mirror of
https://scm.univ-tours.fr/22107988t/rappaurio-sae501_502.git
synced 2025-08-29 08:45:58 +02:00
647 lines
21 KiB
JavaScript
647 lines
21 KiB
JavaScript
|
||
/**
|
||
* @name CeL quadratic irrational function
|
||
* @fileoverview
|
||
* 本檔案包含了二次無理數 (quadratic irrational, quadratic irquadratic, also known as a quadratic irquadraticity or quadratic surd) 的 functions。<br />
|
||
* TODO: 可充作 Gaussian rational (簡易 complex number)、Gaussian integer、Eisenstein integer、dual number、split-complex numbers。<br />
|
||
* 在純 javascript 的環境下,藉由原生計算功能,盡可能提供高效的大數計算。<br />
|
||
*
|
||
* @example
|
||
* <code>
|
||
* CeL.run('data.math.quadratic');
|
||
* </code>
|
||
*
|
||
* @since 2013/11/8 18:16:52
|
||
* @see
|
||
* https://en.wikipedia.org/wiki/Quadratic_irrational
|
||
*/
|
||
|
||
|
||
/*
|
||
TODO:
|
||
|
||
https://en.wikipedia.org/wiki/Quadratic_integer
|
||
https://en.wikipedia.org/wiki/Quadratic_field
|
||
|
||
√∛∜
|
||
|
||
*/
|
||
|
||
|
||
'use strict';
|
||
if (typeof CeL === 'function')
|
||
CeL.run(
|
||
{
|
||
name: 'data.math.quadratic',
|
||
require: 'data.code.compatibility.|data.native.|data.math.quadratic_to_continued_fraction|data.math.integer.',
|
||
no_extend: 'random,compare',
|
||
code: function (library_namespace) {
|
||
|
||
// requiring
|
||
var quadratic_to_continued_fraction = this.r('quadratic_to_continued_fraction'),
|
||
//
|
||
Integer = library_namespace.data.math.integer;
|
||
|
||
// ---------------------------------------------------------------------//
|
||
// basic constants. 定義基本常數。
|
||
|
||
var
|
||
|
||
// copy from data.math
|
||
MULTIPLICATIVE_IDENTITY = library_namespace.MULTIPLICATIVE_IDENTITY,
|
||
// copy from data.math
|
||
ZERO_EXPONENT = library_namespace.ZERO_EXPONENT,
|
||
|
||
// copy from data.math.integer, data.math.rational.
|
||
|
||
// Quadratic = (integer + multiplier × √radicand) / denominator
|
||
//{Integer}square-free integer
|
||
KEY_RADICAND = 'radicand',
|
||
//{Integer}
|
||
KEY_MULTIPLIER = 'multiplier',
|
||
//{Integer}
|
||
KEY_INTEGER = 'integer',
|
||
//{Integer|Undefined}integer > 0
|
||
KEY_DENOMINATOR = 'denominator',
|
||
//{Boolean|Undefined}最簡, GCD(multiplier, integer, denominator) = 1
|
||
KEY_IRREDUCIBLE = 'irreducible'
|
||
;
|
||
|
||
// ---------------------------------------------------------------------//
|
||
// 初始調整並規範基本常數。
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
// 工具函數
|
||
|
||
function do_modified(quadratic, not_amount) {
|
||
if (!not_amount)
|
||
delete quadratic[KEY_IRREDUCIBLE];
|
||
}
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
// definition of module integer
|
||
|
||
/**
|
||
* 任意大小、帶正負號的有理數。quadratic irrational number instance.<br />
|
||
*
|
||
* @example
|
||
* <code>
|
||
* </code>
|
||
*
|
||
* @class Quadratic 的 constructor
|
||
* @constructor
|
||
*/
|
||
function Quadratic(number) {
|
||
if (!(this instanceof Quadratic))
|
||
return 1 === arguments.length && is_Quadratic(number) ? number
|
||
//
|
||
: assignment.apply(new Quadratic, 1 === arguments.length && (typeof number === 'number' || Integer.is_Integer(number)) ? [1, 0, number] : arguments);
