qmd project folder? + +Thanks for spending your time on this! I tried various ways without success: + +1. setting the path relative to the document’s path: “…/pics/test.png” +and +2. moving the image right into the document’s folder (with the path “test.png” + +Setting a wrong path to the image throws a LaTEX error (“test.png not found”). So the path seems to be correct. + +I had a similar issue trying to render images in a manuscript that lives in a sub-folder of the parent-project. Below fixed the issue for me. + +- Create `_quarto.yml` root of project. It does not need to contain any metadata. (I only use this to experiment with parent-project-level-profiles and links to the project repository on GitHub. +- Set resource path in the yaml manuscript project. + +```yaml +resource-path: +- "130_msc_thesis/notes/" +- "130_msc_thesis/images/" +- "130_msc_thesis/D03-submit-manuscript/" +- "130_msc_thesis/analyse-data/" +``` + +- include link to image +- without cross-referencing + +```css +![Transition flower for circular agriculture](/images/external/_huntjens-preprint-transition-path-specific-transformation-flower.png) +``` + +- with [cross-referencing using div syntax 3](https://quarto.org/docs/authoring/cross-references-divs.html) + +```markdown +:::{#fig-transition-flower-circular-agriculture} + +![Transition flower for circular agriculture](/images/external/_huntjens-preprint-transition-path-specific-transformation-flower.png) + +This text is a caption for the figure + +::: +``` + +[![image](https://forum.obsidian.md/uploads/default/optimized/3X/9/5/953a23b83b93f7f7b3477d5cdd7a2d801b812dde_2_690x155.png)](https://forum.obsidian.md/uploads/default/original/3X/9/5/953a23b83b93f7f7b3477d5cdd7a2d801b812dde.png "image") + +Thank you for replying and pointers to Foam and Typst. + +When writing, I found working with Quarto files in Obsidian easier than VS Code with Foam. + +VS Code with ojs code blocks has been great for pulling in data to generate and preview tables. Compiling and previewing work (e.g. graphs > section > manuscript) with VS Code was also incredibly simple, but it did take me a lot of time to understand and fix all inclusion and yaml errors. + +How has you experience with Typst been? I’ve not tried it yet. Learning to work with GitHub, Git, SSH, GPG, VS Code, Quarto, ojs, and mermaid was distracting and challenging enough for now :') + +Yeah, that’s the good thing, you can work with the same files across different programs and utilize their strengths. + +Very good, mostly. Compilation is *very* fast, it is powerful but yet easy to learn. I’m implementing it as the pdf-engine I use in Pandoc and Quarto. Provides nice support for callouts using the “gentle-cues” package and [this filter 12](https://github.com/jgm/pandoc/discussions/9821#discussioncomment-9672291). I had some challenges with getting the citations to work correctly, though. Still working that out. + +Good to hear that it’s fast and great that callouts work in pdf too. I’ll focus Typst instead of LaTex and see if I can get the citations working correctly. Is one citation style not working, or are all styles rendered incorrectly? + +For those who have problem with images in subfolders (useful when I want to be able to compile single chapter in subfolder and the my whole thesis at the same time) and compile to latex/pdf only (my workaround doesnt work for docx or html): add the alternative graphic paths in `_quarto.yml` , in my case it was ` \graphicspath{{figures}{chapters/figures}{../figures}{chapters}{..}}`, also I use `H` option to force figures to stay in given places + +``` + pdf: + link-citations: false + number-sections: true + reference-section-title: "References" + pdf-engine: xelatex + fontsize: 12pt + include-in-header: + text: | + %% \usepackage{makeidx} + %% \makeindex + \usepackage{microtype} + \usepackage{epigraph} + \usepackage{indentfirst} + \setlength{\parindent}{2em} + %%\usepackage[british]{babel} + %% + %% Code related to fonts and how the output looks + %% + \usepackage{mathpazo} + \usepackage[T1]{fontenc} + \usepackage[sups,osf]{fbb} % osf (or tosf) for text, not math + \usepackage[scaled=.95]{cabin} % sans serif + \usepackage[varqu,varl]{inconsolata} % sans serif typewriter + %% + %% Code related to figures in document + %% + \usepackage{float} + \graphicspath{{figures}{chapters/figures}{../figures}{chapters}{..}} + \let\origfigure\figure + \let\endorigfigure\endfigure + \renewenvironment{figure}[1][2] { + \expandafter\origfigure\expandafter[H] + } { + \endorigfigure + } +``` + +I tried to get this workflow working this morning, and ended up building a little extension that others might find useful. Still waiting to be approved for the official list, but should be able to install it manually - if anybody tests it, let me know if it works! + +Interesting, can you show an example of a syntax conversion that your plugin does? I think such an example would be useful in the readme. \ No newline at end of file diff --git a/Clippings/Why Type Hinting Sucks! rPython.md b/sources/clippings/Why Type Hinting Sucks! rPython.md similarity index 99% rename from Clippings/Why Type Hinting Sucks! rPython.md rename to sources/clippings/Why Type Hinting Sucks! rPython.md index b8ed709a..44262b87 100644 --- a/Clippings/Why Type Hinting Sucks! rPython.md +++ b/sources/clippings/Why Type Hinting Sucks! rPython.md @@ -7,8 +7,8 @@ published: 2023-02-11 created: 2024-11-27 description: tags: - - clippings - - informatique/langage/python + - t/clippings + - s/informatique/langage/python --- up:: [[python type hinting]] diff --git a/sources/code org.md b/sources/code org.md index 6eb6963a..f0a3130e 100644 --- a/sources/code org.md +++ b/sources/code org.md @@ -4,6 +4,6 @@ alias: "code.org" up::[[outils pédagogiques]] title::"site pour apprendre le code (type scratch) avec des exercices" link::https://code.org/ -#informatique +#s/informatique ---- diff --git a/sources/conférence gesticulée.Inculture 1.md b/sources/conférence gesticulée.Inculture 1.md index 6e8919bc..d32d02ee 100644 --- a/sources/conférence gesticulée.Inculture 1.md +++ b/sources/conférence gesticulée.Inculture 1.md @@ -3,7 +3,7 @@ aliases: - Inculture 1 --- up:: [[conférence gesticulée]] -#politique #source +#s/politique #source > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/sources/conférence gesticulée.Inculture 2.md b/sources/conférence gesticulée.Inculture 2.md index 1e292b19..43e46677 100644 --- a/sources/conférence gesticulée.Inculture 2.md +++ b/sources/conférence gesticulée.Inculture 2.md @@ -5,7 +5,7 @@ aliases: up:: [[conférence gesticulée]] prev:: [[conférence gesticulée.Inculture 1|Inculture 1]] next:: [[conférence gesticulée.Inculture 3|Inculture 3]] -#politique #source +#s/politique #source > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/sources/conférence gesticulée.Inculture 3.md b/sources/conférence gesticulée.Inculture 3.md index 80e175eb..cd72cb80 100644 --- a/sources/conférence gesticulée.Inculture 3.md +++ b/sources/conférence gesticulée.Inculture 3.md @@ -5,7 +5,7 @@ aliases: up:: [[conférence gesticulée]] next:: [[conférence gesticulée.Inculture 4 - le plein d'énergie|Inculture 4 - le plein d'énergie]] prev:: [[conférence gesticulée.Inculture 2|Inculture 2]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/sources/conférence gesticulée.Inculture 4 - le plein d'énergie.md b/sources/conférence gesticulée.Inculture 4 - le plein d'énergie.md index 8f541e95..be14bb58 100644 --- a/sources/conférence gesticulée.Inculture 4 - le plein d'énergie.md +++ b/sources/conférence gesticulée.Inculture 4 - le plein d'énergie.md @@ -3,7 +3,7 @@ aliases: - Inculture 4 - le plein d'énergie --- up:: [[conférence gesticulée]] -#politique #source +#s/politique #source - histoire du [[militantisme]] qui à fonctionné - [[il faut fêter les actions militantes]] diff --git a/sources/cours/.DS_Store b/sources/cours/.DS_Store index 27129ed2..48ae82d6 100644 Binary files a/sources/cours/.DS_Store and b/sources/cours/.DS_Store differ diff --git a/sources/cours/S5 maths/L3_maths_integration_cours.pdf b/sources/cours/S5 maths/L3_maths_integration_cours.pdf new file mode 100644 index 00000000..4eb3ef54 Binary files /dev/null and b/sources/cours/S5 maths/L3_maths_integration_cours.pdf differ diff --git a/sources/cours/S5 maths/L3_maths_topologie_cours.pdf b/sources/cours/S5 maths/L3_maths_topologie_cours.pdf new file mode 100644 index 00000000..b3a26424 Binary files /dev/null and b/sources/cours/S5 maths/L3_maths_topologie_cours.pdf differ diff --git a/sources/docopt - utilitaires ligne de commande avec python.md b/sources/docopt - utilitaires ligne de commande avec python.md index b7873672..27612cbd 100644 --- a/sources/docopt - utilitaires ligne de commande avec python.md +++ b/sources/docopt - utilitaires ligne de commande avec python.md @@ -2,7 +2,7 @@ up::[[python modules]], [[unix redirection de flux]] link::http://docopt.org/ date::2022-09-07 title::"module pour créer des utilitaires lignes de commande simplement a partir du message d'aide renvoyé par cette commande" -#informatique +#s/informatique ---- Permet de créer un parseur des arguments (comme [argparse](https://docs.python.org/3/library/argparse.html)) diff --git a/sources/emergent garden.md b/sources/emergent garden.md index 646a599f..bd375112 100644 --- a/sources/emergent garden.md +++ b/sources/emergent garden.md @@ -1,5 +1,5 @@ link::https://www.youtube.com/channel/UCwBhBDsqiQflTMLy2epbQVw title::"Chaîne youtube sur l'émergence" -#informatique +#s/informatique ---- diff --git a/sources/est de gauche ce qui veut sortir du cadre.md b/sources/est de gauche ce qui veut sortir du cadre.md index 07808d2d..28e1763d 100644 --- a/sources/est de gauche ce qui veut sortir du cadre.md +++ b/sources/est de gauche ce qui veut sortir du cadre.md @@ -3,7 +3,7 @@ link:: https://www.youtube.com/watch?v=Hy7LJ4FHBQM author:: [[Frédéric Lordon]] date:: 2013-09-24 date-seen:: 2024-04-01 -#politique #citation #source +#s/politique #t/citation #source > [!cite] [[Frédéric Lordon]] - Les économistes atterrés aux mardis de l'ESSEC diff --git a/sources/etre de gauche c'est s'opposer à la souverainté du capital.md b/sources/etre de gauche c'est s'opposer à la souverainté du capital.md index cb18b061..3338144d 100644 --- a/sources/etre de gauche c'est s'opposer à la souverainté du capital.md +++ b/sources/etre de gauche c'est s'opposer à la souverainté du capital.md @@ -7,7 +7,7 @@ source:: [[Quelles stratégies pour le changement Politique ?]] link:: https://www.youtube.com/watch?v=EQ4i4fPKjLc date-seen:: 2024-05-23 date:: 2021-07-06 -#citation #politique +#t/citation #s/politique > [!cite] `$= dv.current().author + (" - " + dv.current().source).repeat(!!dv.current().source)` > Est de gauche tout projet de s'opposer à la souveraineté du capital. diff --git a/sources/groupes sanguins.md b/sources/groupes sanguins.md index 9729a9b2..dd50ad62 100644 --- a/sources/groupes sanguins.md +++ b/sources/groupes sanguins.md @@ -1,4 +1,4 @@ -#science +#s/science ---- diff --git a/sources/harold cooper.md b/sources/harold cooper.md index 20410f02..da1f0086 100644 --- a/sources/harold cooper.md +++ b/sources/harold cooper.md @@ -1,6 +1,6 @@ link::https://x.st github::https://github.com/hrldcpr -#personne +#t/personne ---- diff --git a/sources/haskell factorial for every kind of programmer.md b/sources/haskell factorial for every kind of programmer.md index d2664b5c..565530cc 100644 --- a/sources/haskell factorial for every kind of programmer.md +++ b/sources/haskell factorial for every kind of programmer.md @@ -4,6 +4,6 @@ alias: [ "the evolution of a haskell programmer" ] up::[[haskell]] link::https://www.willamette.edu/~fruehr/haskell/evolution.html title::"factorial written in haskell, with different methods, from simple to ridiculously complex data types etc..." -#informatique +#s/informatique ---- diff --git a/sources/jeu de l'ultimatum.md b/sources/jeu de l'ultimatum.md index 9913112c..61c0469c 100644 --- a/sources/jeu de l'ultimatum.md +++ b/sources/jeu de l'ultimatum.md @@ -1,5 +1,5 @@ source::[[Livre - Jeux finis et infinis]] -#maths/théorie-des-jeux +#s/maths/théorie-des-jeux ---- diff --git a/sources/la raison ne saurait réprimer les affects.md b/sources/la raison ne saurait réprimer les affects.md index 70a8a3c5..13ff7b8b 100644 --- a/sources/la raison ne saurait réprimer les affects.md +++ b/sources/la raison ne saurait réprimer les affects.md @@ -9,7 +9,7 @@ author::[[Baruch de Spinoza]] source::[[Spinoza - Ethique]] link:: date-seen::2024-04-15 -#citation +#t/citation > [!cite] Spinoza - Ethique > La connaissance vraie du bien et du mal ne peut réprimer aucun affect en tant qu'elle est une connaissance vraie, mais seulement en tant qu'elle est considérée comme un affect. diff --git a/sources/le capitalisme est né avant la révolution industrielle.md b/sources/le capitalisme est né avant la révolution industrielle.md index f8a6ab32..f08085d6 100644 --- a/sources/le capitalisme est né avant la révolution industrielle.md +++ b/sources/le capitalisme est né avant la révolution industrielle.md @@ -8,7 +8,7 @@ source:: [[Contributions pour une autocritique du marxisme]] link:: date-seen::2024-01-24 next:: [[202401242351|julius dickmann mort du corporatisme féodal et naissance du capitalisme]] -#citation #politique +#t/citation #s/politique > Le capitalisme ne parvint réellement à s'affirmer que sous l'impulsion du grand boulversement technique des XVIIIe et XIXe siècles, mais la première étape de son évolution n'a absolument rien à voir avec celui-ci. diff --git a/sources/le général de gaule à propos du capitalisme.md b/sources/le général de gaule à propos du capitalisme.md index 4e49638a..214f97f9 100644 --- a/sources/le général de gaule à propos du capitalisme.md +++ b/sources/le général de gaule à propos du capitalisme.md @@ -1,7 +1,7 @@ up:: [[capitalisme]] author:: [[général de gaule]] link:: https://mediaclip.ina.fr/fr/i19130833-le-general-de-gaulle-a-propos-du-capitalisme.html -#citation #politique +#t/citation #s/politique > le capitalisme dit, "grâce au profit, qui sucite l'initiative, frabriquons de plus en plus de richesses, qui en se répartissant par le libre marché, élèvent, en somme, le niveau du corp social tout entier". > diff --git a/sources/le petit nombre qui fait travailler le grand 1.md b/sources/le petit nombre qui fait travailler le grand 1.md index 7f958cc0..c2a7552f 100644 --- a/sources/le petit nombre qui fait travailler le grand 1.md +++ b/sources/le petit nombre qui fait travailler le grand 1.md @@ -7,7 +7,7 @@ author:: [[Voltaire]] source:: [Essai sur les moeurs et l'esprit des nations](https://fr.wikipedia.org/wiki/Essai_sur_les_m%C5%93urs_et_l'esprit_des_nations?oldformat=true) link:: https://citations.ouest-france.fr/citation-voltaire/esprit-nation-reside-toujours-petit-106867.html date-seen::2023-09-21 -#citation #politique #science/sociologie +#t/citation #s/politique #s/science/sociologie > [!cite] `$= dv.current().author + (" - " + dv.current().source).repeat(!!dv.current().source)` > L'esprit d'une nation réside toujours dans le petit nombre qui fait travailler le grand, est nourri par lui et le gouverne. diff --git a/sources/le petit nombre qui fait travailler le grand.md b/sources/le petit nombre qui fait travailler le grand.md index cc310d8c..0b73f1ae 100644 --- a/sources/le petit nombre qui fait travailler le grand.md +++ b/sources/le petit nombre qui fait travailler le grand.md @@ -7,7 +7,7 @@ author:: [[Voltaire]] source:: [Essai sur les moeurs et l'esprit des nations](https://fr.wikipedia.org/wiki/Essai_sur_les_m%C5%93urs_et_l'esprit_des_nations?oldformat=true) link:: https://citations.ouest-france.fr/citation-voltaire/esprit-nation-reside-toujours-petit-106867.html date-seen::2023-09-21 -#citation #politique #science/sociologie +#t/citation #s/politique #s/science/sociologie --- diff --git a/sources/le programme est syntaxique, l'esprit sémantique, donc l'ordinateur ne peut reproduit l'esprit.md b/sources/le programme est syntaxique, l'esprit sémantique, donc l'ordinateur ne peut reproduit l'esprit.md index 25684da2..b3263a7e 100644 --- a/sources/le programme est syntaxique, l'esprit sémantique, donc l'ordinateur ne peut reproduit l'esprit.md +++ b/sources/le programme est syntaxique, l'esprit sémantique, donc l'ordinateur ne peut reproduit l'esprit.md @@ -5,7 +5,7 @@ author:: [[John Searle]] source:: "J.Searle, _The Rediscovery of Mind_, Cambridge, MIT press,1992; trad.fr. _La redécouverte de l'esprit_, Paris, Gallimard." link:: "en lien avec [[syntaxe vs sémantique]]" date-seen::04/05/2023 01:54 -#citation #informatique #philosphie +#t/citation #s/informatique #s/philosphie --- diff --git a/sources/le secret de l'action, c'est de commencer.md b/sources/le secret de l'action, c'est de commencer.md index d770809a..fadf9c89 100644 --- a/sources/le secret de l'action, c'est de commencer.md +++ b/sources/le secret de l'action, c'est de commencer.md @@ -1,5 +1,5 @@ author:: [[Emile-Auguste Chartier]] -#citation #philosphie +#t/citation #s/philosphie > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Le secret de l'action, c'est de commencer. diff --git a/sources/le travail n'est pas une valeur morale, c'est pourquoi il a une valeur marchande.md b/sources/le travail n'est pas une valeur morale, c'est pourquoi il a une valeur marchande.md index e226d15c..48feae3c 100644 --- a/sources/le travail n'est pas une valeur morale, c'est pourquoi il a une valeur marchande.md +++ b/sources/le travail n'est pas une valeur morale, c'est pourquoi il a une valeur marchande.md @@ -9,7 +9,7 @@ author:: [[André Comte-Sponville]] source:: link:: date-seen::2024-03-04 -#citation +#t/citation > [!cite] [[André Comte-Sponville]] > Le travail n'est pas une valeur morale, c'est ce que prouvent le premier mai, les vacances, et le salaire (c'est-à-dire, au fond, trois conquêtes syndicales). diff --git a/sources/les avancées en programmation devraient demander l'élaboration de nouveaux paradigmes.md b/sources/les avancées en programmation devraient demander l'élaboration de nouveaux paradigmes.md index 1240c191..8f48ae7e 100644 --- a/sources/les avancées en programmation devraient demander l'élaboration de nouveaux paradigmes.md +++ b/sources/les avancées en programmation devraient demander l'élaboration de nouveaux paradigmes.md @@ -1,7 +1,7 @@ up:: [[paradigme de programmation]] source:: [[floydParadigmsProgramming1979]] next:: [[un programmeur doit étendre son répertoire de paradigmes]] -#informatique +#s/informatique > If the advancement of the general art of programming requires the continuing invention and elaboration of paradigms, advancement of the art of the individual programmer requires that he expand his repertory of paradigms. diff --git a/sources/liber abaci.md b/sources/liber abaci.md index cb15922a..fbd0b0cd 100644 --- a/sources/liber abaci.md +++ b/sources/liber abaci.md @@ -1,5 +1,5 @@ author:: [[Fibbonacci]] -#obsidian +#s/obsidian --- diff --git a/sources/ligntbot.md b/sources/ligntbot.md index 12f61603..4c5b9af9 100644 --- a/sources/ligntbot.md +++ b/sources/ligntbot.md @@ -1,6 +1,6 @@ title::"apprendre le " up::[[outils pédagogiques]] link::https://lightbot.org -#informatique #apprendre +#s/informatique #s/apprendre ---- diff --git a/sources/maths pédagogie activité interactive calculus (limites).md b/sources/maths pédagogie activité interactive calculus (limites).md index 10a4a9c8..b76ae81c 100644 --- a/sources/maths pédagogie activité interactive calculus (limites).md +++ b/sources/maths pédagogie activité interactive calculus (limites).md @@ -2,7 +2,7 @@ link::https://mathequalslove.net/limits-graph-sketching-activity/ date::2022-09-03 author::[[Sarah Carter]] title::"activité qui enseignle les limites, en faisant tracer le graphe d'une fonction a partir de certaines limites" -#apprendre +#s/apprendre ---- diff --git a/sources/médias Francais.md b/sources/médias Francais.md index e24e8c89..2665e177 100644 --- a/sources/médias Francais.md +++ b/sources/médias Francais.md @@ -1,4 +1,4 @@ -#science/zetetique +#s/science/zetetique # Qui les possède ? diff --git a/sources/méthode pour trouver de nouveaux paradigmes.md b/sources/méthode pour trouver de nouveaux paradigmes.md index e43553ef..d0b09a00 100644 --- a/sources/méthode pour trouver de nouveaux paradigmes.md +++ b/sources/méthode pour trouver de nouveaux paradigmes.md @@ -1,6 +1,6 @@ source:: [[floydParadigmsProgramming1979]] date-seen::2024-02-03 -#citation #informatique +#t/citation #s/informatique > After solving a challenging problem, I solve it again from scratch, retracing only the insight of the earlier solution. I repeat this until the solution is as clear and direct as I can hope for. Then I look for a general rule for attacking similar problems, that would have led me to approach the given problem in the most efficient way the first time. Often, such a rule is of permanent value. diff --git a/sources/on lisp.md b/sources/on lisp.md index 0a98e909..6500f39d 100644 --- a/sources/on lisp.md +++ b/sources/on lisp.md @@ -1,7 +1,7 @@ up::[[LISP]] author::[[paul graham]] link::[on lisp](http://www.paulgraham.com/onlisp.html) -#informatique +#s/informatique ---- - livre sur le langage [[LISP]] diff --git a/sources/polyHédronisme.md b/sources/polyHédronisme.md index 424376c3..71622318 100644 --- a/sources/polyHédronisme.md +++ b/sources/polyHédronisme.md @@ -1,6 +1,6 @@ link::https://levskaya.github.io/polyhedronisme/ date::2022-08-16 -#maths/géométrie +#s/maths/géométrie ---- Site pour tester et visualiser la [[notation de Conway]] diff --git a/sources/propension morale au partage.md b/sources/propension morale au partage.md index c563a6fe..fd16e451 100644 --- a/sources/propension morale au partage.md +++ b/sources/propension morale au partage.md @@ -1,7 +1,7 @@ author::[[Jean-Paul Delahaye]] source::[[Livre - Jeux finis et infinis]] title::"nous avons une propension naturelle au partage (cf. [[jeu de l'ultimatum]])" -#citation +#t/citation ---- diff --git a/sources/sound when you send data to google.md b/sources/sound when you send data to google.md index eb36907c..c53b8dd9 100644 --- a/sources/sound when you send data to google.md +++ b/sources/sound when you send data to google.md @@ -1,7 +1,7 @@ link::https://github.com/berthubert/googerteller title::"`sudo tcpdump -nql | teller`" description::"makes a sound any time your computer sends data to google" -#informatique +#s/informatique ---- diff --git a/sources/spaced repetition.md b/sources/spaced repetition.md index c0ed428e..9b437c7c 100644 --- a/sources/spaced repetition.md +++ b/sources/spaced repetition.md @@ -4,7 +4,7 @@ alias: [ "répétition espacée" ] up::[[PKM|PKM]] link::https://ncase.me/remember/fr.html title::"méthode d'apprentissage" -#PKM #obsidian +#PKM #s/obsidian Technique pour apprendre a long terme diff --git a/sources/textual-paint (paint dans un terminal).md b/sources/textual-paint (paint dans un terminal).md index 40e613cf..6f6e2b42 100644 --- a/sources/textual-paint (paint dans un terminal).md +++ b/sources/textual-paint (paint dans un terminal).md @@ -3,7 +3,7 @@ URL: https://github.com/1j01/textual-paint Pocket URL: https://getpocket.com/read/3856689512 tags: - pocket - - informatique + - s/informatique - obsidan_export Excerpt: MS Paint in your terminal. This is a TUI (Text User Interface) image editor, inspired by MS Paint, built with Textual. aliases: diff --git a/sources/ttyd - Partager un terminal sur internet.md b/sources/ttyd - Partager un terminal sur internet.md index f53c0e86..fb852126 100644 --- a/sources/ttyd - Partager un terminal sur internet.md +++ b/sources/ttyd - Partager un terminal sur internet.md @@ -5,7 +5,7 @@ up::[[terminal commandes]] title::"donner l'accès à un terminal ou à une commande via internet" link::https://tsl0922.github.io/ttyd/ date::2022-12-22 -#informatique +#s/informatique --- diff --git a/sources/un programmeur doit étendre son répertoire de paradigmes.md b/sources/un programmeur doit étendre son répertoire de paradigmes.md index 1b9183cb..c57c67cc 100644 --- a/sources/un programmeur doit étendre son répertoire de paradigmes.md +++ b/sources/un programmeur doit étendre son répertoire de paradigmes.md @@ -1,7 +1,7 @@ source:: [[floydParadigmsProgramming1979]] date-seen::2024-02-03 prev:: [[les avancées en programmation devraient demander l'élaboration de nouveaux paradigmes]] -#informatique #citation +#s/informatique #t/citation > If the advancement of the general art of programming requires the continuing invention and elaboration of paradigms, advancement of the art of the individual programmer requires that he expand his *repertory* of paradigms. diff --git a/sources/wolfram concept of ruliad.md b/sources/wolfram concept of ruliad.md index ec099db5..ff433637 100644 --- a/sources/wolfram concept of ruliad.md +++ b/sources/wolfram concept of ruliad.md @@ -1,7 +1,7 @@ link::https://writings.stephenwolfram.com/2021/11/the-concept-of-the-ruliad/ author::[[Stephen Wolfram]] date::2021-11-11 -#science #informatique +#s/science #s/informatique ---- diff --git a/sous espace affine.md b/sous espace affine.md index 50fea83b..c71af841 100644 --- a/sous espace affine.md +++ b/sous espace affine.md @@ -3,7 +3,7 @@ alias: [ "sous espaces affines" ] --- up:: [[espace affine]] title:: -#maths/algèbre +#s/maths/algèbre --- diff --git a/sous espace propre.md b/sous espace propre.md index 865aba36..c6e60801 100644 --- a/sous espace propre.md +++ b/sous espace propre.md @@ -3,7 +3,7 @@ alias: [ "sous espace propre", "sous espaces propres", "sous espace vectoriel de --- up:: [[vecteur propre]], [[vecteur propre d'une matrice]], [[valeur propre d'une application linéaire]], [[valeur propre d'une matrice]] title:: "Les [[vecteur propre d'une matrice|vecteurs propres]] d'une [[valeur propre d'une matrice|valeur propre]] avec $\vec{0}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/sous espace vectoriel.md b/sous espace vectoriel.md index 9eb138ea..53b8964c 100644 --- a/sous espace vectoriel.md +++ b/sous espace vectoriel.md @@ -7,7 +7,7 @@ sr-ease: 298 up::[[espace vectoriel]] title::"espace vectoriel contenu dans un autre" description::"$F$ est un [[sous espace vectoriel|sev]] de $E$ ssi : $F \neq \emptyset$ ET $(F,+,\cdot)$ est un [[espace vectoriel|ev]]" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/sous espaces vectoriels supplémentaires.md b/sous espaces vectoriels supplémentaires.md index fd05c1cd..f86bcb16 100644 --- a/sous espaces vectoriels supplémentaires.md +++ b/sous espaces vectoriels supplémentaires.md @@ -3,7 +3,7 @@ alias: [ "supplémentaires" ] --- up::[[somme d'espaces vectoriels]] sibling::[[somme directe d'espaces vectoriels]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/sous groupe de Young.md b/sous groupe de Young.md index b60c7400..83e9ab83 100644 --- a/sous groupe de Young.md +++ b/sous groupe de Young.md @@ -1,5 +1,5 @@ up:: [[partition d'un entier]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $n \in \mathbb{N}$ diff --git a/sous groupe distingué.md b/sous groupe distingué.md index e2a45d9b..5c5c80e5 100644 --- a/sous groupe distingué.md +++ b/sous groupe distingué.md @@ -3,7 +3,7 @@ aliases: - distingué --- up:: [[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $G$ un groupe et $H < G$ diff --git a/sous groupe engendré.md b/sous groupe engendré.md index 4a6850ae..c4b37ac0 100644 --- a/sous groupe engendré.md +++ b/sous groupe engendré.md @@ -3,7 +3,7 @@ aliases: - engendré --- up::[[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[sous groupe engendré]] > Soit $G$ un groupe et $S \subseteq G$ une partie de $G$ diff --git a/sous groupe propre.md b/sous groupe propre.md index c9f2b068..bb102a05 100644 --- a/sous groupe propre.md +++ b/sous groupe propre.md @@ -1,5 +1,5 @@ up:: [[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[sous groupe propre]] > Soit $G$ un groupe diff --git a/sous groupe trivial.md b/sous groupe trivial.md index 54e87580..b8553fe4 100644 --- a/sous groupe trivial.md +++ b/sous groupe trivial.md @@ -3,7 +3,7 @@ aliases: - trivial --- up:: [[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[sous groupe trivial]] > Soit $G$ un groupe diff --git a/sous groupe.md b/sous groupe.md index fae28b77..6473a654 100644 --- a/sous groupe.md +++ b/sous groupe.md @@ -3,7 +3,7 @@ aliases: - sous groupes --- up::[[groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[sous groupe]] > Soit $(G, *)$ un groupe diff --git a/sous-ensemble propre.md b/sous-ensemble propre.md index 8a10df16..b6c5c644 100644 --- a/sous-ensemble propre.md +++ b/sous-ensemble propre.md @@ -1,5 +1,5 @@ up:: [[sous-ensemble]] -#maths/ensembles +#s/maths/ensembles > [!definition] [[sous-ensemble propre]] > Soit $A$ un ensemble. diff --git a/sous-groupes de R pour l'addition.md b/sous-groupes de R pour l'addition.md index 57ecf429..892e41ec 100644 --- a/sous-groupes de R pour l'addition.md +++ b/sous-groupes de R pour l'addition.md @@ -3,7 +3,7 @@ aliases: - sous-groupes de (ℝ, +) --- up:: [[sous groupe]], [[ensemble des réels|nombres réels]] -#maths/algèbre #maths/topologie +#s/maths/algèbre #s/maths/topologie > [!definition] [[sous-groupes de R pour l'addition|sous-groupes de (ℝ, +)]] > Les [[sous groupe|sous-groupes]] $H$ de $\mathbb{R}$ sont : @@ -37,7 +37,7 @@ up:: [[sous groupe]], [[ensemble des réels|nombres réels]] > > D'où $h = na \in a\mathbb{Z}$, et donc $H \subset a\mathbb{Z}$ > > > > - $a = 0$ -> > On veut voir que $H$ est [[ensemble dense|dense]] dans $\mathbb{R}$. +> > On veut voir que $H$ est [[partie dense d'un espace métrique|dense]] dans $\mathbb{R}$. > > Fixons $x \in \mathbb{R}$ et $r > 0$. > > Il existe une suite $(h_{n})_{n \in \mathbb{N}}$ d'éléments de $H \cap \mathbb{R}^{+*}$ tels que $h_{n} \to 0$ > > En particulier, $\exists N \in \mathbb{N},\quad \forall n \geq N,\quad 0 < h_{n} < r$ diff --git a/sous-groupes de Z muni de +.md b/sous-groupes de Z muni de +.md index f9a30d41..b135ddcb 100644 --- a/sous-groupes de Z muni de +.md +++ b/sous-groupes de Z muni de +.md @@ -3,7 +3,7 @@ alias: [ "sous-groupes de (ℤ, +)", "sous-groupe de (ℤ, +)" ] --- up:: [[anneau Z]], [[sous groupe]] title:: "$(n\mathbb{Z}, +)$ avec $n \in \mathbb{Z}$" -#maths/algèbre #maths/arithmétique +#s/maths/algèbre #s/maths/arithmétique --- diff --git a/sous-système de gestion de mémoire.md b/sous-système de gestion de mémoire.md index 23d12f62..81e09040 100644 --- a/sous-système de gestion de mémoire.md +++ b/sous-système de gestion de mémoire.md @@ -1,6 +1,6 @@ up::[[système d'exploitation]] title::"mémoire des (processus|données)" -#informatique/unix +#s/informatique/unix --- diff --git a/sous-système de gestion des fichiers.md b/sous-système de gestion des fichiers.md index 8abfe9e3..5ba2fdd7 100644 --- a/sous-système de gestion des fichiers.md +++ b/sous-système de gestion des fichiers.md @@ -1,6 +1,6 @@ up::[[système d'exploitation]] title::"fichiers, répertoires, espace libre" -#informatique +#s/informatique --- diff --git a/soutient élèves en difficulté (lycée).md b/soutient élèves en difficulté (lycée).md index ee6225ff..524194b9 100644 --- a/soutient élèves en difficulté (lycée).md +++ b/soutient élèves en difficulté (lycée).md @@ -2,7 +2,7 @@ up::[[CV]] date::2020-09-08 description::"soutien en mathématiques des élèves en difficulté de seconde et terminale" compétences:: 🧑‍🏫 🧮 -#CV #maths +#CV #s/maths ---- Soutient bénévole en mathématiques des élèves de seconde et terminale en prévision de la rentrée. diff --git a/spectre d'un endomorphisme linéaire.md b/spectre d'un endomorphisme linéaire.md index cff0fba8..c4c4514e 100644 --- a/spectre d'un endomorphisme linéaire.md +++ b/spectre d'un endomorphisme linéaire.md @@ -1,6 +1,6 @@ up:: [[endomorphisme linéaire]] title:: "ensemble des [[valeur propre d'une matrice|valeurs propres]]" -#maths/algèbre +#s/maths/algèbre --- diff --git a/sphère.md b/sphère.md new file mode 100644 index 00000000..4ac5e454 --- /dev/null +++ b/sphère.md @@ -0,0 +1,22 @@ +--- +aliases: +up: + - "[[partie d'un espace métrique]]" +tags: + - s/maths/topologie +sibling: + - "[[boule fermée]]" + - "[[boule ouverte]]" +--- + +> [!definition] Définition +> Soit $(X, d)$ un [[espace métrique]] +> Soit $p \in X$ et $r>0$ +> On appelle **sphère** l'ensemble : +> $S(p, r) = \{ x \in X \mid d(x, p) = r \}$ +^definition + +# Propriétés + +# Exemples + diff --git a/ssh keys.md b/ssh keys.md index d594c2cf..8e866ea4 100644 --- a/ssh keys.md +++ b/ssh keys.md @@ -1,6 +1,6 @@ up::[[terminal commandes]], [[ssh]] title:: "`cd ~/.ssh`", "`ssh-keygen -o`", "`cat ~/.ssh/id_rsa.pub`" -#informatique +#s/informatique --- diff --git a/ssh.md b/ssh.md index b0d10b67..1ca1f2d5 100644 --- a/ssh.md +++ b/ssh.md @@ -1,6 +1,6 @@ up:: [[terminal commandes]] title:: "Secure SHare" -#informatique +#s/informatique --- diff --git a/stabilisateur d'un groupe.md b/stabilisateur d'un groupe.md index 43ce0dc1..466f7752 100644 --- a/stabilisateur d'un groupe.md +++ b/stabilisateur d'un groupe.md @@ -3,7 +3,7 @@ aliases: - stabilisateurs --- up:: [[action de groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $\cdot$ une action de groupe de $G$ sur $X$ diff --git a/stage de 3ème au CNRS.md b/stage de 3ème au CNRS.md index 8b1ed3c4..4e8c942c 100644 --- a/stage de 3ème au CNRS.md +++ b/stage de 3ème au CNRS.md @@ -3,7 +3,7 @@ date::2017-12-18 date-end::2017-12-22 description::"Stage de 3ème au CNRS, 20/20 mention TB" compétences:: 🔍 ✍️ -#CV #maths #informatique #science +#CV #s/maths #s/informatique #s/science ---- Stage de troisième au [[CNRS]] : Centre National de Recherche Scientifique, au campus d'Orléans. diff --git a/stage de L3.md b/stage de L3.md index b83625f1..9ba4d7ff 100644 --- a/stage de L3.md +++ b/stage de L3.md @@ -4,7 +4,7 @@ tags: - excalidraw excalidraw-open-md: true --- -#fac #informatique +#s/fac #s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` diff --git a/stage de licence 3 informatique.md b/stage de licence 3 informatique.md index 450eeccb..a84190bb 100644 --- a/stage de licence 3 informatique.md +++ b/stage de licence 3 informatique.md @@ -4,7 +4,7 @@ quickshare-url: "https://noteshare.space/note/clnbgm4yo1051401mw28i8ifyt#rJGzbZi aliases: - stage de L3 --- -#fac #informatique +#s/fac #s/informatique http://celene.univ-tours.fr/course/view.php?id=2109 - règlement du stage diff --git a/statistiques cheat sheet.md b/statistiques cheat sheet.md index b73cbded..107a43f2 100644 --- a/statistiques cheat sheet.md +++ b/statistiques cheat sheet.md @@ -1,5 +1,5 @@ up:: [[statistiques]], [[cheat sheet]] -#maths/statistiques +#s/maths/statistiques - loi binomiale $\mathcal{B}(n, p)$ : $E(X) = n\cdot p$, $\sigma(X) = \sqrt{ n\cdot p\cdot (1-p) }$ - loi de poisson $\mathcal{P}(\lambda)$ : $P(X=k) = \dfrac{\lambda^{k}e^{k}}{k!