/**
* @name CeL quadratic irrational function
* @fileoverview
* 本檔案包含了二次無理數 (quadratic irrational, quadratic irquadratic, also known as a quadratic irquadraticity or quadratic surd) 的 functions。
* TODO: 可充作 Gaussian rational (簡易 complex number)、Gaussian integer、Eisenstein integer、dual number、split-complex numbers。
* 在純 javascript 的環境下,藉由原生計算功能,盡可能提供高效的大數計算。
*
* @example
*
* CeL.run('data.math.quadratic');
*
*
* @since 2013/11/8 18:16:52
* @see
* https://en.wikipedia.org/wiki/Quadratic_irrational
*/
/*
TODO:
https://en.wikipedia.org/wiki/Quadratic_integer
https://en.wikipedia.org/wiki/Quadratic_field
√∛∜
*/
'use strict';
if (typeof CeL === 'function')
CeL.run(
{
name: 'data.math.quadratic',
require: 'data.code.compatibility.|data.native.|data.math.quadratic_to_continued_fraction|data.math.integer.',
no_extend: 'random,compare',
code: function (library_namespace) {
// requiring
var quadratic_to_continued_fraction = this.r('quadratic_to_continued_fraction'),
//
Integer = library_namespace.data.math.integer;
// ---------------------------------------------------------------------//
// basic constants. 定義基本常數。
var
// copy from data.math
MULTIPLICATIVE_IDENTITY = library_namespace.MULTIPLICATIVE_IDENTITY,
// copy from data.math
ZERO_EXPONENT = library_namespace.ZERO_EXPONENT,
// copy from data.math.integer, data.math.rational.
// Quadratic = (integer + multiplier × √radicand) / denominator
//{Integer}square-free integer
KEY_RADICAND = 'radicand',
//{Integer}
KEY_MULTIPLIER = 'multiplier',
//{Integer}
KEY_INTEGER = 'integer',
//{Integer|Undefined}integer > 0
KEY_DENOMINATOR = 'denominator',
//{Boolean|Undefined}最簡, GCD(multiplier, integer, denominator) = 1
KEY_IRREDUCIBLE = 'irreducible'
;
// ---------------------------------------------------------------------//
// 初始調整並規範基本常數。
// ---------------------------------------------------------------------//
// 工具函數
function do_modified(quadratic, not_amount) {
if (!not_amount)
delete quadratic[KEY_IRREDUCIBLE];
}
// ---------------------------------------------------------------------//
// definition of module integer
/**
* 任意大小、帶正負號的有理數。quadratic irrational number instance.
*
* @example
*
*
*
* @class Quadratic 的 constructor
* @constructor
*/
function Quadratic(number) {
if (!(this instanceof Quadratic))
return 1 === arguments.length && is_Quadratic(number) ? number
//
: assignment.apply(new Quadratic, 1 === arguments.length && (typeof number === 'number' || Integer.is_Integer(number)) ? [1, 0, number] : arguments);
if (arguments.length > 0)
assignment.apply(this, arguments);
else
;
}
// instance public interface -------------------
// https://en.wikipedia.org/wiki/Operation_(mathematics)
var OP_REFERENCE = {
'+': add,
'-': subtract,
'*': multiply,
'/': divide,
'^': power,
'=': assignment,
'==': compare
};
Object.assign(Quadratic.prototype, OP_REFERENCE, {
reduce_factor: reduce_factor,
// 下面全部皆為 assignment,例如 '+' 實為 '+='。
assignment: assignment,
// add_assignment
add: add,
// subtract_assignment
subtract: subtract,
// multiply_assignment
multiply: multiply,
// divide_assignment
divide: divide,
div: divide,
power: power,
pow: power,
square: square,
conjugate: conjugate,
reciprocal: reciprocal,
// 至此為 assignment。
clone: clone,
abs: abs,
// 變換正負號。
negate: function () {
do_modified(this, true);
this[KEY_INTEGER].negate();
this[KEY_MULTIPLIER].negate();
return this;
},
is_positive: function () {
return this.sign(0) > 0;
},
is_negative: function () {
return this.sign(0) < 0;
},
sign: sign,
to_continued_fraction: to_continued_fraction,
integer_part: function () {
return this[KEY_RADICAND].clone().square_root().multiply(this[KEY_MULTIPLIER]).add(this[KEY_INTEGER]).division(this[KEY_DENOMINATOR]);
},
toPrecision: toPrecision,
minimal_polynomial: minimal_polynomial,