|
||
|
||
if (arguments.length > 0)
|
||
assignment.apply(this, arguments);
|
||
else
|
||
;
|
||
}
|
||
|
||
// instance public interface -------------------
|
||
|
||
// https://en.wikipedia.org/wiki/Operation_(mathematics)
|
||
var OP_REFERENCE = {
|
||
'+': add,
|
||
'-': subtract,
|
||
'*': multiply,
|
||
'/': divide,
|
||
'^': power,
|
||
'=': assignment,
|
||
'==': compare
|
||
};
|
||
|
||
Object.assign(Quadratic.prototype, OP_REFERENCE, {
|
||
reduce_factor: reduce_factor,
|
||
// 下面全部皆為 assignment,例如 '+' 實為 '+='。
|
||
assignment: assignment,
|
||
|
||
// add_assignment
|
||
add: add,
|
||
// subtract_assignment
|
||
subtract: subtract,
|
||
// multiply_assignment
|
||
multiply: multiply,
|
||
// divide_assignment
|
||
divide: divide,
|
||
div: divide,
|
||
|
||
power: power,
|
||
pow: power,
|
||
square: square,
|
||
|
||
conjugate: conjugate,
|
||
reciprocal: reciprocal,
|
||
// 至此為 assignment。
|
||
|
||
clone: clone,
|
||
|
||
abs: abs,
|
||
// 變換正負號。
|
||
negate: function () {
|
||
do_modified(this, true);
|
||
this[KEY_INTEGER].negate();
|
||
this[KEY_MULTIPLIER].negate();
|
||
return this;
|
||
},
|
||
is_positive: function () {
|
||
return this.sign(0) > 0;
|
||
},
|
||
is_negative: function () {
|
||
return this.sign(0) < 0;
|
||
},
|
||
sign: sign,
|
||
|
||
to_continued_fraction: to_continued_fraction,
|
||
integer_part: function () {
|
||
return this[KEY_RADICAND].clone().square_root().multiply(this[KEY_MULTIPLIER]).add(this[KEY_INTEGER]).division(this[KEY_DENOMINATOR]);
|
||
},
|
||
toPrecision: toPrecision,
|
||
minimal_polynomial: minimal_polynomial,
|
||
|
||
is_0: function (little_natural) {
|
||
return is_0(this, little_natural);
|
||
},
|
||
//compare_amount: compare_amount,
|
||
compare: compare,
|
||
equals: function (number) {
|
||
// 虛數無法比較大小。
|
||
return this.compare(number) === 0;
|
||
},
|
||
|
||
op: Integer.set_operate(OP_REFERENCE),
|
||
valueOf: valueOf,
|
||
toString: toString
|
||
});
|
||
|
||
// class public interface ---------------------------
|
||
function is_Quadratic(value) {
|
||
return value instanceof Quadratic;
|
||
}
|
||
|
||
function is_0(value, little_natural) {
|
||
return value == (little_natural || 0)
|
||
//
|
||
|| value[KEY_INTEGER].is_0(little_natural) && (value[KEY_RADICAND].is_0(0) || value[KEY_MULTIPLIER].is_0(0))
|
||
//
|
||
|| value[KEY_RADICAND].is_0(1) && value[KEY_INTEGER].clone().add(value[KEY_MULTIPLIER]).is_0(little_natural);
|
||
}
|
||
|
||
// 正負符號。
|
||
// https://en.wikipedia.org/wiki/Sign_(mathematics)
|
||
// https://en.wikipedia.org/wiki/Sign_function
|
||
function sign(negative) {
|
||
if (this[KEY_RADICAND].is_positive()) {
|
||
var si = this[KEY_INTEGER].sign(), sm = this[KEY_MULTIPLIER].sign();
|
||
if (si * sm < 0)
|
||
// KEY_MULTIPLIER, KEY_INTEGER 正負相異時須比較大小。
|
||
return this[KEY_INTEGER].compare_amount(this[KEY_MULTIPLIER]) < 0
|
||
//
|
||
|| this[KEY_INTEGER].clone().square().compare_amount(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND])) < 0