}$, $E(X) = V(X) = \lambda$, $\sigma(X) = \sqrt{ \lambda }$ diff --git a/statistiques descriptives.md b/statistiques descriptives.md index e47e9776..612a5638 100644 --- a/statistiques descriptives.md +++ b/statistiques descriptives.md @@ -1,5 +1,5 @@ up:: [[statistiques]] -#maths/statistiques +#s/maths/statistiques > [!definition] > diff --git a/statistiques indices de dispersion.md b/statistiques indices de dispersion.md index 22ca86cd..9d1bc8ed 100644 --- a/statistiques indices de dispersion.md +++ b/statistiques indices de dispersion.md @@ -1,5 +1,5 @@ up:: [[indices d'une variable aléatoire]] -#maths/statistiques +#s/maths/statistiques > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/statistiques locales sur l'enseignement supérieur.md b/statistiques locales sur l'enseignement supérieur.md index cd10aefb..35595cf4 100644 --- a/statistiques locales sur l'enseignement supérieur.md +++ b/statistiques locales sur l'enseignement supérieur.md @@ -1,5 +1,5 @@ up:: [[schéma local de l'enseignement supérieur, de la recherche et de l'innovation]] -#fac +#s/fac le taux de scolarisation des plus de 18 ans à progressé, d'avantage à Blois. diff --git a/statistiques.md b/statistiques.md index e7bb280f..eb4fcb3d 100644 --- a/statistiques.md +++ b/statistiques.md @@ -1,5 +1,5 @@ up:: [[mathématiques]] -#maths/statistiques +#s/maths/statistiques > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/stockage des données.md b/stockage des données.md index aa0564b3..da3aff34 100644 --- a/stockage des données.md +++ b/stockage des données.md @@ -1,5 +1,5 @@ up::[[base de données]] -#informatique +#s/informatique ---- diff --git a/stratégie d'évaluation.md b/stratégie d'évaluation.md index ca30bf73..88a70595 100644 --- a/stratégie d'évaluation.md +++ b/stratégie d'évaluation.md @@ -1,5 +1,5 @@ up:: [[programmation]] -#informatique +#s/informatique > [!definition] stratégie d'évaluation diff --git a/structure algébrique.md b/structure algébrique.md index 6e7405e0..f24f7609 100644 --- a/structure algébrique.md +++ b/structure algébrique.md @@ -4,7 +4,7 @@ aliases: - structures algébriques --- up::[[algèbre]] -#maths/algèbre +#s/maths/algèbre Une structure algébrique est un [[ensemble]] _muni_ d'une ou plusieurs [[loi de composition|lois de composition]]. diff --git a/structure d'algèbre.md b/structure d'algèbre.md index c976eab8..aa57560c 100644 --- a/structure d'algèbre.md +++ b/structure d'algèbre.md @@ -4,7 +4,7 @@ alias: "algèbre" up::[[structure algébrique]] title::$\mathbf{K}$-[[espace vectoriel]] muni d'une 2$^{\text{ème}}$ [[loi de composition interne|loi]] qui forme un [[monoïde]] description::"$(A,+,\circ,\cdot)$ est une _algèbre_ ssi :", " - $(A,+,\cdot)$ est un [[espace vectoriel|ev]]", " - $(A, \circ)$ est un [[monoïde]]" -#maths/algèbre +#s/maths/algèbre ---- Soit un ensemble $A$ diff --git a/structure de données.arbre.md b/structure de données.arbre.md index ea317a0f..324f5801 100644 --- a/structure de données.arbre.md +++ b/structure de données.arbre.md @@ -3,7 +3,7 @@ aliases: - arbre --- up::[[structure de données]], [[graphe]] -#maths #informatique/algorithmie +#s/maths #s/informatique/algorithmie --- Un arbre est une [[structure de données]] diff --git a/structure de données.liste.md b/structure de données.liste.md index ea981bfc..b8b6c49e 100644 --- a/structure de données.liste.md +++ b/structure de données.liste.md @@ -3,4 +3,4 @@ aliases: - listes --- up:: [[structure de données]] -#informatique \ No newline at end of file +#s/informatique \ No newline at end of file diff --git a/structure de données.md b/structure de données.md index d876a13f..7a223c93 100644 --- a/structure de données.md +++ b/structure de données.md @@ -3,5 +3,5 @@ aliases: - structures de données --- up::[[informatique]] -#informatique #not-done +#s/informatique #not-done diff --git a/topologie.md b/structure de topologie.md similarity index 76% rename from topologie.md rename to structure de topologie.md index 9250159d..8ee0c313 100644 --- a/topologie.md +++ b/structure de topologie.md @@ -1,7 +1,13 @@ -up:: [[structure algébrique]] -#maths/topologie +--- +aliases: + - topologie +up: + - "[[structure algébrique]]" +tags: + - "#s/maths/topologie" +--- -> [!definition] [[topologie]] +> [!definition] [[structure de topologie]] > On appelle **topologie** sur $X$ un ensemble $\mathcal{O}$ de parties de $X$ qui seront les ouverts, tel que : > - $\emptyset \in \mathcal{O}$ > - $X \in \mathcal{O}$ diff --git a/structures de données.enregistrement.md b/structures de données.enregistrement.md index 81c16d69..41fcac62 100644 --- a/structures de données.enregistrement.md +++ b/structures de données.enregistrement.md @@ -4,7 +4,7 @@ aliases: - enregistrements --- up:: [[structure de données]] -#informatique +#s/informatique > [!definition] enregistrement > Un enregistrement est une structure de données qui rassemble des champs, chaque champ contenant des valeurs. diff --git a/subjectivisme moral.md b/subjectivisme moral.md index 76c91c4f..489e8bba 100644 --- a/subjectivisme moral.md +++ b/subjectivisme moral.md @@ -1,6 +1,6 @@ up:: [[morale]] sibling:: [[relativisme moral]] -#philosphie +#s/philosphie Le subjectivisme moral s'oppose à la [[morale objective]] en considérant qu'une chose est bonne seulement du point de vue d'un individu. Autrement dit, une chose n'est jamais que bonne *pour quelqu'un* (ou quelque chose). Le subjectivisme est donc différent du relativisme, puisqu'il éjecte complètement l'idée de vérité sur le sujet de la morale : toute morale diff --git a/subversion du capitalisme.md b/subversion du capitalisme.md index 4bbd8a6d..2389474b 100644 --- a/subversion du capitalisme.md +++ b/subversion du capitalisme.md @@ -1,5 +1,5 @@ up:: [[capitalisme]], [[communisme]] -#politique +#s/politique > [!definition] subversion du capitalisme > Fait de récupérer des [[institution|institutions]] du capitalisme en les déformant dans un projet [[communisme|communiste]]. diff --git a/suite bornée.md b/suite bornée.md new file mode 100644 index 00000000..7b41a40b --- /dev/null +++ b/suite bornée.md @@ -0,0 +1,17 @@ +--- +aliases: + - bornée +up: + - "[[suite]]" +tags: + - s/maths/analyse +--- + +> [!definition] Définition +> +^definition + +# Propriétés + +# Exemples + diff --git a/suite convergente.md b/suite convergente.md index e4b7c39c..e7e0f343 100644 --- a/suite convergente.md +++ b/suite convergente.md @@ -2,7 +2,7 @@ alias: ["converge", "convergence"] --- up::[[suite]] -#maths/analyse +#s/maths/analyse > [!definition] [[suite convergente]] > Soit $(X, d)$ un [[espace métrique]] @@ -24,7 +24,7 @@ up::[[suite]] # Propriétés > [!proposition] toute suite convergente est bornée -> Si une suite converge, alors elle est bornée +> Si une suite converge, alors elle est [[suite bornée|bornée]] > > [!démonstration]- Démonstration > > Soit $(X, d)$ un [[espace métrique]] > > Soit $(u_{n}) \in X^{\mathbb{N}}$ une suite qui converge vers $l$ diff --git a/suite croissante.md b/suite croissante.md index ca4d9090..52d724ae 100644 --- a/suite croissante.md +++ b/suite croissante.md @@ -1,5 +1,5 @@ up::[[suite]] -#maths/analyse +#s/maths/analyse ---- Soit $u$ une [[suite]] diff --git a/suite de Cauchy.md b/suite de Cauchy.md index 6244a3f3..6b530a03 100644 --- a/suite de Cauchy.md +++ b/suite de Cauchy.md @@ -1,6 +1,6 @@ up::[[suite]] title::"les $u_{n}$ pour $n$ grand sont _proches_ les uns des autres" -#maths/analyse +#s/maths/analyse --- diff --git a/suite de fonctions convergence uniforme.md b/suite de fonctions convergence uniforme.md index 2cb0fb20..cd8ef34f 100644 --- a/suite de fonctions convergence uniforme.md +++ b/suite de fonctions convergence uniforme.md @@ -3,7 +3,7 @@ alias: [ "convergence uniforme", "uniformément convergente", "convergence unifo --- up:: [[suite de fonctions convergente]] title:: "$(f_{n})$ CVU ssi : $\lim\limits_{ n \to +\infty } \sup\limits_{x \in I} \left| f_{n}(x) - f(x) \right| = 0$ où $f = \lim\limits_{ n \to \infty }f_{n}$" -#maths/analyse +#s/maths/analyse --- diff --git a/suite de fonctions convergente presque partout.md b/suite de fonctions convergente presque partout.md index adef429e..7996a353 100644 --- a/suite de fonctions convergente presque partout.md +++ b/suite de fonctions convergente presque partout.md @@ -1,5 +1,5 @@ up:: [[propriété vraie presque partout]], [[suite de fonctions convergente]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Dans l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/suite de fonctions convergente.md b/suite de fonctions convergente.md index 5a69bdcf..21c6e176 100644 --- a/suite de fonctions convergente.md +++ b/suite de fonctions convergente.md @@ -1,6 +1,6 @@ up:: [[suite de fonctions]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/suite de fonctions.md b/suite de fonctions.md index 1647edc9..cc1c3f8d 100644 --- a/suite de fonctions.md +++ b/suite de fonctions.md @@ -1,7 +1,7 @@ up:: [[suite]], [[fonction]] sibling:: [[série de fonctions]] title:: "suite de $\left( \mathbb{R}^{\mathbb{R}} \right)^{\mathbb{N}}$" -#maths/analyse +#s/maths/analyse --- diff --git a/suite divergente.md b/suite divergente.md index 325a5a50..48d12b84 100644 --- a/suite divergente.md +++ b/suite divergente.md @@ -1,6 +1,6 @@ up::[[suite]] sibling::[[fonction convergente|converge]] -#maths/analyse +#s/maths/analyse ---- Une _suite divergente_ est une [[suite]] qui ne [[suite convergente|converge]] pas. diff --git a/suite extraite.md b/suite extraite.md index b8fb3d42..dbe4b026 100644 --- a/suite extraite.md +++ b/suite extraite.md @@ -4,7 +4,7 @@ aliases: - sous-suite --- up::[[suite]] -#maths/analyse +#s/maths/analyse > [!definition] > Soit $(u_{n})$ une suite diff --git a/suite.md b/suite.md index f0a70a7f..ea768d73 100644 --- a/suite.md +++ b/suite.md @@ -1,4 +1,4 @@ -#maths +#s/maths ---- Une _suite_ est une [[famille]] d'éléments - appelés ses _termes_ - indexée par les entiers naturels diff --git a/support d'une fonction.md b/support d'une fonction.md index 06d692c6..5368a84f 100644 --- a/support d'une fonction.md +++ b/support d'une fonction.md @@ -1,5 +1,5 @@ up:: [[fonction]] -#maths/analyse #maths/algèbre +#s/maths/analyse #s/maths/algèbre > [!definition] Définition > Le support d'une fonction $f: E \to F$ est l'ensemble des éléments non-invariants par $f$, c'est-à-dire : diff --git a/support d'une permutation.md b/support d'une permutation.md index 4815b998..5d7c1dc7 100644 --- a/support d'une permutation.md +++ b/support d'une permutation.md @@ -3,7 +3,7 @@ aliases: - support --- up::[[permutation]] -#maths/algèbre +#s/maths/algèbre > [!definition] [[support d'une permutation]] > Soit $\sigma \in \mathfrak{S}_{n}$ une permutation diff --git a/supremum.md b/supremum.md index 00b11984..b4bdd185 100644 --- a/supremum.md +++ b/supremum.md @@ -1,5 +1,5 @@ sibling:: [[infimum]] -#maths/analyse +#s/maths/analyse > [!definition] supremum > Soit $A$ un ensemble diff --git a/surjection.md b/surjection.md index e9f690ec..1656bc0c 100644 --- a/surjection.md +++ b/surjection.md @@ -12,7 +12,7 @@ excalidraw-open-md: true --- up::[[application]] sibling::[[injection]] -#maths/analyse +#s/maths/analyse > [!definition] Définition > Soit $f: E\mapsto F$ une [[application]]. diff --git a/surtravail.md b/surtravail.md index 0035648e..04e45d9d 100644 --- a/surtravail.md +++ b/surtravail.md @@ -1,5 +1,5 @@ up:: [[travail]] -#science/sociologie #politique +#s/science/sociologie #s/politique > [!definition] surtravail > Par du travail dont la valeur créée n'est pas reversée en salaire. diff --git a/switch réseau.md b/switch réseau.md index abf85284..c50bd622 100644 --- a/switch réseau.md +++ b/switch réseau.md @@ -3,7 +3,7 @@ alias: [ "switch", "switchs" ] --- up::[[matériel réseau informatique]] title::"redirige des [[réseau paquet|paquets]] vers le bon destinataire ([[Local Area Network|LAN]])" -#informatique +#s/informatique ---- diff --git a/symbole de kronecker.md b/symbole de kronecker.md index 724f82a3..effebfc8 100644 --- a/symbole de kronecker.md +++ b/symbole de kronecker.md @@ -2,7 +2,7 @@ alias: [ "delta de kronecker" ] --- title::"$\displaystyle d_{ij}=d_{i}^{j}=d^{ij}=\begin{cases} 1 \text{ si } i = j,\quad\\ 0 \text{ si } i \neq j \end{cases}$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/symétrie glissée.md b/symétrie glissée.md index 3767c864..d070073c 100644 --- a/symétrie glissée.md +++ b/symétrie glissée.md @@ -1,6 +1,6 @@ up:: [[transformations]] title:: "symétrie puis translation parallèle à l'axe de symétrie" -#maths +#s/maths --- diff --git a/symétrie orthogonale par rapport à une droite vectorielle.md b/symétrie orthogonale par rapport à une droite vectorielle.md index 1647a804..70c3907a 100644 --- a/symétrie orthogonale par rapport à une droite vectorielle.md +++ b/symétrie orthogonale par rapport à une droite vectorielle.md @@ -1,6 +1,6 @@ up::[[réflexion]], [[droite vectorielle]] title::"$p_{1}$ et $p_{2}$ les [[projection d'un vecteur sur une droite vectorielle|projections]] sur les [[droite vectorielle|droites]] $D_{1}$ et $D_{2}$", "$s_{1}(u) = p_{1}(u)-p_{2}(u)$" -#maths/algèbre +#s/maths/algèbre ---- Dans un [[espace vectoriel orthonormé]] diff --git a/symétrie vectorielle orthogonale.md b/symétrie vectorielle orthogonale.md index bb20ddea..63622e24 100644 --- a/symétrie vectorielle orthogonale.md +++ b/symétrie vectorielle orthogonale.md @@ -1,6 +1,6 @@ up::[[symétrie orthogonale par rapport à une droite vectorielle]] title:: "symétrie orthogonale par rapport à $\mathrm{Vect(u)}$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/syndicat étudiant de blois.md b/syndicat étudiant de blois.md index adaa75bd..b3b2215e 100644 --- a/syndicat étudiant de blois.md +++ b/syndicat étudiant de blois.md @@ -4,7 +4,7 @@ aliases: --- up:: [[syndicalisme]], [[CV]], [[associations étudiantes]] down:: [[CP création du seb]] -#politique #fac +#s/politique #s/fac diff --git a/syntaxe d'une DTD.md b/syntaxe d'une DTD.md index 11517b7a..12a89627 100644 --- a/syntaxe d'une DTD.md +++ b/syntaxe d'une DTD.md @@ -1,5 +1,5 @@ up:: [[DTD]] -#informatique +#s/informatique # Déclaration des éléments diff --git a/système d'exploitation.md b/système d'exploitation.md index 9969d509..cc493c16 100644 --- a/système d'exploitation.md +++ b/système d'exploitation.md @@ -2,7 +2,7 @@ alias: "SE", "OS", "Operating system", "systèmes d'exploitation" --- up:: [[informatique]] -#informatique +#s/informatique ---- diff --git a/système de représentation pour une relation d'équivalence.md b/système de représentation pour une relation d'équivalence.md index 6facc04b..77d5dc1d 100644 --- a/système de représentation pour une relation d'équivalence.md +++ b/système de représentation pour une relation d'équivalence.md @@ -1,5 +1,5 @@ up:: [[relation d'équivalence]] -#maths/algèbre +#s/maths/algèbre > [!definition] Définition > Soit $\sim$ une [[relation d'équivalence]] sur $X$ diff --git a/système linéaire homogène.md b/système linéaire homogène.md index 2595afca..80dae57b 100644 --- a/système linéaire homogène.md +++ b/système linéaire homogène.md @@ -1,5 +1,5 @@ up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- Un [[système linéaire]] est _homogène_ si $(x, y,\ldots)=(0, 0, \ldots)$ est solution du système. diff --git a/système linéaire incompatible.md b/système linéaire incompatible.md index ec750761..f00b0929 100644 --- a/système linéaire incompatible.md +++ b/système linéaire incompatible.md @@ -1,5 +1,5 @@ up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- Un _[[système linéaire]] incompatible_ est un système qui n'admet aucune solution. diff --git a/système linéaire à deux inconnues.md b/système linéaire à deux inconnues.md index c01e784d..38d066f8 100644 --- a/système linéaire à deux inconnues.md +++ b/système linéaire à deux inconnues.md @@ -1,5 +1,5 @@ up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/système linéaire.md b/système linéaire.md index 178fd9ed..aa7f3ec2 100644 --- a/système linéaire.md +++ b/système linéaire.md @@ -6,7 +6,7 @@ alias: [ "sl", "systèmes linéaires" ] --- up::[[algèbre]] title::"système d'équations linéaires (combinaisons linéaires des variables)" -#maths/algèbre +#s/maths/algèbre ---- _système