is_0: function (little_natural) {
return is_0(this, little_natural);
},
//compare_amount: compare_amount,
compare: compare,
equals: function (number) {
// 虛數無法比較大小。
return this.compare(number) === 0;
},
op: Integer.set_operate(OP_REFERENCE),
valueOf: valueOf,
toString: toString
});
// class public interface ---------------------------
function is_Quadratic(value) {
return value instanceof Quadratic;
}
function is_0(value, little_natural) {
return value == (little_natural || 0)
//
|| value[KEY_INTEGER].is_0(little_natural) && (value[KEY_RADICAND].is_0(0) || value[KEY_MULTIPLIER].is_0(0))
//
|| value[KEY_RADICAND].is_0(1) && value[KEY_INTEGER].clone().add(value[KEY_MULTIPLIER]).is_0(little_natural);
}
// 正負符號。
// https://en.wikipedia.org/wiki/Sign_(mathematics)
// https://en.wikipedia.org/wiki/Sign_function
function sign(negative) {
if (this[KEY_RADICAND].is_positive()) {
var si = this[KEY_INTEGER].sign(), sm = this[KEY_MULTIPLIER].sign();
if (si * sm < 0)
// KEY_MULTIPLIER, KEY_INTEGER 正負相異時須比較大小。
return this[KEY_INTEGER].compare_amount(this[KEY_MULTIPLIER]) < 0
//
|| this[KEY_INTEGER].clone().square().compare_amount(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND])) < 0
//
? sm : si;
return si || sm;
}
if (this[KEY_RADICAND].is_0())
return this[KEY_MULTIPLIER].sign();
}
/**
* 測試大小/比大小
* @param number the number to compare
* @return {Number} 0:==, <0:<, >0:>
* @_name _module_.prototype.compare_to
*/
function compare(number) {
if (!this[KEY_RADICAND].is_negative() && !number[KEY_RADICAND].is_negative()) {
TODO;
}
}
// 整係數一元二次方程式 ax^2+bx+c=0 的兩根公式解。
// solve quadratic equation
function solve_quadratic(c, b, a) {
if (!a)
a = 1;
if (!b)
b = 0;
// discriminant = b^2 - 4ac
var discriminant = (new Integer(b)).square().add((new Integer(a)).multiply(c || 0).multiply(-4));
a = (new Integer(a)).multiply(2);
b = (new Integer(b)).negate();
if (discriminant.is_0())
return [(new Quadratic(1, 0, b, a)).reduce_factor()];
a = (new Quadratic(discriminant, 1, b, a)).reduce_factor();
b = a.clone();
b[KEY_MULTIPLIER].negate();
return [a, b];
}
function from_continued_fraction(sequence, length, base) {
TODO;
}
// Get the first to NO-th solutions of Pell's equation: x^2 - d y^2 = n (n=+1 or -1).
// https://en.wikipedia.org/wiki/Pell%27s_equation
// Rosen, Kenneth H. (2005). Elementary Number Theory and its Applications (5th edition). Boston: Pearson Addison-Wesley. pp. 542-545.
// TODO: [[en:chakravala method]]
// TODO: https://www.alpertron.com.ar/METHODS.HTM Solve the equation: a x2 + b xy + c y2 + dx + ey + f = 0 圓錐曲線/二元二次方程
// [[en:Conic_section#General Cartesian form]]
function solve_Pell(d, n, limit, return_Integer) {
if (!(d >= 1) || !((d | 0) === d)) {
// 錯誤參數
throw 'Invalid parameter: ' + d;
}
if (typeof n !== 'number')
n = 1;
else if (n !== 1 && n !== -1)
return;
library_namespace.debug("Solve Pell's equation: x^2 - " + (-d) + ' y^2 = ' + n);
var cf = (new Quadratic(d)).to_continued_fraction(),
// 漸進連分數表示
period = cf.pop(), solutions = [];
if (!Array.isArray(period)) {
// e.g., d is a perfect square integer
// 若 d 是完全平方數,則這個方程式只有平凡解
return n === 1 && [1, 0];
}
Array.prototype.push.apply(cf, period);
if (period.length % 2 === 0) {
if (n !== 1)
// n = -1: no solution
return;
} else if (n === 1)
// 2*l - 1
Array.prototype.push.apply(cf, period);
cf.pop();
cf = Integer.convergent_of(cf);
if (limit !== undefined && !(limit > 0) && typeof limit !== 'function') {
library_namespace.error('Invalid limit: ' + limit);
limit = undefined;
}
if (limit === undefined) {
limit = n === 1 ? 2 : 1;
}
// [1, 0]: trivial solution
n = n === 1 ? [new Integer(1), new Integer(0)] : [cf[0].clone(), cf[1].clone()];
solutions.push([n[0].clone(!return_Integer), n[1].clone(!return_Integer)]);
// limit() return true if 到達界限 / reach the limit / out of valid range.
