update
This commit is contained in:
parent
a5521e7d1b
commit
32037ae8e7
2
.gitignore
vendored
2
.gitignore
vendored
@ -2,3 +2,5 @@
|
||||
*.swp
|
||||
blog/*
|
||||
identités.md
|
||||
.obsidian/workspace.json
|
||||
.obsidian/workspaces.json
|
||||
|
2
.obsidian/appearance.json
vendored
2
.obsidian/appearance.json
vendored
@ -1,7 +1,7 @@
|
||||
{
|
||||
"theme": "system",
|
||||
"cssTheme": "Minimal",
|
||||
"baseFontSize": 23,
|
||||
"baseFontSize": 22.5,
|
||||
"enabledCssSnippets": [
|
||||
"pdf_darkmode",
|
||||
"query_header_title",
|
||||
|
@ -8,7 +8,7 @@
|
||||
"lineWidth": 40,
|
||||
"lineWidthWide": 5000,
|
||||
"maxWidth": 98,
|
||||
"textNormal": 23,
|
||||
"textNormal": 22.5,
|
||||
"textSmall": 13,
|
||||
"imgGrid": false,
|
||||
"imgWidth": "img-default-width",
|
||||
|
646
.obsidian/workspace
vendored
646
.obsidian/workspace
vendored
@ -1,646 +0,0 @@
|
||||
{
|
||||
"main": {
|
||||
"id": "239f495bbbd2d5df",
|
||||
"type": "split",
|
||||
"ophidian:layout-settings": {
|
||||
"pane-relief:sliding-panes": {
|
||||
"active": false
|
||||
}
|
||||
},
|
||||
"children": [
|
||||
{
|
||||
"id": "3a577d58ceca2f87",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "3a577d58ceca2f87",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_beamer_cours.pdf\"}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "3a577d58ceca2f87",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"mindmapview\",\"state\":{\"file\":\"sources/annotations/L2 maths arithmetique CC1.md\"}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "3a577d58ceca2f87",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_CC1.pdf\"}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "3a577d58ceca2f87",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"pdf\",\"state\":{\"file\":\"sources/cours/L2_maths_arithmetique_beamer_cours.pdf\"}}",
|
||||
"eState": "{}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"state": {
|
||||
"type": "pdf",
|
||||
"state": {
|
||||
"file": "sources/cours/L2_maths_arithmetique_beamer_cours.pdf"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "dea49c79a5f7625a",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "f9a21f6d67f25162",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":5,\"ch\":0},\"to\":{\"line\":5,\"ch\":0}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction paire.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction impaire.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":4,\"ch\":25},\"to\":{\"line\":4,\"ch\":25}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction cosinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":4,\"ch\":30},\"to\":{\"line\":4,\"ch\":30}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":40},\"to\":{\"line\":7,\"ch\":40}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":44},\"to\":{\"line\":7,\"ch\":44}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction convergente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arctangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arccosinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction arcsinus.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":7,\"ch\":32},\"to\":{\"line\":7,\"ch\":32}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"démonstration de l'expression de l'arg sinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"démonstration expression de l'arg cosinus hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":1,\"ch\":11},\"to\":{\"line\":1,\"ch\":11}}}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"domination en un point.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"Do.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "f9a21f6d67f25162",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"cosinus pi sur 2 moins x.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{\"cursor\":{\"from\":{\"line\":3,\"ch\":0},\"to\":{\"line\":3,\"ch\":0}}}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "fonction tangente.md",
|
||||
"mode": "source",
|
||||
"backlinks": false,
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "4676a33f3abec10a",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "4676a33f3abec10a",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente hyperbolique.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
},
|
||||
{
|
||||
"leaf": "4676a33f3abec10a",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"fonction tangente.md\",\"mode\":\"source\",\"backlinks\":false,\"source\":false}}",
|
||||
"eState": "{}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "fonction tangente hyperbolique.md",
|
||||
"mode": "source",
|
||||
"backlinks": false,
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"direction": "horizontal"
|
||||
}
|
||||
],
|
||||
"direction": "vertical"
|
||||
},
|
||||
"left": {
|
||||