linéaire_, abb. _SL_ diff --git a/système moral.md b/système moral.md index 4a89e697..7f5729fb 100644 --- a/système moral.md +++ b/système moral.md @@ -1,3 +1,3 @@ up:: [[morale]] -#philosphie #politique #science/sociologie +#s/philosphie #s/politique #s/science/sociologie diff --git a/système politique.md b/système politique.md index ec6a125e..7ff12201 100644 --- a/système politique.md +++ b/système politique.md @@ -1,5 +1,5 @@ up:: [[politique]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/systèmes d'exploitation TD2 2022-09-30.md b/systèmes d'exploitation TD2 2022-09-30.md index d29e1f2a..b27d5a4f 100644 --- a/systèmes d'exploitation TD2 2022-09-30.md +++ b/systèmes d'exploitation TD2 2022-09-30.md @@ -1,4 +1,4 @@ -#fac/TD +#t/exercice/TD ---- ![|300](markmind/1664542638114.png) diff --git a/systèmes linéaires équivalents.md b/systèmes linéaires équivalents.md index 6d14ffbb..fcb529d6 100644 --- a/systèmes linéaires équivalents.md +++ b/systèmes linéaires équivalents.md @@ -1,5 +1,5 @@ up::[[système linéaire]] -#maths/algèbre +#s/maths/algèbre ---- Deux [[système linéaire|systèmes linéaires]] sont _équivalents_ si l'ensemble de leurs solution est égal. diff --git a/séparer une série entière en 2.md b/séparer une série entière en 2.md index 9242352f..acb1c070 100644 --- a/séparer une série entière en 2.md +++ b/séparer une série entière en 2.md @@ -3,7 +3,7 @@ alias: [ "séparer une série entière en somme de deux séries entières" ] --- up:: [[série entière]] title:: "$\sum\limits_{n\geq 0} \left( (a_{n}+b_{n})x^{n} \right) = \sum\limits_{n \geq 0} \left( a_{n}x^{n} \right) + \sum\limits_{n\geq 0}\left( b_{n}x^{n} \right)$" -#maths/analyse +#s/maths/analyse --- > [!definition] Séparer une série entière en somme de deux séries entières diff --git a/série de Fourier.md b/série de Fourier.md index 6db76d1e..85a6d3af 100644 --- a/série de Fourier.md +++ b/série de Fourier.md @@ -1,7 +1,7 @@ up:: [[série trigonométrique]] author:: [[Joseph Fourier]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions citère de Cauchy.md b/série de fonctions citère de Cauchy.md index e71cf597..a42c3dd2 100644 --- a/série de fonctions citère de Cauchy.md +++ b/série de fonctions citère de Cauchy.md @@ -3,7 +3,7 @@ alias: [ "critère de Cauchy pour une série de fonctions", "critère de Cauchy" --- up:: [[série de fonctions convergence]] title:: "série CVA ssi son reste $R_{N} \leq \text{cste} \times \sum\limits_{n=N+1}^{+\infty} (q^{n})$", "CVA ssi $\underset{n \to \infty}{\lim\sup} \left| \frac{f_{n+1}}{f_{n}} \right| < 1$" -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions convergence normale.md b/série de fonctions convergence normale.md index 5c187082..71c026fb 100644 --- a/série de fonctions convergence normale.md +++ b/série de fonctions convergence normale.md @@ -3,7 +3,7 @@ alias: [ "convergence normale d'une série de fonctions", "convergence normale", --- up:: [[série de fonctions convergence]] title:: "$\sum f_{n}(x)$ sur $I$ CV si $\sum\limits_{n} \big(\|u_{n}\|_{\infty} \big) \leq +\infty$" -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions convergence uniforme.md b/série de fonctions convergence uniforme.md index 0e084b12..7ed712f4 100644 --- a/série de fonctions convergence uniforme.md +++ b/série de fonctions convergence uniforme.md @@ -3,7 +3,7 @@ alias: [ "série uniformément convergente", "uniformément convergente", "CVU", --- up:: [[série de fonctions convergence]] title:: "$\sum\limits_{n} f_{n}$ CVU ssi $\displaystyle \sum\limits_{n} \sup\limits_{x}(f_{n}(x))$ [[série de fonctions covergence simple|CV]]" -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions convergence.md b/série de fonctions convergence.md index 60f8d32f..76c5a1c2 100644 --- a/série de fonctions convergence.md +++ b/série de fonctions convergence.md @@ -3,7 +3,7 @@ alias: [ "convergence d'une série de fonctions", "convergence", "convergente" ] --- up::[[série de fonctions]] title:: "critères et propriétés de convergence" -#maths/analyse +#s/maths/analyse > [!query] Sous-notes de `=this.file.link` diff --git a/série de fonctions critère d'Abel.md b/série de fonctions critère d'Abel.md index 84dcb295..7cd2a281 100644 --- a/série de fonctions critère d'Abel.md +++ b/série de fonctions critère d'Abel.md @@ -3,7 +3,7 @@ alias: [ "critère d'Abel", "critère d'Abel pour une série de fonctions" ] --- up:: [[série de fonctions convergence]] title:: -#informatique +#s/informatique --- diff --git a/série de fonctions critère de d'Alemblert.md b/série de fonctions critère de d'Alemblert.md index 45e7ccfc..a969417b 100644 --- a/série de fonctions critère de d'Alemblert.md +++ b/série de fonctions critère de d'Alemblert.md @@ -1,7 +1,7 @@ up:: [[série de fonctions convergence]] sibling:: [[règle de d'Alembert pour les séries]] title:: "Si $\lim\limits_{ n \to \infty } \left| \frac{f_{n+1}(x)}{f_{n}(x)} \right| = l$ avec $0 \leq l < 1$, alors $\sum\limits_{n}f_{n}(x)$ [[série de fonction convergence absolue|CVA]]" -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions types de convergence.md b/série de fonctions types de convergence.md index 24209ea3..01294c17 100644 --- a/série de fonctions types de convergence.md +++ b/série de fonctions types de convergence.md @@ -1,5 +1,5 @@ up::[[série de fonctions convergence]] -#maths/analyse +#s/maths/analyse --- diff --git a/série de fonctions.md b/série de fonctions.md index 44b6e929..c25b1800 100644 --- a/série de fonctions.md +++ b/série de fonctions.md @@ -1,7 +1,7 @@ up:: [[fonction]], [[série]] sibling:: [[suite de fonctions]] title:: "$\sum\limits_{n} f_{n}$ où chaque $f_{n}$ est une fonction" -#maths/analyse +#s/maths/analyse --- diff --git a/série entière.md b/série entière.md index 631ea56d..5e7e44a9 100644 --- a/série entière.md +++ b/série entière.md @@ -3,7 +3,7 @@ alias: [ "séries entières" ] --- up:: [[série de fonctions]] title:: "$\sum\limits_{n\geq 0} a_{n}x^{n}$, où $a_{n}$ ne dépend pas de $x$" -#maths/analyse +#s/maths/analyse --- diff --git a/série harmonique.md b/série harmonique.md index 46284053..980c03ec 100644 --- a/série harmonique.md +++ b/série harmonique.md @@ -1,5 +1,5 @@ up::[[série numérique]] title::"$h_{n} = \sum\limits_{k=1}^{n} \frac{1}{k}$" -#maths/analyse +#s/maths/analyse --- \ No newline at end of file diff --git a/série numérique.md b/série numérique.md index 92186b84..92203ffb 100644 --- a/série numérique.md +++ b/série numérique.md @@ -1,6 +1,6 @@ up::[[série]] title:: $\sum\limits u_{n}$ -#maths/analyse +#s/maths/analyse --- diff --git a/série trigonométrique convergence normale.md b/série trigonométrique convergence normale.md index fa18bf92..9aa35759 100644 --- a/série trigonométrique convergence normale.md +++ b/série trigonométrique convergence normale.md @@ -1,6 +1,6 @@ up:: [[convergence d'une série trigonométrique]] title:: "$\sum\limits_{k}a_{k}$ et $\sum\limits_{k}b_{k}$ convergent $\implies$ $\sum\limits_{k}\big( a_{k}\cos(kx) + b_{k}\sin(kx) \big)$ [[série de fonctions convergence normale|converge normalement]]" -#maths/analyse +#s/maths/analyse --- diff --git a/série trigonométrique.md b/série trigonométrique.md index e8ea0b46..af61ad6e 100644 --- a/série trigonométrique.md +++ b/série trigonométrique.md @@ -1,6 +1,6 @@ up:: [[série de fonctions]] title:: "$\sum\limits_{n} \big( a_{n}\cos(nx) + b_{n}\sin(nx) \big)$" -#maths/analyse +#s/maths/analyse --- diff --git a/série.md b/série.md index ae74fae1..60ef3868 100644 --- a/série.md +++ b/série.md @@ -1,6 +1,6 @@ up:: [[analyse|analyse]] title:: "$\sum\limits$" -#maths/analyse +#s/maths/analyse --- diff --git a/séries entières formule de Hadamard.md b/séries entières formule de Hadamard.md index 95aee750..b13e0133 100644 --- a/séries entières formule de Hadamard.md +++ b/séries entières formule de Hadamard.md @@ -4,7 +4,7 @@ alias: [ "formule de Hadamard", "formule de Hadamard pour le rayon de convergenc up:: [[rayon de convergence]] sibling:: [[série de fonctions citère de Cauchy|règle de Cauchy]] title:: "$\sum\limits_{n} a_{n}x^{n}$ : son [[rayon de convergence|rayon de CV]] est $R$ avec $\displaystyle\frac{1}{R} = \lim \sup |a_{n}|^{\frac{1}{n}}$" -#maths/analyse +#s/maths/analyse --- diff --git a/séries entières formule de d'Alembert.md b/séries entières formule de d'Alembert.md index 2da5b3bb..0679a745 100644 --- a/séries entières formule de d'Alembert.md +++ b/séries entières formule de d'Alembert.md @@ -3,7 +3,7 @@ alias: [ "formule de d'Alembert pour le rayon de convergence", "formule de d'Ale --- up:: [[rayon de convergence]] title:: "Si $\displaystyle\left| \frac{a_{n+1}}{a_{n}} \right|$ CV vers $L$, le rayon de CV de $\sum\limits_{n} a_{n}x^{n}$ est $R = \dfrac{1}{L}$" -#maths/analyse +#s/maths/analyse --- diff --git a/table d'allocation de fichiers (FAT).md b/table d'allocation de fichiers (FAT).md index 54bbd60e..9504cf75 100644 --- a/table d'allocation de fichiers (FAT).md +++ b/table d'allocation de fichiers (FAT).md @@ -3,7 +3,7 @@ alias: [ "FAT", "table d'allocation", "tables d'allocations" ] --- up::[[sous-système de gestion des fichiers]] title:: "File Allocation Table" -#informatique/unix +#s/informatique/unix --- diff --git a/table de cayley.md b/table de cayley.md index 83fd0406..b3921661 100644 --- a/table de cayley.md +++ b/table de cayley.md @@ -1,7 +1,7 @@ up::[[structure algébrique]] author:: [[Arthur Cayley]] description::"table d'une opération (résultat de l'application sur toutes les valeurs possible)" -#maths/algèbre +#s/maths/algèbre Soit $E$ un ensemble non vide, et $*$ une [[loi de composition interne|LCI]] sur $E$. On représente la loi par une _table de Cayley_. diff --git a/tableau associatif.md b/tableau associatif.md index 888c1edf..7d6bd17f 100644 --- a/tableau associatif.md +++ b/tableau associatif.md @@ -5,7 +5,7 @@ aliases: - table d'associations --- up:: [[structure de données]] -#informatique +#s/informatique > [!definition] tableau associatif > Un tableau associatif (ou dictionnaire, ou *map*) est une [[structure de données]]. diff --git a/tableaux de Karnaugh.md b/tableaux de Karnaugh.md index 8546db22..c4b334e7 100644 --- a/tableaux de Karnaugh.md +++ b/tableaux de Karnaugh.md @@ -1,5 +1,5 @@ up::[[Portes logiques]] -#informatique +#s/informatique ---- diff --git a/tangente d'une somme.md b/tangente d'une somme.md index babcdd7f..e6db1a3f 100644 --- a/tangente d'une somme.md +++ b/tangente d'une somme.md @@ -6,7 +6,7 @@ sibling:: [[tangente hyperbolique d'une somme]] up::[[formules de trigonométrie]] type::"formule de somme" title::"$\tan(a+b) = \dfrac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}$" -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente de pi sur 2 moins x.md b/tangente de pi sur 2 moins x.md index c30acabe..456ed325 100644 --- a/tangente de pi sur 2 moins x.md +++ b/tangente de pi sur 2 moins x.md @@ -10,7 +10,7 @@ sibling:: [[tangente de pi sur 2 moins x]] up::[[formules de trigonométrie]] sibling::[[tangente de pi sur 2 moins x|sin((pi/2)-x)]], [[cosinus pi sur 2 moins x|cos((pi/2)-x)]] title::$\tan\left(\frac{\pi}{2}-x\right)=\text{cotan}(x)=\frac{1}{\tan(x)}$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente du double.md b/tangente du double.md index 2c851f84..1943ea2f 100644 --- a/tangente du double.md +++ b/tangente du double.md @@ -7,7 +7,7 @@ up::[[formules de trigonométrie]] sibling::[[tangente hyperbolique du double]] type::"formule de duplication" title::$\tan(2x) = \dfrac{2\tan(x)}{1-\tan^{2}(x)}$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente en fonction de tangente x sur deux.md b/tangente en fonction de tangente x sur deux.md index caa68e56..6c6900ab 100644 --- a/tangente en fonction de tangente x sur deux.md +++ b/tangente en fonction de tangente x sur deux.md @@ -4,7 +4,7 @@ alias: "tange en fonction de tan(x/2)" up::[[formules de trigonométrie]] type::$t = \tan\left(\frac{x}{2}\right)$ title::$\tan(x) = \dfrac{2t}{1-t^{2}}$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente hyperbolique d'une somme.md b/tangente hyperbolique d'une somme.md index b4f5de5c..94e3e232 100644 --- a/tangente hyperbolique d'une somme.md +++ b/tangente hyperbolique d'une somme.md @@ -5,7 +5,7 @@ up::[[formules de trigonométrie]] sibling::[[tangente d'une somme]] type::"formule de somme", "hyperbolique" title::"$\mathrm{th}(a+b) = \dfrac{\mathrm{th}(a)+\mathrm{th}(b)}{1-\mathrm{th}(a)\mathrm{th}(b)}$" -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente hyperbolique du double.md b/tangente hyperbolique du double.md index b4e99f0b..f9bb677a 100644 --- a/tangente hyperbolique du double.md +++ b/tangente hyperbolique du double.md @@ -7,7 +7,7 @@ up::[[formules de trigonométrie]] sibling::[[tangente du double]] type::"formule de duplication", "hyperbolique" title::$\mathrm{th}(2x) = \dfrac{2 \mathrm{th}(x)}{1+\mathrm{th}^{2}(x)}$ -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/tangente à une courbe paramétrée.md b/tangente à une courbe paramétrée.md index 6fa7d6e0..3e15e8f7 100644 --- a/tangente à une courbe paramétrée.md +++ b/tangente à une courbe paramétrée.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse ---- # Définition diff --git a/tangente à une courbe.md b/tangente à une courbe.md index 0c7e400d..6100d54c 100644 --- a/tangente à une courbe.md +++ b/tangente à une courbe.md @@ -1,5 +1,5 @@ up::[[analyse|analyse]] -#maths/analyse +#s/maths/analyse ---- Soit $\mathscr{C}_f$ la courbe représentative de la fonction $f$. diff --git a/tarification du carbonne.md b/tarification du carbonne.md index a94c9ef1..436b21da 100644 --- a/tarification du carbonne.md +++ b/tarification du carbonne.md @@ -1,7 +1,7 @@ up:: [[leviers d'action pour l'écologie]] title:: -#politique #science/écologie +#s/politique #s/science/écologie --- diff --git a/tautologie.md b/tautologie.md index b3969ae2..7b24ade8 100644 --- a/tautologie.md +++ b/tautologie.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- diff --git a/taxer le profit, c'est le rendre indispensable pour les prestations sociales.md b/taxer le profit, c'est le rendre indispensable pour les prestations sociales.md index 2e85927e..e83db334 100644 --- a/taxer le profit, c'est le rendre indispensable pour les prestations sociales.md +++ b/taxer le profit, c'est le rendre indispensable pour les prestations sociales.md @@ -3,7 +3,7 @@ aliases: - taxer légitime le profit --- up:: [[taxe]] -#politique +#s/politique - la [[taxe]] corrige une mauvaise répartition salaire / profit - la [[taxe]] est prise sur le profit, le profit est donc nécessaire à la taxe diff --git a/taxonomie des paradigmes de programmation.md b/taxonomie des paradigmes de programmation.md index a11ec0e5..08e9e12d 100644 --- a/taxonomie des paradigmes de programmation.md +++ b/taxonomie des paradigmes de programmation.md @@ -1,5 +1,5 @@ up:: [[paradigme de programmation]] -#informatique +#s/informatique > [!definition] taxonomie des pardigmes de programmation > Chercher à organiser les paradigmes selon les fonctionnalités ou concepts qu'ils implémentent. diff --git a/te papa museum exposition d'art moderne.md b/te papa museum exposition d'art moderne.md index 1222b3fd..9e95e89b 100644 --- a/te papa museum exposition d'art moderne.md +++ b/te papa museum exposition d'art moderne.md @@ -1,5 +1,5 @@ up::[[expositions]] -#art +#s/art - collectif de femmes - différents tissages diff --git a/templates/citation.md b/templates/citation.md index 51367b8f..30ddf08b 100644 --- a/templates/citation.md +++ b/templates/citation.md @@ -2,7 +2,7 @@ author:: source:: link:: date-seen::{{DATE:yyyy-MM-DD}} -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > ... diff --git a/templates/cours.md b/templates/cours.md index 717b6db5..ec2fd569 100644 --- a/templates/cours.md +++ b/templates/cours.md @@ -1,5 +1,5 @@ date::{{DATE}} -#cours +#t/cours --- diff --git a/templates/devoir.md b/templates/devoir.md index b3c44c67..8ec7aa89 100644 --- a/templates/devoir.md +++ b/templates/devoir.md @@ -4,7 +4,7 @@ due: 2023-01-10 --- up::[[devoirs]] title:: -#devoir +#t/devoir --- diff --git a/templates/exercice.md b/templates/exercice.md index f21b15c7..1c0ff497 100644 --- a/templates/exercice.md +++ b/templates/exercice.md @@ -1,4 +1,4 @@ date::{{DATE}} -#exercice +#t/exercice --- diff --git a/templates/personne.md b/templates/personne.md index 4c4ecca7..a9a6f94e 100644 --- a/templates/personne.md +++ b/templates/personne.md @@ -1,5 +1,5 @@ link:: -#personne +#t/personne ```breadcrumbs title: "Sous-notes" diff --git a/templates/polyèdre.md b/templates/polyèdre.md index 7c5956f0..3aef061c 100644 --- a/templates/polyèdre.md +++ b/templates/polyèdre.md @@ -1,4 +1,4 @@ -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre symbole de shläfli :: diff --git a/terminal commandes.md b/terminal commandes.md index f401e537..60824d48 100644 --- a/terminal commandes.md +++ b/terminal commandes.md @@ -3,7 +3,7 @@ alias: [ "unix commandes", "commandes terminal", "utilitaires ligne de commande" --- up::[[unix]] title::"commandes du shell unix" -#informatique/unix +#s/informatique/unix ```breadcrumbs diff --git a/terminal workflow.md b/terminal workflow.md index 8916c20a..b5e70773 100644 --- a/terminal workflow.md +++ b/terminal workflow.md @@ -1,5 +1,5 @@ up:: [[workflow]] -#informatique +#s/informatique Émulateur de terminal : iTerm2 Éditeur de texte : [[vim workflow]] diff --git a/test de Turing.md b/test de Turing.md index e510bca4..ccfec700 100644 --- a/test de Turing.md +++ b/test de Turing.md @@ -1,5 +1,5 @@ up:: [[définition de l'intelligence pour une IA]] -#informatique +#s/informatique > [!fail] Problèmes diff --git a/textutil.md b/textutil.md index e46c9dff..b9907be0 100644 --- a/textutil.md +++ b/textutil.md @@ -1,6 +1,6 @@ up::[[unix redirection de flux]] title::"conversion de fichiers texte ([[ligne de commande]])" -#informatique +#s/informatique ---- outil [[ligne de commande]] diff --git a/théorie de la connaissance.md b/théorie de la connaissance.md index bf0813b6..cbe86f10 100644 --- a/théorie de la connaissance.md +++ b/théorie de la connaissance.md @@ -1,6 +1,6 @@ up:: [[philosophie]] author:: [[Emmanuel Kant]] -#philosphie +#s/philosphie ```breadcrumbs title: "Sous-notes" diff --git a/théorie logique.md b/théorie logique.md index 472cbe1a..0985d682 100644 --- a/théorie logique.md +++ b/théorie logique.