while (limit > 0 ? --limit : !limit(n[0].clone(!return_Integer))) {
period = n[0].clone();
n[0].multiply(cf[0]).add(n[1].clone().multiply(d).multiply(cf[1]));
n[1].multiply(cf[0]).add(period.multiply(cf[1]));
solutions.push([n[0].clone(!return_Integer), n[1].clone(!return_Integer)]);
}
return solutions;
}
Object.assign(Quadratic, {
solve_quadratic: solve_quadratic,
from_continued_fraction: from_continued_fraction,
solve_Pell: solve_Pell,
// little_natural: little natural number, e.g., 1
is_0: is_0,
is_Quadratic: is_Quadratic
});
// ---------------------------------------------------------------------//
// 因 clone 頗為常用,作特殊處置以增進效率。
function clone(convert_to_Number_if_possible) {
var quadratic = new Quadratic;
[KEY_RADICAND, KEY_MULTIPLIER, KEY_INTEGER, KEY_DENOMINATOR].forEach(function (key) {
if (key in this)
quadratic[key] = this[key].clone();
else
delete quadratic[key];
}, this);
if (KEY_IRREDUCIBLE in this)
quadratic[KEY_IRREDUCIBLE] = this[KEY_IRREDUCIBLE];
return quadratic;
}
function assignment(radicand, multiplier, integer, denominator) {
do_modified(this);
this[KEY_INTEGER] = new Integer(integer || 0);
this[KEY_DENOMINATOR] = new Integer(denominator || 1);
this[KEY_MULTIPLIER] = multiplier = new Integer(multiplier === undefined ? 1 : multiplier);
radicand = new Integer(radicand || 0);
// 為了允許 二元數/dual numbers,因此不對 radicand.is_0() 時作特殊處置,而當作 ε = √0。
// http://en.wikipedia.org/wiki/Dual_number
// make radicand square-free
var factors = radicand.factorize(), power;
for (var factor in factors)
if (factors[factor] > 1) {
multiplier.multiply((power = new Integer(factor)).power(factors[factor] / 2 | 0));
radicand = radicand.division(power.square());
}
this[KEY_RADICAND] = radicand;
if (this[KEY_DENOMINATOR].is_negative()) {
// 保證分母為正。
this[KEY_MULTIPLIER].negate();
this[KEY_INTEGER].negate();
this[KEY_DENOMINATOR].negate();
}
return this.reduce_factor();
}
function reduce_factor() {
if (!this[KEY_IRREDUCIBLE] && !this[KEY_DENOMINATOR].is_0(1)) {
var gcd = new Integer(Integer.GCD(this[KEY_MULTIPLIER].clone(), this[KEY_INTEGER].clone(), this[KEY_DENOMINATOR].clone()));
if (!(gcd.compare(2) < 0)) {
this[KEY_MULTIPLIER].divide(gcd);
this[KEY_INTEGER].divide(gcd);
this[KEY_DENOMINATOR].divide(gcd);
}
this[KEY_IRREDUCIBLE] = true;
}
return this;
}
// 調整 field,使兩數成為相同 field。
// return: operand with the same field.