"id": "64de298669508ee4",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "a3e04033addcedcd",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "8e6cf92b1e047f14",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "8e6cf92b1e047f14",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"empty\",\"state\":{}}",
|
||||
"eState": "{}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"state": {
|
||||
"type": "file-explorer",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "390d098cee0c9651",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "search",
|
||||
"state": {
|
||||
"query": "tours ",
|
||||
"matchingCase": false,
|
||||
"explainSearch": false,
|
||||
"collapseAll": false,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ccd1190664578ee9",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "tag",
|
||||
"state": {
|
||||
"sortOrder": "frequency",
|
||||
"useHierarchy": true
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "325e33879123bbe0",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "sekund-main-view",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "bd1d7503d0848342",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "RSS_FEED",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "c7afda8b81d643de",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "outgoing-link",
|
||||
"state": {
|
||||
"file": "fonction tangente hyperbolique.md",
|
||||
"linksCollapsed": false,
|
||||
"unlinkedCollapsed": true
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "e855affa02bb755e",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "fonction tangente hyperbolique.md",
|
||||
"collapseAll": true,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
"showSearch": false,
|
||||
"searchQuery": "",
|
||||
"backlinkCollapsed": false,
|
||||
"unlinkedCollapsed": false
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 1
|
||||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 467
|
||||
},
|
||||
"right": {
|
||||
"id": "1102f19b896c7a16",
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "980f845ab893296e",
|
||||
"type": "tabs",
|
||||
"dimension": 56.815578465063,
|
||||
"children": [
|
||||
{
|
||||
"id": "5f0a6b2e995376e5",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "outline",
|
||||
"state": {
|
||||
"file": "fonction tangente hyperbolique.md"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "d45511af0bde9bcf",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "advanced-tables-toolbar",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "bae8ca5650bdd5bf",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "calendar",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "bf6c068c22a39e9f",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "review-queue-list-view",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "32d6a52d872d783d",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "localgraph",
|
||||
"state": {
|
||||
"file": "fonction tangente hyperbolique.md",
|
||||
"options": {
|
||||
"collapse-filter": false,
|
||||
"search": "-path:(\"__sekund__\" OR \"daily\" OR \"kanban\") -file:(\"todo\" OR \"things to do\") -file:.excalidraw",
|
||||
"localJumps": 1,
|
||||
"localBacklinks": true,
|
||||
"localForelinks": true,
|
||||
"localInterlinks": true,
|
||||
"showTags": false,
|
||||
"showAttachments": true,
|
||||
"hideUnresolved": false,
|
||||
"collapse-color-groups": true,
|
||||
"colorGroups": [
|
||||
{
|
||||
"query": "tag:#todo",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 16711680
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#not-done",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 2829614
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#MOC",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 6356992
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#flashcards",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 16427551
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#maths",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 2520842
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#logique",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 2902193
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#informatique",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 32882
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#personne",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 10710150
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "path:annotation",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 12844865
|
||||
}
|
||||
},
|
||||
{
|
||||
"query": "tag:#PKM OR tag:#obsidian",
|
||||
"color": {
|
||||
"a": 1,
|
||||
"rgb": 4667545
|
||||
}
|
||||
}
|
||||
],
|
||||
"collapse-display": true,
|
||||
"showArrow": true,
|
||||
"textFadeMultiplier": -1,
|
||||
"nodeSizeMultiplier": 1,
|
||||
"lineSizeMultiplier": 2.66151355284701,
|
||||
"collapse-forces": true,
|
||||
"centerStrength": 0.791642706536324,
|
||||
"repelStrength": 15.6584243818286,
|
||||
"linkStrength": 1,
|
||||
"linkDistance": 30,
|
||||
"scale": 1.2059531043345284,
|