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Tout cadre de raisonnement spécifique construit sur un langage donné. diff --git a/théorie politique.md b/théorie politique.md index fd562a9c..2fac1695 100644 --- a/théorie politique.md +++ b/théorie politique.md @@ -1,5 +1,5 @@ up::[[politique]] -#politique +#s/politique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/théorème chinois.md b/théorème chinois.md index f4c73dc6..ee223786 100644 --- a/théorème chinois.md +++ b/théorème chinois.md @@ -1,5 +1,5 @@ up::[[arithmétique]] -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/théorème d'Ascoli.md b/théorème d'Ascoli.md index 6411d4ed..16676821 100644 --- a/théorème d'Ascoli.md +++ b/théorème d'Ascoli.md @@ -4,7 +4,7 @@ aliases: - théorème d'Ascoli-Arzelà --- up:: -#maths/topologie +#s/maths/topologie > [!proposition]+ [[théorème d'Ascoli]] > Si $(X, d)$ est un [[espace métrique compact]] diff --git a/théorème d'isomorphisme.md b/théorème d'isomorphisme.md index 178d3873..1cd6d5fe 100644 --- a/théorème d'isomorphisme.md +++ b/théorème d'isomorphisme.md @@ -1,5 +1,5 @@ up:: [[théorème de factorisation des morphismes]] -#maths/algèbre +#s/maths/algèbre > [!proposition]+ théorème d'isomorphisme > Soit $f : G \to G'$ un morphisme de groupes diff --git a/théorème de Bézout.md b/théorème de Bézout.md index 8469494a..bf8457cc 100644 --- a/théorème de Bézout.md +++ b/théorème de Bézout.md @@ -1,6 +1,6 @@ up::[[arithmétique]] title::"$d = \mathrm{pgcd}(a;b) \implies \exists (u;v)\in \mathbb{Z}^{2}, au+bv=d$" -#maths/arithmétique +#s/maths/arithmétique ---- > [!definition] Théorème de Bézout diff --git a/théorème de Dirichlet.md b/théorème de Dirichlet.md index a3b6b84f..b2818872 100644 --- a/théorème de Dirichlet.md +++ b/théorème de Dirichlet.md @@ -1,6 +1,6 @@ up:: [[série de Fourier]] title:: "si $f$ admet une dérivée à droite ($f'(x^{+})$) et à gauche ($f'(x^{-})$), alors $SF_{f}(x) = \dfrac{f(x^{-}) + f(x^{+})}{2}$" -#maths/analyse +#s/maths/analyse --- diff --git a/théorème de Fubini.md b/théorème de Fubini.md index 877159bb..287e5089 100644 --- a/théorème de Fubini.md +++ b/théorème de Fubini.md @@ -1,5 +1,5 @@ up:: [[intégration]] -#maths/intégration +#s/maths/intégration > [!proposition]+ théorème de Fubini > Soient $(E, \mathcal{A}, \mu)$ et $(F, \mathcal{B}, \nu)$ deux [[espace mesuré|espaces mesurés]] tels que $\mu$ et $\nu$ soient [[mesure sigma finie|σ-finies]] diff --git a/théorème de Newton.md b/théorème de Newton.md index a602e376..daaedbe3 100644 --- a/théorème de Newton.md +++ b/théorème de Newton.md @@ -3,7 +3,7 @@ alias: "algorithme de Newton" --- up::[[analyse|analyse]] author::[[Isaac Newton]] -#maths/analyse +#s/maths/analyse ---- diff --git a/théorème de Riesz.md b/théorème de Riesz.md index 0dbc3779..6059bb9f 100644 --- a/théorème de Riesz.md +++ b/théorème de Riesz.md @@ -1,5 +1,5 @@ up:: [[espace vectoriel de dimension finie]], [[espace métrique compact]] -#maths/topologie +#s/maths/topologie > [!proposition]+ [[théorème de Riesz]] > Soit $(E, \|\cdot\|)$ un $\mathbb{R}$-[[espace vectoriel normé]] diff --git a/théorème de cayley.md b/théorème de cayley.md index c1d4a5e3..35c6b71b 100644 --- a/théorème de cayley.md +++ b/théorème de cayley.md @@ -1,6 +1,6 @@ up:: [[groupe]] author:: [[Arthur Cayley]] -#maths/algèbre +#s/maths/algèbre > [!definition] théorème de cayley > Soit $(G, *)$ un groupe diff --git a/théorème de convergence dominée.md b/théorème de convergence dominée.md index b3928120..6278f486 100644 --- a/théorème de convergence dominée.md +++ b/théorème de convergence dominée.md @@ -1,5 +1,5 @@ up:: [[intégration]] -#maths/intégration +#s/maths/intégration > [!proposition]+ [[théorème de convergence dominée]] > Dans l'[[espace mesuré]] $(E, \mathcal{A}, \mu)$ diff --git a/théorème de convergence monotone des intégrales.md b/théorème de convergence monotone des intégrales.md index 33267b33..19d31161 100644 --- a/théorème de convergence monotone des intégrales.md +++ b/théorème de convergence monotone des intégrales.md @@ -4,7 +4,7 @@ aliases: - théorème de Beppo-Levi --- up:: [[intégration]], [[intégrale de lebesgue]] -#maths/intégration +#s/maths/intégration > [!proposition]+ [[théorème de convergence monotone des intégrales]] > Soit $(f_{n})$ une suite **[[suite croissante|croissante]]** de [[fonction mesurable|fonctions mesurables]] **positives**. diff --git a/théorème de d'Alembert.md b/théorème de d'Alembert.md index 8d0deea7..7ef4c7cf 100644 --- a/théorème de d'Alembert.md +++ b/théorème de d'Alembert.md @@ -5,7 +5,7 @@ sr-ease: 250 --- up::[[polynôme]] author::[[Jean le Rond d'Alembert]] -#maths/analyse/complexes +#s/maths/analyse/complexes ---- Aussi appelé _Théorème fondamental de l'algèbre_, _Théorème de d'Alembert-Gauss_, du nom de [[Jean le Rond d'Alembert]] et de [[Carl Friedrich Gauss]]. diff --git a/théorème de factorisation des morphismes.md b/théorème de factorisation des morphismes.md index 0d6bee85..74dfdd5b 100644 --- a/théorème de factorisation des morphismes.md +++ b/théorème de factorisation des morphismes.md @@ -1,5 +1,5 @@ up:: [[sous groupe distingué]], [[isomorphisme]], [[image d'un morphisme de groupes]], [[noyau d'un morphisme de groupes]] -#maths/algèbre +#s/maths/algèbre > [!proposition]+ théorème de factorisation des morphismes > Soient $G, G'$ des groupes diff --git a/théorème de heine.md b/théorème de heine.md index 8c909814..f0269e74 100644 --- a/théorème de heine.md +++ b/théorème de heine.md @@ -1,6 +1,6 @@ up:: [[fonction continue]], [[fonction uniformément continue]] title:: "toute [[fonction continue]] sur un intervalle **fermé** est [[fonction uniformément continue|uniformément continue]] " -#maths/analyse +#s/maths/analyse --- diff --git a/théorème de l'hopital.md b/théorème de l'hopital.md deleted file mode 100644 index c4de2d18..00000000 --- a/théorème de l'hopital.md +++ /dev/null @@ -1,16 +0,0 @@ -up::[[dérivation]] -#maths/analyse - ----- -Pour calculer des [[dérivation|dérivées]]. -$$\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} = \dfrac{f'(x_0)}{g'(x_0)}$$ -⚠️ Il faut que $f(x_0) = 0$ et $f(x_0) = 0$ - - -$$\begin{aligned} -\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} &= \dfrac{f'(x)}{g'(x)}\\[3ex] -&= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x)}{x-x_0}}{\dfrac{g(x)}{x-x_0}}\\[3ex] -&= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x) - f(x_0)}{x-x_0}}{\dfrac{g(x)-g(x_0)}{x-x_0}}\\ -\end{aligned}$$ - - diff --git a/théorème de l'hôpital.md b/théorème de l'hôpital.md new file mode 100644 index 00000000..98e9efe3 --- /dev/null +++ b/théorème de l'hôpital.md @@ -0,0 +1,20 @@ +--- +up: "[[dérivation]]" +tags: "#s/maths/analyse" +--- + +> [!proposition]+ +> Soit $x_0 \in E$ un point +> Soient $f, g \in \mathcal{D}^{1}(E, F)$ deux fonctions dérivables avec $f(x_0)= g(x_0) = 0$ +> $$\lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} = \dfrac{f'(x_0)}{g'(x_0)}$$ +> - ! Il faut que $f(x_0) = 0$ et $g(x_0) = 0$ +^theoreme + +> [!démonstration] Démonstration +> $$\begin{aligned} +> \lim_{x\rightarrow x_0} \dfrac{f(x)}{g(x)} &= \dfrac{f'(x)}{g'(x)}\\[3ex] +> &= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x)}{x-x_0}}{\dfrac{g(x)}{x-x_0}}\\[3ex] +> &= \lim_{x\rightarrow x_0} \dfrac{\dfrac{f(x) - f(x_0)}{x-x_0}}{\dfrac{g(x)-g(x_0)}{x-x_0}}\\ +> \end{aligned}$$ +^demonstration + diff --git a/théorème de la base incomplète.md b/théorème de la base incomplète.md index b852049f..b020c213 100644 --- a/théorème de la base incomplète.md +++ b/théorème de la base incomplète.md @@ -1,6 +1,6 @@ up:: [[base d'un espace vectoriel|base]] title:: "on peut toujours compléter une famille libre pour obtenir une base" -#maths/algèbre +#s/maths/algèbre --- diff --git a/théorème de parseval.md b/théorème de parseval.md index 878f9af8..76e1fb08 100644 --- a/théorème de parseval.md +++ b/théorème de parseval.md @@ -1,6 +1,6 @@ up:: [[série de Fourier]] title:: -#maths/analyse +#s/maths/analyse --- diff --git a/théorème de tonelli.md b/théorème de tonelli.md index 685a92f1..342e7cb0 100644 --- a/théorème de tonelli.md +++ b/théorème de tonelli.md @@ -1,5 +1,5 @@ up:: [[mesure produit]] -#maths/intégration +#s/maths/intégration > [!proposition]+ Théorème de Tonelli > Soient $(E, \mathcal{A}, \mu)$ et $(F, \mathcal{B}, \nu)$ deux [[espace mesuré|espaces mesurés]] que l'on suppose [[mesure sigma finie|σ-finis]] diff --git a/théorème des acroissements finis.md b/théorème des acroissements finis.md index 6e427cf8..34d36b3d 100644 --- a/théorème des acroissements finis.md +++ b/théorème des acroissements finis.md @@ -1,5 +1,5 @@ up::[[dérivation]] -#maths/analyse +#s/maths/analyse ---- Soit $f$ une [[fonction continue]] sur l'intervalle $[a; b]$ et [[fonction dérivable|dérivable]] sur $]a;b[$ diff --git a/théorème des valeurs extrêmes.md b/théorème des valeurs extrêmes.md index d9f37002..4129964a 100644 --- a/théorème des valeurs extrêmes.md +++ b/théorème des valeurs extrêmes.md @@ -3,7 +3,7 @@ alias: [ "théorème des bornes atteintes", "théorème de Weierstrass" ] --- up:: [[fonction continue]] title:: "toute [[fonction continue]]sur un [[intervalle fermé]] est [[fonction bornée|bornée]]" -#maths/analyse +#s/maths/analyse --- diff --git a/théorème du rang.md b/théorème du rang.md index 31206e25..99e27dac 100644 --- a/théorème du rang.md +++ b/théorème du rang.md @@ -1,6 +1,6 @@ up::[[espace vectoriel]] title::"$\dim(\mathrm{Ker}(f)) + \dim(\mathrm{Im}(f)) = \dim(E)$" -#maths/algèbre +#s/maths/algèbre ---- Soient $E$ et $F$ deux [[espace vectoriel|espaces vectoriels]] de [[dimension d'un espace vectoriel|dimension]] finie, diff --git a/théorème.md b/théorème.md index 2d3d0e31..a52e9646 100644 --- a/théorème.md +++ b/théorème.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- [[proposition]] qui est, soit un [[axiome]], soit le résultat d'une application successive de plusieurs [[règle d'inférence|règles d'inférences]] ([[démonstration]]). diff --git a/topologie induite.md b/topologie induite.md index fd945cdb..45d62404 100644 --- a/topologie induite.md +++ b/topologie induite.md @@ -1,5 +1,5 @@ -up:: [[topologie]] -#maths/topologie +up:: [[structure de topologie]] +#s/maths/topologie > [!definition] [[topologie induite]] > Soit $(X, d)$ un [[espace métrique]] et soit $A \subset X$ diff --git a/topologies (théorie des graphes).md b/topologies (théorie des graphes).md index 06fe9f37..2a913d1d 100644 --- a/topologies (théorie des graphes).md +++ b/topologies (théorie des graphes).md @@ -1,5 +1,5 @@ up::[[graphe]] -#maths/graphes +#s/maths/graphes ---- Il existe 3 grandes familles de [[graphe|graphes]], et 5 catégories au total. diff --git a/tours de hanoi.md b/tours de hanoi.md index adbbcea0..ab265cd1 100644 --- a/tours de hanoi.md +++ b/tours de hanoi.md @@ -1,4 +1,4 @@ -#maths #informatique +#s/maths #s/informatique ---- diff --git a/toute la france à été résistante.md b/toute la france à été résistante.md index 86375e53..0097edc4 100644 --- a/toute la france à été résistante.md +++ b/toute la france à été résistante.md @@ -6,7 +6,7 @@ author:: [[général de gaule]] source:: [[discours du général de gaule le 25 août 1944]] link:: https://www.ina.fr/ina-eclaire-actu/video/i00007088/discours-le-25-aout-a-l-hotel-de-ville-du-general-de-gaulle date-seen::2024-06-23 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Paris, Paris outragé, Paris brisé, Paris martyrisé, mais Paris libéré. Libérée par lui-même. Libérée par son peuple, avec le concours des armées de la France, avec l'appui et le concours de la France toute entière, c'est-à-dire de la France qui se bat, c'est-à-dire de la seule France, de la vraie France, de la France éternelle. diff --git a/trace d'une matrice.md b/trace d'une matrice.md index eb99dd82..aca8a107 100644 --- a/trace d'une matrice.md +++ b/trace d'une matrice.md @@ -3,7 +3,7 @@ alias: "trace" --- up::[[matrice]] title::$\mathrm{Tr}(M) = \sum\limits_{k} M_{k,k}$ -#maths/algèbre +#s/maths/algèbre ---- La *trace* d'une [[matrice]] **carrée** est la somme de ses coefficients diagonaux. diff --git a/transformation pi sur 2 moins x.md b/transformation pi sur 2 moins x.md index 2d134fa8..238cf95d 100644 --- a/transformation pi sur 2 moins x.md +++ b/transformation pi sur 2 moins x.md @@ -2,7 +2,7 @@ alias: "transformation x |-> pi/2 - x" --- title::"transformation $x \mapsto \frac{\pi}{2}-x$", "symétrie $Ox$ et déphasage de $\frac{\pi}{2}$" -#maths/trigonométrie #maths/analyse +#s/maths/trigonométrie #s/maths/analyse ---- diff --git a/transformations paramétrisées.md b/transformations paramétrisées.md index e4d43dd9..e0531e3b 100644 --- a/transformations paramétrisées.md +++ b/transformations paramétrisées.md @@ -1,5 +1,5 @@ up::[[courbe paramétrée]] -#maths/analyse +#s/maths/analyse ---- Des transformations du plan représentées comme fonction à composer à une [[courbe paramétrée]]. diff --git a/transformations.md b/transformations.md index dbaa621e..a0e26b08 100644 --- a/transformations.md +++ b/transformations.md @@ -1,6 +1,6 @@ down:: [[symétrie glissée]] up::[[géométrie]] -#maths +#s/maths ---- diff --git a/transformer une grammaire hors-contexte en automate à pile.md b/transformer une grammaire hors-contexte en automate à pile.md index 57d1125e..d3e04c8c 100644 --- a/transformer une grammaire hors-contexte en automate à pile.md +++ b/transformer une grammaire hors-contexte en automate à pile.md @@ -2,7 +2,7 @@ aliases: - grammaire hors-contexte en automate à pile tags: - - informatique + - s/informatique --- up:: [[grammaire non-contextuelle]], [[automate-pile]] diff --git a/transformée de Fourier.md b/transformée de Fourier.md index 43ceff32..e322f1e3 100644 --- a/transformée de Fourier.md +++ b/transformée de Fourier.md @@ -1,5 +1,5 @@ up:: [[intégration]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $f \in \mathscr{L}_{\lambda}^{1}(\mathbb{R})$ une [[fonction mesurable]] avec $\int_{\mathbb{R}} |f| \, d\lambda$ diff --git a/transposition.md b/transposition.md index 910464be..b603750b 100644 --- a/transposition.md +++ b/transposition.md @@ -1,5 +1,5 @@ up::[[permutation]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/transposée.md b/transposée.md index 8eb30b2c..6ecb8948 100644 --- a/transposée.md +++ b/transposée.md @@ -3,7 +3,7 @@ alias: [ "transposée d'une matrice", "matrice transposée", "transposition" ] --- up::[[matrice]] title::"$M^{T}_{i,j}=M_{j,i}$" -#maths/algèbre +#s/maths/algèbre ---- diff --git a/travail de délégué.md b/travail de délégué.md index 77f30451..a0029587 100644 --- a/travail de délégué.md +++ b/travail de délégué.md @@ -1,6 +1,6 @@ --- tags: - - fac + - s/fac --- diff --git a/travail libre contre travail subordonné.md b/travail libre contre travail subordonné.md index 7aef968c..7d4d4f8c 100644 --- a/travail libre contre travail subordonné.md +++ b/travail libre contre travail subordonné.md @@ -1,5 +1,5 @@ up:: [[travail]] -#politique +#s/politique Le travail libre est le travail dans lequel le travailleur **choisit** ce qu'il produit. Le travail subordonné est le travail dans lequel le travailleur **ne choisit pas** ce qu'il produit. C'est un **emploi** et non un travail. diff --git a/travail.md b/travail.md index b1b9f34e..f8aa4b46 100644 --- a/travail.md +++ b/travail.md @@ -1,5 +1,5 @@ up::[[politique]], [[philosophie]], [[sociologie]] -#philosphie #science/sociologie +#s/philosphie #s/science/sociologie > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/tri topologique.md b/tri topologique.md index 357b5123..177281cd 100644 --- a/tri topologique.md +++ b/tri topologique.md @@ -1,5 +1,5 @@ up:: [[graphe orienté]], [[algorithme de tri]] -#informatique #maths/graphes +#s/informatique #s/maths/graphes > [!definition] tri topologique d'un graphe orienté > Soit $G$ un graphe orienté. diff --git a/tribu borélienne.md b/tribu borélienne.md index ef7a2383..6e2982e7 100644 --- a/tribu borélienne.md +++ b/tribu borélienne.md @@ -3,7 +3,7 @@ share_link: https://share.note.sx/16l373mc#sy1H/JsXfZuJ6Lk1FqCmwjWR+UxEfOcvz9jrv share_updated: 2024-09-25T17:22:33+02:00 --- up:: [[tribu]] -#maths/algèbre +#s/maths/algèbre > [!definition] tribu borélienne diff --git a/tribu complète.md b/tribu complète.md index f8c93fef..618ae1ef 100644 --- a/tribu complète.md +++ b/tribu complète.md @@ -1,5 +1,5 @@ up:: [[tribu]], [[ensemble négligeable]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/tribu complétée.md b/tribu complétée.md index b124d5eb..9f9535a0 100644 --- a/tribu complétée.md +++ b/tribu complétée.md @@ -1,5 +1,5 @@ up:: [[tribu complète]] -#maths/intégration +#s/maths/intégration > [!definition] Définition > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesuré]] diff --git a/tribu engendrée par un ensemble.md b/tribu engendrée par un ensemble.md index d88ba11c..b76b8334 100644 --- a/tribu engendrée par un ensemble.md +++ b/tribu engendrée par un ensemble.md @@ -3,7 +3,7 @@ aliases: - tribu engendrée --- up:: [[tribu]] -#maths/algèbre +#s/maths/algèbre > [!definition] tribu engendrée par $\mathcal{E}$ > Soit $\mathcal{E} \in \mathscr{P}(E)$ diff --git a/tribu image réciproque.md b/tribu image réciproque.md index e5dfdecc..774daae0 100644 --- a/tribu image réciproque.md +++ b/tribu image réciproque.md @@ -1,5 +1,5 @@ up:: [[tribu]] -#maths/algèbre +#s/maths/algèbre > [!definition] tribu image réciproque > Soit $f: E \to F$ diff --git a/tribu produit.md b/tribu produit.md index 3d4b1bce..e48d4f30 100644 --- a/tribu produit.md +++ b/tribu produit.md @@ -1,5 +1,5 @@ up:: [[tribu]] -#maths/algèbre +#s/maths/algèbre > [!definition] tribu produit > Soient $E$ et $F$ deux ensembles munis respectivement des tribus $\mathcal{A}$ et $\mathcal{B}$ diff --git a/tribu trace.md b/tribu trace.md index 1ce7f4fd..e88d200e 100644 --- a/tribu trace.md +++ b/tribu trace.md @@ -1,5 +1,5 @@ up:: [[tribu]] -#maths/intégration +#s/maths/intégration > [!definition] [[tribu trace]] > Soit $(E, \mathcal{A}, \mu)$ un [[espace mesurable]] diff --git a/tribu.md b/tribu.md index d067387f..9941a77e 100644 --- a/tribu.md +++ b/tribu.md @@ -3,7 +3,7 @@ aliases: - tribus --- up:: [[structure algébrique]] -#maths/algèbre #maths/intégration +#s/maths/algèbre #s/maths/intégration > [!definition] tribu > Une tribu $\mathcal{A}$ sur $E$ est un sous-ensemble de $\mathscr{P}(E)$ telle que : diff --git a/trigger de shmidt.md b/trigger de shmidt.md index d2d29def..b35374dd 100644 --- a/trigger de shmidt.md +++ b/trigger de shmidt.md @@ -1,5 +1,5 @@ up:: [[électronique]], [[hystérésis]] -#informatique +#s/informatique ![[trigger de shmidt 2024-04-04 19.07.11.excalidraw]] diff --git a/trigonométrie.md b/trigonométrie.md index dfb71b6f..5b0f6940 100644 --- a/trigonométrie.md +++ b/trigonométrie.md @@ -2,7 +2,7 @@ alias: "trigonométrie" --- up:: [[géométrie]], [[analyse]] -#maths/trigonométrie +#s/maths/trigonométrie ---- diff --git a/trivium.md b/trivium.md index 96126904..1bcfee91 100644 --- a/trivium.md +++ b/trivium.md @@ -1,5 +1,5 @@ sibling:: [[quadrivium]] -#science +#s/science ---- Ensemble de **3 arts** qui concernent le "pouvoir de la langue" (expression, raisonnement, persuasion et séduction) diff --git a/ttygif.md b/ttygif.md index 03e21671..0d22a357 100644 --- a/ttygif.md +++ b/ttygif.md @@ -6,7 +6,7 @@ aliases: - ttygif --- up:: [[terminal commandes]] -#informatique +#s/informatique # Installation Pour macos : `brew install ttygif` diff --git a/tuxbot.md b/tuxbot.md index f70064dd..6cd27195 100644 --- a/tuxbot.md +++ b/tuxbot.md @@ -1,6 +1,6 @@ title::"pour apprendre la programmation" link::http://numerique53.ac-nantes.fr/ressources/tuxbot/index.php -#apprendre #informatique +#s/apprendre #s/informatique ---- diff --git a/types de salariat.md b/types de salariat.md index 35ba40a2..b63d39de 100644 --- a/types de salariat.md +++ b/types de salariat.md @@ -1,5 +1,5 @@ up:: [[salaire]] -#politique #science/économie +#s/politique #s/science/économie > [!definition] types de salariat > diff --git a/tétraèdre.md b/tétraèdre.md index 0cba674c..e9b0a4fb 100644 --- a/tétraèdre.md +++ b/tétraèdre.md @@ -1,5 +1,5 @@ up::[[polyèdre]] -#maths/géométrie/polyèdre +#s/maths/géométrie/polyèdre ---- symbole de shläfli : $\{3, 3\}$ diff --git a/un 1936 accompli.md b/un 1936 accompli.md index 9e346f65..01194a5a 100644 --- a/un 1936 accompli.md +++ b/un 1936 accompli.md @@ -6,7 +6,7 @@ author:: [[Frédéric Lordon]] source:: [[En travail - Conversations sur le communisme]] link:: date-seen::2024-06-17 -#citation +#t/citation > [!cite] `$= [dv.current().author, dv.current().source].filter((s)=>s!=null && (s+"").length>1).join(" — ")` > Qu'est-ce qu'on pourrait entendre par un [[1936]] accompli ? C'est effectivement, une combinaison des deux, où peut-être un gouvernement arrive par la voie des urnes, mais poussé au cul par un gigantesque mouvement social, et qui ne s'arrête pas au lendemain des élections. Ce qui suppose plein de choses, de se désintoxiquer de l'habitus électoral, où on vote, et on se rendors, parce que c'est fini, on a fait l'acte politique. Alors que on vote, et tout commence. Donc oui, un très grand mouvement social, où la démonstration de force du nombre, et de son degré de détermination dissuadreai la réaction, qui autrement est prête à tout, l'histoire nous l'a suffisament montré; alors ça, oui, j'y crois beaucoup. diff --git a/une valeur a la prétention d'être absolue.md b/une valeur a la prétention d'être absolue.md index 557e888c..adaab6bd 100644 --- a/une valeur a la prétention d'être absolue.md +++ b/une valeur a la prétention d'être absolue.md @@ -1,5 +1,5 @@ up:: [[politique.valeur|valeurs]] -#politique #philosphie +#s/politique #s/philosphie Une valeur a toujours la prétention d'être **absolue**, c'est-à-dire d'être universelle et impossible a remettre en question. Une valeur qui ne se prétend pas absolu n'est plus une valeur, mais un objectif. diff --git a/union de sous espaces vectoriels.md b/union de sous espaces vectoriels.md index ba2bb8c6..f5f6b77c 100644 --- a/union de sous espaces vectoriels.md +++ b/union de sous espaces vectoriels.md @@ -3,7 +3,7 @@ up::[[sous espace vectoriel]] sibling::[[intersection de sous espaces vectoriels]] title::"$F \cup G$ est un [[sous espace vectoriel|sev]] $\implies$ $F \subset G$ ou $G \subset F$" description::"l'union de deux [[sous espace vectoriel|sev]] n'est pas un [[sous espace vectoriel|sev]] sauf si l'un est contenu dans l'autre" -#maths/algèbre +#s/maths/algèbre ---- L'union de deux [[sous espace vectoriel|sev]] n'est pas un [[sous espace vectoriel|sev]] diff --git a/union de sous groupes.md b/union de sous groupes.md index a2491e32..647c1003 100644 --- a/union de sous groupes.md +++ b/union de sous groupes.md @@ -1,5 +1,5 @@ up::[[sous groupe]] -#maths/algèbre +#s/maths/algèbre > [!definition] > Soit $G$ un [[groupe]] diff --git a/université de Tours.md b/université de Tours.md index 784c46c7..beb5c88d 100644 --- a/université de Tours.md +++ b/université de Tours.md @@ -1,5 +1,5 @@ up:: [[index]] -#fac +#s/fac ```breadcrumbs title: "Sous-notes" diff --git a/unix FIFO.md b/unix FIFO.md index b21444c6..b49d5c94 100644 --- a/unix FIFO.md +++ b/unix FIFO.md @@ -1,5 +1,5 @@ up:: [[unix]], [[FIFO]] title:: -#informatique/unix #not-done +#s/informatique/unix #not-done --- \ No newline at end of file diff --git a/unix ajouter un groupe.md b/unix ajouter un groupe.md index f7f89253..506b527c 100644 --- a/unix ajouter un groupe.md +++ b/unix ajouter un groupe.md @@ -1,6 +1,6 @@ up::[[unix]] title::"comment ajouter un nouveau groupe" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix ajouter un utilisateur.md b/unix ajouter un utilisateur.md index c0aeb4f9..e84d86a8 100644 --- a/unix ajouter un utilisateur.md +++ b/unix ajouter un utilisateur.md @@ -2,7 +2,7 @@ sibling:: [[unix supprimer un utilisateur]] up::[[unix]] sibling::[[unix supprimer un utilisateur]] title::"comment ajouter un nouvel utilisateur" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix command ps.md b/unix command ps.md index 68be7d0c..d585f9e0 100644 --- a/unix command ps.md +++ b/unix command ps.md @@ -1,6 +1,6 @@ up:: [[terminal commandes]] title:: "lister des processus" -#informatique/unix +#s/informatique/unix --- diff --git a/unix commande chfn.md b/unix commande chfn.md index 6e2049f8..a21d440d 100644 --- a/unix commande chfn.md +++ b/unix commande chfn.md @@ -1,6 +1,6 @@ up::[[unix commandes d'identification]] title::"changer la valeur du champ [[unix GECOS|GECOS]]" -#informatique/unix +#s/informatique/unix ---- `chfn` (CHange FiNger information) diff --git a/unix commande chmod.md b/unix commande chmod.md index c7ed5ec6..e825db51 100644 --- a/unix commande chmod.md +++ b/unix commande chmod.md @@ -1,5 +1,5 @@ up::[[terminal commandes]] -#informatique +#s/informatique ---- diff --git a/unix commande chsh.md b/unix commande chsh.md index 23298dbc..4ef07653 100644 --- a/unix commande chsh.md +++ b/unix commande chsh.md @@ -1,6 +1,6 @@ up::[[unix commandes d'identification]] title::"commande pour changer le shell par défaut (login shell)" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande dig.md b/unix commande dig.md index a82c849d..f43f76b2 100644 --- a/unix commande dig.md +++ b/unix commande dig.md @@ -1,6 +1,6 @@ up:: [[debian paquet bind]] title:: -#informatique +#s/informatique --- diff --git a/unix commande finger.md b/unix commande finger.md index 12513dfe..31c36093 100644 --- a/unix commande finger.md +++ b/unix commande finger.md @@ -1,7 +1,7 @@ up::[[unix commandes d'identification]] usage::"finger [-46gklmpsho] [user ...] [user@host ...]" title::"affiche les informations GECOS des utilisateurs connectés" -#informatique/unix +#s/informatique/unix ---- affiche les informations [[unix GECOS|GECOS]] des utilisateurs connectés diff --git a/unix commande grep.md b/unix commande grep.md index 6787806a..43ee4f97 100644 --- a/unix commande grep.md +++ b/unix commande grep.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"commande pour filtrer par des regex" -#informatique/unix +#s/informatique/unix ---- Filtre le [[unix stream|flux]] de texte qu'elle reçoit, ne renvoie que les lignes qui correspondent à une [[expression régulière|regex]] diff --git a/unix commande host.md b/unix commande host.md index af393dfc..4e5e16f5 100644 --- a/unix commande host.md +++ b/unix commande host.md @@ -1,6 +1,6 @@ up:: [[terminal commandes]] title:: `host nom_de_machine 8.8.8.8` -#informatique +#s/informatique --- diff --git a/unix commande id.md b/unix commande id.md index 974f6d05..1c5256e4 100644 --- a/unix commande id.md +++ b/unix commande id.md @@ -1,7 +1,7 @@ up::[[unix commandes d'identification]] usage::"id ( | -A | -F | -G | -P | -g | -p | -u ) [user]" title::"affiche les informations sur un utilisateur" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande ln.md b/unix commande ln.md index 207b4e39..27b16d7f 100644 --- a/unix commande ln.md +++ b/unix commande ln.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"`ln target_file new_file` [[unix liens symboliques et physiques|lien physique]]", "`ln -s target_file new_symlink` [[unix liens symboliques et physiques|lien symbolique]]" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande passwd.md b/unix commande passwd.md index 0f1b3224..d151a537 100644 --- a/unix commande passwd.md +++ b/unix commande passwd.md @@ -1,6 +1,6 @@ up::[[unix commandes d'identification]] title::"comamdne pour modifier des mots de passe" -#informatique/unix +#s/informatique/unix ---- Sans argument : change le mot de passe de l'utilisateur actuel diff --git a/unix commande umask.md b/unix commande umask.md index 8392d32c..befb2440 100644 --- a/unix commande umask.md +++ b/unix commande umask.md @@ -1,4 +1,4 @@ up::[[terminal commandes]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande useradd.md b/unix commande useradd.md index c6edabc4..e6746d46 100644 --- a/unix commande useradd.md +++ b/unix commande useradd.md @@ -5,7 +5,7 @@ sibling:: [[unix commande userdel]] up::[[terminal commandes]] title::"commande pour ajouter un nouvel utilisater" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande userdel.md b/unix commande userdel.md index 76d4c353..2a5bf66b 100644 --- a/unix commande userdel.md +++ b/unix commande userdel.md @@ -1,6 +1,6 @@ up::[[unix commandes d'identification]] sibling::[[unix commande useradd]] -#informatique/unix +#s/informatique/unix ---- - supprimer un utilisateur diff --git a/unix commande w.md b/unix commande w.md index 48f91155..1720930c 100644 --- a/unix commande w.md +++ b/unix commande w.md @@ -2,6 +2,6 @@ up::[[unix commandes d'identification]] sibling::[[unix commande who]] usage::"w [-hin] [user ...]" title::"affiche qui est connecté et ce qu'ils font" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix commande wc.md b/unix commande wc.md index edf111c8..1359e7db 100644 --- a/unix commande wc.md +++ b/unix commande wc.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"compter le nombre de caractères, mots, lignes, d'un texte" -#informatique/unix +#s/informatique/unix ---- - `wc` pour "_Word Count_" diff --git a/unix commande who.md b/unix commande who.md index 19b9064d..a2743793 100644 --- a/unix commande who.md +++ b/unix commande who.md @@ -2,7 +2,7 @@ sibling:: [[unix commande w]] up::[[unix commandes d'identification]] usage::"who [-abdHlmpqrsTtu] [file]", "who am i" title::"affiche la liste des utilisateurs connectés" -#informatique/unix +#s/informatique/unix ---- - affiche la liste des utilisateurs connectés diff --git a/unix commandes d'identification.md b/unix commandes d'identification.md index 0c6b831e..3bd83f81 100644 --- a/unix commandes d'identification.md +++ b/unix commandes d'identification.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"commandes pour avoir des informations sur l'identification des utilisateurs" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix droits.md b/unix droits.md index d8de1a11..e0dcec57 100644 --- a/unix droits.md +++ b/unix droits.md @@ -2,7 +2,7 @@ alias: [ "droits", "permissions" ] --- up::[[unix]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix entrée et sortie standards.md b/unix entrée et sortie standards.md index ea942391..649b419c 100644 --- a/unix entrée et sortie standards.md +++ b/unix entrée et sortie standards.md @@ -1,5 +1,5 @@ up::[[unix]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix fichier etc-group.md b/unix fichier etc-group.md index 104f72cc..24543a7c 100644 --- a/unix fichier etc-group.md +++ b/unix fichier etc-group.md @@ -3,7 +3,7 @@ alias: "/etc/group" --- up::[[unix]] title::"fichier de configuration contenant les informations sur les groupes" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix fichier etc-passwd.md b/unix fichier etc-passwd.md index e21ce210..58472ab5 100644 --- a/unix fichier etc-passwd.md +++ b/unix fichier etc-passwd.md @@ -4,7 +4,7 @@ alias: "/etc/passwd" up::[[unix]] title::"le fichier `/etc/passwd`, contient les mdp et infos des utilisateurs" sibling::[[unix fichier etc-shadow|/etc/shadow]] -#informatique/unix +#s/informatique/unix ---- Fichier de configuration [[unix]] diff --git a/unix fichier etc-shadow.md b/unix fichier etc-shadow.md index ca0c980b..f63884ef 100644 --- a/unix fichier etc-shadow.md +++ b/unix fichier etc-shadow.md @@ -6,7 +6,7 @@ sibling:: [[unix fichier etc-passwd]] up::[[unix]] title::"fichier contenant les mots de passe. Personne n'a aucun droit dessus." sibling::[[unix fichier etc-passwd]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix fichier.md b/unix fichier.md index 558768d0..22ddd5b2 100644 --- a/unix fichier.md +++ b/unix fichier.md @@ -1,5 +1,5 @@ up::[[unix]] -#informatique/unix #not-done +#s/informatique/unix #not-done ---- diff --git a/unix groupes.md b/unix groupes.md index 351e16a2..2f6cae59 100644 --- a/unix groupes.md +++ b/unix groupes.md @@ -1,6 +1,6 @@ up::[[unix]] title::"les groupes d'utilisateur unix" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix liens symboliques et physiques.md b/unix liens symboliques et physiques.md index 85dcf3a6..54c42ac9 100644 --- a/unix liens symboliques et physiques.md +++ b/unix liens symboliques et physiques.md @@ -3,7 +3,7 @@ alias: [ "symlink", "lien physique", "lien symbolique", "liens physiques", "lien --- up::[[unix]] sibling::[[unix liens symboliques]], [[unix lien physiques]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix pipe.md b/unix pipe.md index bee81995..af39dc9f 100644 --- a/unix pipe.md +++ b/unix pipe.md @@ -1,6 +1,6 @@ up::[[terminal commandes]] title::"symbole pour chaîner des commandes : `|`" -#informatique/unix +#s/informatique/unix ---- Connecte la sortie d'une commande à l'entrée de la suivante diff --git a/unix primitive exec.md b/unix primitive exec.md index 0d258ca9..f77eca7f 100644 --- a/unix primitive exec.md +++ b/unix primitive exec.md @@ -1,6 +1,6 @@ up:: [[C primitives système]] title:: "exécuter un fichier binaire" -#informatique/unix +#s/informatique/unix --- diff --git a/unix primitive kill.md b/unix primitive kill.md index 0b8e7df0..5492480d 100644 --- a/unix primitive kill.md +++ b/unix primitive kill.md @@ -1,6 +1,6 @@ up:: [[C primitives système]] title:: "tuer un processus (envoyer un signal)" -#informatique +#s/informatique --- diff --git a/unix primitive stat.md b/unix primitive stat.md index 53eda9d0..7b4d655b 100644 --- a/unix primitive stat.md +++ b/unix primitive stat.md @@ -1,6 +1,6 @@ up:: [[C primitives système]] title:: "Informations sur un fichier (inode, type, propriétaire, dates...)" -#informatique/unix +#s/informatique/unix --- diff --git a/unix primitives.md b/unix primitives.md index 74f862fc..401cb37f 100644 --- a/unix primitives.md +++ b/unix primitives.md @@ -1,6 +1,6 @@ up::[[unix]] title:: "primitives `C` d'UNIX" -#informatique/unix +#s/informatique/unix --- diff --git a/unix redirection de flux.md b/unix redirection de flux.md index f9ada4fd..c5cf8242 100644 --- a/unix redirection de flux.md +++ b/unix redirection de flux.md @@ -1,5 +1,5 @@ up::[[unix redirection de flux]] -#informatique +#s/informatique ---- diff --git a/unix shell.md b/unix shell.md index 034a0ed7..ec0fdc34 100644 --- a/unix shell.md +++ b/unix shell.md @@ -1,5 +1,5 @@ up::[[unix]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix stderr.md b/unix stderr.md index 4f828b62..6481fcea 100644 --- a/unix stderr.md +++ b/unix stderr.md @@ -3,6 +3,6 @@ alias: [ "stderr", "sortie d'erreurs" ] --- up:: [[unix]] title::"sortie d'erreurs" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix stdin.md b/unix stdin.md index 474698e6..25b73bcb 100644 --- a/unix stdin.md +++ b/unix stdin.md @@ -4,7 +4,7 @@ name: "stdin" --- up::[[unix]] title::"entrée standard" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix stdout.md b/unix stdout.md index b9c55072..9170208f 100644 --- a/unix stdout.md +++ b/unix stdout.md @@ -3,6 +3,6 @@ alias: [ "stdout", "sortie standard" ] --- up:: [[unix]] title:: "sortie standard de unix (terminal)" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix structure inode.md b/unix structure inode.md index 04f91d73..75b6f4ec 100644 --- a/unix structure inode.md +++ b/unix structure inode.md @@ -3,7 +3,7 @@ alias: "inode" --- up::[[unix]] title::![[unix structure inode 2022-09-21 16.01.38.excalidraw|400]] -#informatique/unix +#s/informatique/unix ---- Tous les [[unix fichier|fichiers]] sont gérés par le [[système d'exploitation|SE]] au moyen des _inodes_. diff --git a/unix supprimer un utilisateur.md b/unix supprimer un utilisateur.md index e2d2d5d4..d62c7697 100644 --- a/unix supprimer un utilisateur.md +++ b/unix supprimer un utilisateur.md @@ -1,6 +1,6 @@ up::[[unix]] sibling::[[unix ajouter un utilisateur]] -#informatique/unix +#s/informatique/unix ---- diff --git a/unix tubes ordinaires.md b/unix tubes ordinaires.md index a370f7ae..720de61b 100644 --- a/unix tubes ordinaires.md +++ b/unix tubes ordinaires.md @@ -1,6 +1,6 @@ up:: [[unix tubes]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/unix tubes.md b/unix tubes.md index 6d7c2206..4c9fa956 100644 --- a/unix tubes.md +++ b/unix tubes.md @@ -1,6 +1,6 @@ up:: [[unix]] title:: -#informatique +#s/informatique --- diff --git a/unix types de fichiers.md b/unix types de fichiers.md index 1cac421e..c4bbe2bf 100644 --- a/unix types de fichiers.md +++ b/unix types de fichiers.md @@ -1,5 +1,5 @@ up:: [[sous-système de gestion des fichiers]] -#informatique/unix #not-done +#s/informatique/unix #not-done ---- diff --git a/unix user root.md b/unix user root.md index fac58ad0..0ea15667 100644 --- a/unix user root.md +++ b/unix user root.md @@ -3,6 +3,6 @@ alias: ["root", "super user"] --- up::[[unix]] title::"super utilisateur" -#informatique/unix +#s/informatique/unix ---- diff --git a/unix utilisateur.md b/unix utilisateur.md index 8b4ac3b3..a1ead408 100644 --- a/unix utilisateur.md +++ b/unix utilisateur.md @@ -3,7 +3,7 @@ alias: "utilisateur" --- up::[[unix]] title:: -#informatique/unix +#s/informatique/unix ---- diff --git a/unix verrous.md b/unix verrous.md index fab0f7a9..b9b6f2d9 100644 --- a/unix verrous.md +++ b/unix verrous.md @@ -1,6 +1,6 @@ up:: [[sous-système de gestion des fichiers]] title:: "éviter la lecture et écriture simultanée" -#informatique/unix +#s/informatique/unix --- diff --git a/unix.md b/unix.md index 37dc9896..f83a955e 100644 --- a/unix.md +++ b/unix.md @@ -1,6 +1,6 @@ up::[[système d'exploitation]] title:::dev_unix_original: -#informatique +#s/informatique ---- diff --git a/upterm.md b/upterm.md index 01889c5e..e9b99a87 100644 --- a/upterm.md +++ b/upterm.md @@ -4,7 +4,7 @@ alias: [ "share terminal via ssh", "live remote terminal sharing" ] up::[[terminal commandes]], [[ssh]] title::"command line live sessions (multiple users on the same command line)" usage::"`upterm (host|...)`" -#informatique/unix +#s/informatique/unix --- diff --git a/urgent vs important.md b/urgent vs important.md index 698e7f6d..97690593 100644 --- a/urgent vs important.md +++ b/urgent vs important.md @@ -1,4 +1,4 @@ up:: -#PM +#s/PM Voir : [[matrice d'eisenhower]] \ No newline at end of file diff --git a/utilisabilité d'une interface.md b/utilisabilité d'une interface.md index de348321..74308e48 100644 --- a/utilisabilité d'une interface.md +++ b/utilisabilité d'une interface.md @@ -3,7 +3,7 @@ aliases: - utilisabilité --- up::[[Ergonomie des Interfaces Hommes Machines|Ergonomie des IHM]] -#informatique +#s/informatique - [[Ergonomie des IHM Facteurs Humains]] diff --git a/utilité des fonctions de hachage.md b/utilité des fonctions de hachage.md index 2a7d6269..a4f44f67 100644 --- a/utilité des fonctions de hachage.md +++ b/utilité des fonctions de hachage.md @@ -1,6 +1,6 @@ up:: [[cryptologie]] title:: -#informatique +#s/informatique --- diff --git a/valeur absolue.md b/valeur absolue.md index de19a672..8c9611fb 100644 --- a/valeur absolue.md +++ b/valeur absolue.md @@ -1,4 +1,4 @@ -#maths/analyse +#s/maths/analyse # Propriétés diff --git a/valeur d'adhérence d'une suite.md b/valeur d'adhérence d'une suite.md index cb2c7045..bdafc84d 100644 --- a/valeur d'adhérence d'une suite.md +++ b/valeur d'adhérence d'une suite.md @@ -1,9 +1,10 @@ --- alias: "valeur d'adhérence" +up: + - "[[suite]]" + - "[[suite extraite]]" +tags: "#s/maths/analyse" --- -up::[[suite]], [[suite extraite]] -title::"on trouve une infinité de valeurs aussi proches que l'on veut d'une valeur d'adhérence", "$(x_{n})$ admet $x$ pour _valeur d'adhérence_ ssi :", "$\forall \varepsilon>0, \mathrm{card} \left\{ x_{n} \mid |x_{n} - x| < \varepsilon \right\} = +\infty$" -#maths/analyse Une valeur d'adhérence est une valeur que l'on trouve une infinité de fois dans une suite. diff --git a/valeur propre d'une application linéaire.md b/valeur propre d'une application linéaire.md index 9adc82f2..94847565 100644 --- a/valeur propre d'une application linéaire.md +++ b/valeur propre d'une application linéaire.md @@ -5,7 +5,7 @@ up:: [[endomorphisme linéaire]] sibling:: [[valeur propre d'une matrice]] name:: "vecteur propre" title:: "$\lambda$ tel que $\exists u \neq \vec{0}, \phi(u) = \lambda u$" -#maths/algèbre +#s/maths/algèbre ---- Soit $\varphi : E \to E$ un [[endomorphisme linéaire]] diff --git a/valeur propre d'une matrice.md b/valeur propre d'une matrice.md index 92de7965..d3309a54 100644 --- a/valeur propre d'une matrice.md +++ b/valeur propre d'une matrice.md @@ -4,7 +4,7 @@ alias: [ "valeur propre", "valeurs propres" ] up:: [[matrice]] sibling:: [[valeur propre d'une application linéaire]] title:: "$\lambda$ tel que $\exists u \neq \vec{0}, Mu = \lambda u$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/valeur travail.md b/valeur travail.md index 340dd2fa..a71baa55 100644 --- a/valeur travail.md +++ b/valeur travail.md @@ -2,7 +2,7 @@ alias: [ "valeur travail" ] --- up:: [[politique.valeur]], [[travail]] -#politique #science/sociologie +#s/politique #s/science/sociologie > [!missing] Problèmes du travail en tant que valeur > - Le travail n'est pas une valeur, c'est pourquoi il est **rémunéré** ([[le salaire est un rapport de force]]) diff --git a/valuation.md b/valuation.md index 0dda3cb6..5d663952 100644 --- a/valuation.md +++ b/valuation.md @@ -1,5 +1,5 @@ up::[[concepts des bases de données]] -#informatique +#s/informatique [[base de données]] ---- diff --git a/variable aléatoire centrée.md b/variable aléatoire centrée.md index 6418f48e..829a6075 100644 --- a/variable aléatoire centrée.md +++ b/variable aléatoire centrée.md @@ -1,6 +1,6 @@ up:: [[espérance mathématique]] title:: "$E(X) = 0$ : [[espérance mathématique|espérance]] nulle" -#maths/probabilités +#s/maths/probabilités --- diff --git a/variable aléatoire continue.md b/variable aléatoire continue.md index b33fcb58..3c58a0e8 100644 --- a/variable aléatoire continue.md +++ b/variable aléatoire continue.md @@ -1,6 +1,6 @@ up:: [[variable aléatoire réelle]] title:: "Variable dont la [[probabilités variable aléatoire fonction de répartition|fonction de répartition]] est [[fonction continue|continue]]" -#maths/probabilités +#s/maths/probabilités --- diff --git a/variable aléatoire réelle.md b/variable aléatoire réelle.md index 22ca5f0f..062ce6b1 100644 --- a/variable aléatoire réelle.md +++ b/variable aléatoire réelle.md @@ -1,6 +1,6 @@ up:: [[variable aléatoire]] title:: "application de $\Omega \to \mathbb{R}$" -#maths/probabilités +#s/maths/probabilités > [!definition] Variable aléatoire réelle > Soit $(\Omega, \mathscr{P}(\Omega), P)$ un [[espace probabilisé]] diff --git a/variable aléatoire.md b/variable aléatoire.md index ef091de9..8f4e88c4 100644 --- a/variable aléatoire.md +++ b/variable aléatoire.md @@ -1,5 +1,5 @@ up:: [[probabilités|probabilités]] title:: "[[application]] sur $\Omega$" -#maths/probabilités +#s/maths/probabilités --- diff --git a/variables d'environnement.md b/variables d'environnement.md index c8ad94e7..38db1faa 100644 --- a/variables d'environnement.md +++ b/variables d'environnement.md @@ -3,7 +3,7 @@ alias: [ "variable d'environnement" ] --- up:: [[unix]] title:: -#informatique/unix +#s/informatique/unix --- diff --git a/variance.md b/variance.md index 69f22ab9..90baec43 100644 --- a/variance.md +++ b/variance.md @@ -1,5 +1,5 @@ up:: [[statistiques indices de dispersion]] -#maths/statistiques +#s/maths/statistiques > [!definition] Variance > Soit $X$ une [[variable aléatoire]] diff --git a/vecteur nul.md b/vecteur nul.md index 113ab0f9..f2a5c31a 100644 --- a/vecteur nul.md +++ b/vecteur nul.md @@ -1,6 +1,6 @@ up::[[vecteur]] title::"tous les coefficients sont nuls" -#maths/algèbre #maths/géométrie +#s/maths/algèbre #s/maths/géométrie ---- Le vecteur nul est le vecteur dont tous les coefficients sont 0. diff --git a/vecteur propre d'une matrice.md b/vecteur propre d'une matrice.md index 519438b4..8d03cc4b 100644 --- a/vecteur propre d'une matrice.md +++ b/vecteur propre d'une matrice.md @@ -1,6 +1,6 @@ up:: [[matrice]] title:: "$u \neq \vec{0}$ tel que $\exists \lambda \in \mathbf{K}, Mu = \lambda u$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/vecteur propre.md b/vecteur propre.md index d5ad656f..3903e3d2 100644 --- a/vecteur propre.md +++ b/vecteur propre.md @@ -3,7 +3,7 @@ alias: "vecteur propre" --- up::[[endomorphisme linéaire]] sibling::[[valeur propre d'une application linéaire|valeur propre]] -#maths/algèbre +#s/maths/algèbre ---- Soit $\varphi: E \to E$ un [[endomorphisme linéaire]] diff --git a/vecteur unitaire.md b/vecteur unitaire.md index 23f48ab9..5a082228 100644 --- a/vecteur unitaire.md +++ b/vecteur unitaire.md @@ -1,6 +1,6 @@ up:: [[vecteur]], [[norme]] title:: "$\|u\| = 1$" -#maths/algèbre +#s/maths/algèbre --- diff --git a/vecteur.md b/vecteur.md index 59613c5c..3e934b8f 100644 --- a/vecteur.md +++ b/vecteur.md @@ -3,7 +3,7 @@ alias: "vecteurs" --- up::[[espace vectoriel]] title::"élément d'un [[espace vectoriel]]" -#maths/algèbre +#s/maths/algèbre ---- Un vecteur est un élément d'un [[espace vectoriel]] diff --git a/vecteurs colinéaires.md b/vecteurs colinéaires.md index 3fea7ebd..215dee03 100644 --- a/vecteurs colinéaires.md +++ b/vecteurs colinéaires.md @@ -1,6 +1,6 @@ --- alias: "colinéaires" --- -#maths/algèbre #maths/géométrie #not-done +#s/maths/algèbre #s/maths/géométrie #not-done ---- diff --git a/vecteurs orthogonaux.md b/vecteurs orthogonaux.md index c5273995..772d7fa1 100644 --- a/vecteurs orthogonaux.md +++ b/vecteurs orthogonaux.md @@ -3,7 +3,7 @@ alias: [ "orthogonaux" ] --- up::[[vecteur]] title::"$u \bot v \iff u.v = 0$ ([[produit scalaire]] nul)" -#maths/algèbre +#s/maths/algèbre --- diff --git a/versioning.md b/versioning.md index cf6dd237..2d3fd657 100644 --- a/versioning.md +++ b/versioning.md @@ -1,7 +1,7 @@ up::[[outils de gestion de projet]] title::"contrôle des versions d'un ensemble de documents" down::[[git]] -#PM +#s/PM ---- diff --git a/vie étudiante.md b/vie étudiante.md index eb5b6dbb..88a2f45b 100644 --- a/vie étudiante.md +++ b/vie étudiante.md @@ -3,5 +3,5 @@ aliases: - vie de l'étudiant --- up:: -#fac +#s/fac diff --git a/vim plugin braceless.md b/vim plugin braceless.md index dc8c468a..ea1b1f3a 100644 --- a/vim plugin braceless.md +++ b/vim plugin braceless.md @@ -1,7 +1,7 @@ up::[[vim plugins]] link::https://github.com/tweekmonster/braceless.vim title::"pour les langages à indentation sémantique" -#informatique/vim +#s/informatique/vim ---- Plugin pour mieux gérer les langages où l'indentation est sémantique (python...) diff --git a/vim plugin local-indent.md b/vim plugin local-indent.md index b840a780..39442f9c 100644 --- a/vim plugin local-indent.md +++ b/vim plugin local-indent.md @@ -1,7 +1,7 @@ up:: [[vim plugins]] link::https://github.com/tweekmonster/local-indent.vim title::"guides d'indentation" -#informatique/vim +#s/informatique/vim ---- To show indent guides with different styles diff --git a/vim plugin wikipedia browser.md b/vim plugin wikipedia browser.md index becd90b4..df57557a 100644 --- a/vim plugin wikipedia browser.md +++ b/vim plugin wikipedia browser.md @@ -1,6 +1,6 @@ up:: [[vim plugins]] title::"wikipedia (disponible uniquement sur nixos)" -#informatique/vim +#s/informatique/vim ---- Pour naviguer sur [[wikipedia]] directement dans vim diff --git a/vim plugins.md b/vim plugins.md index c7383e39..2f1415ce 100644 --- a/vim plugins.md +++ b/vim plugins.md @@ -1,7 +1,6 @@ -up:: [[vim]] -title:: -#informatique/vim - +--- +up: "[[vim]]" +tags: "#s/informatique/vim" --- > [!query] Plugins diff --git a/vim regex lookaround.md b/vim regex lookaround.md index 8f2fbac0..c242ea94 100644 --- a/vim regex lookaround.md +++ b/vim regex lookaround.md @@ -3,7 +3,7 @@ alias: [ "vim regex lookahead", "vim regex lookbehind", "vim regex lookaround", --- up:: [[vim regex]] title:: "before and after matches" -#informatique +#s/informatique --- Allows to match pattern after (lookahead) or before (lookbehind) the current pattern. diff --git a/vim regex.md b/vim regex.md index 528286f4..c7651833 100644 --- a/vim regex.md +++ b/vim regex.md @@ -1,15 +1,15 @@ -up:: [[expression régulière|regex]], [[vim]] -title:: "regex spécifiques à [[vim]]" -#informatique - +--- +up: + - "[[expression régulière|regex]]" + - "[[vim]]" +tags: "#s/informatique" --- -> [!query] Sous-notes de `=this.file.link` -> ```dataview -> TABLE title, up as "Up", up.up as "2-Up", up.up.up as "3-Up", up.up.up.up as "4-Up" -> FROM -#cours AND -#exercice AND -"daily" AND -#excalidraw AND -#MOC -> WHERE any(map([up, up.up, up.up.up, up.up.up.up], (x) => econtains(x, this.file.link))) -> WHERE file != this.file -> SORT up.up.up.up, up.up.up, up.up, up -> ``` - +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/vim.md b/vim.md index 067913d0..6c8a6f04 100644 --- a/vim.md +++ b/vim.md @@ -1,13 +1,13 @@ -up:: [[éditeur de texte]] -title:: -#informatique/vim - +--- +up: "[[éditeur de texte]]" +tags: "#s/informatique/vim" --- -> [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` -> ```breadcrumbs -> title: false -> type: tree -> dir: down -> ``` - +```breadcrumbs +title: "Sous-notes" +type: tree +collapse: false +show-attributes: [field] +field-groups: [downs] +depth: [0, 0] +``` diff --git a/vocabulaire.md b/vocabulaire.md index 4a1320a7..45493a61 100644 --- a/vocabulaire.md +++ b/vocabulaire.md @@ -1,4 +1,4 @@ -#maths/logique +#s/maths/logique ---- Dans le cadre des [[langages formels]], on appelle _vocabulaire_ tout ensemble **fini** de symboles. diff --git a/voisinage dans un espace métrique.md b/voisinage dans un espace métrique.md index 8e71bd57..ad235f52 100644 --- a/voisinage dans un espace métrique.md +++ b/voisinage dans un espace métrique.md @@ -3,7 +3,7 @@ aliases: - voisinage --- up:: [[espace métrique]] -#maths/topologie +#s/maths/topologie > [!definition] [[voisinage dans un espace métrique]] > Soit $(X, d)$ un [[espace métrique]] diff --git a/voyage en nouvelle zélande.md b/voyage en nouvelle zélande.md index