|
||
//
|
||
? sm : si;
|
||
return si || sm;
|
||
}
|
||
if (this[KEY_RADICAND].is_0())
|
||
return this[KEY_MULTIPLIER].sign();
|
||
}
|
||
|
||
/**
|
||
* 測試大小/比大小
|
||
* @param number the number to compare
|
||
* @return {Number} 0:==, <0:<, >0:>
|
||
* @_name _module_.prototype.compare_to
|
||
*/
|
||
function compare(number) {
|
||
if (!this[KEY_RADICAND].is_negative() && !number[KEY_RADICAND].is_negative()) {
|
||
TODO;
|
||
}
|
||
}
|
||
|
||
// 整係數一元二次方程式 ax^2+bx+c=0 的兩根公式解。
|
||
// solve quadratic equation
|
||
function solve_quadratic(c, b, a) {
|
||
if (!a)
|
||
a = 1;
|
||
if (!b)
|
||
b = 0;
|
||
// discriminant = b^2 - 4ac
|
||
var discriminant = (new Integer(b)).square().add((new Integer(a)).multiply(c || 0).multiply(-4));
|
||
a = (new Integer(a)).multiply(2);
|
||
b = (new Integer(b)).negate();
|
||
if (discriminant.is_0())
|
||
return [(new Quadratic(1, 0, b, a)).reduce_factor()];
|
||
|
||
a = (new Quadratic(discriminant, 1, b, a)).reduce_factor();
|
||
b = a.clone();
|
||
b[KEY_MULTIPLIER].negate();
|
||
return [a, b];
|
||
}
|
||
|
||
function from_continued_fraction(sequence, length, base) {
|
||
TODO;
|
||
}
|
||
|
||
// Get the first to NO-th solutions of Pell's equation: x^2 - d y^2 = n (n=+1 or -1).
|
||
// https://en.wikipedia.org/wiki/Pell%27s_equation
|
||
// Rosen, Kenneth H. (2005). Elementary Number Theory and its Applications (5th edition). Boston: Pearson Addison-Wesley. pp. 542-545.
|
||
// TODO: [[en:chakravala method]]
|
||
// TODO: https://www.alpertron.com.ar/METHODS.HTM Solve the equation: a x2 + b xy + c y2 + dx + ey + f = 0 圓錐曲線/二元二次方程
|
||
// [[en:Conic_section#General Cartesian form]]
|
||
function solve_Pell(d, n, limit, return_Integer) {
|
||
if (!(d >= 1) || !((d | 0) === d)) {
|
||
// 錯誤參數
|
||
throw 'Invalid parameter: ' + d;
|
||
}
|
||
if (typeof n !== 'number')
|
||
n = 1;
|
||
else if (n !== 1 && n !== -1)
|
||
return;
|
||
library_namespace.debug("Solve Pell's equation: x^2 - " + (-d) + ' y^2 = ' + n);
|
||
var cf = (new Quadratic(d)).to_continued_fraction(),
|
||
// 漸進連分數表示
|
||
period = cf.pop(), solutions = [];
|
||
if (!Array.isArray(period)) {
|
||
// e.g., d is a perfect square integer
|
||
// 若 d 是完全平方數,則這個方程式只有平凡解
|
||
return n === 1 && [1, 0];
|
||
}
|
||
Array.prototype.push.apply(cf, period);
|
||
if (period.length % 2 === 0) {
|
||
if (n !== 1)
|
||
// n = -1: no solution
|
||
return;
|
||
} else if (n === 1)
|
||
// 2*l - 1
|
||
Array.prototype.push.apply(cf, period);
|
||
cf.pop();
|
||
cf = Integer.convergent_of(cf);
|
||
if (limit !== undefined && !(limit > 0) && typeof limit !== 'function') {
|
||
library_namespace.error('Invalid limit: ' + limit);
|
||
limit = undefined;
|
||
}
|
||
if (limit === undefined) {
|
||
limit = n === 1 ? 2 : 1;
|
||
}
|
||
// [1, 0]: trivial solution
|
||
n = n === 1 ? [new Integer(1), new Integer(0)] : [cf[0].clone(), cf[1].clone()];
|
||
solutions.push([n[0].clone(!return_Integer), n[1].clone(!return_Integer)]);
|
||
|
||
// limit() return true if 到達界限 / reach the limit / out of valid range.
