This commit is contained in:
oscar.plaisant@icloud.com
2024-01-07 19:26:57 +01:00
parent 7cfffa1dcd
commit 00dc433995
268 changed files with 81843 additions and 109871 deletions

View File

@@ -1,11 +1,14 @@
up:: [[statistiques]]
up:: [[statistiques indices de dispersion]]
#maths/statistiques
$$
\begin{align}
\mathrm{cov}(X, Y) &= \overline{X \cdot Y} - \overline{X} \cdot \overline{Y} \\[1em]
&= \overline{(X-\overline{X}) \cdot (Y - \overline{Y})} \\[1em]
&= \sum\limits_{n}\left( \frac{ \left( X_{n} - \overline{X}\right) \cdot \left( Y_{n} - \overline{Y} \right) }{n} \right)
\end{align}
$$
> [!définition]
> Soient $X$ et $Y$ deux variables
> $$
> \begin{align}
> \mathrm{cov}(X, Y) &= \overline{X \cdot Y} - \overline{X} \cdot \overline{Y} \\[1em]
> &= \overline{(X-\overline{X}) \cdot (Y - \overline{Y})} \\[1em]
> &= \sum\limits_{n}\left( \frac{ \left( X_{n} - \overline{X}\right) \cdot \left( Y_{n} - \overline{Y} \right) }{n} \right)
> \end{align}
> $$
^definition