function adapt_field(_this, operand) {
operand = Quadratic(operand);
if (!_this[KEY_RADICAND].equals(operand[KEY_RADICAND]))
if (_this[KEY_MULTIPLIER].is_0())
_this[KEY_RADICAND] = operand[KEY_RADICAND].clone();
else if (operand[KEY_MULTIPLIER].is_0())
(operand = operand.clone())[KEY_RADICAND] = _this[KEY_RADICAND].clone();
else
throw new Error('Different field: ' + _this[KEY_RADICAND] + ' != ' + operand[KEY_RADICAND]);
return operand;
}
// ---------------------------------------------------------------------//
//四則運算,即加減乘除, + - * / (+-×÷)**[=]
//https://en.wikipedia.org/wiki/Elementary_arithmetic
// Addition 和: addend + addend = sum
function add(addend, is_subtract) {
addend = adapt_field(this, addend);
do_modified(this);
if (this[KEY_DENOMINATOR].compare(addend[KEY_DENOMINATOR]) !== 0) {
// n1/d1 ± n2/d2 = (n1d2 ± n2d1)/d1d2
// assert: d1 != d2
var multiplier = this[KEY_DENOMINATOR], tmp = addend[KEY_DENOMINATOR];
if (multiplier.is_0(MULTIPLICATIVE_IDENTITY))
tmp = tmp.clone();
else {
addend = addend.clone();
addend[KEY_INTEGER].multiply(multiplier);
addend[KEY_MULTIPLIER].multiply(multiplier);
addend[KEY_DENOMINATOR].multiply(multiplier);
}
if (!tmp.is_0(MULTIPLICATIVE_IDENTITY)) {
this[KEY_INTEGER].multiply(tmp);
this[KEY_MULTIPLIER].multiply(tmp);
this[KEY_DENOMINATOR].multiply(tmp);
}
}
this[KEY_INTEGER].add(addend[KEY_INTEGER], is_subtract);
this[KEY_MULTIPLIER].add(addend[KEY_MULTIPLIER], is_subtract);
return this.reduce_factor();
}
// Subtraction 差: minuend − subtrahend = difference
function subtract(subtrahend) {
return this.add(subtrahend, true);
}
// Multiplication 乘: multiplicand × multiplier = product
function multiply(multiplier) {
multiplier = adapt_field(this, multiplier);
do_modified(this);
this[KEY_DENOMINATOR].multiply(multiplier[KEY_DENOMINATOR]);
var i = this[KEY_INTEGER].clone();
this[KEY_INTEGER].multiply(multiplier[KEY_INTEGER]).add(this[KEY_MULTIPLIER].clone().multiply(multiplier[KEY_MULTIPLIER]).multiply(this[KEY_RADICAND]));
this[KEY_MULTIPLIER].multiply(multiplier[KEY_INTEGER]).add(i.multiply(multiplier[KEY_MULTIPLIER]));
return this.reduce_factor();
}
// 共軛
function conjugate() {
do_modified(this);
this[KEY_MULTIPLIER].negate();
return this.reduce_factor();
}
// 倒數, multiplicative inverse or reciprocal
function reciprocal() {
do_modified(this.reduce_factor());
var d = this[KEY_DENOMINATOR];
if ((this[KEY_DENOMINATOR] = this[KEY_INTEGER].clone().square().add(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]), true)).is_negative())
this[KEY_DENOMINATOR].negate(), d.negate();
this[KEY_INTEGER].multiply(d);
this[KEY_MULTIPLIER].multiply(d.negate());
return this.reduce_factor();
}
// Division 除: dividend ÷ divisor = quotient
function divide(denominator) {
denominator = adapt_field(this, denominator);
do_modified(this);
return this.multiply(denominator.clone().reciprocal());
}
// ---------------------------------------------------------------------//
// absolute value/絕對值/模
// https://en.wikipedia.org/wiki/Absolute_value
function abs() {
var v = this, i2, r2 = function () {
i2 = v[KEY_INTEGER].clone().square();
return r2 = v[KEY_MULTIPLIER].clone().square().multiply(v[KEY_RADICAND]);
};
// test: (this) 為實數或複數。
if (v[KEY_RADICAND].is_negative())
// 複數一般方法: abs() = √(i^2 - r m^2) / d
return new Quadratic(r2().negate().add(i2), 1, 0, v[KEY_DENOMINATOR]);
v = v.clone();
// KEY_MULTIPLIER, KEY_INTEGER 正負相異時須比較大小。
if (v[KEY_MULTIPLIER].is_negative() && (!v[KEY_INTEGER].is_positive() || r2().compare(i2) > 0)
//
|| v[KEY_INTEGER].is_negative() && (v[KEY_MULTIPLIER].is_0() || r2().compare(i2) < 0)) {
v[KEY_MULTIPLIER].negate();
v[KEY_INTEGER].negate();
}
return v;
}
function is_pure() {
var D = this[KEY_RADICAND].clone().square_root(1).multiply(this[KEY_MULTIPLIER]);
return D.clone().add(this[KEY_INTEGER]).compare(this[KEY_DENOMINATOR]) > 0
&& D.add(this[KEY_INTEGER], true).compare(0) > 0 && D.compare(this[KEY_DENOMINATOR]) < 0;
}
function continued_fraction_toString() {
return '[' + this.join(',').replace(/,/, ';') + ']';
}
function to_continued_fraction() {
return quadratic_to_continued_fraction(this[KEY_RADICAND].valueOf(), this[KEY_MULTIPLIER].valueOf(), this[KEY_INTEGER].valueOf(), this[KEY_DENOMINATOR].valueOf());
// TODO: for large arguments
// (m√r + i) / d
// = (√(r m^2) + i) / d
// = (√(d in book) + P0) / Q0
var d = this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]),
//
P = this[KEY_INTEGER].clone(), Q = this[KEY_DENOMINATOR].clone(),
// A: α in book.