|
||
while (limit > 0 ? --limit : !limit(n[0].clone(!return_Integer))) {
|
||
period = n[0].clone();
|
||
n[0].multiply(cf[0]).add(n[1].clone().multiply(d).multiply(cf[1]));
|
||
n[1].multiply(cf[0]).add(period.multiply(cf[1]));
|
||
solutions.push([n[0].clone(!return_Integer), n[1].clone(!return_Integer)]);
|
||
}
|
||
|
||
return solutions;
|
||
}
|
||
|
||
Object.assign(Quadratic, {
|
||
solve_quadratic: solve_quadratic,
|
||
|
||
from_continued_fraction: from_continued_fraction,
|
||
solve_Pell: solve_Pell,
|
||
|
||
// little_natural: little natural number, e.g., 1
|
||
is_0: is_0,
|
||
|
||
is_Quadratic: is_Quadratic
|
||
});
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
|
||
// 因 clone 頗為常用,作特殊處置以增進效率。
|
||
function clone(convert_to_Number_if_possible) {
|
||
var quadratic = new Quadratic;
|
||
[KEY_RADICAND, KEY_MULTIPLIER, KEY_INTEGER, KEY_DENOMINATOR].forEach(function (key) {
|
||
if (key in this)
|
||
quadratic[key] = this[key].clone();
|
||
else
|
||
delete quadratic[key];
|
||
}, this);
|
||
if (KEY_IRREDUCIBLE in this)
|
||
quadratic[KEY_IRREDUCIBLE] = this[KEY_IRREDUCIBLE];
|
||
return quadratic;
|
||
}
|
||
|
||
function assignment(radicand, multiplier, integer, denominator) {
|
||
do_modified(this);
|
||
|
||
this[KEY_INTEGER] = new Integer(integer || 0);
|
||
this[KEY_DENOMINATOR] = new Integer(denominator || 1);
|
||
|
||
this[KEY_MULTIPLIER] = multiplier = new Integer(multiplier === undefined ? 1 : multiplier);
|
||
radicand = new Integer(radicand || 0);
|
||
|
||
// 為了允許 二元數/dual numbers,因此不對 radicand.is_0() 時作特殊處置,而當作 ε = √0。
|
||
// http://en.wikipedia.org/wiki/Dual_number
|
||
|
||
// make radicand square-free
|
||
var factors = radicand.factorize(), power;
|
||
for (var factor in factors)
|
||
if (factors[factor] > 1) {
|
||
multiplier.multiply((power = new Integer(factor)).power(factors[factor] / 2 | 0));
|
||
radicand = radicand.division(power.square());
|
||
}
|
||
this[KEY_RADICAND] = radicand;
|
||
|
||
if (this[KEY_DENOMINATOR].is_negative()) {
|
||
// 保證分母為正。
|
||
this[KEY_MULTIPLIER].negate();
|
||
this[KEY_INTEGER].negate();
|
||
this[KEY_DENOMINATOR].negate();
|
||
}
|
||
|
||
return this.reduce_factor();
|
||
}
|
||
|
||
function reduce_factor() {
|
||
if (!this[KEY_IRREDUCIBLE] && !this[KEY_DENOMINATOR].is_0(1)) {
|
||
var gcd = new Integer(Integer.GCD(this[KEY_MULTIPLIER].clone(), this[KEY_INTEGER].clone(), this[KEY_DENOMINATOR].clone()));
|
||
if (!(gcd.compare(2) < 0)) {
|
||
this[KEY_MULTIPLIER].divide(gcd);
|
||
this[KEY_INTEGER].divide(gcd);
|
||
this[KEY_DENOMINATOR].divide(gcd);
|
||
}
|
||
this[KEY_IRREDUCIBLE] = true;
|
||
}
|
||
|
||
return this;
|
||
}
|
||
|
||
// 調整 field,使兩數成為相同 field。
|
||
// return: operand with the same field.