f71b8428..088b902e 100644 --- a/voyage en nouvelle zélande.md +++ b/voyage en nouvelle zélande.md @@ -2,5 +2,5 @@ up:: [[CV]] date:: 2023-07-01 date-end:: 2023-08-31 compétences:: 🇬🇧 🗣️ -#anglais +#s/anglais diff --git a/vérificationnisme.md b/vérificationnisme.md index 53958659..524b3f14 100644 --- a/vérificationnisme.md +++ b/vérificationnisme.md @@ -4,7 +4,7 @@ aliases: - empirisme logique --- up:: [[épistémologie]] -#philosphie +#s/philosphie > [!definition] théorie vérificationniste de la signification > Conception [[épistémologique]]. diff --git a/windows.md b/windows.md index 9227abed..19602f21 100644 --- a/windows.md +++ b/windows.md @@ -1,5 +1,5 @@ up:: [[système d'exploitation]] title:: ":dev_windows8_original:" -#informatique #not-done +#s/informatique #not-done --- \ No newline at end of file diff --git a/wokisme.md b/wokisme.md index 8d74283b..6b811779 100644 --- a/wokisme.md +++ b/wokisme.md @@ -1,5 +1,5 @@ up:: [[politique]] -#politique +#s/politique --- diff --git a/workshop array programming.md b/workshop array programming.md index b24c1de3..d3b4b71c 100644 --- a/workshop array programming.md +++ b/workshop array programming.md @@ -1,6 +1,6 @@ up::[[APL]] title::"workshop sur la programmation array ([[APL]])" -#informatique +#s/informatique ---- diff --git a/world wide web.md b/world wide web.md index b4ac2402..ed829ec7 100644 --- a/world wide web.md +++ b/world wide web.md @@ -1,5 +1,5 @@ up::[[internet]] -#informatique +#s/informatique ---- world wide web, ou web, ou toile, ou net, ou internet... diff --git a/xml.md b/xml.md index 5d3d182f..d15a4608 100644 --- a/xml.md +++ b/xml.md @@ -1,5 +1,5 @@ up:: [[langage descriptif]] -#informatique +#s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/xpqz.md b/xpqz.md index cc2b80ec..cb5a1231 100644 --- a/xpqz.md +++ b/xpqz.md @@ -1,4 +1,4 @@ -#personne +#t/personne ---- diff --git a/youtube introduction à obsidian.md b/youtube introduction à obsidian.md index 4b6a2437..f4e3294d 100644 --- a/youtube introduction à obsidian.md +++ b/youtube introduction à obsidian.md @@ -1,5 +1,5 @@ up::[[youtube]] -#obsidian +#s/obsidian ---- diff --git a/zetetique.md b/zetetique.md index 8f568573..121a56d5 100644 --- a/zetetique.md +++ b/zetetique.md @@ -1,7 +1,7 @@ --- alias: [ "zététique", "pensée critique" ] --- -#science/zetetique +#s/science/zetetique --- diff --git a/zotero workflow highlights.md b/zotero workflow highlights.md index 38c6ea39..7db8e41c 100644 --- a/zotero workflow highlights.md +++ b/zotero workflow highlights.md @@ -1,5 +1,5 @@ up:: [[zotero workflow]] -#PKM #informatique +#PKM #s/informatique # Couleurs diff --git a/zotero workflow.md b/zotero workflow.md index b7302df3..999a175b 100644 --- a/zotero workflow.md +++ b/zotero workflow.md @@ -3,7 +3,7 @@ aliases: - workflow zotero --- up:: [[zotero]], [[workflow]] -#PKM #informatique +#PKM #s/informatique > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/écart absolu moyen.md b/écart absolu moyen.md index 61478cad..eaa3bf8d 100644 --- a/écart absolu moyen.md +++ b/écart absolu moyen.md @@ -1,5 +1,5 @@ up:: [[statistiques indices de dispersion]] -#maths/statistiques +#s/maths/statistiques > [!definition] équart absolu moyen > Soit $X$ une [[variable aléatoire]] quantiative. diff --git a/écart type.md b/écart type.md index 1e23b53e..48d12934 100644 --- a/écart type.md +++ b/écart type.md @@ -3,7 +3,7 @@ aliases: - écart quadratique moyen --- up:: [[statistiques indices de dispersion]] -#maths/statistiques +#s/maths/statistiques > [!definition] écart type > Soit $X$ une [[variable aléatoire]] diff --git a/écologie.md b/écologie.md index c67558c8..9f2092ad 100644 --- a/écologie.md +++ b/écologie.md @@ -1,5 +1,5 @@ up:: [[science]] -#science/écologie +#s/science/écologie > [!query]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/économie effet rebond.md b/économie effet rebond.md index ebeba5a0..4e93b245 100644 --- a/économie effet rebond.md +++ b/économie effet rebond.md @@ -3,7 +3,7 @@ alias: [ "effet rebond" ] --- up:: [[économie]] title:: si une partie des consommateurs renoncent à une ressource, alors elle devient moins chère, donc plus avantageuse, et donc plus utilisée -#science/économie +#s/science/économie --- diff --git a/éditeur de texte.md b/éditeur de texte.md index bbd63ab8..51734a96 100644 --- a/éditeur de texte.md +++ b/éditeur de texte.md @@ -1,6 +1,6 @@ up::[[informatique]] title:: "applications pour l'[[édition de texte]]" -#informatique +#s/informatique --- diff --git a/édition de texte.md b/édition de texte.md index 2167ccf7..148eb67f 100644 --- a/édition de texte.md +++ b/édition de texte.md @@ -1,6 +1,6 @@ up:: [[éditeur de texte]] title:: -#informatique +#s/informatique --- diff --git a/éducation et démocratie.md b/éducation et démocratie.md index 3a3b2ce0..a5ef1b89 100644 --- a/éducation et démocratie.md +++ b/éducation et démocratie.md @@ -1,6 +1,6 @@ up:: [[éducation populaire]], [[démocratie]] title:: -#politique #apprendre +#s/politique #s/apprendre --- diff --git a/éducation nationale.md b/éducation nationale.md index dd80341d..68ccaad7 100644 --- a/éducation nationale.md +++ b/éducation nationale.md @@ -1,5 +1,5 @@ up:: [[éducation]], [[politique]] -#politique #apprendre +#s/politique #s/apprendre - [[démocratisation de l'éducation]] - [[réduction des inégalités culturelles|démocratisation de la culture]] diff --git a/éducation populaire.md b/éducation populaire.md index c56a7866..aa56c6e2 100644 --- a/éducation populaire.md +++ b/éducation populaire.md @@ -3,7 +3,7 @@ alias: [ "éducation politique" ] --- up:: [[politique]] title:: -#politique +#s/politique --- diff --git a/éducation.md b/éducation.md index e1091f79..a0a2f52a 100644 --- a/éducation.md +++ b/éducation.md @@ -1,6 +1,6 @@ up:: [[index]] title:: -#apprendre +#s/apprendre ```dataview diff --git a/éducation.notes.md b/éducation.notes.md index 28bae52a..2a14c731 100644 --- a/éducation.notes.md +++ b/éducation.notes.md @@ -1,5 +1,5 @@ up:: [[éducation]] -#apprendre +#s/apprendre > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/égalité des chances.md b/égalité des chances.md index fe6a0bbb..be963380 100644 --- a/égalité des chances.md +++ b/égalité des chances.md @@ -1,5 +1,5 @@ up:: [[élément de langage]] -#politique +#s/politique "égalité des chances" est une [[figure de style.antithèse|antithèse]] : la chance est inégale. diff --git a/électronique.md b/électronique.md index 2633149f..74fca22c 100644 --- a/électronique.md +++ b/électronique.md @@ -1,6 +1,6 @@ up::[[science]] title:: -#science +#s/science --- diff --git a/élites.md b/élites.md index efb2a70b..19ad7990 100644 --- a/élites.md +++ b/élites.md @@ -1,6 +1,6 @@ up:: [[politique]] title:: -#politique +#s/politique --- diff --git a/éloge de l'oisiveté.md b/éloge de l'oisiveté.md index e3e7e3ec..708c47ec 100644 --- a/éloge de l'oisiveté.md +++ b/éloge de l'oisiveté.md @@ -1,6 +1,6 @@ author:: [[Bertrand Russel]] date:: 1932 -#source #science/sociologie +#source #s/science/sociologie - contre la [[valeur travail]] - le travail n'est pas utile en lui même mais seulement en tant qu'il permet l'oisiveté diff --git a/élément de langage.md b/élément de langage.md index 1b71131a..d7b889df 100644 --- a/élément de langage.md +++ b/élément de langage.md @@ -2,7 +2,7 @@ alias: [ "élément de langage", "éléments de langage" ] --- up:: [[politique]], [[langage]] -#politique +#s/politique Voir : [[le pouvoir de l'éloquence]] diff --git a/élément neutre.md b/élément neutre.md index f01104b6..656f5678 100644 --- a/élément neutre.md +++ b/élément neutre.md @@ -1,6 +1,6 @@ up::[[structure algébrique]] title::"$e$ tel que $\forall x \in E, x*e = e*x = x$" -#maths/algèbre +#s/maths/algèbre > [!definition] > Un élément $e\in E$ est appelé _élément neutre_ de $E$ pour la loi $*$ ssi : $\forall a\in E, a*e=e*a=a$ diff --git a/éléments inversibles.md b/éléments inversibles.md index df9fd630..810a55e7 100644 --- a/éléments inversibles.md +++ b/éléments inversibles.md @@ -7,7 +7,7 @@ aliases: --- up::[[structure algébrique]] title::"$x$ est symétrisable si $\exists x' \in E, x*x' = x'*x = e$ l'[[élément neutre]]" -#maths/algèbre +#s/maths/algèbre > [!definition] éléments inversibles > Soit $E$ in ensemble muni d'une [[loi de composition interne]] $*$, et contenant un [[élément neutre|élément neutre]] $e$. diff --git a/épistémologie.md b/épistémologie.md index ff929433..7241bd58 100644 --- a/épistémologie.md +++ b/épistémologie.md @@ -1,5 +1,5 @@ up:: [[philosophie]] -#philosphie +#s/philosphie > [!smallquery]+ Sous-notes de `$= dv.el("span", "[[" + dv.current().file.name + "]]")` > ```breadcrumbs diff --git a/équation cartésienne d'une droite.md b/équation cartésienne d'une droite.md index bea29343..030130be 100644 --- a/équation cartésienne d'une droite.md +++ b/équation cartésienne d'une droite.md @@ -1,6 +1,6 @@ up::[[équation cartésienne]] title::"$ax + by +c = 0$" -#maths +#s/maths ---- Une droite dans le plan peut être vue comme l'ensemble des points satisfaisant une équation. diff --git a/équation cartésienne.md b/équation cartésienne.md index a59a6d98..fade3815 100644 --- a/équation cartésienne.md +++ b/équation cartésienne.md @@ -1,6 +1,6 @@ up::[[analyse|analyse]] author::[[Descartes]] -#maths +#s/maths ---- diff --git a/équation différentielle du premier ordre.md b/équation différentielle du premier ordre.md index 40579ab3..1c1fa767 100644 --- a/équation différentielle du premier ordre.md +++ b/équation différentielle du premier ordre.md @@ -6,7 +6,7 @@ sr-ease: 270 up::[[équation différentielle]] title:: "contient une fonction et sa [[dérivation|dérivée]]", "$a(x)y'(x) + b(x)y(x) = c(x)$" -#maths/algèbre #review +#s/maths/algèbre Des [[équation différentielle|équations différentielles]] dans lesquelles seule la [[dérivation|dérivée]] [[dérivées successives|première]] apparaît. diff --git a/équation différentielle du second ordre a coefficients constants.md b/équation différentielle du second ordre a coefficients constants.md index 92b8da04..c1db965a 100644 --- a/équation différentielle du second ordre a coefficients constants.md +++ b/équation différentielle du second ordre a coefficients constants.md @@ -5,7 +5,7 @@ sr-ease: 255 --- up::[[équation différentielle du second ordre]], [[équation différentielle à coefficients constants]] title:: "$ay'' + by' + cy = f(x)$ avec $a \neq 0$" -#maths/algèbre +#s/maths/algèbre ---- [[équation différentielle]] dans laquelle seule les [[dérivées successives|dérivée première et seconde]] apparaîssent diff --git a/équation différentielle du second ordre.md b/équation différentielle du second ordre.md index 04f45c9b..007ab985 100644 --- a/équation différentielle du second ordre.md +++ b/équation différentielle du second ordre.md @@ -1,7 +1,7 @@ up:: [[équation différentielle]] down:: [[équation différentielle du second ordre a coefficients constants]] title:: "$a(x) y''(x) + b(x)y'(x) + c(x)y(x) = d(x)$ avec $a$ non [[fonction nulle|nulle]]" -#maths/analyse +#s/maths/analyse --- diff --git a/équation différentielle à coefficients constants.md b/équation différentielle à coefficients constants.md index 69863c97..3ee998a2 100644 --- a/équation différentielle à coefficients constants.md +++ b/équation différentielle à coefficients constants.md @@ -1,6 +1,6 @@ up:: [[équation différentielle]] title:: "les coefficients devant les $y^{(n)}$ sont constants : $\sum\limits_{k} \big( a_{k}y^{(k)}(x) \big) = f(x)$" -#maths/analyse +#s/maths/analyse --- diff --git a/équation différentielle.md b/équation différentielle.md index 0d4824bf..51729af5 100644 --- a/équation différentielle.md +++ b/équation différentielle.md @@ -1,5 +1,5 @@ up::[[équation fonctionnelle]] -#maths/algèbre +#s/maths/algèbre ---- diff --git a/équation diophantienne.md b/équation diophantienne.md index c6743b7b..5b79540f 100644 --- a/équation diophantienne.md +++ b/équation diophantienne.md @@ -1,6 +1,6 @@ up::[[arithmétique]] title:: "[[équation polynomiale]] à solutions entières" -#maths/arithmétique +#s/maths/arithmétique --- diff --git a/équation du second degré.md b/équation du second degré.md index 49017ff9..18c37d20 100644 --- a/équation du second degré.md +++ b/équation du second degré.md @@ -1,5 +1,5 @@ up::[[polynôme]] -#maths/analyse +#s/maths/analyse ---- Ou _équation [[polynôme]] du second degré_. diff --git a/équation fonctionnelle.md b/équation fonctionnelle.md index 68afa313..ffb79fc5 100644 --- a/équation fonctionnelle.md +++ b/équation fonctionnelle.md @@ -1,7 +1,7 @@ up::[[équation]] sibling:: title::"[[équation]] donc les inconnues sont des [[fonction|fonctions]]" -#maths/algèbre +#s/maths/algèbre ---- Une _équation fonctionnelle_ est une [[équation]] dont les inconnues sont des [[fonction|fonctions]] diff --git a/équation linéaire à 2 variables entières.md b/équation linéaire à 2 variables entières.md index 569dcb8b..871dec01 100644 --- a/équation linéaire à 2 variables entières.md +++ b/équation linéaire à 2 variables entières.md @@ -1,6 +1,6 @@ up::[[équation diophantienne]] title::"$ax+by=c \qquad (a, b, c)\in\mathbb{Z}^{3}$" -#maths/arithmétique +#s/maths/arithmétique ---- diff --git a/équation paramétrique d'une droite affine.md b/équation paramétrique d'une droite affine.md index 7723ede4..d2439ddf 100644 --- a/équation paramétrique d'une droite affine.md +++ b/équation paramétrique d'une droite affine.md @@ -3,7 +3,7 @@ alias: [ "droite comme ensemble de vecteurs selon un paramètre" ] --- up:: [[barycentre d'un système de points pondérés|barycentre]] title:: "$(AB) = \{ M \in \mathbb{R}^{2} \mid \overrightarrow{OM} = t\overrightarrow{OA} + (1-t)\overrightarrow{OB} \;\wedge\; t \in \mathbb{R}\}$", "quelque soit $O$ (origine dans le calcul)" -#maths/géométrie +#s/maths/géométrie --- diff --git a/équation paramétrique d'une droite.md b/équation paramétrique d'une droite.md index 2c9fd2db..83274e3d 100644 --- a/équation paramétrique d'une droite.md +++ b/équation paramétrique d'une droite.md @@ -1,6 +1,6 @@ up::[[courbe paramétrée]] title:: "dirigée par $\overrightarrow{AB}$", " - 2D : $\begin{cases} x &=& x_{A}+t(x_B - x_{A})\\ y &=& y_{A}+t(y_{B}-y_{A}) \end{cases} \quad t \in \mathbb{R}$" -#maths/géométrie +#s/maths/géométrie --- diff --git a/équation quadratique.md b/équation quadratique.md index 8bfa2104..38a5d912 100644 --- a/équation quadratique.md +++ b/équation quadratique.md @@ -1,7 +1,7 @@ up::[[équation polynomiale]] title::"$ax^{2} + bx + c = 0$" description::"[[équation polynomiale]] de degré 2" -#maths +#s/maths ---- diff --git a/équation.md b/équation.md index 56d1059c..835fdc57 100644 --- a/équation.md +++ b/équation.md @@ -1,3 +1,3 @@ -#maths/algèbre #not-done +#s/maths/algèbre #not-done ---- diff --git a/équations d'un cercle.md b/équations d'un cercle.md index 1015cf8e..f1456ae5 100644 --- a/équations d'un cercle.md +++ b/équations d'un cercle.md @@ -1,5 +1,5 @@ up:: [[cercle]] -#maths/géométrie +#s/maths/géométrie > [!definition] équations d'un cercle > Sur un plan, les équations suivantes définissent un cercle : diff --git a/équations d'une ellipse.md b/équations d'une ellipse.md index ac640dae..1e968e53 100644 --- a/équations d'une ellipse.md +++ b/équations d'une ellipse.md @@ -1,5 +1,5 @@ up:: [[ellipse]] -#maths/géométrie +#s/maths/géométrie > [!definition] équations d'une ellipse > Dans un plan euclidien, les équations suivantes définissent une ellipse : diff --git a/équicontinue.md b/équicontinue.md index 9a4a32b2..4643a5c9 100644 --- a/équicontinue.md +++ b/équicontinue.md @@ -1,5 +1,5 @@ up::[[fonction]] -#maths/topologie +#s/maths/topologie > [!definition] fonction équicontinue > Soit $(X, d)$ un [[espace métrique]] et soit $C \subset X$ diff --git a/étapes d'un génocide.md b/étapes d'un génocide.md index 0f3231f5..3842a42e 100644 --- a/étapes d'un génocide.md +++ b/étapes d'un génocide.md @@ -2,7 +2,7 @@ alias: [ "origines d'un génocide", "early stages of genocide" ] --- up:: [[génocide]] -#science/histoire #philosphie #science/zetetique +#s/science/histoire #s/philosphie #s/science/zetetique - [[classifier et diviser les personnes]] - [[extermination de masse]] diff --git a/étudier ensemble.md b/étudier ensemble.md index 38fba21f..50a2d485 100644 --- a/étudier ensemble.md +++ b/étudier ensemble.md @@ -1,5 +1,5 @@ up:: [[pédagogie]] -#apprendre +#s/apprendre - étudier ensemble - aller en cours ensemble, faire des projets diff --git a/évolution des réseaux.md b/évolution des réseaux.md index 53f06bff..62fe85f5 100644 --- a/évolution des réseaux.md +++ b/évolution des réseaux.md @@ -1,6 +1,6 @@ up::[[réseau informatique]] title::"évolution du fonctionnement des réseaux au cours du temps" -#informatique +#s/informatique ---- diff --git a/être un bon dirigeant associatif.md b/être un bon dirigeant associatif.md index 08df0cc3..5818f027 100644 --- a/être un bon dirigeant associatif.md +++ b/être un bon dirigeant associatif.md @@ -1,5 +1,5 @@ up:: [[associations]] -#fac/associations +#s/fac/associations - clefs de la polularité - enthousiasme, dynamisme, autorité