From 1ca8363ab9301392fb55509a92c19ceb59c6228e Mon Sep 17 00:00:00 2001 From: oskar Date: Mon, 26 Jan 2026 16:22:15 +0100 Subject: [PATCH] eduroam-prg-sg-1-46-190.net.univ-paris-diderot.fr 2026-1-26:16:22:14 --- ...tabulaires 2026-01-26 16.09.21.excalidraw.md | 71 +++++++++++++++++++ ...abulaires 2026-01-26 16.09.21.excalidraw.svg | 2 + statistiques univariées.md | 27 +++++++ 3 files changed, 100 insertions(+) create mode 100644 attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.md create mode 100644 attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.svg create mode 100644 statistiques univariées.md diff --git a/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.md b/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.md new file mode 100644 index 00000000..6b84ac79 --- /dev/null +++ b/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.md @@ -0,0 +1,71 @@ +--- + +excalidraw-plugin: parsed +tags: [excalidraw] + +--- +==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving' + + +# Excalidraw Data + +## Text Elements +clé ^j1B2X0aE + +colonnes ^XcZWeIKp + +variables = "mesures" ^IrUhccZN + +n ^32WWSOnV + +individus ^Jd6H7vnZ + +observations +individuelles ^P0ARzdV2 + +%% +## Drawing +```compressed-json +N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBGAE5tHho6IIR9BA4oZm4AbXAwUDBSiBJuCAAreIAhHgANAAZcAFE00shYREqoLCgOssxuZx4ANgAObQAWAHYm+IBmOcWA + +Vnim2en+MpgR+OnF7VXpngnpw9n1+bGdyAoSdW417QnFxMSJjdnEjfjV25FSCSBCEZTSZ6rO4QazKYLcJrQ5hQUhsADWCAAwmx8GxSJUAMRJWbxbCpaGaXDYNHKVFCDjEbG4/ESFHWZhwXCBHKDSAAM0I+HwAGVYPCJIIPLyIMjURiAOqPSTcPhAmUo9EIUUwcXoSUVaF08EccJ5NDxaFsTnYNR7c1NRFq2nCOAASWIZtQ+QAutC+eQsu7uBwhEL + +oYQGVhKrgmtK6QyTcxPSGw2qwghiNwlokmjxDqsJqrOgwmKxOFmLWrGCx2BwAHKcMTcWaLCZjeJfDbh5gAEQyfUzaD5BDCFOEDNawSyOWTofw0KEcGIuAHWdmY0SF1zywORbKuOpGe4w/wo7VfUwAwk2HwAEu45QACr9So3+9+zhQYWEIziXgTD8cgAMVwfRBTtVAoXPfoAEEiGULgJGCPkBmhasoHMAg4LBRD0CgK1pT0HJcAjJggzQFN5zVPEw + +QjAhn0vV872lXAhHwgAlcIfz/FEhAQaEiBNAAJUFwSvVB4hSKDi0kUIGKgAAZCM0WPEcECKABfHYSjKCoJAabAAC15QQV0AGk4Glbo/2gF9oWGNBnCWWZjnmOZZlmL4mkWK5tjVCCnLGFy1kWHzVg+JYvhOaEHmIJ5zSWbR5h+aYgo85YwuhEEwQhNA1mhWFdUdYtZU1Jk8UJYlSXJNVKWpZ16UZHEKtZcgOA5LlslQtUBSFbVdRlHEDTTDUFSVF + +UkVGrUxRs/VM0NYRjVNLNLWtW0swdaEGrdD0CiBSBMH0CZFXiIQAEVnCAuAJgANQAKRgfQGnoTEAH0ewgIFfR6gNTMHVBKPDSMHPQXB4jjcdiETWdUxKhAjzQTceA7eYmkBYtqzLXD4nRspMdrBsOCbBKW1bK5it03t+wR1ATzPYtNEhydMi6mGqOLRdl1Xc1103aZtw7Ls1QPDF/rp/joMY69mo4RMHwoeTXxluXAK/biVQAnrPxAsD8Ag6Sygv + +KBsIQypkO6jGmAw9wTdw6ACOhIiolI0hyIBudLVIWiOHol9pdxWXwhYti2E41hf24XiJeLQSEBEnLxMkngDeBOT+iUjgVKHNTNO0tU9PQV1SAAVUkbAjLrKz4Bso3pRBpyvm0JpEjGU5VjWDtW0WPdIACpYjnbZZUp+ZGxjOGLxrQHgHSS8LziSDtN3brLRNy3gU5hDg4T/CmBCm8qWXQIkEHiE+kApKkaXjJrmV6NqOu5C2yl6kUZsqObpVKsa4 + +uVKfJrlaaOpZpDXmmqI0khoYrWomtWAG1d4QG2u6T0hROgHSOidc6l1rr3Ues9N6H0vp+l+m7QG+dgbRhqsWa+kCKIezTPDf63wTjxBSmhUstZuBjEWGwmsnBCbE1QGsVYzd5htm7H2YI3NaZqTHI1Zm05cjBjoRzJcK4aYsI3FuHgiwmirE8gJNgh4xYyMluJBgXIrCaGCMwVAABeVAAAdCAWRmAiHCE4+WisJD0AsbgKx4Q7GOOceENxzAPGq2 + +/BHKe8C+Ta1AuBbgG8ja2zNggFC0p0KYXwCk1kDs1ROxIiaV2/1SHFhov4X2Ut0A+K9n46xgSnEuNCeEtUrEOJcSiagKOAlSLxzElmKSWU06XgzlnaRp51KlC0kUHSkAC4QESMwV6pA+TYDMlUbAiRDLCgAI6Yk0EIRIaIqgAHlQHFmsmbUidcRg8BbNoRYY8Fit3CvzaYlZix928gkLhydF4sKaJrYssV4qCI7A8/mLC+ahVeSvBOCICpbyKv/M + +qzVD4QGPqfU+0o6pX0hgfO+7JOSP2lC/fqwCpQou/qCnu6oAHkvfiAiGfgIHLXNKtKk617TwMQbtNAPoiGgT+ko2GulyESFwIsZlCY2WoFmV0auKogTTLhjTRI09QpjDHjwrGzx4H4z4Y2P8ydUqLBxrjOZVNJE03FrIicU5WYivZmUTmajGG8y0QcTYFqICCTGaU/chjRaqQmdCOAbAIyKP5ftFBqDd6lCaPtb6qDY2dDNVMZYCwUqHDWJuO4Ca + +k2EJGlyKAtQIyOC3k66E2RiBloZBGZQVbi2kGNqQVEFAQS4BKcosoNaYJtrYB2kI3bRWQHDXrZQ5Zs4TNzjM/O/0FmmRutgTA8ohLYEfMKIQVR8CLFdIZBSZ0AAKYwq49CQtc+ytzZhxDbB5c4ZxzWJC2NCL5TRjiQq2NMCKPBPhArKCC3+qB4HZX6eaFuDyJgTGEfzM43dvKIu3gikaACCUSExWfHFl8GoMjQ3he+xKuqksFK/IBjLKUoc1IqH+ + +E1KMYgZRKJlC0WU0Ikhym0sDuVbTpDtZBybn7EJHc6uZ4rQbTGlVDWV8roCKqnsqpEDDnjPo3KscYPqDW4S4TqgmRqKzd2fasAsPrCBWoQFI21tUmYOpnE2lRXN1Eetgyw95tK/W2cDUYkN9MyjhsjcgmN+0wDxqC0m/NqaE35rAEkMYkHoNNFg28DVhbOj8b3iWutFbG20NHRgBkGWG3ubSy2/t7bO1CerQyErg6yuFYgOOmAk7cLi1naUWZ5QF + +3d3lPKYUJyOA3TPTXOyap66nEkr8BemxkaFjRq+kYqntDqveDe+LSR00b0A1maYSU7kfEmOMFhKMN6gbXvlVpSKd5UqxGiyqZ9sUX3qtfPD0ACOdR5H6EjDG9RMbowgajNLLufcGhRqhi1WVJigWUmBEENg8p40gvaqDyjFwIBQNgdZMQUFwAAWXoI+TEkg0SuAaGdKVRbiz+iFSQntIniBRglasCTrGA0CEU+B+I08tWGf/ZADT3AczacNUTP8B + +xW53KWAWcR1NjGhss3I6zUb3Y5ddVIjRfNcyqZ2wYzz07vNdD9ugLghonz64gIbrWORInGu5xAWJwF4l60SdCZJ8E7bmwyVbLJOS8J5OLAUl2VOcvlLovgLxBvg7tPDjxUgfEenCVXonQZapZLMHkqMrzkywAquKPOyod1iBjCErMegHBDIDd6EN4s9cls/LOOMPMvxW4+Vm45ebi3n3T3eYkNbE8aMJS2x3X4yxVMHHOH5GS8fISIeRT9p7RJn3 + +VSww9/F13WpEte0/fkH236MeB2UL+v3J68AB9vr7u/IDgNYx8soVpOWcYkptJ0cO+Ven2kjlHaOMfY9x/jwnCBiek5S0FUDHKzIVpxBhhFPWYxlXB2y2ExlFZwkhYT0QmFRnU3YSnVQH0SrHQPrF03A0+BvR+Bm3zlM3MxMQZisxZhs1gIXFURV0c3V0BR4FcyDRtXIMNhN3LUIDMGICEDyCNwVk4PrR4L4NJU/Etw1lVh1gSTQCSVghd1SXSR4W + +tiwgUNyUskdk/EKTIhALKS9gqRDyEMcBEP4NaRDjDnVjQG6WFl6Qn3NETxkmGUUmUnTxa2z2LHmSPSaBgnYiMGIBukoUNlkzwgryGBGHeSOGmA12g3ckmGb1QFGAWzGHClChJA7HbhvW0R71BXZwHh+BzHiFyPi0mGt2O3EmESnwuxnxXyPixUw3uzxUaiezZHakIzex6i3zIx32GhKimj+yA1pX30Bw/mYyWhgLY2gVv2hwf2LF5T4yAOFRoNAL + +p1BgmEZ1lWZ3gPURYQmC73eAqOwN4U01mAF1wKF02yuBQK72txMwkTMzYJlwoLlyoIV02OVwc00Vg3bDbBYO13GV11siqQgDsDCFIB8Qwk4DCQ4C4JEKCGsU8RNxBKYHBNrChJhJID4iFCDgiUsN4BiTiV1n1id3kJwkUI3xLBbU9zUO9w0PyS0P910Ov30OD1D2BPsGRJXFRIcWhOEIxLhOxLMIj1xOsJjlsPhXsOTiGRT3ThcJ1wzyzza3mVmB + +7B7CqAmDujrFmDL1ZFCIOhGB8hck7kLG0VOF+EuHiOcBckBVUz0QuG0WYLmFpQ2zQFKLsPXkqOQ16NQxqIxSqjJEX0aNwx9JaIfiI3ez6hPyBx6L3z6MP0GKmmGO+xBxY1lSv0gBvw42mNhxdHh35VSxt0E1q3LRWJhC1KgMk3GM2PTH+nWCCi9ULFOOeFOP4WFzeABFSkODH0pjuKkRFLKEZmeIUTZloPs3dU+NzBWGfS12DTlOJKBIRPnJxM6W + +nikPtyJNMS919TSXJMyRtmpPtlpN93pKKQDzgKDx9kMMXMFNDg6SjxjxsLj3FIkgcLKGT1T1lP+PlPAGTRhDgDgFFDUW4B0mgBBCyEqGXFIBUh2AYEIAQAoFqGw0ex9IJD5FQrQsGAgGwBEEfldD6H0FFG9NvnQzqLuyKEwuwq6lwsyAQqXyaODJexJWgqwrbUorwqAk6IGhGLIuYpwrwoIqozjKYoopyCovwoTMjK4rKB4tYsyHYlB0vyEpYpEr + +wpOShzgUUt4syCAgJJkMgg0pkv0G0ot1xJXO4uEqgFEvkk3Ld30uUsyAAuKwHSHS7Xc3IqUosrwtaEqycpqwlScowukrsv0CqwVmCIgGvgCvMtEqAl+jkt1ADRlGwFRCFAaESQmHfTmDGF0RQOcnZz3ESuSvwAAE0VR3hXhv0IooN1U7lJSyKjA2ADAgKqwCA+IlUplbKPLZLIZWNwrIYMLaQSAJDoloKBriBRQEBLJZCRqvZiAsc2BacvK6kHjv + +MEEZq8M2tagcQF1SBlBKQAAKZGE43gFhagY6o699VYAASmlE4mUFDC5EqB2v2u0URF4B0VOpetOouuurcLcsfn4oxFUohPalcopyyE4kjC9krTQDa2yCWv+j7MgBvEIEmq6Wj2jjKB9jAqsPRstDYljkjlxrVH0C5AxFIDrCFUJvvOLBJsgqYEWv8QRvRt+rsCqAQGwFyGFB9jgDmoWp9kZvT2gqpAwkYEfAavwCaouTCrCGCA5o4Udj4Pwn0EfG + +CM2JFmWoxv5FRHwoyDlowIsxjlCGNjltFvFqdV+scGYCWuxByH6Cx2yCEFcMz34Bt0FCDhho0hAA0iAA +``` +%% \ No newline at end of file diff --git a/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.svg b/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.svg new file mode 100644 index 00000000..50c3e371 --- /dev/null +++ b/attachments/statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw.svg @@ -0,0 +1,2 @@ +clécolonnesvariables = "mesures"nindividusobservationsindividuelles \ No newline at end of file diff --git a/statistiques univariées.md b/statistiques univariées.md new file mode 100644 index 00000000..0170580b --- /dev/null +++ b/statistiques univariées.md @@ -0,0 +1,27 @@ +--- +up: + - "[[analyse exploratoire de données]]" +tags: + - s/maths/statistiques +aliases: +number headings: first-level 1, start-at 0, max 3, 1.1 - +--- + +# I - Motivation +Lorsque l'on travaille sur des données tabulaires. + +![[statistiques univariées données tabulaires 2026-01-26 16.09.21.excalidraw|600]] + + - phase préliminaire de l'analyse exploratoire + - examen de chaque colonne (échantillon multivarié) + - phase II : examiner les colonnes paire par paire + - phase III : recherche de relations $\begin{cases} \text{entre 1 colonne et les autres}\\ \text{entre 2 groupes de colonnes} \end{cases}$ (analyse multivariée) + +# II - Lexique / vocabulaire + - échantillon (sample) + - souvent obtenu à partir d'une *population* + - mesures/variables sur chaque individu +# III - échantillons quantitatifs / numériques +# IV - résumés numériques +# V - graphiques +# VI - échantillons catégoriels