|
||
function adapt_field(_this, operand) {
|
||
operand = Quadratic(operand);
|
||
if (!_this[KEY_RADICAND].equals(operand[KEY_RADICAND]))
|
||
if (_this[KEY_MULTIPLIER].is_0())
|
||
_this[KEY_RADICAND] = operand[KEY_RADICAND].clone();
|
||
else if (operand[KEY_MULTIPLIER].is_0())
|
||
(operand = operand.clone())[KEY_RADICAND] = _this[KEY_RADICAND].clone();
|
||
else
|
||
throw new Error('Different field: ' + _this[KEY_RADICAND] + ' != ' + operand[KEY_RADICAND]);
|
||
return operand;
|
||
}
|
||
|
||
// ---------------------------------------------------------------------//
|
||
//四則運算,即加減乘除, + - * / (+-×÷)**[=]
|
||
//https://en.wikipedia.org/wiki/Elementary_arithmetic
|
||
|
||
// Addition 和: addend + addend = sum
|
||
function add(addend, is_subtract) {
|
||
addend = adapt_field(this, addend);
|
||
|
||
do_modified(this);
|
||
if (this[KEY_DENOMINATOR].compare(addend[KEY_DENOMINATOR]) !== 0) {
|
||
// n1/d1 ± n2/d2 = (n1d2 ± n2d1)/d1d2
|
||
// assert: d1 != d2
|
||
var multiplier = this[KEY_DENOMINATOR], tmp = addend[KEY_DENOMINATOR];
|
||
if (multiplier.is_0(MULTIPLICATIVE_IDENTITY))
|
||
tmp = tmp.clone();
|
||
else {
|
||
addend = addend.clone();
|
||
addend[KEY_INTEGER].multiply(multiplier);
|
||
addend[KEY_MULTIPLIER].multiply(multiplier);
|
||
addend[KEY_DENOMINATOR].multiply(multiplier);
|
||
}
|
||
|
||
if (!tmp.is_0(MULTIPLICATIVE_IDENTITY)) {
|
||
this[KEY_INTEGER].multiply(tmp);
|
||
this[KEY_MULTIPLIER].multiply(tmp);
|
||
this[KEY_DENOMINATOR].multiply(tmp);
|
||
}
|
||
}
|
||
|
||
this[KEY_INTEGER].add(addend[KEY_INTEGER], is_subtract);
|
||
this[KEY_MULTIPLIER].add(addend[KEY_MULTIPLIER], is_subtract);
|
||
return this.reduce_factor();
|
||
}
|
||
|
||
// Subtraction 差: minuend − subtrahend = difference
|
||
function subtract(subtrahend) {
|
||
return this.add(subtrahend, true);
|
||
}
|
||
|
||
// Multiplication 乘: multiplicand × multiplier = product
|
||
function multiply(multiplier) {
|
||
multiplier = adapt_field(this, multiplier);
|
||
|
||
do_modified(this);
|
||
this[KEY_DENOMINATOR].multiply(multiplier[KEY_DENOMINATOR]);
|
||
var i = this[KEY_INTEGER].clone();
|
||
this[KEY_INTEGER].multiply(multiplier[KEY_INTEGER]).add(this[KEY_MULTIPLIER].clone().multiply(multiplier[KEY_MULTIPLIER]).multiply(this[KEY_RADICAND]));
|
||
this[KEY_MULTIPLIER].multiply(multiplier[KEY_INTEGER]).add(i.multiply(multiplier[KEY_MULTIPLIER]));
|
||
|
||
return this.reduce_factor();
|
||
}
|
||
|
||
// 共軛
|
||
function conjugate() {
|
||
do_modified(this);
|
||
this[KEY_MULTIPLIER].negate();
|
||
|
||
return this.reduce_factor();
|
||
}
|
||
|
||
// 倒數, multiplicative inverse or reciprocal
|
||
function reciprocal() {
|
||
do_modified(this.reduce_factor());
|
||
var d = this[KEY_DENOMINATOR];
|
||
if ((this[KEY_DENOMINATOR] = this[KEY_INTEGER].clone().square().add(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]), true)).is_negative())
