update
This commit is contained in:
@@ -63,7 +63,7 @@ sibling:: [[partie fermée d'un espace métrique]]
|
||||
> Quel que soit $x \in ]0; 1[$
|
||||
> - si $x \leq \frac{1}{2}$, alors $]0; 2x[ = B(x, x) \subset ]0; 1[$
|
||||
> en effet, :
|
||||
> $\begin{align} B(x, x) &= \{ y \in \mathbb{R}\mid d(x, y) < x \} \\&= \{ y \in \mathbb{R} \mid |y-x| < x \} \\&= \{ y\in\mathbb{R}\mid-x < y-x < x \} \\&= \{ y\in\mathbb{R}\mid -x+x<y<x+x \}\\&= \{ y\in\mathbb{R}\mid 0<y<\underbracket{2x}_{\leq_1} \} \end{align}$
|
||||
> $\begin{align} B(x, x) &= \{ y \in \mathbb{R}\mid d(x, y) < x \} \\&= \{ y \in \mathbb{R} \mid |y-x| < x \} \\&= \{ y\in\mathbb{R}\mid-x < y-x < x \} \\&= \{ y\in\mathbb{R}\mid -x+x<y<x+x \}\\&= \{ y\in\mathbb{R}\mid 0<y<\underbracket{2x}_{\leq 1} \} \end{align}$
|
||||
> On a donc bien $B(x, x) \subset ]0; 1[$
|
||||
> - si $x > \frac{1}{2}$, alors $]2x - 1; 1[ = B(x, 1-x) \subset ]0; 1[$
|
||||
> en effet :
|
||||
|
Reference in New Issue
Block a user