A, a;
return;
}
// precision: 不包含小數點,共取 precision 位,precision > 0。
function toPrecision(precision) {
return this.valueOf(precision).toString();
}
// ---------------------------------------------------------------------//
// advanced functions
// Exponentiation 冪/乘方: base ^ exponent = power
// https://en.wikipedia.org/wiki/Exponentiation
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
// TODO: use matrix?
// http://en.wikipedia.org/wiki/2_%C3%97_2_real_matrices
function power(exponent) {
if (exponent == 0) {
if (!this.is_0(ZERO_EXPONENT)) {
do_modified(this);
this[KEY_DENOMINATOR] = new Integer(1);
this[KEY_INTEGER] = new Integer(1);
this[KEY_MULTIPLIER] = new Integer(0);
}
} else if (1 < (exponent |= 0)) {
do_modified(this.reduce_factor());
var power = new Quadratic, r, _m = exponent % 2 === 1, m, i,
//
d = this[KEY_DENOMINATOR].power(exponent);
power[KEY_RADICAND] = r = this[KEY_RADICAND];
power[KEY_MULTIPLIER] = m = this[KEY_MULTIPLIER];
power[KEY_INTEGER] = i = this[KEY_INTEGER];
power[KEY_DENOMINATOR] = new Integer(MULTIPLICATIVE_IDENTITY);
this[KEY_MULTIPLIER] = _m ? m.clone() : new Integer(0);
this[KEY_INTEGER] = _m ? i.clone() : new Integer(MULTIPLICATIVE_IDENTITY);
this[KEY_DENOMINATOR] = new Integer(MULTIPLICATIVE_IDENTITY);
while (exponent >>= 1) {
// numerator := square of numerator
_m = m.clone();
m.multiply(2).multiply(i);
i.square().add(_m.square().multiply(r));
if (exponent % 2 === 1)
// this *= power
this.multiply(power);
}
this[KEY_DENOMINATOR] = d;
}
return this;
}
/*
https://en.wikipedia.org/wiki/Square_(algebra)
*/
function square() {
return this.power(2);
}
// https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
// return p[{Integer}], p[0] + p[1]*this + p[1]*this^2 = 0
function minimal_polynomial() {
this.reduce_factor();
// TODO: need GCD()?
var value, polynomial = [this[KEY_INTEGER].clone().square().add(this[KEY_MULTIPLIER].clone().square().multiply(this[KEY_RADICAND]), true),
//
this[KEY_INTEGER].clone().multiply(-2).multiply(this[KEY_DENOMINATOR]),
//
this[KEY_DENOMINATOR].clone().square()];
// translate to {Number} if possible.
polynomial.forEach(function (coefficient, index) {
if (Number.isSafeInteger(value = coefficient.valueOf()))
polynomial[index] = value;
});
return polynomial;
}
// ---------------------------------------------------------------------//
// WARNING 注意: 若回傳非 Number.isSafeInteger(),則會有誤差,不能等於最佳近似值。
function valueOf(precision) {
// 2: (default base of Integer) ^ 2 > JavaScript 內定 precision.
var value = Math.max(2, precision || 0);
value = this[KEY_INTEGER].clone().add(this[KEY_RADICAND].clone().square_root(value).multiply(this[KEY_MULTIPLIER])).divide(this[KEY_DENOMINATOR], value);
return precision && value || value.valueOf();
}
function toString(type) {
var string = this[KEY_MULTIPLIER].is_0() ? []
: [(this[KEY_MULTIPLIER].is_0(MULTIPLICATIVE_IDENTITY)
? '' : this[KEY_MULTIPLIER].toString()) + '√' + this[KEY_RADICAND].toString()];
// assert: (string) is now {Array}
if (!this[KEY_INTEGER].is_0())
string.unshift(this[KEY_INTEGER].toString());
if (string.length > 1) {
if (!/^-/.test(string[1]))
string[1] = '+' + string[1];
string = string.join('');
} else
string = string[0] || '';
// assert: (string) is now {String}
if (!this[KEY_DENOMINATOR].is_0(MULTIPLICATIVE_IDENTITY))
string = '(' + string + ')/' + this[KEY_DENOMINATOR].toString();
return string;
}
// ---------------------------------------------------------------------//
return Quadratic;
}
});