|
||
this[KEY_DENOMINATOR].negate(), d.negate();
|
||
this[KEY_INTEGER].multiply(d);
|
||
this[KEY_MULTIPLIER].multiply(d.negate());
|
||
|
||
return this.reduce_factor();
|
||
}
|
||
|
||
// Division 除: dividend ÷ divisor = quotient
|
||
function divide(denominator) {
|
||
denominator = adapt_field(this, denominator);
|
||
|
||
do_modified(this);
|
||
return this.multiply(denominator.clone().reciprocal());
|
||
}
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
|
||
// absolute value/絕對值/模
|
||
// https://en.wikipedia.org/wiki/Absolute_value
|
||
function abs() {
|
||
var v = this, i2, r2 = function () {
|
||
i2 = v[KEY_INTEGER].clone().square();
|
||
return r2 = v[KEY_MULTIPLIER].clone().square().multiply(v[KEY_RADICAND]);
|
||
};
|
||
|
||
// test: (this) 為實數或複數。
|
||
if (v[KEY_RADICAND].is_negative())
|
||
// 複數一般方法: abs() = √(i^2 - r m^2) / d
|
||
return new Quadratic(r2().negate().add(i2), 1, 0, v[KEY_DENOMINATOR]);
|
||
|
||
v = v.clone();
|
||
// KEY_MULTIPLIER, KEY_INTEGER 正負相異時須比較大小。
|
||
if (v[KEY_MULTIPLIER].is_negative() && (!v[KEY_INTEGER].is_positive() || r2().compare(i2) > 0)
|
||
//
|
||
|| v[KEY_INTEGER].is_negative() && (v[KEY_MULTIPLIER].is_0() || r2().compare(i2) < 0)) {
|
||
v[KEY_MULTIPLIER].negate();
|
||
v[KEY_INTEGER].negate();
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
function is_pure() {
|
||
var D = this[KEY_RADICAND].clone().square_root(1).multiply(this[KEY_MULTIPLIER]);
|
||
return D.clone().add(this[KEY_INTEGER]).compare(this[KEY_DENOMINATOR]) > 0
|
||
&& D.add(this[KEY_INTEGER], true).compare(0) > 0 && D.compare(this[KEY_DENOMINATOR]) < 0;
|
||
}
|
||
|
||
function continued_fraction_toString() {
|
||
return '[' + this.join(',').replace(/,/, ';') + ']';
|
||
}
|
||
|
||
function to_continued_fraction() {
|
||
|
||
return quadratic_to_continued_fraction(this[KEY_RADICAND].valueOf(), this[KEY_MULTIPLIER].valueOf(), this[KEY_INTEGER].valueOf(), this[KEY_DENOMINATOR].valueOf());
|
||
|
||
// TODO: for large arguments
|
||
|
||
// (m√r + i) / d
|
||
// = (√(r m^2) + i) / d
|
||
// = (√(d in book) + P0) / Q0
|
||
var d = this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]),
|
||
//
|
||
P = this[KEY_INTEGER].clone(), Q = this[KEY_DENOMINATOR].clone(),
|
||
// A: α in book.
|
||
A, a;
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
// precision: 不包含小數點,共取 precision 位,precision > 0。
|
||
function toPrecision(precision) {
|
||
return this.valueOf(precision).toString();
|
||
}
|
||
|
||
// ---------------------------------------------------------------------//
|
||
// advanced functions
|
||
|
||
// Exponentiation 冪/乘方: base ^ exponent = power
|
||
// https://en.wikipedia.org/wiki/Exponentiation
|
||
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
|
||
// TODO: use matrix?