||||
"close": true
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "837d069be727ad7e",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "custom-frames-detexify",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "bf9c467678aa05e4",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "BC-matrix",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "843072ab0d510e3d",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": []
|
||||
},
|
||||
"state": {
|
||||
"type": "BC-tree",
|
||||
"state": {}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 5
|
||||
},
|
||||
{
|
||||
"id": "9b0b445260de35cb",
|
||||
"type": "tabs",
|
||||
"dimension": 43.184421534937,
|
||||
"children": [
|
||||
{
|
||||
"id": "cb9c41a428bebf8c",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "cb9c41a428bebf8c",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"things to do.md\",\"mode\":\"preview\",\"backlinks\":false,\"source\":false},\"pinned\":true}",
|
||||
"eState": "{\"scroll\":3.804469273743017}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"pinned": true,
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "things to do.md",
|
||||
"mode": "preview",
|
||||
"backlinks": false,
|
||||
"source": false
|
||||
},
|
||||
"pinned": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "523cd7a78782d297",
|
||||
"type": "leaf",
|
||||
"pane-relief:history-v1": {
|
||||
"pos": 0,
|
||||
"stack": [
|
||||
{
|
||||
"leaf": "523cd7a78782d297",
|
||||
"group": null,
|
||||
"state": "{\"type\":\"markdown\",\"state\":{\"file\":\"devoirs à faire.md\",\"mode\":\"preview\",\"backlinks\":false,\"source\":false},\"pinned\":true}",
|
||||
"eState": "{}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"pinned": true,
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "devoirs à faire.md",
|
||||
"mode": "preview",
|
||||
"backlinks": false,
|
||||
"source": false
|
||||
},
|
||||
"pinned": true
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 1
|
||||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 309.5,
|
||||
"collapsed": true
|
||||
},
|
||||
"active": "4676a33f3abec10a",
|
||||
"ophidian:layout-settings": {
|
||||
"pane-relief:focus-lock": true
|
||||
},
|
||||
"lastOpenFiles": [
|
||||
"notes 2022-09-01.md",
|
||||
"fonction tangente hyperbolique.md",
|
||||
"daily/2022-10-15.md",
|
||||
"fonction arctangente.md",
|
||||
"sources/cours/L2_maths_analyse_TD2-annotate.md",
|
||||
"sources/cours/L2_maths_geometrie_TD1_2020-2021-annotate.md",
|
||||
"daily/2022-10-13.md",
|
||||
"things to do.md",
|
||||
"flashcards anglais.md",
|
||||
"diagramme UML.md"
|
||||
]
|
||||
}
|
1186
.obsidian/workspace.json
vendored
1186
.obsidian/workspace.json
vendored
File diff suppressed because it is too large
Load Diff
4
.obsidian/workspaces.json
vendored
4
.obsidian/workspaces.json
vendored
@ -1,4 +0,0 @@
|
||||
{
|
||||
"workspaces": {},
|
||||
"active": "fac"
|
||||
}
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
aliases:
|
||||
- creative extension principle
|
||||
---
|
||||
up:: [[paradigme de programmation]]
|
||||
#informatique
|
||||
|
||||
@ -13,6 +17,11 @@ up:: [[paradigme de programmation]]
|
||||
> > Le principe de l'*extension créative* permet d'organiser les concepts pour former réellement un paradigme.
|
||||
> ^SVNS3KNFaP4L4LCJZg5383243p8
|
||||
|
||||
|
||||
> [!idea] extension créative = méta-paradigme
|
||||
> L'extension créative est un paradigme pour créer des paradigmes.
|
||||
|
||||
|
||||
# Fonctionnement de l'extension créative
|
||||
|
||||
1. Apparition d'une modification envahissante
|
||||
@ -30,7 +39,6 @@ up:: [[paradigme de programmation]]
|
||||
> > ajouter ce concept au langage => éviter les modifications envahissantes => retrouver la simplicité
|
||||
> ^6ZNVVQGIaP4L4LCJZg5383243p9
|
||||
|
||||
|
||||
## Exemples de modifications envahissantes et solutions
|
||||
|
||||
> [!cite] [Programming Paradigms for Dummies: What Every Programmer Should Know](zotero://select/groups/5383243/items/673TMQRT) - [Page 17](zotero://open-pdf/groups/5383243/items/P4L4LCJZ?page=9&annotation=VAZ8DBMA)
|
||||
|
@ -26,4 +26,19 @@ up::
|
||||
1. on prends la clef sous le paillasson
|
||||
2. on ouvre la porte
|
||||
3. on remet la clef sous le paillasson
|
||||
- pour changer d'étage si deux bâtiments sont reliés par des passerelles, mais seulement l'autre possède un ascenseur
|
||||
- Les bâtiments A et B sont reliés à châque étage par des passerelles
|
||||
- Le bâtiment A ne possède pas d'ascenseur, le bâtiment B possède un ascenseur
|
||||
- pour changer d'étage si on est dans le bâtiment A :
|
||||
1. traverser la passerelle de A vers B
|
||||
2. changer d'étage dans B
|
||||
3. traverser la passerelle de B vers A
|
||||
- arrondir des nombres à $n$ décimales près
|
||||
1. multiplier le nombre par $10^n$
|
||||
2. arrondir à l'entier le plus proche
|
||||
3. diviser le nombre par $10^n$
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user