|
||
// http://en.wikipedia.org/wiki/2_%C3%97_2_real_matrices
|
||
function power(exponent) {
|
||
if (exponent == 0) {
|
||
if (!this.is_0(ZERO_EXPONENT)) {
|
||
do_modified(this);
|
||
this[KEY_DENOMINATOR] = new Integer(1);
|
||
this[KEY_INTEGER] = new Integer(1);
|
||
this[KEY_MULTIPLIER] = new Integer(0);
|
||
}
|
||
|
||
} else if (1 < (exponent |= 0)) {
|
||
do_modified(this.reduce_factor());
|
||
|
||
var power = new Quadratic, r, _m = exponent % 2 === 1, m, i,
|
||
//
|
||
d = this[KEY_DENOMINATOR].power(exponent);
|
||
|
||
power[KEY_RADICAND] = r = this[KEY_RADICAND];
|
||
power[KEY_MULTIPLIER] = m = this[KEY_MULTIPLIER];
|
||
power[KEY_INTEGER] = i = this[KEY_INTEGER];
|
||
power[KEY_DENOMINATOR] = new Integer(MULTIPLICATIVE_IDENTITY);
|
||
|
||
this[KEY_MULTIPLIER] = _m ? m.clone() : new Integer(0);
|
||
this[KEY_INTEGER] = _m ? i.clone() : new Integer(MULTIPLICATIVE_IDENTITY);
|
||
this[KEY_DENOMINATOR] = new Integer(MULTIPLICATIVE_IDENTITY);
|
||
|
||
while (exponent >>= 1) {
|
||
// numerator := square of numerator
|
||
_m = m.clone();
|
||
m.multiply(2).multiply(i);
|
||
i.square().add(_m.square().multiply(r));
|
||
if (exponent % 2 === 1)
|
||
// this *= power
|
||
this.multiply(power);
|
||
}
|
||
this[KEY_DENOMINATOR] = d;
|
||
}
|
||
return this;
|
||
}
|
||
|
||
/*
|
||
https://en.wikipedia.org/wiki/Square_(algebra)
|
||
*/
|
||
function square() {
|
||
return this.power(2);
|
||
}
|
||
|
||
// https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
|
||
// return p[{Integer}], p[0] + p[1]*this + p[1]*this^2 = 0
|
||
function minimal_polynomial() {
|
||
this.reduce_factor();
|
||
// TODO: need GCD()?
|
||
var value, polynomial = [this[KEY_INTEGER].clone().square().add(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]), true),
|
||
//
|
||
this[KEY_INTEGER].clone().multiply(-2).multiply(this[KEY_DENOMINATOR]),
|
||
//
|
||
this[KEY_DENOMINATOR].clone().square()];
|
||
// translate to {Number} if possible.
|
||
polynomial.forEach(function (coefficient, index) {
|
||
if (Number.isSafeInteger(value = coefficient.valueOf()))
|
||
polynomial[index] = value;
|
||
});
|
||
return polynomial;
|
||
}
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
|
||
// WARNING 注意: 若回傳非 Number.isSafeInteger(),則會有誤差,不能等於最佳近似值。
|
||
function valueOf(precision) {
|
||
// 2: (default base of Integer) ^ 2 > JavaScript 內定 precision.
|
||
var value = Math.max(2, precision || 0);
|
||
value = this[KEY_INTEGER].clone().add(this[KEY_RADICAND].clone().square_root(value).multiply(this[KEY_MULTIPLIER])).divide(this[KEY_DENOMINATOR], value);
|
||
return precision && value || value.valueOf();
|
||
}
|
||
|
||
function toString(type) {
|
||
var string = this[KEY_MULTIPLIER].is_0() ? []
|
||
: [(this[KEY_MULTIPLIER].is_0(MULTIPLICATIVE_IDENTITY)
|
||
? '' : this[KEY_MULTIPLIER].toString()) + '√' + this[KEY_RADICAND].toString()];
|
||
// assert: (string) is now {Array}
|
||
if (!this[KEY_INTEGER].is_0())
|
||
string.unshift(this[KEY_INTEGER].toString());
|
||
if (string.length > 1) {
|
||
if (!/^-/.test(string[1]))
|
||
string[1] = '+' + string[1];
|
||
string = string.join('');
|
||
} else
|
||
string = string[0] || '';
|
||
// assert: (string) is now {String}
|
||
if (!this[KEY_DENOMINATOR].is_0(MULTIPLICATIVE_IDENTITY))
|
||
string = '(' + string + ')/' + this[KEY_DENOMINATOR].toString();
|
||
return string;
|
||
}
|
||
|
||
|
||
// ---------------------------------------------------------------------//
|
||
|
||
return Quadratic;
|
||
}
|
||
|
||
});
|